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Summary

An increasing number of aging researchers believes that multi-

system physiological dysregulation may be a key biological

mechanism of aging, but evidence of this has been sparse. Here,

we used biomarker data on nearly 33 000 individuals from four

large datasets to test for the presence of multi-system dysregu-

lation. We grouped 37 biomarkers into six a priori groupings

representing physiological systems (lipids, immune, oxygen

transport, liver function, vitamins, and electrolytes), then calcu-

lated dysregulation scores for each system in each individual

using statistical distance. Correlations among dysregulation

levels across systems were generally weak but significant.

Comparison of these results to dysregulation in arbitrary ‘sys-

tems’ generated by random grouping of biomarkers showed that

a priori knowledge effectively distinguished the true systems in

which dysregulation proceeds most independently. In other

words, correlations among dysregulation levels were higher

using arbitrary systems, indicating that only a priori systems

identified distinct dysregulation processes. Additionally, dysreg-

ulation of most systems increased with age and significantly

predicted multiple health outcomes including mortality, frailty,

diabetes, heart disease, and number of chronic diseases. The six

systems differed in how well their dysregulation scores predicted

health outcomes and age. These findings present the first

unequivocal demonstration of integrated multi-system physio-

logical dysregulation during aging, demonstrating that physio-

logical dysregulation proceeds neither as a single global process

nor as a completely independent process in different systems, but

rather as a set of system-specific processes likely linked through

weak feedback effects. These processes – probably many more

than the six measured here – are implicated in aging.
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Introduction

Research on aging biomarkers has traditionally focused on individual

biomarkers; however, this has been changing as single-mechanism

explanations of aging such as oxidative stress, telomeres, and inflamma-

tion increasingly give way to multi-factorial explanations, in which many

mechanisms interact (Weinert & Timiras, 2003; Ferrucci, 2005; Fried et al.,

2009; Cohen et al., 2013). In particular, much attention is focusing on

physiological dysregulation (alternatively referred to as allostatic load or

homeostenosis) (McEwen, 1998; Karlamangla et al., 2002; Crimmins

et al., 2003). While evidence is abundant for increases in various types of

physiological dysfunction with age, our use of ‘dysregulation’ is more

restricted, as an emergent property of a complex system in the formal

sense (Holland, 1992; Kauffman, 1993; Kriete, 2013). We define

physiological dysregulation as the breakdown with age in the capacity

of the complex regulatory networks to maintain organismal homeostasis

due to changes in the state of these networks; we exclude from this

definition adaptive changes with age and transient (i.e., reversible)

responses to environmental challenges (Yashin et al., 2012).

This framework of homeostatic dysregulation supports the hypothesis

that aging does not result from the downstream effects of a single

factor, pathway, or process. Rather it suggests the following testable

predictions: (i) multiple aging mechanisms should operate simultane-

ously; there could be several or many pathways, either independent or

correlated (Kirkwood, 2005); (ii) markers of system state should be

poorer predictors of aging-related outcomes than measures of system

dynamics (Varadhan et al., 2008; Yashin et al., 2010a); and (iii) risk of

aging-related outcomes (e.g., diseases) should often change as a

function of deviations of parameters (e.g., biomarkers) from their

normal ranges, rather than as a linear function of the parameters

(Seplaki et al., 2005; Arbeev et al., 2011; Yashin et al., 2012; Cohen

et al., 2013).

While these predictions are intuitive, they are hard to test and

evidence has largely been lacking, in large part due to the difficulties in

measuring dysregulation. Clearly, many studies have shown that

physiological parameters change with age, and many of these changes

are associated with specific pathologies or age-related problems (e.g.,

Seplaki et al., 2005). In this sense, there has long been good evidence

for functional changes during aging. However, theories on homeostatic

dysregulation suggest that dysregulation is not a piece-by-piece set of

problems that accumulate, but rather a breakdown in the functioning of

a complex system such that the overall functional deficits cannot be

simply or directly linked to specific piecewise problems. Perhaps the best

evidence to date has come from two key studies: Lipsitz (2004) has

demonstrated that declines in complexity of traits like heart rate

variability are linked to aging, and Fried et al. (2009) showed coordi-

nated, non-linear changes with age in biomarkers representing several

physiological systems.
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Recently, we demonstrated a novel, rigorous way to measure

dysregulation based on the statistical distance of a biomarker profile

(Cohen et al., 2013, 2014; Milot et al., 2014b). Statistical distance

assigns a score for how far an individual’s profile is from the average

profile; under a hypothesis of dysregulation, high scores indicate more

dysregulation, and should thus increase with age and predict health

outcomes after controlling for age. Furthermore, dysregulation is

expected to be a higher order property of regulatory networks, and

thus not overly sensitive to the choice of biomarkers (Cohen et al.,

2013). These predictions have been confirmed in different human

populations and species (Cohen et al., 2014; Milot et al., 2014a);

however, it is not yet clear to what extent dysregulation might be a

single global process, vs. a process that occurs independently or semi-

independently in different physiological systems which then further

dysregulate each other. We might intuitively suspect that aging proceeds

separately in different systems, but there are many known regulatory

links across systems. For example, vitamin E plays roles in both the

immune system and oxidative balance; many hormones coordinate

activity across multiple systems; and relative levels of albumin and

anemia appear to be coordinated (Cohen et al., 2012, 2015b).

Additionally, the relative insensitivity of global dysregulation measures

to biomarker composition gives the impression that dysregulation during

aging might be best characterized as a single global process rather than

a system-by-system process (Cohen et al., 2013, 2014). This paper

investigates that question.

Here, we tested the relationships of dysregulation scores among

different physiological systems using data on 37 common clinical blood

biomarkers in four well-known datasets, the National Health and

Nutrition Examination Survey (NHANES), the Women’s Health and

Aging Study (WHAS), the Baltimore Longitudinal Study on Aging

(BLSA), and Invecchiare in Chianti (Aging in Chianti, InCHIANTI).

Biomarkers were grouped into six standard physiological systems,

which we call the ‘a priori groupings’ (Table 1): immune function (five

biomarkers), electrolytes (five biomarkers), vitamins (seven biomarkers),

oxygen transport/anemia (eight biomarkers), lipids (four biomarkers),

and liver/kidney/protein transport (eight biomarkers). We examined

correlations among dysregulation levels of the a priori groupings to

assess whether dysregulation rates are similar across physiological

systems. To assess whether the a priori groupings optimally reflected

the true underlying systems, we compared the correlations among

them to correlations among randomly generated biomarker groupings

(the ‘arbitrary groupings’), predicting lower correlations among dysreg-

ulation scores for groupings that better distinguished independent

systems. If dysregulation proceeds completely independently across

systems, correlations among dysregulation scores should be zero after

age-adjustment. Conversely, if there is a single, global dysregulatory

process, dysregulation scores based on the a priori groupings should

correlate as strongly among each other as based on the arbitrary

groupings, and none of these correlations should be weak. We

replicated our analyses across the four datasets and tested the

associations of each system-specific dysregulation with age, mortality,

and various health outcomes.

Results

Dysregulation in a priori physiological systems

For each of the six physiological systems, we calculated a dysregulation

score based on the Mahalanobis distance (see Experimental procedures)

to measure dysregulation for each participant at each visit. Then we

adjusted the system-specific dysregulation scores for age and calculated

the pairwise Pearson correlations among these residuals. This resulted in

the 15 correlations in Fig. 1. We found weak but mostly significant

correlations among dysregulation levels for the a priori groupings

(Fig. 1). When significant, correlations were always positive, and never

greater than r = 0.27. Five correlations were significant in all data sets

where they were tested, and two were significant in no data set (Fig. 1).

The results in Fig. 1 are age-adjusted (see Experimental procedures) but

results without adjusting for age lead to the same conclusion (Fig. S1,

Supporting Information).

Correlations among a priori biomarker groupings compared

with correlations among arbitrary biomarker groupings

If the a priori groupings accurately identify true physiological systems

with respect to dysregulation, and if dysregulation proceeds at least

semi-independently in these systems, we expect weaker correlations

among dysregulation scores of the a priori groupings compared to

arbitrary groupings of biomarkers. This is because arbitrary groupings

would mix biomarkers across physiological systems, and therefore make

them less distinct and more correlated. Accordingly, testing the pairwise

correlations among all possible combinations of biomarkers vs. the a

priori groups allows us to assess not only whether there is separate

dysregulation across systems, but whether our a priori groupings are

representative, or whether there might be other hidden or non-intuitive

groupings of biomarkers that better represent the underlying dysregu-

lation processes.

For each of the 15 pairwise combinations of the six physiological

systems, we generated all possible biomarker groupings in two groups

of equal size to the original two groups. For example, we had five

electrolyte markers and four lipid markers, so for this pair we

generated all possible combinations for two groups of five and four

markers, respectively, 9 choose 5 = 9!/5!*(9–5)! = 126. However, we

did not use groups with different sizes than the original (e.g., 6 and 3)

to insure apples-to-apples comparisons. For each combination, we

calculated the correlation between individuals’ age-adjusted dysregu-

lation scores as calculated for each biomarker group and compared this

to the correlation between individuals’ dysregulation scores of the two

original (a priori) biomarker groups (Fig. 2). To better visualize the

results across the four datasets in a single panel, we show the kernel

densities of the distributions of the correlations among the arbitrary

groupings for each data set, and the vertical lines indicate the

correlations for the a priori grouping. The vertical lines are almost

always toward the extreme left of the distribution of correlations,

indicating that the a priori groupings separated physiological systems

about as well as possible. Note also that the kernel density distributions

were generally concordant across datasets, but varied across the 15

pairs of systems.

However, our a priori groupings rarely produced the single most

optimal division, i.e., the combination with the lowest correlation.

Close examination of results revealed that this was because some

markers have a strong affinity for one group or the other (e.g., the

blood biomarkers hemoglobin, hematocrit, MCH, MCHC, red blood cell

count, and RDW always group strongly), whereas other markers are

not strongly associated with either group, and can thus be placed

about equally well in either. Nonetheless, the performance of the

optimal groups was never much better than the a priori groupings; for

this reason, we believe that the a priori groupings are representative of

their physiological systems and we used these a priori groupings in

subsequent analyses.
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Association of dysregulation with age

Next, we calculated the association of system-specific and global

dysregulation with age for the three datasets that have longitudinal

data, namely InCHIANTI, WHAS, and BLSA (Fig. 3). Dysregulation

increased with age for most of the physiological systems in most data

sets, with the exception of lipids in BLSA, where the slope was negative

but not significant. All other results were positive although a few

(dashed lines) were not significant. The quadratic term was always

significant for InCHIANTI and sometimes significant for BLSA; the

significant quadratic trajectories (J-shaped) of dysregulation indicate an

acceleration of dysregulation with age. In the same figure, we also

show the result based on all of the 37 biomarkers (the last panel in

Fig. 3), i.e., the association of a ‘global’ dysregulation with age; the

results were always reproducible across the datasets and there do not

appear to be marked differences in the rate of increase across systems,

other than the potential absence of a relationship with age for lipid

dysregulation.

The effects of dysregulation on mortality and other health

outcomes

Finally, we explored the association of system-specific and global

dysregulation with mortality, clinical frailty, number of comorbidities,

cardiovascular disease, cancer, and diabetes (Fig. 4) in the two datasets

where the relevant information was available (InCHIANTI and WHAS), as

done previously for global dysregulation on a subset of markers (Milot

et al., 2014b). Depending on data availability, we examined either cross-

Table 1 A priori biomarker groupings and summary statistics by dataset

Biomarker System

Women’s Health and

Aging Study InCHIANTI

Baltimore

Longitudinal Study

on Aging

National Health and

Nutrition

Examination Survey

Mean SD Mean SD Mean SD Mean SD

Calcium Electrolytes 9.5 0.5 9.4 0.5 9.3 0.4 9.5 0.39

Chloride Electrolytes 103 4 106 4 104 3 103 2.84

Magnesium Electrolytes 1.99 0.20 2.08 0.36 2.05 0.20 NA NA

Sodium Electrolytes 140.0 2.9 141.2 2.9 141.7 2.8 139 2.34

Potassium Electrolytes 4.2 0.43 4.19 0.40 4.20 0.34 4 0.34

Phosphorous Electrolytes NA NA NA NA NA NA 3.9 0.65

Hemoglobin Blood measures 13.0 1.2 13.8 1.5 13.6 1.4 14 1.51

Hematocrit Blood measures 39 4 41 4 41 4 41 4.41

Iron Blood measures 80 27 85 29 89 32 86 36.5

Red cell distribution width Blood measures 14.1 1.4 13.8 1.2 13.5 1.5 13 1.14

MCH Blood measures 30.5 2.1 30.5 2.1 30.4 2.1 30 2.34

MCHC Blood measures 33.1 1.2 33.7 1.0 33.5 1.2 34 0.91

Ferritin Blood measures 112 124 123 127 107 99 81 118

Red blood cell count Blood measures 4.26 0.43 4.53 0.47 4.50 0.48 4.7 0.48

Albumin Proteins, liver, kidney 4.1 0.3 58.9 4.2 4.1 0.3 4.3 0.38

Alkaline Phosphatase Proteins, liver, kidney 87 35 165 110 78 23 92 65

Total proteins Proteins, liver, kidney 7.0 0.5 7.3 0.5 7.1 0.5 7.3 0.5

Gamma-glutamyl transpeptidase Proteins, liver, kidney 31 36 27 32 30 24 27 40.3

Lactate dehydrogenase Proteins, liver, kidney 177 35 344 75 430 163 136 34.5

Uric acid Proteins, liver, kidney 5.6 1.7 5.2 1.4 5.3 1.4 5.3 1.43

Alanine transaminase Proteins, liver, kidney 19.6 10.9 20.8 10.5 32.0 12.4 24 24.1

Aspartate transaminase Proteins, liver, kidney 16.2 12.1 19.4 15.2 28.1 10.6 25 17.8

White blood cell count Immune measures 6.3 2.4 6.3 1.7 6.0 3.5 7.3 2.38

Neutrophil Immune measures 60 10 59 9 55 10 55 11.9

Monocytes Immune measures 6.9 2.4 6.6 2.2 9.2 4.3 8 2.39

Lymphocytes Immune measures 29 9 31 8 32 10 33 10.7

Basophils Immune measures 0.74 0.53 0.52 0.35 0.55 0.32 0.7 0.58

Triglycerides Lipids 4.923 0.54 4.73 0.47 4.51 0.49 4.8 0.57

HDL Lipids 3.968 0.29 57.1 15 58.7 17.2 53 16.2

Cholesterol Lipids 224.3 41.3 215 41.8 194 36.5 200 42.9

LDL Lipids NA NA 132 37.1 116 32.9 118 36.2

Cholesterol/HDL ratio Lipids 4.471 1.46 NA NA NA NA NA NA

Vitamin B12 Vitamins 494 307 471 334 NA NA 641 2218

Folate Vitamins 12.4 10.4 10.1 6.9 NA NA 21 10.8

Vitamin A/retinol Vitamins 72.06 23.6 1.94 0.49 NA NA 52 17.6

Gamma-tocopherol Vitamins 10.07 1.13 2.21 0.95 NA NA 224 121

Beta-cryptoxanthin Vitamins 0.148 0.14 0.21 0.16 NA NA 11 8.29

Alpha-carotene Vitamins 0.104 0.1 0.06 0.05 NA NA 3.7 5.33

Vitamin D-25 Vitamins 21.71 10.9 54 36 NA NA 22 8.88
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sectional associations or longitudinal associations; see Experimental

procedures for details.

Dysregulation predicted mortality controlling for age, usually signif-

icantly and quite strongly (Fig. 4a), with each additional unit of

dysregulation score implying about a 30% increase in hazard of

mortality. The sole exception was electrolyte dysregulation in InCHIANTI;

blood, liver, and global dysregulation showed the strongest effects.

Frailty was predicted by electrolyte, blood, and liver dysregulation, and

perhaps weakly by vitamin, lipid, and global dysregulation (Fig. 4b).

Dysregulation was only weakly associated with the number of comor-

bidities, but effects were surprisingly stable across systems and data sets

(Fig. 4c). Cardiovascular disease incidence is strongly predicted by liver,

vitamin and global dysregulation, and more weakly by electrolyte and/or

blood dysregulation in InCHIANTI, but the results do not hold for cross-

sectional analysis of CVD prevalence in WHAS (Fig. 4d). Diabetes

incidence and prevalence are reliably predicted by electrolyte, liver,

lipid, and global dysregulation (Fig. 4e). Cancer was generally unasso-

ciated with dysregulation, with an exception for cancer incidence being

predicted by blood dysregulation in InCHIANTI (Fig. 4f).

Feedback effects among systems

We tested the potential for long-term causal effects among the six

systems, using structural equations models to assess the effect of

dysregulation in each system on all the others at subsequent time points

and controlling for the effect of each dysregulation on itself. Each

system’s dysregulation consistently predicted itself at subsequent time

points (P < 0.0001 for all systems in all data sets), but in no case was

there a clear, reproducible result for dysregulation scores of one system

predicting another in more than two datasets (Table 2). Detailed results

are available in Table S2.

Discussion

Overall, we found strong support for the existence of system-specific

dysregulation processes in all six physiological systems we tested. We

also found semi-independence between the six system-specific

dysregulation processes. A priori definition of these systems by

biomarker groupings was close to optimal within the marker set

available, though some biomarkers did not clearly fall within any system.

Dysregulation of all systems except lipids clearly increased with age, and

in some cases clearly accelerated with age. System-specific dysregulation

scores also predicted a wide variety of health outcomes, though these

associations often depended on which system, which outcome, and

whether the association was analyzed for cross-sectional prevalence or

longitudinal incidence. Mortality and frailty in particular were predicted

independently by dysregulation of most systems. Correlations among

individuals’ dysregulation scores for different systems were mostly

positive but weak, suggesting a model of semi-independence, i.e., that

processes internal to each system cause dysregulation, but with the

possibility for feedback effects with dysregulation of other systems.

This finding has substantial implications for our understanding of the

biological mechanisms of aging. For example, if aging is largely a result

of uniform cellular senescence, we would not expect largely indepen-

dent dysregulation processes in different systems. More likely, cellular

senescence interacts with tissue-, organ-, and organism-level processes

in complex, system-specific ways. In this case, a focus on cellular

senescence alone as the root of aging may be misplaced. Conversely,

while global dysregulation can be measured, it does not appear that

there is a single, organism-level dysregulation process that can explain

aging. Our findings thus support the need to incorporate multiple

hierarchical levels to arrive at a comprehensive understanding of aging.

These findings also present the first unequivocal demonstration of

integrated multi-system physiological dysregulation during aging. While

numerous authors have discussed the possibility of multi-system

dysregulation (Crimmins et al., 2003; Ferrucci, 2005; Seplaki et al.,

2005; Varadhan et al., 2008; Fried et al., 2009; Arbeev et al., 2011;

Maggio et al., 2014), empirical studies have been sparse. Lipsitz has

demonstrated loss of complexity in cardiac rhythms and other aspects of

physiology (Lipsitz, 2004), but the link to dysregulation is still unclear.

Allostatic load studies have quantified what can be interpreted as a

global measure of dysregulation (Karlamangla et al., 2002; Crimmins

et al., 2003; Szanton et al., 2009), comparable to some of our previous

studies using statistical distance. To our knowledge, the only study to

explicitly measure multi-system physiological dysregulation is that of

Fried et al. (2009). In that study, one or two biomarkers per system were

used to define dysregulation based on a priori clinical knowledge;

number of dysregulated systems was then shown to predict clinical

frailty status. Our findings here present a substantial next step: (i) using a

previously validated statistical method to quantitate dysregulation; (ii)

including 4+ markers per system to increase the robustness of the

inference; (iii) independently validating the choice of biomarkers in each

system; (iv) establishing the correlations among dysregulations of

different systems; (v) using longitudinal data to make more robust

temporal inferences; and (vi) explicitly testing the relationship of each

type of dysregulation with age, mortality, and chronic diseases.

The most likely explanation for the weak correlations among

dysregulation scores of different systems is that there are feedback

effects among the systems. We attempted to test for this using the

structural equation models to predict subsequent dysregulation scores

based on current dysregulation scores across systems. While some results

were significant, this proportion was only slightly higher than might be

Fig. 1 Correlations among age-adjusted system-specific dysregulation scores. The

dysregulation scores were calculated from the six a priori biomarker groupings

and then adjusted for age. Darker background color indicates stronger correlation,

and values not significant at a = 0.05 are Xed out. The correlations are positive

and weak in general, showing semi-independence (or very weak dependence) of

the six system-specific dysregulation scores.

Clear evidence of multi-system dysregulation, Q. Li et al.4
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expected by chance given multiple testing issues (Rothman, 1990;

Bender & Lange, 2001), and the relationships we did find were not easily

reproducible across datasets. We see three likely explanations for this

failure to detect clear feedback effects. First, the six systems measured

here are a very small percentage of the actual systems involved in

dysregulation and aging; they are the ones for which sufficient

biomarker data were available in our datasets. It is thus highly likely

that any feedback effects among these six systems are mediated by

other systems that have not been assessed. This would explain why we

do find some significant effects, but inconsistently so across datasets:

contingency could have a large role. Second, timescales could be crucial

here, and perhaps the intervals of several years between the visits

(somewhat variable across datasets) were not the right timescale to

detect the effects we were looking for. Third, there could be some

upstream process causing all the dysregulations, such that they are

correlated but do not cause each other.

Obviously, the 37 biomarkers measured here represent a tiny fraction

of the molecules and systems likely to be implicated in aging (Medvedev,

Fig. 2 Quasi-optimal separation of systems with a priori groups. The solid curves show the kernel densities by dataset of the correlation coefficients between two age-

adjusted dysregulation scores as calculated from all possible arbitrary biomarker groupings with the same sizes as the two a priori groups. Positions of the vertical dotted lines

indicate correlations among the two age-adjusted dysregulation scores corresponding to the a priori biomarker groupings, i.e., the results presented in Fig. 1. Each panel

shows a possible pair of two systems. Different colors are used for different datasets. The figure shows that a priori biomarker groupings lead to much more weakly

correlated dysregulation scores than arbitrary groupings and are close to as perfectly separated as possible, although a few correlations in the distribution are as low as the a

priori correlations.

Clear evidence of multi-system dysregulation, Q. Li et al. 5
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1990; Kirkwood, 2011). Similar methods can likely be applied to high-

throughput technologies such as microarray, proteome, and metabo-

lome data to identify other important systems (e.g., Hoffman et al.,

2014). Nonetheless, circulating blood biomarkers should provide much

of the most important information: organism-level signaling occurs

mostly through the circulatory and central nervous systems, and many of

the classical biomarkers are critical regulatory molecules with broad

roles, or are well-known to be good general indicators of health state.

Moreover, our previous studies show that the signal of dysregulation

appears to get stronger as more markers are included, but with

diminishing returns for additional markers (Cohen et al., 2013, 2014). At

this point, we do not feel there is sufficient evidence to thoroughly

explore the implications of our findings system-by-system. However,

long term our hope is that the approach we describe can be used to

gradually work down from the organism level to physiological systems,

organs, tissues, and cells. This is another advantage of our approach

relative to other methods of measuring allostatic load or organism state:

we provide a pathway toward linking an organismal understanding to

more detailed mechanistic studies.

The presence of global and system-specific dysregulation, as mea-

sured by statistical distance, supports a complex systems theory of aging

in which individual molecules play minor roles in determining overall

system state and behavior (Ferrucci, 2005; Managbanag et al., 2008;

Fried et al., 2009; Cohen et al., 2013). Under this theory, aging is at

least partly due to emergent properties of complex system dynamics.

This is further strengthened by the robustness of dysregulation measures

to the inclusion or exclusion of individual biomarkers. Correlations of

individual biomarkers with age vary substantially across populations and

must be interpreted with caution (Cohen et al., 2015b); likewise, the

same biomarker can have both pro- and anti-longevity associations at

different points in the lifespan (Moeller et al., 2014). These findings

might arise because aging involves a mix of non-adaptive (i.e.,

pathological) changes, as well as other compensations to these changes.

This is supported by findings that optimal biomarker levels change with

age (Arbeev et al., 2011). Accordingly, while our results agree with a

complex systems theory of aging, they are not proof of such an

explanation. In particular, we cannot exclude the possibility of an

upstream cause that affects dysregulation in multiple systems.

Likewise, a complex systems understanding of aging and physiology

suggests that targeting individual molecules as key players in aging and

chronic disease will rarely bear fruit; in this context, measures of system-

specific dysregulation will simultaneously provide a big-picture explana-

tion of the physiological underpinnings of aging pathologies and

concrete tools to measure aspects of biological aging rate (Levine,

2013). For example, we can ask how aspects of lifestyle such as diet,

physical activity, and social participation affect dysregulation rates in

different systems, targeting the most critical (such as blood and liver

dysregulation here) for interventions. Quantitation of system-specific

dysregulation thus provides both biological insight into the aging process

and concrete tools to measure aging and improve the health of aging

populations.

Our study must be considered in light of several limitations. First,

statistical distance depends on identifying a ‘normal’ physiological

state, the statistical centroid. This is usually calculated as the

population average for all parameters, a reasonable but imperfect

approximation. It is not easy to find an ideal centroid (Cohen et al.,

2013, 2015a); hence the dysregulation scores could be biased

systematically. Accordingly, further work is needed to estimate a

robust vector of biomarker values to replace the centroid, based not

on the means but, ideally, on age-specific profiles of mortality risk

across biomarker values. Second, the suite of biomarkers used is

neither comprehensive nor the best conceivable. The statistical

methods used are designed to function even with imperfect

biomarkers, but undoubtedly future studies will be necessary to

improve biomarker selection and thereby produce more accurate

results. Third, we do not take genetic background into account. While

genetic factors certainly have some influence on the processes we

seek to describe, genetic control of aging appears largely due to many

genes of small effect (Yashin et al., 2010b), many of which have yet

to be identified, and incorporation into this study would require

stratification into more groups than is feasible. Nevertheless, we

believe that both genetic and sociological influences on aging pass

through the physiological pathways studied here, making them logical

follow-up studies when more information is available.

Experimental procedures

Datasets

Sampling and data collection procedures for the four study populations

are described in detail elsewhere (Shock, 1984; Fried et al., 1995;

Guralnik et al., 1995; Ferrucci et al., 2000; Ferrucci, 2009); we also

provide more detailed information in the Supporting Information. BLSA,

InCHIANTI, and WHAS are longitudinal cohort studies and are composed

of elderly community dwelling adults (BLSA and InCHIANTI contain a

small proportion of young individuals). The sample sizes used for this

Fig. 3 Changes in dysregulation scores with age, by physiological system. The first

six panels show the association between age and dysregulation scores of the

corresponding systems. The last panel shows the association between age and

global dysregulation. We first fitted the quadratic model. If the quadratic term was

significant (a = 0.05), we showed it with a solid quadratic curve. When the

quadratic term was not significant, we fitted the linear model. Significant results

are shown with a solid line and non-significant results with a dashed line. Age

started from 65 for Women’s Health and Aging Study (WHAS) and the other two

datasets had a small fraction of younger patients. The figure indicates a clear

increase of system-specific and global dysregulation scores with age. Note that the

analyses here are longitudinal, so National Health and Nutrition Examination

Survey (NHANES) data were not used.
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study were 2644 visits (1256 patients), 2932 visits (1308 patients), and

3799 visits (1226 patients) for BLSA, InCHIANTI and WHAS, respectively.

WHAS combines the WHAS I and WHAS II studies, and is solely women

aged 65+. NHANES is a cross-sectional study based on a representative

sample of the US population and conducted in various waves since the

1970s; we combine data from six waves (1998–2007) which yielded a

sample of 29 188 patients. The analysis of semi-independence of

different aging systems was performed on all of the four datasets. The

effect of age on dysregulation was performed on the three longitudinal

datasets. The analysis of health outcomes were performed on InCHIANTI

and WHAS.

Biomarker selection

Biomarkers were chosen based on availability in sufficient sample size

across the four studies. In a few cases, biomarker groupings differed

1.0 1.5 2.0
Hazard ratio per unit dysregulation score

● Electrolyte I
● Electrolyte W

● Blood I
● Blood W

● Liver I
● Liver W

● Immune I
● Immune W

● Vitamin I
● Vitamin W

● Lipid I
● Lipid W

● All I
● All WM

or
ta
lit
y

1.0 1.5 2.0
Odds ratio of CVD per unit dysregulation score

● Electrolyte I
● Electrolyte W

● Blood I
● Blood W

● Liver I
● Liver W
● Immune I
● Immune W

● Vitamin I
● Vitamin W

● Lipid I
● Lipid W

● All I
● All WC

VD

−0.2 0.0 0.2 0.4 0.6 0.8

Additional frailty criteria per unit dysregulation score

● Electrolyte I
● Electrolyte W

● Blood I
● Blood W

● Liver I
● Liver W

● Immune I
● Immune W

● Vitamin I
● Vitamin W
● Lipid I

● Lipid W
● All I

● All WFr
ai
lty

1.0 1.5 2.0

Odds ratio of diabetes per unit dysregulation score

● Electrolyte I
● Electrolyte W

● Blood I
● Blood W

● Liver I
● Liver W

● Immune I
● Immune W

● Vitamin I
● Vitamin W

● Lipid I
● Lipid W

● All I
● All WD

ia
be
te
s

−0.2 0.0 0.2 0.4 0.6 0.8
Additional comorbidities per unit dysregulation score

● Electrolyte I
● Electrolyte W
● Blood I

● Blood W
● Liver I

● Liver W
● Immune I

● Immune W
● Vitamin I

● Vitamin W
● Lipid I

● Lipid W
● All I

● All WC
om
or
bi
di
tie
s

1.0 1.5 2.0
Odds ratio of cancer per unit dysregulation score

● Electrolyte I
● Electrolyte W

● Blood I
● Blood W

● Liver I
● Liver W

● Immune I
● Immune W

● Vitamin I
● Vitamin W

● Lipid I
● Lipid W

● All I
● All WC

an
ce
r

(A)

(B)

(C)

(D)

(E)

(F)

Fig. 4 Relationships between dysregulation scores and health outcomes. Estimations (points) together with 95% CIs (segments) for relationships between health outcomes

and dysregulation scores by physiological system, as well as global dysregulation scores. Results are based on regression models adjusting for age and sex. Different colors

indicate different systems. ‘W’ indicates Women’s Health and Aging Study (WHAS) and ‘I’ InCHIANTI. Associations between dysregulation scores and certain health

outcomes are stronger, while the association is more ambiguous for CVD and not significant for cancer.
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slightly across datasets due to data availability, but we assured the same

number of biomarkers per group in each dataset (Table 1). Due to

missing data, we did not include vitamins in the analyses of BLSA. Folate,

total vitamin D-25 and vitamin B12 were only available at baseline in

InCHIANTI, so we included these biomarkers in the cross-sectional

analysis of biomarker correlations between biomarker groups (Figs 1 and

2), but did not include them in the longitudinal analyses showing

associations between age and dysregulation scores and associations

between dysregulation scores and health outcomes (Figs 3 and 4). The

biomarkers are listed in Table 1 with their means and standard

deviations, organized by a priori physiological system. The need for a

largely common list of biomarkers across four datasets resulted in a final

list that was composed nearly exclusively of markers that are (i) common;

(ii) used often in clinic; and (iii) cheap, increasing the relevance of any

results for clinical implementation. Assignment of markers to a priori

systems was based on consultation among biologists on the team.

Dysregulation scores

Recently, we proposed a novel way to measure physiological dysregu-

lation based on clinical biomarkers (Cohen et al., 2013) and we use this

method to measure dysregulation in this paper. Under the hypothesis

that a well-functioning, homeostatic physiology should be relatively

similar across individuals, but that there are many ways in which

physiology might become dysregulated, we proposed statistical distance,

specifically Mahalanobis distance, (Mahalanobis, 1936) as a measure of

physiological dysregulation. The Mahalanobis distance applied to

biomarkers is a measure of how aberrant an individual’s profile is

relative to everyone else in the population, and greater distance should

thus measure greater dysregulation. The Mahalanobis distance also has

certain advantages over other multivariate distances. For example, the

Euclidean distance is a special case of the Mahalanobis distance when

variables are uncorrelated with each other (Tan et al., 2006); by taking

into account correlation structure, Mahalanobis distance automatically

corrects for redundancy among variables.

Normally, statistical distance is calculated based on the entire

population, but this is not optimal when it is interpreted as physiological

dysregulation, because the ‘normal’ state is defined as the centroid of

the entire population. Using a younger, healthier reference population to

calculate the centroid provides a better signal, though choice of

reference population is not critical unless it differs substantially from

the study population in multiple demographic characteristics (Cohen

et al., 2015a). Here, we used the younger patients as the reference

group, and calculated the Mahalanobis distance from each patient to the

centroid of the reference group in the multivariate biomarker space. Age

structure is different in the four datasets, so we took different age

thresholds for different datasets based on the principle that the

reference group should consist of relatively younger patients in each

dataset and sample size of the reference group should not be too small.

For NHANES we took patients under 45 years old as reference group, 55

for BLSA, 65 for InCHIANTI and 75 for WHAS. In each case we used the

biomarker values from the first visit of each eligible patient to make the

reference group. To confirm that results were not sensitive to choices of

age thresholds, we reran each model using two additional manually

chosen thresholds within 5 years of those listed above, but found no

qualitative differences in results (data not shown). This is expected based

on our previous validation study (Cohen et al., 2015a). The system-

specific dysregulation scores were compared with global dysregulation

scores based on all biomarkers.

Data analysis

Changes in dysregulation with age were studied using Bayesian linear

mixed models with uninformative priors and an individual intercept. We

first fitted the quadratic model; if the quadratic term was not significant

we fitted the linear model; and if the linear model was still not significant

we show a dashed line in the figure. Age started from 65 forWHAS (green

lines) whereas the other two datasets had some younger patients, though

they were still primarily composed of individuals aged 65+. All analyses

were performed in R v3.0.1. All codes are available upon request.

Data transformation

All biomarkers were transformed before analysis. The variables were log-

or square-root- transformed as necessary to approach normality. All

variables were centered at the mean of the reference group and divided

by the standard deviation of the reference group.

Correlation between dysregulation scores of a priori systems

Previous studies (Cohen et al., 2013, 2014; Milot et al., 2014b) showed

that global dysregulation increased with age, and the current study

confirms that this is also true for system-specific dysregulation (see

‘association of dysregulation with age’). Accordingly, correlations among

dysregulation scores of different systems might be due solely to the fact

that each correlates with age, rather than to an independent biological

link in the dysregulation rates. We thus adjusted for age before

measuring correlations between system-specific dysregulation scores.

We did this by calculating the residuals (predicted values) of the

dysregulation scores after running a locally weighted regression in each

case (R function loess()), since the change of dysregulation scores

with age is likely to be non-linear and we wanted to capture the full

relationship as faithfully as possible. We also replicated the analysis

without adjusting for the effect of age (Fig. S1).

Table 2 Significant temporal predictions of inter-system dysregulation scores identified using structural equations models

Baltimore longitudinal study on aging (5 systems) Women’s Health and Aging Study (5 systems) InChianti (5 systems) InChianti (6 systems)

Blood ? Electrolyte Lipid ? Blood Lipid ? Electrolyte Lipid ? Electrolyte

Electrolyte ? Lipid Electrolyte ? Liver Immune ? Blood Immune ? Blood

Liver ? Electrolyte Liver ? Electrolyte Blood ? Liver

Electrolyte ? Immune Vitamin ? Immune

Liver ? Vitamin

The signs of the two arrows ‘Lipid ? Electrolyte’ and ‘Immune ? Blood’ are negative. Relationships listed are those significant at a = 0.05, among the 20 tested in datasets

with five systems and 30 tested in datasets with six systems. Note that no relationship was replicated in more than two datasets, and only three (Liver ? Electrolyte,

Lipid ? Electrolyte, and Immune ? Blood) were replicated in two systems.
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For NHANES, we had only one visit per patient. For cross-sectional

analyses of the three longitudinal datasets, we randomly selected a

visit with complete data for each patient to eliminate intra-patient

correlations. For InCHIANTI, this corresponded exactly to the first visit

because several biomarkers were not taken during the follow-up visits.

We calculated the Pearson correlations among the age-adjusted

dysregulation scores as reported in Fig. 1. For example, the a priori

system of electrolytes contained five biomarkers and the a priori

system of vitamins consisted of seven biomarkers; we obtained the

age-adjusted dysregulation scores for the electrolyte system based on

the five biomarkers and the age-adjusted dysregulation scores for the

vitamin system based on the seven biomarkers. In this way, each

patient had two new variables, one representing dysregulation in the

electrolyte system and the other representing dysregulation in the

vitamin system, and we calculated the correlation between the two

variables to measure the dependence level between the two system-

specific dysregulation processes. This resulted in the ‘Electrolyte-

Vitamin’ correlation in Fig. 1.

As information on vitamins was largely unavailable for BLSA, we

decided not to include vitamin dysregulation for BLSA. For WHAS,

there was no patient with complete information on all 37 biomarkers,

so we reported pairwise correlations on available observations.

Correlations among all possible biomarker groupings

The same biomarkers were used to calculate correlations among age-

adjusted dysregulation scores of all possible combinatorial biomarker

groupings with equal size to the a priori biomarker groupings. There

are 6�ð6�1Þ
2 = 15 correlations among the six a priori biomarker groups.

For each of the 15 cases, we took all biomarkers in the two a priori

groups, divided them into two random biomarker groups with equal

size to the a priori groups, and calculated the correlation between the

dysregulation scores of the two random biomarker groups (represent-

ing system-specific dysregulation in two ‘random’ physiological

systems). We then repeated this for all combinatorial divisions of

the biomarkers into sets of appropriate size. Taking the same example

of electrolytes and vitamins, there are 12 biomarkers altogether from

the two a priori biomarker groups. Since the two a priori groups had

five and seven biomarkers respectively, we analyzed always of dividing

the 12 biomarkers into two groupings, one with five biomarkers and

the other with seven. As a result, there were C5
12 = 792 possibilities to

make two arbitrary biomarkers groupings having equal size with the

two original groups. In each of the 792 cases, we calculated age-

adjusted dysregulation scores based on the two arbitrary biomarker

groups, and then calculated the correlation between these two age-

adjusted dysregulation scores. This generated 792 correlation coeffi-

cients. We showed the four kernel density distributions for the four

datasets of the 792 correlations in the panel ‘Electrolyte-Vitamin’ in

Fig. 2; to compare with the a priori biomarker grouping, we also

showed the correlation between the a priori dysregulation scores with

vertical dotted lines; positions of the vertical dotted lines on the x-axis

indicate the correlations, i.e., the values presented in Fig. 1.

Association of dysregulation scores with age

Trajectories of dysregulation scores with age were estimated for each

physiological system, and also for the global dysregulation score

calculated with all of the 37 biomarkers, for the three datasets with

longitudinal information. We used Bayesian mixed models implemented

in R (package MCMCGLMM) with uninformative priors, 17 000 iterations

and burn-in at 7000, which was always sufficient to insure auto-

correlations in Markov chain samples of < 0.1. Models included

population- and individual-level intercept, age, and square of age at

each visit. Inclusion or exclusion of individual-level terms had little effect

on fixed effect estimates.

Association of health status with dysregulation scores

For InCHIANTI and WHAS, for which we had access to health status

information, we ran a series of regression models to predict health

status based on dysregulation scores controlling for age (and for sex

in InCHIANTI). Due to data availability, frailty was analyzed longitu-

dinally in WHAS and cross-sectionally in InCHIANTI, while chronic

diseases were analyzed longitudinally in InCHIANTI and cross-section-

ally in WHAS. The relationship between dysregulation scores and

mortality was assessed using time-to-event Cox proportional hazards

models with age as the timescale. Frailty criteria and number of

comorbidities were assessed using Poisson regression. Logistic regres-

sion was used for individual chronic diseases. Age was rigorously

controlled for using a flexible cubic basis spline (bs function, FDA

package, R) with four knots. The Poisson regressions and logistic

regressions were implemented with the MCMC Bayesian generalized

linear mixed model (MCMCGLMM package), when longitudinal data were

available, controlling for individual as a random effect. When the data

were cross-sectional, we used the glm() function. We tested the

relationship between each system’s dysregulation and each health

outcome both with and without control for dysregulation of all other

systems.

There are many other determinants of health status that we do not

control for, nonetheless, the notion of causality in complex dynamic

systems does not apply in the same way it does to simple, deterministic

systems (Wagner, 1999); accordingly, we were not attempting to show

even putative causal relationships between dysregulation scores and

health outcomes, but rather consistent and strong associations indicat-

ing a close linkage of the phenomena within network dynamics.

Structural equations models

To assess possible feedback effects among dysregulations in different

systems, we employed Seemingly Unrelated Regression (SUR; Zellner,

1962), a variant on structural equations models. These models permitted

us to test for the effects of each system on each other system,

controlling for the effects of all the other systems. Models used lagged

effects such that we were always assessing the effect of a dysregulation

level at a given visit on the level of another dysregulation level at the

subsequent visit. We were not able to use this longitudinal approach to

the vitamin system except for InCHIANTI.
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