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Abstract 

Ecological and evolutionary physiology has traditionally focused on aspects of physiology one at 

a time. Here, we discuss the implications of considering physiological regulatory networks 

(PRNs) as integrated wholes, a perspective that reveals novel roles for physiology in organismal 

ecology and evolution. For example, evolutionary response to changes in resource abundance 

might be constrained by the role of dietary micronutrients in immune response regulation, 

given a particular pathogen environment. Because many physiological components impact 

more than one process, organismal homeostasis is maintained, individual fitness is determined, 

and evolutionary change is constrained (or facilitated) by interactions within PRNs. We discuss 

how PRN structure and its system-level properties could determine both individual 

performance and patterns of physiological evolution. 

Glossary 

Alternative physiological structures – Different PRN structures that would produce equivalent 

functional and fitness outcomes for a given species in a given environment.  Which structure 

evolves might be largely random, but might have consequences for long-term evolution of 

PRN structure.  

Cytokines – Small cell-signalling proteins involved in intercellular communication. Regulatory 

cascades of cytokines are particularly critical in the immune system. 

Dysregulation – A breakdown over time in the ability of an individual’s PRN to maintain 

homeostasis; possibly in response to chronic stress or infection, and possibly a root cause of 

aging.  
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Homeostasis – A state of healthy physiological equilibrium, including appropriate anticipation 

of and responses to changing conditions. 

Integrator – A PRN molecule that has a particularly crucial role in synthesizing information 

(internal or external) and thereby determining multiple aspects of PRN functioning (e.g., a 

‘hub’ or ‘keystone’ PRN molecule)  

Physiological Regulatory Network (PRN) – The network of molecules and their regulatory 

relationships that maintain and adjust homeostasis and facilitate performance at the whole-

organism level.  

PRN Molecule – PRN molecules are the subset of molecules that maintain homeostasis at the 

organism level via their regulatory relationships with other molecules. In most cases, these 

molecules are the nodes (vertices) in a PRN, and regulatory relationships between them are 

the links (edges).  In some cases, several related molecules (e.g., circulating steroid, 

receptors, binding globulins) may be grouped together as a single node for measurement 

purposes, or gene activation may be a node in some contexts. Flexibility of node definition is 

common in other biological networks—for example, nodes in ecological networks can be 

species, groups of species, life stages, or other categories (e.g., detritus).  

PRN state – The concentrations of all PRN molecules at a given moment for a given individual in 

a particular context (e.g. age, time of year, life history stage). More generally, “changes in 

PRN state” describe joint adjustments in molecule concentrations in anticipation of or 

response to changing conditions, including dysregulation (i.e., allostatic state). Variation in 

PRN state occurs within individuals over time, whereas variation in PRN structure occurs 

across species and populations (see below). 
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PRN structure – The species-specific configuration of PRN molecules, their regulatory 

relationships, and the strengths of these relationships, all of which together determine how 

the PRN functions. Variation in PRN structure occurs across species, whereas variation in PRN 

state occurs within individuals over time. We include strengths as part of PRN structure 

because the organization of regulatory relationships changes very slowly over evolutionary 

time, and variation in the strengths is a critical aspect of how system function evolves. 

Regulatory algorithm – The complete set of biochemical determinants regulating the 

concentration of a single PRN molecule (i.e., how a PRN molecule is regulated as a function 

of all its upstream determinants). Conceptualizing this as an algorithm is useful for 

understanding how it might evolve and affect PRN structure. Thus, regulatory algorithms 

summarize the information in molecule-focused subsets of PRN structure. 

Subnetwork – A part of a PRN that is both highly connected and responsible for a particular 

aspect of physiological function (e.g., the immune system, energy metabolism). 

Symmorphosis – The property of multiple morphological components of a system jointly scaled 

to their maximal functional capacity, thereby resulting in an economy of design without 

excess and unusable capacity in any one component 

System-level property – A property of a PRN that is determined by its structure and thus cannot 

be deduced from individual molecules; modularity, link density, and robustness are 

examples.  

 
Why study physiological regulation in ecology and evolution? 

In recent years, physiological ecologists have sought to use markers of physiological state 

(immune molecules, hormones, oxidative stress indicators, and so forth) both as proxies for 
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organismal condition and to understand how ecological and evolutionary processes may be 

mediated by individual physiology [1-4]. While sometimes fruitful, the results of many such 

studies have proven confusing, appearing to depend very precisely on the details of 

experimental condition [5, 6]. We believe that these contradictory results are a consequence of 

treating the physiological markers as independent indicators of some aspect of functioning, 

rather than as regulatory components of a single unified system responsible for maintaining 

organismal homeostasis, what we call a physiological regulatory network (PRN).  Here, we 

propose that the systems biology approach implied by PRNs has broad implications for our 

understanding both of how physiology may constrain or facilitate organismal evolution and of 

how organisms respond to multiple changes in their environment. 

For example, we can consider the biochemical mechanisms responsible for maintaining 

redox homeostasis and limiting oxidative damage as a single physiological system. However, the 

role of this system in aging and the evolution of lifespan [7] depends on its interaction with 

many systems, including intracellular regulation of proton gradients [8], hormonal regulation [9], 

dietary intake of micronutrients [10], and the use of certain parts of the immune system [11]. 

Additionally, low levels of oxidative damage are easily tolerated (or even necessary) for most 

organisms [12]. Health consequences may occur only when control mechanisms are sufficiently 

disrupted, and disruption tolerance appears to vary substantially across species [13]. Thus, 

maintenance of oxidative homeostasis depends on many factors not directly implicated in the 

biochemical cascades resulting in or buffering the effects of oxidation, and all of these factors 

must be considered together in order to understand how oxidative damage might affect the 

evolution of lifespan.  
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The study of organismal physiology can benefit greatly from an explicit network perspective, 

much as other biological systems such as gene regulation [14, 15] and species interactions [16, 

17] have benefited from network analysis and modeling.  Here we propose that PRNs are critical 

not just for understanding organismal biology, but also for understanding ecological and 

evolutionary processes, largely due to the extensive regulatory connections among PRN 

molecules and the resulting non-independence of ecological influences and selection and on 

specific traits at ecological and evolutionary timescales, respectively. For example, the 

vertebrate immune system has evolved alternatives to dealing with different types of parasites 

(i.e., intra- and extra-cellular, micro and macro) [18], and the relative capacities for these 

responses depend on genes, diet, internal physiological state, and external environmental 

conditions. Accordingly, some knowledge of the relevant PRNs is necessary to understand how 

diet, pathogen environment, and evolutionary history interact to influence host-parasite co-

evolution.  

Much as the fields of genetics and evo-devo have, via recognition of genetic and 

developmental constraints, reshaped our understanding of the relationship between selection 

and phenotypic evolution, we believe that a network-based approach to physiology will be 

critical in identifying physiological constraints on organismal evolution. The importance of PRNs 

for understanding organismal homeostasis and evolution is analogous to the importance of 

ecological networks for understanding a variety of community properties including organization, 

persistence, assembly, robustness, and function.  In both cases, the study of complex networks 

of interacting components can provide novel insights into system-level stability and function 

not revealed by pairwise or small-motif studies [19].  There is excellent evidence both for the 
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regulatory complexity that implies the existence of PRNs and for the importance of this 

complexity in determining ecological and evolutionary processes [20]. However, only small 

portions of PRNs have been successfully mapped, and we are not yet in a position to 

demonstrate the results of PRN studies.  Accordingly, most examples we give are at least partly 

hypothetical.  Our goal is to stimulate thought, debate, and novel research directions. Because 

some of the concepts and terms we use will be new for readers, we recommend reading the 

glossary before continuing. 

 

What are Physiological Regulatory Networks (PRNs)? 

Networks are central to many aspects of biology. Gene regulatory networks are crucial for 

adjustment of protein production levels. Protein networks are crucial for maintenance of 

intracellular homeostasis. Ecological networks mediate species persistence and co-existence as 

well as ecosystem function. In each of these cases, there are important system-level properties 

that can be understood only by examining the structure and dynamics of interactions among 

network components.  

In PRNs, homeostasis and performance are determined by interactions among molecules. 

Each organism has numerous physiological systems composed of interconnected networks of 

molecules: examples include cytokine cascades in the immune system, the stress responses, 

lipid balance, energy metabolism, and oxidative balance. These molecular-level networks result 

in organism-level function (much as species-level networks give rise to ecosystem-level 

function) and are “homeostatic” in that they allow the phenotype to remain viable in response 

to a changing internal or external environment. They are not independent of each other, but 
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rather communicate through various regulatory pathways, and thus can be considered 

subnetworks of a larger network, a PRN (Fig. 1). Many of the linkages between these 

subnetworks are well documented [20]. The non-independence of the subnetworks provides 

the rationale for integrating them into a comprehensive PRN.  We exclude intra-cellular and 

intra-tissue networks from our definition except insofar as they have important regulatory 

relationships with the organism-level PRN.  

PRNs achieve multiple coherent phenotypic outcomes such as sufficient immune responses, 

appropriate energy metabolism, and season- and situation-specific behavioural patterns. Many 

PRN molecules simultaneously affect multiple such outcomes.  These  “integrators,” principally 

hormones such the sex steroids and glucocorticoids, but also some cytokines, are key regulatory 

molecules that adjust PRN state according to internal and external conditions [20]. Integrators 

interact with multiple systems and each other to ensure that phenotypic form and function 

match environmental conditions and evolutionary priorities (e.g., breeding, clearance of a 

parasite, fattening to promote migration; Fig. 1). Different aspects of PRNs and integrator 

regulation are involved in response to predictable changes (such as growth and seasons) and 

unpredictable changes (such as stress). Testosterone, for example, regulates immune functions, 

influences behavioural interactions, determines the rate and type of sexual tissue maturation, 

and affects seasonal changes in reproductive physiology and behaviour [1]. 

The complexity and integration of PRNs suggest that they will have system-level properties 

not predictable from analysis of any particular constituent molecule or subnetwork (Box 1, Fig. 

1). From an evolutionary perspective, we are interested in how these system properties affect 

traits such as aging rate and evolvability.  Additionally, the evolution of PRNs involves 
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interactions among component parts, so the entire system must remain functional as any 

changes occur. The concept of symmorphosis proposes that PRN nodes will have evolved in 

concert, with surplus capacity in any component reduced over time due to high maintenance 

costs. For example, maximal whole-animal oxygen consumption matches rate of oxidative 

phosphorylation in the mitochondria, delivery rate of oxygen to cells in the microcirculation, 

and transport rate of oxygen in the blood across a broad range of mammals [21]. Thus, 

evolution of energy metabolism can occur via changes in capacity at multiple interacting steps 

in the oxygen transport pathways (see also Box 2). Studying such systems with the PRN concept 

in mind will facilitate identification of PRN molecules that are pressure points for selection. 

 

Ecological and evolutionary implications of PRNs 

Physiological constraints, correlated traits, and evolvability The complexity and integration 

of PRNs, including the high degree of correlation among traits, provide for selective responses 

to changing conditions that can cascade throughout the system [22].  For example, faced with a 

drop in the abundance of a preferred resource, a species might shift to an alternative resource 

that happens to have a different vitamin E content.  Vitamin E has multiple physiological roles, 

including as an antioxidant and regulator of the immune system [23]. Hypothetically, a shift in 

vitamin E intake might affect regulation of oxidative balance as well as response to a parasite. 

Changes in regulatory roles of vitamin E might ensue; however, such changes might in turn have 

ripple effects on other PRN-mediated actions such as inflammation and lipid oxidation [24]. It is 

thus possible that a simple diet shift would require major modifications throughout the PRN.  A 

network approach is useful for tracing both indirect and direct effects throughout systems, as 
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seen in ecological network analyses [25, 26].  In addition, ecological network models have 

shown the importance of adaptive behavior at the component level for organization, stability, 

and function at the system level [27].  Such models have been used to identify key constraints 

on the assembly and evolution of persistent complex networks [28-31].  Similar modeling 

approaches may prove useful in a PRN context. 

Although constraints likely affect PRN evolution, PRN structure might also facilitate 

evolvability [32]. Canalization and compartmentalization in development have allowed the 

evolution of diverse structures in ways that correspond to selective pressure on morphology [33, 

34]. For example, despite the complexity of networks of gene expression involved in limb 

development in vertebrates, a small number of T-box genes appear to control differences in 

limb development, facilitating morphological change in response to selection [35, 36]. Similar 

principles could apply to the evolution of PRN structure.  For instance, modularity (Box 1) might 

facilitate evolvability by favoring adaptive phenotypic change in simple, coordinated ways. On 

the other hand, alternative physiological structures (Box 2) might cause divergent PRN 

evolutionary trajectories even under similar selective conditions, complicating the evolution of 

highly evolvable physiological modules. It is not known what trade-offs might exist between 

evolvability and production of an integrated, functioning phenotype, nor how both might be 

constrained by chance and regulatory complexity.  

Regulatory algorithms and local optima An important functional task of a PRN is to help the 

organism respond appropriately to changing internal or external conditions. This need sets up a 

potential trade-off between incorporating as much information as possible into a response to 

environmental change versus the functionality (and evolvability) of the PRN. This trade-off can 
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be conceptualized and modeled with “regulatory algorithms.” Direct regulatory relationships 

between PRN molecules are, by definition, determined by the biochemical properties of the 

molecules involved.  The concentration of each molecule is a combined function of all of its 

upstream regulatory relationships, relationships that together form an “algorithm” that 

determines the concentration of the molecule, keeping it as close to optimal as possible given 

the information contained in other molecules about internal and external conditions. The 

regulatory algorithm concept is similar to that of a “sink web” in ecological network research, 

which is a subset of a full food web that traces all chains of resource inputs to a particular 

consumer species. 

Natural selection will adjust regulatory algorithms, although there are likely constraints on 

establishing new biochemical pathways and affinities, which change only very slowly [37]. 

Modeling the evolution of regulatory algorithms is a promising approach to understanding the 

balance of selection and constraints, as well as trade-offs between maximizing information 

content (optimal short-term regulation) and longer-term system evolvability. While simple 

algorithms (i.e., local optima) appear to be the rule, there are also clear examples of regulatory 

complexity in physiology: (1) There are immune receptors for polyphenols [38] (implying 

incorporation of minor and environmentally unpredictable molecules in immune regulation), 

and (2) Th2:Th1 regulation in chickens incorporates not just carotenoids, vitamin E, and fatty 

acids, but interactions among them [39, 40]. Two underexplored questions with large 

implications for PRN evolution are thus how general these complex, specific algorithms are and 

what conditions produce them.  
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As an example of the trade-offs involved in regulatory algorithms, many birds use both 

photoperiod and temperature to cue reproduction, with luteinizing hormone concentrations 

controlled via the CNS to trigger timing [41], resulting in an algorithm such as “when 

photoperiod exceeds threshold X and temperature exceeds threshold Y, start breeding.” 

However, availability of key resources fed to nestlings could provide additional information to 

optimize timing (e.g. through diet micronutrient content); to our knowledge, this information is 

not incorporated into reproductive timing algorithms of most birds, with the likely result of 

substantial lost reproduction in years with aberrant food supplies. This is probably because the 

resulting algorithm would be too complex to maintain well given the inter-population variation 

in food resources. Photoperiod, temperature at start of reproduction, and resource availability 

all vary across populations within species, so the algorithm needs to be (and is [41]) adjusted at 

short evolutionary timescales. Thus, a globally optimal algorithm might be something like, “If 

photoperiod less than A do not start reproducing. If photoperiod greater than A but less than B, 

then if the exponentially weighted sum of temperature and food cue exceeds X start 

reproducing. If photoperiod greater than B, start reproducing.” However, because most of the 

relevant timing information is contained in photoperiod and temperature, the force of selection 

on incorporating food availability cues (and their interactions with the other cues) is only as 

strong as their marginal contribution to the algorithm, likely too weak to adjust well across 

populations and their changing environments.  

PRNs, aging, and evolution Biologists still have no clear understanding of the mechanisms of 

aging, and existing evolutionary theories do not account for the distribution of aging 

mechanisms and lifespan across phyla, classes, and orders [42]. If dysregulation of PRNs causes 



 13 

aging, the evolution of PRN structure would be tightly linked to the evolution of aging rate.  

Aging rate (and scope for selection to act on aging rate) should be affected by system-level 

properties of PRNs (Box 1).  For example, species with a highly robust PRN structure would age 

slowly; since large-scale remodeling of PRN structure might not be feasible at short evolutionary 

timescales, PRN structure might impose a substantial constraint on aging evolution. Ancestral 

mammals likely evolved a PRN structure suited to short-lived, high-metabolism animals; this 

structure might continue to limit human lifespan even while traditionally longer-lived taxa such 

as turtles and sturgeon evolved long lifespans under appropriate selective regimes [42]. 

PRN state changes and changing environment as a constraint PRNs do not remain in a fixed 

state throughout an organism’s lifespan; in fact, a key function of PRNs is to facilitate transitions 

among phenotype states via appropriate adjustments of integrators [20].  At short timescales 

these shifts might occur between states such as hungry or satiated or stressed and non-stressed.  

At intermediate scales, there are shifts between seasons or between breeding and non-

breeding. At longer scales, there are developmental shifts between juvenile and adult, or even 

between sexes in some fish or between worker and queen in some hymenoptera.  Much as 

Piersma and van Gils suggest more generally [43], we hypothesize that the need for increased 

flexibility between major PRN states (e.g. winter vs. summer, drought vs. normal, stressed vs. 

normal) is an evolutionary constraint, and that flexibility might trade off with robustness such 

that an organism living in a relatively constant environment will evolve a more robust PRN 

structure and thus a longer lifespan.  Many system-level properties would seem to be subject to 

this sort of trade-off, suggesting that the structure of PRNs is a potential mechanism for a trade-

off between flexibility and longevity.  This idea might explain the shorter lifespans and faster 
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pace of life observed in many temperate bird species compared to tropical residents [44]: 

temperate species need to make major physiological shifts either for migration or to survive the 

winter. 

 

How to study PRNs 

Though the task of studying PRNs may seem daunting, especially since no major portion of a 

PRN for any species has yet been mapped, the progress made in ecological network research 

gives reason for optimism. Starting over 100 years ago with the first published image of a food 

web with 15 highly aggregated taxa [45], there are  now have hundreds of ecological networks 

(of variable resolution and comprehensiveness) with hundreds of species and thousands of 

interactions represented in a few recent datasets [46, 47]. At different stages of research, 

particular insights were gained about food web structure and dynamics that inspired further 

iterations of improved data collection, new analysis and modeling approaches, and new theory 

[48]. Similarly, we expect that studies of PRNs will start with incomplete and less-resolved 

mapping of sub-networks or a few interactions among sub-networks, chosen by researchers 

based on physiological systems of interest. These studies will yield some basic insights, but will 

also spark a further round of improved data collection. Given our current abilities to perform 

large-scale data collection, the potential for integrators to simplify the study of PRNs, and 

examples and ideas from other areas of network-based research, we expect that PRN research 

will proceed relatively quickly. 

Viewing physiology through a combined network and systems biology lens, as we propose 

here, will also have concrete effects on the sorts of questions researchers will pose and the 
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methods they will need to use. First, alterations will be required in experimental design, analysis, 

and simulation (Box 3).  Second, instead of relying on one or a few biomarkers, it will often be 

necessary to measure molecules from many PRN subnetworks simultaneously. This approach 

will necessitate “–omics” methodologies and/or better sample collection techniques allowing 

measurement of many parameters from small blood samples. Nuclear magnetic resonance [49], 

PRN-tailored microarrays, dried blood spots [50], and traditional assays are all potential 

methods, especially in combination.  

Third, we will need to pay increasing attention to standardizing methodologies across labs 

and researchers. For a single molecule, use of the same assay is the main concern, but with 

PRNs it will also be important to choose the same sets of molecules to measure, a more serious 

consideration for combining data. At the same time, the complexity of systems-level questions 

will increasingly require integration of work across research groups, especially to answer 

comparative and evolutionary questions. Researchers will thus increasingly need to collaborate, 

and funding organizations may wish to help coordinate efforts. 

Fourth, the PRN framework suggests specific research approaches that will be particularly 

informative for ecological and evolutionary questions. We might identify key molecules within 

PRN structure (integrators or otherwise) that facilitate or constrain evolutionary change. Such 

approaches are being used in pharmacology to identify key targets for drug discovery [51] and 

their potential side-effects [52]. An ecological example would be to ask what bird lineages were 

able to successfully diversify from tropical habitat into temperate. Are there, perhaps, key 

differences in PRN structure between lineages that diversified and those that did not that 

explain the capacity of the system to evolve seasonal flexibility? Another complementary 
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approach for studying PRNs is to compare naturally occurring variation in many PRN molecule 

concentrations across individuals, populations, or species. Repeated evolution of similar PRN 

structures or particular patterns of variation in PRN molecules should provide clues to how 

selection acts on PRNs.  

 

Conclusions 

The idea that many physiological systems interact with each other has important 

implications not typically considered by ecologists and evolutionary biologists. The extension of 

biologically-focused network research to physiological regulation provides a potentially 

powerful way to bridge research from gene regulation to ecosystem assembly and function, in 

terms of organismal evolutionary dynamics. The linkage of many molecules in PRNs could 

substantially constrain evolutionary change due to the interdependence of molecules and their 

combined impacts on condition, health, performance, or fitness. However, PRN structure might 

have evolved specifically to facilitate evolvability; studying the system-level properties of PRNs 

(Box 1) and integrator networks [20] will help us answer these and related questions. Whatever 

the answers, PRN thinking will be critical for understanding how organisms respond to 

environmental cues and how physiological responses feed-up into ecological community 

structure, dynamics, stability, and evolution. 
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Box 1: Network analysis and PRN structure 

The characterization of the complex network of regulatory relationships among PRN 

molecules will provide the empirical basis for evaluating system-level structural properties using 

methods drawn from network research [53-56]. The simplest characterization of a network 

includes a set of nodes (“vertices” in graph theory) and the interactions, or links (“edges” in 

graph theory), between them. Links can be directed (“A affects B”) or undirected (“A and B 

interact”). In PRNs, the links will normally be directed (“A regulates B”).  In addition, nodes 

and/or links can be unweighted (A is present; a link from A to B is present) or weighted (A has a 

certain concentration; the link from A to B has a particular strength). An unweighted, directed 

network with n nodes can be represented by an n×n matrix of 0s and 1s, where 1 indicates the 

presence of a link and 0 indicates the absence of a link [57].   The statnet and igraph packages 

for R and the NetworkX library for Python are common software tools for network analysis. 

For PRNs, key system-level properties that might be measured using approaches from 

network structure research include hierarchical structure [58], modularity [59], and connectivity 

(Fig. 2). A more hierarchical PRN would have greater top-down control but fewer connections 

among lower-level nodes and less feedback up the chain (Fig. 2b). A more modular PRN would 
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have more distinct sub-networks with less feedback among them (Fig. 2c). A more connected 

PRN would have higher link density, the average links per node (L/N) and/or higher 

connectance, the proportion of possible links that are realized (L/N2) (Fig. 2d). Such connectivity 

measures often serve as simple proxies for network complexity and may relate to other system 

properties such as robustness to perturbation [60]. 

These and other system-level properties could reflect whether and how PRNs mediate trade-

offs and evolutionary processes. Evolvability should depend on simplified genetic mechanisms 

for evolutionary adjustments of PRN structure, which should be facilitated by greater 

hierarchality and modularity but less connectivity. On the other hand, these traits should also 

be associated with less information exchange within PRNs, and thus with poorly optimized 

physiological responses.  

 

 

Box 2: Alternative physiological regulatory structures 

PRN structure can evolve in different ways to achieve similar physiological outcomes. A simple 

example is the differing roles of dietary carotenoids on health. Some bird species, such as the 

Florida Scrub-jay (Aphelocoma coerulescens) and the Waved Albatross (Phoebastria irrorata), 

have low concentrations of carotenoids, often below the detection limit of standard assays [61]. 

Other species have much higher concentrations, and for many of these species, including Zebra 

Finches (Taeniopygia guttata) and Blue and Great Tits (Parus caeruleus and major), there is 

evidence that individuals with higher concentrations are healthier and/or have greater fitness 
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[62]. Thus, it appears that the roles for which carotenoids are critical in one species (e.g. 

antioxidant defence, immune regulation) are fulfilled by other means in other species. 

Another well-studied example is evolutionary adjustment of receptor and enzyme 

concentrations in testosterone signalling pathways. Actions of testosterone on the brain can 

depend upon gonadal sources of the hormone in the breeding season and then on central 

(brain) sources in the non-breeding season. These adjustments can be further regulated by 

changing sensitivity to the hormone by changing receptors and/or enzymes that convert the 

hormone to an inactive form or synthesize it de novo in specific cells [1].  

Thus, alternative physiological structures have evolved at both short and intermediate 

evolutionary timescales; however, not all aspects of physiology have different potential 

structures. In birds, fatty acid composition during migration appears to be adjusted to optimize 

energy-to-weight ratio, even at a cost of increased oxidative damage [63]. The strong force of 

selection on weight during migration will thus likely result in conserved or convergent evolution 

of fatty acid composition, rather than in alternative strategies for fatty acid metabolism, though 

the details have yet to be confirmed. 

While alternative physiological structures are equivalent for short-term function and fitness, 

they might affect long-term trajectories of physiological evolution because they might open up 

or close off different possibilities for subsequent changes to PRN structure. For example, a novel 

physiological role for carotenoids would be much more likely to evolve in Zebra Finches than in 

Florida Scrub-jays. 

 

Box 3: Analytical methods for PRNs 
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The systems biology perspective suggested by PRNs implies that large numbers of 

physiological parameters will need to be measured and analyzed in concert. Traditional 

statistical tools such as regression models are incapable of dealing with high dimensionality, 

complex interactions, and system dynamics. While there is no silver-bullet analytical method 

currently available [64], a combination of different approaches is slowly yielding results in 

cellular systems biology.  

The first challenge is to characterize PRN structure. Basic biochemical knowledge is an 

important place to start, and can be augmented with various statistical approaches. Data 

reduction methods (e.g., principal components analysis) can be used to reduce dimensionality 

where appropriate. Path analysis and structural equation models can be used to disentangle 

physiological pathways from observational data, especially if the data are longitudinally 

structured [65]. Vector field editing uses matrix algebra to track phenotype trajectories through 

multivariate physiological states, and response surface regression may help identify the affects 

of multiple integrators on other integrators [20]. Multivariate distribution approaches such as 

Mahalanobis distance [66] may also help identify individuals with abnormal PRN states. 

Once a PRN structure has been identified – even partially – network analysis can be used to 

identify system-level properties [53, 56]. Additionally, structural equation models and path 

analysis can be applied to a mapped network to measure the relative importance of direct 

pathways (“A regulates B”) and indirect pathways (“A to C, when A regulates B regulates C”). In 

ecological systems, indirect and diffuse effects can be as or more important than direct effects 

[25, 67]. 

 



 21 

Literature Cited 

1 Hau, M. and Wingfield, J.C. (2011) Hormonally-regulated trade-offs: evolutionary variability and 
phenotypic plasticity in testosterone signaling pathways. In Molecular mechanisms of life history 
evolution (Flatt, T. and Heyland, A., eds), pp. 349-362, Oxford University Press 
2 Wikelski, M. and Ricklefs, R.E. (2001) The physiology of life histories. Trends in Ecology & 
Evolution 16, 479-481 
3 Adamo, S.A. (2004) How should behavioural ecologists interpret measurements of immunity? 
Animal Behaviour 68, 1443-1449 
4 McGraw, K.J., et al. (2010) The ecological significance of antioxidants and oxidative stress: a 
marriage between mechanistic and functional perspectives. Functional Ecology 24, 947-949 
5 Matson, K.D., et al. (2006) No simple answers for ecological immunology: relationships among 
immune indices at the individual level break down at the species level in waterfowl. Proceedings of 
the Royal Society B: Biological Sciences 273, 815-822 
6 Costantini, D. and Verhulst, S. (2009) Does high antioxidant capacity indicate low oxidative stress? 
Functional Ecology 23, 506-509 
7 Beckman, K.B. and Ames, B.N. (1998) The free radical theory of aging matures. Physiological 
Reviews 78, 547-581 
8 Brand, M.D., et al. (2004) Mitochondrial superoxide: production, biological effects, and activation 
of uncoupling proteins. Free Radical Biology and Medicine 37, 755-767 
9 Lin, H., et al. (2004) Oxidative stress induced by corticosterone administration in broiler chickens 
(Gallus gallus domesticus) 1. Chronic exposure. Comparative Biochemistry & Physiology B 139, 737-
744 
10 Bertrand, S., et al. (2006) Carotenoids modulate the trade-off between egg production and 
resistance to oxidative stress in zebra finches. Oecologia 147, 576-584 
11 Costantini, D. and Dell'Omo, G. (2006) Effects of T-cell-mediated immune response on avian 
oxidative stress. Comparative Biochemistry & Physiology Part A 145, 137-142 
12 de Magalhães, J.P. and Church, G.M. (2006) Cells discover fire: Employing reactive oxygen species 
in development and consequences for aging. Experimental Gerontology 41, 1-10 
13 Andziak, B., et al. (2006) High oxidative damage levels in the longest-living rodent, the naked 
mole-rat. Aging Cell 5, 463-471 
14 Hasty, J., et al. (2001) Computational studies of gene regulatory networks: In numbero molecular 
biology. Nature Reviews Genetics 2, 268-279 
15 Schlitt, T. and Brazma, A. (2007) Current approaches to gene regulatory network modelling. BMC 
Bioinformatics 8, S9 
16 Bascompte, J. (2009) Disentangling the web of life. Science 325, 416-419 
17 Dunne, J.A. (2009) Food webs. In Encyclopedia of Complexity and Systems Science (Meyers, R.A., 
ed), pp. 3661-3682, Springer 
18 Pulendran, B. (2004) Modulating Th1/Th2 responses with microbes, dendritic cells, and 
pathogen recognition receptors. Immunologic Research 29, 187-196 
19 Stouffer, D.B. and Bascomtpe, J. (2010) Understanding food-web persistence from local to global 
scales. Ecology Letters 13, 1540161 
20 Martin, L.B., et al. (2011) Integrator networks: illuminating the black box linking genotype and 
phenotype. Integrative and Comparative Biology 51, 514-527 
21 Weibel, E.R., et al. (1991) The concept of symmorphosis: a testable hypothesis of structure-
function relationship. Proceedings of the National Academy of Sciences 88, 10357-10361 
22 Lande, R. and Arnold, S.J. (1983) The measurement of selection on correlated characters. 
Evolution 37, 1210-1226 



 22 

23 Han, S.N., et al. (2000) Vitamin E supplementation increases T helper 1 cytokine production in 
old mice infected with influenza virus. Immunology 100, 487-493 
24 Berliner, J.A., et al. (1995) Atherosclerosis: Basic Mechanisms : Oxidation, Inflammation, and 
Genetics. Circulation 91, 2488-2496 
25 Borrett, S.R., et al. (2010) Rapid development of indirect effects in ecological networks. Oikos 119, 
1136-1148 
26 Williams, R.J., et al. (2002) Two degrees of separation in complex food webs. Proceedings of the 
National Academy of Sciences 99, 12913-12916 
27 Valdovinos, F.S., et al. (2010) Consequences of adaptive behaviour for the structure and 
dynamics of food webs. Ecology Letters 13, 1546-1559 
28 Guill, C. and Drossel, B. (2008) Emergence of complexity in evolving niche-model food webs. 
Journal of Theoretical Biology 251, 108-120 
29 Law, R. and Morton, R.D. (1996) Permanence and the Assembly of Ecological Communities. 
Ecology 77, 762-775 
30 Loeuille, N. and Loreau, M. (2005) Evolutionary emergence of size-structured food webs. 
Proceedings of the National Academy of Sciences of the United States of America 102, 5761-5766 
31 Stegen, J.C., et al. (2012) Evolving ecological networks and the emergence of biodiversity 
patterns across temperature gradients. Proceedings of the Royal Society B: Biological Sciences 279, 
1051-1060 
32 Kirschner, M. and Gerhart, J. (1998) Evolvability. Proceedings of the National Academy of Sciences 
of the United States of America 95, 8420-8427 
33 Garcia-Bellido, A., et al. (1976) Developmental compartmentalization in the dorsal mesothoracic 
disc of Drosophila. Developmental Biology 48, 132-147 
34 Waddington, C.H. (1942) Canalization of Development and the Inheritance of Acquired 
Characters. Nature 150, 563-565 
35 Gibson-Brown, J.J., et al. (1996) Evidence of a role for T-box genes in the evolution of limb 
morphogenesis and the specification of forelimb/hindlimb identity. Mechanisms of Development 56, 
93-101 
36 Losos, J.B. (1990) The Evolution of Form and Function: Morphology and Locomotor Performance 
in West Indian Anolis Lizards. Evolution 44, 1189-1203 
37 Rosenquist, M., et al. (2000) Evolution of the 14-3-3 Protein Family: Does the Large Number of 
Isoforms in Multicellular Organisms Reflect Functional Specificity? Journal of Molecular Evolution 51, 
446-458 
38 Youn, H.S., et al. (2006) Suppression of MyD88- and TRIF-dependent signaling pathways of toll-
like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochemical 
Pharmacology 72, 850-859 
39 Selvaraj, R.K., et al. (2006) Dietary lutein and fat interact to modify macrophage properties in 
chicks hatched from carotenoid deplete or replete eggs. Journal of Animal Physiology and Animal 
Nutrition 90, 70-80 
40 Klasing, K.C. (2011) Environmentally induced stochasticity of adaptive immunity. Good, bad, or 
ugly? In Annual Meeting of the Society for Integrative and Comparative Biology 
41 Silverin, B., et al. (2008) Ambient temperature effects on photo induced gonadal cycles and 
hormonal secretion patterns in Great Tits from three different breeding latitudes. Hormones and 
Behavior 54, 60-68 
42 Finch, C.E. (1990) Longevity, Senescence, and the Genome. University of Chicago Press 
43 Piersma, T. and van Gils, J.A. (2011) The Flexible Phenotype: a Body-centred Integration of Ecology, 
Physiology, and Behaviour. Oxford University Press 
44 Wiersma, P., et al. (2007) Tropical birds have a slow pace of life. Proceedings of the National 
Academy of Sciences 104, 9340-9345 



 23 

45 Camerano, L. (1880) On the equilibrinm of  living beings by means of  reciprocal destruction. In 
Reprinted in: Lecture Notes in Biomathematics (Levin, S., ed), pp. 360-380 
46 Jacob, U., et al. (2011) The role of body size in complex food webs: A cold case. Advances in 
Ecological Research 45, 181-223 
47 Pocock, M.J.O., et al. (2012) The Robustness and Restoration of a Network of Ecological Networks. 
Science 335, 973-977 
48 Dunne, J.A. (2006) The Network Structure of Food Webs. In Ecological networks: linking structure 
to dynamics in food webs (Pascual, M. and Dunne, J.A., eds), pp. 27-92, Oxford University Press 
49 Wang, Y., et al. (2008) Global metabolic responses of mice to Trypanosoma brucei brucei 
infection. Proceedings of the National Academy of Sciences 105, 6127-6132 
50 McDade, T., et al. (2007) What a drop can do: Dried blood spots as a minimally invasive method 
for integrating biomarkers into population-based research. Demography 44, 899-925 
51 Fliri, A.F., et al. (2010) Cause-effect relationships in medicine: a protein network perspective. 
Trends in Pharmacological Sciences 31, 547-555 
52 Brouwers, L., et al. (2011) Network Neighbors of Drug Targets Contribute to Drug Side-Effect 
Similarity. PLoS ONE 6, e22187 
53 Cohen, R. and Havlin, S. (2010) Complex Networks: Structure, Robustness and Function. 
Cambridge University Press 
54 Newman, M.E.J. (2010) Networks: An Introduction. Oxford Unviersity Press 
55 Pamplona, R. and Costantini, D. (2011) Molecular and structural antioxidant defenses against 
oxidative stress in animals. American Journal of Physiology - Regulatory, Integrative and Comparative 
Physiology 301, R843-R863 
56 West, D.B. (2001) Introduction to Graph Theory. Prentice Hall 
57 Mason, O. and Verwoerd, M. (2007) Graph theory and networks in Biology. Systems Biology, IET 1, 
89-119 
58 Clauset, A., et al. (2008) Hierarchical structure and the prediction of missing links in networks. 
Nature 453, 98-101 
59 Newman, M.E.J. (2006) Modularity and community structure in networks. Proceedings of the 
National Academy of Sciences 103, 8577-8582 
60 Dunne, J.A., et al. (2002) Network structure and biodiversity loss in food webs: robustness 
increases with connectance. Ecology Letters 5, 558-567 
61 Cohen, A.A. and McGraw, K.J. (2009) No simple measures for antioxidant status in birds: 
Complexity in inter- and intraspecific correlations among circulating antioxidant types. Functional 
Ecology 23, 310-320 
62 Blount, J.D., et al. (2003) Carotenoid modulation of immune function and sexual attractiveness in 
zebra finches. Science 300, 125-127 
63 McWilliams, S.R., et al. (2004) Flying, fasting, and feeding in birds during migration: a nutritional 
and physiological ecology perspective. Journal of Avian Biology 35, 377-393 
64 Kitano, H. (2002) Systems Biology: A Brief Overview. Science 295, 1662-1664 
65 Shipley, B. (2000) Cause and correlation in biology: a user's guide to path analysis, structural 
equations and causal inference. Cambridge University Press 
66 Mahalanobis, P.C. (1936) Mahalanobis distance. Proceedings National Institute of Science of India 
49, 234-256 
67 Yodzis, P. (2000) Diffuse effects in food webs. Ecology 81, 261-266 
 

Figure 1: A simplified, partial schematic of a physiological regulatory network (PRN). Red 

arrows indicate top-down control, such as steroid hormone modulation of immune function. 
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Purple arrows indicate feedback effects, such as antioxidant effects on glucocorticoids. Light 

blue arrows indicate direct interactions among sub-networks, such as immune regulation by 

dietary antioxidants. Green arrows indicate direct effects of the environment on sub-networks, 

such as content of antioxidants in the diet. Yellow arrows indicate environmental regulation of 

integrators, usually via the CNS. System-level properties of the PRN exist at different levels, 

including state within individuals (e.g. dysregulation) and species-level structure (modularity). 

Likewise, phenotype can include individual- or species-level traits (e.g. health and evolvability, 

respectively). Modularity is determined by the proportion of potential light blue arrows 

present; interconnectedness by the total number of arrows relative to molecules; and 

robustness by the density of purple arrows resulting in negative feedback effects. Temporal 

dynamics and metabolite flux (not shown) can also be important determinants of system-level 

properties such as dysregulation. The particular structure of connections, as well as their 

strengths and interactions, will determine how the PRN responds at an individual level and 

evolves at the species level in response to a changing environment [20]. 

 

Figure 2: Some system-level properties of PRNs that can be measured with network theory. A 

simple hypothetical PRN sub-network is shown (a cytokine cascade, for example). Relative to a 

baseline scenario (a), we can posit PRN structures that are more hierarchical (b), more modular 

(c), and that have higher connectivity (d). 
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