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Abstract

Many biodemographic studies use biomarkers of inflammation to understand or predict chronic disease and
aging. Inflamm-aging, i.e. chronic low-grade inflammation during aging, is commonly characterized by pro-
inflammatory biomarkers. However, most studies use just one marker at a time, sometimes leading to
conflicting results due to complex interactions among the markers. A multidimensional approach allows a more
robust interpretation of the various relationships between the markers. We applied principal components
analysis (PCA) to 19 inflammatory biomarkers from the INCHIANTI study. We identified a clear, stable structure
among the markers, with the first axis explaining inflammatory activation (both pro- and anti-inflammatory
markers loaded strongly and positively) and the second axis innate immune response. The first but not the
second axis was strongly correlated with age (r=0.56, p<0.0001, r=0.08 p>0.05), and both were strongly
predictive of mortality (hazard ratios (95% Cl): 1.33 (1.16-1.53) and 0.87 (0.76-0.98) respectively) and multiple
chronic diseases, but in opposite directions. Both axes were more predictive than any individual markers for
baseline chronic diseases and mortality. These results show that PCA is able to uncover a novel biological
structure in the relationships among inflammatory markers, and that the key axes of this structure play

important roles in chronic disease.

Highlights

P The main axis of variation indicates a more activated (but not necessarily more inflamed) system.

P A second key axis, undescribed until now, describes innate immune activation.

» Multivariate analyses provide a better understanding of changes in inflammation among the elderly.
» The main axis has biological impacts on chronic diseases and mortality.

P Key axes of variation in inflammatory markers are associated with health outcomes independently of age.

Abbreviations

PCA, Principle component analysis; PCA1, First principal axis; PCA2, Second principal axis; OR, Odds ratio; HR,
Hazard ratio; AIC, Akaike information criterion; hsCRP, High sensitivity C-reactive protein; IFN-y, Interferon- ¥;
IL, Interleukin; MCP, Monocyte chemoattractant protein-1; MIP, Macrophage inflammatory protein-1b;
SGP130, Soluble glycoprotein 130; TNF-a, Tumor necrosis factor-alpha; STNF-R, Soluble TNF receptor; TGF,

Transforming growth factor; TRAIL, TNF-related apoptosis-inducing ligand
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Inflammation; Biomarker; Multivariate; Aging; Chronic disease
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1. Introduction

Inflammation is known to be important in aging and age-related diseases, including heart disease (Strandberg&
Tilvis, 2000), diabetes (Barzilay et al., 2001), cancer (ll'yasova et al., 2005), and Alzheimer’s disease (Akiyama et
al., 2000), among others, and is sometimes suggested as a principal aging mechanism (Finch, 2010). We often
refer to this phenomenon as “inflamm-aging” (Franceschi et al., 2000) to indicate a chronic low-grade
inflammation that occurs with advancing age. It is provoked by a continuous antigenic load and stress, with the
persistence of inflammatory stimuli over time representing a biological background creating a predisposition to
age-related diseases/ disabilities. Most epidemiological studies of inflammation have relied on a single marker
as a measure of inflammatory state, often C-reactive protein (CRP) (Strandberg& Tilvis, 2000), interleukin-6 (IL-
6) (Bruunsgaard, 2002), or tumor necrosis factor-alpha (TNF-a) (Bruunsgaard et al., 1999). However, as the
inflammatory system is known to be complex and involve multiple feedback mechanisms, focusing on only one
inflammatory marker may explain conflicting results observed in the literature (Scheller, Chalaris, Schmidt-
Arras, & Rose-John, 2011; Yudkin, Kumari, Humphries, & Mohamed-Ali, 2000). In one of the few studies to take
a multivariate approach, Bandeen-Roche et al. (Bandeen-Roche, Walston, Huang, Semba, & Ferrucci, 2009)
showed that a single axis of variation was not sufficient to summarize seven common markers, and that there
appear to be separate up- and down-regulation components to the system (i.e. a simultaneous increases or
decreases of multiple biomarkers to regulate the system at a higher or lower levels of activity). Accordingly,

multivariate approaches can contradict the need to incorporate multiple markers.

While many of the direct regulatory relationships among inflammatory markers are known (Cesari et al., 2004;
Hansson, 2005; Singh& Newman, 2011; Tracy, 2002), this information cannot always be translated into an
understanding of how markers co-vary in populations or across long timescales, and thus of how to interpret
different inflammatory profiles in a clinical or public health context. An understanding of the multivariate
relationships among inflammatory markers thus has the potential to provide clinically relevant interpretations
of changing inflammatory markers, and to help understand the underlying (unobservable) biological processes
that govern organisation of the inflammatory system at longer timescales. Our goal was to identify stable
groups of key inflammatory markers through multivariate tools that provide a better understanding of changes

in inflammation system during aging.

Here, we applied principal components analysis (PCA) to a set of 19 inflammatory biomarkers in INnCHIANTI
database, a cohort of mostly elderly Italians (Ferrucci et al., 2000). PCA identifies key “axes” that summarize
the ways in which individuals differ across the ensemble of variables (Jolliffe, 2005). The axes are expressed as

linear combinations of the original variables and the coefficients can thus be used to arrive at a biological
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interpretation of each axis. PCA is a multivariate, data-driven approach that lets the data speak for themselves;
a related method, factor analysis, tests the correspondence between the axes and a priori hypotheses. We
opted for PCA in this case because we were not certain that there was a sufficient understanding of
inflammatory system function and feedback mechanisms at time scales of years to generate robust a priori
hypotheses. Axes identified through PCA were validated using population subsets as independent samples, and
scores on these axes were then tested for associations with health outcomes, including mortality, and 13
chronic diseases (Cohen et al.,, 2010; Dusseault-Belanger, Cohen, Hivert, Courteau, & Vanasse, 2013). Our
results do not support simple increases in inflammation with age, but it is possible to identify key axes of

variation in inflammatory markers that predict health outcomes independently of age.

2. Methods

2.1 Data

This study uses data from “Invecchiare in Chianti” (Aging in the Chianti area, InCHIANTI), a prospective
population-based study of the elderly, developed by the Laboratory of Clinical Epidemiology of the Council of
Italian National Research on Aging (INRCA), Florence, Italy. The study population for these analyses included
1453 participants aged between 20 and 102 years old, of which 75% were aged 65 and over, randomly selected
from residents in two towns in the Chianti area (Greve in Chianti and Bagno a Ripoli, Tuscany, Italy) using a
multi-level stratified sampling method. Initial data collection started in September 1998 and was completed in
March 2000. Three and 6-year follow-up assessments of the INCHIANTI study population were performed in the
years 2001-2003 and 2004-2006. A detailed description of the sampling procedure and the method of data
collection have been published elsewhere (Ferrucci et al., 2000). The ethics committee (INRCA) approved the
entire study protocol. For PCA, logistic regression and survival analysis, we used 1010 participants aged 21-96
having full biomarker data at baseline. Only the first visit was used for PCA and logistic regression, due to
limited inflammatory biomarker data at later visits. Participants with biomarker or comorbidity measurements

that were missing were excluded.

2.2 Biomarkers

We studied 19 inflammatory biomarkers selected based on their availability and relevance. Details of the
methods of measurement of these biomarkers can be found in previous studies (Bandeen-Roche et al., 2009;
Cesari et al., 2004; Ferrucci et al., 2000; Varadhan et al., 2014). Included inflammatory markers are as follows:

Among the cytokines, Interleukin (IL)-1B, which causes a number of different auto-inflammatory syndromes; IL-
4
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1RA, which is a member of the IL-1 family that binds to IL-1 receptors but does not induce any intracellular
response; IL-6, which could act as pro and anti-inflammatory cytokine; IL-8, which is a chemokine; IL-10, which
is anti-inflammatory and inhibits the synthesis of IFN-¥ and TNF-a; IL-12 and IL-18, which are pro-inflammatory;

and IL-15, which is derived from T cells and stimulates proliferation of natural killer cell activation.

The receptors selected for our analyses were: SGP130, which prevents IL-6 from binding to the membrane
receptor, and soluble (s)IL-6R, which forms a ligand—receptor complex with IL-6 that is capable of stimulating a
variety of cellular responses. Interferon IFN-y is critical for innate and adaptive immunity. We also measured
transforming growth factor TGF-B1, tumor necrosis factors TNF-a, and TRAIL. Two of their receptors, STNF-RI

and STNF-RII, were also included.

We had data on two chemokines MCP and MIP, the latter of which induces the production of IL-6 and TNF-a. In
addition, we used high sensitivity C-reactive protein (hsCRP), which is a clinical marker of systemic

inflammatory state. The main characteristics of the participants and the markers used are shown in Table 1.

2.3 Comorbidities

We selected 13 chronic conditions based on sufficient prevalence for meaningful analysis. Each was assessed at
baseline and at follow-up visits. The conditions are: high blood pressure, lung, kidney, liver and cardiovascular
disease, stroke, angina, congestive heart failure, diabetes, arthritis, cancer, myocardial infarction and
Parkinson. Detailed data were available from which to evaluate the presence or absence of chronic diseases;
when possible we coded each patient as 0 (no disease), 1 (having the disease), or 0.5 (ambiguous). Details are
available in the online supplement. We excluded the participants with an intermediate state to facilitate model
interpretation; alternative models counting them as positive or negative did not meaningfully change results
(data not shown). From the 13 comorbidities we created a new variable named “comorbidity” which has a
value of 1 if an individual has one or more of the 13 diseases mentioned above and 0 otherwise. Information
on prevalence of the comorbidities is shown in Table 1. Percentages for the comorbidities represent the
proportion of individuals that had the chronic disease at baseline (with the exception of mortality) or

developed it in one of the follow-ups, for a total of 2785 visits with 1010 individuals.



Table 1

Main Characteristics of the Sample Population

1
2
5
4
B6
6
7
8

Mean + SD or %

o (N = 1010)
10 Sociodemographic characteristics
11 Age (year) 67.7 £ 16
ig Gender (female) 57.6
14 Site (Greve) 41.9
15
16 Comorbidities %
i; Mortality 14.1
19 Comorbidity® 30.1
gg Cardiovascular disease 12.0
22 Congestive heart failure 2.91
23 Stroke 2.48
;g Kidney disease 2.05
26 Diabetes 5.24
27 Liver disease 1.90
gg Arthritis 7.94
30 Cancer 1.83
31 High blood pressure 215
gg Myocardial infarction 3.52
34 Angina 2.01
gg Lung disease 5.92
37 Parkinson 1.00

3B17 Note: SD=Standard deviation; “Any of the comorbid conditions that follow.
39

448

449  Table 2

42

430 Main Characteristics of the Inflammatory Markers
44

45 Mean * SD A lation®
jg (N - 1010) ge corre ation
48 Inflammatory markers

49 hsCRP (pg/ml) 4.32 +6.65 0.15%*

>0 IFN-¥ (pg/ml) 23.14+267.83  0.01

52 IL-1B (pg/ml) 0.28 +1.33 0.02

53 IL-1RA (pg/ml) 147.72 +101.12  0.07*

gg IL-6 (pg/ml) 3.25+2.33 0.31%*

56 sIL-6R (ng/ml) 104.74+58.71  0.04

g; IL-8 (pg/ml) 11.06 £+ 147.93  0.02

59 IL-10 (pg/ml) 90.59 + 355.44  -0.13**

60 IL-12 (pg/ml) 14.05+166.36  0.01

61

63 :

64

65
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IL-15 (pg/ml) 2.50 + 0.59 0.19%*
IL-18 (pg/ml) 383.60 + 140.54 0.21**
MCP (pg/ml) 53.11+328.30 0.02
MIP (pg/ml) 88.63 +159.07  0.09*

SGP130 (ng/ml) 305.32+60.40 0.25**
STNF-RI (pg/ml)  1375.8 £643.05 0.48**
STNF-RIl (pg/ml)  2620+779.97  0.51%**
TGF-B1 (pg/ml) 12063 +7342.67 0.02
TNF-a (pg/ml) 6.35+46.19 0.02
TRAIL (pg/ml) 75.5+40.59  0.01

Note:*=Pearson’s correlation with age at baseline; SD=Standard deviation; hsCRP=High sensitivity C-reactive protein; IFN-
v=Interferon-y; IL=Interleukin; IL-1RA=Interleukin-1 receptor antagonist; sIL-6R=Soluble IL-6 receptor; MCP=Monocyte
chemoattractant protein-1; MIP=Macrophage inflammatory protein-1b; SGP130=Soluble glycoprotein 130; STNF-
R=Soluble TNF receptor; TGF=Transforming growth factor; TNF-a= Tumor necrosis factor-alpha; TRAIL=TNF-related

apoptosis-inducing ligand; *p<0.05; **p<0.01.

2.4 Statistical Analyses

We first transformed our data to meet the assumption of normality needed for the PCA. We used a logarithmic
transformation for all variables except SGP130 and TNF-a, which were already normally distributed.
Subsequently, variables were standardized by subtracting their mean and dividing by their standard deviation.
Thereafter, we performed a PCA on the 19 biomarkers. The stability of each of the axes under random
sampling was then tested using bootstrap methods based on Daudin's algorithm (Daudin, Duby, & Trecourt,
1988). This method produces random samples of the same size where each individual can be selected more
than once in the same sample. From the original database, we thus synthesized 5000 other databases and
performed a PCA on each of them. This allowed us to construct confidence intervals and to verify the variation
of the components in each axis as well as the proportion of variance explained. In addition, a similar approach
using non-random sampling was performed to determine whether axis stability and interpretation were
conserved even across mutually exclusive and potentially biologically different sub-populations. The groups
used for this included men, women, residents of Greve in Chianti or Bango a Ripoli, and age groups (<65, 65+

years).

For the two axes found to be stable, we computed a "score" for each individual. This "score" represents the
position of an individual on the principal axis. We then assessed the correlation between participant age and
score on each of these two main axes. These scores were then divided by their respective standard deviations
so that they would have the same scales (and thus comparable effect sizes) as individual markers in regression

analyses (below).
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Relationships between PCA scores and baseline comorbidities were assessed using logistic regression
controlling for age as a cubic spline. Splines were fit using the bs function in the fda package in R. The same
model was fit for individuals who died before the first follow-up to assess mortality. Odds ratios (ORs) were
then estimated for the scores of the two main axes. Models were also assessed with stratified sex. We did not
include additional covariates (e.g. BMI, smoking habit, education) because they are likely to be upstream from
physiological variables in causal pathways and there is a substantial risk of eliminating the variance of interest

with control.

Using longitudinal data on chronic diseases and excluding individuals with the respective baseline chronic
disease, we fitted a survival analysis using a Cox proportional hazard function controlling for age as a cubic
spline. Due to limited inflammatory biomarker data at later visits, only the baseline scores of the two main axes
were included in the models. The survival models indicated whether a high baseline score increases or reduces

the likelihood of incidence. Hazard ratios (HRs) per unit score were estimated and can be interpreted as above.

3. Results

3.1 Principal component analysis

We performed PCA on 19 inflammatory biomarkers transformed and standardized on 1010 individuals aged 21-
96 years. The first principal axis (PCA1) explained 19% of the total variance among the inflammatory markers
and the second (PCA2) explained 10% for a cumulative of 29% (Figure 1). Only the first two axes were stable

across 5000 random (bootstrapped) samples.
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Figure 1: Boxplot of variance explained for each of the 19 axes using 5000 random samples from the bootstrap.

The first two axes (PCA1 and PCA2) are presented separately to allow appropriate y-axis scaling.

Using these 5000 iterations, we calculated the correlation between the original scores and those created by the

bootstrap samples. A strong correlation for the same axis across bootstrap samples would indicate that the axis

interpretation is robust to fluctuation in sample composition. The correlation varies between 99% and 99.99%

for PCA1 and varies between 91% and 99.99% for PCA2 with a 95% confidence (Figure 2).
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Figure 2: Boxplot of correlations between the original scores and those created by the 5000 random samples

from the bootstrap for each of the 19 axes.

Starting with the 3" axis, axis order is occasionally inversed in bootstrap samples, leading to very low
correlations, but even among the non-inversed samples it is clear that the correlations are much weaker than

for the first two axes, which need to be shown with a separate y-axis scale to indicate variation.

The stability of the main axis loadings across non-random samples is shown in Figure 3. The order and

importance of the axis loadings is essentially unchanged even in mutually exclusive subsamples.

100 100

B IL-1B . B TNF-o
B TGF-B1 B siL-6R
B TRAL = L-1B
= |L-10 | B TGF-B1
B FN-G 80 — o IL-15
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£ |12 £ -- w18
=3 B SGP130 =3 — B SGP130
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Figure 3: Strength and stability of axis loadings for PCA1 (left) and PCA2 (right) across non-random, often
mutually exclusive population subsamples (the entire population, women, men, those from Greve in Chianti,
those from Bagno a Ripoli, those aged less than 65, those aged more than 65). Here, each color represents one

of the 19 markers, ordered from bottom to top by their importance in the full population analysis, represented

by the height of the color.

A particular group of markers comprising: STNF-RI, STNF-RII, IL6, TNF-a, hsCRP, IL-18, IL1-RA appears to be
dissociated from all others, as graphically represented PCA1 (Figure 4). A similar observation was made for
MCP, IL-8 and IL-12 on PCA2 (Figure 4). Since each group is the most representative in its respective axis, they
drive the interpretation of the axes, though the markers explaining PCA2 also loaded moderately on PCAL.
Note that the markers that load most heavily on PCA1 include both pro- and anti-inflammatory markers, and
that they load in the same direction. In other words, PCA1 explains the degree to which an individual has

simultaneously high (or low) levels of both pro- and anti-inflammatory markers.

10
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markers, red names are pro-inflammatory, blue names are part of the innate immune system and black names

Based on key markers that compose the two stable groups, we conducted a PCA and assessed the scores for
participants for the first two axes. PCA1 showed a relatively strong correlation with age (r=0.56, p <0.0001,
Figure 5-left), whereas PCA2 showed no significant association with age (Figure 5-right). Note that hsCRP, IL-
1RA, IL-6, IL-10, IL-15, IL-18, MIP, SGP130, STNF-RI, and STNF-RIl were significantly correlated with age (Table

1), but by incorporating the correlation structure of the PCA, we obtain a higher correlation than any measure

11
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Figure 5: Correlations between age and the standardized scores for PCA1 (left), PCA2 (right). Blue lines indicated
cubic spline fits

3.2 Logistic regression models

We used logistic regression to calculate the ORs of the 13 comorbidities and mortality for scores after adjusting
for age. The ORs and respective 95% confidence intervals are shown in Table 2. Note that ORs are per unit PCA;
the scale of PCA1 (after being standardized for comparison purposes) goes from roughly -3 to +3, so the OR
between the individual with the lowest score and the highest score is the OR to the sixth power, 2.34° = 164 for
mortality, for example. ORs for key individual markers associated with the main axes were also included in the
table for comparison. As expected from the unchanged order and importance of the axis loadings between
genders, no significant differences were observed between men and women in the logistic models (data

available in the supplementary content).

3.3 Survival analysis

From the scores assessed at baseline with PCA, we used a survival analysis to assess the long-term effect of a
high or low score on the two main axes for the 13 comorbidities and mortality after adjusting for age. The
hazard ratios (HRs) and 95% confidence intervals are shown in Table 3. Stratification by sex did not

meaningfully change the results (data available in the supplementary content).

12
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Table 3

Results from the logistic regressions for baseline comorbidities

Joint Model Separate models

OR (95% Cl) OR (95% Cl) OR
Comorbidity conditions n

PCA1® PCA2® STNF-RI IL-6 hsCRP TNF-a IL-12 IL8 MCP
Mortality 135 2.34** (1.72-3.25) 0.63**(0.48-0.82) 2.00**  1.98** 1.98** - - - -
Comorbidity 686 1.50** (1.23-1.84) 0.78**(0.66-0.90) 1.33**  1.32%* 128%* - - - -
Cardiovascular disease 184 1.57**(1.26-1.96) 0.69**(0.57-0.83) 1.43** 1.52** 1.26** 1.23* - 0.83* -
Congestive heart failure 48  2.02** (1.42-2.91) 0.43**(0.30-0.61) 1.90** 1.75** 1.41* 1.35%* - - 0.64*
Stroke 46  2.05**(1.49-2.86) 0.74*(0.55-0.98) 1.88** - 1.69** 1.28* - - -
Kidney disease 26  2.84**(1.41-5.81) 0.79(0.40-1.37) 2.49%* 2.36*% - 1.88* - - -
Diabetes 112 1.61**(1.28-2.04) 0.95(0.79-1.15)  1.25* 1.42%* 1.17* - - - 1.22%
Liver disease 41  1.28(0.88-1.85) 0.66*(0.47-0.90) 1.62* - - - - - 0.62*
Arthritis 91  1.04(0.80-1.36) 0.74*(0.58-0.93) - - - - - 0.77*% -
Cancer 16  1.68’(0.97-2.83) 0.82(0.50-1.32) - - - - - - -
High blood pressure 422 1.11(0.94-1.29) 0.94(0.83-1.07) - - - - - - -
Myocardial Infarction 31 1.15(0.74-1.75) 0.96(0.66-1.38) - - - - - - -
Angina 43 1.32(0.92-1.87) 0.87(0.79-1.18) - - - - - - -
Lung disease 130 1.16(0.93-1.45) 0.87(0.72-1.05) - 1.44** 1.36** - - -
Parkinson 9  0.69(0.28-1.54) 0.52(0.22-1.09) - - - - - - -

Note:® Scores of the PCA1 adjusted for age; ®Scores of the PCA2 adjusted for age; OR=0dds ratio; Cl=Confidence intervals; ‘p<0.10; *p<0.05; **p<0.01. The joint model

included both PCA1 and PCA2 as simultaneous predictors of chronic diseases, controlling for age. Each inflammatory marker was modeled separately for its effect on

each chronic disease controlling for age.
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Table 4

Results from the survival analysis for comorbidities

co~NoRApPOR
w

Joint Model Separate models

HR (95% CI) HR (95% Cl) HR
10 Comorbidity conditions n
11 PCA1® PCA2” STNF-RI IL-6 hsCRP TNF-a IL-12 IL8 MCP
12 Mortality 257 1.33**(1.16-1.53) 0.87%(0.76-0.98) 1.30**  1.28%* 1.21** - - - -
1451 Comorbidity 153 1.23*(1.03-1.49) 0.87°(0.74-1.02) - - 1.33*%* - - - -
is Cardiovascular disease 151 1.10(0.92-1.32) 1.04(0.89-1.22) - 1.32** 1.35** 0.81* - - -
18 Congestive heart failure 33  1.16(0.78-1.73) 0.85(0.59-1.22) - 1.53*  1.47* - - - -
%g Stroke 23 1.26(0.80-1.99) 0.99(0.68-1.47) - 1.63* - - - - -
52 Kidney disease 31  1.74*%(1.16-2.61) 1.14(0.81-1.62) 2.76** - - - - - 1.54%
25 Diabetes 34 1.26(0.86-1.86)  1.07(0.78-1.49) - - - - - -
gg Liver disease 12 0.72(0.35-1.49)  0.57(0.29-1.12) - - - - - - -
27 Arthritis 130 1.09(0.88-1.34)  0.95(0.81-1.13) - - - - - - -
38 Cancer 35 0.90(0.61-1.34)  1.24(0.90-1.69) - - - - - - -
gg High blood pressure 178 1.25%(1.05-1.49) 0.86*(0.75-0.99) - - 1.19*% - - - -
gg Myocardial Infarction 67  0.74*(0.55-0.99)  1.08(0.85-1.36)  0.71* - - 0.77% - - -
34 Angina 13 0.88(0.46-1.68)  1.89*(1.06-3.36) - - - - - - -
22 Lung disease 35 1.24(0.86-1.81) 1.09(0.80-1.48) - 1.53* - 1.58* - - -
37

Parkinson 19  0.84(0.48-1.45) 0.84(0.52-1.36)

38
%64 Note: ® Scores of the first axis adjusted for age; ®Scores of the second axis adjusted for age; HR=Hazard ratio; Cl=Confidence intervals; ‘p<0.10; *p<0.05; **p<0.01. The
4065 joint model included both PCA1 and PCA2 as simultaneous predictors of chronic diseases, controlling for age. Each inflammatory marker was modeled separately for

42
4256 its effect on each chronic disease controlling for age.
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4. Discussion

The present study used a multivariate approach to assess the relationship between inflammatory markers, age,
chronic diseases, and mortality in an elderly population. A traditional understanding of “Inflamm-aging”
suggests that low-grade inflammation increases during aging and can be measured by levels of pro-
inflammatory markers (Singh& Newman, 2011). Contrary to this idea, our results showed that the main axis of
variation we detected — which can clearly be interpreted as a measure of Inflamm-aging given its associations
with individual markers, age, and health outcomes — implied simultaneous changes in both pro- and anti-
inflammatory markers (STNF-RI, STNF-RII, IL-6, TNF-a, hsCRP, IL-18 and IL-1 RA). Individuals thus varied in terms
of the overall activation of their inflammatory systems much more than in terms of the pro- vs. anti-
inflammatory balance, with individuals that showed high levels of pro-inflammatory markers also tending to
show high levels of anti-inflammatory markers. We did not detect an axis representing pro- versus anti-
inflammatory balance, indicating that such a balance does not explain important variation at the population

level.

Overall, we detected two predominant, highly stable axes of variation in the inflammatory system. Together,
these axes explained 29% of the total variance among the inflammatory markers, enough to indicate their
importance, but far less than 100%. The remaining axes were unstable, suggesting that complex system
dynamics determine a large part of the variance in ways that cannot be easily characterized by approaches
such as PCA. Nonetheless, the two axes identified have clear, interesting biological interpretations. Obviously,
had we included more markers, we might have obtained a different axis structure, perhaps detecting other
important axes, or other markers associated with PCA1 and PCA2. However, given the stability of our results in
subpopulations and the concordance of this study with others (Bandeen-Roche et al., 2009; Varadhan et al.,

2014), the core interpretations of PCA1 and PCA2 would almost certainly remain unchanged.

The first axis was driven largely by STNF-RI, STNF-RII, IL-6, TNF-a, hsCRP, IL-18 and IL-1 RA and was strongly
correlated with age. As STNF-RI, STNF-RIl and IL-6 are individually correlated with age and known to be
associated with health outcomes (Diniz et al., 2010; Fernandez-Real et al., 2001; ll'yasova et al., 2005; Safranow
et al., 2009) the result is not unexpected. However, the combination of these variables through PCA leads to a
stronger correlation than any variable alone. As noted above, the loadings for PCA1 indicate that it is not a
simple measure of more inflammation: it is driven by higher levels of both pro- and anti-inflammatory markers,
indicating a more activated (but not necessarily more inflamed) inflammatory system. One interpretation

would be that increasing levels of pro-inflammatory markers with age stimulate a corresponding augmentation
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in anti-inflammatory markers, with varying outcomes depending on the nature of the stimulation, the pre-

existing physiological reserve, and the current immune background.

Inflammation is well known to be associated with many chronic diseases such as diabetes, atherosclerosis and
cardiovascular disease (Hansson, 2005; Schmidt et al., 1999), and this was confirmed here. The ORs indicating
the baseline presence of chronic diseases based on the first axis were surprisingly large (considering that the
ORs are per unit PCA, and the PCAs range from —3 to 3), and were significant for mortality, presence of any
comorbidity, and individual chronic diseases such as cardiovascular disease, congestive heart failure, stroke,
kidney disease and diabetes. For most of the remaining chronic diseases, sample sizes were too small to be
conclusive. The majority of these diseases are related to the cardiovascular system. The causes of
cardiovascular diseases are diverse but atherosclerosis and/or hypertension are the most common (Epstein&
Ross, 1999; Sowers, Epstein, & Frohlich, 2001). Interestingly the relationship was not significant for
hypertension, despite a large sample, suggesting an independent contribution of inflammation to
cardiovascular disease. This supports the study of Pearson et al. (Pearson et al., 2003) who showed that in the
case of inflammatory markers, the association with cardiovascular disease might reflect a response to other,
established risk factors (eg, obesity, diabetes, hyperlipidemia, cigarette smoking) or due to inflammatory
processes as part of atherosclerotic disease. Furthermore, PCA1 often predicted outcomes more strongly than

the individual markers, particularly for prevalence rather than incidence.

The strong associations between PCA1 and health outcomes at baseline shown via logistic regression do not
address causality. Indeed, it is likely that diseased states feed back into inflammatory systems, and that the
elevated levels of PCA1 are as much consequence as cause of chronic diseases. This is borne out by the survival
analyses, where effect sizes were generally much smaller and rarely significant, though still almost always
positive. The lack of significance, but not the smaller effect sizes, is also probably due to the often much
smaller sample sizes for incidence rather than prevalence for many diseases. Nonetheless, there were still clear
associations for mortality and kidney disease, and, unlike in the logistic regressions, hypertension incidence
was associated with high PCA1 scores. Together, these results are consistent with biological impacts of PCA1 on
chronic diseases and mortality, but also with effects of chronic diseases on PCA1, forming positive feedback
loops. These effects appear to be heterogeneous across diseases, with, for example, PCA1 having a potentially

large effect on kidney disease, and cardiovascular disease having a potentially large effect on PCAL.

Given these results with chronic diseases, we should hesitate to interpret PCA1 as a measure of aging or part of
the aging process. Although the correlation between PCA1 and age is strong, it is possible that changes in PCA1
reflect chronic disease processes in feedback loops, and that the age-PCA1 correlation is due to age-related

increases in chronic disease risk. Just as no older individual (80+) in our sample had a very low score on PCA1,
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no individual at these ages was completely free from chronic diseases, and we have very little statistical power
to address the possibility of disease-independent Inflamm-aging. However, PCA2 was strongly associated with
chronic diseases but not age, so we cannot exclude the possibility that PCA1 is linked to aging as well as to
chronic diseases. In any case, PCAl suggests that Inflamm-aging is a generalized dysregulation of the
inflammatory system, but that this dysregulation proceeds in a relatively predictable fashion and results in a

coherent restructuration of the levels of multiple key inflammatory markers.

Another recent study applied survival analysis and PCA to biomarkers of inflammation from InCHIANTI to
develop clinical predictors of mortality up to 10 years (Varadhan et al., 2014). They used a weighted summary
score (WSS) and principal component summary score (PCS) based on five markers chosen for their association
with mortality (IL-6, STNF-RI, hsCRP, IL-18 and IL1-RA), as well as an inflammatory index score (IIS) based on the
two best markers (IL-6 and STNF-R1). IIS had the strongest predictive power for 1-, 2- and 10-year mortality.
The most important markers that drive the interpretation of our main axis are STNF-RI, STNF-RIl and IL-6. Table
5 shows the correlations between PCA1 and the measures in the study of Varadhan et al. (2014) as well as the
HRs both assessed with the InChianti participants (n=1010) for mortality. HRs of IIS and WSS perform slightly

better than PCA1, but the overall effects are comparable considering the confidence intervals.

Table 5

Correlation matrix and Hazard ratios comparison for mortality

Measure PCA1  PCS s Wss HR(95% CI)

PCAl 1 - - - 1.33(1.16-1.53)
PCS 0.88 1 - - 1.18(1.04-1.34)
IS 0.86  0.84 1 - 1.47(1.26-1.72)
WSS 091 093 092 1 1.54(1.26-1.88)

Notes: PCA1 = Scores from the first axis of PCA with 19 biomarkers; PCS = Scores from the first axis of PCA with 5
biomarkers; ISS = Inflammatory index score was calculated as follows 1SS=1/3 IL-6 + 2/3 STNF-RI; WSS = Weighted

summary score was calculated as a weighted sum of the 5 biomarkers.

While the approaches of the two studies are similar, Varadhan et al. (2014) has clinical prediction as a primary
goal, whereas we emphasize biological understanding. In this sense the two studies are confirmatory and
complementary, despite some potentially important methodological differences (e.g. variable selection
criteria). We provide evidence of two stable biological processes; they provide a clinically relevant measure of

the first.
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In addition, a previous analysis using the Leiden 85-plus study showed that an unopposed pro-inflammatory
response is beneficial for survival in the oldest (Wijsman, Maier, de Craen, van den Biggelaar, & Westendorp,
2011). Furthermore, low-pro and low-anti-inflammatory markers showed an increase in mortality, contrasting
with our results. However, their result did not apply in a subsample of individuals aged 90+, and our study
cohort is composed mainly of younger individuals, suggesting a possibility strong non-linear interaction of

these effects with age.

The second biological process we identified is explained largely by MCP, IL-12 and IL-8. This axis can be
interpreted as reflecting aspects of the innate immune response. The innate immune system comprises the
cells and mechanisms that defend the body against immediate infectious agents regardless of prior exposure.
Innate immune cells include natural killer cells, granulocytes (mast cells, eosinophils and basophils) and
phagocytes (macrophages, neutrophils and dendritic cells), and the main role of MCP, IL-12 and IL-8 is to
attract and stimulate these cells. While PCA2 is highly stable and appears to represent important variation in
the state of the inflammatory system, it does not appear to be directly related to the aging process. As MCP, IL-
12 and IL-8 were not significantly correlated with age, the weak correlation with age was not unexpected. It
may reflect genetic variation in the structure of the immune system or transient variation in inflammatory state
based on minor, short-term immune challenges occurring through all physiological systems independent of

age.

However, PCA2 was associated with roughly the same chronic diseases as PCA1, but in the opposite direction
(i.e. OR/HR less than 1), meaning that an increase in PCA2 is protective for the chronic diseases. Additionally,
while effect sizes for PCA1 and individual markers moved in parallel, PCA2 was often a stronger predictor (e.g.
congestive heart failure) or weaker predictor (e.g. kidney disease) than PCA1 and the individual markers,
confirming its complementary role in chronic disease. We can see from Figure 4 that MCP, IL-12 and IL-8 also
loaded positively on the first axis. This means that Inflamm-aging seems to be incorporating part of the innate
immune activation in our dataset, despite the opposing predictive values of the two for chronic diseases. Other
studies suggest that extrinsic (environmental) factors become increasingly important in the elderly, and as age
is associated with a breakdown of the epithelial barriers of the skin, lung and gastrointestinal tract, the innate
immune system is more challenged (Gomez, Boehmer, & Kovacs, 2005), perhaps needed as a counterbalance
to age-related changes in the more sophisticated components of the first axis. This might explain the stability

of the axis in our data.

4.1 Limitations
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We showed that PCA was stable for the two main axes across INCHIANTI, but analyses need to be replicated in
other data sets to look for a general trend across populations. The small sample sizes for some conditions like
cancer or Parkinson’s disease (1.83% and 1% of the sample respectively) make the logistic regressions results
sensitive to perturbations. Also, there were substantial missing values among the 13 chronic diseases, and we
were unable to incorporate medication status into our models; still, results agree with the study of Varadhan et
al. (2014). The availability of the visits (a maximum of four visits with a 3-year space between each) and the

missing values of several markers at follow-ups is a constraint when using the Cox proportional hazards model.

5. Conclusions

Multivariate analysis of inflammatory biomarkers appears to show an augmentation in overall activation of
inflammatory systems with aging, but not necessarily in levels of inflammation per se, as is generally supposed.
In this sense, simple use of IL-6 or CRP as inflammatory markers may be a bit misleading, even though they
correlate well with overall activation and predict chronic diseases. When considered altogether, the markers
STNF-RI, STNF-RII, IL-6, TNF-a, hsCRP, IL-18 and IL-1 RA are, as a group, strongly associated with chronic
diseases and mortality in this elderly population. A second key axis, hitherto unappreciated in the scientific
literature, describes innate immune system activation and may be protective against many chronic diseases
and mortality. The combination of the two axes suggests that Inflamm-aging is not simply an increase in pro-
inflammatory markers but may be a fine balance between them. Future studies of inflammation should
continue to use multiple markers and take systems-based approaches to estimate the relevant underlying

biological processes.
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