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Abstract 17 

The loss of signal associated with categorizing a continuous variable is well known, and 18 

previous studies have demonstrated that this can lead to an inflation of Type-I error when 19 

the categorized variable is a confounder in a regression analysis estimating the effect of 20 

an exposure on an outcome. However, it is not known how the Type-I error may vary 21 

under different circumstances, including logistic versus linear regression, different 22 

distributions of the confounder, and different categorization methods. Here we 23 

analytically quantified the effect of categorization, and then performed a series of 9600 24 

Monte Carlo simulations to estimate the Type-I error inflation associated with 25 

categorization of a confounder under different regression scenarios. We show that Type-I 26 

error is unacceptably high (>10% in most scenarios, and often 100%). The only exception 27 

was when the variable categorized was a continuous mixture proxy for a genuinely 28 

dichotomous latent variable, where both the continuous proxy and the categorized 29 

variable are error-ridden proxies for the dichotomous latent variable. As expected, error 30 

inflation was also higher with larger sample size, fewer categories, and stronger 31 

associations between the confounder and the exposure or outcome. We provide online 32 

tools that can help researchers estimate the potential error inflation and understand how 33 

serious a problem this is. 34 

 35 

Keywords: Type-I error, confounding, categorization, dichotomization, simulation, 36 

distribution 37 
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Introduction 38 

Researchers and clinicians in epidemiologic and medical studies often categorize 39 

continuous variables for purposes of facilitating the interpretability of results [1] 40 

(common examples include age, body-mass index, socio-economic status, and levels of 41 

blood biomarkers). The unnecessary use of categorical variables has been criticized by 42 

many for the potential increase in statistical bias and the loss of information [2-17], but 43 

use of categorized continuous variables is still standard practice in the epidemiologic and 44 

medical literature [18]. There is a consensus among statisticians that statistical tools 45 

treating variables as continuous (e.g. with non-parametric or spline regressions) are 46 

preferred and more robust when the latent trend is not easily captured by classical 47 

parametric models [2, 7, 17]. Such tools are, however, more complex to apply and 48 

interpret for clinicians, which might be a reason for the continued abundant use of 49 

categorized data in epidemiological publications. 50 

A specific situation prominent in epidemiologic and medical research where 51 

categorized continuous variables are regularly used is for control variables (confounding 52 

variables) in regression models when assessing the potential impact of an exposure (risk 53 

factor, independent variable of interest) on an outcome (dependent variable). 54 

Confounding variables are defined here as variables that are associated with both the 55 

exposure of interest and the outcome of interest, but which are not affected by either 56 

variable [19]. Unlike a categorization of the exposure or outcome variables, which can 57 

lead to an inflation of Type-II error [20], categorization of a confounding variable can 58 

lead to increased residual confounding, i.e., effects of confounding variables that are 59 

unmeasured and thus not accounted for in the model. Such residual confounding 60 
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generally results in the detection of spurious relationships between the exposure and the 61 

outcome, and thus false rejection of null hypotheses (inflated Type-I error) because the 62 

model does not replicate perfectly the statistical relationship between the confounding 63 

variable and the concerned variables in models [17]. Austin & Brunner [7] assessed the 64 

influence such methodology has on the statistical performance of models under the 65 

hypothesis of normal variable distributions and logistic regression. They demonstrated 66 

important residual confounding sufficient to suggest that researchers may often falsely 67 

detect a potential association between an exposure and an outcome.   68 

Quantiles and clinical cut-offs are the most common methods for categorizing 69 

continuous confounding variables [18]. Clinicians and epidemiologists frequently study 70 

variables with various distribution shapes and select their cut-offs (i.e., through a 71 

categorization method) in order to minimize the loss of information or to group similar 72 

observations. In spite of the common categorization methodologies, little is known about 73 

how cut-off selection, variable distributions, or type of regression model (linear, logistic) 74 

might affect the statistical bias and robustness of the results induced by the categorization 75 

of confounding variables.   76 

Because unnecessary categorization is such a rampant problem, it is important to 77 

understand what factors contribute to greater error inflation when categorizing, and to 78 

quantify error inflation under different scenarios. The ability to quantify error inflation 79 

could become a tool to force researchers to consider more carefully the consequences of 80 

categorization on their conclusions. In this paper, we assessed how generalizable the 81 

conclusions of Austin & Brunner [7] were across a wide range of realistic data analysis 82 

scenarios, and whether there might be some cases where the implications of 83 
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categorization were particularly severe. We simulated the rate of falsely rejecting the true 84 

value of the coefficient relating an exposure to an outcome (the Type-I error) under 85 

different scenarios where a confounding variable is categorized. In addition, we 86 

mathematically show the effect of categorization for the case of linear regression. We 87 

have also developed a statistical application available on the web allowing easy 88 

estimation of the Type-I error rate under different categorization algorithms for varying 89 

statistical hypotheses.  90 

Mathematical Derivation 91 

The categorization of a confounding variable generates measurement error with 92 

respect to the original variable. We recapitulate this effect with the following 93 

mathematical derivation in the case of linear regression because it is possible to get a 94 

closed-form expression of the asymptotic bias which allows seeing immediately the 95 

determinants. The literature origin of the effect is well exposed in [21], as well as the risk 96 

for measurement error in general for different error sources and regression scenarios. 97 

Under these circumstances the estimators are asymptotically biased, affecting the 98 

estimated values, the confidence intervals and consequently the Type-1 error rate. 99 

For individual i the model is  100 

�� = �� + ����� + �	�	� + 
�  101 

The confounding variable �	� is categorized into  102 

�	�� = �	� + �� 
where the superscript “c” denotes “categorical”. Under the assumption that E(����	�) ≠103 

0 , and since the value of �	� decides which category the individual i goes into, we know 104 
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that ���(�	�, ��) ≠ 0 and hence ���(���, ��) ≠ 0. The term �� is the difference between 105 

�	��  and �	� for individual i, i.e. the measurement error introduced by categorization. Note 106 

that �(��) ≠ 0, and in addition, the measurement error �� is correlated with the true 107 

value �	� which is different from classical measurement error models; this case was 108 

discussed in [22] and the correlation between �� and �	�  has an influence on the 109 

analytical expression of the bias, making the bias more unpredictable. We make the 110 

classical assumptions of orthogonality for linear regression, i.e. �(���
�) = 0 and 111 

�(�	�
�) = 0, which leads to �(��
�) = 0 and �(�	�� 
�) = 0. Plugging �	��  into the 112 

regression gives 113 

�� = �� + ����� + �	�	�� + 
� − �	�� 
 Letting �� = 
� − �	��, we get ���(���, ��) = −���	���(���, ��) ≠ 0 and 114 

���(�	�� , ��) = −�		���(�	�� , ��) ≠ 0. In matrix form, defining  115 

� ≔ ������	�  � ≔ ���⋮��� � ≔ � 
� − �	��⋮
� − �	���  � ≔ �1 ��� �	��⋮ ⋮ ⋮1 ��� �	�� � 116 

for a sample with size N, we can write the regression as � = �� + �. Hence, the classical 117 

least squares estimator ��  converges asymptotically to 118 

plim�→% �� = plim�→%(�&�)'� �′� = � + plim�→%(�&�)'� �′� 

and the asymptotic bias generated by categorization (or by introducing measurement 119 

error, in a broader sense) is 120 

)*+,-��. = plim�→%(�&�)'� �&� = plim�→% /10�&�1'� plim�→%
10�′� 

Since,  121 
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plim�→% /10 �&�1'� = plim�→%
23
33
33
4 1 ∑ �����6�0 ∑ �	����6�0∑ �����6�0 ∑ ���	��6�0 ∑ �����6� �	��0∑ �	����6�0 ∑ �����6� �	��0 ∑ �	��	��6�0 78

88
88
9'�

 

and  122 

plim�→%
10 �&� = plim�→%

23
33
33
4 ∑ (
� − �	��)��6� 0∑ [���(
� − �	��)]��6� 0∑ [�	�� (
� − �	��)]��6� 0 78

88
88
9
 

using Slutsky theorem and the property plim�→%
∑ <=>=?@� = �(��), we get   123 

)*+,-��. = plim�→% /10�&�1'� plim�→%
10�&� 

= A 1 �(���) �(�	�� )�(���) �(���	 ) �(����	�� )�(�	�� ) �(����	�� ) �(�	��	) B
'�

A �(
�) − �	�(��)�(���
�) − �	�(�����)�(�	�� 
�) − �	�(�	�� ��)B 
The last matrix product leads to a 3 × 1 matrix where the three elements correspond to 124 

the asymptotic biases of ���, ��� and ��	, respectively. With the assumptions �(
�) =125 

�(���
�) = �(�	�
�) = 0 and some basic calculations we get the following expression for 126 

the second element of the matrix, namely )*+,-���. which is equal to 127 

EF[G(H=)G-<@=<F=I .G-<F=I .'G(<@=H=)GF-<F=I .JG(<@=H=)G-<F=IF.'G(H=)G(<@=)G-<F=IF.JG(<@=)G(<F=I )G(<F=I H=)'G-<@=<F=I .G(<F=I H=)]GF-<@=<F=I .'	G(<@=)G-<F=I .G-<@=<F=I .JG-<@=F .KGF-<F=I .'G-<F=IF.LJGF(<@=)G-<F=IF.  128 

The last expression, which shares similarities to the bias expression found by [21], 129 

finds that the asymptotic bias of ��� depends on the value of �	, but does not depend on 130 

the value of �� itself. Also, the bias is affected by the first and second order moments 131 

related to �	��  and �� which depend on the method of categorization as well as the 132 
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distributions of the original variables. The analytical expression is non-linear in the 133 

relevant moments and so it is not easy to characterize the effect of a single determinant 134 

(e.g. method of categorization, data distribution, number of categories, etc.); in practice, 135 

the expression will become even more complex when adding additional regressors, but in 136 

a word, it is the introduction of measurement error that creates the bias, whatever the 137 

nature of the original variables is. Importantly, the complexity of this expression shows 138 

that the precise magnitude of the bias is not easily predictable. Simulations in the 139 

following sections give intuitive results in different cases.  140 

Methods 141 

Our simulations were modeled on the approach of Austin & Brunner [7]. We 142 

simulated data under the general scenario of the following regression model: 143 

M = �� + ���� + �	�	 + N 

where M is an outcome of interest, �� is an exposure whose relationship to M we would 144 

like to assess, and �	 is a potential confounding variable which is available in continuous 145 

format but which is categorized for analysis. The true values of �� and �� are assumed to 146 

be zero (i.e., �� has no direct effect on M, since we wish to evaluate the Type-I error), and 147 

�	 has a specified positive value.  Parameters which were allowed to vary included (a) 148 

type of regression model (linear versus logistic), (b) distribution of the underlying 149 

confounder (�	), (c) the covariance between �� and �	, (d) �	, (e) the method for 150 

categorizing �	 when continuous, (f) the number of categories into which �	 is divided, 151 

and (g) the sample size of the simulated data set.  152 

 153 
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Data generation 154 

Continuous confounding variable 155 

An exposure (��, assumed to be independent of the outcome) and a continuous 156 

confounding variable (�	) were generated with three different processes in order to assess 157 

the confounding variable under (1) normal, (2) log-normal or (3) bimodal distributions.  158 

 159 

(1) The first process (“normal”) for the generation of a normal exposure ��,O and a 160 

normal confounding variable �	,O used a bivariate normal distribution of size 0 161 

with mean P = (0,0) and covariance matrix Ω = / 1 R�,	R�,	 1 1 where R�,	, the 162 

confounder-exposure covariance, ranged from 0 to 0.9 in increments of 0.1.  163 

(2) The second process (“log-normal”) for the generation of a normal exposure ��,S 164 

and a log-normal confounding variable �	,S was obtained with the exponential 165 

transformation of a normal confounding variable �	,O generated with process 166 

(1). The average sampled kurtosis of �	,S, out of 1000 samples with arbitrary 167 

covariance specification and sample size of 2000, was 62.04, with a 95% 168 

bootstrap confidence interval for the sample kurtosis average ranging from 169 

56.88 to 67.18, and the average skewness was 5.22, with a 95% bootstrap 170 

confidence interval for the sample skewness average ranging from 5.10 to 5.35. 171 

(3) The third process (“bimodal”) for the generation of a normal exposure ��,T and 172 

a potentially correlated bimodal confounding variable �	,T was based on the 173 

separate simulation of two groups of data, I and II, representing each of the 174 

modes in �	,T (i.e., �	,T�  and �	,T	 ) along with their paired values in ��,T (i.e., 175 
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��,T�  and ��,T	 ). ��,T�  and �	,T�  (U) were simulated from a bivariate normal 176 

distribution of size 0� with mean P� = (0, 0) and covariance matrix Ω� =177 

/ 1 R�,	R�,	 1 1.  ��,T	  and �	,T	  (UU) were simulated from a bivariate normal 178 

distribution of size 0	 with mean P	 = (0, V(3,4)) and covariance matrix 179 

Ω	 = / 1 R�,	R�,	 V(4,9)1.  Once the four variables were simulated, ��,T was 180 

generated as the union of ��,T�  and ��,T	 , and �	,T was generated as the union of  181 

�	,T�  and �	,T	 , keeping their relative orders so as to maintain the pairing of 182 

values and thus the correlation. R�,	 ranged from 0 to 0.9 by increments of 0.1. 183 

V represents the uniform distribution (e.g., min = 3 and max = 4). Total sample 184 

size
 
0 = 0� + 0	, but N1 ≠ N2. This simulation method allowed ��,T and �	,T to 185 

covary at level R�,	 even while ��,T represents a unimodal normal distribution 186 

and �	,T represents a bimodal distribution generated as a mixture of two normal 187 

distributions with different means and variances. The average sampled kurtosis 188 

of �	,T, out of 1000 samples with arbitrary covariance specification and sample 189 

size of 2000, was 5.29, with a 95% bootstrap confidence interval for the sample 190 

kurtosis average ranging from 5.25 to 5.33, and the average skewness was 1.45, 191 

with a 95% bootstrap confidence interval for the sample skewness average 192 

ranging from 1.44 to 1.46. 193 

 194 

Proxy variable for a dichotomous underlying confounder 195 

 In addition to the three above scenarios featuring continuous confounding 196 

variables with different distributions, we simulated a fourth scenario in which the true 197 
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confounding variable is dichotomous but researchers only observe a continuous proxy. 198 

This corresponds in reality to using blood glucose level as a continuous proxy for 199 

underlying diabetes state, or to using a sex steroid level to assign sex when true sex is 200 

unknown. If the true confounder is the underlying dichotomous variable, we might ask to 201 

what extent we can categorize the proxy in order to better approach the true confounder 202 

(supposing that it is known that proxy is not the true confounder). The exposure (��), the 203 

proxy confounding variable (�	), and the underlying dichotomous confounding variable 204 

(�Y) were generated with the following fourth process (“mixture distribution”): 205 

(4) ��,Z (the normal exposure) and �	,Z (the bimodal proxy confounding variable) 206 

were generated identically as in process (3), the mixture of two multivariate 207 

normal distributions (U) and (UU) of size 0 = 0� + 0	. �Y,Z (the underlying 208 

dichotomous confounding variable) is a dummy variable taking the following 209 

values:  210 

[ *\	�	�,Z 	 ∈ (U):		�Y�,Z = 0*\	�	�,Z 	 ∈ (UU):		�Y�,Z = 1 

 211 

Outcome variable (continuous confounder) 212 

Once the unrelated exposure ��,(O,S	`a	T) and the confounding variable �	,(O,S	`a	T) 213 

were generated, the outcome (independent) variable M(O,S	`a	T) could be obtained using (a) 214 

a logistic model or (b) a linear model for its generation in the following procedure: 215 

(a) Logistic model: 216 

 b�c*d(e�) = �� + ����� + �	�	�, for * = 1, 2, … ,0   217 

where, e� = klm	(EnJE@<@=JEF<F=)klm(EnJE@<@=JEF<F=)J� , for	* = 1, 2, … ,0		 218 

Page 11 of 33 Statistics in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

12 

 

 ��~p*q�r*+b(e�), for * = 1, 2, … ,0 219 

�� denotes the de facto unrelated exposure and �	 is the confounding variable 220 

correlated with �� and the outcome M. The logistic model was assessed for five 221 

confounder-outcome association scenarios: 222 

�� = 0, �� = 0 and �	 = (0.2, 0.5, 1, 2, 3) 223 

where the range for the predetermined values of �	 was based upon Austin & Brunner [7] 224 

modeling scenarios, with the addition of 0.2 and 2 for generality purposes. 225 

 (b) The linear model: 
226 

 �� = �	� + 
�, for * = 1, 2, … ,0   227 

where �	� is treated as a constant and 
~0(0, R	). Therefore, as R	 increases, we 228 

expect a lower predictive power of the outcome variable (�) by the confounding variable 229 

(�	), which correspond to the idea of a decreasing value of �	 in the logistic model. The 230 

linear model was assessed for five confounder-outcome association scenarios: 231 

 R	 = (9.95, 3.17, 1.73, 1.02, 0.48) 232 

 The values for R	 were chosen empirically via simulations to correspond as 233 

closely as possible to values of �	 for a residual confounding effect equivalent to those 234 

used in (a) for the logistic model. 235 

 236 

Outcome variable (dichotomous underlying confounder) 237 

 Once the unrelated exposure ��,Z, the bimodally distributed proxy representing 238 

the dichotomous confounder �	,Z and the underlying dichotomous confounder �Y,Z were 239 

generated, the outcome (independent) variable MZ could be obtained using both models 240 
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(a) and (b), with the sole difference here that �	 is replaced by �Y in the generating 241 

procedure. Therefore, the logistic and linear model become, respectively: 242 

(a) 243 

 b�c*d(e�) = �� + ����� + �	�Y�, for * = 1, 2, … ,0 244 

wℎyzy, e� = klm	(EnJE@<@=JEF<{=)klm(EnJE@<@=JEF<{=)J� , for	* = 1, 2, … ,0		 245 

 ��~p*q�r*+b(e�), for * = 1, 2, … ,0 246 

 (b) 247 

�� = �Y� + 
� , for * = 1, 2, … ,0   248 

Both models use the same confounder-outcome association scenarios as with the 249 

continuous confounding variable modeling. �Y,Z is used only to generate MZ; once MZ is 250 

generated, the dichotomous variable �Y,Z is represented by its proxy variable �	,Z 251 

(bimodally distributed) in the model estimating the Type-I error rates. The mixture and 252 

bimodal distributions thus differ only in that the outcome is determined directly by the 253 

continuous bimodal confounder in the bimodal distribution, but is determined by the 254 

underlying dichotomous variable in the mixture distribution. 255 

Categorization algorithms 256 

The Type-I error for the true null hypothesis of the unrelated exposure was assessed 257 

with the confounding or proxy variable categorized in two, three, four and five 258 

categories, or kept continuous for comparison. The confounding variable was categorized 259 

using two different methods: (A) quantile and (B) maximized R
2
. 260 

(A) The first method consists in dividing the confounding variable into quantiles, i.e. 261 

separating the sorted �	�, for * = 1, 2, … ,0, in groups with an equal number of 262 
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observations. This method is arguably the most frequently used in practice, and was 263 

explained in detail by [7]. 264 

(B) The second method finds category cut-offs that optimize the linear fit of a 265 

continuous variable by the same categorized variable. The optimal cut-offs define the 266 

categories that maximize the adjusted |	 of the following preliminary linear model 267 

(which differs from models (1) and (2)): 268 

�	 = }� + �	�}� + P 

where �	 corresponds to the continuous variable and �	� to the same categorized variable. 269 

The optimal cut-offs are found using a linear optimization function for a one cut-off 270 

search and a non-linear optimization function for a 2-4 cut-off search (with the optimize 271 

and optim functions in R). We applied this method with 1, 2, 3 and 4 cut-offs, giving a 272 

categorized confounding variable (�	�) with two, three, four and five categories 273 

respectively. 274 

 275 

Simulations of Type I error 276 

Using the framework above, we had eight independent parameters that could be adjusted 277 

in the simulations: (1) Underlying confounder distribution (4 levels: normal, log-normal, 278 

bimodal, or dichotomous); (2) Regression type (2 levels: logistic or linear); (3) 279 

Categorization method (2 levels: quantile or maximized R
2
); (4) Category number (4 280 

levels: 2-5); (5) Confounder-exposure covariance (10 levels: 0 - 0.9 in increments of 0.1); 281 

(6) Confounder-outcome association (5 levels: �	 or R	); (7) Sample size of the 282 

simulated study (3 levels: 100, 500 or 2000); (8) Number of Monte Carlo iterations per 283 

scenario (1 level used: 1000 iterations). Monte Carlo simulations were performed for all 284 
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9600 combinations of these parameters. For each parameter combination, we calculated 285 

the Type-I error rate as the percentage of the 1000 Monte Carlo iterations in which the p-286 

value of the following parameter significance t-test:  287 

~�:	�� = 0~�:	�� ≠ 0 

 was less than α=0.05, i.e. falsely rejecting the true null hypothesis of no relationship 288 

between the exposure and the outcome with a confidence level of 95%.  289 

 290 

Summarizing results 291 

Because of the large number of results generated by these simulations, we used three 292 

parallel methods to summarize our results. First, we conducted linear regression models 293 

on the database of simulation results, modeling the Type-I error rate among the thousand 294 

iterations as a function of the seven varying parameters included in the models. We also 295 

stratified and included interactions as necessary. Presentation of results is stratified 296 

between the normal, log-normal and bimodal confounder distributions on the one hand 297 

and the mixture distribution on the other, given that the latter is a special case with 298 

particular properties. In order to show the approximate magnitude of effects, we present 299 

results of regression models as if effects were linear and additive (e.g., change in Type-I 300 

error for each change of 0.1 in R), though clearly this is not strictly true and should not be 301 

taken overly literally. Second, we developed an online interactive interface that allows 302 

users to choose parameters of interest and generate figures similar to those shown here in 303 

order to graphically examine several parameters and their interactions, 304 
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https://usherbrookeprimus.shinyapps.io/resultsApp/. Third, we present a selection of 305 

results from the online tool as figures to illustrate key points. 306 

Results 307 

Performance of categorization methods 308 

For a normally distributed confounding variable, the quantile and maximized |	 methods 309 

provided essentially identical categories. For a log-normally distributed confounding 310 

variable, the maximized |	 method provided cut-offs that were substantially further 311 

toward the tail of the distribution than those chosen by the quantile method. For the 312 

bimodal distribution (�	,T or �	,Z), the maximized |	 method was substantially better at 313 

separating the two modes near the bottom of the trough (Figure 1), especially with only 2 314 

categories (referred to hereafter as “optimal categorization”). 315 

 316 

Type-I error: Normal, log-normal, and bimodal confounder distributions 317 

The results from our simulations demonstrated a substantial inflation of the Type-I error 318 

rate for detecting an effect of the unrelated exposure (��) on the outcome (M) when the 319 

confounder (�	) was categorized, except when the confounder was very weakly 320 

associated with either the exposure or the outcome (Table 1, top). As expected, Type-I 321 

error rate always increased as the correlation between the exposure and the confounder (R) 322 

increased, with approximately 5.6% additional error for each increment of 0.1 in R 323 

(Figure 2). Type-I error rate decreased monotonically as the number of categories 324 

increased, with approximately 7.9% fewer errors for each additional category added 325 
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(Figure 2). Accordingly, a confounder categorized in five categories obtained a lower 326 

Type-I error rate compared to a confounder with two, three and four categories, with the 327 

exception of the bimodal distribution (3) categorized with the quantile method (A) under 328 

the linear model (a), where 3 categories minimized the type one error rate. Each 329 

additional 100 added to sample size increased the Type-I error by about 0.96%, or about 330 

14.4% higher rates with sample size =2000 than =500 (Figure 3). Additionally, there was 331 

about a 8.8% increase in Type-I error for each additional increment of association 332 

between the confounder (�	) and the outcome (M) (Figure 3). The quantile categorization 333 

method obtained lower Type-one error rates (Figure 4) for the three distributions. The 334 

distribution type did not express a clear pattern for minimizing the error rate.  335 

 In sum, under all scenarios, with the exception of a very weak confounder-outcome or 336 

confounder-exposure association (where the addition of a confounding variable is not as 337 

relevant), categorizing a continuous confounding variable substantially inflated the risk 338 

for type-I error rate. Although it might seem intuitive to dichotomize a bimodal 339 

confounder, we found that with the bimodal confounder distribution (3) and the 340 

maximized |	 categorization method (B) even an “optimal” categorization process 341 

significantly inflated the type-I error rate, performing even worse than an arbitrary 342 

categorization criterion such as with the quantile method.  343 

 344 

Type-I error: Dichotomous unmeasured confounder (mixture 345 

distribution) 346 

With a dichotomous unmeasured confounder represented by a bimodal continuous proxy, 347 

results were qualitatively similar to results under other distributions for sample size, the 348 
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strength of the confounder-exposure correlation (R), and the strength of the confounder-349 

outcome association (�	 or R	), and are not discussed further (Table 1, bottom). However, 350 

inversed results were found for the number of categories and the categorization method 351 

on the proxy variable (Figure 5). Two categories with the maximized R	 method now 352 

performed best, with worse results for three (4.5% more error), four-five categories (6% 353 

more error), and the quantile method in general. The dichotomized proxy confounder 354 

gave lower Type-I error rates than its continuous state, although its error rates were still 355 

substantial. The maximized |	 method performed better, with a 10% lower error rate, 356 

though this effect was attenuated substantially with more than two categories: by 5% for 357 

three categories and by 6% for four or five categories. In sum, the dichotomized proxy 358 

confounder, representing a dichotomous underlying state, minimized the type-I error rate 359 

and performed worst when left as continuous.  360 

 361 

Online interactive results tool 362 

For a further analysis of our results, we propose an interactive online application that 363 

allows users to manipulate the different parameters used in this study to assess their 364 

impact on the Type-I error rate, represented graphically. The application can be accessed 365 

through: https://usherbrookeprimus.shinyapps.io/resultsApp/. 366 

Discussion 367 

The results of these simulations confirm and expand the general conclusions of other 368 

authors: categorizing a continuous confounding variable leads to a surprisingly large and 369 

robust inflation of the Type-I error rate, nearly regardless of model parameters. Only with 370 
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a very weak association between the confounder and either the outcome or the exposure 371 

(i.e., in the absence of a real confounding effect) did this inflation disappear; under many 372 

realistic scenarios, the Type-I error was 100%. When applied across hundreds or 373 

thousands of studies, even a small inflation of the Type-I error rate – from the expected 374 

5% to, say, 10% – should have a large impact on our confidence in the results generated 375 

by a body of literature, especially given the many other biases that tend to lead toward 376 

false positive results [23]. The Type-I error rates observed here suggest the problem may 377 

be much larger than this small inflation, given the pervasiveness of categorization of 378 

important confounders such as age, socio-economic status, and many others. 379 

We identified one highly specific case where categorization diminished the Type-I 380 

error, and it is a case chosen specifically to be the exception that proves the rule. This 381 

case is when the outcome (i.e., dependent) variable is determined not by the measured 382 

confounding variable, but by an underlying dichotomous process for which the measured 383 

confounder is a proxy. (Real-world examples might be using blood glucose level to 384 

determine diabetes status, or identifying a patient’s sex, when unknown, using levels of 385 

steroid sex hormones, when it is diabetes status or sex rather than glucose level or 386 

hormone level that affects the outcome.) Even in this case, categorization only reduced 387 

Type-I error rate relative to the continuous proxy, and when the number of categories 388 

corresponded to the number of underlying groups (i.e., 2). And even when all these 389 

criteria were met, Type-I error was still substantially higher than the expected α=0.05, 390 

reaching error rates greater than 50% under some scenarios. 391 

This counter-example is an example of the principle that all measurement error of a 392 

confounding variable increases the risk of Type-I error [21]. In the case of the counter-393 
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example, the true variable that should have been measured is the underlying (latent) 394 

dichotomous variable, and using a continuous proxy introduces measurement error which 395 

can be partially but not completely eliminated by dichotomizing the proxy. The 396 

conditions for categorization are thus highly restrictive (and thus may never be met in 397 

practice) – one would need to know a priori (a) that the continuous variable was a proxy 398 

for a true categorical variable, (b) exactly how many underlying categories (sometimes 399 

referred to as “latent classes”) there were, and (c) that it was the underlying variable 400 

rather than the proxy that was the true confounder. Because confounding variables are 401 

generally measured with some measurement error to begin with, the effect of the 402 

categorization is over and above the Type-I error inflation due to the original 403 

measurement error [21]. 404 

The details of our results offer some guidance as to which situations present the 405 

greatest Type-I error inflation due to categorization. Type-I error inflation is worse when 406 

fewer categories are used.  Stronger associations between the confounder and either the 407 

exposure or the outcome rapidly increase the Type-I error. Counter-intuitively, large 408 

sample size also makes the problem worse, increasing the power to detect the residual 409 

confounding present when a confounder is imperfectly measured. All of these effects are 410 

quite large.  411 

The effects of the confounder’s distribution and the categorization method are more 412 

nuanced. When the confounder has a normal or log-normal distribution, the maximized 413 

|	 method performs worse than the standard quantile method. However, maximized |	 414 

performed substantially better than quantile under the mixture distribution, a special case 415 

when two categories also performs better than more categories. This case demonstrates 416 
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the limits of simulations for inferring the precise error rate in cases where particular but 417 

unknown data generating processes are likely to underlie data structure. In theory, it 418 

might be possible to use a priori clinical knowledge to slightly diminish the Type-I error 419 

rate by choosing optimal cut-offs based on (a) the relationship between the confounder 420 

and the outcome; (b) the relationship between the confounder and the exposure, and (c) 421 

knowledge of underlying biological/ sociological/ psychological processes. In practice, 422 

such a priori knowledge is unlikely to be sufficient. Our mathematical derivation of the 423 

estimator bias shows substantial complexity in the interactions between such factors and 424 

therefore how difficult the task of theoretically controlling for the introduction of 425 

measurement error becomes. Traditional clinical cut-offs are unlikely to be valid, for 426 

example, unless they approximate underlying biological thresholds, or unless there are 427 

threshold effects in their relationships with the other variables. Also, we note that even 428 

the best-case scenario for such dichotomization in our simulations still produced 429 

substantial Type-I error; such error is unavoidable under the mixture distribution, where 430 

the true confounder is unmeasured and an imperfect proxy is used. Even the use of a raw 431 

continuous confounding variable in a regression model may sometimes be insufficient: if 432 

the relationship of the confounder with the outcome is non-linear, there may still be 433 

substantial residual confounding [24]. Quadratic regression, fractional polynomials [25], 434 

non -parametric regression [26],  and splines are potential solutions to this problem. 435 

All of which is to say that categorization is, in general, a conscious and unnecessary 436 

introduction of measurement error. In lay terms, to drive the point home, categorizing a 437 

continuous confounder is the equivalent of saying, “Hey, my study is pretty good, but 438 

what it could really use is some measurement error. Why don’t I categorize the 439 
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confounders? That way I will be essentially assured of detecting a positive result whether 440 

or not one exists!” In order to help researchers understand the magnitude of the problem, 441 

we propose a second interactive online application that allows the users, manually or with 442 

the use of the quantile categorization method, to choose cut-offs and assess the probable 443 

Type-I error rate of an unrelated exposure controlled for the given categorized 444 

confounder. The user can also choose between the distributions and the models presented 445 

in this study. The application can be accessed through: 446 

https://usherbrookeprimus.shinyapps.io/simulationApp/. Our hope is that this tool will 447 

allow many researchers to simulate a situation similar enough to their research question 448 

that they get a sense of how bad the problem is likely to be. 449 
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Table 1: Effects of model parameters on Type-1 error rate, modeled separately for (a) confounders 542 
with normal, log-normal or bimodal continuous underlying distributions, or (b) confounders 543 
with the dichotomous underlying distribution 544 

      Beta 
Std. 

Error 
t-value p 

Normal, log-normal or bimodal confounder 
    

 Intercept -0.67 0.018 -38.1 <0.0001 

 
# of categories (numeric variable) -0.08 0.004 -21.4 <0.0001 

 
Confounder-exposure correlation 0.56 0.008 67.1 <0.0001 

 
Regression Type 

    

  
Logistic (ref) 0 - - - 

  
Linear 0.09 0.005 19.3 <0.0001 

 
Confounder-outcome association 0.09 0.002 52.0 <0.0001 

 
Sample size/100

a 
0.10 0.002 49.1 <0.0001 

 
Confounder distribution 

    

  
Normal (ref) 0 - - - 

  
Log-normal 0.003 0.016 0.21 0.84 

  Bimodal -0.16 0.016 -10.0 <0.0001 

 
Categorization method 

    

  
Quantile (ref) 0 - - - 

  
Max |	 -0.009 0.008 -1.0 0.30 

 
Interaction: # Cat*Distribution

b 

    
 Log-normal 0.009 0.005 1.7 0.10 

 Bimodal 0.01 0.005 1.9 0.06 

 
Interaction: Distribution*Cat method

c 
    

 Log-normal* Max |	 0.03 0.012 2.2 0.03 

 Bimodal* Max |	 0.18 0.012 15.2 <0.0001 

      

Dichotomous confounder         

 Intercept -0.86 0.023 -37.5 <0.0001 

 
# of categories 

    

  
2 categories (ref) 0 - - - 

  
3 categories 0.05 0.014 3.2 0.002 

  
4 categories 0.06 0.014 4.3 <0.0001 

  
5 categories 0.07 0.014 4.6 <0.0001 

 
Confounder-exposure correlation 0.44 0.013 35.2 <0.0001 

 
Regression Type 

    

  
Logistic (ref) 0 - - - 

  
Linear 0.05 0.007 6.7 <0.0001 

 
Confounder-outcome association 0.10 0.003 38.5 <0.0001 

 
Sample size/100

a 
0.09 0.003 30.6 <0.0001 

 
Categorization method 

    

  
Quantile (ref) 0 - - - 
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Max |	 -0.10 0.014 -7.02 <0.0001 

 
Interaction: # Cat*Cat method= Max |	 

    

  
2 categories (ref) 0 - - - 

  
3 categories 0.06 0.020 2.8 0.006 

  
4 categories 0.07 0.020 3.3 0.0009 

    5 categories 0.07 0.020 3.4 0.0006 
aThis is the effect of the natural logarithm of the continuous sample size on the Type-I error rate. 
bThis is the increase in Type-I error rate per additional category under a log-normal and bimodal distribution. 
cThis is the increase in Type-I error rate with the max R2 method under a log-normal and bimodal distribution. 

 545 

Figure legends 546 

Figure 1. Thresholds/cut-offs found by the quantiles (A) and maximized R
2
 (B) methods 547 

for 2 categories in a sample size of 2000 under the bimodal (3) distribution. 548 

 549 

Figure 2. Type-I error rates for logistic (a) models with the confounding variable 550 

continuous and in 2-5 categories, using the quantiles (A) method, under normal (1), log-551 

normal (2) and bimodal (3) underlying distributions, �	 = 2 and sample size=2000. 552 

Vertical lines represent 95% confidence intervals for the simulated Type-1 error rates 553 

based on an N of 1000 simulations. 554 

 555 

Figure 3. Type-I error rates for linear (b) models with R	 = {0.48, 1.02, 1.73, 3.17, 9.95} 556 

and sample size={100, 500, 2000}, using the maximized |	 (B) method for the 557 

confounding variable in 2 categories. Vertical lines represent 95% confidence intervals 558 

for the simulated Type-1 error rates based on an N of 1000 simulations. 559 

 560 

Figure 4. Type-I error rates for logistic (b) models with the confounding variable in 3 561 

categories using the quantiles (A) and the maximized |	 (B) methods under normal (1), 562 

log-normal (2) and bimodal (3) underlying distributions, �	 = 2 and sample size=2000. 563 
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Vertical lines represent 95% confidence intervals for the simulated Type-1 error rates 564 

based on an N of 1000 simulations. 565 

 566 

Figure 5. Type-I error rates for linear (b) models with the proxy variable continuous and 567 

in 2-5 categories, using the quantiles (A) and the maximized |	 (B) methods, under 568 

dichotomous (4) underlying distribution, R	 = 1.02 and sample size=2000. Vertical lines 569 

represent 95% confidence intervals for the simulated Type-1 error rates based on an N of 570 

1000 simulations. 571 

 572 

 573 
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