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RÉSUMÉ

La tomographie optique diffuse (TOD) est une modalité d’imagerie biomédicale 3D peu
dispendieuse et non-invasive qui permet de reconstruire les propriétés optiques d’un tissu
biologique. Le processus de reconstruction d’images en TOD est difficile à réaliser puisqu’il
nécessite de résoudre un problème non-linéaire et mal posé. Les propriétés optiques sont
calculées à partir des mesures de surface du milieu à l’étude. Dans ce projet, deux méthodes
de reconstruction non-linéaire pour la TOD ont été développées. La première méthode
utilise un modèle itératif, une approche encore en développement qu’on retrouve dans la
littérature. L’approximation de la diffusion est le modèle utilisé pour résoudre le problème
direct. Par ailleurs, la reconstruction d’image à été réalisée dans différents régimes, continu
et temporel, avec des mesures intrinsèques et de fluorescence. Dans un premier temps, un
algorithme de reconstruction en régime continu et utilisant des mesures multispectrales
est développé pour reconstruire la concentration des chromophores qui se trouve dans
différents types de tissus. Dans un second temps, un algorithme de reconstruction est
développé pour calculer le temps de vie de différents marqueurs fluorescents à partir de
mesures optiques dans le domaine temporel. Une approche innovatrice a été d’utiliser
la totalité de l’information du signal temporel dans le but d’améliorer la reconstruction
d’image. Par ailleurs, cet algorithme permettrait de distinguer plus de trois temps de vie,
ce qui n’a pas encore été démontré en imagerie de fluorescence. La deuxième méthode
qui a été développée utilise l’apprentissage machine et plus spécifiquement l’apprentissage
profond. Un modèle d’apprentissage profond génératif est mis en place pour reconstruire la
distribution de sources d’émissions de fluorescence à partir de mesures en régime continu.
Il s’agit de la première utilisation d’un algorithme d’apprentissage profond appliqué à la
reconstruction d’images en TOD de fluorescence. La validation de la méthode est réalisée
avec une mire aux propriétés optiques connues dans laquelle sont inséres des marqueurs
fluorescents. La robustesse de cette méthode est démontrée même dans les situations où
le nombre de mesures est limité et en présence de bruit.

Mots-clés : tomographie optique diffuse de fluorescence, mesures optiques dans le
domaine temporel, mesures optiques en régime continu, tomographie optique diffuse
multispectrale, apprentissage machine.
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ABSTRACT

Diffuse optical tomography (DOT) is a low cost and noninvasive 3D biomedical imaging
technique to reconstruct the optical properties of biological tissues. Image reconstruction
in DOT is inherently a difficult problem, because the inversion process is nonlinear and
ill-posed. During DOT image reconstruction, the optical properties of the medium are
recovered from the boundary measurements at the surface of the medium. In this work,
two approaches are proposed for non-linear DOT image reconstruction. The first approach
relies on the use of iterative model-based image reconstruction, which is still under devel-
opment for DOT and that can be found in the literature. A 3D forward model is developed
based on the diffusion equation, which is an approximation of the radiative transfer equa-
tion. The forward model developed can simulate light propagation in complex geometries.
Additionally, the forward model is developed to deal with different types of optical data
such as continuous-wave (CW) and time-domain (TD) data for both intrinsic and fluo-
rescence signals. First, a multispectral image reconstruction algorithm is developed to
reconstruct the concentration of different tissue chromophores simultaneously from a set
of CW measurements at different wavelengths. A second image reconstruction algorithm
is developed to reconstruct the fluorescence lifetime (FLT) of different fluorescent markers
from time-domain fluorescence measurements. In this algorithm, all the information con-
tained in full temporal curves is used along with an acceleration technique to render the
algorithm of practical use. Moreover, the proposed algorithm has the potential of being
able to distinguish more than 3 FLTs, which is a first in fluorescence imaging. The second
approach is based on machine learning techniques, in particular deep learning models. A
deep generative model is proposed to reconstruct the fluorescence distribution map from
CW fluorescence measurements. It is the first time that such a model is applied for fluores-
cence DOT image reconstruction. The performance of the proposed algorithm is validated
with an optical phantom and a fluorescent marker. The proposed algorithm recovers the
fluorescence distribution even from very noisy and sparse measurements, which is a big
limitation in fluorescence DOT imaging.

Keywords: fluorescence diffuse optical tomography, time-domain optical measure-
ments, continuous-wave optical measurements, multispectral diffuse optical tomog-
raphy, machine learning.
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CHAPTER 1

INTRODUCTION

1.1 Diffuse optical tomography

1.1.1 Light interaction with biological tissues

Interaction between photons and biological tissues can be divided into two phenomena:
absorption and elastic scattering. Absorption relates to light energy attenuation in tis-
sue and elastic scattering refers to a changes in photons directions with conservation of
energy. These interactions are characteristic of biological tissues and are quantified in
terms of their representative coefficients: the absorption coefficient and the scattering co-
efficient [134]. These parameters are reconstructed in diffuse optical tomography (DOT)
to identify different types of tissues in the imaged volume and for functional imaging based
on tissue oxygenation. [22].

Absorption coefficient

The absorption coefficient (µa) quantifies the absorption of photons by a tissue. It is
defined as the inverse of the average distance travelled by a photon in the tissue before
it is absorbed [134]. The unit for µa is 1/Length (typically 1/cm or 1/mm). Biological
tissues are preferably imaged with near infrared (NIR) light in the range from 650 nm to
1000 nm, so-called the "therapeutic window" as light in that range can penetrate deeper
into tissues owing to much weaker absorption; several centimeters are possible, whereas
in the visible range, light is strongly absorbed after only a few millimeters. The cause
of light absorption in tissue can be traced back to the interaction between the different
components composing tissues and photons. The main absorbers in tissues are water, fat,
and both oxygenated (HbO2) and deoxygenated (Hb) hemoglobin. The absorption spectra
for these components are shown in Fig. 1.1.

Scattering coefficient

Scattering in tissues originates from inhomogeneities in the refractive index due to the
presence of cell membranes and sub-cellular structures. In a similar definition to the
absorption coefficient, the scattering coefficient (µs) is defined as the inverse of the average
distance traveled by a photon before it undergoes scattering [134]. Another parameter that
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Figure 1.1 Absorption spectra of tissue components [132].

must be determined in scattering is the change of direction in the propagation of a photon
after it undergoes a scattering event (deflection angle). This change in direction can be
characterized by the anisotropy factor (g) of the tissue. This parameter is defined as the
mean cosine of the scattering angle and its typical values for biological tissues are in the
range from 0.69 to 0.99 [30]. In the diffusion regime, the combination of both parameters
defines the reduced scattering coefficient given by

µ′s = (1− g)µs (1.1)

The reduced scattering coefficient appears often in the literature in relationship with the
use of the diffusion equation (DE) to describe light propagation in biological tissues. The
DE is a widely used approximation to the fundamental radiative transfer equation (RTE)
that is the most complete macroscopic model describing light propagation in absorbing and
scattering media (so-called turbid media) such as biological tissues [164]. Another optical
coefficient often used, which is a combination of µa and µ′s is the diffusion coefficient D
given by

D =
1

3(µa + µ′s)
. (1.2)
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1.1.2 Definition of diffuse optical tomography and variants

Diffuse optical tomography is a biomedical optical imaging technique in which the biolog-
ical tissue is illuminated (preferably by NIR light). Then, the multi-scattered (diffused)
light exiting the medium is collected at the boundary thereof with an array of detectors ar-
ranged around the medium. The dependence on the absorption and scattering coefficients
of the transmitted light through tissues allows mapping the internal optical properties
of the tissue by resorting to tomographic imaging techniques. Thus, DOT for intrinsic
imaging is based on specific intrinsic optical characteristics of tissue. A variant of DOT
is fluorescence DOT (FDOT), in which the concentration of a fluorescent agent (typically
injected into a tissue) or some other property thereof such as the fluorescence lifetime, is
being imaged using the same type of measurements as for DOT. FDOT will be discussed
in more depth later in this chapter. There are also other variants of DOT, such as biolu-
minescence DOT, but these will not be discussed here as they are not within the scope of
this thesis.

The other forward models are statistical minescence.

1.1.3 Optical signal acquisition

Three main data acquisition methods in DOT are: time-domain (TD) measurements
(Fig. 1.2a), frequency-domain (FD) measurements (Fig. 1.2b) and continuous-wave (CW)
or steady-state measurements (Fig. 1.2c). These three methods are reviewed separately
in the following.

Time-domain (TD) In TD measurements, a temporal distribution of light is produced
when a short laser pulse (a few picoseconds) is transmitted through the tissue. This tempo-
ral distribution is known as the time point-spread function (TPSF). By traveling through
the soft tissue, the TPSF temporally broadens and its peak intensity becomes smaller.
These effects on the pulses are influenced by the optical properties of the medium and the

Figure 1.2 Optical signal acquisition methods [67].
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distance traveled therein before being a measurement is being made. In this way, a TPSF
implicitly contains information about the optical properties of a medium, and methods
have devised to exploit this information in view of imaging these properties. For example,
the time at which the maximum of TPSF is reached is indicative of µs and the TPSF’s
tail and slope yield information about µa [67]. The TPSF can be temporally resolved
using streak cameras or other time-gated devices, or through the use of time-correlated
single-photon counting (TCSPC). Streak camera have a higher temporal resolution than
TCSPC system, but the latter have a larger detection area, better temporal linearity,
lower cost and higher dynamic range [74]. In TD measurements, to reach a 3D image, an
array of sources and detectors around the subject are used to collect sufficient data for 3D
image reconstruction. In TD tomographic imaging approaches, sources and detectors illu-
minate the surface of the tissue and acquire data over several views around that surface.
TD methods like other methods can also use measurements at different wavelengths [58]
(multispectral measurement).

Frequency-domain (FD) In frequency-domain systems, frequency-modulated light
sources are used to illuminate the surface of the object. The measured parameters are
the phase shift (Φ), and the demodulation (M = (ACo/DCo)/(ACi/DCi))(Fig. 1.2b) [67].
A frequency-domain system consists of a radio-frequency (RF, typically 100-1000 MHz)
oscillator to drive a suitable laser diode and a high-bandwidth detector (e.g. PMT, APD,
or CCD) to detect the modulated transmitted signals [58]. The detected signals are con-
verted from RF to a few kHz prior to phase detection. Then they are digitized over
an appropriate period of time, and the phase and amplitude are computed. FD devices
are relatively inexpensive and simple to use compare to TD systems. They are suitable
for clinical settings because of their ability to reject non-correlated light sources such as
background light. Although, FD systems are cheaper and faster to implement than TD
instruments, they don’t yield accurate data as TD systems [58].

continuous-wave (CW) basic optical instruments were initially developed to investi-
gate head, breast and testes; these instruments used continuous-wave sources available at
the time (Bright 1831, Curling 1843, Cutler 1929). After the introduction of NIR sources
and detectors, CW systems were commonly used for studying haemodynamic and oxy-
genation changes in superficial tissues, and in outer (cortical) regions of the brain [58]. In
CW systems, the source emits light at a constant intensity, or light that is modulated at
a low frequency (a few kHz) before being injected into the tissue. Then the transmitted



1.1. DIFFUSE OPTICAL TOMOGRAPHY 5

light intensities are measured by the detectors. CW systems, in comparison with oth-
ers TD and FD data acquisition systems, reveal less information about tissues and their
characteristics. It is also a difficult task to measure the absolute intensity as it requires
delicate calibration and is subject to source and surface coupling fluctuations. Never-
theless, they are now among the most widely used systems in the clinical applications,
owing to the availability of low-cost, high-power (several mW) laser diodes over a broad
range of NIR wavelengths, simple detection instruments and high data-acquisition rates.
These factors have contributed in making CW systems a popular choice for several optical
imaging applications. CW-DOT has the advantages of low cost of installation and higher
signal-to-noise ratio (SNR). The suitable wavelength range for optical imaging of biolog-
ical tissues beyond a depths of few millimeters is between 650 to 930 nm [80], owing to
the fact that absorption of the main chromophores (mainly oxy- and deoxy-hemoglobin)
is least in that range.

1.1.4 DOT applications

DOT, as an emerging medical modality, covers a wide range of scales and many differ-
ent applications. Since the main source of optical contrast in tissue is oxy- and deoxy-
hemoglobin in blood, frequent applications of DOT in human imaging are the screening
and diagnosis of breast cancer [66], and brain studies [14], including stroke, hemorrhage,
and brain function [22]. Also arthritic finger imaging is well developed [68]. However, the
greatest impact of DOT to date has been in small animal imaging. In molecular imaging,
a wide range of biologically relevant molecules can be tagged with a broad choice of op-
tical contrast agents. DOT imaging provides great flexibility in both the mechanisms for
contrast and the measurement approaches [3].

DOT has the potential of being a low-cost imaging modality with acceptable accuracy
with respect to other medical imaging techniques [2]. As mentioned, the simplest ap-
proach for implementing DOT imaging is through the use of CW light sources and light
detection schemes. The major drawback of CW-DOT is its incapability of reconstructing
optical properties simultaneously; more precisely, CW-DOT reconstruction is incapable
of uniquely distinguishing between absorption and scattering [8]. The only solution to
overcome this non-unicity is to resort to multispectral CW-DOT [12]. In multispectral
tomography, optical measurements are performed at several wavelengths. This exploits,
the dependency of tissue chromophore absorption and scattering to the wavelength, which
allows to uniquely reconstruct the optical properties simultaneously [32, 34]. One of the
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recent promising applications of multispectral DOT that is currently being developed is
for the detection of blood vessels during brain needle biopsy procedures [131].

1.2 FDOT

Whereas DOT seeks to image the intrinsic optical properties of tissues, as briefly men-
tioned previously variants of DOT have been developed to image the distribution of ex-
trinsic compounds (i.e. that do not naturally appear in biological tissues) such as injected
fluorescent probes to target specific molecules in vivo, and genetically engineered reporter
fluorescent proteins or enzymes such as luciferase partaking in bioluminescent reactions.
These approaches have been intensely developed in recent years for small animal preclinical
imaging [57, 150].

1.2.1 Definition

Fluorescence is a physical phenomenon in which a molecule emits light due to excitation
by an external light source. Microscopically, an excitation photon collides and is absorbed
with a given probability. If absorption occurs, then the molecule transfers the photon’s
energy to an electron, which then leads to an excited state of the molecule. In this state,
the molecule becomes unstable and tends to return to its initial state and lose energy
(Fig. 1.3a). In a fluorescent molecule (fluorophore), there are two characteristic spectra,
the excitation and emission spectra (Fig. 1.3b). The two diagrams are similar and the
difference is in their wavelengths and/or maximum energy in excitation and emission. This
difference is known as Stoke’s shift, and is due to the molecular vibration of the excited
fluorophore and dissipation of energy as heat before fluorescent light is emitted [108]. Thus,
the energy (E = hν) of the emitted photon is smaller than that of the absorbed photon.
As a result the wavelength (λ = C/ν) of emission light is longer than the excitation light.

The intensity ratio of emitted photons to absorbed photons defines the fluorescence yield.
The fluorescence yield thus gives the efficiency of the fluorescence process. This parame-
ter depends on two properties of a fluorophore, the extinction coefficient and the quantum
yield (ζ). The extinction coefficient is related to the absorption probability, and the quan-
tum yield is the probability that a fluorescence photon will be radiated by an excited
molecule. Factors such as temperature, pH and photo bleaching can affect the quan-
tum yield [37, 108]. The quantum yield is one of the most important characteristics of
a fluorophore. Another important characteristic is the fluorescence lifetime (FLT). The
lifetime of a fluorophore is the average time that fluorophore remains in its excited state
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prior to returning to its ground state. The lifetime of molecules is typically of a few
nanoseconds. The lifetime depends on the nature of the fluorophore and the chemical
parameters of the local environment, like pH, oxygenation, free ion concentrations, glu-
cose or other analytes. FLT measurements require sophisticated optics and electronics
because of the short timescale of fluorescence. One of the most popular approach to mea-
sure FLT is to resort to time-domain measurements (the other being frequency-domain
measurements) [59, 103, 107, 151].

Fluorescence imaging relies on an external source of light, typically a laser, to excite the
fluorescent compound and then detect the emitted signal. In 1999, O’Leary reconstructed
the first fluorescent molecule distribution in a turbid medium [115], and the first in vivo
results were reported in the early 2000s [126]. This new imaging technology started to
develop under the names of fluorescence molecular tomography (FMT) and fluorescence
diffuse optical tomography (FDOT). Many different fluorescent probes have been devel-
oped to target conditions such as infection, apoptosis (programmed cell death) [76] and, in
particular, cancer, including tumor growth, metastasis formation and gene expression [26].

Fluorescence, as a contrast mechanism in optical imaging, enhances the optical contrast
between normal and diseased tissues. In FDOT, an optical filter splits the excitation
signals from the external source and the emission signal from the fluorophore, based on
the difference in their wavelengths. A 3D map of the fluorophore (e.g. of its concentra-
tion, FLT, or others) then be estimated by feeding these signals to a tomographic image
reconstruction algorithm.

(a) Jablonski diagram.

(b) Stoke’s shift.

Figure 1.3 Fluorescence: Excitation and de-excitation of a fluorescent
molecule (Jablonski diagram) and Stokes’ shift between the absorption
and emission spectra.



8 CHAPTER 1. INTRODUCTION

1.2.2 FDOT applications

Whole body FDOT small animal imaging has widened its applications and improved the
capabilities for preclinical researches, thanks to development in photonic technology and
optical biomolecular probes, such as fluorescent probes, that have led to extensive explo-
ration of in vivo biological processes. Study of human disease [63, 117, 122], drug delivery
and response of tissue to drugs [116] are some important applications of small animal
imaging. Conventional medical tomographic imaging systems, such as PET, SPECT, CT
and MRI scanners, are now commonplace in preclinical research. With rapid advances
in optical imaging technologies, several optical imaging systems have been developed by
labs and research centers for a wide variety of applications in preclinical and clinical re-
search [62, 107, 114, 118, 144, 148]. Non-invasiveness, the relatiely low price of optical
imaging systems and the availability of and ease of use light-emitting molecular traceable
probes to target a wider range of biomolecular processes has attracted a strong interest
in small animal optical molecular imaging [116]. Utilizing these probes in FDOT allows
visualizing a 3D image that can provide a quantitative map of the functional and molecu-
lar status of tissue. FDOT not only can resolve the amount of a fluorescent probe that a
tissue can uptake, but can also provide information about molecular biochemical binding
or the pH in the local environment [124].

In small animal imaging, FDOT is of high relevance, since fluorescent tracers are com-
monly used in small animal studies [3, 116]. The main application of FDOT thus far is
small animal imaging, but medical imaging implementations are anticipated. In biological
and medical applications, proteins or other cell components can be labeled with extrinsic
fluorescent dyes. The functional information is provided by locating and tracking the dis-
tribution of the target in tissue that is extremely valuable in the drug development process.
So far, the technology has been successfully applied in oncology [122], studies on inflam-
mation [63], cardiovascular diseases [117], pharmacokinetics [42], bone metabolism [101],
and medical imaging applications in particular for breast cancer detection [33]. The main
challenges that remain in translating preclinical small animal studies to clinical human
studies are the toxicity of optical probes and associated regulations, and the thicknesses of
human tissues as compared to small animal tissues (centimeters versus millimeters). The
latter will most likely restrict the use of FDOT for human diagnostics to niche applications,
such shallow depth imaging or imaging of relatively easily accessible tissues.



1.3. CONTEXT OF THE WORK 9

1.3 Context of the work

In this work, several 3D DOT image reconstruction algorithms have been developed for
different DOT applications such as intrinsic CW multispectral and TD fluorescence DOT
imaging. The algorithm for CW multispectral imaging is developed to be able to recon-
struct both absorption and scattering coefficients simultaneously from multi-wavelength
CWmeasurements, which is one of the main applications of CW imaging systems. Another
algorithm is developed to reconstruct a FLT map from TD fluorescence measurements. A
prototype of an FDOT scanner has been developed in our lab. The scanner uses pulsed
laser excitation to acquire TD light signals at a plurality of positions around the subject
without contact using detectors in a ring geometry. A primary goal of the present the-
sis work was to develop an image reconstruction algorithm for use with this TD optical
scanner. One of the main challenges was to develop an algorithm that could work well in
practice with real measurements. TD reconstruction algorithms that use full information of
measured time curves were not developed before because using this full information makes
the reconstruction algorithms very expensive in terms of memory and time. Here, a TD
model-based iterative image reconstruction algorithm is developed that uses all acquired
information of time curves to reconstruct a 3D volume of of interest inside a medium,
such as a mouse, and this in a reasonable time. Moreover, a machine learning-based im-
age reconstruction algorithm is developed for fluorescence tomography as an alternative
to iterative model-based image reconstruction algorithm. The machine learning-based al-
gorithm is able to give accurate image results even for sparse measurements. It has the
capability to reconstruct a 3D image in seconds. This makes the learning-based algorithm
a great tool for real-time applications in optical tomography which is a first for DOT.
Also, the learning-based algorithm can extend to other medical imaging systems, since the
reconstruction process is independent from the measurement strategy.

1.3.1 Motivation

Image reconstruction in (F)DOT 1 requires a precise light propagation model to predict
boundary measurements (forward model). This forward model takes the form of a numer-
ical computational model in order to be able to deal with inhomogeneous media having
arbitrary geometries. In particular, in (F)DOT one must pay particular attention to the
boundary of the medium, since in contrast to other imaging modalities light propagation
is drastically different inside, being diffused, and outside where it is in straight lines. The
forward model should be able to predict different data types such as TD, FD and CW,

1. (F)DOT will be used here to denote either DOT or FDOT, or both.
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as there are different methods for data acquisition in (F)DOT. The scanner developed
by our group can measure time-domain optical signals, which include both CW and FD
measurement. This has served as a motivation for the work in this thesis, in which im-
age reconstruction algorithms that exploit different signal types contained in the optical
signals have been developed.

CW-DOT imaging systems have the advantages of low cost of installation and higher
signal-to-noise ratio (SNR). The major drawback of CW-DOT is its incapability of recon-
structing optical properties simultaneously. In other words, CW-DOT reconstruction is
incapable of distinguishing between absorption and scattering. A solution to overcome the
non-unicity of absorption and scattering recovery and elimination of the cross-talk in CW-
DOT is to resort to multispectral measurements. A model-based image reconstruction is
developed to reconstruct the interior chromophores of biological tissues such as oxy- and
deoxy-hemoglobin from multispectral CW measurements.

TD-DOT imaging systems provide the richest information in their signals among all the
optical imaging systems, but using full TD information is computationally very expensive,
owing to the need of time stepping the signals. An accelerated model-based image re-
construction is developed to overcome this difficulty and reconstruct fluorescence lifetime
from TD measurements. The algorithm has the ability to provide maps distinguishing
fluorophores having different lifetimes.

Model-based iterative image reconstruction algorithms are notoriously slow, owing to their
iterative nature. This excludes them as a viable approach for applications that require
real-time or near real-time imaging capabilities. For example, CW-(F)DOT image recon-
struction for a medium of the size of a mouse takes 15-20 minutes. This time increases for
TD-(F)DOT image reconstruction to a few hours. This limitation served as an incentive
to look for an alternative to classical iterative reconstruction algorithms. By considering
machine learning techniques and their great success in other fields and in real-time ap-
plications, the author asked the question as to whether such techniques could be applied
to (F)DOT image reconstruction problems. This has led to the machine learning-based
image reconstruction algorithm presented in this thesis, which delivers much faster image
reconstruction suitable for real-time (F)DOT.

1.3.2 Contributions

The overall objective of this work is to develop practical image reconstruction algorithms
for (F)DOT. To reach this objective, a light propagation model is first developed to pre-
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dict CW and TD data types for intrinsic and fluorescence signals. First, 3D multispec-
tral CW model-based DOT image reconstruction is developed using several optimization
algorithms to determine which optimization technique is most efficient in terms of com-
putation time, memory requirements, and image quality. This is the first time such a
vast range of techniques are applied to a multispectral DOT problem. CW multispectral
DOT allows reconstructing images of the distribution of chromophores inside biological
tissues. The important case of oxy- and deoxy-hemoglobin imaging is considered. Next,
a TD fluorescence lifetime model-based image reconstruction algorithm is developed. It
allows localizing and quantifying several FLTs simultaneously. This is the first time this
is achieved in FLT tomography. Finally, a completely novel machine learning-based image
reconstruction algorithms is proposed and validated for FDOT. It is the first time such an
algorithm is developed in (F)DOT. A key advantage of such an algorithm is its real-time
imaging capability. Furthermore, this algorithm could eventually be easily adapted to
other imaging modalities such as nuclear imaging (PET and SPECT), since, as will be
seen, it is independent from the data acquisition strategy; the algorithm only relies on a
training data set, which could easily be generated in the case of PET and SPECT in an
analogous manner as done here for FDOT.

1.4 Thesis outline

A brief review of fundamental basic theories and state-of-the-art techniques in optical
image reconstruction is presented in chapter 2. Details of the light propagation model,
the forward and inverse problems and how to solve them are discussed. Also, a brief
introduction of applied machine learning techniques (neural networks) is provided.

Chapter 3 reviews the TD (F)DOT scanner developed in our group. Most importantly, it
describes the calibration technique developed for the present work in order to use for the
measured signals it provides. This chapter also discusses how the calibrated measurements
are processed before being fed to reconstruction algorithms.

Chapter 4 presents the model-based iterative image reconstruction algorithms using multi-
spectral CW measurements. The details of the reconstruction algorithm and the different
optimization techniques used are discussed. This chapter is about to be submitted to the
Journal of Quantitative Spectroscopy and Radiative Transfer.

Chapter 5 is dedicated to the full-curve TD reconstruction algorithm for FLT tomography.
The details of its implementation are discussed along with results. This chapter has been
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submitted as a research paper to the journal Computerized Medical Imaging and Graphics,
and is under review.

The machine learning-based model for image reconstruction is discussed in chapter 6.
Details of the proposed model, its implementation, and reconstructed results for a real
measurement are described in detail. This chapter has been submitted to the IEEE Trans-
actions on Medical Imaging and is under review.



CHAPTER 2

STATE OF THE ART

2.1 Light propagation model

2.1.1 Radiative transfer equation

Figure 2.1 Geometry of
light propagation.

The most general and accurate light propagation model for macro-
scopic absorbing and scattering media such as biological tissues
is the radiative transfer equation (RTE) [89]. Radiative transfer
theory was initially introduced by Schuster in 1905 (also called
transport theory in other fields). It is based on the notion of en-
ergy transport in a medium containing particles. The full RTE is
given by

η

c

∂L (r, ŝ, t)
∂t

+ ŝ.∇L (r, ŝ, t) + [µa(r) + µs(r)]L (r, ŝ, t) =

µs (r)
∫

4π

L
(
r, ŝ′, t

)
p
(
ŝ′, ŝ
)
dΩ′ + q (r, ŝ, t) ,

(2.1)

where L(r,ŝ,t) is the radiance at point r in the medium in the direction ŝ, and at the
particular time t, η is the refractive index, c is the speed of light in the vacuum, µa and µs
are the absorption and scattering coefficients of the medium, p(ŝ′,ŝ) is the probability that
a photon from direction ŝ′ scatters into direction ŝ, and q(r,ŝ,t) is the volume density of
radiant power per unit solid angle of the source distribution within the medium (Fig. 2.1).
The RTE in the frequency-domain is obtained by replacing ∂

∂t
by iω. The general boundary

condition (BC) for tissue-air cases that are customary in biomedical optics is called the
partial reflection boundary condition. It takes into account Fresnel reflection [164] at the
boundary between the medium (tissue) and its surroundings (air). This BC is given by:

L (r′, ŝ, t) = BT (r′, ŝ, t) +RF (ŝ, n̂)L
(
r′, ŝ′, t

)
, r′ ∈ ∂V, ŝ.n̂ < 0, (2.2)

where BT is the source term on the boundary for the light that is transmitted and injected
into the medium, RF is Fresnel reflection coefficient, n̂ is outward normal at the medium’s

13
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boundary, ∂V denotes the boundary of the medium, and ŝ.n̂ < 0 represents directions
pointing inward into the medium. RF can be calculated as follows by providing the refrac-
tive indices inside (nin) and outside (nout) the medium, and the incident (θi), transmitted
(θt) and critical (θc) angles at the boundary [164]:

RF (cosθi) =

1
2

(
nincosθi−noutcosθt
nincosθi+noutcosθt

)2

+ 1
2

(
noutcosθi−nincosθt
noutcosθi+nincosθt

)2

, 0 ≤ θi ≤ θc

1, θc ≤ θi ≤ π/2.
(2.3)

Modeling the emission of fluorescence in the forward model involves two stages (Fig. 2.2).
In first stage, an external source Sx illuminates the medium to excite fluorophores with
absorption coefficient µx→ma at wavelength λx (superscript x here stands for excitation).
This is the excitation stage and its corresponding light propagation equation is as follows:

η

c

∂Lx (r, ŝ, t)
∂t

+ ŝ.∇Lx (r, ŝ, t) + [µxs(r) + µx→ma (r)]Lx (r, ŝ, t) =

µxs (r)
∫

4π

Lx
(
r, ŝ′, t

)
p
(
ŝ′, ŝ
)
dΩ′ + Sx (r, ŝ, t) .

(2.4)

In the second stage, the emission of fluorescence light at wavelength λm is calculated from
fluorescence source Sm that depends on the coefficient µx→ma combined with the quantum
yield ζ (superscript m here stands for emission). This is the emission stage and the
corresponding equation is the following:

η

c

∂Lm (r, ŝ, t)
∂t

+ ŝ.∇Lm (r, ŝ, t) + [µma (r) + µms (r)]Lm (r, ŝ, t) =

µms (r)
∫

4π

Lm
(
r, ŝ′, t

)
p
(
ŝ′, ŝ
)
dΩ′ +

1

4π
ζµfla (r)ψx (r, t) .

(2.5)

Figure 2.2 Fluorescent emission [92].
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Light fluence rates ψx,m are obtained from the radiance Lx,m using the following relation

ψx,m (r, t) =

∫
4π

Lx,m (r, ŝ, t) dΩ. (2.6)

The main disadvantage of the RTE is the complicated implementation within a numer-
ical setting. The major challenge in this case resides in using an appropriate method
to incorporate the angular dependence of the problem. Several approximations to the
RTE have been proposed such as the diffusion approximation [164], the PN approxima-
tion (series of spherical harmonics) [23], and more recently simplified spherical harmonics
approximation [79, 97]. In this work, the diffusion approximation is resorted to for its
simplicity. 1

2.1.2 Diffusion approximation

In many practical situations in which often µs � µa, the simpler diffusion approximation
(DA) can be used. The DA is based on two assumptions: i) the radiance is almost isotropic
and ii) µs � µa. The second assumption means that the fractional rate of change of the
current density vector (J =

∫
4π
ŝLdΩ) times the transport mean free time shall be much

smaller than unity [164]. The DA leads to the following partial differential equation,
so-called the diffusion equation (DE):

η

c

∂ψ (r, t)
∂t

+ µa (r)ψ (r, t)−∇ [D (r)∇ψ (r, t)] = Q (r, t) , (2.7)

where
D (r) =

1

3 (µa (r) + µ′s (r))
, (2.8)

is the diffusion coefficient, and

ψ (r, t) =

∫
4π

L (r, ŝ, t) dΩ (2.9)

Q (r, t) = µs (r)
∫

4π

L
(
r, ŝ′, t

)
p
(
ŝ′, ŝ
)
dΩ′ (2.10)

1. Note, however, that the algorithms presented in this thesis could have resorted to the other more
sophisticated models alluded to above. This would have increased the computational burden associated
with the algorithms, but fundamentally the rationale would remain the same.
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are the fluence rate and isotropic source term, respectively. Associated the boundary
conditions associated with the DE can be obtained from Eq.(2.2) using the aforementioned
assumptions, leading to:

(
1−Rψ

4

)
ψ (r′, t) +

(
1 +RJ

2

)
D(r′)

ψ (r′, t)
n̂

= bT (r′, t) , (2.11)

where

Rψ = 2

∫ π/2

0

cos θiRF (cos θi) sin θidθi, (2.12)

RJ = 3

∫ π/2

0

cos2 θiRF (cos θi) sin θidθi, (2.13)

and
bT (r′, t) =

∫
ŝ.n̂<0

BT

(
r′, ŝ, t

)
ŝ.(−̂n)dΩ. (2.14)

where BT is any source term located at the boundary [20]. Similarly to Eqs. (2.4), (2.5),
coupled DEs can be written for a fluorescence field as follows:

1

ν

∂ψx
∂t

+ (µxa(r) + µx→ma (r))ψx(r, t)−∇ · [Dx(r)∇ψx(r, t)] = Qx(r, t), r ∈ Ω,

1−Rψ

4
ψx(r, t) +

1 +RJ

2
Dx(r)

∂ψx
∂n̂

= 0, r ∈ ∂Ω,

(2.15a)

1

ν

∂ψx
∂t

+ µma (r)ψm(r, t)−∇ · [Dm(r)∇ψm(r, t)] = Qm(r, t), r ∈ Ω,

Qm(r, t) =
η

τ(r)
µx→ma (r)

∫ t

0

ψx(r, t′) exp

(
−t− t

′

τ(r)

)
dt′,

1−Rψ

4
ψm(r, t) +

1 +RJ

2
Dm(r)

∂ψm
∂n̂

= 0, r ∈ ∂Ω.

(2.15b)

where ηµx→ma and τ are respectively the fluorophore’s yield and FLT, both of which
may vary spatially. Other forward models are statistical models based on Monte Carlo
techniques or random walk theories. These forward models are commonly used in optical
imaging where the DA does not hold [58].
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2.2 Model-based image reconstruction

The standard back-projection technique, as applied in X-ray tomography, has been of
limited success in optical imaging because of the strong scattering of light in tissues [89].
The majority of current image reconstruction techniques in (F)DOT can be categorized as
model-based image reconstruction (MBIR) algorithms [6, 90]. These iterative algorithms
can be divided into two steps. The first step, called the forward problem, consists solv-
ing light propagation model, assuming the optical properties to be known, and given the
source locations to predict the measurements at the detector locations. These predictions
are then compared with experimental measurements using a measure of their discrep-
ancy through a so-called objective function. In the next step, called inverse problem, the
medium optical properties are updated for the forward problem by minimizing the error
(objective function) between the model predictions and the experimental measurements
(objective function) optimization method [90]. The whole image reconstruction process
consists of the forward problem and inverse problem repeated iteratively until the ob-
jective function reaches a minimum determined via certain criteria (Fig. 2.3). The final
distribution of optical properties is displayed as an image.

To apply the MBIR method in the case of fluorescence tomography, the forward problem
needs to be solved at two wavelengths(excitation and emission wavelengths). The emission
problem is dependent on the solution of the equation in the excitation problem to provide
the emission source term. The location and concentration of the fluorescent compound
are initially unknown, and the reconstruction process serves to determine them. For this,
the fact the total fluorophore concentration (C) is proportional to fluorophore absorption
(C ∝ µx→ma ) (Eq. (5.1a)) is used [92].

Depending on how the forward problem is solved, image reconstruction algorithms can be
divided into two groups: linear and nonlinear image reconstruction. Light propagation
inside the medium is a nonlinear problem with respect to the scattering and absorption
values. Since solving the nonlinear forward problem is complex and time consuming, a
linearized version of the forward model can be written using the popular Born or the
Rytov approximations [55, 112, 115, 146, 168]. Linearized models are less accurate since
they assume that the optical properties distribution inside the medium are a small spatial
perturbations over a constant background, which is generally not true for biological tissues
as there can be marked contrast in these properties between different organs. In this work
nonlinear forward models are used for both DOT and FDOT.
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Figure 2.3 Reconstruction algorithm in iterative technique.

2.2.1 Forward problem

In the forward problem, the spatial distribution of the light field is predicted inside and at
the boundary of the medium given the optical properties and the sources. This predicted
field is used to calculate the values of measurable quantities at the boundary such as the
amount of light exiting the medium. These predicted boundary values with real measured
values are used to establish an objective function.

The forward problem can be solved with an analytical or statistical or numerical model.
Analytical models are difficult, if not impossible, to be solved for complex geometries and
inhomogeneous media as encountered in practical cases [38, 48]. As regards statistical
models, these are typically based on the Monte Carlo (MC) method [163]. These models
are considered as gold standards against which other models should be compared [45, 48].
However, stochastic methods are computationally very demanding and solving them for
practical applications is very time consuming. Furthermore, stochastic methods are hardly
integrable in image reconstruction algorithms, because they do not allow any analytical
equations on which such algorithms are ultimately based. Hence, numerical models must
ultimately be resorted to. In these models the medium is discretized spatially, and the
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light propagation equation in the form of PDEs, leads to a set of discretized equations that
can be solved numerically with linear algebra techniques. In this way predicted boundary
measurements are calculated.

Numerical space discretization

Three general techniques for discretizing a 3D volume are: the finite volume method
(FVM) [119], the finite element method (FEM) [31, 156], and the finite difference method
(FDM) [93, 155]. Here, the forward model is discretized with the FDM [69, 93, 155]. The
FDM is easy to implement and runs faster that the FVM and the FEM because of the
structured grid underlying it. It leads to simpler banded matrices with faster algorithms
to solve linear system of equations involving such matrices.

Finite Difference Method (FDM) FDM is a numerical method to solve PDEs with
certain boundary conditions [157]. It approximates the PDEs’ derivatives with differ-
ences on a structure grid [139]. Depending on the medium’s dimensions (2D/3D), these
differences can apply on a square (difference over 4 adjacent nodes) or cube (difference
over 6 adjacent nodes). All the variables (spatial and/or temporal) in PDEs can be ex-
pressed with finite differences on a structure grid. There are several techniques to approxi-
mate the derivative for spatial/temporal variables. For the spatial discretization, forward,
backward, or central differences are used and for the temporal discretization, an explicit
(forward Euler) or, implicit schemes (backward Euler), (backward Euler or full-implicit,
Crank-Nicholson, . . . ) can be used. In the case of parabolic PDEs as considered here, the
Crank-Nicholson scheme is favored as it is unconditionally stable.

2.2.2 Inverse problem

To reconstruct an image in (F)DOT, it is necessary to solve the inverse problem. The goal
of the inverse model is the determination of unknown optical properties (absorption and
scattering coefficients in DOT, and fluorescence yield and FLT in FDOT) using the mea-
sured boundary data [41]. When absolute values of the optical properties are desired or
the difference between two similar states cannot be assumed small, a full non-linear recon-
struction problem must be solved. To solve the non-linear problem, an objective function
(OF) must be defined. The OF measures the discrepancy between real boundary mea-
surements and the predicted values from the solution to the forward problem (Eq. (2.16)).
A least square objective function (L2 norm) in the (F)DOT can be defined as follows:

f(x) =
1

2

∥∥∥P.F (x)− y
∥∥∥2

2
(2.16)
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where y represents the real boundary measurements, P is the operator to extract the
predicted boundary values from the solution to the forward model, and thereof F is the
forward model operator that depends on the optical properties x to be reconstructed.
Least square functions are commonly used as OFs since they are easy to implement and
minimize. To minimize the OF and update the optical properties entering the forward
model, optimization techniques are used.

2.2.3 Optimization method

Optimization to minimize a function such as the objective function in (F)DOT image
reconstruction can be categorized into different classes. In a first class, one finds first
derivative optimization methods [12], in a second class are quasi-Newton optimization
methods [70], and in a third class on finds Newton optimization methods [6, 21, 41, 78].
These three well-known optimization classes will now be briefly described.

First derivative class

Optimization methods in this class require the function value f and its first derivative (g)
to find a descent direction. The steepest descent method, conjugate gradient method, and
nonlinear conjugate gradient method are some of optimization methods in this class. In
all these methods a descent direction is related to the direction of −g.

Quasi-Newton class

Quasi-Newton methods, similarly to first derivative methods, use first derivative informa-
tion only, but compute second derivative information. In fact, an approximated Hessian
matrix is calculated based on a sequence of function and gradient values from previ-
ous iterations. Most of these methods force the approximate Hessian to be symmetrical
and positive definite which greatly improves their convergence properties. The Davidon-
Fletcher-Powell (DFP) method, Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, and
its low-memory version the L-BFGS, are optimization methods in this class.

Newtons class

Newton algorithms require the function value f , and the first and second derivative (gra-
dient g and Hessian H) to find descent direction. Newton methods use a second-order
Taylor series expansion of the function about the current point in the iterations. In New-
ton methods, computed descent directions are along the direction of H−1g. Scaling the
direction with H in Newton methods improves the optimization performance, but at the
cost of computing the Hessian matrix H and its inverse. Also, Newton methods can deal
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with non-normalized data, because of the scaled direction. The calculation of H matrix
is very time/memory consuming and almost impractical for big problems such as time-
domain (F)DOT image reconstruction. More details of optimization algorithms and their
implementations are described in chapter 4.

2.3 Machine learning-based image reconstruction

Today, machine learning techniques are applied in many fields from science (physics, statis-
tics, engineering, etc.) to modern society (web searches, social networks, e-commerce web-
sites, etc.). Conventional machine learning techniques such as support vector machines,
random forests, and neural networks with a few layers, were limited in processing real data
to learn their complex functionality. In the past, building an efficient machine learning
system was required careful engineering and considerable domain expertise. Designing a
feature extractor that transformed the raw data into a suitable hidden representation or
feature vector was very difficult and required lots of computation. For years, this made
the learning process not suitable for real applications. In the last few years, by introducing
new deep neural networks, it has become possible to apply machine learning techniques to
a broad range of real applications. Here, a brief introduction will first be given to simple
and deep neural networks. Then how to use neural networks in the problem of interest
here, that is (F)DOT image reconstruction, will be discussed.

2.3.1 Neural networks

A neural network (NN) consists of several processing nodes (called neurons), arranged in
several layers which are inter-connected (inspired by the structure of the brain, hence, the
name neural network). Each neuron produces a real value (also called an activation value).
Neurons of the first layer (input layer) are activated through the input values (Fig. 2.4).

Figure 2.4 A cartoon drawing of a biological neuron (left) and its
mathematical model (right) [84].
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The next layers (also called hidden layers) in the network are activated through weighted
connections from previous layers (active neurons propagate in a forward direction). The
learning process is about finding neuron weights in a NN which can demonstrate the desired
functionality, such as understanding numbers. Such functionality requires a sequence of
computational layers, where each layer transforms the aggregate activation of the network
in a nonlinear way. The architecture of the network can be changed depending on the
input/output of the problem and how the layers are connected. Increasing the number
of consecutive layers enables the network to learn better nonlinear functionalities. Deep
learning is about accurately learning across many consecutive layers (Fig. 2.5).

2.3.2 Deep neural networks

Deep neural network models made a breakthrough in the last few years. They attract a lot
of attention in many applications. In general, deep learning is a data analysis model with
several layers that promote a higher level of abstraction and prediction from data. In the
training process, a large set of data is fed to the input and output layers of the network
and weights of the neurons are updated along the gradient descent direction of a loss func-
tion. The important factors that enable these methods to perform exceptionally well are
a bulk set of data (big data), availability of high-performance computing power, smarter
weight initialization, and significantly deeper network architecture. Neural network mod-
els are often organized into distinct layers of neurons. One of the main reasons that neural
networks are arranged into layers is that this architecture makes them very simple and
efficient to handle using matrix vector operations. Depending how these layers are con-
nected to each other, several architectures are introduced. Here, two main architectures
that are of interest for deep models in image reconstruction are briefly presented.

Figure 2.5 Simple and deep neural networks.
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Figure 2.6 A full-connected layer with three inputs, two hidden layers
of 4 neurons each and one neuron as output layer.

Fully-connected layer The regular architecture in NN is the fully-connected layer (also
called dense layer). In this architecture, there is no connection between neurons in the same
layer, but neurons of two adjacent layers are fully pairwise connected (Fig. 2.6). All hidden
layers in a NN have an activation function (also called a linear identity activation function).
Several activation functions are used and introduced in NN such as the sigmoid function
( 1

(1+exp(−x))
), the tanh function (tanh(x)), the Rectified Linear Unit (ReLU max(0, x)),

and the Leaky ReLU ((x < 0)(αx)+(x >= 0)(x) where α is a small constant). It is worth
mentioning here, that in practice it is often the case that neural networks with 2 hidden
layers will outperform networks with 1 hidden layer, but in fully-connected architectures
going even deeper (3, 4, 5 hidden layers) rarely improves performances [84].

Figure 2.7 A Convolutional network with two hidden layers. Each
layer consists of a width, height and depth, as visualized in one of the
layers.
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Convolutional layer The convolutional layer architecture, similar to the fully-connected
layer architecture, is made up of neurons that have weights and biases, with a difference.
In the convolutional layer there is a partial connection between two adjacent layers. A
filters with certain sizes (e.g. a 5 × 5 filter) is used in the convolutional layer to map a
region of image (size of filter) to a neuron (Fig. 2.7). In fact, this architecture led to map
the input, which is very often an image, to a neuron in the next layer. Here, in contrast
to the fully-connected layer, more layers (deeper architecture) have been found to be an
extremely important component for a good recognition system [84]. One reason for this
behavior is that images consist of hierarchical structures (e.g. faces are made up of eyes,
which are made up of edges, etc.), so more layers of processing make intuitive sense for
this data domain.

In the last few years, one the most successful approaches that has emerged for image anal-
ysis in deep learning, is that of probabilistic generative models. These models are capable
of generating high-dimensional data such as images from sampling of a low-dimensional
space. Generative models and specifically conditional variants of them are a very promis-
ing choice for medical image reconstruction. A conditional generative model can recon-
struct an image from given measurements (measurement distribution are considered here
as condition distribution). Here, two well-known generative models are reviewed for image
generation: generative adversarial networks and variational autoencoders.

2.3.3 Deep generative network

Generative adversarial networks

Generative adversarial networks (GANs) were introduced by Goodfellow et al, [61] to inter-
pret images as samples from a high-dimensional probability distribution. A GAN consists
of two networks: generative and discriminative. The generative network generates images

Figure 2.8 Scheme for generative adversarial networks.
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Figure 2.9 Schematic of a conditional GAN for image generation with
given text [136].

from a sample of a distribution (commonly Gaussian) and a discriminative network classi-
fies the images as real or fake. Generator network is optimized to maximize the probability
of the generated image (fake) close to the real image, and the discriminator is optimized
to discriminate the fake from the real images (Fig. 2.8). In fact, they train each other in
an adversarial way. The loss function defined in this model is a binary cross entropy with
respect to the output of the discriminator. Training adversarial networks is not simple
and optimization is somewhat unstable, but the results are sharper in comparison with
VAE. For more details refer to [61].

Conditional generative adversarial networks are a variant of GANs which can construct
data from given condition. Condition here means any extra information that is related
to the observed data. For example, in Fig. 2.9, the conditional GAN can reconstruct an
image by a given caption of text. The model is trained with a dataset of images and their
related captions (the caption dataset is considered here as a conditional distribution of
the image distribution). Then, the conditional GAN model can reconstruct an image from
given dataset.

Variational autoencoder

One of the well-known deep generative models is the variational autoencoder (VAE).
Autoencoders are networks with the same input/output size. First, an encoder network
infers a low-dimensional dense representation of the set of inputs (simply called the input)

Figure 2.10 A scheme of variational autoencoder.
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by way of so-called latent variables (2.10). For this reason, an encoder network is also called
an inference network. The output of the encoder can be interpreted as a manifold of inputs
(the input manifold). Then a decoder reconstructs the set of outputs (simply called the
output) from the latent variables. In variational autoencoders, instead of encoding the
input to an explicit vector in the latent space, a density function (normally unit Gaussian)
of each set of inputs is encoded in the latent space [88]. This encourages the model to
place a high probability mass on many latent variables that could have generated samples,
rather than collapsing to a single point estimate of the most likely value [60]. This Gaussian
distribution makes the model less sensitive to small variations around the input such as
noise or other measurement errors and turns it to a probabilistic generative model [43].
These models are simple to implement, and can be optimized with an element-wise error
between input and output, e.g. square error (serving as loss function). This quadratic loss
function is easy to optimize and commonly tends to generate blurry images [111].

Just like conditional GANs, a conditional VAE can be defined which can generate data
with a given condition. An example of a conditional VAE for face generation with given
conditions is depicted in Fig. 2.11. In this example, images can be modified with given
states (conditions) such as pose, light, shape, etc., which are added directly to the latent
space.

2.3.4 Deep learning in medical imaging

The performance of deep networks is now well reported in the areas of computer vi-
sion [49], speech recognition [72], and text/image processing [36, 169]. In medical imaging
analysis/processing, machine learning approaches, and more recently deep learning ap-

Figure 2.11 Schematic of a conditional VAE for image generation with
given condition [102].
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Figure 2.12 Overview of a deep convolutional network for stroke lesion
segmentation on MRI images.

proaches, have been applied for lesion detection [147, 149, 160], segmentation, and clas-
sification [16, 27, 56, 130, 140]. An example of a deep convolutional network for lesion
segmentation is depicted in Fig. 2.12. In the medical image reconstruction field, a few
approaches have been developed for de-noising low-dose X-ray CT images [83], transform
from k-space to image space in MRI [171], and enhance photo-acoustic reconstructed im-
ages [5]. Here an algorithm to directly reconstruct an image from the power of received
fluorescence signals will be proposed. This algorithms, as will be seen, can lead to real-time
image reconstruction from noisy and sparse measurements.

In optical image reconstruction, the optical properties will be reconstructed from a set of
measurements on the boundary of the medium. It means the encoded information in the
measurement domain (light propagation inside medium) should be decoded to a spatial
map (image). One option to implement such models can be borrowed from statistics and
inference theory. In statistical image reconstruction one tries to maximize the probability
of p(y ∈ Y |x ∈ X), where x is a sample from the measurement space X and y is a sample
from the image space Y . Inference from such probabilistic models is often intractable
and a neural network model that learns approximate solutions to the inference problem
can be trained. One approach to approximate inference is through variational inference
algorithms. Such algorithms cast inference as an optimization problem. In this project,
a deep generative model based on a VAE is developed to replace sampling from high-
dimensional space p(y|x), by sampling from a low-dimensional joint manifold space z ∈
N (0, I).
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After reviewing state-of-the-art methods for image reconstruction in DOT imaging, data
preprocessing and calibration techniques that are required to be applied on the measure-
ment from our optical scanner will be presented at next chapter.



CHAPTER 3

OPTICAL SCANNER AND DATA PREPRO-
CESSING

3.1 Scanner

Our group developed a non-contact time-domain DOT scanner (Fig. 3.1) with multi-view
detection (over 360◦) for localizing fluorescent markers in scattering and absorbing media,
in particular small animals [110]. The system consists of a Ti:Sapphire ultra-short pulse
laser (Mai Tai, Newport-Spectra Physics, ≈ 3 ps pulse width, 80 MHz repetition rate,
705 nm to 985 nm tuning range), 14 free-space optics non-contact detection channels
around the medium to detect intrinsic and fluorescence signals (seven channels each), 14
photomultiplier tube (PMT) detectors to measure the optical signals at both the excitation
and fluorescence wavelengths, and a time-correlated single photon counting (TCSPC)
instrumentation card (SPC-134, Becker and Hickl, Berlin, Germany) to acquire the time
point-spread functions (TPSFs). The free-space optical channel allows minimizing the
temporal dispersion of optical signals and allows sharper IRFs in distinction to other
systems resorting to fiber optics. Thanks to its free-space optics design and short laser
pulses used, the scanner provides for higher timing resolution compared to other multi-
view time-domain scanners. In this chapter, calibration methods and data preprocessing

Figure 3.1 (F)DOT scanner.

29
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steps that are required to be able to use the signals measured with the scanner in the
image reconstruction algorithms will be discussed.

3.2 Calibration

TD-DOT imaging systems, similarly to CW optical systems, are required to be calibrated
with respect to signal intensity so that differences between different detection channels
can be compensated for. Moreover, they are required to be calibrated with respect to
time delays in the signal paths (both optical and electronics delays) and the temporal
dispersion of the signal. Calibrating the optical scanner with respect to all these factors
is difficult. Here, the image reconstruction algorithm is developed to compensate part of
these calibration difficulties. For this purpose, an energy normalization is applied to TPSFs
before feeding them to the reconstruction algorithm. Then, only a relative calibration is
necessary. In relative calibration, channels are calibrated with respect to one reference
channel relatively. This relative calibration corrects the TPSFs for the differences in
detector sensitivity, gain, and time delay as well as any differences in filter performance
in each channel.

3.2.1 IRF measurement

In TD systems, an optical signal emanating from the object to be imaged (which will be
called a true signal as it has not been altered by the measurement system) is temporally
convolved with the instrument response function (IRF) of the detection channel. Several
factors influence the IRF, in particular the transit time spread of the PMTs [17]. The goal
of measuring the IRF is to obtain measurements that do not depend on the effects of the
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Figure 3.2 IRF measurement.
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measurement apparatus. In mathematical terms, a measured signal y(t) obtained from a
channel can be modeled as

y(t) = (h ∗ x)(t) + n(t). (3.1)

Here, x(t) is the true signal from the object, h(t) is the channel’s IRF, and n(t) is the noise
on the measurement accounting for Poisson statistics associated with photon detection
along with detector noise; ∗ is the temporal convolution operator.

Hence, to be able to measure the true signal, which is what a reconstruction algorithm uses,
the IRFs of the scanner’s channels must be measured in order to deconvolve them from
the measured signals. To measure the IRF of a given channel, this channel is positioned in
front of the laser source and IRFs are measured as depicted in Fig. 3.2. A neutral density
filter is used to attenuate the laser pulse. The power of measured IRFs is not important
here, since the aforementioned normalization is applied to TPSFs.

3.2.2 Relative calibration

In this step, all channels must be calibrated to an arbitrary detector (here, the first
channel is considered as the reference channel). All measured TPSFs can be corrected for
any observed differences by applying calibration factors for intensity and time delay to
equalize and align all TPSFs. A homogeneous phantom is used as a diffuser and TPSFs
are collected at certain angles. Then the channels are rotated as far as the angle difference
between each adjacent channel (see Fig. 3.3). For example, channel 1 is rotated to be
positioned at the angle of channel 2, and channel 2 is rotated to be positioned at the angle
of channel 3 and so on. With this arrangement, channels 1 and 2, channels 2 and 3, . . . are
calibrated to each other, and consequently, all channels can be calibrated to channel 1.

L
a
s
e
r

P
u
ls

e

homogeneous
Phantom

d

Rotation 
Disc 

Figure 3.3 Relative calibration.
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To have more precise correction coefficients, the homogeneous phantom is rotated and
translated to have more measurements. A total of 100 projections are acquired for this
calibration. The final correction coefficients for the differences in detection, gain, and time
delay are calculated as mean values of calculated coefficients at each projection.

3.3 Preprocessing

3.3.1 Dark noise subtraction for intrinsic channels

The level of dark noise is measured and subtracted from measured TPSFs. For this
propose, the intrinsic channels (channels 1, 3, and 5 in Fig. 3.4) are isolated from any
incoming light and a measurement is performed for a fixed collection time. Then the dark
noise measurements are averaged over the collection time. The averaged dark level for
each channel is subtracted from the measured TPSFs.

3.3.2 Leakage current subtraction for fluorescent channels

As for intrinsic channels, dark subtraction is carried out for the fluorescent channels. These
dark signals may contain, another source of noise here because of potential excitation
light leakage through the dichroic filters in the fluorescent channels (channels 2, 4, and
6 in Fig. 3.4). This combined leaked and dark signal must be subtracted from measured
TPSFs. To measure the leak/dark signal for each channel, an optical phantom is used,
and the signal in each channel is measured after diffusing through the optical phantom
for a given collection time. The signals are then averaged over the collection time. The
averaged noise signal for each channel is subtracted from the measured TPSFs. The
measured leak/dark signals for intrinsic and fluorescent channels are depicted in Fig. 3.4.

3.3.3 TPSF Curve Smoothing

Since the image reconstruction algorithm uses each time bin of measured TPSFs, noise in
the TPSFs can induce errors in the function/gradient evaluation. To suppress the noise,
prior filtering of the TPSFs is carried out using a Savitzky-Golay filter, which is a popular
filtering method in digital signal processing for smoothing out noisy data [133, 142]. The
Savitzky-Golay filter uses a linear least squares function to fit a small window of data
points to a low-degree polynomial. Then the polynomial estimates the point in the center
of the window. Finally, the window moves forward by one data point and the process
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time 1e−8

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
m

p
. 
A

b
s.

IRF

Measured TPSF

Smoothed TPSF

Deconvolved TPSF

Figure 3.5 Sample curves in the Deconvolution process.



34 CHAPTER 3. OPTICAL SCANNER AND DATA PREPROCESSING

is repeated. This continues until every point has been optimally adjusted relative to its
neighbors.

3.3.4 Deconvolution

With the channels’ IRFs at hand, it is possible to deconvolve the measured TPSFs from
the measured IRFs (Fig. 3.5). For deconvolution, the Wiener deconvolution algorithm
which performs well for noisy measurements is used [135]. This algorithm uses a Weiner
filter in the frequency domain, to minimize the effect of noise at frequencies which have
a low SNR. Based on Eq. (3.1), the goal is to calculate the x(t). The Weiner algorithm
allows obtaining an estimate x̂(t) of x(t) by going to the frequency domain as follows:

X̂(f) = Y (f)
H∗(f)

H(f)H∗(f) + λ2
, (3.2)

where λ is the SNR. In a Poisson distribution, if N is the number of counted photons in a

defined time interval, then the standard deviation is
√
N and SNR =

N√
N

=
√
N . Finally,

by performing an inverse Fourier transformation on X̂(f), x̂(t) can be calculated.

3.3.5 TPSF normalization and scaling

After deconvolution, the deconvolved TPSFs are normalized with respect to their energies
(integral of TPSFs). This normalization alleviates calibration difficulties as mentioned
before. Also, down-sampling and scaling are performed on the deconvolved TPSFs before
feeding them to reconstruction algorithm. The output of a TCSPC measurement carried
out with the scanner is a curve with a length of 4096 time bins (time steps) that must
be down-sampled to the number of time steps as defined in the forward problem. This
number of time steps in the forward model is determined based on the optical properties
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of the medium. For media considered in this work, a number between 50 to 75 is typical.
Since the light intensity typically decays exponentially in media, a logarithmic scaling
of the data is also applied, so as to keep the data in a range that remains in the same
order of magnitude. Empirically, such scaling better conditions the optimization problem
underlying the image reconstruction process; it is a standard technique in numerical opti-
mization to scale data prior to optimizing a function [123]. In Fig. 3.6 the absolute value
and log-scale values of a normalized TPSF and a down-sampled TPSF (50 time bins) is
displayed.

This ends the description of the instrumentation that serve to acquire the data used in
this thesis and the preprocessing thereof.
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CHAPTER 4

MULTISPECTRAL IMAGE RECONSTRUC-
TION

4.1 Introduction

Diffuse optical tomography (DOT) is a relatively recent and non-invasive medical imaging
technique in which near-infrared (NIR) light is utilized [80, 121]. DOT has the potential
of being a low-cost imaging modality with acceptable accuracy with respect to other tech-
niques [2]. The simplest approach to perform DOT imaging is through the use constant-
amplitude light sources, called continuous-wave (CW)-DOT. CW-DOT has the advantages
of low cost of installation and higher signal-to-noise ratio (SNR). The suitable wavelength
range for optical imaging of biological tissues beyond depths of a few millimeters is between
650 to 930 nm [80], owing to the fact that absorption of the main chromophores (mainly
oxy- and deoxy-hemoglobin) is least in that range. The major drawback of CW-DOT
is its incapability of reconstructing simultaneously and distinguish the optical absorption
and scattering coefficients, which are the main optical properties of biological tissues.
The only solution to overcome the non-unicity of absorption and scattering recovery in
CW-DOT is to resort to multispectral tomography [12]. In multispectral tomography,
optical measurements are performed at several wavelengths. Herein, the dependency of
tissue chromophore absorption and scattering factors to the wavelength is exploited to
reconstruct the absorption and scattering properties simultaneously [32, 34]. The scale
of the problem increases depending on the number of different chromophores considered
along with the number of wavelengths used. This is the main difference of multispectral
DOT compared to standard DOT as regards image reconstruction, as it might affect the
optimization algorithm and consequently image reconstruction.

Image reconstruction in DOT is essentially a nonlinear problem due to the diffusion events
in light propagation [165]. There are two distinct approaches to deal with this problem. In
the first one, the problem is linearized using the first order Born or Rytov approximations
and consequently, a linear system of equations can be solved iteratively [13, 127]. The
second approach considers the nonlinear problem and attempts to solve it using the model
fitting (parameter estimation). Herein, the model fitting problem in terms of the optical

37
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properties is solved through optimization. This is known as model-based iterative image
reconstruction algorithm 2.3, which is discussed in general in 2.2.The solution is arrived
at iteratively, and different optimization methods can be resorted to, including conjugate-
gradient [85], quasi-Newton [96], Gauss-Newton [145], Levenberg-Marquardt [40], and
truncated Newton [137] methods. All these methods use first order derivatives of the cost
function, but depending on which one is resorted to, some will also exploit second order
derivatives to minimize the cost function and find a solution [52].

In this study, we evaluate the performance of the aforementioned optimization methods in
solving the multispectral DOT image reconstruction problem. To the best of the author’s
knowledge, this is the first time such a vast range of techniques is applied to the multi-
spectral DOT problem. Considering the scale of the multispectral image reconstruction
problem compared to that of the intrinsic DOT, one can expect from such a large-scale
problem a more marked difference in the performance of the different optimization meth-
ods. The main intention in this work is to apply the most popular optimization techniques
to multispectral DOT image reconstruction and to arrive at a recommendation as to which
one should be favored. It should be noted that since all the aforementioned techniques have
been implemented here, the standard algorithm for each of these techniques is considered
along with some modifications to accelerate the execution of these techniques. The author
is aware of the recent developments in optimization algorithms, but these sophisticated
developments are out of the scope of this study. The mesh size, starting point (or initial
guess), and noise power are three important factors that can affect the performance of an
optimization algorithm. In this work, these different factors are considered for each opti-
mization algorithm. Considering all these factors allows a comprehensive investigation of
the behavior of each optimization algorithm for multispectral DOT image reconstruction.

This chapter is organized as follows: Section 4.2 presents the iterative model-based image
reconstruction method used in this study. Section 4.3 details the optimization algorithms
resorted to. Section 4.4 provides and displays the results for 3D numerical experiments.
A comparison of reconstructed images is also presented in this section. Finally, section 4.5
discusses the optimization methods in multispectral reconstruction.

4.2 Image reconstruction

Iterative algorithms consist of two sub-problems. The first one called the forward problem,
includes the modeling of light propagation inside the medium from the source to the
detector locations. The result of the forward problem gives the radiant flux exiting the
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medium at its boundary based on its assumed optical properties. The second sub-problem,
called the inverse problem, includes defining an appropriate cost function to measure the
discrepancy between the experimental measurements and their predictions obtained from
the forward problem, and minimizing this cost function iteratively through optimization
methods. The predicted data from the forward problem is compared with the boundary
measurements using the cost function at each iteration. Consequently, an update of the
medium’s optical properties is determined from the optimization method used [12, 35,
71, 90, 91, 119]. An iterative image reconstruction algorithm is terminated when the
cost function reaches a predefined minimum criterion. The final representation of optical
properties is then displayed as an image.

4.2.1 Forward problem

The most commonly used equation to describe the propagation of light in turbid media
such as biological tissues is the diffusion equation (DE). In this work, the forward model
is implemented in the CW domain using the DE given by

µa(r)Φ(r)−∇ · [D(r)∇Φ(r)] = Q(r), (4.1)

where r denotes position, µa(r) and D(r) are the absorption and diffusion coefficients,
Q(r) is the source distribution and Φ(r) is the fluence rate. The diffusion coefficient is
calculated based on the absorption coefficients µa, scattering coefficients µs and anisotropy
factor (g) asD(r) = 1/[3(µa(r)+(µs(r)(1− g)))]. The DE is accompanied with a boundary
condition equation that the field (fluence rate) must satisfy on the boundary. Here the
so-called refractive index mismatch boundary condition is used. It takes into account the
change of refractive index that takes place at the boundary of a biological tissue and its
surrounding medium (here air). This boundary condition takes the form

(
1−Rψ

4

)
Φ (r′) +

(
1 +RJ

2

)
D(r′)

Φ (r′)
n̂

= bT (r′) , (4.2)

whereRψ andRJ are reflection coefficients, n̂ is outward normal at the medium’s boundary,
and bT is any source term located at the boundary [64].
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Although not indicated above, the absorption coefficient has a wavelength dependency
(absorption spectrum) given by [152]

µa(r, λ) =
n∑
i=1

Ci(r)εi(λ), (4.3)

where n is the number of chromophores (in the present case n = 3, since the main chro-
mophores in biological tissues are oxy- and deoxy-hemoglobin (Hb, and HbO2) and water
(H2O), Ci(r) is the spatial concentration map of i-th chromophore and εi(λ) is its extinc-
tion coefficient at wavelength λ. The µ′s = µs(r)(1 − g) is called reduced scattering, and
its wavelength dependency is well approximated by a power law as,

µ′s(r, λ) = A(r)λ−b((r), (4.4)

in which A and b depend on the size, refractive indices and the concentration of scatter-
ers [165]. In the NIR wavelength range, the so-called "scatter power" b can be considered
constant as µ′s does not vary much with wavelength in this range, and reconstruction can
be performed for the spatially distributed scatter amplitude A(r). In this work, b will thus
be constant and equal to 1.3, which is a typical value for biological tissues [34].

To solve the forward problem, the DE must be discretized, leading to a set of algebraic
equations that can be solved numerically. To obtain such equations, a grid or mesh must
be defined over the medium and the variables of interest (fluence rate and the optical
properties of the medium) are to be evaluated over this grid or mesh [139]. To this end,
the finite difference method (FDM) is used here in the reconstruction process.

In DOT, the FDM is the simplest and fastest approach for finding the solutions of the
forward problem [69, 93, 94]. Curved boundaries and complex geometries can be dealt
with using the blocking-off method, which will be resorted to here [93]. The blocking-off
approach has been shown to be accurate in modeling curved boundaries while preventing
extended computational complexity [93].

4.2.2 Inverse problem

In this work, the discrepancy between boundary measurements and their predictions ob-
tained from the forward model is quantified using the normalized least square cost function
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given by

f(β) =
1

2

∥∥∥ Φp

Φm − 1
∥∥∥2

2
+ λR(β), (4.5)

where Φm and Φp are respectively the measured fluence rates and the fluence rates pre-
dicted by the forward model at all measurement nodes, β is the variables vector (β =

[C1(r), C2(r), C3(r), A(r)], where Ci is the concentrations of the chromophore and A is the
scatter amplitude) to be reconstructed, R is a penalty or regularization function of the
unknowns, and λ is the regularization parameter. Several types of regularization terms
have been considered in the literature, such as L1 and L2 norm regularization [9], incor-
poration of a priori information [46], or imposing smoothness on the spatial derivatives
of the unknown vector [71]. Here, a first-order L2 Tikhonov regularization [145] is used in
the form,

R(β) =
1

2

∥∥∥L(βk − β0)
∥∥∥2

2
, (LTL)i,j =


nn if i = j,

−1 if i, j in the defined neighborhood,

0 otherwise.

(4.6)

Here nn is the number of voxel in the defined neighborhood. In this work, the 6 nearest
neighbors define the neighborhood for each voxel in the 3D grid.

4.3 Optimization methods

In this study, as mentioned the multispectral DOT problem cast as an optimization prob-
lem written as

minβ∈Rn f(β) s.t. ci(β) = 0, i = 0, 1, 2, ...,m. (4.7)

where f : Rn → R (objective function) and ci : Rn → Rm (constraints) are twice con-
tinuously differentiable functions; n, m are the number of variables and constraints re-
spectively. The necessary conditions for the point β∗ to be considered as a minimum of
the cost function f (at least locally) are that its gradient satisfies g(β∗) = ∇f(β∗) = 0,

and its Hessian H be positive definite, that is H(β∗) = ∇2f(β∗) ≥ 0. These conditions
mean to assuming that f is strictly convex in the neighborhood of the optimal solution β∗.
Numerical optimization algorithms can solve this convex problem iteratively to reach β∗

by making available an approximation (current approximation ) βk at the k-th iteration
and computing a new approximation βk+1 for the next iteration. Optimization techniques
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differ in the way a new approximation is obtained. The two main strategies to achieve
this rely on line search and trust region techniques.

In the line search strategy, a new search direction (sk) is obtained at each iteration, and
an optimum point with smallest function value in this direction is searched for. In mini-
mization problems, the search direction is a descent direction sk, and the distance to move
along can be found by approximately solving the following one-dimensional minimization
problem:

min f(βk + αsk), α > 0. (4.8)

In this work the strong Wolfe condition [52] is used as criteria in the line search algorithm.

In the trust region strategy, a model function mk (for example a second-order Taylor
series expansion of the cost function) with similar behavior as the actual cost function f is
constructed at the current point βk [123]. The search at the current iteration is restricted
to a minimizer of mk within some region around βk, called trust region, because the model
mk may not be a good approximation of f when β is far from βk. In other words, the
optimal step ∆ is found by solving the following subproblem:

min mk(βk + ∆), where βk + ∆ lies inside the trust region. (4.9)

The trust region at a given iteration k is chosen so that the model function mk is a
sufficiently accurate approximation of the cost function within that region, while allowing
a sufficient decrease of the cost function. These two conditions generally play one against
the other, because typically the smaller the region, the more accurate the approximation,
whereas too small a region may lead to too small a decrease in the cost function. For this
reason, the trust region typically needs to be adjusted within a given iteration [123].

The required quantities for most optimization techniques are the cost function f , the
constraint functions ci, and possibly the first derivatives (gradient g) and second deriva-
tives (Hessian H) of f . Optimization techniques can be classified according to their use
of the first and/or second order derivatives of the cost function. Important classes are
nonlinear conjugate-gradient (CG) methods (use of first derivatives), Newton’s methods
(use of second derivatives) and quasi-Newton methods (use first derivatives and of an ap-
proximation of the Hessian). Good and popular references on optimization methods and
their implementation are the book of Fletcher [52], and that of Nocedal and Wright [123].
Multispectral DOT image reconstruction is an under-determined nonlinear optimization
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problem. This means the problem has several possible solutions, and the convergence to
a global minimum is not guaranteed. In this work, the two main optimization methods,
that is Newton and quasi-Newton are considered. We split them into two families based
on the implemented algorithm: i) gradient-based including Truncated Newton-CG (TNC)
and quasi-Newton (L-BFGS) methods, and ii) Jacobian-based including Gauss-Newton
(GN) and Levenberg-Marquardt (LM) methods. Standard CG methods, because of sim-
plicity and slower convergence rate, are not considered in this work. In the following, the
multispectral DOT inverse problem will be solved through 4 optimization algorithms and
their performances will be compared.

4.3.1 Gradient-based family

Truncated Newton method

In Newton-CG method, to calculate the search direction and step length, the CG method
and some of its variants are considered to handle negative curvature in the Hessian [123].
For more detail refer to [123]. In the TNC (also known as variants line-search Newton-
CG method), the CG method is used to solve the Newton equations to find the search
direction. The CG iteration is terminated as soon as a direction of negative curvature is
generated [123]. This adaptation of the CG method produces a search direction sk that is
a descent direction. In fact, the CG algorithm is applied as the inner iteration to compute
the search direction sk at each iteration.

The CG will converge to the Newton step sk if the approximated Hessian matrix Bk at
a given iteration k is positive definite. The truncated Newton method does not require
explicit full knowledge of the Hessian, but only matrix-vector product in the form Bk · v
for any given vector v. This product can be calculated using the gradient vector via finite
differencing. Therefore, the price for bypassing the computation of the Hessian is one new
gradient evaluation per CG iteration.

Quasi-Newton methods

Table 4.1 Update formulas for gradient-based family
Update formula Search direction calculation

TNC βk+1 = βk − αkH−1
k · gk solve Hk · sk = −gk by CG

L-BFGSβk+1 = βk − αkB−1
k · gk

Bk · sk = −gk
Bk+1 = Bk+

(yTk yk)/(yks
T
k )− (Bksks

T
kBk)/(s

T
kBksk)

yk = gk+1 − gk
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Quasi-Newton (QN) methods require only to calculate the first derivative of the cost
function at each iteration. In comparison with Newton’s method, since second derivatives
are not required, quasi-Newton methods are sometimes more efficient [123]. Nowadays, the
most popular quasi-Newton algorithms for solving unconstrained, constrained, and large-
scale optimization problems are based on the low-memory BFGS method (L-BFGS). The
update formula for BFGS methods is given in Table 4.1. An efficient way of implementing
the update formula in the L-BFGS method is to use the inverse of the Hessian matrix
at the first step and updating it at each iteration by applying the Sherman-Morrison
formula [123] (the approximation of the Hessian H, is by tradition denoted by B).

4.3.2 Jacobian-based family

Gauss-Newton method

The GN method is the simplest method for minimizing the type of nonlinear least-square
(LS) cost function as that used here for multispectral DOT. For this reason, most of
the current reconstruction algorithms in DOT are implemented through GN methods.
These methods can be viewed as a modification of Newton’s method supplemented with
a line search (also called damped Gauss-Newton). In the GN method, instead of solving
Newton’s equation Hk · sk = −gk, an approximation of it is solved instead (Table 4.2).
It saves from the costly direct calculation of the Hessian and calculation of the Jacobian
matrix (J) can provide sufficient information about the descent direction [123]. After
solving the modified Newton’s equation, a line search in the descent direction leads to a
reduced value of the cost function. The GN method update formula is shown in Table 4.2.
In that formula, I represents the identity matrix and the µ is a scalar parameter that
can be calculated by l-curve fitting or another strategy (l-curve is a heuristic technique to
select the regularization parameter). The parameter µ brings the approximated Hessian to
a positive definite region, which is helpful when the starting point is far from a minimum.

Levenberg-Marquardt method

The Levenberg-Marquardt (LM) method can be defined as an implementation of the
Gauss-Newton (GN) method through the trust region technique [170]. The LM method
can be obtained by using the same Hessian approximation in the GN method but replacing

Table 4.2 Update formulas for Jacobian-based family
Modified Newton’s equation Update formula

GN
(
JTk Jk + µI

)
∆βk = −JTk rk βk+1 = βk + αk∆βk

LM
(
JTk Jk + µkGk

)
∆βk = −JTk rk βk+1 = βk + ∆βk
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the line search with a trust-region strategy. The LM method can be useful when the Jaco-
bian is inadequate or rank-deficient. Since the modified Newton equations are almost the
same in both the GN and LM (Table 4.2), the local convergence properties of both meth-
ods can be expected to be similar. The LM method update formula is shown in Table 4.2.
In that formula, Gk can be calculated with the equation Gk =

(
max(diag(|JTk Jk|))× I

)
(I

is identity matrix) and µk is a scalar parameter that can be calculated by l-curve fitting
or another strategy and decreased monotonically at each step (here µk is calculated by
l-curve fitting). Reducing the µk value (correspond to reduce the trust region area mk)
during the convergence to local minimum can improve the convergence process and make
this method very robust in practice.

4.3.3 Algorithm implementation

All of the above optimization algorithms in two main categories (gradient-based and
Jacobian-based) were implemented. In the gradient-based category only the value of the
objective function f and the first derivatives (gradient) are required. In the Jacobian-based
category, the calculation of the cost function and of the Jacobian matrix are required. The
calculation of the gradient vector and of the Jacobian matrix are described in the following.

Gradient-based family implementation

In these algorithms, first, a forward model is solved to calculate the predicted measure-
ments input to f . Then a convergence criterion to be satisfied by f will be checked. In
the end, f should be small since it measures the discrepancy between the measurements
and their predictions by the forward model, and thus such a criterion generally involves a
threshold value denoted here εthr. If f does not meet this criterion, gradient is calculated
through the adjoint state along with the Lagrangian method [167]. Consequently, the
search direction is calculated according to the optimization method considered. Finally,
a line search method is applied along the search direction to find the optimal step with
the strong Wolfe conditions. This process is repeated until the criterion is satisfied (Al-
gorithm 1). The algorithms in this category implemented in our reconstruction code are
the L-BFGS and TNC. In this work, a bounded version of the L-BFGS algorithm [172] is
used.
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Algorithm 1 Gradient-based algorithm (L-BFGS, TNC)

procedure L-BFGS Function
Define initial parameters (β0, εthr);

Solve forward model with β0;

Compute f0, g0;

s0 ← call L-BFGS;

∆fk = f0; k ← 0;

while
∥∥∥∆fk

fk

∥∥∥ ≥ εthr do
αk ⇐ Call line search function
Compute βk+1 = βk + αksk;

Solve forward model for βk+1;

calculate gk+1;

sk+1 ← call L-BFGS; . Table 4.1
∆fk = fk − fk−1; k ← k + 1;

end while

procedure TNC Function
Define initial parameters (β0, εthr);

Solve forward model with β0;

Compute f0, g0;

s0 ← call TNC;

∆fk = f0; k ← 0;

while
∥∥∥∆fk

fk

∥∥∥ ≥ εthr do
αk ⇐ Call line search function
Compute βk+1 = βk + αksk;

Solve forward model for βk+1;

calculate gk+1;

sk+1 ← call TNC; . Table 4.1
∆fk = fk − fk−1; k ← k + 1;

end while

Jacobian-based family implementation

In these algorithms, first, forward model is solved to calculate the predicted measurements
and the cost function value. Then a convergence criterion is evaluated and, if the criterion
is not satisfied, the gradient and the Hessian approximations are calculated through the
calculation of the Jacobian matrix from reciprocal theory [10]. The LM algorithm in this
work is implemented through a trust-region scheme. This means the hyperparameter µk
from Table 4.2 changes at each iteration. It is reduced successively if the function de-
crease condition (fk+1 < fk) is satisfied, otherwise it is increased until the reduction is
satisfied. The modified Newton equation for the LM algorithm is solved with iterative
solvers like LGMRES which is an accelerated version of the GMRES solver that uses the
Krylov subspace method (GMRES stands for generalized minimal residual, and LGM-
RES for "loose" GMRES [15]). For the GN method, the modified Newton equation is
implemented in a Jacobian-Free-Newton-Krylov (JFNK) subspace and solved with the
LGMRES solver [98]. To further accelerate the LGMRES solver for solving the Newton
equation in both algorithms, an approximation of the Hessian matrix inversion is provided
through the L-BFGS formula. Both algorithms are shown in Algorithm 2. In these algo-
rithms, the first derivative is calculated and then the LGMRES solver is called and the
modified Newton equation is solved for each algorithm in Table 4.2. In this study, the
values 10−4 and 10−3 are used for µ and µ0 in the GN and LM respectively. For a starting
point close to the local minimum, a smaller value (here 10−4) is used and for a starting
point far from the local minimum, a larger value (here 10−3) is used.
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Algorithm 2 Jacobian-based algorithm (LM, GN)

procedure LM Function
Define initial parameters (β0, εthr, µ0);
Solve forward model with β0;
Compute f0, J0, G;
∆β0 ← call LM; . Table 4.2
∆fk = f0; k ← 0;

while
∥∥∥∆fk

fk

∥∥∥ ≥ εthr do
Compute βk+1 = βk + ∆βk;
Solve forward model for βk+1;
if fk+1 < fk then

calculate Jk+1;
µk+1 ← µk/µdown;

else
βk+1 ← βk;
Jk+1 ← Jk;
µk+1 ← µk ∗ µup;

∆βk+1 ← call LM; . Table 4.2
∆fk = fk − fk−1; k ← k + 1;

end while

procedure GN Function
Define initial parameters (β0, εthr, µ);
Solve forward model with β0;
Compute f0, J0;
∆β0 ← call GN; . Table 4.2
∆fk = f0; k ← 0;

while
∥∥∥∆fk

fk

∥∥∥ ≥ εthr do . Criterion for function
value

αk ⇐ Call line search function
Compute βk+1 = βk + αk∆βk;
Solve forward model for βk+1;
calculate fk+1, Jk+1;
∆βk+1 ← call GN; . Table 4.2
∆fk = fk − fk−1; k ← k + 1;

end while

It is worth mentioning here that when an optimization problem with several parameters is
faced, such as is the case here with multispectral DOT reconstruction, a parameter scaling
is necessary especially for the L-BFGS algorithm (Eq. (4.10)). This parameter scaling
is helpful in making the convergence rate faster. One alternative for parameter scaling
could be a gradient/Jacobian scaling ([34]) but, in this study, parameter scaling showed
better performance in comparison with gradient/Jacobian scaling. For Newton’s method,
parameter scaling could be neglected as it does not require scaling, but nevertheless, scaling
is applied for all implemented algorithms. Explicitly, the parameter scaling used here is
as follows:

β =

[
C1(r)

max (c1(r))
,

C2(r)

max (c2(r))
,

C3(r)

max (c3(r))
,

A(r)

max (A(r))

]
. (4.10)

4.4 Results

In this section, the results of the multispectral DOT image reconstruction algorithm using
gradient-based and Jacobian-based optimization methods are presented. A numerical
cylinder phantom is used for this study. The performance of optimization algorithms for
this numerical phantom is evaluated for different conditions. The scale of the problem,
the starting point (initial guess), and the noise level are the 3 important factors that are
considered for both gradient-based and Jacobian-based optimization methods. The results
are evaluated in terms of iteration steps and computation time. In addition, the image
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quality of the results is evaluated with two image metrics, namely the correlation and
deviation factors.

The correlation factor ρa ∈ [−1, 1] of the reconstructed image is determined with respect
to the target image. This factor is calculated as [95]:

ρa =

∑i=N
i=1

(
βri − β̂ri

)(
βti − β̂ti

)
(N − 1)σβrσβt

, (4.11)

where

σβt =

√√√√ 1

N − 1

N∑
1

(βti − β̂ti)2, σβr =

√√√√ 1

N − 1

N∑
1

(βri − β̂ri )2. (4.12)

Here βr and βt are the reconstructed and target images, N is the number of voxels, σβt and
σβr are the standard deviations of the target and reconstructed images, and finally β̂ri and
β̂ti indicate the mean values of the reconstructed and target images respectively. Values of
ρa close to 1 show a high correlation between the reconstructed and target images (high
accuracy). For small values of ρa, low accuracy and no correlation between the target and
reconstructed images is obtained.

The deviation factor ρb ∈ [0,∞] to evaluate the image quality is defined as follows:

ρb =
(1/N)

∑N
i=1 (βri − βti)

2

σβt

. (4.13)

As its name implies, this factor determines a metric to measure the deviation of the
reconstructed image from the target image. A small value of ρb indicates a reconstructed
image with high accuracy.

All of the reconstruction results were obtained on a desktop computer with an Intel quad
Core i7-2700K CPU running at 3.50 GHz × 4 and with 32 GB RAM. Programming was
done in Python 2.7 (Numpy/Scipy [81, 159] packages) and Cython.

4.4.1 Numerical experiment

Several 3D numerical experiments are conducted on a numerical cylindrical phantom with a
25 mm diameter and 40 mm height to simulate the size of a small mouse. The experiments
are conducted for 2 types of chromophores - Hb and HbO2, water (H2O), and scatterer (4
different optical parameters in total). For each of optical parameter considered here, an
inclusion with different sizes is positioned at different locations (4 inclusion in total). The
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3D view of the phantom and each concentration map are shown in Fig. 4.1. The following
set of wavelengths is selected for this study: 650 nm, 718 nm, 880 nm, 930 nm. These
wavelengths and associated extinction coefficients (εi) for each inclusion are presented in
Table 4.3. This set of wavelengths is chosen so that the greatest changes are observed in
the values of the extinction coefficients. A 10 µM concentration is used as the background
concentration for Hb and HbO2 and 20 µM is used for the concentration of the Hb and
HbO2 inclusions; 18% and 36% are used as the background and inclusion concentrations
for water, and 4.5 (10−3mm−1) and 9 (10−3mm−1) as the background and inclusion scatter
amplitude.

Table 4.3 Molar extinction coefficients of chromophores (εi) and ab-
sorption coefficient of water used in the experiment.

650 nm 718 nm 880 nm 930 nm

ε[HbO2] (mm.M)−1 368 340 1170 1222
ε[Hb] (mm.M)−1 3750.12 1368.28 736.6 763.84
µa[H2O] (mm)−1 0.0003594 0.0009913 0.0055978 0.017296

The numerical experiments are designed to investigate each optimization algorithm un-
der several conditions. Source and detector arrangements are configured at a plurality of
positions around the phantom. The measurements are acquired around the phantom at
different heights between 10 mm and 30 mm at steps of 2 mm along the phantom (10
slices in total). Eight source locations (projections) are used to illuminate the phantom at
each height with an angle of 45◦ between each source location. Sixteen detection locations
collect the light from 100◦ to 260◦ with respect to the illumination direction (transillumi-
nation regime) at steps of 10◦. The total number of projections is 4 × 8 × 10 = 320 which
leads to collecting a total of 4 × 8 × 16 × 10 = 5120 measurements.

3D map [HbO2] [Hb] [H2O] Scatter. Map

Figure 4.1 3D numerical phantom with one inclusion for each opti-
cal parameter (Hb, HbO2, H2O, and scatterer). Four different optical
parameters in total are positioned at different heigth.
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The numerical experiments allow investigating optimization methods in multispectral
DOT image reconstruction in terms of the performance and the quality of reconstructed
images. Six numerical experiments are designed to evaluate 3 important factors, namely:
scale of the problem, starting point, and noise level. Two numerical simulations for differ-
ent mesh sizes (fine and coarse mesh), 2 numerical simulations for different starting points
(20% above and below of background value), and 2 numerical simulations for different
noise levels (20 dB and 10 dB signal-to-noise ratios (SNR)) are considered. For all the
optimization methods the same criterion is used as shown in Algorithm 2 and Algorithm 1.
The threshold parameter is selected to be εthr = 10−3 for this work. The results obtained
are evaluated for each condition in sequence in the following.

4.4.2 Scale of the problem

An important factor in an optimization problem is its scale. In multispectral DOT im-
age reconstruction, a fine spatial discretization increases the scale of the inverse problem.
To investigate this factor, two mesh sizes are considered, a fine and a coarse. For the
fine mesh, the numerical phantom is discretized into a structured-grid with voxel size
1 mm × 1 mm × 1 mm and a total of 19,240 nodes. For the coarse mesh, the voxel
size is 2 mm × 2 mm × 2 mm for a total of 2,420 nodes. The fine mesh size results in
4 × 19,240 ∼ 80,000 variables and 4 × 2,420 ∼ 10,000 variables. One can see that the
scale of the problem for the fine mesh is much larger than that for the coarse mesh. For
the fine mesh, almost 80,000 variables must be reconstructed from 5120 measurements,
while for the coarse mesh 10,000 variables must be reconstructed from 5120 measure-
ments, that is indicative of the difference in problem ill-posedness in these two cases. To
test for the other conditions, the phantom is also discretized into a mid-scale to have a
trade-off between the ill-posedness and spatial resolution. The voxel size in this case is
1.5 mm × 1.5 mm × 1.5 mm for a total of 5018 nodes. This discretization makes the
parameter variable β a vector of size 4 × 5018 ∼ 20,000. All of the synthetic data were
generated on a structured-grid with voxel size 0.75 mm × 0.75 mm × 0.75 mm to avoid
the inverse crime.

Table 4.4 Results for fine mesh.
f0 = 57.73 [HbO2] [Hb] [H2O] Scatterer

ffin niter time(s) ρa ρb ρa ρb ρa ρb ρa ρb
TNC 0.142 14 8865 0.31 1.0 0.51 0.9 0.241.010.51 0.84

L-BFGS0.170 25 3756 0.280.970.510.860.230.990.55 0.84
LM 0.169 15 2406 0.390.920.610.800.220.980.69 0.79
GN 0.142 7 4994 0.360.970.490.910.240.990.48 0.89
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Figure 4.2 Reconstructed concentration maps for 2 different scales:
fine mesh and coarse mesh.
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Figure 4.3 Contrast line of a 2D slice for 2 different scales: fine mesh
and coarse mesh.
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Table 4.5 Results for coarse mesh.
f0 = 55.67 [HbO2] [Hb] [H2O] Scatterer

ffin niter time(s) ρa ρb ρa ρb ρa ρb ρa ρb
TNC 0.169 12 163 0.530.940.700.750.351.06 0.70 0.72

L-BFGS0.197 25 77 0.430.900.700.710.340.9600.800.60
LM 0.187 7 165 0.550.830.760.650.370.92 0.82 0.59
GN 0.179 6 166 0.440.980.650.830.410.95 0.65 0.82

Fine mesh Reconstructed concentration maps obtained from the TNC and GN opti-
mization methods are better as shown in Fig. 4.2a. In fact, these methods converge to a
lower minimum with the final value of the objective function (ffin) being less that for the
other two methods, as can be seen in Table 4.4. Also, the correlation factor (ρa) and the
deviation factor (ρb) are larger and smaller respectively for the GN and TNC. Overall, the
results are not good as for the coarse mesh as expected because of the ill-posedness of the
problem.

Coarse mesh All results for the coarse mesh are shown in Fig. 4.2b and Table 4.5.
The TNC and GN terminate at a smaller objective function value in comparison with the
two other methods. In comparing the fine mesh with the coarse mesh, the reconstructed
inclusion values for the coarse mesh are closer to the target values as the line contrast
shows in Fig. 4.3. All concentration maps are well located except water for the L-BFGS
and LM. In fact, these methods perform better when they approach to a local minimum.
The reason is that water has the smallest changes (smallest gradient norm) among the
other variables with respect to the selected wavelengths. Therefore, for water, good results
as for the other variables are not expected.

4.4.3 Starting point

The starting point determines the convergence path to the local/global minimum. Con-
vergence may significantly vary from one starting point to another. In this work, the
optimization algorithms are evaluated for two starting points that are significantly distant
from one another to better simulate real experiments. It was decided to define the initial
map 20% above or 20% below the target background. These two choices are far from each
other and could happen in real experiments because of possible errors in providing the
initial guess.
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Figure 4.4 Reconstructed concentration maps for 2 different starting
points: 20% above and under the background.
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Figure 4.5 Contrast line of a 2D slice for 2 different starting points:
20% above and under the background.
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Table 4.6 Results for +20%.
f0 = 25.92 [HbO2] [Hb] [H2O] Scatterer

ffin niter time(s) ρa ρb ρa ρb ρa ρb ρa ρb
TNC 0.172 13 920 0.261.250.590.960.301.120.54 0.97

L-BFGS0.188 40 498 0.121.260.531.010.051.240.53 0.94
LM 0.237 7 775 0.361.070.580.940.251.080.58 0.91
GN 0.167 7 471 0.241.190.580.930.111.150.63 0.86

Table 4.7 Results for -20%.
f0 = 239.23 [HbO2] [Hb] [H2O] Scatterer

ffin niter time(s) ρa ρb ρa ρb ρa ρb ρa ρb
TNC 0.188 18 990 0.421.000.710.740.360.960.73 0.70

L-BFGS161.7 40 412 0.063.430.232.660.102.570.02 9.27
LM 0.200 17 658 0.410.910.750.670.260.960.83 0.59
GN 0.163 12 946 0.410.960.680.750.320.980.71 0.71

+20% The results for 20% above the real background value (+20%) are shown in
Fig. 4.4a and Table 4.6. By looking at the reconstructed images and the calculated image
metrics, the results of all methods are very similar, with a difference in water and HbO2

concentration. These two have smaller gradient vectors in comparison to the scatter am-
plitude and Hb for the selected wavelengths. For water and HbO2, the LM and TNC show
better results and larger correlation factor (ρa) values.

-20% The initial function value (f0) for 20% below the real background value (-20%) is
almost 10 times larger than the +20% in this work. However, the results for all optimiza-
tion methods are close to the results for +20% except for L-BFGS. For this starting point,
the L-BFGS method fails to converge properly to a reasonable minimum. Others starting
points were considered, for example (-15%), and then the L-BFGS algorithms converge
properly (the results are not displayed here), but for values larger than 15% the L-BFGS
fails to converge. One reason for this is that quasi-Newton methods can be trapped in a
saddle point in comparison with Newton’s methods. For example, a saddle point could
exist close to this starting point that the L-BFGS cannot pass and, therefore, falls into this
saddle point. The results for -20% for all methods are shown in Fig. 4.4b and Table 4.7.

4.4.4 Noise level

Measurements in DOT are primarily contaminated with noises that are usually modeled
as Poisson or Gaussian distributions. In the case of CW light imaging, normally the power
and the number of detected photons is greater than for other methods, and the noise can
be modeled as a Gaussian distribution. In this work, to model noise in the measurements,
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additive white Gaussian noise (AWGN) is selected. AWGNs with powers of 1% and 10% of
the measurements are added directly to the synthetic measurement data (equal to 20 dB
and 10 dB SNR respectively).

20 dB SNR All methods show similar results for the concentration of Hb and the
scatterer amplitude and a difference can be seen for water and the concentration of HbO2,
as one can see better results obtained with the LM algorithm (Fig. 4.6a). One reason
for these observations is that the LM method is implemented with a trust-region method.
This pushes the approximated Hessian to a positive definite regime to find a descent
direction. Moreover, when the minimum is approached, a smaller trust region is used and
the algorithm can converge deeper as can be seen from the value of ffin, which is the
smallest among the values of the other methods (Table 4.8).

10 dB SNR For 10 dB SNR, the worst SNR in practical experiments, the LM and
L-BFGS give better results. Since the LM is implemented with a trust-region approach,
it shows robustness to noise and finds a descent direction (Fig. 4.6b). In the L-BFGS, the
step is smaller than Newton’s methods and is smoother, because the approximate Hessian
is calculated from a few last iterations of the gradient vector. This means the accumulation
of noise in the Hessian matrix, and consequently in finding the descent direction is smaller
than in the case of Newton’s methods. Also, one can see smaller fluctuations in the
reconstructed values in the L-BFGS results in comparison with other algorithms.

4.5 Conclusion

In this study, quasi-Newton optimization methods (L-BFGS) and Newton’s optimiza-
tion methods (TNC, LM, GN) were evaluated for multispectral DOT. The optimization
methods were sorted based on their implementation requirements into 2 main categories:
gradient-based and Jacobian-based. In gradient-based families including L-BFGS and
TNC, the gradient of the objective function is calculated with respect to the variables

Table 4.8 Results for 20 dB SNR.
f0 = 24.73 [HbO2] [Hb] [H2O] Scatterer

ffin niter time(s) ρa ρb ρa ρb ρa ρb ρa ρb
TNC 0.195 13 460 0.390.920.770.640.360.930.85 0.56

L-BFGS0.191 35 310 0.320.940.710.700.300.970.79 0.61
LM 0.169 9 857 0.331.050.680.760.350.990.68 0.75
GN 0.173 8 499 0.420.960.670.790.151.050.67 0.76
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Figure 4.6 Reconstructed concentration maps for 2 different noise
level: 20 dB and 10 dB.

20 dB

SNR

10 dB

SNR

[HbO2] [Hb] [H2O] Scatter. map

0 5 10 15 20 25

pixels

0

5

10

15

20

C
o
n
c
e
n
t
r
a
t
io
n
(
µ
M
)

0 5 10 15 20 25

pixels

0

5

10

15

20

C
o
n
c
e
n
t
r
a
t
io
n
(
µ
M
)

0 5 10 15 20 25

pixels

0

5

10

15

20

25

C
o
n
c
e
n
t
r
a
t
io
n
(
µ
M
)

0 5 10 15 20 25

pixels

0

5

10

15

20

C
o
n
c
e
n
t
r
a
t
io
n
(
µ
M
)

0 5 10 15 20 25

pixels

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
o
n
c
e
n
t
r
a
t
io
n
(
%
)

0 5 10 15 20 25

pixels

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
o
n
c
e
n
t
r
a
t
io
n
(
%
)

0 5 10 15 20 25

pixels

0

2

4

6

8

10

C
o
n
c
e
n
t
r
a
t
io
n
(
1
0

3
m
m

0 5 10 15 20 25

pixels

0

1

2

3

4

5

6

7

8

9

C
o
n
c
e
n
t
r
a
t
io
n
(
1
0

3
m
m

Figure 4.7 Contrast line of a 2D slice for 2 different noise level: 20 dB
and 10 dB.
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Table 4.9 Results for 10 dB SNR.
f0 = 88.37 [HbO2] [Hb] [H2O] Scatterer

ffin niter time(s) ρa ρb ρa ρb ρa ρb ρa ρb
TNC 19.32 5 382 0.121.110.211.290.120.990.27 1.44

L-BFGS19.65 9 372 0.101.040.291.130.250.970.35 1.36
LM 18.94 4 717 0.191.710.291.750.021.460.24 2.04
GN 19.20 5 430 0.021.740.231.790.001.410.29 1.81

by the adjoint technique. The optimal steps in all algorithms in this category, are ob-
tained through a line search. In the Jacobian-based family including LM and GN, the
Jacobian matrix is calculated with respect to the variables to be reconstructed by apply-
ing reciprocal theory. For the Jacobian-based family, the modified Newton’s equation is
solved via a Jacobian-Free Newton-Krylov (JFNK) approach that is very efficient for a
large problem such as multispectral DOT reconstruction problem. In the Jacobian-based
family, the adequate selection of the hyperparameter λ is important. A large value of λ
makes the convergence slow while a small one leads to failure in finding the optimal step.
The precise choice of this hyperparameter is critical and can be calculated with l-curve
methods. A parameter scaling was considered for all algorithms. The computational time
of the gradient vector is Nd times (Nd = number of detectors) faster than the computa-
tional time of the Jacobian matrix while the step in the Jacobian-based family is quadratic
and the number of function evaluation is smaller than for the gradient-based family. The
most time consuming step in the Jacobian-based family is solving the Newton’s equation
which is implemented with a JFNK technique to accelerate it. The image quality of re-
constructed images were evaluated by observing the reconstructed images and using two
image metrics, correlation and deviation factors. Furthermore, the performance of the
algorithm is evaluated in terms of final cost function values, the total number of basic
function evaluations, and the total computational time.

The optimization algorithms were investigated for 3 important factors, the scale of the
problem, starting point, and noise level in several conditions. In practical experiments, one
always deals with different SNR measurements because of different acquisition strategies
and equipment non-ideality. Also, providing the initial guess is always a difficult task and
errors in the calculation of the initial guess is admissible. Investigation of optimization
methods under several conditions can help choosing the right methods to enhance the
image quality of reconstructed images.

In multispectral DOT image reconstruction, several concentrations can be recovered si-
multaneously. The selection of a series of wavelengths that provide large differences for
all concentrations is almost impossible. Therefore, some of the concentrations have larger
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gradient norms in comparison with other concentrations. In this work, the scatter ampli-
tude, Hb, HbO2, and water have the largest gradient norm respectively (Table 4.3). Since
the contribution of chromophores and scatterer in the gradient vector is different because
of changes in molar extinction to the light wavelength, a different reconstructed image for
each chromophore is expected. All of the optimization methods converge to an acceptable
reconstructed image for two concentrations with larger gradient norms (here scatterer and
Hb). For the two concentrations with the smallest gradient norms (here HbO2 and water),
some differences are observed between the performance of the optimization algorithms. For
both fine and coarse meshes, TNC and GN lead to better reconstructed concentrations in
comparison with other algorithms. For different initial maps, TNC and LM reconstructed
better result for +20%, and for −20% TNC and GN recovered better results. The L-BFGS
algorithm for −20% fails to converge to an acceptable local minimum. On reason for this
behaivor can be referred to the fact that quasi-Newton methods can be trapped in a saddle
point. In noisy conditions, the LM and L-BFGS reconstruct better concentration map.
These differences in the performance of optimization algorithms tell us to use optimiza-
tion algorithms based on the specifics of the problem. However, the decision to use which
optimization algorithm rests with the user and should be dependent on the problem to be
solved.

Generally, optimization algorithms with line search technique perform well for nonlinear
problems such as multispectral DOT image reconstruction. Under very noisy conditions,
the descent direction contaminates with noise and reaching a descent direction is difficult.
In these conditions, the algorithms using the trust-region method such as LM are more
robust. Also, trust-region methods work well when the initial guess is close to the mini-
mum. Since, the behavior of optimization algorithm will be changed with respect to the
initial map therefore, in a real multispectral experiment, if we do not have precise prior
information it is recommended to repeat the reconstruction process for several initial maps
to obtain accurate images.
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Contribution of the document to the thesis
This article proposes a novel image reconstruction algorithm for fluorescence lifetime to-
mography. The proposed image reconstruction algorithm extracted all information of the
measured temporal curve in the reconstruction process, which enable us to reconstruct sev-
eral fluorescence lifetimes simultaneously. Full-curved reconstruction algorithms has not
been developed because of imposing a computationally demanding reconstruction time.
The proposed algorithm accelerates this process by a two steps image reconstruction.

Abstract:
Time-domain (TD) fluorescence lifetime tomography reconstruction using full-curve time
point-spread functions (TPSF) is computationally very expensive, owing to the need of
time stepping over each TPSF. In this work, a combined continuous-wave (CW)/TD image
reconstruction algorithm for fluorescence lifetime tomography is presented. It allows to ac-
celerate TD data-based image reconstruction and make it more practical. In the proposed
algorithm, the map reconstructed from CW data is thresholded and used as a fluorescence
yield mask for the tomographic reconstruction of fluorescence lifetime using the TD data.
The algorithm is validated with numerical experiments. The results demonstrate the abil-
ity of the algorithm to provide maps distinguishing fluorophores having different lifetimes.
In the case of a complex mouse phantom, the algorithm converges to an accurate image
in a reasonable computation time.
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5.2 Introduction

Fluorescence diffuse optical tomography (FDOT), as a medical imaging technique for func-
tional and molecular imaging of biological tissues, has seen important developments in the
past decade [39]. Fluorescence imaging relies on an external source of light, typically a
laser, to excite a fluorescent compound, followed by the detection of the ensuing emit-
ted light signal. Fluorescence as a contrast mechanism in optical imaging enhances the
capability of differencing between normal and diseased tissues [65].

The two main quantities of interest in FDOT are the fluorescence yield and the fluorescence
lifetime (FLT) [108]. The yield relates to the fluorophore’s concentration, and thus is
indicative of where it accumulates. This is of key importance for imaging fluorescent
probes designed to target specific diseases in tissues, e.g. cancer. As regards the FLT,
it presents several interesting features: (1) Fluorescent probes with overlapping emission
spectra but different FLTs can be discriminated and used concurrently [99, 100]. (2) FLT
varies with local environment biochemical and physical factors (pH, O2 level, presence of
Ca2+, temperature), thus allowing to sense such factors [19, 67]. This is widely used
in microscopy [153] and is the basis for FLT imaging (FLIM), which also allows robust
measurements of molecular interactions at the nanometer scale within living cells and
tissues through FRET (Förster resonance energy transfer) [77]. FRET is exploited to
develop smart activatable probes [166] which light up when cleaved by a specific enzyme. In
vivo FRET tomography in small animals is a promising modality for monitoring the more
efficient release of drugs to targeted diseased tissues and reduce secondary damage [161],
and for studying fundamental disease-related enzymatic reactions [113]. 3D in vivo FLT
imaging has the potential to become a key tool in pharmacology and biology.

Most FDOT systems are based on continuous-wave (CW) measurements that require less
expensive instrumentation in comparison with frequency-domain (FD) and time-domain
(TD) measurements. However, CW measurements only allow recovering the fluorescence
yield, while FD and TD systems are capable of providing both the fluorescence yield
and the FLT. TD systems measure the temporal point spread function (TPSF) at the
boundary of a medium. This offers the richest information among the three measurement
techniques, since a laser pulse virtually contains all modulation frequencies, including the
CW (zero frequency) measurement.

Several image reconstruction algorithms for FLT tomography have been developed in
recent years. Most of them use FD measurements or a Fourier/Laplace transform of
TPSFs obtained from TD measurements, and reconstruct the FLT from FD (complex)
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data [9, 54, 59, 124, 128, 129]. Other algorithms use the TPSF curves and reconstruct the
FLT from TD data [7, 29, 73, 106, 109, 120]. A comparison of these two approaches has
been carried out by Kumar [105], who showed that TD approaches can separate multiple
lifetime targets significantly better than FD approaches. FLT tomography based on full
temporal curves requires stacking TPSFs in a measurement vector. Such a method can
be computationally very demanding, as it requires to step in time over the whole of each
TPSF, and this for all TPSFs. Further, this needs to be repeated at each iteration of the
image reconstruction algorithm. Instead of using full curve information, some algorithms
use some aspects of TPSFs such as the slope of the TPSFs’ tail [106], early/late time
bins of TPSFs [73], or the moments of TPSF [7, 29, 109]. However, using early time
bins or time gates does not exploit the full information contained in TPSFs, and some
information is lost for the sake of computational efficiency. These methods could lead to a
limitation and inability to perform high-throughput imaging of multiple fluorescent targets
in FLT tomography. The maximum number of discriminated distinct fluorophores that are
reported in these algorithms is three. While representing a higher computational challenge,
using full curve information of measured TPSFs can lead to more robust algorithms for
unmixing and localization of more fluorophores.

In this work, a nonlinear image reconstruction algorithm is developed for reconstructing
the FLT spatial distribution of fluorophores through a combined CW/TD approach to
reduce the computational load. First, a CW reconstruction algorithm provides a map of
the distribution of the fluorescence yield. This map is then used in a second stage as a
mask for full-curve TD image reconstruction in regions of interest as determined by the
yield mask. This second stage resorts to a gradient-based method for recovering the FLT
of fluorophores. A nonlinear algorithm is considered here as the FLT image reconstruction
problem is intrinsically nonlinear.

This paper is organized as follows. Section 2 discusses model-based image reconstruction
and associated requirements pertaining to the present work. Section 3 provides the details
of the algorithm developed and implemented. Numerical experiments along with results
validating the proposed algorithm are described in Section 4. Finally, Section 5 concludes
the paper.

5.3 Model-Based Image Reconstruction

FLT tomography based on full temporal curves requires stacking TPSFs in a measure-
ment vector. The algorithm developed here follows the model-based image reconstruction
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(MBIR) scheme [6, 90]. First, a light propagation model predicts the light distribution in
the medium under examination. Then, a least-square data fitting function, so-called the
objective function (OF), is used to assess the discrepancy between experimental measure-
ments and predictions thereof at a set of detector locations. The OF is minimized through
an iterative optimization algorithm.

5.3.1 Forward Model

The forward problem in FDOT predicts the light flux at detector locations on the surface
of a medium from a given distribution of: absorption and scattering coefficients, the
fluorescence yield, and the FLT throughout the medium. The general model for light
propagation inside biological tissues is the radiative transfer equation (RTE). However,
owing to the complexity of solving the RTE, the diffusion equation (DE) is ubiquitous in
biomedical optics. The DE is a partial differential equation (PDE) derived from the RTE
using the diffusion approximation [164], which assumes that the light field propagating
in the medium is isotropic at each point. The DE has proved to be a very useful model
and is adopted here. For practical geometries with complex curved boundaries as those
encountered in biomedical optics (e.g. the shape of a mouse in preclinical molecular
imaging), the DE cannot be solved analytically, and numerical methods are resorted to.
Modeling the propagation of excitation and fluorescence light in a biological tissue requires
two coupled equations, which when using the DE as a model are as follows for a medium
Ω and its boundary ∂Ω [24]:

1

ν

∂Φx

∂t
+ (µxa(r) + µx→ma (r)) Φx(r, t)−∇ · [Dx(r)∇Φx(r, t)] = Qx(r, t), r ∈ Ω,

1−Rψ

4
Φx(r, t) +

1 +RJ

2
Dx(r)

∂Φx

∂n̂
= 0, r ∈ ∂Ω,

(5.1a)

1

ν

∂Φm

∂t
+ µma (r)Φm(r, t)−∇ · [Dm(r)∇Φm(r, t)] = Qm(r, t), r ∈ Ω,

1−Rψ

4
Φm(r, t) +

1 +RJ

2
Dm(r)

∂Φm

∂n̂
= 0, r ∈ ∂Ω.

(5.1b)

Here x and m are indices referring to the excitation and emission wavelengths; Φx and
Φm are the light fluences (W/cm2), and µxa and µma are the absorption coefficients at
the excitation and emission wavelengths, µx→ma is the absorption coefficient of excitation
light by the fluorophore, Dx and Dm are the diffusion coefficients, Qx and Qm are the
excitation and fluorescence sources, and r is the coordinate vector of a point. The index
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of refraction is assumed to be the same at both wavelengths. Hence, the speed of light
in the medium is the same at both wavelengths, and is denoted by ν. The quantities Rψ

and RJ are coefficients related to the refractive index mismatch at the boundary of the
medium, and are related to the Fresnel reflection coefficient [64]. The unit normal vector
at the boundary is denoted by n̂. Typically, in time-domain measurements, the excitation
source Qx(t) is an ultra-short laser pulse which can be modeled as a Dirac delta function.
The fluorescence source Qm(r, t) is obtained from the excitation fluence, fluorescence yield
and FLT of the fluorophore as

Qm(r, t) =
η

τ(r)
µx→ma (r)

∫ t

0

Φx(r, t′) exp

(
−t− t

′

τ(r)

)
dt′, (5.2)

where ηµx→ma and τ are respectively the fluorophore’s yield and FLT, both of which may
vary spatially. To solve the forward problem, a finite difference scheme is used to spatially
discretize the light propagation equations. For a time-domain problem as considered here,
the time derivatives in Eq. (5.1) are also discretized by a finite difference approach, leading
to the following iterative algebraic linear equations

(θAx,m(β) +B) Φx,m(tn) = [(θ − 1)Ax,m(β) +B] Φx,m(tn−1)

+ Qx,m(tn−1), tn > t0, (5.3)

with the initial condition
Φx,m(t0) = 0, t0 = 0. (5.4)

Here, Φx,m are the vectors of the spatially discretized excitation and emission fluences and
similarly for Qx,m, the time steps are specified as tn+1 = tn + ∆t, Ax,m are matrices of
coefficients pertaining to the excitation and emission equations resulting from the finite
difference discretization, B is a diagonal matrix with value 1/(ν∆t) on its diagonal. The
vector β represents the optical parameters of the fluorescence problem, i.e. fluorescence
yield and FLT (the intrinsic (background) absorption µxa, µma , and scattering Dx, and Dm

are considered to be known; see [53] and the Results section below. The parameter θ
controls the temporal discretization scheme; it can be set to a value in the range from 0
(explicit scheme) to 1 (full implicit scheme). In this work, θ = 1/2 is used, corresponding
to the stable Crank-Nicholson scheme customarily used with parabolic PDEs as those
considered here. Solving these equations gives the evolution in time of the excitation (Φx)
and emission (Φm) light fluences spatial distributions.
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5.3.2 TPSF Normalization and Scaling

The TPSFs are normalized with respect to their energy before being feed to the OF. This
normalization has a great impact in practice, as the amplitude of a measured TPSF is
affected by several factors, such as the quantum efficiency of the detectors, the optical
design of the collection channels, the out-of-focus conditions for the collection lens with
respect to the medium’s surface, etc. It is technically very difficult to calibrate optical
instruments so that their values they output are absolute. To avoid such a difficulty, which
is significant in practice, it is advantageous to be able to work with TPSFs whose ampli-
tudes are normalized in some way. TPSFs normalized by their energy, can be considered
as probability distribution functions (PDFs), and this is how they will be normalized here.
Thus, in fact the OF will fit the predicted PDFs to the measured PDFs. Since the light
intensity typically decays exponentially in media, a logarithmic scaling of the data is also
applied after normalization, so as to keep the data in a range that remains in the same
order of magnitude. Empirically, such scaling better conditions the optimization prob-
lem underlying the image reconstruction process; it is a standard technique in numerical
optimization to scale data prior to optimizing a function [123]. The final predicted and
measured TPSFs after normalization and scaling are defined as

Φ̂m(t) = ln

(
Φm(t)

EΦm

)
, EΦm =

∫ T

0

Φm(t)dt,

M̂(t) = ln

(
M(t)

EM

)
, EM =

∫ T

0

M(t)dt,
(5.5)

where, Φm is a TPSF predicted by the light propagation model, EΦm and EM are the
energies of their respective TPSFs, and Φ̂m and M̂ are the predicted and measured TPSFs
after normalization and scaling. It is worth to mention that the measured TPSFs are
deconvolved prior to being used in Eq. (5.5).

5.3.3 Inverse Model

A nonlinear inverse problem such as that considered here, which is an ill-posed and under-
determined problem, is generally solved using iterative optimization techniques [28]. To
do this, a least square data fitting function (objective function - OF), is used to model the
discrepancy between measured TPSFs and predicted TPSFs. The OF used here is defined
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as

f (β) =
Ns∑
i=1

Nt∑
k=1

1

2

∥∥∥∥∥PiΦ̂m,i(β, tk)− M̂i(tk)

σi(tk)

∥∥∥∥∥
2

2

+ λR(β), (5.6)

constrained by Fx(β)Φx,i(tk) = Qx,i(tk),

FmΦm,i(tk) = Qm,i(β, tk).
(5.7)

Here i is an index to denote source locations, Pi is a projection operator to obtain the
predicted measurements at the detector locations for each tomographic projection i (i.e.
the set of measurements made when the source is at the location with index i), Φ̂m,i and
M̂i are respectively the predicted normalized fluoresced fluence field and the normalized
measured set of TPSFs for source i, σi(tk) is the standard deviation of the i-th measurement
at tk (here because of the Poisson nature of measurements, it is equal to 1

2
M̂i(tk)), β is

the vector of parameters to be reconstructed (fluorescence yield and FLT at each voxel),
λ is the regularization hyperparameter, R is the regularization function, and Ns, Nt are
the number of projections (source locations) and time bins respectively. The OF defined
here, which is constrained as indicated by the forward model equations adjoining the
OF and appearing in Eq. (5.7), depends on the vector of parameters β. The forward
model equations have been written in operator form (Fx and Fm ) in Eq. (5.7) to simplify
notations, but in the implementation of these equations in the computer program, they
are used in the form of Eq. (5.3). This OF indirectly depends on β (which is reminded in
Eq. (5.5) by including β as a parameter in Φ̂m,i), a fact that makes the inverse problem a
nonlinear one. To minimize the OF, Newton or gradient-based optimization strategies can
be resorted to. Newton methods are not suitable for time-domain measurements, because
calculation and storage of the sensitivity matrix (Jacobian) and of the Hessian matrix is
too much computationally and memory-wise intensive. For these reasons a gradient-based
optimization method is called for here to minimize the OF [123].

5.3.4 Gradient-Based Optimization

Gradient-based optimization methods, only require the computation of the function value
(f) and its first derivatives, that is the gradient denoted by ( ∂f

∂β
). Here, the low-memory

BFGS (L-BFGS) quasi-Newton optimization algorithm resorted to. This is similar to the
line search Newton method, the main difference being that an approximation of the inverse
Hessian is used in place of the exact one. Additionally, an efficient representation of the
approximate inverse Hessian further reduces significantly the computational burden. For
details on the L-BFGS algorithm, the reader is referred to [123].
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5.3.5 Gradient Calculation
Gradient-based optimization algorithms, as their name implies, require the calculation of
the gradient of the OF. An efficient way to calculate the gradient is to use an adjoint
method [28], whereby a Lagrange function is resorted to. In this context, the Lagrange
function consists of the OF augmented by the light propagation equations as constraints
via Lagrange multipliers (also called adjoint variables). In the present case, the Lagrange
takes the form

L (β) = f (β) +

Ns,Nt∑
i,k=1

〈(Fx(β)Φx,i(tk)−Qx,i(tk)) ,Ψx,i(tk)〉

+

Ns,Nt∑
i,k=1

〈(FmΦm,i(tk)−Qm,i(β, tk)) ,Ψm,i(tk)〉.

(5.8)

Here the Ψx’s and Ψm’s are the adjoint variables associated with the excitation and
emission PDEs respectively. The benefit of such an approach is that the total work of
computing the OF and its gradient (∂f/∂β) is approximately equivalent to solving one
time step of the forward model [25].

From the theory of Lagrange multipliers, the Lagrange function must be stationary, leading
to the following equation:

δL = 〈∂f
∂β

, δβ〉+

Ns,Nt∑
i,k=1

〈 ∂L

∂Ψx,i(tk)
, δΨx,i(tk)〉+

Ns,Nt∑
i,k=1

〈 ∂L

∂Ψm,i(tk)
, δΨm,i(tk)〉+

Ns,Nt∑
i,k=1

〈 ∂L

∂Φx,i(tk)
, δΦx,i(tk)〉+

Ns,Nt∑
i,k=1

〈 ∂L

∂Φm,i(tk)
, δΦm,i(tk)〉 = 0

(5.9)

Since the variations δΨx,i(tk), δΨm,i(tk), δΦx,i(tk), δΦm,i(tk), and δβ can be considered
independent (the Lagrange multipliers can be chosen to achieve this), the stationarity
equation leads to the following set of equations:

∂L
∂Ψx,i(tk)

= Fx(β)Φx,i(tk)−Qx,i(tk) = 0 excitation state eq.
∂L

∂Ψm,i(tk)
= FmΦm,i(tk)−Qm,i(β, tk) = 0 emission state eq.

∂L
∂Φx,i(tk)

= ∂f
∂Φx,i(tk)

− Fx(β)TΨx,i(tk) = 0 excitation adjoint eq.
∂L

∂Φm,i(tk)
= ∂f

∂Φm,i(tk)
− F T

mΨm,i(tk) = 0 emission adjoint eq.
∂L
∂β

= ∂f
∂β

+
∑Ns,Nt

i,k=1 〈
∂(Fx(β)Φx,i(tk))

∂β
,Ψx,i(tk)〉−∑Ns,Nt

i,k=1 〈
∂Qm,i(β,tk)

∂β
,Ψm,i(tk)〉+ λ∂R

∂β
= 0 optimality condition.

(5.10)
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We observed that the contribution of the adjoint parameters related to the excitation
equation (the Ψx’s) to the computation of the gradient ∂f/∂β via the optimality condition
is much smaller than that of the Ψm’s. Hence, the adjoint equation for excitation and
its contribution to the calculation of the gradient can be neglected, thus further reducing
the computational burden. Obtaining adjoint parameters from an adjoint equation is
computationally similar to solving a state equation except for the fact that the adjoint
parameters are calculated backward in time, i.e. from the latest time to t = 0. Finally,
the system of Eqs. (5.10) can be rewritten as the following set of equations:

Φx,i(t) = Fx(β)−1Qx,i(t), Ψm,i(t) = (Fm)−1 ∂f

∂Φm,i(t)
,

Φm,i(t) = F−1
m Qm,i(β, t),

∂f

∂β
= −

Ns,Nt∑
i,k=1

〈∂Qm,i(β, tk)

∂β
,Ψm,i(tk)〉 − λ

∂R
∂β

,

(5.11)

where the term ∂Qm,i(β,t)

∂β
and ∂f

∂Φm,i
can be obtained through Eqs. (5.2), (5.5) and (5.6) as

follows:

∂Qm,i(β, t)

∂βj
=


1

τ(rj)

∫ t
0 Φx,i(rj , t′) exp

(
− t−t′
τ(rj)

)
dt′, βj = ηµx→ma (rj)

ηµx→m
a (rj)
τ2(rj)

∫ t
0

(
−1 + t−t′

τ(rj)

)
Φx,i(rj , t′) exp

(
− t−t′
τ(rj)

)
dt′,βj = τ(rj),

(5.12)

where rj ∈ Ω, and

∂f

∂Φm,i

=
∂f

∂Φ̂m,i

∂Φ̂m,i

∂Φm,i

= P T
i (
P Φ̂m,i(β, t)− M̂i(t)

σ2(t)
) ◦

EΦm,i
−Φm,i

EΦm,i
◦Φm,i

. (5.13)

Here ◦ means an element-wise vector multiplication. By solving Eqs. 5.11 and using
Eqs. (5.12) and (5.13), the gradient of the OF can be calculated.

5.3.6 Regularization

Tikhonov regularization is the most popular method to handle the ill-conditioning of
inverse problem. It consists of applying an L2 norm penalty term alongside the data fitting
model [158]. The Tikhonov penalty term is a twice differentiable and smooth function that
smooths out the edges in the reconstructed image. This is an adverse effect of Tikhonov
regularization and in fluorescence imaging, as in other medical imaging modalities, it is
desirable to use, a regularization term that preserve edges in the reconstructed image such
as the total variation (TV) penalty [138]. For this reason, the TV based on the L1 norm
of the differences between neighboring voxels of the parameters to be reconstructed is
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implemented in the present work. Such a regularization term takes the form,

R =

Nn,Nnb∑
i,j=0

‖βi − βj‖1 , (5.14)

where i, j are the voxel indices corresponding to the volume voxels and neighboring voxels
(6-connectivity is used here, i.e. nearest neighbors) respectively, Nn is the size of the
vector of variables β, and Nnb is the total neighboring pixel pairs (Nnb = 6). This form
of the TV regularization enforces sparsity on pixel differences, and consequently tends to
generate images with piecewise constant regions and sharp boundaries. This regularization
function is not differentiable and to avoid this, it is modified to the form:

R =
√
vTv + δTV , v = Lβ, (5.15)

where v calculates the nearest-neighbor differences via matrix L with dimensions Nnb ×
Nn, and δTV is a small parameter that keeps the function near the true L1 norm, while
making it differentiable (machine precision is typically used; here the constant value 10−9

is used) [47].

5.4 Combined CW/TD Reconstruction

The central idea in this work is to use full-curve TPSF information in reconstructing im-
ages of the FLT while making the whole image reconstruction process computationally
tractable. Two of the main tasks in FLT image reconstruction are the calculation and
storage of the fluorescence source (Eq. (5.2)) for each node of the numerical model. These
represent computationally and memory-wise intensive tasks. However, fluorophore dis-
tributions of interest in practice are generally sparse. Exploiting this fact, a combined
CW/TD reconstruction scheme is developed which uses a fluorescence yield map obtained
from a CW reconstruction as a mask for the full-curve TD reconstruction of the FLT. First,
the measured TPSFs are smoothed out to filter out noise. Then, a CW reconstruction
provide a fluorescence yield mask to fed to next step (TD reconstruction). The provided
fluorescence yield mask with an initialized FLT map are fed to TD reconstruction step.
A schematic of this scheme along with its different steps and a sample TPSF before each
step is depicted in Fig. 5.1.
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5.4.1 CW Step

Solving the forward problem in CW is much less computationally demanding in comparison
with the TD case. The CW computation time is equal to that of one time step in TD,
which makes CW reconstruction much faster TD reconstruction. The formulation of the
CW image reconstruction problem is similar to that of the TD in that the time-dependent
terms in Eqs. (5.1). The CW versions of Eqs. (5.2) and 5.3 are as follows:

Qm(r) = ηµx→ma (r)Φx(r), (5.16)

Ax,m(β)Φx,m = Qx,m. (5.17)

Note that rewriting all equations for the CW reconstruction problem is avoided here for
saving space, and since these equations are very similar to those of the TD problem. One
notable difference is that in the CW case there are only two adjoint variables, one for the
excitation equation and one for the fluorescence equation.

In the inverse problem, the energy of measured TPSFs curve is used as CW measurements.
The forward problem and inverse problem are solved in CW scheme.

5.4.2 Mask Producing Step

After CW reconstruction, the fluorescence yield distribution is thresholded to provide a
mask for TD reconstruction. The threshold value used here is 0.25 of the maximum value
of the reconstructed fluorescence yield. Node values in the discretization mesh for which
the yield is smaller than the threshold are set to 0, and the other nodes retain they yield
values as shown in the bottom right panel in Figure 5.1.

5.4.3 TD Step

Reconstruction of the FLT map is carried out only within active regions of the mask
defining regions of interest (ROIs). More specifically, this means the fluorescence source
is assumed to be zero where the mask is zero, and elsewhere (in ROIs) the discretized
version of Eq. (5.2) is used to compute the source Qm. Then the calculated fluorescence
source is used in the emission forward equation to find the fluorescence field at the bound-
ary. This makes TD reconstruction much less computationally demanding while the full
information of TPSFs is exploited in ROIs. Full-curve TD reconstruction algorithms have
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the potential for simultaneously reconstructing the FLTs for several fluorophores. This
will be demonstrated in next section.

5.5 Results

Validation of the proposed combined CW/TD reconstruction scheme with numerical phan-
toms will now be described. First, a cylindrical phantom with 4 different FLTs is con-
structed to show the strength of full-curve TD reconstruction for distinguishing several
lifetimes simultaneously. Second, the reconstruction algorithm is tested for two cases (2
and 3 lifetimes) on a complex geometry consisting of a numerical mouse phantom.

5.5.1 Noise Model

Poisson noise is added to the synthetic data to obtain realistic data (Fig. 5.2). Such noise
is found in time-correlated single photon counting [110], which is widely used to acquire
TD data. In a Poisson distribution, if N is the number of counted photons in a defined
time interval, then the standard deviation is

√
N , and SNR = N√

N
=
√
N . In TD-DOT,

the photon counting time cannot take prohibitively long because it increases the total
scanning time. In this work, the maximum number of photon is taken as N = 1000,
corresponding to an SNR of ≈ 15 dB (10 log

√
N), see Fig. 5.2; this is typical in practice.

5.5.2 TPSF Curve Smoothing

Since the image reconstruction algorithm uses each time bin of measured TPSFs, noise in
the TPSFs can induce errors in the function/gradient evaluation. To suppress the noise,
prior filtering of TPSFs is carried out using a Savitzky-Golay filter, which is a popular
filtering method in digital signal processing for smoothing out noisy data [133, 142]. An
output of this filter for a noisy TPSF is shown in Fig. 5.2

5.5.3 Simulation for 4 FLTs

We reconstruct the FLT map of a cylindrical numerical phantom containing 4 inclusions at
different positions, each with the same fluorescence yield (0.05 mm−1), but a different FLT
(values of 0.4 ns, 0.6 ns, 1.0 ns, and 1.2 ns). Simulated measurements are acquired on 3
slices at the middle of the volume (inclusions are positioned at the middle of the cylindrical
phantom - Fig. 5.3 left). The fluorescence data used for reconstruction comes from 12
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Figure 5.1 Reconstruction steps and related TPSFs. Top left images
show a sample measured TPSF and the target mouse image with la-
beled organs. Top right images show a smoothed TPSF and the initial
map prior to the CW reconstruction step. Bottom right images show
an initial TPSF with the initial FLT value and the fluorescence yield
mask obtained from thresholding the CW yield image. This mask is
fed to TD reconstruction step. Bottom left images show the fittted
TSPF and the reconstructed FLT map after TD reconstruction.
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Figure 5.2 TPSF model with noise and smoothed.
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projections for each slice, and 12 detection locations from 90◦ to 270◦ on the boundary
for each projection (36 projections and 432 detection locations in total). Figs. 5.3 and 5.4
depict the reconstructed images and the histogram of the recovered FLTs.

As shown for a 4 mm distance between the inclusions, the reconstructed map allows
distinguishing well the inclusions and their FLTs, and the histogram of the reconstructed
FLT values shows that these are close to the real values. Also, there is a gap in the
histogram graph between 0.6 ns and 1.0 ns as there should be, owing to the relatively large
difference in FLTs. For 2 mm and 0 mm distances, one can still distinguish inclusions and
their different FLTs, but the gap in the boundaries of the inclusions vanishes, and there
is some cross-talk in the values of the FLTs (especially for the 0 mm distance). These are
nevertheless excellent results considering the diffusive nature of light propagation the small
distances between the inclusions and the fact that the FLTs can still be distinguished.

5.5.4 Numerical Mouse Phantom

To validate the proposed FLT reconstruction scheme for more complex geometries, syn-
thetic data was generated using a numerical mouse phantom adapted from Digimouse [44],
a numerical mouse phantom widely used in small animal medical imaging research. The
mouse phantom was discretized to a structured grid with voxel size of 1 mm× 1 mm× 1 mm
for a total of 22,340 nodes. Synthetic data was generated on a structured grid with voxel
size of 0.75 mm × 0.75 mm × 0.75 mm to avoid the inverse crime. The optical properties
of the different tissues contained in the mouse are obtained from [53]. Two experiments are
defined to evaluate the performance of the proposed algorithm. For the first experiment,
the heart and the left part of the liver are labeled by markers with the same fluorescence
yield (0.05 mm−1) and different lifetimes (0.4 ns and 0.6 ns respectively). In the second ex-
periment, another FLT is added to the left lung with same fluorescence yield (0.05 mm−1).
The FLTs for the second experiment are 0.4 ns, 0.6 ns and 0.8 ns respectively for the heart,
the left lung, and the left part of the liver of mouse phantom respectively.

In the forward model, Eq. (5.1) is solved for a time range of 3.0 ns and number of time
bins Nt = 180 corresponding to ∆t ∼ 16 ps. Data is considered at mid-body of the
mouse at longitudinal positions (z coordinate) separated by ∆z = 2 mm over 20 mm
along the length of the mouse. For each z position, the mouse is illuminated at 6 different
angles differing by 60◦. Fluorescence signals come from 21 detection locations in the
transmission regime at angles separated by 4◦ ranging from 120◦ to 240◦ with respect to
the illumination direction. This results in a total of 60 tomographic projections and 1260
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4 mm distance 2 mm distance 0 mm distance

Figure 5.3 Reconstructed FLT map for 4 inclusions with different
FLTs and spacing. First row and second row display a 2D slice of
target phantom and reconstructed volume.
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Figure 5.4 Histogram of 4 reconstructed FLTs with lifetimes τ =
0.4 ns, τ = 0.6 ns, τ = 1.0 ns and τ = 1.2 ns.
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Figure 5.5 The target distribution and reconstructed distributions
from CW and TD information are shown for lifetimes τ = 0.4 ns
in white and τ = 0.6 ns in red.
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Figure 5.6 Histogram of reconstructed lifetimes for the mouse phan-
tom with lifetimes τ = 0.4 ns and τ = 0.6 ns.

TPSFs being acquired. The results of the first experiment (2 FLTs) for sagittal, coronal,
and 3D views are displayed on Fig. 5.5.

One can see that the fluorophores with distinct FLTs are well localized in the TD recon-
structed images. Additionally, the reconstructed FLTS are seen to be very close to the
real values as shown in the histogram of Fig. 5.6. The results of the second experiment
(3 FLTs) is depicted in Fig. 5.7. Reconstructed FLTs for each organ are distinguishable.
Also the histogram of the reconstructed FLTs are close to real value as expected. This is
an excellent result considering that the different FLTs are in tightly packed organs. The
combined CW/TD reconstruction carried out in 3D took almost 8 hours of computing
time on a standard desktop computer (Intel Core i7-2700K CPU 3.50 GHz × 4 and 32.00
GB RAM). Programming was done in Python 2.7 (Numpy/Scipy packages [81, 159]) and
Cython.

5.6 Conclusion

Full-curve TD reconstruction uses each time bin of TPSFs. This makes the whole it-
erative image reconstruction process computationally very demanding. In this work, a
combined CW/TD model-based image reconstruction scheme for FLT tomography is pro-
posed, which significantly reduces the computational burden, making image reconstruction
practical, as it concentrates on regions of interest based on a fluorescence yield mask ob-
tained with a CW data-based reconstruction. This allows obtaining images in accessible
time on a standard desktop computer. This is a major leap forward in full-curve TD
fluorescence tomography. Since in the reconstruction process the values of TPSFs in each
time bin are used. In such a reconstruction scheme, noise can easily propagate in the
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function and gradient evaluation. This can lead to a wrong descent direction in the op-
timization algorithm. To suppress the noise a smoothing filter is applied to each TPSF
prior to image reconstruction. The smoothed TPSFs are then normalized to their energies.
TPSF normalization has a great impact in practice since it eliminates difficult to calibrate
experimental factor such as optical and electrical efficiency and gain of instruments. In
the reconstruction process, first a CW objective function is defined for the fluorescence
yield distribution, which is then minimized with an L-BFGS algorithm. The output of
this step is thresholded and fed as a mask to a full-curve TD image reconstruction to re-
cover the fluorescence lifetime map. One bottleneck of full-curve TD image reconstruction
is solving Eq. (5.2) for each node of the spatial discretization grid. Solving the forward
model for nodes sorted out by the mask accelerates image reconstruction. Reconstruction
of the fluorescence yield using CW information (energy of TPSFs) and of the FLT with
a mask from the yield image, make the whole process less computationally demanding,
while the whole information of TPSFs is meaningfully used. The proposed algorithm is
validated with two numerical experiments. With the use of full-curve information in the
reconstruction process, it has demonstrated its ability to reconstruct more than 2 differ-
ent FLTs with a great contrast, which can be found in the literatures. In this work, we
reconstructed for 4 different FLTs to show the strength of full-curve TPSF reconstruction.
The results show a good distinction between inclusions with different FLTs, even when
separated by a small distance. To demonstrate it ability to handle complex geometries, a
numerical mouse phantom is used. Two experiments were conducted on the torso of the
mouse, where the organs are tightly positioned with respect to each other, making this
a challenging imaging problem, especially in diffuse optical imaging. First, two different
FLTs were ascribed to in the heart and part of the liver (left side) of the mouse. In the re-
constructed image, a sharp edge between the two organs allows distinguishing them clearly
with high contrast. Second, another FLT is added to the left lung. Reconstructed results

Figure 5.7 3D view and histogram of reconstructed FLTs for the
mouse phantom with lifetimes τ =0.4 ns, τ =0.6 ns and τ =0.8 ns.
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show a good contrast between organs with different FLTs. The whole reconstruction time
was about 8 hours for the mouse phantom. This time could potentially be further reduced
with more powerful computing hardware and further code optimization.
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Contribution of the document to the thesis
This article presents an alternative image reconstruction algorithm for iterative model-
based image reconstruction algorithms, which is widely used in the medical image re-
construction and specially in the field of diffuse optical tomography. The new image
reconstruction algorithm is developed based on the deep learning techniques. The pro-
posed deep learning-based image reconstruction model can be applied to others imaging
systems since it is independent from data acquisition strategy.

Abstract:
In this study, a deep learning-based image reconstruction algorithm for fluorescence diffuse
optical tomography is proposed. Among all deep learning models, the generative models
are a promising choice for image reconstruction. These models are able to generate high-
dimensional data such as an image from a low-dimensional latent space. A deep encoder
network is used to learn a joint manifold low-dimensional latent space from given dataset.
One of the most successful generative models for manifold learning is the variational au-
toencoder. The proposed image reconstruction algorithm uses such an autoencoder model
to learn a low-dimensional joint manifold between the sensor and image domains. First,
a forward model generates a bulk of continuous-wave fluorescence synthetic measurement
data. Then the proposed model is trained with this synthetic data to recover the fluo-
rescence distribution. The trained model shows clear and promising results form sparse
measurements when it is applied to a real phantom. Also, to evaluate the performance of
the proposed algorithm, it is trained and validated on numerical phantoms with different
sizes.



6.2. INTRODUCTION 81

6.2 Introduction

Tomographic medical image reconstruction has seen spectacular development in the last
decades thanks to steady improvements in hardware and algorithms. All medical imaging
modalities such as magnetic resonance imaging (MRI) [51], X-ray computed tomography
(CT) [82], positron emission tomography (PET) [86], ultrasound [154] and diffuse optical
tomography [11] use direct/iterative algorithms based on state-of-the-art numerical tech-
niques and computing resources to recover/reconstruct the interior structure/properties
of an object. In an image reconstruction process, an inverse function directly or itera-
tively transforms the measured data from the sensor domain to an image. During data
acquisition, an intermediate representation of the object to be reconstructed is encoded in
the sensor domain. The inverse transfer function plays the role of a decoder that allows
visualizing the object represented in the sensor domain. Since the encoding step is not
exact owing to the non-idealities of sensors and noise, in the decoding step the inverse
function approximates the image of the object and often requires the details of the data
acquisition approach to tune and optimize the reconstruction performance.

Deep neural network models have allowed breakthroughs in the last few years [143]. They
have drawn a lot of attention in many applications. In general, deep learning is a data anal-
ysis framework with several layers that promote a higher level of abstraction and prediction
from data [18, 143]. Deep learning resorts to deeper artificial neural networks that enable
analysis models to account for more non-linearity and complexity through the many layers
used. Each layer consists of many neurons that are inter-layer connected. In the training
process, a large set of unlabeled and labeled data are fed to the input/output layers of a
network, and weights of the neurons are updated along the gradient descent direction of a
loss function. The important factors that enable these algorithms to achieve exceptional
performance are a bulk of dataset (big data), the availability of high-performance comput-
ing power, smarter weight initialization, and significantly deeper network architectures.

The performance of deep networks is now well reported in the areas of computer vision [49],
speech recognition [72], and text/image processing [36, 169]. Machine learning and more
recently deep learning techniques have been applied in medical imaging analysis/processing
for lesion detection [147, 149, 160], segmentation, and classification [16, 27, 56, 130, 140].
In the medical image reconstruction field a few approaches have been applied for improv-
ing low-dose X-ray CT images [83], transformation of k-space to image space in MRI [171],
and enhancement of photo-acoustic reconstructed images [5]. There is yet still relatively
little work on the application of deep learning to medical image reconstruction [162]. Here
we propose for the first time an algorithm based on deep learning to directly reconstruct
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tomographically an image of the distribution of fluorescence sources inside biological tis-
sues, more precisely of the fluorescence yield of such sources, from the power of measured
fluorescence signals measured at the boundary of such media.

This paper is organized as follows: Section 6.3 provides background on tomographic optical
imaging in biological tissues. Section 6.4 discusses deep learning-based image reconstruc-
tion and associated requirements pertaining to the present work. Section 6.5 provides
the details of data preparation and the deep generative model used herein. Phantom
experimental details along with results are described in Section 6.6. Finally, Section 6.7
concludes the paper.

6.3 Background and Motivation

Diffuse optical tomography (DOT) aims at imaging non-invasively the spatially varying
optical properties (absorption and scattering coefficients) inside a biological tissue [22, 67],
to be called the "medium" in the sequel. This leads to an inherently ill-posed inverse
problem because of the diffusive nature of light propagation in such media. In fluorescence
DOT (FDOT), an external source of light, typically a laser, excites a fluorescent compound
injected into a biological tissue, and then the emitted signal is detected. These signals
are then used to image in 3D the distribution of the fluorescent compound or some of its
properties such as its fluorescence lifetime [67, 104]. For example, one may localize cancer
when the compound is designed to label cancer cell receptors, or specific proteins related
to cancer [125].

Most of the current FDOT reconstruction algorithms resort to an iterative model-based
image reconstruction (MBIR) scheme [6, 90]. In these algorithms, first, a light propaga-
tion model predicts the light distribution in the medium under examination along with the
measurements on its boundary at a set of detector locations. Then, a data fitting function
(objective function) is used to estimate the discrepancy between experimental measure-
ments and predictions thereof. The objective function is minimized through an iterative
optimization algorithm (e.g. gradient-based). It must be emphasized that due to the
ill-posedness and the nonlinearity of the inverse problem, reconstructing the optical prop-
erties of tissues or the distribution of a fluorescent compound is a challenging task [41].
These methods suffer in image quality performance when the number of measurements
is limited or in the presence of noise, which are typical in FDOT image reconstruction.
Moreover, these algorithms are time consuming because of their iterative nature. This
makes such algorithms unsuitable for real-time optical imaging applications.
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Figure 6.1 Flow charts of image reconstruction for (a) iterative algo-
rithms and (b) joint manifold learning.

To overcome these limitations in FDOT imaging, a deep-learning-based image reconstruc-
tion algorithm is herein proposed. To the best knowledge of the authors, this is the first
deep learning algorithm for FDOT image reconstruction. The algorithm can reconstruct
an image of a medium in less than a second, thus making it appropriate for real-time im-
age reconstruction. Learning algorithms require an enormous training dataset to perform
well. First, a light propagation model provides a bulk of simulated data for training and
validation. Then the deep neural network is trained and validated with the simulated
dataset. Finally, the deep network is tested on real data measured in the laboratory on
a phantom mimicking a real optical biomedical imaging situation to evaluate its image
reconstruction performance.

6.4 Theory and Method

In FDOT image reconstruction, the fluorescence spatial distribution is reconstructed from
a set of measurements on the boundary of the medium. This means the encoded infor-
mation in the sensor domain must be decoded to a spatial map (image). Deep generative
models consisting of encoder/decoder neural networks are well-suited for this purpose, as
these models are capable of generating high-dimensional images from sampling a much
lower dimensional space.

One of the well-known deep generative models is the variational autoencoder (VAE).
Autoencoders are networks with the same input/output size. First, an encoder network
infers a low-dimensional dense representation of the set of inputs (simply called the input)
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by way of so-called latent variables. For this reason, an encoder network is also called an
inference network. The output of the encoder can be interpreted as a manifold of inputs
(the input manifold). Then a decoder reconstructs the set of outputs (simply called the
output) from the latent variables. In variational autoencoders, instead of encoding the
input to an explicit vector in the latent space, a density function (normally unit Gaussian)
of each set of inputs is encoded in the latent space [88]. This encourages the model to
place a high probability mass on many latent variables that could have generated samples,
rather than collapsing to a single point estimate of the most likely value [60]. This Gaussian
distribution causes the model to be less sensitive to small variations in the input such as
noise or other artifacts that may affect measurements during data acquisition. This turns
the autoencoder into a probabilistic generative model [43]. VAEs are simple to implement,
and can be optimized with an element-wise error between input and output, e.g. square
error (loss function).

A VAE can learn a predictable coordinate system when the encoder network is simultane-
ously trained in combination with the decoder network, which makes a VAE an excellent
manifold learning algorithm [60]. This is very interesting for the present application,
since an image is to be reconstructed by sampling from a predictable coordinate system
(low-dimensional manifold space). Consider an input (measurements here) x ∈ X and
an output (reconstructed image here) y ∈ Y in a high-dimension space X × Y and man-
ifolds of them x̂ = z−1

x (x), ŷ = z−1
y (y) in a low-dimensional space X̂ × Ŷ (Fig. 6.1(b)).

Then the VAE model approximates the function f by finding a projection g from the
low-dimensional input manifold to the low-dimensional output manifold:

f ≈ f̂ = zy ◦ g ◦ z−1
x . (6.1)

6.4.1 Conditional Variational Autoencoder

The conditional VAE (CVAE) is a variant of the VAE in which the probability distribution
of a dataset is conditioned by another distribution. In the imaging problem considered
here, this is translated in the image distribution being conditioned by the measurement
distribution. Such conditioning forces the model to reconstruct the image by sampling from
a conditional latent space (joint manifold space). In the model proposed here, the CVAE
is used to reconstruct the fluorescence map by sampling from the learned joint manifold
space. The measurements are the input to the model and the reconstructed image is the
output. The details about how this is implemented will be discussed later in Sect. 6.5.3.
In the CVAE used here, the encoder network maps the input from a high-dimensional
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sample data distribution x ∈ X (measurement domain) to a lower-dimension continuous
latent space Z (joint-manifold coordinate). The decoder’s role is to invert this process
and generate data y ∈ Y (fluorescence map) by taking a sample from the latent space.
Since Gaussian noise is added to the input (x→ x′), the proposed algorithm is similar to
a denoising VAE [75]. The difference between a denoising VAE and a VAE is the noise
which is injected into the input of the model to improve the VAE’s performance. In fact,
learning from a distribution affected by noise heuristically leads to a model that can handle
a broader set of inputs, thus making it more robust. Here, to enable this the CVAE [43]
and denoising formulations [75] are combined. This leads to writing the loss function as
the sum of the reconstruction mean-square error (MSE) and a prior regularization term
as follows:

LCV AE(φ, θ;x′, y) = LMSE + Lprior, (6.2)

where

LMSE = −Ep(x′|x)Eq(z|x′,y)[log pθ(y|z, x)],

Lprior = Ep(x′|x)[DKL(q̂φ(z|x′, y)||p(z|x))],

q̂φ(z|x′, y) = Ep(x′|x)[qφ(z|x′, y)].

(6.3)

Here qφ(.) and pθ(.) are the parametrized distributions of the encoder and decoder networks
with φ and θ being parameters to be optimized during training, p(z|x) is a sampling from
a unit normal distribution conditioned by the distribution of x (z ∼ N (0, I)), and DKL

is the Kullback-Leibler divergence between the approximated inference of the conditioned
encoder network and the probability of the conditioned decoder network.

The LMSE term in Eq. (6.3) is the log-likelihood of the variables φ, θ, x, x′ and y under
the approximate posterior over the latent variables. It is also called the reconstruction
error, and is equivalent to a least-square error function between the image generated by

the network (f̂ function) and the true distribution y (LMSE =
∥∥∥y − f̂(φ, θ;x, x′)

∥∥∥2

2
; see

Eq. (6.1) and recall that y = f(x)). Lprior as it appears in Eq. (6.3) is the entropy of the
approximate posterior. It minimizes the expectation of DKL between the true posterior
distribution p(z|x) and the approximate posterior distribution q̂φ(z|x′, y) over all noisy
inputs sampled from p(x′|x). In fact, this term serves the purpose of approximating the
inference model by the probability of the prior when they approach each other. The right
hand side of Eq. (6.12) can be optimized via stochastic gradient descent. At reconstruction
time sampling from the distribution p(y|x′) can be simply replaced by sampling z from
N (0, I). Note that the proposed model is implemented in the TensorFlow [1] framework,
developed by Google for deep learning applications.
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6.5 Training Details

6.5.1 Synthetic Data Generation

A light propagation model, so-called the forward model, is used to predict the light flux
at detector locations on the surface of a medium from a given distribution of the optical
properties and fluorescent compounds inside the medium [50].

The general model for light propagation inside biological tissues is the radiative transfer
equation (RTE). However, owing to the complexity of solving the RTE, the diffusion
equation (DE) is ubiquitous in biomedical optics. The DE is a partial differential equation
(PDE) derived from the RTE using the diffusion approximation [164] which assumes that
the light field propagating in the medium is isotropic at each point.

Herein, the DE is used as the forward model. It is solved by finite differences that spa-
tially discretizes the light propagation equations. To obtain a training dataset, 50,000
measurements are simulated using different meshes varying from 1.5 mm to 2.0 mm in
steps of 0.05 mm (5,000 measurements for each grid size). Different mesh sizes are used in
order not to bias the dataset by a specific mesh size. Similarly, for the validation dataset,
5,000 measurements are simulated using mesh sizes from 1.0 mm to 1.5 mm (1,000 mea-
surements for each mesh size). One to 4 cylindrical inclusions with random diameters
varying from 2 mm to 6 mm are randomly located inside a numerical cylindrical phantom
with a diameter of 25 mm (same dimension as the real phantom used in the experimental
measurements). To promote a certain degree of robustness to translations during training,
the image dataset is translated randomly 1 to 2 pixels up, down, left, and right. Also,
Gaussian noise with a power of 1% to 10% of the generated signal is added to that signal
(corresponding to SNRs from 20 dB down to 10 dB). This is a typical range in optical
measurements. This added noise turns the model into a denoising model and promotes
noise robustness and convergence during training [75].
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6.5.2 Preprocessing Step - Scaling

Before feeding data to a neural network, a preprocessing step is necessary to scale the
data in the training dataset to the range (−1, 1). This is very important as no scaling can
lead to failure in convergence and learning. Such scaling is in fact a general requirement
when gradient-based optimizers are used. In diffuse optical imaging as considered here,
since the light intensity typically decays exponentially in media, simulated measurements
are first converted to a log scale. Then the mean is subtracted from the data and the
resulting data are divided by their maximum value. The same scaling is performed on the
fluorescence distribution map that is used as the ground-truth image for training.

6.5.3 Network Architecture

Fig. 6.2 depicts the architecture of the network implemented in this work. The network is
designed to operate on 2D transverse images (axial slices) of the object to be reconstructed,
each slice being of size 32× 32. All of the input images are resized to the same size before
being fed to the network, and the output images are also of this size (autoencoder networks
operate under such settings as mentioned previously).

The input is formatted so as to incorporate the shape of the medium along with the
detection locations of each measurement (detection locations are mapped in this 2D image,
see leftmost set of images sketched in Fig. 6.2). The input is a set of 2D images with several
channels. Each channel corresponds to a tomographic projection (set of measurements for
a given source position), and the number of channels is equal to the number of projections
for each slice. The representation of a given channel is a sparse 2D image with zero values
everywhere except at detection positions where it takes the value given by the detector.
The number of channels can be extended with other a priori information that one may
have about the medium such as optical properties (absorption and scattering), the shape
of the medium, and refractive index. Here an extra channel was added, consisting of the
shape of the medium at the slice considered. This extra channel informs the model about
boundary information, which is very important when the model is trained for a medium
with a different shape at each slice (here training is for a cylindrical medium, hence this
extra channel is the same for all slices, but for the sake of generality, this information is
nevertheless considered).

As shown in Fig. 6.2, the encoder is implemented as a convolutional neural network (CNN)
consisting of several convolutional layers. Several VAE architectures were implemented to
find the one best suited to our problem. The best performance for our dataset is obtained
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with the architecture proposed in [141] with small modifications. More precisely, the
encoder uses 7 convolutional layers each with batch normalization and a leaky rectified
linear unit as the activation function. In the decoder, 5 layers of deconvolution are used
along with a drop layer with drop coefficient 0.5 for regularization. The details of the filter
sizes and strides in the CVAE used here can be found in Tables 6.1 and 6.2.

Table 6.1 Architecture parameters of the encoder.
Filter size Stride Depth Output

Conv1 5× 5 2× 2 64 16× 16× 64
Conv2 3× 3 1× 1 64 16× 16× 64
Conv3 3× 3 1× 1 64 16× 16× 64
Conv4 3× 3 2× 2 128 8× 8× 128
Conv5 3× 3 1× 1 128 8× 8× 128
Conv6 1× 1 1× 1 64 8× 8× 64
Conv7 1× 1 2× 2 64 4× 4× 64

Table 6.2 Architecture parameters of decoder model.
Filter size Stride Depth Output

Deconv1 3× 3 1× 1 128 4× 4× 128
Deconv2 3× 3 2× 2 128 8× 8× 128
Deconv3 3× 3 2× 2 64 16× 16× 64
Deconv4 3× 3 2× 2 64 32× 32× 64
Deconv5 5× 5 1× 1 64 32× 32× 1

In the optimizing process, an ADAM [87] optimizer with minibatch size of 100, learning
rate 0.0002, and decay rate 0.98 is used. As it is mentioned before, the loss function is a
simple L2 norm of error between the reconstructed image and the ground-truth image. For
the regularization, drop layer with drop rate 0.5 is applied before the last convolutional
layer in both encoder and decoder networks as it shown in Fig. 6.2.

6.6 Results

6.6.1 Real Phantom Experiment

For the first experiment, our model is trained for an optical phantom with known absorp-
tion and scattering coefficients (µa and µ′s respectively) to reconstruct the fluorescence yield
(ηµfla ) from continuous-wave (CW) measurements. Training and validation datasets are
generated with a size of 50,000 and 5,000 samples respectively as mentioned in Sect. 6.5.1,
with the optical properties in Table 6.3.
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Table 6.3 Optical parameters of the real and numerical phantoms.
Real phantom Numerical phantom

µa (mm−1) 0.0231 0.015− 0.025
µ′s (mm−1) 1.57 1.0− 2.0

n 1.51 1.45− 1.55

Our group has developed a time-domain DOT scanner [110] that allows acquiring time-
domain optical measurement data at a plurality of positions around an object. Here, the
CW measurement at a given position is obtained by integrating the area under the TD
measurement thereat (this integral corresponds to the light energy contained in the TD
measurement).

The phantom used in this experiment (BiomimicTM solid optical phantom; µa = 0.0231 mm−1

and µ′s = 1.57 mm−1, height = 90 mm, diameter = 2.5 cm, INO, Québec City, QC, Canada)
is made of a material mimicking the optical properties of biological tissues. It has two
bores with diameters of 3 mm and 5 mm. These bores were filled with indocyanine green
(ICG) at a concentration of 10 µM. ICG is a fluorescence dye commonly used in medical
diagnostics [4].

The measurements are acquired around the phantom at different heights between 30 mm
and 70 mm at step of 2 mm along the phantom (20 slices in total). Twelve source locations
(projections) are used to illuminate the phantom at each height with an angle of 30◦

between each source location. Twelve detection locations collect the fluorescence signal
from 120◦ to 240◦ with respect to the illumination direction (transillumination regime) at
step of 10◦. The total number of measurements acquired is 20×12×12 which are mapped
to a dataset of 2D images with the size 20× 32× 32× 12.

To investigate the effect of sparse measurements on the proposed learning-based image
reconstruction algorithm, the model is trained with different projection numbers: 3, 6,
and 12 for each slice. The 3D reconstructed volume and 2D top view are displayed in
Figs. 6.3 and 6.4 respectively. As can be seen, the model can recover the fluorescence yield
distribution of ICG even with very sparse measurements provided by only 3 projections
for each slice. Note that the reconstruction in this example is not quantitative since
our scanner does not provide absolute calibrated measurements of light fluxes exiting
the medium (it is a time-domain scanner and it is not designed for this). Hence, the
fluorescence yield spatial distribution can be imaged with high accuracy, but its value
cannot be recovered quantitatively. However, when calibrated measurements are available,
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12 projections 6 projections 3 projections

Figure 6.3 3D view of the phantom used (left) and of the recon-
structed fluorescence yield distribution in the phantom for different
number of projections.

12 projections 6 projections 3 projections

Figure 6.4 Top view of reconstructed phantom for different numbers
of projections.
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as in the next example, then it is possible to recover a fluorescence yield image with good
quantitative accuracy.

6.6.2 Cylindrical Volume with Different Sizes

To evaluate the capability of the proposed algorithm to generalize for volumes with dif-
ferent sizes, the model is trained with synthetic data for two cylindrical volumes with
diameters of 25 mm and 50 mm, and then the algorithm is asked to reconstruct the
fluorescence yield distribution for a cylindrical volume with a diameter of 35 mm.

As before, training datasets and validation datasets with a size of 50,000 samples and
5,000 samples respectively are generated for each volume (25 mm and 50 mm) totaling
100,000 training samples and 10,000 validation samples. For the test dataset, a series of
measurements are generated from a cylindrical volume with a diameter of 35 mm. Two
inclusions are placed at different positions as depicted in Fig. 6.5 (top row).

The reconstructed results shown in Fig. 6.5 (bottom row) indicate that the proposed model
can recover the fluorescence distribution for a volume that is not considered in the training
data. This shows that learning-based image reconstruction algorithms can reconstruct the
fluorescent distribution for an unknown volume. This is impossible in model-based im-
age reconstruction, whereby the exact geometry of the volume to be reconstructed must
be provided beforehand to the algorithm. Furthermore, as the colorbar scale shows at
the right in Fig. 6.5, the fluorescence yield is reconstructed with good quantitative accu-
racy. This is possible, since in this case the measurements contained in test dataset are
quantitative by nature since they are synthetically generated through modeling. Quanti-
tative optical measurements are also possible experimentally with imaging scanners. This
requires calibrating the scanner in absoluted terms with light source standards.

6.7 Conclusion

In this paper, deep learning for FDOT image reconstruction was investigated. To the
best of the knowledge of the authors, this is the first time a learning model is used in
FDOT reconstruction. A deep generative model was proposed, which can learn an optimal
inversion function between measurement and image space. The proposed model is adapted
from the VAE model which is a well-known model for unsupervised learning and variational
inference. VAEs consist of encoder and decoder networks. The encoder network maps the
measurements from a high-dimensional space to a low-dimensional joint-manifold space.
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Figure 6.5 Reconstruction for a cylindrical volume with 35 mm diam-
eter. Top row shows 2D slices of the phantom for 5 different positions
of fluorescent inclusions. Bottom row shows the reconstructed corre-
sponding fluorescence yield maps.

By sampling from that space, the decoder can reconstruct an image. The model is first
trained with a bulk of dataset which can be synthetically generated from a forward model
(note that real data could also be used for that purpose). After training, it can reconstruct
a slice image in less than 1 second. In the present case, the training time was around
8 hours. The proposed model thus shows great potential and paves the way for real-time
diffuse optical tomographie imaging applications, which are not yet possible.

The proposed algorithm showed great robustness to noise and sparse measurements, which
is also not possible with current image reconstruction techniques. First, the model was
trained with synthetic data, and then was tested with experimental data. The recovered
image features were well localized even for very sparse measurements. In the second
experiment, the model’s performance is evaluated for a more general problem. In this
case, the model was trained for two different cylindrical volumes with different sizes.
Then it was asked to reconstruct a volume with an unknown size between the two training
volumes. This shows the capability of the model to generalize to objects of sizes other
than those used for training. Such a capability is not possible with current standard
image reconstruction techniques, whereby the geometry must be provided beforehand to
the reconstruction algorithm.

Deep learning models, such as the model proposed here, can be potentially extended to
other imaging modalities since the learned function is independent of the data acquisi-
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tion strategy. One limitation for learning algorithms is preparing a big dataset for each
medium with different sizes and shapes. In the medical imaging field, this limitation can
be compensated by developing precise forward models to simulate measurements made on
the medium during scanning to generate synthetic data for training deep learning models.
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6.8 APPENDIX

In the variational autoencoder a values of z is sampled to be likely produced x, and
computed p(x) just from those. A new function q(z|x) is approximated by encoder that
takes a value of x and produce a distribution over z values that are likely to produce x
(Fig. 6.6). The space of all z’s are under a low-dimensional space q(z) with the prior p(z).
Let’s start with calculating p(z|x) as below:

p(z|x) =
p(x|z)p(z)

p(x)
=
p(x, z)

p(x)
, (6.4)

where p(x) =
∫
p(x|z)p(z)dz is a marginal distribution and its computation is difficult

specially for high-dimensional space. In variational inference we compute p(z|x) by ap-
proximating it with another distribution q(z) which is a low-dimensional space. This
distribution is a tractable distribution such as Gaussian. It can be adjusted by tuning its
parameters such as µ and

∑
to be closed to the p(x|z). Therefore, it can be computed

and produced values that are likely to p(x|z). To make q(z) close to p(x|z), we minimize
the Kullback-Leibler divergence as below:

KL (q(z)||p(z|x)) = −
∑

q(z)log
p(z|x)

q(z)
. (6.5)

Figure 6.6 Graphical probabilistic representation of Variational Au-
toencoder: left) Variational Autoencoder right) conditional Varia-
tional Autoencoder.
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By replacing the p(z|x) from Eq. (6.4) and apply log properties,

KL (q(z)||p(z|x)) = −
∑

q(z)log

[
p(x, z)

q(z)
.

1

p(x)

]
= −

∑
q(z)

[
log

p(x, z)

q(z)
+ log

1

p(x)

]
= −

∑
q(z)

[
log

p(x, z)

q(z)
− log p(x)

]
= −

∑
q(z)log

p(x, z)

q(z)
+
∑

q(z)log p(x)

= −
∑

q(z)log
p(x, z)

q(z)
+ log p(x)

�
��

��*
1∑

q(z).

(6.6)

Let’s rewrite the Eq. (6.6), as below:

log p(x) = KL (q(z)||p(z|x)) +
∑

q(z)log
p(x, z)

q(z)
, (6.7)

where x is given and known and p(x) is a fixed scalar value. We want to minimize the KL
divergence (first term in right-hand). Therefore, we realize that minimizing KL divergence
is equal to maximizing the second right-hand term in Eq. (6.7) (we called it L). This term
is called variational lower bound. In variational inference we deal with this term and try
to maximize it. It’s called lower bound because of this fact that KL divergence is always
positive, so we can write Eq. (6.7) as below:

L =
∑

q(z)log
p(x, z)

q(z)
≤ log p(x), (6.8)
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where L is lower bound of log probability. If we maximize the lower bound, it is like
we maximize the log probability. Now, we rewrite variational lower bound as below by
replacing it from Eq. (6.4) and apply log properties,

L =
∑

q(z)log
p(x, z)

q(z)
=
∑

q(z)log
p(x|z)p(z)

q(z)

=
∑

q(z)

[
log p(x|z) + log

p(z)

q(z)

]
=
∑

q(z)log p(x|z) +
∑

q(z)log
p(z)

q(z)

=
∑

q(z)log p(x|z)−KL (q(z)||p(z)) .

(6.9)

The first term in the right-hand side of Eq. (6.9) is the expectation of log probability of
p(x|z) with respect to q(z). Then, we can rewrite Eq. (6.9) as below:

L = Eq(z)log p(x|z)−KL (q(z)||p(z)) . (6.10)

We want to maximize Eq. (6.10) in the variational autoencoder. In fact, we minimize the
minus of Eq. (6.10) during the training to optimize weights in the encoder and decoder
networks. The loss of conditional variational autoencoder can be calculated by easily
extending the Eq. (6.10) to its conditional version (Fig. 6.6) as follow:

L = Eq(z|x,y)log p(y|z, x)−KL (q(z|x, y)||p(z|x)) . (6.11)

When the noise is added to the input (x− > x′), we can arrive to the formulation in
Eq. (6.3) By combining the Eq. (6.10) and denoising formulations [75] as follow:

LCV AE(φ, θ;x′, y) = LMSE + Lprior, (6.12)
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where

LMSE = −Ep(x′|x)Eq(z|x′,y)[log pθ(y|z, x)],

Lprior = Ep(x′|x)[DKL(q̂φ(z|x′, y)||p(z|x))],

q̂φ(z|x′, y) = Ep(x′|x)[qφ(z|x′, y)].

(6.13)
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CHAPTER 7

DISCUSSION AND CONCLUSION

Prior to this thesis, a time-domain optical scanner was developed in our group for small
animal optical imaging. The main purpose of this work was to develop practical image
reconstruction algorithms to be integrated with this scanner. Two main approaches were
considered, iterative model-based and machine learning-based image reconstruction algo-
rithms. In this chapter, gained insights and an appreciation of these approaches will be
discussed. Future work to improve the performance of the proposed algorithms will be
suggested.

7.1 Thesis review

7.1.1 Iterative model-based algorithms

Diffuse optical tomographic image reconstruction is a difficult problem to solve owing to
its ill-posedness and nonlinearity. Iterative model-based image reconstruction methods
are one way to solve this problem. In these algorithms a fitting model is defined to find
optimal parameters iteratively. These algorithms consist of two problems that need to
be solved at each iteration. First, the forward problem must be solved to simulate the
physical interaction of light inside the medium with provided optical properties. The
output of the forward problem is a set of predicted optical measurements on the surface of
the medium. Secondly, the inverse problem needs be solved to update optical properties
of medium in order to decrease the discrepancy between the experimental measurements
and their prediction by the forward model. For this an objective function is defined, and
then an optimization algorithm minimizes the objective function along a descent direction.
Depending on the optimization algorithm, the descent direction can be calculated from
the gradient/Hessian of the objective function. The output of the inverse problem at a
given iteration are the updated optical properties to be used in the forward problem at the
next iteration. This process is repeated until the objective function reaches a minimum
determined via certain criteria. The final distribution of optical properties is displayed as
an image.
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Since our optical scanner can acquire time-domain information, it is possible to to use
all optical data types (time-domain - TD, frequency-domain - FD, and continuous-wave
- CW). In this project, continuous-wave information (sum values of TPSF curves) and
full-curve information are used. Two forward models are developed to simulate the light
propagation in the medium based on the CW and TD diffusion approximation. In both
light propagation models, finite-differences are used to discretize the problem spatially
and temporally. For minimizing the objective function, 4 different optimization methods
are implemented, one from quasi-Newton optimization methods (L-BFGS algorithm) and
3 from Newton’s optimization methods (TNC, LM, and GN algorithms). To investigate
the performance of each algorithm, all of them were applied to a CW multispectral DOT
problem. The optimization methods were sorted based on their implementation require-
ments into 2 main groups: gradient-based and Jacobian-based. In the gradient-based
group (including L-BFGS and TNC), the gradient of the objective function is calculated
with respect to the optical concentrations by extending the objective function to a La-
grange function (adjoint method). In the Jacobian-based group (including LM and GN),
the Jacobian matrix of the objective function is calculated with respect to the optical con-
centrations (reciprocal theory). In the Jacobian-based group, Newton’s equation which
is very large needs be solved using an iterative solver. A Jacobian-free Newton-Krylov
(JFNK) solver is selected. This iterative solver is very efficient for large problems such as
the multispectral DOT reconstruction problem.

A full-curve TPSF reconstruction algorithm is developed for image reconstruction from TD
measurements. Since each time step in TPSF curves is used in the image reconstruction
process, this makes the reconstruction process computationally very demanding. In this
work, a combined CW/TD model-based image reconstruction paradigm is proposed for
fluorescence lifetime - FLT - tomography, making it less computationally expensive. Since
in the reconstruction process the value of the TPSF at each time bin is used, noise can
greatly affect the quality of the computation of the gradient. This can lead to failure
of the minimization process. To suppress the noise, a filter is applied on the TPSFs to
smooth out the fluctuations. Then the smoothed TPSFs are normalized to their energies.
For real measurements, this normalization can eliminate experimental factors such as
the hard to calibrate optical efficiency of the detection channels. In the reconstruction
algorithm developed, first, a CW objective function is defined and minimized with an
L-BFGS algorithm to recover the fluorescence yield map. The output of this step is
thresholded and fed as a mask to a full-curve image reconstruction algorithm for FLT
reconstruction. Using a mask and solving the inverse problem for the nodes inside the mask
accelerates the image reconstruction process. Reconstruction of fluorescence yield with the
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CW information and FLT with TD information makes the whole process much shorter,
while the whole information of the TPSF curves is extracted and efficiently exploited in
regions of interest.

To validate the FLT image reconstruction algorithm, two numerical experiments were
performed. Since full-curve information is used in the reconstruction process, it has the
potential to reconstruct several FLTs. The results show that 4 FLT inclusions with differ-
ent FLTs can be localized and quantified even when the distance between them is small.
To evaluate the algorithm for a realistic or complex geometry, a numerical mouse phan-
tom is used. Three different lifetimes were seated in the heart, lung, and liver of the
mouse phantom. The reconstructed images displayed sharp edges, allowing to distinguish
different organs with high contrast. The whole reconstruction time was about 8 hours
for the mouse phantom, which is a reasonable time for time-domain small animal image
reconstruction.

As a conclusion, some of the advantages and limitations of iterative model-based algo-
rithms for (F)DOT are the following:

— Advantages:
— A general technique which allows reconstructing any arbitrary medium based

on solid physical and mathematical principles.
— Limitations:

— Leads to time consuming algorithms.
— Requires precise geometrical information about the medium.
— Requires providing an initial map to start the optimization algorithm.

7.1.2 Machine learning-based algorithm

An (F)DOT image reconstruction algorithm based on machine learning techniques was
proposed as an alternative to iterative model-based algorithms. Among all machine learn-
ing techniques, deep learning approaches have drawn a lot of attention in the last few
years with their ability to efficiently solve highly complex problems. Deep learning models
are able to model highly nonlinear processes through deeper architectures. An interest-
ing model in the deep learning for image reconstruction is the generative model, which is
applied successfully for image generation in several applications. In this work, the per-
formance of deep generative models for FDOT image reconstruction has been evaluated.
The deep generative model can learn an optimal inversion function between measurement
and image space. The proposed model is adapted from the variational autoencoder -
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VAE - model which is a well-known model for unsupervised learning and variational in-
ference. VAEs consist of encoder and decoder networks. The encoder network maps the
measurements from a high-dimensional space to a low-dimensional joint-manifold space.
By sampling from that space, the decoder can reconstruct an image. The model is first
trained with a bulk of data which was here synthetically generated from a forward model
(note that real data could also be used for that purpose). After training, it can recon-
struct a slice image in less than 1 second. In the present case, the training time was
around 8 hours. Hence, once trained, the proposed model shows great potential and paves
the way for real-time diffuse optical tomographie imaging applications, which are not yet
possible.

The proposed algorithm showed great robustness to noise and sparse measurements, which
is also not possible with current image reconstruction techniques. First, the model was
trained with synthetic data, and then was tested with experimental data. The recovered
image features were well localized even for very sparse measurements. In the second
experiment, the model’s performance was evaluated for a more general problem. In this
case, the model was trained for two different cylindrical volumes with different sizes.
Then it was asked to reconstruct a volume with an unknown size between the two training
volumes. This shows the capability of the model to generalize to objects of sizes other
than those used for training. Such a capability is not possible with current standard image
reconstruction techniques, whereby the geometry must be beforehand to the reconstruction
algorithm.

Deep learning models, such as the model proposed here, can be potentially extended to
other imaging modalities since the learned function is independent of the data acquisi-
tion strategy. One limitation for learning algorithms is preparing a big dataset for each
medium with different sizes and shapes. In the medical imaging field, this limitation can
be compensated by developing precise forward models to simulate measurements made on
the medium during scanning to generate synthetic data for training deep learning models.

As a conclusion, some of the advantages and limitations of machine learning techniques
for (F)DOT image reconstruction are the following:

— Advantages:
— Fast reconstructing of a whole 3D volume (suitable for real-time tomography).
— High robustness against noisy measurement.
— Ability to deal with sparse measurements.
— Geometry information is not a necessity here.
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— Limitations:
— Requires lots of data and measurements for training.
— Requires a broad range of data. A low-biased and high-variance dataset should

be generated synthetically to improve the model generalization.

7.2 Thesis contributions

7.2.1 Iterative model-based algorithms

A CW model-based image reconstruction algorithm was developed for 3D multispectral
DOT imaging. Several optimization algorithms, including Newton and quasi-Newton
methods, were implemented. These algorithms were evaluated and compared for sev-
eral conditions that differ in terms of the scale of the problem, the starting point (initial
guess) and noise level. The performance of each implemented optimization algorithm was
evaluated for a large problem such as a CW multispectral DOT problem. To the best of
the author’s knowledge, this is the first time such a vast range of techniques are applied
to a CW multispectral DOT problem.

A TD FLT image reconstruction was developed for localizing and quantifying several dif-
ferent FLTs simultaneously, allowing to discriminate between fluorophores that may have
similar emission spectra, but different FLTs. This is a main reason why FLT tomography
is of high interest. Full-curve TPSF information has never been used for a large 3D big
volume such as a mouse for FLT imaging because of the computational costs imposed by
handling whole TPSF curves during iterative image reconstruction. The proposed algo-
rithm here accelerates the reconstruction process to a reasonable time for reconstructing
a mouse-size phantom. This makes the algorithm suitable for practical applications.

7.2.2 Machine learning-based algorithms

A novel machine learning-based image reconstruction algorithm was proposed for fluo-
rescence optical tomography. It was the first time that these algorithms were applied in
FDOT. Moreover, the algorithm developed here could easily be modified and adapted to
other imaging modalities, such as nuclear medicine, since a low-dimensional joint distri-
bution between the sensor domain and image domain can be learned, independent from
the data acquiring strategy.
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7.3 Future work

Several suggestions are proposed here to improve the performance of (F)DOT image re-
construction algorithms. Firstly, some suggestions are proposed to improve techniques
used in (F)DOT image reconstruction algorithms. Secondly, suggestions are provided to
improve the implementation of (F)DOT image reconstruction algorithms.

Technique

— Using multi-grid meshing techniques in the CW forward model to improve the
precision of predicted light fields on the boundary of the medium, while keeping
the computation time intact.

— Accelerating TD forward model by replacing Crank-Nicolson methods with other
methods such as alternating direction implicit (ADI) method.

— Modifying the objective function from an L2 to another form such as L1, Lp (0 <

p < 1) for FLT to enhance image sparsity.
— Modifying the loss function of deep generative model to enhance the quality of

reconstructed image.
— Applying deep generative model in other areas of optical imaging such as intrinsic,

multispectral, and bioluminescence imaging,
— Modifying the architecture of the deep generative model for other type of optical

measurements such as time-domain and frequency-domain,
— Extending 2D-CNN architecture to a 3D-CNN to generate whole 3D image in one

stage.

Implementation

— Using CUDA libraries for linear algebra computation to accelerate the processing
time.

— Extend the deep generative model to a distributed platform to accelerate the train-
ing time.

— Extend the deep generative model to a distributed platform to be able to implement
3D-CNN architectures.
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