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Résumé  

La sécurité de plusieurs systèmes électriques est fortement dépendante de la fiabilité de leur 

bloc-batterie à base de piles aux ions lithium (Li-ion). Par conséquent, ces batteries doivent 

être suivis et contrôlés par un système de gestion des batteries (BMS). Le BMS interagit 

avec toutes les composantes du bloc-batterie de façon à maintenir leur intégrité. La 

principale composante d’un BMS est un modèle représentant le comportement des piles Li-

ion et capable de prédire ses différents points d’opération. Dans les industries de 

l’électronique et de l’automobile, le BMS repose habituellement sur des modèles empiriques 

simples. Ceux-ci ne sont cependant pas capables de prédire les paramètres de la batterie 

lorsqu’elle vieillit. De plus, ils ne sont applicables que pour des piles spécifiques. D’un autre 

côté, les modèles électrochimiques sont plus sophistiqués et plus précis puisqu’ils sont basés 

sur la résolution des équations de transport et de cinétique électrochimique. Ils peuvent être 

utilisés pour simuler les caractéristiques et les réactions à l’intérieur des piles aux ions 

lithium. 

Pour résoudre les équations des modèles électrochimiques, il faut connaître les différents 

paramètres électrochimiques et thermo-physiques de la pile. Les variables les plus 

significatives des piles Li-ion peuvent être divisées en 3 catégories : les paramètres 

géométriques, ceux définissant les matériaux et les paramètres d’opération. Les paramètres 

géométriques et de matériaux peuvent être facilement obtenus à partir de mesures directes 

ou à partir des spécifications du manufacturier. Par contre, les paramètres d’opération ne 

sont pas faciles à identifier. De plus, certains d’entre eux peuvent dépendre de la technique 

de mesure utilisée et de l’âge. Finalement, la mesure de certains paramètres requiert le 

démantèlement de la pile, une procédure risquée et destructive. 

Plusieurs recherches ont été réalisées afin d’identifier les paramètres opérationnels des piles 

aux ions lithium. Toutefois, la plupart de ces études ont porté sur l’estimation d’un nombre 

limité de paramètres et se sont attardées sur un seul type de matériau pour l’électrode positive 

utilisé dans la fabrication des piles Li-ion. De plus, le couplage qui existe entre les 

paramètres électrochimiques et thermo-physiques est complètement ignoré. Le but principal 

de cette thèse est de développer une méthode générale pour identifier simultanément 

différents paramètres électrochimiques et thermo-physiques et de prédire la performance des 

piles Li-ion à base de différents matériaux d’électrodes positives. Pour atteindre ce but, une 

méthode inverse efficace a été introduite. Des modèles directs représentatifs des piles Li-ion 

à base de différents matériaux d’électrodes positives ont également été développés. Un 
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modèle rapide et précis simulant la performance de piles Li-ion avec des électrodes positives 

à base de LiMn2O4 ou de LiCoO2 est présenté. Également, deux modèles ont été développés 

pour prédire la performance des piles Li-ion avec une électrode positive de LiFePO4. Le 

premier, appelé modèle mosaïque modifié (MM), est basé sur une approche macroscopique 

alors que le deuxième, appelé le modèle mésoscopique, est plutôt basé sur une approche 

microscopique. Des études d’estimation de paramètres ont été conduites en utilisant les 

modèles développés et des données expérimentales fournies par Hydro-Québec. Tous les 

paramètres électrochimiques et thermo-physiques des piles Li-ions ont été simultanément 

identifiés et appliqués à la prédiction de la performance des piles. Finalement, une technique 

en temps réel reposant sur des réseaux de neurones est introduite dans la méthode 

d’estimation des paramètres intrinsèques au piles Li-ion. 

Mots clés: Piles Li-ion, Modèle pseudo-2D (P2D), Estimation de paramètres, Méthode 

inverse, Analyse de sensibilité, Algorithme génétique, Matériau d’électrode positive à base 

de LiFePO4 (LFP), Modèle mosaïque modifié, Optimisation multi-objectif, Piles Li-ion 

cylindriques, Modèle mésoscopique, Estimation de paramètres en ligne, Réseaux neuronaux, 

Système de gestion de batteries. 
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Abstract 
The safety of many electrical systems is strongly dependent on the reliable operation of their 
lithium-ion (Li-ion) battery packs. As a result, the battery packs must be monitored by a 
battery management system (BMS). The BMS interacts with all the components of the system 
so as to maintain the integrity of the batteries. The main part of a BMS is a Li-ion battery 
model that simulates and predicts its different operating points. In the electronics and in the 
automobile industries, the BMS usually rests on simple empirical models. They are however 
unable to predict the battery parameters as it ages. Furthermore, they are only applicable to a 
specific cell. Electrochemical-based models are, on the other hand, more sophisticated and 
more precise. These models are based on chemical/electrochemical kinetics and transport 
equations. They may be used to simulate the Li-ion battery characteristics and reactions.  
In order to run the electrochemical-based mathematical models, it is imperative to know the 
different electrochemical and thermophysical parameters of the battery. The significant 
variables of the Li-ion battery can be classified into three groups: geometric, material and 
operational parameters. The geometric and material parameters can be easily obtained from 
direct measurements or from the datasheets provided by the manufacturer. The operational 
properties are, on the other hand, not easily available. Furthermore, some of them may vary 
according to the measurement techniques or the battery age. Sometimes, the measurement of 
these parameters requires the dismantling of the battery itself, which is a risky and destructive 
procedure.  
Many investigations have been conducted to identify the operational parameters of Li-ion 
batteries. However, most of these studies focused on the estimation of limited parameters, or 
considered only one type of the positive electrode materials used in Li-ion batteries. Moreover, 
the coupling of the thermophysical parameters to the electrochemical variables is ignored in 
all of them. The main goal of this thesis is to develop a general method to simultaneously 
identify different electrochemical and thermophysical parameters and to predict the 
performance of Li-ion batteries with different positive electrode materials. To achieve this 
goal, an effective inverse method is introduced. Also, direct models representative of Li-ion 
batteries are developed, applicable for all of the positive electrode materials. A fast and 
accurate model is presented for simulating the performance of the Li-ion batteries with the 
LiMn2O4 and LiCoO2 positive electrodes. Moreover, two macro- and micro-based models are 
developed for predicting the performance of Li-ion battery with the LiFePO4 positive 
electrode, namely the Modified Mosaic (MM) and the mesoscopic-based models. The 
parameter estimation studies are then implemented by means of the developed direct models 
and experimental data provided by Hydro-Québec. All electrochemical and thermophysical 
parameters of the Li-ion batteries are simultaneously identified and applied for the prediction 
of the battery performance. Finally, a real-time technique resting on neural networks is used 
for the estimation of the Li-ion batteries intrinsic parameters.  
 
Keywords: Li-ion battery, P2D model, Parameter estimation, Inverse method, Sensitivity 
analysis, Genetic Algorithm, LiFePO4 (LFP) positive electrode material, Modified Mosaic 
model, Multi-objective parameter estimation, Cylindrical Li-ion battery, Mesoscopic model, 
On-line parameter estimation, Neural Networks, Battery management system.  
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1. Introduction 
1.1. Lithium-ion batteries 

The prime characteristics of lithium-ion (Li-ion) batteries compared to the other kinds of 

batteries, have made it the preferred candidate for many electrical storage applications. Not 

only do Li-ion batteries have a high energy density (20-240 Wh/kg), but they also provide a 

higher power density (200-2000 W/kg) in comparison with other rechargeable batteries. 

Beside these mentioned points, long cycle life, wide temperature range, low self-discharge 

rate, rapid charging-discharging capability, and no maintenance have been reported in the 

literature as the other advantages of the Li-ion batteries [1-3]. Li-ion batteries have been 

manufactured in four different shapes, namely coin, cylindrical, prismatic, and flat, as 

depicted in Figure 1.1 [4].  

 

 
Figure 1.1: Schematics of all kinds of Li-ion battery a: Cylindrical; b: coin; c: prismatic; and d: thin 

and flat [4] 
 

The Li-ion battery internal structure comprises four main sections including positive and 

negative electrodes, an electrolyte, and a separator as shown in Figure 1.2 [5]. The common 

materials used in these different parts have been gradually changed to improve the 

efficiency, safety, performance, and to decrease its initial costs. Today, the typical materials 

of positive electrode are LiMn2O4 (LMO), LiCoO2 (LCO) and LiFePO4 (LFP), and graphite 

for negative electrode [1-3, 6]. The separator also consists of an ionic conductor material. It 

prevents short-circuiting of the cell while permitting the mass flow of ions. During the 

discharge, due to a spontaneous electrochemical reaction, electrons (e-) are released from the 

negative electrode to the positive electrode through an external circuit. As a result, an 
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electrical potential difference is developed between the two electrodes. In order to satisfy 

the electroneutrality condition, the lithium-ions (Li+) transfer from the negative to the 

positive electrode through electrolyte. This process occurs in reverse during the battery 

charge process by applying an external electrical power source to the cell.  It is noted that, 

the mass flux of Li-ions is based on three transport phenomena including migration, 

diffusion, and convection. These phenomena are triggered by an electric potential, 

concentration difference and pressure gradient respectively [2, 7]. 
 

 
Figure 1.2: The inside structure and phenomena during the discharge of a Li-ion battery [5] 

 

1.2. Li-ion battery models 

Nowadays, Li-ion batteries serve as the core energy storage for many important electrical 

systems, such as electronics industry, hybrid electric vehicles (HEVs), plug-in hybrid 

electric vehicles (PHEVs), etc. In order to control and monitor these systems, it is imperative 

to rely on a fast and accurate model to be applied to Battery Management Systems (BMS). 

Therefore, considerable researches have been carried out to develop the Li-ion battery 

models for applications in control, on-line monitoring, optimization, parameter estimation, 

and age prediction [8-10]. In general, Li-ion battery models can be divided into two classes: 

empirical models and electrochemical-based models [9, 10]. The aim of all these models is 

to determine the battery State of Charge (SoC) and State of Health (SoH) [8].  

Empirical models such as equivalent circuit-based models and neural network models are 

widely used in the BMSs of electronics and vehicle industries [15,16]. These models rest on 

battery past experimental data to predict its future states. Electrochemical-based models are, 

on the other hand, more sophisticated and precise. These models are based on 
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chemical/electrochemical kinetics and transport equations. They may be used to simulate the 

Li-ion battery characteristics and reactions [12]. The Pseudo-two-Dimensional (P2D) model 

and the Single Particle Model (SPM) are among the most popular electrochemical-based 

models. A detailed description of the empirical and the electrochemical-based models can 

be found in Chapter 2. 

 

1.3. Inverse method and parameter estimation 

The success of the Li-ion battery models depends, among other things, on the precise 

knowledge of the electrochemical and thermophysical properties of the battery [11-13]. 

Direct measurement of these properties is, however, a tedious task. It typically requires the 

dismantling of the battery. Moreover, the measured properties are dependent on the battery 

age and may vary according to the measurement technique. In this thesis, to overcome the 

difficulties of measuring the battery properties, parameter estimation techniques coupled to 

inverse methods have been proposed.  

Inverse methods are used for the parameter estimation of a system or for its functional 

identification. In the former, the unknown parameters can be estimated by means of some 

experimental data. In the latter, the unknown functions can be determined in a finite or an 

infinite dimensional space [14]. The solution methods used to solve inverse problems are 

usually more complicated than for direct problems. Direct problems are well-posed 

problems. The conditions that define a well-posed problem are that (1) the solution must 

exist; (2) it is unique and (3) it must be a continuous function. Inverse problems are, on the 

other hand, ill-posed problems. The solution of most inverse problems is highly dependent 

on the initial condition and on the boundary conditions as well as on the measured signals. 

There have been numerous attempts to tackle these difficulties and to convert inverse 

problems into well-posed problems [14-16].  

 

1.3.1. Inverse method formulation 

In parameter estimation problems, the experimental signals play a key role in finding the 

expected parameters. These parameters must be measurable and accurate when compared 

with the direct model. In the identification of the Li-ion battery parameters, the time-varying 

cell potential, surface temperature, and current values can be measured during the 

charge/discharge process. Figure 1.3 illustrates the relationship between the different 

elements of a parameter estimation study based on an inverse method. The objective function 

is defined here as the difference between the experimental data and the predictions of the 
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direct model. A mathematical optimizer is employed to minimize the objective function so 

as to find the best values of the expected parameters.   
 

Direct 
Model
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f=f(Y-Y*)

Experimental 
Data

+

-
Optimization 

Process

Y

Y*
Input 

Parameters

Feedback

System’s Parameters
 

Figure 1.3: Different elements of a parameter estimation study based on an inverse method [13] 
 

The experimental data of the Li-ion battery charge/discharge process are measured in small 

time intervals between zero and cut-off time (0 < t < tc). Therefore, the inverse problem of 

the Li-ion battery should be defined as a “whole time domain” approach. It is assumed that 

the measurement error of experimental data is a random variable. The experimental data 

vector (Y*) consists of one charge/discharge process at N time intervals as shown in Eq. 1.1: 
*

1
*
2

1 2

*
1

; , , ...,*
N

N N

Y

Y t t t tY

Y


 

 
 
 
 
 
 
 

       (1.1) 

The measurement of random errors is always a concern in the solution of inverse problems. 

The stability of the inverse method is sensitive to these errors. The solution technique for the 

inverse problem should be stable with the measurement errors and for small time intervals 

[14, 15]. Beck proposed eight statistical standard assumptions for dealing with this concern 

as follows [16]: 

1) The definition of the random error (e) of ith experimental data is:  
* *( ) ( )i m i a ie Y Y          (1.2) 

where subscripts m and a represent the measurement and actual variables, respectively. 

2) The measurement errors are unbiased. Therefore, it has a zero expected value (E(.)): 

  0iE e           (1.3) 

3) The random errors have a constant variance. It means that the variance of Yi is independent 

of the measurement, that is: 
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2* *2 2( )mi mE Y E Y constant 
      
  

      (1.4) 

4) The different errors are uncorrelated, which means the covariance of ei and ej is zero: 

 cov , 0i je e for i j           (1.5) 

5) The measurement random errors have a normal (Gaussian) distribution, that is:  

 
2

2
1 exp
2 2

i
i

ef e
  

 
 
 
 

        (1.6) 

6) The statistical parameters such as errors and variance are known. 

7) Only the measured data are assumed to have random errors; the values of the other 

variables such as time and position are assumed to be accurately known. 

8) If some prior information regarding the estimated parameters is known, it can be 

incorporated into the solution process to achieve more accuracy. 

Generally, the objective function (S) is defined as the ordinary least-squares function of 

measured data (Y*) and calculated values (Y) as follows [14, 15].  

     
2* * *

1
- -Y Y Y Y

NT
i i

i
S Y Y



          (1.7) 

where the superscript T indicates the transpose. When the experimental data are collected 

from M charge/discharge processes, Eq. 1.7 should be written as [14, 15]: 

     
2* * *

1 1
- -Y Y Y Y

M NT
im im

m i
S Y Y

 

          (1.8) 

It is noted that the calculated vector (Y) should be derived as a function of the unknown 

parameters (P). In order to estimate only few unknown parameters, the objective function 

based on the Eq. 1.8 can be stable. However, oscillation about the solution may occur for the 

inverse problems with a large number of unknown parameters. This instability will be 

reduced by adding some regularization terms to the least-squares objective function using 

other techniques such as a Tikhonov’s regularization and Alifanov’s iteration regularization 

methods [14, 17]. The solution techniques should minimize the objective function (S) in 

order to determine the unknown vector P. They are chosen depending on how complex the 

direct model and how many parameters are to be identified. This process must be 

implemented by an optimizer by considering the system constraints and conditions.  

 

1.3.2. Optimization  

Due to the numerous parameters used in the objective function of the present parameter 

estimation study, there may be several local minima in the vicinity of the global minimum. 
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As a result, the optimization process for the inverse problem is mathematically challenging, 

slow to converge and computationally expensive [14-16]. Colaço et al. presented detailed 

descriptions and comparisons between different solution methods for inverse problems using 

the steepest descent method, the conjugate gradient method, the Newton-Raphson method, 

the quasi-Newton method, the Levenberg-Marquardt method (LM), Genetic Algorithms 

(GA), differential evolutions, the particle swarm method and the simulated annealing method 

[17]. In general, these optimization tools can be divided into two categories: deterministic 

techniques and stochastic methods. Although deterministic methods are usually faster than 

the stochastic methods, they easily fall into system local extrema and have complex 

structures. Stochastic-based optimization methods employ, on the other hand, random-based 

operation functions ideally suited for reaching the system global extremum [17, 18].  

In this thesis, a stochastic technique called the genetic algorithm (GA) will be applied to all 

of the inverse problems for estimating the large number of electrochemical and 

thermophysical parameters of Li-ion batteries. The detailed description of this stochastic 

method is presented in Chapters 3, 4, and 6. 

 

1.4. Thesis objectives and motivation 

Many investigations have been conducted to identify the operational parameters of Li-ion 

batteries. However, most of these studies focused on the estimation of limited parameters, 

or considered only one type of positive electrode materials of the Li-ion battery. The detailed 

literature review of these works is presented in Chapter 3, 4, and 6. Moreover, the coupling 

of the thermophysical parameters to the electrochemical variables is ignored in all of them. 

The main goal of this thesis is to develop a general method to simultaneously identify 

different electrochemical and thermophysical parameters and to predict the performance of 

Li-ion batteries.  

To achieve this goal, it is vital to develop an effective inverse method. Also, it is necessary 

to have a fast and accurate direct model for all positive electrode materials. As discussed 

before, the P2D model is the most popular and accurate electrochemical-based model for the 

Li-ion batteries. Three important drawbacks can however be enumerated for this model: (1) 

It is too complex to be used for a typical parameter identification process; (2) Its simplest 

version, SPM, is not accurate enough to be applied at high battery charge/discharge rates; 

(3) The P2D and SPM models cannot adequately simulate the behavior of batteries with LFP 

positive electrodes [19]. The main reason is that these models rely on Fick’s law which does 
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not take into account the two-phase behavior of the LFP particles. Based on the 

aforementioned points, the main objectives of this thesis are presented as follows: 

• Developing a simplified version of the P2D model for simulating the performance of 

the Li-ion batteries with the LMO and LCO positive electrodes. This model should be 

able to predict the battery polarization function for both low and high charge/discharge 

battery rates.   

• Developing an accurate model to capture the two-phase behavior of the LFP particles. 

The model should be able to predict the plateau and the finial capacity of the LFP 

electrode.  

• Developing a heat transfer model to be coupled to the developed electrochemical Li-ion 

battery models. This model should be able to simulate the surface temperature or the 

average temperature of the battery.  

• Parameter estimation of the properties of the Li-ion batteries with different positive 

electrode materials. The process should be implemented in three separate steps for 

different applications: (1) Electrochemical parameter estimation; (2) Thermophysical 

properties identification; and (3) Simultaneous electrochemical and thermophysical 

parameter estimation. The first case is helpful in isothermal conditions to investigate 

different changes in the battery as it ages. The second case is useful for its application 

in the thermal management battery systems to predict the battery behavior independent 

of the electrochemical parameters. The third case covers the general condition and is 

helpful for all real applications.  

• Developing a real-time technique to estimate the Li-ion batteries properties. This 

method can be helpful for all on-line applications such as the battery control and 

monitoring in the BMSs.        

  

1.5. Thesis outline 

This thesis includes nine chapters. Chapter 1 is an introduction to the study. In chapter 2, a 

review of all simplified versions of the P2D model is presented. Different physical and 

mathematical simplification techniques are investigated to be used for the Li-ion battery 

model development in other chapters. The electrochemical parameter estimation process is 

discussed in Chapter 3. A simplified version of the P2D model is developed in this chapter 

for the parameter estimation process. Moreover, a novel parameter estimation method is 

presented by virtue of the sensitivity analysis. The technique is validated for the Li-ion 
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batteries with the LMO, LCO, and LFP positive electrodes. Chapter 4 deals with the 

identification of the thermophysical properties of a Li-ion batteries independent of the 

electrochemical parameters. A heat transfer model is developed to be used as the direct 

model. A new model for the Li-ion batteries with the LFP positive electrode is introduced in 

Chapter 5, namely the Modified Mosaic (MM) model. This model is not based on the 

microscopic behavior of the LFP particles; instead it is developed by means of a macroscopic 

approach to estimate the battery performance at low and high charge/discharge rates. By 

using the MM model, a simultaneous electrochemical and thermophysical parameter 

estimation is carried out in Chapter 6. This process is a multi-objective inverse problem 

which can successfully capture all electro-thermal behaviors of the battery. In Chapter 7, a 

mesoscopic model is developed for the Li-ion battery with the LFP positive electrode. The 

results demonstrate a good agreement between the experimental data and the MM modeling 

results. However, it is very expensive as it should be solved for many particles, at the same 

time. In Chapter 8, a novel approach for the on-line parameter estimation is presented. This 

technique is suitable for real-time applications and employs a Neural Network (NN) to 

estimate some properties of the Li-ion battery. Finally, the thesis conclusions and the future 

work suggestions are presented in Chapter 9.  
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Contribution au document: Cet article présente une revue des travaux scientifiques portant 

sur le développement de versions simplifiées du modèle P2D. Ces modèles sont essentiels 

aux travaux de cette thèse puisque les méthodes inverses développées plus tard dans la thèse 

doivent s’appuyer sur un modèle direct de pile aux ions lithium rapide et représentatif. En 

outre, cet article de revue est utile car il permet de connaître les meilleures approches de 

simplification.    

Résumé français: 

Durant les dix dernières années, plusieurs efforts ont été consacrés au développement de 

modèles pour la prédiction, le contrôle, l’optimisation et l’estimation de paramètres de piles 

aux ions lithium (Li-ion). Selon toute vraisemblance, le modèle électrochimique le plus 

performant pour représenter le comportement des piles Li-ion est le modèle pseudo-2D 

(P2D). Cependant, les équations inhérentes à ce modèle étant complexes, il ne peut pas être 

utilisé pour les applications en temps réel telles que les systèmes de gestion des batteries 

(BMS). Plusieurs travaux de recherche ont été menés pour simplifier le modèle P2D et 

combler cette lacune. Des méthodes mathématiques et physiques ont été employées pour 

réduire l’ordre des équations du modèle P2D. Cet article présente une revue des études 

portant sur la modélisation des piles Li-ion utilisant des modèles P2D simplifiés. Les 
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hypothèses ayant servi au développement de ces modèles sont indiquées, les méthodes de 

calcul examinées, les avantages et les inconvénients des différents modèles sont discutées et 

les applications sont présentées. Des suggestions pour palliers aux inconvénients de ces 

modèles sont proposées. Les défis et les futures orientations des prochains travaux portant 

sur la modélisation des piles Li-ion sont également discutées. 
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2. Review of simplified Pseudo-Two-Dimensional models of 

lithium-ion batteries 
 

2.1. Abstract 

Over the last decade, many efforts have been deployed to develop models for prediction, 

control, optimization and parameter estimation of lithium-ion (Li-ion) batteries. It appears 

that the most successful electrochemical-based model for Li-ion battery is the pseudo-two-

dimensional model (P2D). Due to the fact that the governing equations are complex, this 

model cannot be used in real-time applications such as Battery Management Systems 

(BMSs). To remedy the situation, several investigations have been carried out to simplify 

the P2D model. Mathematical and physical techniques are employed to reduce the order of 

magnitude of the P2D governing equations. The present paper is a review of the studies on 

the modeling of Li-ion batteries with simplified P2D models. The assumptions on which 

these models rest are stated, the calculation methods are examined, the advantages and the 

drawbacks of the models are discussed and their applications are presented. Suggestions for 

overcoming the shortcomings of the models are made. Challenges and future directions in 

the modeling of Li-ion batteries are also discussed.  

 

Keywords: Review, Li-ion battery, P2D model, Simplified model, Battery management 
system 
 

Nomenclature: 
ak Specific surface area of electrode 𝑘  (𝑘 = 𝑝, 𝑛), m2/m3 
a,b,c,d Time-dependent constants  
A,B,C,D Time-dependent constants  
ce,k Electrolyte concentration in region 𝑘  (𝑘 = 𝑝, 𝑠, 𝑛), mol/m3 

ini
e,kc  Initial condition of electrolyte concentration in region 𝑘  (𝑘 = 𝑝, 𝑠, 𝑛), mol/m3 

cs,k Solid-state concentration of electrode 𝑘  (𝑘 = 𝑝, 𝑛), mol/m3 
ini
s ,kc  Initial condition of solid-state concentration of electrode 𝑘  (𝑘 = 𝑝, 𝑛), mol/m3 
max
s,kc  Maximum concentration of Li+ in the particle of electrode 𝑘  (𝑘 = 𝑝, 𝑛), mol/m3 
surf
s ,kc   Concentration of Li+ on the surface of the particles of the electrode 𝑘  (𝑘 = 𝑝, 𝑛), mol/m3 
ave
s,kc   Average Concentration of Li+ on the particles of the electrode 𝑘  (𝑘 = 𝑝, 𝑛), mol/m3 

Deff,k Effective diffusion coefficient of Li+ in electrolyte for region 𝑘  (𝑘 = 𝑝, 𝑠, 𝑛), m2/s 
Ds,k Li+ diffusion coefficient in the particle of electrode 𝑘  (𝑘 = 𝑝, 𝑛), m2/s 
F Faraday’s constant, C/mol 
I Applied current density, A/m2 
i0 Exchange current density for the solvent reduction reaction, A/m2 
Jk Wall flux of Li+ on the particle of electrode 𝑘  (𝑘 = 𝑝, 𝑛), mol/m2s 
Kk Reaction rate constant of electrode 𝑘  (𝑘 = 𝑝, 𝑛), m2.5/mol0.5 s 
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L Total thickness, m 
Lk Thickness of region 𝑘  (𝑘 = 𝑝, 𝑠, 𝑛), m 
n Negative electrode  
p Positive electrode  
r Radial coordinate,  m 
R Universal gas constant ,  J/(mol K) 
Rs,k Radius of the particle of electrode 𝑘  (𝑘 = 𝑝, 𝑛), m 
s Separator   
SOCk state of charge of electrode k 
t Time, s  
T Absolute temperature, K  
t+ Li+ transference number in the electrolyte  
Uk Open-circuit potential of electrode 𝑘  (𝑘 = 𝑝, 𝑛), V 
x Spatial coordinate, m  
Vcell Voltage of cell, V 
 
Greek 

 

, , ,     Time-dependent constants 

k  Porosity of region 𝑘  (𝑘 = 𝑝, 𝑠, 𝑛) 

eff,k  Effective ionic conductivity of the electrolyte in region 𝑘  (𝑘 = 𝑝, 𝑠, 𝑛), S/m 

s ,k  Overpotential of electrode 𝑘  (𝑘 = 𝑝, 𝑛), V 

eff,k  Effective electronic conductivity of the solid phase of electrode 𝑘  (𝑘 = 𝑝, 𝑛), S/m 

e,k  Electrolyte potential in region k  (k=p,s, n), V 

s,k  Solid-phase potential of electrode 𝑘  (𝑘 = 𝑝, 𝑛), V 

 

2.2. Introduction 

The distinctive intrinsic characteristics of the lithium-ion (Li-ion) battery have made it the 

preferred device for many electrical storage applications [1, 2]. The main reason for this 

success is its prime position in the Ragone plot (Fig. 2.1). Not only do Li-ion batteries have 

attractive energy density, but they also provide a higher power density in comparison with 

other rechargeable batteries [3, 20-23]. Li-ion batteries also exhibit good electrochemical 

and thermal stability, long battery life [24, 25], low self-discharge rate [26], rapid charging-

discharging capability, memory effect, and no maintenance [1, 27]. 

 
Figure 2.1: Ragone plot for different secondary batteries [3] 
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Li-ion batteries are manufactured in four different shapes, namely coin, cylindrical, 

prismatic, and flat. Their internal structure comprises four main sections including positive 

and negative electrodes, an electrolyte, and a separator [2]. The common materials used in 

these different sections have been modified gradually in order to improve their efficiency, 

safety, performance, and initial costs. During the discharge process, electrons (e-) are 

released from the negative electrode to the positive electrode through an external circuit. 

This phenomenon is due to a spontaneous electrochemical reaction. As a result, an electrical 

potential difference is developed between the two electrodes. In order to satisfy the electro 

neutrality condition, the Li-ions (Li+) move from the anode to the cathode through an 

electrolyte. The electrolyte usually consists of a single Li salt in an organic solvent. The 

transfer process is reversed when the battery is charging. This process is carried out by 

providing an external power source to the cell.   

The mass flux of Li-ions is based on three transport phenomena, i.e., migration, diffusion, 

and convection. These phenomena are triggered by an electric potential, a concentration 

difference and a pressure gradient respectively. It should be noted that the last phenomenon 

is negligible in Li-ion batteries [1, 2].  

One of the research challenges in the development of Li-ion batteries is to predict their 

behavior under different operating modes. In general, Li-ion battery models can be divided 

into two classes: empirical models and electrochemical models [9, 28]. The aim of all these 

models is to determine the battery state of charge (SoC) and state of health (SoH) [8]. 

Empirical models such as equivalent circuit-based models and neural network models are 

widely used in the Battery Management Systems (BMS) of electronics and vehicle industries 

[29, 30]. These models rest on the battery past experimental data to predict its future states. 

The main elements of the models are determined from the history of electric 

charge/discharge signals such as the cell potential and current. The main advantages of 

empirical models are that they are computationally fast and simple. But they also present 

some drawbacks. For instance, the physics-based parameters cannot be determined. The 

battery characteristics are never updated as the battery ages and the battery’s empirical model 

cannot be transposed to other types of batteries. Therefore, the BMSs based on empirical 

models are unable to work properly after a certain number of charge/discharge cycles [28, 

31, 32].  

Electrochemical models are, on the other hand, more sophisticated. These models are based 

on chemical/electrochemical kinetics and transport equations. They may be used to simulate 
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the Li-ion battery characteristics and reactions [9]. The Pseudo-two-Dimensional (P2D) 

model and the Single Particle Model (SPM) are among the most popular electrochemical-

based models. The P2D model rests on porous electrode theory, concentrated solution theory 

and kinetics equations [33, 34]. The P2D model has been extensively used in Li-ion battery 

investigations [32]. Its predictions are relatively accurate and have shown, in general, good 

agreement with experimental data [35, 36].  

In order to reduce the computational times, a simplified version of the P2D model, called the 

SPM, has been developed. In the SPM, the properties of the electrolyte are ignored and the 

transport phenomena are treated in a simple manner [37]. The effects of the thermal 

conditions on the Li-ion battery’s performance are however considered [38, 39]. 

Nowadays, Li-ion batteries serve as the core energy storage for many important electrical 

systems (electronics industry, HEVs, PHEVs, etc). In order to control and to monitor these 

systems on-line, it is imperative to rely on a fast and accurate real-time simulation BMS. The 

P2D model is unquestionably rigorous and accurate. But it is too complicated and too slow 

to be applied to the BMSs. The SPM, on the other hand, provides quick responses but it is 

unsuitable for simulating high discharge rates and thick electrodes. The shortcomings of the 

SPM and the complexity of the P2D model have motivated the development of simplified 

versions of the P2D model to be used in the BMSs in different applications. These simplified 

P2D models have been designed mainly for applications in control, on-line monitoring, 

optimization, parameter estimation, and age prediction. Figure 2.2 depicts the general 

classification of Li-ion battery models. The BMSs with the simplified P2D models have 

significant advantages over those based on the empirical models. Due to their use of physical 

based equations, they are more accurate. They can be used for the parameter estimation and 

age prediction investigation of the Li-ion cells. Moreover, they can be updated as the battery 

ages to avoid the considerable errors of the empirical based models. 

The present paper is a review of the studies on the modeling of Li-ion batteries with 

simplified P2D models. The assumptions on which these models rest are stated, the 

calculation methods are examined, the advantages and the drawbacks of the models are 

discussed and their applications are presented. Suggestions for overcoming the shortcomings 

of the models are made. Challenges and future directions in the modeling of Li-ion batteries 

are also discussed.  
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Figure 2.2: The general classification of Li-ion battery forward models 

 

2.3. Pseudo-Two-Dimensional model (P2D) 

One of the interesting aspects of the Li-ion battery is the porous structure of its electrodes. 

This feature increases the interfacial area between the solid and the electrolyte solution and, 

as a result, it dampens the negative effects of the slow electrochemical reactions [40]. Due 

to the complex geometry of the porous media, there have been practical difficulties in 

developing a reliable model of the battery. In 1975, Newman and Tiedemann developed the 

porous-electrode theory for battery applications using a macroscopic approach. To 

circumvent the difficulties associated with the geometry, the governing equations were 

derived based on the average quantities and continuous functions. In 1993, Doyle et al. 

introduced the Pseudo-Two-Dimensional (P2D) model for Li-ion batteries using a 

combination of the porous electrode theory and the concentrated solution theory. To this day, 

this model remains the most popular Li-ion battery model. It has been thoroughly tested and 

validated [33]. Figure 2.3 is a schematic of the Li-ion battery. The electrodes are considered 

as a porous matrix. Their behavior is modeled with spherical particles surrounded by the 

electrolyte. The intercalation and the de-intercalation processes of the Li-ions are performed 

through the surface area of these particles. Also, the transfer processes are predominantly 

unidirectional. Consequently, a 1-D mathematical model (x axis) may be applied [1, 34, 41].  
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Figure 2.3: The Li-ion battery P2D model 

 

The governing equations of the P2D model are reported in Table 2.1. The main features of 

these equations are: 1) solid-state Li+ ion concentration (cs) in the electrodes is derived from 

Fick’s law of diffusion for spherical particles; 2) liquid-phase Li+ ion concentration (ce) in 

the electrolyte and in the separator is based on the conservation of Li+ ions; 3) solid-state 

potential (Φs) in the electrodes is derived from Ohm’s law; 4) The liquid-phase potential (Φe) 

in the electrolyte and in the separator is calculated using Kirchhoff’s and Ohm’s laws; 5) 

The pore wall flux of Li+ ions (J) in the electrodes is described by the Butler-Volmer kinetics 

equation [34, 42]. 

In 1996, Doyle and Newman compared the predictions of the P2D model with their 

experimental data. Further investigations have confirmed the exactness of the P2D approach 

for modeling Li-ion batteries [9, 35, 36]. Indeed, in the absence of reliable experimental data, 

the P2D model predictions are often used as benchmarks [43-45].  

Unfortunately, a full analytical solution of the governing P2D model equations is unavailable 

[46, 47]. Therefore, different numerical methods such as Finite-Difference Method (FDM), 

Finite-Element Method (FEM), the Finite-Volume Method (FVM), orthogonal projections 

[48] and, recently, the Chebyshev orthogonal collocation [32] have been employed to 

estimate the model parameters [49]. The FDM and the FEM have been extensively used with 

in-house codes and commercial software. Commercial software are practical tools for 

simulating complex geometries and battery stacks (COMSOL, Battery Design Studio (BDS) 

and AutoLion [50, 51]). 
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Table 2.1: The governing equations of P2D Model [44] 
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2.4. Single Particle Model (SPM) 

Atlung et al. have proposed three different approaches for simulating the motion of ions in 

and out of the electrodes. These approaches simulate an infinite plane, an infinitely long 

cylinder, and a number of spherical particles [52]. The spherical approach has been retained 

for modeling the electrochemical processes of porous electrodes [34, 53]. It has also been 

employed in the P2D model in conjunction with other governing equations for the x 

direction. In 2000, Zhang et al. proposed a simplified version of the P2D model known as 

the Single Particle Model (SPM). The SPM rests on two main assumptions. First, each 

electrode is modeled as two spherical particles in which intercalation and de-intercalation 

phenomena occur. Second, the variations in the electrolyte concentration and in the potential 

are ignored [54]. Figure 2.4 illustrates a schematic of the SPM. Equations (2.1) and (2.5) 

from Table 2.1 are the governing equations of the SPM. These equations comprise the solid-

state concentration and the Butler-Volmer kinetics equations at both negative and positive 

electrodes. 
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Figure 2.4: Schematic of Single Particle Model (SPM) 

 

The main features of the SPM are: (1) its simplicity; (2) its solution requires minimum 

computational effort and (3) it can serve many purposes such as online estimation [37] and 

life modeling [55, 56] of Li-ion batteries. Its main drawback is that it must be fine-tuned 

according to the electrolyte properties for thick electrodes and at high discharge rates [9]. 

Improved versions of the SPM that alleviate these problems are however available [42, 50]. 

Multiple Particle (MP) models have also been proposed for dealing with particles of varying 

radii, different properties and a range of contact resistance (Rc) for Li-ion batteries equipped 

with LiFePO4 electrodes (Figure 2.5) [56-58]. 

 

R1,D1
1

2

n

Load
Discharge

- - - -
Charge

cs,n(r)

Electrolyte

ce=Const.

LixC6

LiFePO4

++
Rn 3

Rc,1

Rc,2

Rc,i

Rc,n

i

Rc,3

R2,D2

R3,D3

Ri,Di

Rn,Dn

 
Figure 2.5: Schematic of Multiple Particle (MP) model 

 

2.5. Thermal models 

The effect of the operating temperature on the performance of Li-ion batteries has also been 

investigated [59-67]. It was found that the operating temperature plays a key role in the aging 

phenomenon. In general, low operating temperatures decrease the battery capacity and high 

temperatures degrade it [39, 59]. 
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In 1985, Bernardi et al. developed an energy balance model for battery systems [38]. Pals 

and Newman used a P2D model coupled with this energy balance in order to compute the 

heat generation rate of single cell from a Li-ion battery [60]. Next, they modeled a cell stack 

based on the calculated characteristics of a single one [61]. Other solutions have also been 

obtained for thermal and electrochemical equations under uniform temperature conditions 

[9, 36]. 2-D and 3-D models have been developed to elucidate the behavior of Li-ion 

batteries under harsh operating conditions [62, 63]. In order to simplify the complex thermal 

models, Guo et al. coupled the SPM with the heat equations. Their numerical predictions 

showed good agreement with experimental data for low discharge rates [64]. Empirical-

based simulations have also been carried out to quantify the Li-ion battery heat generation 

rate [59, 65] and to update the battery parameters [66, 67]. Bandhauer et al. (2011) have 

produced an extensive review of the thermal models for Li-ion batteries [39].    

The conclusion that emerges from all these studies is that the combination of thermal and 

electrochemical models mimics more faithfully the behavior of Li-ion batteries. The 

information that it provides about the battery performance, its safety, and its maintenance is 

more reliable. As expected, these models are, however, computationally more expensive and 

require additional input data such as the specific heat capacity (Cp), the thermal diffusivity 

(α) and the thermal conductivity (k) of the materials. 

 

2.6. Simplified models 

2.6.1. Necessities 

Figure 2.6 shows the variation in the electrolyte functions at the end of the discharge process. 

Calculations were performed with a Li-ion battery P2D model for different discharge rates 

[9]. It is seen that for low discharge rates (lower than 1C), the electrolyte properties can be 

assumed constant. In this case, a simple model like the SPM is the preferred option for the 

Li-ion battery. At higher discharge rates however, the story is different. The concentration 

and potential profiles vary significantly. In these cases, simple battery models are no longer 

suitable. More accurate and computationally intensive models must be sought. It is shown, 

in next section, that most of these models are based on one-dimension polynomial profiles 

for the electrolyte properties.    
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Figure 2.6: Change in the electrolyte properties at the end of discharge for different discharge rates [9] 
  

2.6.2. Applications 

The safety of many electrical systems is strongly dependent on the reliable operation of their 

Li-ion battery packs. As a result, the battery packs must be monitored by a Battery 

Management System (BMS). The BMS interacts with all the components of the system so 

as to maintain the integrity of the batteries [68-73]. The main part of a BMS is a Li-ion 

battery model that simulates and predicts its different operating points. In the electronics and 

in the automobile industries, the BMS usually rests on simple empirical models [74]. These 

models are simple and provide quick responses. They are however unable to predict the 

battery parameters as it ages. Furthermore, they are only applicable to a specific cell [28, 31, 

32].  

Due to these drawbacks, many efforts have been made to adapt electrochemical-based 

models to BMSs. The shortcomings of the SPM and the complexity of the P2D model have 

motivated the development of simplified versions of the P2D model. These simplified P2D 

models have been designed mainly for applications in control, on-line monitoring, 

optimization, parameter estimation, and age prediction. Figure 2.7 summarizes the 

applications, inputs and outputs of a BMS system.  

 

 
Figure 2.7: Schematic of BMS with different applications, inputs and outputs 
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2.6.3. Methodologies 

Table 2.2 reports the main features of the P2D reduced models. 

 
Table 2.2: Main features of the P2D simplified models 

* A: Age prediction, C=Control, M: Monitoring, PE: Parameter Estimation 

 

Wang and Gu (1998) employed a polynomial profile to simulate the solid-state concentration 

function. Their model predicts both the battery and the fuel cell behavior [90]. Using a 

similar approach, Subramanian et al. introduced a simplified model, known as the Parabolic 

Profile approximation (PP), for Li-ion batteries [75, 76]. In the PP model, the solid 

concentration equation of the P2D model (Eq. 2.1) is simplified by assuming one of the 

solid-concentration polynomial profiles as shown in Eq. 2.8(a-c). This assumption allows 

the reduction of Partial Differential Equations (PDEs) to simpler Differential Algebraic 

Author Battery 
Material 

Cycle 
Rate 

Thermal 
model Applications Description and Methodology 

Subramanian et al. (2001) 
[75] - 1C No - Parabolic Profile (PP) approximation in r direction 

Volume Averaging 
Subramanian et al. (2005) 

[76] LiCoO2 2C No - Combination of PP model and P2D model 

Subramanian et al. (2007) 
[77] LiCoO2 C/2,1C No C Initial concepts of the reformulation model 

Smith et al. (2007) [43] - 1C-5C No C 
Combination of an analytical transfer function & a 

numerical transfer matrix to develop a State Variable 
Model (SVM) 

Domenico et al. [78] - - No C 
Electrode Averaged Model developed by using an 
average value for  all cell variables and a Kalman 

filter 
Smith et al. (2008) [79] - 1C No C Residue grouping technique 

Cai et al. (2009) [80] LiMnO2 
C/10-
20C No - Proper Orthogonal Decomposition (POD) 

Subramanian et al. (2009) 
[81] LiCoO2 C/2,1C No C, PE Mathematical model reformulation 

Smith et al. (2010) [82] - - No C, M Model using a residue grouping and a SVM and 
Kalman filter 

Ramadesigan et al. (2010) 
[83] - 5C, 

10C No - 
Solid-state concentration equation simplified: A 

polynomial eigenfunction, a finite difference method  
with Unequal Node Spacing 

Guo et al., (2011) [64] LiCoO2 
C/33, 
C/2, 
1C 

Yes - Thermal behaviour of SPM considered 

Forman et al. (2011) [84] - 
C/10, 
C/2, 
2.5C 

No C, PE Linearized  Butler-Volmer equation and Padé 
approximation method for solid concentration PDEs 

Dao, et al. (2012) [44] LiCoO2 1C No C, PE Combination of PP model & Galerkin’s 
approximation 

Lee et al. (2012) [85] LiMnO2 2C No C Modify Smith models by using a linear BV equation 
and a discrete-time realization algorithm approach 

Klein et al. (2013) [45, 86] - 5C Yes M Observer developed by using a PP model and a 
constant electrolyte concentration function 

Luo et al. (2013) [86, 87] LiMnO2 4C No C 
Extended single particle model by considering a non-
uniform profile for pore wall fluxes and electrolyte 

properties distributions on SPM. 
Marcicki et al. (2013) [88] LiFePO4 1C No C, PE Padé approximation used to simplify all PDEs 

Rahimian et al. (2013) [9] LiCoO2 1C-5C No C Extended SPM by assuming a polynomial profile for 
electrolyte properties 

Tanim et al. (2015) [42] LiNiCoM
nO2 

1C-5C Yes C,A ESPM and ESPM-T developed by considering a 
polynomial function for the electrolyte concentration 

Majdabadi et al. (2015) 
[89] LiFePO4 

C/25-
5C No C Polynomial profiles for the electrolyte properties in 

the Multiple Particle (MP) model 
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Equations (DAEs). The accuracy of the PP model is of course dependent on the order of the 

polynomial approximation. By using the volume-averaged method for computing the 

polynomial coefficients of Eq. 2.8(a), the PP model’s governing equations (Eq. 2.9 and 2.10) 

are determined [76]: 

       2s,kc r,t = a t +b t ;k = n, pkr R      (2.8a) 

         2 4
s,kc r,t = a t +b t +c t ;k = n, pk kr R r R      (2.8b)

            2 4 6
s,kc r,t = a t +b t +c t +d t ;k = n, pk k kr R r R r R    (2.8c)   

k
s,k,ave

k

Jd
c +3 = 0  ;k = n, p

dt R
       (2.9) 

 s,k surf ave k
s,ks,k

k

D J
c - c = -  ;k = n, p

R 5
       (2.10)   

Santhanagopalan et al. (2006) compared the predictions of the P2D, of the SPM and of the 

PP models. They showed that: (1) For low discharge rates (up to 1C), the second-order PP 

model (Eq. 2.8(a)) and the SPM are in good agreement with the P2D predictions; (2) For 

medium and high discharge rates (more than 1C), the second-order PP model is more 

accurate than the SPM. One must, however, propose a higher order PP model (Eq. 2.8(b-c)) 

in order to successfully reproduce the P2D results; and (3) The CPU time for the PP model 

is 100 times smaller than that for the P2D model [37]. 

The solid concentration along the r-direction (Eq. 2.1) requires the solution of many different 

parameters [64]. As a result, in dynamic tests such as electric vehicle pulse loading, the PP 

model predictions would not show good agreement with real data. This problem results from 

the use of simple functions in the polynomial profiles. It may however be alleviated by using 

a combination of different functions to reduce the solid concentration equations.   

Smith et al. used a residue grouping technique to reduce the full order of the Li-ion battery 

model. Their method is based on the transcendental transfer function approach presented in 

the frequency domain for control applications. The authors applied this method to the solid 

and electrolyte concentration equations [79]. The results show good agreement for the 

solution concentration, but the error related to the solid concentration function is higher than 

that obtained with the PP method. 

Smith et al. also developed a reduced order Li-ion battery model for control applications. 

This model is known as the state variable model (SVM). The SVM comprises analytical 

transfer functions and a numerical transfer matrix [43, 79]. The comparison between the 

SVM and a full CFD simulation shows that the SVM model is only accurate at low discharge 
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rates (up to 1C). Moreover, the calculation process of the system eigenvalues is tedious and 

it depends on the numerical estimations. 

An electrode averaged model (EAM) was proposed by Domenico et al. in 2008. By 

neglecting the solid concentration distribution along the electrode, they coupled the average 

solid material concentration with the average values of the chemical potentials, the 

electrolyte concentration and the current density. They also designed a Kalman Filter for on-

line SOC estimation based on their electrochemical model [78]. Although their model can 

be useful for control and for rough estimation applications, its strong non-linearity is 

problematic for on-line parameter monitoring and identification [91]. Later, Smith et al. 

developed a combination between their previous model and the linear Kalman filter [82]. It 

improves the accuracy of the empirical-based models which use an equivalent circuit or a 

Kalman filter. It does not however account for the battery age and temperature dependent 

properties.  

In 2009, Cai et al. presented a simplified Li-ion battery model using a proper orthogonal 

decomposition (POD). In this model, the number of equations is considerably reduced and 

so is the computational time. The predictions of the POD model show excellent agreement 

with that of the P2D model up to 20C discharge rates [80]. However, it is necessary to rely 

on experimental data to run the POD model. Also, the POD model does not work well for 

real time applications. 

Subramanian et al. introduced a simplified Li-ion battery model based on a full order P2D 

model. Their main target is for control and optimization applications. At first, they presented 

a method to solve the P2D model assuming polynomial profiles for key parameters in the x 

direction. Different forms are suggested for x-dependent functions and simple polynomial 

functions are chosen for the model. As shown from Equations 2.11 to 2.14, these profiles 

are applied to four dependent variables, namely the pore wall flux (J), effective ionic 

conductivity of the electrolyte (keff), solid-phase average concentration ( s,avec ), and the 

electrolyte concentration (ce) [77, 81]. 
N

i
k i,k

i 0
J x



    (2.11) 
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 
N

i
e,k i,k

i 0
c t x



   (2.14) 

i k i kζ βi,k , ,, , and i kψ , are coefficients which are calculated by applying the P2D equations and 

their boundary and initial conditions. Based on these profiles and using the P2D model 

equations, other parameters such as the electrolyte and the solid potential (Φs,k, Φe,k) are 

computed in the following manner: 

 
i+2

p pi i+2
s,k s,k px=0

eff,p

Na F a x
x = + - L

s i +1 i + 2i=0
 

  
 
  

   (2.15) 
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N i 1

e,p 1 pi eff ,p e
i 0

x 2RT
k I 1 t lnc

i 1 F
   







    


   (2.16) 

The Subramanian model is computationally faster than the finite-difference P2D model. The 

main drawback of this model is that no time-dependent variable is employed in the pore wall 

flux profile (Jk). This may cause significant errors in dynamic analyses, high-rate discharge 

estimations and battery aging studies [77, 81]. Later, a parameter estimation investigation 

for predicting the capacity fade of a Li-ion battery was conducted using the Subramanian 

model [92]. 

Ramadesigan et al. adopted two simplified approaches for solving the solid-state 

concentration equation that overcome the PP model limitations. Their methods were 

developed so as to decrease the computational time. The first Ramadesigan method 

approximates the solid-state concentration as a polynomial eigenfunction based on the 

Galerkin approximation. This method is in good agreement with the exact solution. It cannot 

however be applied to cases in which the diffusion coefficient varies with concentration as 

in the LiFePO4 cathode. The second Ramadesigan method includes a finite difference 

approach with different node spacing. The number, size, and distribution of the nodes are 

optimized. This method has two main advantages: 1) a variable diffusion function can be 

modeled to simulate the LiFePO4 cathode; and 2) it is adapted for modeling the cathode 

materials with moving boundaries [83]. The second Ramadesigan method is however too 

complex for on-line applications. Also, it does not account for the temperature and the age 

of the battery. 

The first simplified thermal model of Li-ion batteries was developed by Guo et al. using the 

SPM coupled with thermal equations. The authors used ten eigenfunctions for the closed 

form solution of the solid concentration equations. The results show good agreement with 

experimental data down to low discharge rates [64]. 
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In 2011, Forman et al. proposed another reduced version of the P2D model for optimization 

and control applications. The Forman model was developed using two simplification 

techniques. First, the linearized form of the Butler-Volmer equation about Φs and Φe is 

derived so as to yield simpler equations for solid and electrolyte potential functions: 

    ' '
k 0,k s,k s,k s,k s,k e,k e,k

0.5F 0.5F 0.5F
J = 2i sinh m +cosh m F - F - F - F

RT RT RT
    

    
    

   (2.17) 

Second, an analytical method known as Padé approximation is used to reduce the order of 

the solid-state surface concentration equation. A comparison between the Forman model and 

other reduced models (PP model, residue grouping method and POD approximation) was 

performed [84, 93]. The Forman model is in excellent agreement with the other reduced 

models. Unfortunately, the Forman model does not reduce the CPU time and as a result, it 

is inadequate for real-time applications. 

In 2012, Dao et al. employed a combination of the PP model and the Galerkin approximation 

to develop another simplified version of the P2D model. The Galerkin approximation is 

applied to convert electrolyte PDE equations to differential algebraic equations (DAEs). The 

simulation results show that the CPU time of the Dao model is significantly reduced. This 

Li-ion battery model is available in commercial software (Maplesim) [44, 94]. The main 

drawback of the Dao model is that the values of the Li+ wall-flux on the particles (Jn, Jp) are 

assumed constant. Also, the model is valid for low discharge rates only.  

In 2012, Lee et al. modified previously reported models [43, 79]. The transfer functions are 

applied to convert the full physics-based model to a computationally simple model. The 

linearized form of Butler-Volmer equation which keeps only the two first terms of its Taylor-

series expansion is employed and the value of the reaction flux (Jk) is assumed to be 

independent of the electrolyte concentration. The film resistance parameter is added to the 

overpotential function so as to account for the effect of the battery age on the model 

equations. The discrete-time realization algorithm (DRA) approach is applied to the final 

transfer functions in order to decrease the model run-time and complexity. The comparison 

of Lee’s estimates with that of the P2D is favorable up to a 2C discharge rate. The main 

drawback of Lee’s model is the complexity of the mathematical equations [85].  

In 2013, Klein et al. introduced an observer to predict the Li-ion battery behaviour and its 

properties. This simple model is derived from a combination of the P2D model and the 

temperature equations based on two main assumptions: 1) the solid concentration equation 

is handled with the PP model; 2) the changes in the electrolyte concentration are ignored 

[45]. This model is however limited to low discharge rates (<2C).  



 

26 

In 2013, Luo et al. developed an extended single particle Model (ESPM). Contrary to the 

SPM, the ESPM assumes a non-uniform profile for pore wall flux (Jn, Jp). Moreover, it uses 

a simplified distribution for the electrolyte properties and for the solid potential function. In 

spite of some perturbations in the cell potential curves, the predictions of the ESPM show 

good agreement with those of the P2D model up to 4C discharge rates [86, 87].  

In 2013, Marcicki et al. employed a Padé approximation to simplify all PDEs of the P2D 

model so as to develop a reduced model for control applications and parameter identification 

studies [88].  

In 2013, Rahimian et al. proposed an extended version of the single particle model using the 

full physics-based model equations. As discussed in section 2.4, the assumption of constant 

electrolyte properties is the main cause of errors in the SPM. Therefore, polynomial profiles 

have been retained to predict the electrolyte potential and the concentration with the 

following time-dependent coefficients: 

           3 2
e,p p 1 p 1 p 1 p 1 p pc x ,t = a t x +b t x +c t x +d t ; x =    for   0 x Lpx L        (2.18) 

          2
e,s s 2 s 2 s 2 s p p sc x ,t = a t x +b t x +c t ; x =   for   L x L + Lp sx - L L      (2.19) 

            3 2
e,n n 3 n 3 n 3 n 3 n p sc x ,t = a t x +b t x +c t x +d t ; x =    for   L + L x Lp s nx - L - L L     (2.20) 

           3 2
e,p p 1 p 1 p 1 p 1 p px ,t = A t x + B t x +C t x + D t ; x =    for   0 x Lpx L      (2.21) 

            3 2
e,n n 2 n 2 n 2 n 2 n p sx ,t = A t x + B t x +C t x + D t ; x =    for   L + L x Lp s nx - L - L L    (2.22) 

Like SPM, the pore wall flux is assumed to be constant in the Butler-Volmer equation. 

However, it must be computed in an interior point for each electrode in order to increase the 

accuracy of the pore wall flux values. The predictions of the Rahimian model are comparable 

to those of COMSOL for the P2D and SP models in the range of 1C to 5C. Higher degree 

polynomial profiles are however needed for the accurate prediction of the electrolyte 

concentration and potential variations [9]. The main disadvantage of the Rahimian model is 

that it does not include a relationship between the coefficients and the battery age and 

temperature. In 2015, Tanim et al. presented a modified SPM by using the P2D model 

equations, namely the electrolyte enhanced single particle model (ESPM). The assumptions 

made in this model are similar to those of the SPM, except for a quadratic polynomial 

function for the electrolyte concentration in the three domains (anode, cathode and 

separator). The Laplace transform and integral method analysis (IMA) are employed to 

reduce the order of concentration and potential functions in the anode, separator, and cathode 

domains. The final model equation is a transfer function between the cell voltage and the 
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cell current consisting of 15 dependent variables. There is also a temperature dependent 

model (ESPM-T) in which the key properties of the ESPM are updated for the temperature 

with empirical correlations. Since the temperature is an input signal in the ESPM-T model, 

it is necessary to rely on a sensor to generate the on-line cell temperature. The results of the 

Tanim ESPM models demonstrate good agreement with the P2D outputs. However, high 

discharge rates (above 5C) and low temperature (below -10°C) cause considerable cell 

voltage errors when compared to the P2D model [42]. The ESPM models are fast enough 

for control applications. Their main limitation is that the current density is uniform as in the 

SPM. Aging formula for Li-ion batteries may be adapted to the model for predicting the solid 

electrolyte interphase (SEI) layer growth [95].   

Majdabadi et al. introduced a simplified Li-ion battery model that takes into account the 

arbitrary number of active material particles in a LiFePO4 positive electrode. The simplified 

electrochemical multi-particle (SEMP) model combines the multi particle (MP) model [43-

44] to the polynomial profiles for the electrolyte properties. The model handles particles with 

various radii and changing properties [89]. The predictions of Majdabadi model show good 

agreement with experimental data up to 5C discharge rates. Simulations were however 

carried out for a half-cell containing Li foil and LiFePO4 cathode material. Majdabadi et Al. 

did not consider the whole complexity of a complete Li-ion battery with graphite and 

LiFePO4 materials. 

Table 2.3 provides a summary of the models discussed above. It is seen that the PP model is 

the most popular method to reduce the P2D model along the r direction. Moreover, the 

common reduced technique along the x direction is to consider polynomial profiles for the 

electrolyte’s concentration and potential. The PP techniques are popular for three main 

reasons. First, their structure is mathematically simple: PDEs of the P2D model are replaced 

with differential algebraic equations (DAEs). Second, they make the Li-ion battery model 

computationally fast and inexpensive. Third, the polynomial profiles for the electrolyte 

properties in the x direction enhance the accuracy of the SPM. However, the temperature- 

and age- independent coefficients and the use of simple functions for the profiles are two 

important drawbacks of polynomial profile techniques. 
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Table 2.3: Summary of different techniques used in simplified models 
 SPM Polynomial Profile Re. 

Gro. POD K.F. Lin.  
BV 

Padé 
app. cs ce Φe Jk 

Zhang et al. (2000) [54] ●          
Subramanian et al. (2001) [75] ● ●         
Subramanian et al. (2005) [76] ● ●         
Subramanian et al. (2007) [77]  ● ●  ●      

Smith et al. (2007) [43]      ●     
Smith et al. (2008) [79]      ●     

Domenico et al., (2008) [78]        ●   
Cai et al. (2009) [80]       ●    

Subramanian et al. (2009) [81]  ● ●  ●      
Smith et al. (2010) [82]      ●  ●   

Ramadesigan et al. (2010) [83]  ●         
Guo et al., (2011) [64] ●          

Forman et al. (2011) [84]  ●       ● ● 
Dao, et al. (2012) [44]  ● ● ●       
Lee et al. (2012) [85]      ●   ●  

Klein et al. (2013) [45]  ●         
Luo et al. (2013) [86, 87] ● ● ● ●       
Marcicki et al. (2013) [88]          ● 
Rahimian et al. (2013) [50] ● ● ● ●       

Tanim et al. (2015) [42] ● ● ● ●       
Majdabadi et al. (2015) [89]   ● ●       

* Lin. BV: Linearized Butler Volmer, K.F.=Kalman Filter, Re. Gro.: Residue Grouping 
 

2.7. Suggestions and challenges 

Based on the above review of the open literature concerning the modeling of Li-ions 

batteries, here is a list of issues that should be addressed in future investigations:   

1. The most popular technique for model reduction is to fit the operating variables such as 

cs, ce, Φe, Jk with polynomial profiles. This technique enables the conversion of PDEs to 

simpler DAEs and, as a result, the model may become suitable for control and real-time 

applications. To the authors’ knowledge however, no study has investigated thoroughly the 

effect of these parameters. Also, many questions remain unanswered. For instance, what are 

the consequences on the calculated potential functions (Φe, Φs) [44, 50, 89]? What is the 

effect of fitting a polynomial function for the electrolyte potential on the calculated pore wall 

fluxes? Which parameter should be fit with a polynomial, which parameter should be 

calculated and which parameter should be approximated?  

2. In spite of the fact that the internal parameters of Li-ion batteries behave nonlinearly, all 

the simplified models have been implemented with simple polynomial functions. We 

propose to combine linear and nonlinear profiles for the variables. For example, the solid 

concentration function on the surface of the particles could be modelled in terms of the cell 

current density in the following manner:  

     surf ini
s,ks,kc = c + A i + B i t +C exp -Dt ;k = n, p      (2.18) 

i is the cell current density. This approach could also be applied to other variables such as 

the electrolyte properties and the pore wall flux.  
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3) According to Table 2.2, it is imperative to develop a simple and fast model that takes into 

account the thermal conditions of the battery. The model reported in reference [64] rests on 

the SPM and is suitable for low discharge rates. Since BMSs are required to simulate a whole 

range of operating conditions, it is necessary to pursue research efforts in this area. 

Additional issues such as the internal heat generation, temperature-dependent properties and 

the effect of complex battery pack geometry should also be investigated. Inverse heat 

transfer techniques are also a promising avenue for answering some of these challenges since 

these methods can predict the internal parameters of the battery from temperature 

measurements taken on its envelope.  

4) Most of the electrochemical aging models have been developed from the SPM. Some of 

the shortcomings of these models could be alleviated by developing a simplified version of 

P2D model considering the aging sources, such as side reactions and Solid Electrolyte 

Interfaces (SEI) layer growth in the governing equations.         

5) The battery properties change as it ages. These changes cannot be ignored in the 

electrochemical models. Real-time models should account for the online battery data such 

as the cell potential, the current and the surface temperature. With this information, the on-

line monitoring, age prediction, SoC and SoH estimations and the battery control will be 

improved. 

6) There is a lack of reliable models for simulating the Li-ion batteries with LiFePO4 cathode 

material. The problem is that the Li insertion/extraction phenomena in the material are not 

fully understood. The microscopic and macroscopic models for LiFePO4 cathodes have yet 

to be bridged. Features such as carbon coating around the particles and phase-change 

behavior must be included. Moreover, due to the flat plateau exhibited by the open circuit 

potential curve, it is difficult to estimate the different cathode electrochemical parameters. 

Efforts should be deployed to overcome these problems. Simplified versions of the P2D 

model with variable cathode parameters (i.e., solid diffusion coefficient Ds,p, reaction rate 

Kp dependent on the concentration profiles and temperature) are needed for accurate 

modeling and for on-line applications. The development of simplified P2D models should 

account for the relationship between the different electrochemical parameters with Li 

concentration, temperature and age. Moreover, it is important to consider the role of the 

graphite as the negative electrode in comparison to the LiFePO4 as the positive electrode. 
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2.8. Conclusion 

A review of the open literature has revealed that modeling the full-physics of the Li-ion 

battery is too complex and computationally time-consuming to be of practical use in real-

time applications such as monitoring batteries inside electric vehicles. The challenge 

therefore is to develop simpler and faster models which predict faithfully the behavior of  Li-

ion batteries. Unfortunately, no such model seems to meet all the requirements. 

In this paper, a thorough review of simplified P2D models was presented. The assumptions, 

calculation procedures, potential and shortcomings of the models were discussed and 

compared. The study has shown that polynomial profiles for solid concentration (cs) are the 

most popular methods to reduce the P2D model in the r direction. Polynomial profiles for 

electrolyte concentration and potential are also employed. Models based on polynomials are 

mathematically simple and computationally fast. Their main drawback is that the assumed 

profile coefficients are temperature- and age- independent. As a result, the accuracy of the 

predictions is affected. According to the authors, the following aspects of the simplified PD2 

model should be addressed in future investigations: 1) To determine and to rank the most 

influential parameters in the simplified Li-ion battery models; 2) to employ higher-order 

polynomial profiles for different variables; 3) to develop coupled electrochemical and 

thermal equations for real-time Li-ion models; 4) to develop simplified P2D models that take 

into account the aging phenomenon; 5) to develop real-time models for predicting the 

internal properties of Li-ion batteries based on inverse heat transfer methods. 6) to propose 

a simplified model compatible with the characteristics of LiFePO4 cathode material.      
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Contribution au document: Dans cet article, une méthode inverse est proposée pour 

estimer les paramètres électrochimiques de piles aux ions lithium. Une version simplifiée du 

modèle P2D est également développée et utilisée à l’intérieur d’une procédure 

d’identification de paramètres. Cette nouvelle méthode a été validée avec succès en 

s’appuyant sur des données de référence obtenues avec des taux de décharge bas et élevés. 

La méthode a ensuite été appliquée à l’identification de paramètres de piles fabriquées à 

partir de différents matériaux d’électrode positive incluant le LiCoO2, le LiMn2O4 et le 

LiFePO4. 

Résumé français :  

Cette étude présente l’estimation de paramètres électrochimiques pour des piles aux ions 

lithium (Li-ion) à base de différents matériaux. La méthodologie d’estimation de paramètres 

est développée dans la première partie de cette étude. Les défis posés par l’utilisation de 

différents matériaux pour l’électrode positive, incluant le LiCoO2, le LiMn2O4 et le LiFePO4, 

sont examinés dans la deuxième partie.  

Les paramètres électrochimiques du pile Li-ion les plus influents sont estimés au moyen 

d’une méthode inverse qui repose sur 5 éléments : les paramètres d’entrée, un modèle direct, 
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les données de référence, une fonction-objectif et un optimiseur. L’identification de huit 

variables électrochimiques est visée par cette étude. Une version simplifiée du modèle 

pseudo-2D (P2D) est développée et utilisée comme modèle direct. Les prédictions de ce 

modèle couplée à une fonction de bruit aléatoire sont utilisées pour générer les données de 

référence, qui incluent le potentiel en fonction de la capacité de la pile et ce, pour des taux 

de décharge bas et élevés. Une fonction de type moindres carrés et un algorithme génétique 

sont respectivement utilisés comme fonction-objectif et optimiseur. Une étude de sensibilité, 

dans laquelle différents taux de décharge ont été étudiés, a été employée afin d’identifier le 

meilleur domaine pour l’identification de chaque paramètre. Les résultats montrent que la 

méthodologie développée reste efficace et stable tant à bas qu’à haut niveau de décharge.    
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3. An inverse method for estimating the electrochemical 

parameters of lithium-ion batteries, Part I: Methodology  
 

3.1. Abstract 

An electrochemical parameter estimation (PE) study of lithium-ion batteries for different 

materials is presented. The PE methodology is developed in Part I of the study and the 

challenges regarding the different materials for the positive electrode including LiCoO2, 

LiMn2O4 and LiFePO4 are examined in Part II. 

The most influential electrochemical parameters of the Li-ion battery are estimated by means 

of an inverse method. The inverse method rests on five elements: the input parameters, a 

direct model, the reference data, an objective function and an optimizer. Eight 

electrochemical variables are considered as the target of the PE study. A simplified version 

of Pseudo-two-Dimensional (P2D) model is developed for the direct model. The P2D model 

predictions coupled to a random noise function are employed to generate the reference data. 

The data include the cell potential values with respect to the battery capacity at low and high 

discharge rates. The least-squared function and Genetic Algorithm are employed as the 

objective function and its optimizer, respectively. The best time domain for the estimation 

of each parameter is calculated by using a sensitivity analysis performed for different 

discharge curves. Results show that the methodology remains accurate and stable at both 

low and high discharge rates. 
 
Keywords: Parameter estimation; Inverse method; Li-ion battery; Simplified P2D model; 
Sensitivity analysis, Genetic Algorithm (GA). 
 
Nomenclature: 

ka   Specific surface area of electrode k (k=p,n), m2/m3  

,s kc   Solid-state concentration of electrode k (k=p,n), mol/m3 

,e kc  Electrolyte concentration in region k (k=p,s,n), mol/m3 

, ,0e kc  Initial condition of electrolyte concentration in region k (k=p,s,n), mol/m3  
max
,s kc  Maximum concentration of Li+ in the particle of electrode k (k=p,n), mol/m3 

,
surf
s kc  Concentration of Li+ on the surface of the particles of the electrode k (k=p,n), mol/m3 

,eff kD  Effective diffusion coefficient of Li+ in electrolyte for region k (k=p,s,n), m2/s 

,s kD  Li+ diffusion coefficient in the particle of electrode k (k=p,n), m2/s 

ie   Measurement error function of the cell potential, V 

re   Relative error, % 
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se   Specific error function of the cell potential, V2 
F  Faraday’s constant, C/mol 
I   Applied current density, A/m2 

kJ  Wall flux of Li+ on the particle of  k (k=p,n), mol/m2s 

p jJ   Dimensionless sensitivity coefficient, V 

kK   Reaction rate constant of electrode k (k=p,n), m2.5/mol0.5s 
L  Total thickness, m 

kL   Thickness of region k (k=p,s,n), m 
n   Negative electrode  
p  Positive electrode  

P Unknown parameter matrix 
r   Radial coordinate, m 
R  Universal gas constant, J/mol K   

cellR   Solution phase resistance, Ω 

,s kR   Radius of the particle of electrode k (k=p,n), m 
s  Separator   
S Objective function, V2 

kS   Total electroactive area of electrode k, m2 

kSOC   State Of Charge of electrode k (k=p,n) 

,0kSOC  Initial State Of Charge of electrode k (k=p,n) 
t   Time, s 
T  Absolute temperature, K  
t   Li+ transference number in the electrolyte  

kU  Open-circuit potential of electrode k (k=p,n), V 

kw   Weight of the active material of electrode k, g 
x   Spatial coordinate, m 
 
Greek  

k  Porosity of region k (k=p,s,n) 

 ,eff k   Effective ionic conductivity of the electrolyte in region k (k=p,s,n), S/m 

,s k   Overpotential of electrode k (k=p,n), V 

,eff k  Effective electronic conductivity of the solid phase of electrode k (k=p,n), S/m 

,s k  Solid-phase potential of electrode 𝑘 (𝑘 = 𝑝, 𝑛), V 

,e k  Electrolyte potential in region k (k=p,s,n), V 

 

3.2. Introduction  

The simultaneous high power and energy density of lithium-ion (Li-ion) batteries have made 

it the preferred device for storing electricity. As a result, Li-ion batteries are increasingly 

used in various applications including electronics and the automotive industry. Regardless 

of the shape and of the battery pack arrangement, the internal structure of the battery usually 

comprises four main components: positive electrode, negative electrode, an electrolyte, and 

a separator. These components are made of materials that have been gradually modified over 
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the years so as to improve the efficiency, safety and performance of the batteries and to 

reduce their cost [1-3]. 

A battery management system (BMS) is crucial for monitoring the operation of the battery 

pack. The BMS must interact with all the elements of the system in order to control it and to 

protect the Li-ion cells. The intelligence of the BMS is based on a mathematical model that 

simulates and predicts the different operating conditions of the Li-ion battery pack. In high 

tech and automotive industries, the BMS usually relies on empirical-based models. These 

models are simple and provide fast response. They cannot however predict the performance 

of the battery as it ages. Moreover, they are only applicable to a specific cell, i.e., they cannot 

be transposed to other battery packs without recalibration [8, 68, 96]. 

Electrochemical-based models of Li-ion batteries, on the other hand, overcome these 

shortcomings. These models rest on chemical/electrochemical kinetics and transport 

equations. These Li-ion battery models are more complicated and CPU time-consuming than 

empirical based models. They are, on the other hand, more versatile and they provide reliable 

and stable responses in a wide range of operating conditions and applications. Among the 

electrochemical Li-ion battery models, the pseudo-two-dimensional (P2D) model and the 

Single Particle Model (SPM) appear to be the most popular  [1, 9, 28]. The P2D model rests 

on (1) porous electrode theory, (2) concentrated solution theory, and (3) kinetics equations. 

Its predictions are accurate and have shown repeatedly good agreement with experimental 

data [1, 9, 34]. The SPM, on the other hand, is a simplified version of the P2D model. The 

SPM ignores the change in the electrolyte properties. As a result, the CPU time of the SPM 

is much less than that of the P2D model [9, 37]. 

In order to run the electrochemical-based mathematical models, it is imperative to know the 

different electrochemical parameters of the battery. Experimental measurement of these 

parameters is a challenging task. Sometimes it requires the dismantling of the battery itself. 

Also, some parameters need to be monitored continuously due to the fact that they change 

as the battery ages. In order to overcome the difficulties of experimental measurements, 

various research strategies for parameter estimation (PE) have been deployed. Table 3.1 

summarizes the characteristics of these Parameter Estimation (PE) studies that have been 

applied to Li-ion batteries.   

In 2004, a PE study of a polymer electrolyte membrane fuel cell (PEMFC) cathode was 

presented by Guo et al. [97]. Based on this research, five internal parameters of the Li-ion 

battery were estimated by Santhanagopalan et al. in 2007. These parameters are the 

diffusivity of Li+ ions in the positive electrode (Ds,p), the reaction rate constants at the 
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electrodes/electrolyte interface (Kn and Kp) and the initial state-of-charge of negative and 

positive electrodes (SOCn,0 and SOCp,0). The calculation procedure was implemented by 

minimizing the least squares objective function with the Levenberg-Marquardt (LM) 

technique. Note that the objective function is defined here as the difference between the 

predictions of the direct model and the experimental data for the charge/discharge (up to 

2C). Both the SPM and the P2D model were employed as the direct model. The PE results 

showed that the SPM is reliable for low discharge rates (<1C), while the P2D model remains 

accurate over the entire range of discharge rates. The CPU time of the PE process for the 

P2D model is however prohibitive compared to that of the SPM [11].  

 
Table 3.1: Parameter Estimation (PE) studies on Li-ion batteries 

Author Battery 
Material 

Estimated 
Parameters 

Cycle 
rate 

Direct 
Model Optimizer Extra Description 

Santhanagopalan et al., 2007 [11, 
12] LiCoO2 

Ds,p,Kn, Kp, 
SoCn,0,SoCp,0 

C/5, C/2, 
1C, 2C 

SPM 
P2D LM(1) Good agreement for SPM up to 1C and 

for P2D up to 2C. 

Santhanagopalan et al., 2008 [12] LiCoO2 
wp, wn, 

SoCn,0,SoCp,0 
C/33, 1C SPM LM Considering capacity fading in different 

temperatures 

Ramadesigan et al., 2011 [92] - De, Ds,n, Ds,p, 
Kn,Kp 

1C Reduced 
P2D 

Gauss-
Newton Predicting the capacity fade 

Forman et al., 2012 [93] LiFePO4 
88 related 
Parameters 

1C, 
2.5C, 5C P2D GA(2) Using Fisher information to assess 

parameter uncertainty 

Marcicki et al., 2013 [88] LiFePO4 εn,εp,Ds,n,Ds,p C/3,1C Reduced 
P2D 

Curve 
Fitting 

Using different data set, open circuit 
potential and discharge curves 

Zhang et al., 2014 [98] LiFePO4 
LiCoO2 

All related 
Parameters 

C/2,1C, 
1.5C,2C P2D GA 

Using a multi-objective function 
consisting of the cell potential and the 

surface temperature 

Masoudi et al., 2015 [99] - ce,p,0, ce,n,0, 
ce,s,0, σn, t+, εs 

1C Reduced 
P2D 

Homotopy 
O. M. (3) 

Using full-order model outputs as the 
reference in objective function 

Rahman et al., 2016 [100] LiCoO2 
Ds,n, Ds,p, Kn, 

Kp 
1C Reduced 

P2D PSO(4) Using PSO for parameter estimation 
(1) Levenberg-Marquardt method, (2)Genetic Algorithm, (4)Homotopy optimization method (3)Particle Swarm Optimization 

 

In 2008, Santhanagopalan el al. made an attempt at estimating some inner parameters of the 

Li-ion battery in order to quantify its capacity fade. The SPM was used as the direct model 

to estimate the SOC of the negative and positive electrodes (SOCn,0 and SOCp,0) and the 

active material loading of electrodes (wp and wn). Experimental data were collected after 

five charge/discharge cycles (0, 100, 200, 300, 400, and 500) under different temperature 

conditions. The results showed good agreement with available discharge curves. No 

predictions were made however for the future battery curves [12]. 

In 2011, Ramadesigan et al. investigated the effect of five different parameters on the Li-ion 

battery capacity fade by means of discharge curves of different charge/discharge cycles. 

These parameters are the diffusion coefficients De, Ds,n and Ds,p, and the electrochemical 

reaction rate constants for negative and positive electrodes (Kn and Kp). The authors 

employed a simplified version of the P2D model as the direct model. The Gauss-Newton 

technique was adopted for minimizing the sum-of-squared differences of the objective 
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function. The results revealed that the negative electrode properties are most influential on 

the battery aging process [92].   

Forman et al. implemented a full parameter estimation using the P2D model as the forward 

model and a genetic algorithm (GA) as its optimizer. A total of 88 operational parameters 

and geometric characteristics were determined based on the charge/discharge curves [93]. 

Due to the fact that several Li-ion battery parameters are not identifiable with performance 

curves, this method can only provide a rough estimation. The predictive method could be 

improved with more accurate experimental data for the geometry and the material 

characteristics.  

In 2013, Marcicki et al. used curve fitting to identify the Li-ion batteries parameters in three 

steps. First, the composition characteristics of the electrodes were determined by using an 

open circuit potential curve. Second, resistance parameters related to their reduced model 

were estimated from discharge curves under different temperature conditions. Third, the 

diffusion coefficients were estimated by tuning the model parameters [88].  

In 2014, Zhang et al. conducted a multi-objective PE by virtue of the discharge curves and 

the surface temperatures of Li-ion batteries based on LiCoO2 and LiFePO4. The modified 

multi-objective genetic algorithm was employed to estimate 25 parameters. The simulated 

discharge curves and the predicted surface temperature profiles showed good agreement with 

experimental data for low discharge curves [98].  

      In 2015, Masoudi et al. presented another PE study for Li-ion battery based on a reduced 

order model of the P2D model. The homotopy optimization approach was chosen to estimate 

six parameters, namely the volume fraction of the separator (εs), the Li+ transference number 

(t+), the electrical conductivity of the solid phase of the negative electrode (σn), and the initial 

electrolyte concentration in three regions. The predictions of the P2D model showed good 

accuracy for low discharge rates [99].    

Recently, Rahman et al. identified four electrochemical variables of a Li-ion battery based 

on LiCoO2. A particle swarm optimization (PSO) was used as the optimizer and, a reduced 

P2D model was employed as the direct model. The PE study was carried out however with 

a low discharge curve only (1C) [100]. 

The present paper extends the aforementioned studies by proposing a new and a general 

inverse PE method to identify different electrochemical parameters of Li-ion batteries. The 

method is applicable to both low and high discharge rate curves and to different positive 

electrode materials. The PE methodology is based on (1) a simplified version of the P2D 

model; (2) sensitivity curves of all expected parameters; and (3) an inverse method. 
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Inverse methods have been applied in many problems of science and engineering. These 

methods identify the system characteristics by means of specific experimental data and 

predictions from a direct model. Based on the difference between the experimental data and 

the model predictions, an objective function is minimized by virtue of an optimizer [14, 15]. 

The present inverse methodology comprises five elements: the input electrochemical 

parameters, the direct model, the reference data, the objective function and the optimizer. 

These elements are described next. 

Eight electrochemical variables were selected as the target for the PE study. These variables 

are the solid diffusion coefficients (Ds,n and Ds,p), the intercalation/deintercalation reaction-

rate constants (Kn and Kp), the initial SOC (SOCn,0 and SOCp,0), and the electroactive surface 

areas (Sn and Sp). All these variables are identifiable based on the Li-ion direct models. Their 

values are required for simulating the battery performance and for predicting the aging 

process. Also, to improve the accuracy of the predictions, the geometric and the material 

characteristics were assumed to be known. These parameters are usually available from the 

manufacturers of Li-ion batteries. They can also be determined experimentally.    

To account for low as well as for high discharge curves, it is imperative to rely on a direct 

model that simulates the experimental data. Moreover, due to the numerous back and forth 

calls in the PE process, the direct model should be computationally efficient and fast. As a 

result, a simplified version of the pseudo-two-dimensional (P2D) model was developed as 

the forward model. This model exhibits three main features: (1) accuracy, i.e., it takes into 

account the electrolyte properties; (2) it is fast. The calculation procedure has been 

optimized; and (3) flexibility. The number of unknown coefficients to be determined in the 

PE process is variable.  

In this work, the reference data for the PE study are generated with the P2D model. These 

data include the cell potential values with respect to the battery capacity for low and high 

discharge rates (C/10, C/2, 1C, 2C, 5C). In order to mimic the uncertainty that plagues 

experimental data, a noise function was employed to add random-based errors to the normal 

distribution of the reference data. The least-square function in the time domain was chosen 

as the objective function for this work. Moreover, due to the complexity of the system, a 

genetic algorithm (GA) was used to minimize the objective function. To increase the 

accuracy and to accelerate the calculation procedure, the best time domain of the estimation 

for each parameter was performed. It was determined by means of the sensitivity curves for 

all parameters with respect to discharge time. The dimensionless Jacobians are computed 

from the solution of the governing equations. These solutions provide the first derivative of 
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the cell potential in terms of the discharge time. Results reveal that the higher the Jacobian 

value, the better the estimation. The predicted simulation discharge curves show good 

agreement with the noisy reference data for both low and high discharge curves.  

 

3.3. Direct models of Li-ion batteries 

The macroscopic models of the Li-ion batteries can be classified into two groups: empirical-

based and electrochemical engineering models. The main reason for developing such models 

is to determine SOC and SOH of the battery [8, 9, 28]. 

Empirical models rest on the battery past battery experimental data to predict its future states. 

Equivalent circuit-based and neural network models are the most popular empirical models. 

They are widely used in electronics and in the automotive industry [8, 29, 30]. The interest 

of empirical models is that they are computationally fast and relatively simple. 

Unfortunately, their range of applications is limited. For instance, the physics-based 

parameters cannot be determined. The battery characteristics are not updated as the battery 

ages. Also, the empirical model pertaining to a specific battery cannot be transposed to other 

types of batteries [31, 32].  

Electrochemical models are, on the other hand, more sophisticated. These models are based 

on chemical/electrochemical kinetics and transport equations. They may be used to simulate 

the Li-ion battery characteristics and reactions [9]. The pseudo-two-dimensional (P2D) 

model and the Single Particle Model (SPM) are among the most popular electrochemical-

based models. The P2D model rests on the porous electrode theory, the concentrated solution 

theory and the kinetics equations [33, 34]. The P2D model has been extensively used in Li-

ion battery investigations [32]. Its predictions are accurate and it has shown repeatedly good 

agreement with experimental data [35, 36]. In order to reduce the computational times, a 

simplified version of the P2D model, called the SPM, has been developed. In the SPM, the 

electrolyte properties are ignored and the transport phenomena are treated in a simple manner 

[37].  

In this paper, the PE study is implemented using both low and high discharge curves based 

on the inverse method. The optimization process is carried out iteratively. On one hand, the 

P2D model is unquestionably rigorous but it is too complicated and slow. The SPM, on the 

other hand, provides quick responses but it is inaccurate for simulating high discharge rates 

and thick electrodes. Therefore, a simplified version of the P2D model is proposed as a 

compromise between complexity and accuracy for the PE process.  
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3.3.1. The P2D model 

In 1993, Doyle et al. introduced the pseudo-two-dimensional (P2D) model for Li-ion 

batteries using a combination of the porous electrode theory and the concentrated solution 

theory. To this day, this model remains the most popular Li-ion battery model. It has been 

thoroughly tested and validated [33]. Figure 3.1 depicts the structure used in this model. The 

electrodes are considered as a porous matrix. Their behavior is modeled with spherical 

particles surrounded by the electrolyte. The intercalation and the de-intercalation processes 

of the Li-ions are performed through the surface area of these particles. Also, the transfer 

processes are predominantly unidirectional. Consequently, a 1-D mathematical model (x 

axis) may be applied [1, 34].  
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Figure 3.1: The Li-ion battery P2D model 

 
 

The governing equations of the P2D model are reported in Table 3.2. The main features of 

these equations are: (1) solid-state Li+ ion concentration (cs) in the electrodes is derived from 

the Fick’s law of diffusion for spherical particles; (2) liquid-phase Li+ ion concentration (ce) 

in the electrolyte and in the separator is based on the conservation of Li+ ions; (3) solid-state 

potential (Φs) in the electrodes is derived from Ohm’s law; (4) liquid-phase potential (Φe) in 

the electrolyte and in the separator is calculated using Kirchhoff’s and Ohm’s laws; (5) pore 

wall flux of Li+ ions (J) in the electrodes is described by the Butler-Volmer kinetics equation 

[34, 42]. 
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Table 3.2: The governing equations of P2D Model [34] 
Region Eq. no. Governing equations 
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3.3.2. The Single Particle Model (SPM) 

In 2000, Zhang et al. proposed a simplified version of the P2D model known as the Single 

Particle Model (SPM) for Li-ion batteries. The SPM rests on two main assumptions. First, 

each electrode is modeled as a spherical particle in which intercalation and de-intercalation 

phenomena occur. Second, variations of the electrolyte concentration and potential are 

ignored [54]. These equations comprise the solid-state concentration and the Butler-Volmer 

kinetics equations at both negative and positive electrodes. By using these equations, the cell 

potential function of the Li-ion batteries can be determined as [64]: 
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The main advantages of the SPM are: (1) it is a simple model; (2) its solution requires 

minimum computational effort; (3) it can serve many purposes such as online estimation 

[37] and life modeling [55] of Li-ion batteries. Its main drawback is that it must be fine-
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tuned according to the electrolyte properties in thick electrodes and at high discharge rates 

[9].  

 

3.3.3. The Simplified P2D model 

Several efforts have been deployed in the development of simplified models of Li-ion 

batteries. The complex governing equations of P2D model are reduced by using different 

mathematics- and physics-based techniques [10, 28].  In this paper, a reduced Li-ion battery 

model for the PE process is proposed. Two assumptions are made: first, the wall flux value 

in the electrodes (Jn and Jp) is considered constant as in the SPM; second, a linear function 

(Eq. 3.12) is employed to describe the electrolyte concentration behaviour as respect to the 

operation time and the position in three regions: the cathode, the separator and the anode.    

     , 1, 2,, ; , , , 0e k k kc x t A t x A t k p s n x L      (3.12) 

A1 and A2 are assumed to be the time-dependent coefficients. The lengths Lp, Ls and Ln are 

illustrated in Figure 3.1. Applying the first assumption to the solid potential equation (Eq. 

3.3) and to its boundary conditions, the constant wall fluxes may be calculated as follows: 
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Moreover, the first derivative of the solid potential functions with respect to x are determined 

as follows: 
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Eqs. 3.17 to 3.19 are immediately obtained by substitution of the second assumption into Eq. 

3.2 and 3.6, that is, 

1, 0; , ,kdA
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2, 0sdA
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By using the boundary conditions of the electrolyte concentration profiles given by Eqs. 3.20 

and 3.21, the values of the A1,k are equal to zero as shown in Eq. 3.22. 
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Therefore, the electrolyte concentration profiles are computed by substituting Eqs. 3.18, 3.19 

and 3.22 into Eq. 3.12.  
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With the help of Eqs. 3.12 to 3.24 and the electrolyte potential governing equations (Eq. 3.4 

and 3.7), we obtain: 
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The conductivity for the liquid/salt/polymer is approximated with a polynomial function of 

the form [81]: 
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 αi are constant coefficients for all regions. By incorporating Eqs. 3.15 to 3.28, the following 

electrolyte potential drop function between the positive and the negative electrodes is 

proposed:  
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The new constant coefficients (ai) are determined by the PE process. By means of Eq. 3.5 & 

(3.30), the cell potential formula in SPM (Eq. 3.8) can be modified and calculated as a 

function of the electrochemical parameters and the unknown variables, that is,  
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 (3.31) 

This equation is applied in the PE process to estimate the electrochemical parameters and 

the unknown variables of the electrolyte potential drop function.  
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3.4. Parameter estimation process 

3.4.1. Inverse method 

Inverse methods are used for the PE of a system or for its functional identification. In the 

former, the unknown parameters can be estimated by means of experimental data. In the 

latter, the unknown functions can be determined in a finite or an infinite dimensional space 

[14]. The solution methods for inverse problems are usually more complicated than for direct 

problems. Direct problems are well-posed problems. The conditions that must be satisfied 

in a well-posed problem are that (1) the solution must exist; (2) it is unique and (3) it must 

be a continuous function. Inverse problems are, on the other hand, ill-posed problems. The 

solution of most inverse problems is highly dependent on the initial condition and on the 

boundary conditions as well as on the measured signals. There have been numerous attempts 

to tackle these difficulties and to convert inverse problems into well-posed problems [14-

16].  

In PE problems, the experimental signals play a key role in finding the expected parameters. 

These parameters must be measurable and accurate when compared with the direct model. 

In the identification of the Li-ion battery parameters, the time-varying cell potential values 

can be measured during the charge/discharge process. Figure 3.2 illustrates the relationship 

between the different elements of a PE study based on an inverse method. The objective 

function is defined here as the difference between the experimental data and the predictions 

of the direct model. A mathematical optimizer is employed to minimize the objective 

function so as to find the best values of the expected parameters.   
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Figure 3.2: The solution procedure for inverse problems 
 

3.4.2. PE equations 

The inverse problem of the Li-ion battery can be defined as a “whole time domain” approach. 

This means that the experimental data can be measured in the small time interval between 
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zero to cut-off time (0 < t ≤ tc). The experimental data vector (𝑽𝑐𝑒𝑙𝑙,𝑚
∗ ) relates to one 

charge/discharge process with N time intervals as shown in Eq. 3.32: 
*
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V  (3.32) 

The measurement of random errors is always a concern in the solution of inverse problems. 

The stability of the inverse method is sensitive to these errors. The solution technique for the 

inverse problem should be stable with the measurement errors and for small time intervals 

[14, 16]. In order to develop the mathematics for the inverse method, it is assumed that the 

measurement error (ei) is a random and additive variable: 
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The subscripts m and a represent the measurement and the actual variables, respectively. The 

objective function (S) is defined as the ordinary least-squares function of the measured data 

( *
,cell mV  ) and the calculated values (Vcell) [14]:  
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The superscript T indicates the transpose. Of course, the calculated (Vcell) vectors must be 

derivable with respect to the unknown parameters (P).  When experimental data are collected 

from M charge/discharge processes, Eq. 3.35 may be rewritten as [11]: 

        
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The objective function (3.35) is usually stable when only few parameters are unknown. It 

may become unstable when the inverse problem involves a larger number of unknown 

parameters. The instability is then reduced by adding regularization terms to the least-square 

objective function using Tikhonov’s regularization and Alifanov’s iteration regularization 

methods [14]. The expected parameters are estimated by solving the following optimization 

problem: 

  , ,1 ,min j low j j highS S subject to P P P  P       (3.36)   

Pj,low and Pj,high are the minimum and maximum of the Pj values respectively. Eq. 3.36 is 

solved for the unknown vector P as the system parameters. This process is implemented with 

an appropriate optimizer that finds the problem global minimum. 
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3.4.3. The Optimization process 

Due to the numerous parameters used in the objective function of the present PE study, there 

may be several local minima in the vicinity of the global minimum. As a result, the 

optimization process for the inverse problem is mathematically challenging, slow to 

converge and computationally expensive [15]. Colaço et al. presented detailed description 

and comparison between different solution methods for inverse problems using the steepest 

descent method, the conjugate gradient method, the Newton-Raphson method, the quasi-

Newton method, the Levenberg-Marquardt method (LM), Genetic Algorithms (GA), 

differential evolutions, the particle swarm method and the simulated annealing method [17]. 

In general, these optimization tools can be divided into two categories: deterministic 

techniques and stochastic methods. Although deterministic methods are usually faster than 

the stochastic methods, they easily fall into system local extrema and have complex 

structures. Stochastic-based optimization methods employ, on the other hand, random-based 

operation functions ideally suited for reaching the system global extremum [17, 18]. 

Therefore, in this paper, a genetic algorithm stochastic technique will be applied to the 

objective function in order to estimate the large number of electrochemical parameters of the 

Li-ion batteries. 

GA is by far the most popular stochastic optimization technique used in all engineering 

fields. This method was officially introduced by Holland in the 1970s [101-103]. The GA 

originates from natural selection mechanisms. It starts from a strong random database, 

namely an initial population, and moves upward to many extremum points. Inspired by the 

living organism’s structure, each member of the initial population is called chromosome 

containing some genes. Each chromosome represents a probabilistic answer of the 

optimization problem in which the number of variables is equivalent to the number of genes. 

In the GA, more fitted new populations replace older populations. Therefore, the algorithm 

requires a fitness function, which refers to the cost of a chromosome. After randomly 

generating the initial population, new populations are being produced by three genetic 

operators called pairing, mating and mutation:  

(1) The pairing operator: This operator chooses the suitable parent chromosomes from the 

current population for pairing. The objective function determines the cost of each 

chromosome and its chance for selection. 

(2) The mating operator: This operator produces one or more offspring from the selected 

pairs. After selecting the pairs, they are being mated by a random function and two children 

are produced. 
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(3) The mutation operator: This operator applies a random change in a small percent of genes 

in all chromosomes. Mutation results in introducing new characteristics to the chromosomes 

that did not exist in the previous ones. This operator avoids quick convergence to a local 

minimum especially for objective functions which have many local minima. 

Figure 3.3 shows the GA flowchart with the relationships between all GA operators. 

 

 
Figure 3.3: The Genetic Algorithm (GA) flowchart 

 

3.5. Parameters and reference data 

3.5.1. Expected parameters 

The effective variables of the Li-ion battery performance can be classified into three groups: 

geometric, material and operational parameters. The geometric and material parameters can 

be easily obtained from direct measurements or from the datasheets provided by the 

manufacturer. The operational properties are, on the other hand, not easily available. 

Furthermore, some of them may vary according to the measurement techniques or the 

battery’s age. Sometimes, the measurement of these parameters requires the dismantling of 

the battery itself. Therefore, eight electrochemical parameters, as the operational properties, 

were selected for the present PE study. These parameters are the solid diffusion coefficients 

(Ds,n and Ds,p), the intercalation/deintercalation reaction-rate constants (Kn and Kp), the initial 

SOC (SOCn,0 and SOCp,0), and the electroactive surface areas (Sn and Sp). All these variables 

are identifiable based on the Li-ion direct models. Their values are needed to simulate the 

battery’s performance and to predict its aging process. Table 3.3 provides the range for each 

parameter for a typical Li-ion battery with a LiCoO2 positive electrode. 
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Table 3.3: Range of the electrochemical parameters for a Li-ion battery with LiCoO2 

Symbol Unit Low value High value 
Ds,n m2/s 1.5e-14 4.5e-14 
Ds,p m2/s 0.5e-14 1.5e-14 
Kn m2.5/mol0.5 s 0.9e-11 2.7e-11 
Kp m2.5/mol0.5 s 3.3e-11 10e-11 

SOCn,0 - 0.65 0.85 
SOCp,0 - 0.4 0.6 

Sn m2 0.6 1.3 
Sp m2 0.6 1.3 

 

 

3.5.2. Reference data 

To identify the electrochemical parameters for the Li-ion battery, the reference data must be 

compared to the predictions of the direct model. In the present study, the reference data were 

generated with the P2D model available in COMSOL®Inc. Multiphysics 5.1. The reference 

data are composed of the cell potential values with respect to the battery capacity for low 

and high discharge rates, namely C/10, C/2, 1C, 2C, 5C. Moreover, to mimic real 

experimental data, random noise was added to the reference data (Eq. 3.37). The error profile 

is generated by a normal distribution random function multiplied by the accuracy of the 

measurement tools (0.001 V). The mean value and the standard deviation of the normal 

distribution are chosen to be 0 and 1, respectively. Due to the high accuracy of the 

experimental setup, the deviation value should even be lower. This means that the added 

error profile represents the worst case scenario. Figure 3.4 illustrates noisy reference data 

for different discharge curves. 

 

   * *
, . , 2 0.001cell ref cell P D iV V t rand Normal distribution      (3.37)  
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Figure 3.4: Noisy reference data for various discharge curves 

 

3.6. Sensitivity Analysis  

In order to increase the accuracy of the inverse method and to accelerate the parameter 

estimation process, the best time domain for the estimation of each parameter must be 

calculated. It is determined with the sensitivity curves for all parameters. The sensitivity or 

the Jacobian matrix (J) is defined as the first order partial derivatives of the calculated cell 

potential (𝑽𝑐𝑒𝑙𝑙(𝑷)) with the respect to the unknown parameters (Pj), that is: 

 
TT

cell
j

j

 
 
 
 

V
J P

P
        (3.38) 

In the present study, the governing equations for the SPM (Eqs. 3.8-3.11) are employed to 

calculate the sensitivity values. Due to the different order of magnitudes for these values, the 

dimensionless sensitivity coefficients are estimated as  

cell
P jj j

V
J P

P





        (3.39)   

It should be noted that the mean values of each parameter, extracted from Table 3.3, have 

been used to determine the sensitivity coefficients. Figures 3.5a to 3.5e show the sensitivity 

curves related to different discharge curves. The higher the Jacobian value, the better the 

estimation. The Jacobian values for each parameter vary with the discharge time and the 

discharge rate. Figure 3.5f presents a schematic of the best time domain for estimating of 

electrochemical parameters for Li-ion batteries based on graphite/LiCoO2. Regardless of the 
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discharge rates, the discharge curves may be divided into three distinct regions for the best 

time domain including (1) the beginning of the discharge process; (2) the discharge cell 

voltage plateau; and (3) the end of the process with decreasing cell potential. Note that due 

to the various open circuit potentials, these results would be affected by the positive electrode 

materials, which will be shown in the next paper. According to the sensitivity analysis 

curves, the best time domain for the PE of different electrochemical parameters is as follows:  

• Ds,n, kn and kp: For both low and high discharge rates, region 2 appears to be the best time 

domain to estimate these electrochemical parameters. 

• Ds,p: Region 2 is best for identifying Dp at low discharge rates. However, by using the 

SPM as the direct model, the region 3 seems more appropriate for identifying Ds,p at high 

discharge rates. This change is because of the dramatic increase of the first derivative of the 

cathode open circuit potential function (Up) with respect to Ds,p at the end of the discharge 

process in high C-rates. Since (∂Up/∂Ds,p) profile is a material characteristic, its behavior 

may be change when using other cathode materials. This effect will be shown in the next 

part of this paper. 

• Sn, SOCn,0: Region 3 is the best time range for estimating both these parameters for all 

discharge rates.  

• Sp, SOCp,0: The best time domains for these parameters are in regions 1 and 3 for both 

low and high discharge rates. 

 
(a) 
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(b) 

 
(c) 



 

52 

 
(d) 

 
(e) 
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(f) 

Figure 3.5: Sensitivity curves (a-e) and best time domain (f) for estimating the electrochemical 
parameters 

 

3.7. Results 

Six different scenarios for the PE study were investigated. Two scenarios were examined at 

low discharge rates (C/10), with and without a sensitivity analysis. Four additional scenarios 

were simulated for discharge curves of C/2, 1C, 2C and 5C. 

   

3.7.1. Sensitivity analysis effects 

It is observed, for low battery discharge rates (in the present case C/10), that the changes in 

the electrolyte properties are negligible along the x-direction. As a result, the SPM is accurate 

enough to be the direct model. The PE process was performed for two different scenarios, 

with and without a sensitivity analysis. Figures 3.6a,b illustrate the flow chart of both these 

scenarios.  
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Region 1,2,3 of C/10 
discharge curve

Direct model: SPM
Rcell=0

+
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System’s 
Parameters
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(b) 

Figure 3.6: Flow chart of two scenarios for the PE (a) with and (b) without sensitivity analysis 
 

The objective function used in both scenarios is defined in Eqs. 3.34 and 3.36. It means that 

the least-squared objective function is applied to only one discharge curve. The parameter 

constraints for the optimization process are provided in Table 3.3. The characteristics and 

the main results of these simulations are reported in Table 3.4. The specific error function is 

defined as  

  
2

*
, , ,

1

1 N
s cell m i cell i

i
e V V

N


 
  
 

 P        (3.40) 

 
Table 3.4: Characteristics and results for the 1st and 2nd scenarios with and without sensitivity analysis 

Parameter Unit 1st 2nd 
Initial population - 800 800 

Mutation Rate % 5 5 
GA iteration - 100 100 
Specific error V2 5.19e-6 3.56e-5 

 

Examination of Table 3.4 reveals that the sensitivity analysis in the first scenario increases 

the accuracy of the predicted cell potential function as compared to the reference data. 

Moreover, the order of magnitude of the specific error for this scenario is 10 times lower 

than that for the second scenario.  

 

3.7.2. Parameter estimation  

In order to identify the electrochemical parameters of the Li-ion battery, four additional 

discharge curves, including high and low discharge rates, were examined. The objective 

function is based on Eqs. 3.31 and 3.35 and the constraints are summarized in Table 3.3. In 

other words, for each scenario, the objective function is simultaneously taking into account 

all discharge curves (C/2, 1C, 2C and 5C). The characteristics of the simulated scenarios are 

reported in Table 3.5. The results of the PE using both normal and noisy data are depicted in 

Figure 3.7. 
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Table 3.5: The characteristics and results of different scenarios of PE study 

Sc. 
Data 

Discharge 
Rate 

Direct Model Sensitivity 
Analysis 

Initial 
population 

Mutation 
Rate (%) 

GA 
iteration 

No. of 
Parameters 

3 
C/2,1C 
2C,5C 

Reduced model (one 
unknown variable a0) 

No 800 5 100 9 
4 Yes 800 5 100 9 
5 Reduced model (two 

unknown variable a0 a1) 
No 800 5 100 10 

6 Yes 800 5 100 10 
 

The following conclusions may be drawn from Figure 3.7: 

1. The computational methodology remains stable and accurate in all cases, including the 

worst case scenario with noisy data.  

2. The magnitude of the specific errors for scenarios 3 and 5 and scenarios 4 and 6 shows 

that the higher the number of unknown parameters, the lower the error. Also, as expected, 

the performance of a sensitivity analysis improves the accuracy of the predictions. 

3. The last scenario, scenario no. 6, is the best for the PE study of the Li-ion battery. It is 

based on the simplified model with two unknown parameters and it relies simultaneously on 

the sensitivity analysis.  

 

 
Figure 3.7: PE results using both normal and noisy data 

 

Using the estimated parameters for the best scenario, the discharge curves for the Li-ion 

battery were determined by running the simplified model. Figures 3.8a and 3.8b show the 

simulation results for the normal and the noisy reference data respectively. It is seen that the 

predictions remain accurate for all discharge curves and for noisy reference data.  
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(a) (b) 

Figure 3.8: Estimated discharge curves of the Li-ion battery using both normal (a) and noisy (b) 
reference data 

 

Figure 3.9 illustrates the relative error (er) for the best scenario using normal and noisy data 

(Eq. 3.41). The relative error values were obtained by comparing with the real parameters 

(Pj,real) which are used to generate the reference data with the P2D COMSOL model. 

, ,

,
100j PE j real

r
j real

P P
e

P


         (3.41) 

Figure 3.9 reveals that the relative errors for the constant rates (Kp and Kn) are higher than 

those for the other parameters. On other hand, according to Figures 3.5a-e their sensitivity 

coefficients are very low when compared to others. As a result, their effect on the cell 

potential function of the battery remains insignificant.  

 

 
Figure 3.9: Relative error for the best scenario using normal and noisy data 
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The final values of the expected electrochemical parameters are presented in Table 3.6. It is 

seen that all parameters are in the expected range and compatible with the data available in 

the open literature.  

 
Table 3.6: The final electrochemical parameter values of the Li-ion battery with LiCoO2 

Symbol Unit Reference 
Value 

Value with 
normal data 

Value with 
noisy data 

Ds,p m2/s 1.0e-14 1.08e-14 1.17e-14 
Ds,n m2/s 3.9e-14 3.63e-14 3.09e-14 
Kp m2.5/mol0.5 s 6.67e-11 4.2e-11 4.23e-11 
Kn m2.5/mol0.5 s 1.7e-11 2.08e-11 1.65e-11 
Sp m2 1.117 1.139 1.0917 
Sn m2 0.782 0.767 0.8138 

SOCp,0 - 0.495 0.500 0.496 
SOCn,0 - 0.742 0.750 0.726 

 

3.8. Model validation 

To validate the presented model, the electrochemical parameters of three Li-ion batteries 

with the LMO, the LCO, and the LFP cathode material are estimated. It is noted that, these 

results are presented in [104] as the second of part of this paper.     

Similar to the Figure 3.5, the schematics of the best time domain for estimating of 

electrochemical parameters for Li-ion batteries with the LMO and the LFP cathode are 

presented in Figures 3.10 and 3.11, respectively.  
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Figure 3.10: Schematic curve generated from a sensitivity analysis for Graphite/LiMn2O4 
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Figure 3.11: Schematic curve of sensitivity analysis for Graphite/LiFePO4 

 

As discussed in Section 3.7.2, the electrochemical parameters are identified for three 

commercial Li-ion batteries with different cathode materials. The range used and the 

estimated values of these parameters are presented in Tables 3.7, 3.8, and 3.9 for the Li-ion 

batteries with the LMO, the LCO, and the LFP cathode, respectively.  

 
Table 3.7: Estimated parameters for the Graphite/LiCoO2 cell 

Symbol Units 
Range Estimated 

value min max 
Ds,p m2/s 1.0e-15 1.0e-13 9.9451e-14 
Ds,n m2/s 1.0e-15 1.0e-13 4.9270e-14 
Kp m2.5/mol0.5 s 1.0e-12 1.0e-10 4.1618e-11 
Kn m2.5/mol0.5 s 1.0e-12 1.0e-10 2.1138e-11 
Sp m2 0.6 1.3 1.02 
Sn m2 0.6 1.3 0.81 

SOCp,0 - 0.4 0.6 0.53 
SOCn,0 - 0.6 0.8 0.68 

 
Table 3.8: Estimated parameters for the Graphite/ LiMn2O4 cell 

Symbol Units 
Range Estimated 

value min max 
Ds,p m2/s 1.0e-15 1.0e-12 6.7259e-13 
Ds,n m2/s 1.0e-15 1.0e-12 7.5502e-13 
Kp m2.5/mol0.5 s 1.0e-12 1.0e-10 1.8324e-11 
Kn m2.5/mol0.5 s 1.0e-12 1.0e-10 2.8141e-11 
Sp m2 0.9 1.6 1.39 
Sn m2 0.9 1.6 1.42 

SOCp,0 - 0.17 0.3 0.22 
SOCn,0 - 0.65 0.85 0.71 
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Table 3.9: Estimated parameters for the Graphite/LiFePO4 cell 

Symbol Unit 
Range Estimated 

value min max 
Ds,p m2/s 1.0e-19 1.0e-17 4.0064e-18 
Ds,n m2/s 1.0e-16 1.0e-14 4.6450e-15 
Kp m2.5/mol0.5 s 1.0e-13 1.0e-11 9.2287e-12 
Kn m2.5/mol0.5 s 1.0e-12 1.0e-10 3.4281e-12 
εp - 0.3 0.45 0.39 
εn - 0.4 0.6 0.60 

SOCp,0 - 0.01 0.06 0.05 
SOCn,0 - 0.75 0.82 0.81 

 

The cell potential functions of these Li-ion batteries can be calculated by means of the 

estimated values. Figures 3.12, 3.13, and 3.14 demonstrate a good agreement between the 

calculated cell potentials and the experimental data for all types of Li-ion battery. It is noted 

that the simplified model presented in Section 3.3.3 is employed for the LCO and the LMO 

cathode materials. However, a SPM model modified by the mosaic approach used for the 

Li-ion battery with the LFP cathode. The detail description of this model will be presented 

in Chapter 5. 

 

 
Figure 3.12: Simulated and experimental [11] discharge curves for the Graphite/LiCoO2 cell 
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Figure 3.13: Simulated and experimental [34] discharge curves for the Graphite/LiMn2O4 cell 

 

 
Figure 3.14: Simulated and experimental [105] discharge curves for the Graphite/ LiFePO4 cell 

 

3.9. Conclusion 

An electrochemical Parameter Estimation (PE) of a Li-ion battery was conducted with an 

inverse method. The numerical procedure identifies eight key internal parameters of the Li-

ion battery which are the solid diffusion coefficients (Ds,n and Ds,p), the 

intercalation/deintercalation reaction-rate constants (Kn and Kp), the initial SOC (SOCn,0 and 
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SOCp,0), and the electroactive surface areas (Sn and Sp). A simplified version of the P2D 

model was developed for the PE study. Noisy reference data are generated by the 

COMSOL®Inc. Multiphysics 5.1 and a Gaussian random function. These data include five 

discharge curves, namely C/10, C/2, 1C, 2C, 5C. To increase the accuracy and the 

computational speed of the PE process, the best time domain for the identification of each 

parameter is determined. This is conducted by means of a sensitivity analysis for all 

parameters with respect to the cell potential. A least square function and the Genetic 

Algorithm (GA) are chosen as the objective function and the optimizer for the inverse 

method, respectively.  

Using this methodology, six comparative scenarios are examined. In the 1st and 2nd scenarios, 

the effect of the sensitivity analysis on the PE process is investigated by using C/10 discharge 

curve. The results reveal that the sensitivity analysis increases the accuracy of the predicted 

cell potential function as compared to the reference data. Moreover, the order of magnitude 

of the specific error for the scenario with considering sensitivity analysis is 10 times lower 

than that for the regular scenario. In the other four scenarios, the effect of the developed 

simplified model and of the sensitivity analysis on the identification process is 

simultaneously examined for both low and high discharge rates. Results show that the larger 

the number of unknown coefficients in the simplified model, the lower the error. The best 

PE predictions are obtained when the reduced model calculations are coupled to a sensitivity 

analysis.  

The method developed is applied to estimate the unknown parameters of three types of Li-

ion batteries with different cathode materials. The comparison of the calculated cell 

potentials and the experimental data shows that the method is successful.    
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Titre français: Une méthode inverse pour l’estimation de paramètres électrochimiques et 

pour la prédiction du comportement des piles aux ions lithium cylindriques 

Contribution au document: Cet article scientifique traite de l’estimation des propriétés 

thermophysiques par méthode inverse d’une pile cylindrique aux ions lithium. La méthode 

a été utilisée avec succès pour identifier les principales propriétés thermophysiques et prédire 

le comportement thermique de la pile. Un modèle direct de transfert de chaleur a également 

dû être mis au point afin d’estimer la température de surface de la pile au moyen du modèle.   

Résumé français :  

Une estimation des propriétés thermophysiques d’une pile aux ions lithium (Li-ion), basée 

sur une méthode inverse et ne nécessitant la disponibilité préalable d’aucuns paramètres 

électrochimiques, est effectuée. Les cinq paramètres prédits sont la chaleur spécifique, la 

conductivité thermique, le coefficient de transfert de chaleur par convection, et les états de 

charge initial et final (SOC). L’identification de ces paramètres est nécessaire pour calculer 

la génération interne d’énergie et le champ de température, variables essentielles pour 

prédire le comportement thermique de la pile. Afin d’estimer les paramètres 

thermophysiques, un modèle direct de transfert de chaleur représentant la pile Li-ion 

cylindrique a été développé et utilisé pour simuler les données expérimentales, incluant les 

profils de température de surface à différents taux de décharge. Ces données proviennent de 

la mesure de pile Li-ion commerciales. Le modèle comprend à la fois les termes réversibles 

et irréversibles de génération d’énergie thermique. Les mesures expérimentales du potentiel 

de la pile sont également utilisées dans l’estimation de la distribution de température. Une 

relation approximative, indépendante des paramètres électrochimiques, est proposée pour 

représenter la variation du potentiel de la pile en fonction de la température ambiante. Par la 

suite, une méthode inverse en transfert thermique basée sur l’utilisation d’un algorithme 
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génétique est utilisée pour estimer les paramètres inconnus. Les résultats montrent que la 

méthode proposée est fiable, robuste et précise pour tous les taux de décharge.  
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4. An inverse method for estimating the thermophysical 

parameters and predicting the behavior of cylindrical lithium-

ion batteries 
 

4.1. Abstract 

An inverse parameter estimation of the thermophysical properties of a cylindrical lithium-

ion (Li-ion) battery is conducted with no need to the electrochemical parameters availability. 

The five predicted parameters are the heat capacity, thermal conductivity, convection heat 

transfer coefficient, and the initial and final states-of-charge. The identification of these 

parameters is necessary for calculating the internal heat generation and the temperature 

distribution, and therefore, for predicting the thermal behavior of the battery. To estimate 

the thermophysical parameters, a direct heat transfer model of the cylindrical Li-ion battery 

was developed that is applied to simulate experimental data including the surface 

temperature profiles for different discharge rates. The experimental data are collected from 

a commercial cylindrical Li-ion battery. The model contains both reversible and irreversible 

heat generation terms. It also employs the experimental cell potential function as an input to 

account for the temperature distribution. An approximate relation, independent of the 

electrochemical parameters, is proposed for the cell potential change with ambient 

temperature. Next, an inverse heat transfer method based on a genetic algorithm is employed 

for estimating the unknown parameters. The results show that the proposed method is 

reliable, robust and accurate at all discharge rates.  

 

Keywords: Parameter estimation; Thermophysical parameters; Inverse method; Cylindrical 

Li-ion battery; Sensitivity analysis; LiFePO4 (LFP) cathode material; Genetic Algorithm 

(GA). 

 

Nomenclature: 
,s kc  Solid-state concentration of Li+ of electrode k (k=p,n), mol m-3 

ec  Concentration of electrolyte in the solution phase, mol m-3 
max
,s kc  Maximum concentration of Li+ in the particle of electrode k (k=p,n), mol m-3 

,
surf
s kc  Concentration of Li+ on the surface of the particles of the electrode k (k=p,n), mol m-3 

,s kD  Li+ diffusion coefficient in the particle of electrode k (k=p,n), m2s-1 
E   Voltage of the cell, V 

0,kE  Open-circuit potential of the electrode k (k=p,n), V 
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F  Faraday’s constant, C mol-1 
h Convection coefficient between the cylindrical battery and its surroundings, Wm-2K-1 
I   Applied current density, A m-2 

kJ  Wall flux of Li+ at the surface of the particles of electrode k (k=p,n), mol m-2s-1 
k Thermal conductivity of the cylindrical battery, Wm-1K-1  

kK   Reaction rate constant of the electrode k (k=p,n), m2.5mol-0.5s-1 

cL   Length of the cylindrical battery, m 
n   Negative electrode  
p  Positive electrode  

P Unknown parameter matrix 
Q  Total heat generation of the cylindrical battery, W 
q  Volumetric heat generation of the cylindrical battery, W m-3 
R  Universal gas constant, J mol-1K-1   
r   Radial coordinate, m 

cR  Radius of the cylindrical battery, m   

,s kR   Radius of the particles of the electrode k (k=p,n), m 
s  Separator   
S Objective function, K2 

kS   Total electroactive area of the electrode k, m2 

kSOC   State Of Charge of the electrode k (k=p,n) 

,0kSOC  Initial State Of Charge of the electrode k (k=p,n) 
t   Time, s 

ct   Time at the end of the discharge, s 
T  Absolute temperature, K  

*T  Experimental surface temperature of the cylindrical battery, K  
surT  Surrounding temperature, K  

tV  Total volume of the cylindrical battery, m3 

,s kV  Total volume of the electrode k, m3 
x   Spatial coordinate, m 
 
Greek  

α Thermal diffusivity of the cylindrical battery, m2 s-1 

k  Porosity of the region k (k=p,s,n) 

k   Overpotential of the electrode k (k=p,n), V 

,s k  Solid-phase potential of the electrode k (k=p,n), V 

 
 

4.2. Introduction  

Lithium-ion (Li-ion) battery packs play a key role for storing electricity and for delivering 

electric power on demand. The reliability of these storage systems is strongly dependent on 

the safety and the robustness of the batteries. To ensure the continuous operation of the Li-

ion battery pack, battery management systems (BMSs) are usually employed that monitor, 

control, and manage the thermal performance of the batteries, as well as check their safety 

and integrity. The interactions between the battery pack and other system components are 

also monitored by the BMS. One of the important tasks of the BMS is to keep the battery 
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temperature within appropriate limits under all circumstances. The BMS must handle 

challenging situations such as rapid charge and discharge processes and extreme ambient 

conditions [7, 10, 68, 72, 73, 106]. For instance, in hot environments, the thermal 

management system must be able to efficiently remove the heat generated by the battery 

pack during the charge and discharge processes. The rate of heat dissipated increases linearly 

with the operating temperature, and as a result, natural heat dissipation may not suffice to 

ensure the safety and integrity of the battery pack. Alternative cooling methods must then be 

devised to avoid battery thermal runaways [68, 107, 108].  

Thermal management systems usually rest on rigorous heat transfer models. In 1985, 

Bernardi et al. performed an overall energy balance to develop a heat transfer model for 

battery systems. Their model assumes a uniform temperature distribution inside the cell. 

However, the temperature distribution is dependent on the electrochemical reactions, system 

heat capacity, phase changes, mixing enthalpy, electrical connections, and the heat transfer 

to the surroundings [38].  

 Pals and Newman incorporated a similar energy balance in their pseudo-two-dimensional 

(P2D) model to compute the heat generation rate of a stack of Li-ion cells [60, 61]. Other 

solutions were also obtained for thermal and electrochemical equations under the assumption 

of uniform temperature conditions [9, 36].  

In 2011, Guo et al. coupled a single particle model (SPM) with the energy balance equations 

to develop a reduced heat transfer model of Li-ion batteries. Their numerical predictions 

showed good agreement with experimental data for low discharge rates [64].  

The aforementioned approaches were used to simulate different Li-ion battery 

configurations such as cylindrical, prismatic and pouch types. Based on the work of Bernardi 

et al. [38], two heat generation sources were considered to calculate the temperature 

distribution inside the Li-ion battery: the reversible term which accounts for the battery 

entropy change associated with the reversible reactions, and the irreversible term which is 

due to the battery polarization. The change in the mixing enthalpy is neglected to simplify 

the heat transfer model. In spite of the fact that the temperature inside the sandwich layer 

was assumed uniform, temperature profiles between these layers could be predicted in the 

cylindrical and prismatic batteries.  

The present paper addresses the parameter estimation of cylindrical Li-ion batteries, and a 

literature review on the heat transfer models for this type of battery is presented Table 4.1. 
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Table 4.1: Heat transfer studies for cylindrical Li-ion batteries. 
Author Type Cathode 

Material Cycle rate Thermal 
Model Extra Description 

Inui et al., 2007 [109] Cylindrical 
Prismatic LiCoO2 C/2, 1 C 2D Empirical-based approach. 

Muratori et al., 2010 [110] Cylindrical LiFePO4 - 1D Reversible term is neglected. 
Forgez et al., 2010 [111] Cylindrical LiFePO4 6 C 1D Lumped approach. 

Zhang, 2011 [112] Cylindrical LiMn2O4 1.7 C 1D Coupled electrochemical-thermal 
model. 

Jeon and Baek, 2011 [113] Cylindrical LiCoO2 
LiNiCoMnO2 

1 C 3D Using polynomial fit function for 
entropy changes. 

Lin et al., 2013 [114] Cylindrical LiFePO4 - 1D Using thermal resistance. 
Kim et al., 2013 [115] Cylindrical LiFePO4 - 1D Using a simplified model. 

Saw et al., 2013 [116] Cylindrical LiFePO4 1 C,3C,5 C 3D Coupled P2D model and 3D 
thermal equations. 

 

Inui et al. developed two simulation codes for calculating the transient temperature 

distribution inside cylindrical and prismatic Li-ion batteries. The first model is a 2D 

axisymmetric model and the second model is a full 3D model. Both heat transfer models 

calculate the internal heat generation by employing measurements of the internal equivalent 

resistance and entropy changes. Although their numerical results showed good agreement 

with experimental data for low discharge rates (C/2,1 C), the models rely heavily on 

empirical data. Consequently, they cannot be transposed to other types of batteries that 

operate under different conditions [109].  

Muratori et al. employed the Laplace transformation to simplify the heat transfer equations 

of a model of cylindrical Li-ion batteries with a LiFePO4 (LFP) cathode material. The 

authors assumed that the reversible heat generation term for the LFP is negligible. The results 

of their study were validated with a finite element model (FEM) for low discharge rates. 

Their numerical predictions were not, however, compared to experimental data [110].  

A lumped heat transfer model was proposed by Forgez et al. to simulate cylindrical Li-ion 

batteries.  Their model depends on three parameters: the heat transfer resistance inside and 

outside the cell and the battery heat capacity. These parameters were estimated using the 

temperatures measured at the surface and center of the cylindrical batteries. In spite of its 

success, the model is limited because it ignores the temperature distribution along the length 

of the cylindrical battery [111]. 

 Zhang applied a coupled electrochemical-thermal approach to model a cylindrical Li-ion 

battery. In this model, the electrochemical parameters are considered to be temperature-

independent. Nevertheless, the model was successfully validated with experimental data at 

low discharge rates (1,7 C) [112].  

Jeon and Baek investigated the thermal performance of cylindrical Li-ion batteries by means 

of a 3D model. Polynomial fit functions were used for estimating the entropy changes in the 



 

68 

heat generation equation. Simulations were performed for a wide range of discharge rates. 

However, the validation was only conducted for a low discharge rate (1 C) [113].    

Lin et al. employed a simple thermal resistance model to predict the behavior of cylindrical 

batteries. Since their main goal was to estimate the centerline temperature, the governing 

equations included the surface and center temperature functions only. The model takes into 

account the heat generation source at the centerline, and the thermal resistance is determined 

experimentally [114].     

Kim et al. proposed a reduced heat transfer model for real-time applications of  cylindrical 

Li-ion batteries. They developed a 1D model in which the reversible heat generation term is 

neglected. A polynomial approximation is assumed for the temperature distribution along 

the radius. The time-dependent coefficients of the polynomials are determined by a volume-

averaging technique [115].  

Saw et al. employed a combination of the P2D model with a 3D heat conduction equation to 

model cylindrical Li-ion batteries. In this model, the thermophysical parameters, including 

thermal conductivity, density and heat capacity, are assumed to be anisotropic. The effects 

of the outer shell and the contact resistance on the battery thermal performance were 

examined. However, the dependence of the electrochemical parameters on the battery 

operating temperature was not taken into account [116].  

All the heat transfer models described above can predict, with more or less success, the 

thermal behaviour of Li-ion batteries provided that their thermophysical parameters such as 

the specific heat capacity (Cp), thermal conductivity (k), battery density (ρ), thermal 

diffusivity (α) and inside heat generation are known. But there is a multitude of commercial 

Li-ion batteries containing different materials, electrolyte solutions, separators, current 

collectors, battery cans and terminals. Consequently, determining these thermophysical 

parameters from experimental data is, as Maleki et al. [66] and Hong et al. [117] have shown, 

a painstaking and tedious task.   

The present paper proposes an alternative approach for estimating the thermophysical 

parameters of commercial cylindrical Li-ion batteries (Figure 4.1) to overcome some of these 

limitations. This approach rests on an inverse heat transfer method [14, 15].  
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Figure 4.1: Overall thermophysical parameter estimation used in this study 

 

4.3. Experimental data 

The experimental data from a commercial 1.05 Ah 18650 LixC6/LiyFePO4 cylindrical Li-ion 

battery were provided by Hydro-Québec. The experiments were conducted meticulously in 

order to generate the cell potential and the surface temperature as a function of the 

charge/discharge time, as shown in Figures 4.2a and 4.2b. The temperature of the climate 

chamber was kept constant at 25°C. The thermophysical parameters were estimated from 

the discharge experimental data. This is justified by the following facts: (1) the sharpest and 

noisiest operating temperature rise occur during the discharge process and (2) high battery 

discharge rates are found in many applications. The cell potential and the surface temperature 

curves are depicted in Figures 4.2a and 4.2b, respectively [105]. The higher the discharge 

rate, the higher the temperature rise. Therefore, only the data for high discharge rates at 2C, 

4C, 8C, 10C, and 15C are considered. Figure 4.2b indicates that the surface temperature 

exceeds the safe temperature of 35°C for discharge rates of 10C and above. In these cases, 

operating the battery pack without an effective thermal management system would threaten 

the integrity and safety of the storage system.  
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(a)     (b) 

Figure 4.2: (a) Cell potential and (b) surface temperature curves of the Li-ion battery [105] 
 

4.4. Direct heat transfer model 

The direct heat transfer model predicts the temperature distribution across the battery (the 

output) provided that its thermal and geometric properties, the initial condition and the 

boundary conditions are all known (the inputs).  

The cylindrical Li-ion battery is made of sandwich layers. A layer is composed of a cathode, 

a separator, an anode and current collectors encapsulated into a protective cylindrical case. 

Regardless of the battery height, its cross section area has a spiral shape [109, 118].  

 

4.4.1. Direct model equations 

The direct heat transfer model of the battery proposed in this study rests on the following 

assumptions:  

(1) The temperature gradient in the z-direction is much smaller than that in the r-direction, 

as has been assumed in previous studies [111, 113, 116]. As a result, a one-dimensional r-

direction model is adopted (T(z,r,t)≈T(r,t)). 

(2) The mathematical model is radial (concentrated model) and not spiral. There is no gap 

and no contact resistance between the sandwiched layers [118].  

(3) All materials are homogeneous and isotropic. Also, there is no bulk motion.  

(4) The heat capacity (ρCp), thermal conductivity (k) and convection heat  

transfer coefficient (h) are considered to be constant. 

(5) The heat transfer across the battery shell case is neglected. 

(6) The heat generation varies with time, but is assumed to be uniform in each layer. 

(7) Radiation heat transfer is negligible.  

Based on the aforementioned assumptions, the governing heat transfer equation for the 

temperature distribution T(r,t) across the cylindrical Li-ion battery is stated as [109, 110]:  



 

71 

   
   

 2

2
, , ,

, ; 0p c
T r t T r t T r tkk q r t C r R

r r tr


  
    

 
     (4.1) 

where q  is the volumetric heat generation of the cylindrical Li-ion battery. It comprises  

reversible ( qrev ) and irreversible ( qirrev ) components:  

q q qirrev rev          (4.2) 

The reversible term is associated with the entropy change of the battery reactions and, the 

irreversible term to the battery polarization. These terms are defined as [38]: 

    0 ; 0 c
t

Iq E t E t t tirrev V
          (4.3) 
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     (4.4) 

Vt, I and tc are the cylinder volume, charge/discharge current and cut-off process time, 

respectively. E(t) is the cell potential function and E0(t) is the open-circuit function. Note 

that the reversible heat generation is a function of the radius (r) and the charge/discharge 

time (t). Its magnitude can be either positive or negative according to the direction of the 

battery reactions. Because of assumption 6, the irreversible term is time-dependent only and 

it is always positive.  

The boundary condition at the cylinder centerline is symmetrical: 

 0,
0; 0 c

T t
t t

r


  


        (4.5) 

A convective heat transfer boundary condition is applied on the cylinder surface:  

 
  

,
, ; 0c

c sur c
T R t h T R t T t t

r k


    


      (4.6) 

where h is the convection heat transfer coefficient.  

The initial condition for the temperature of the Li-ion battery is: 

 ,0 ; 0sur cT r T r R           (4.7) 

Tsur is the temperature of the surroundings.  

For the present study, the experimental cell potential functions E(t) are available for different 

discharge rates at a temperature of 25°C. These data are used in the direct model. The open-

circuit potential functions for the negative (graphite) [64] and positive (LFP) [119] 

electrodes are determined from the state-of-charge (SOC) based on curves available in the 

open literature (Figures 4.3a and 4.3b). Similarly, the (∂E0/∂T) values for graphite [64] and 

LFP [120] are computed from these data and presented in Figures 4.3c and 4.3d. 
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(a)       (b) 

 
(c)       (d) 

Figure 4.3: Open circuit potential (a,b) and entropic heat change (c,d) as a function of SOC for 
Graphite[64] and LFP[119, 120] 

 

The set of Eqs. 4.1 to 4.7 is solved based on the mesh grid presented in Figure 4.4  with the 

Crank Nicolson Finite Difference Method [121] for which, 
2
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Figure 4.4: Finite difference mesh used for the cylindrical Li-ion battery 

 

where the increment ∆r is considered to be small relative to the total sandwich layer 

thickness. The volumetric heat generation term is computed for each layer. It is estimated 

with the average temperature between the inside and outside surface of each layer.   
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     (4.11) 

Also, the finite difference equations for the boundary and initial conditions are:  
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0 ;m surT T m= 1,2,...,M          (4.14) 

The open-circuit potential (E0) and (∂E0/∂T) are estimated from the open-circuit potential vs 

SOC curves of the electrodes.  

The above set of finite difference equations is closed with a relationship between the SOC 

and battery discharge time. In the present study, it is assumed that the SOC functions vary 

linearly with respect to the discharge time. Moreover, due to the higher Li-ion capacity 

storage of LFP compared to graphite, the SOCn will be close to zero at the end of the 

discharge period. The resulting SOCn for the negative electrode is then expressed as:         

 ,0 ,
1

3600(1 ); , 0
/n n c n Final

c C

tSOC SOC t SOC
t I I

       (4.15) 

SOCn,0 is the initial SOCn . tc is the final discharge time. I1C is the 1 C discharge current.  

In a similar manner, the SOC for the positive electrode is assumed to increase linearly with 

time. According to the literature, the SOC at the beginning of discharge is nearly zero (≈0.01-
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0.05) [122, 123]. In this paper, the initial value of the SOC was set equal to 0.05. The 

resulting SOCp exhibits the following relation with the discharge time:  

 
 ,0 , ,0 ,0

1

3600( ); , 0.05
/p p p Final p c p

c C

tSOC SOC SOC SOC t SOC
t I I

      (4.16) 

With the above information, the direct heat transfer model is able to predict the temperature 

distribution inside the cylindrical Li-ion battery. A schematic of the overall calculation 

procedure is depicted in Figure 4.5. The inputs to the direct model are classified into two 

groups: the known variables, which are provided by the experimental data, and the unknown 

parameters, which must be determined. The first group comprises the discharge current (I), 

surrounding temperature (Tsur), total volume of the cylindrical battery (Vt), and battery 

discharge curve (E).  The second group includes the heat capacity (ρCp), thermal 

conductivity (k), convection heat transfer coefficient (h), initial value of the SOCn, and final 

SOCp. These unknown parameters are estimated with the inverse heat transfer method 

discussed in section 4.5.   
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Figure 4.5: Schematic of the direct heat transfer model 

 

4.4.2. The total heat generation terms 

The heat generation during the discharge of a Li-ion battery plays a key role in the thermal 

management of the battery pack. The BMS employs this variable to maintain the battery 

operating temperature within reasonable limits.  Once the temperature distribution is 

predicted by the direct model, the variation of the heat generation during the discharge period 

is estimated with the inverse method results. To achieve this goal, a relation for calculating 

the total heat generation is proposed. As discussed earlier, the total heat generation comprises 

two terms: the reversible heat generation term ( Qrev ) and the irreversible heat generation 

term ( Qirrev ). Therefore, 
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where Vm is the volume of layer m. The magnitude of Vm is determined from, 
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The substitution of Eqs. 4.3, 4.4 and 4.18 into Eq. 4.17 yields  

       (4.19) 
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The total heat generation (Qt ) is a function of the battery discharge time. It is estimated from 

the voltage curve and the temperature distribution (Tm) across the cylindrical Li-ion battery. 

Eq. 4.19 shows that the irreversible heat generation of the battery is always positive (the cell 

potential (E) is always less than the open-circuit potential (E0)). On the other hand, Eq. 4.20 

shows that the reversible heat generation term is a heat source or a heat sink depending on 

the sign of the (∂E0/∂T) term.  

 

4.4.3. The effect of Tsur  

The experimental data were collected at the standard surrounding temperature of 25°C. The 

direct heat transfer model may accommodate other surrounding temperatures according to 

the following scenarios:   

 

Scenario 1. If the cell potential (E) is measured at a temperature different from 25°C, then 

the open-circuit potential (E0) should be updated. These functions are approximated with a 

Taylor series expansion [64]:  
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Scenario 2. If the cell potential (E) is measured at the standard surrounding temperature of 

25°C, both the open-circuit potential (E0) and the cell-potential (E) should be updated in 

order to predict the Li-ion battery behavior for different surrounding temperatures. E0 may 

then be updated with Eq. 4.21. In the present paper, a new relation for the cell potential is 

proposed. To develop this relation, we resort to the governing equations of the single particle 

model (SPM) [64]:  
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where r  is the radial coordinate along the positive and negative particles. Here, it is noted 

that, the SPM does not work properly for Li-ion batteries with LFP cathode material [19]. 

However, it can be able to model them by considering the mosaic approach as implemented 

by Prada et al. [123]. In the mosaic approach, it is assumed that the Li+ 

intercalation/deintercalation processes into LFP particles occur at different sites with 

identical spherical shapes. The effective radius or the Li+ ion diffusion coefficient of the LFP 

particle is adjusted depending on the battery discharge/charge rates [123, 124].  

The cell potential profile is already available at Tsur=25°C. Therefore, to estimate the cell 

potential for other surrounding temperatures, the Taylor series expansion is invoked: 
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     (4.28) 

The second term of the right side of Eq. 4.28 is calculated with Eq. 4.23: 
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Of course, it is assumed that the electrochemical parameters are temperature-independent. 

The last step is to determine the magnitude of the second term of the right side of Eq. 4.29. 

It is calculated by Eq. 4.23 at the reference temperature (Tref), that is, 
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    (4.30) 

By substituting Eq. 4.30 into Eq. 4.29, the cell potential function (E) is estimated for different 

surrounding temperatures: 
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The interesting feature of Eq. 4.31 is that the cell potential function (E) is estimated at any 

surrounding temperature without the use of other electrochemical parameter for the Li-ion 

battery.  

 

4.5. Inverse heat transfer model 

We have seen in section 4.4 above that the direct heat transfer model predicts the temperature 

distribution across the battery provided that its thermophysical properties and parameters, 

the initial condition and boundary conditions are all known. 

Unfortunately, some of the properties and parameters of the battery are typically unknown. 

These unknowns include the heat capacity (ρCp), thermal conductivity (k), convection heat 

transfer coefficient (h), initial SOCn, and final SOCp. These parameters can, however, be 

determined with the proposed inverse method. 

 Inverse heat transfer problems (IHTP) deal with the identification of unknown thermal 

characteristics by means of experimental data [14]. Three types of signals are measured from 

an operating Li-ion battery during the charge/discharge processes: the cell potential, current, 

and surface temperature T. In the present study, the surface temperature is used to estimate 

the unknown parameters.  

Figure 4.6 provides an overall view of the inverse heat transfer procedure. The aim of the 

inverse method is to minimize an objective function (S) to determine the unknown 

parameters. The objective function (S) is defined as the difference between the computed 

temperature (T(t)) and the measured temperature (T*(t)) at the surface of the battery. Once 

the objective function is satisfactorily minimized, the unknown parameters are automatically 

determined.  
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Figure 4.6: Schematic of the inverse heat transfer procedure 

 

The inverse heat transfer problem for the Li-ion battery involves a “whole time domain” 

approach. This means that the experimental data are measured in small time intervals 

between zero and the cut-off time (0 < t ≤ tc). The temperature vector with N time intervals 

during one charge/discharge process is written as 
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The least-square objective function (S) for one charge/discharge process is then expressed 

as [14].  
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The superscript T indicates the transpose of the matrix. For M charge/discharge processes, 

Eq. 4.33 is generalized as: 
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The calculated temperature vector (T(t)) is computed in terms of the unknown parameters 

(P). The parameters (P) are determined by minimizing the objective function (S) in the 

following manner: 

  , ,min j low j j highS S subject toP P P  P       (4.35)   
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Pj,low and Pj,high are the minimum and the maximum of the Pj values, respectively. Eq. 4.35 

is solved with an optimizer that determines the global minimum. 

The optimization process for inverse problems is mathematically challenging, slow  

converging and computationally expensive [15]. Colaço et al. reviewed different solution 

methods for inverse problems among which we find the steepest descent method, conjugate 

gradient method, Newton-Raphson method, quasi-Newton method, Levenberg-Marquardt 

method (LM), genetic algorithms (GA), differential evolutions, particle swarm method and 

the simulated annealing method [17]. In general, these optimization methods are divided into 

two categories: deterministic methods and stochastic methods.  The deterministic methods 

are usually faster than stochastic methods. However, their searches tend to become trapped 

in local extrema. On the other hand, stochastic-based optimization methods employ random-

based operation functions that are ideally suited for reaching the system global extremum 

[17, 18].  

In this paper, due to the complexity of the governing equations of the direct model (Eqs. 4.1 

to 4.7), a stochastic technique called the genetic algorithm (GA) is adopted for minimizing 

the objective function and estimating the thermophysical parameters of the Li-ion battery.  

The method was first introduced by Holland in the 1970s [101]. The GA originates from 

natural selection mechanisms. It starts from a strong random database, namely an initial 

population, and moves upward to many extremum points. Inspired by the structure of living 

organisms, each member of the initial population is called a chromosome containing some 

genes. Each chromosome represents a probabilistic solution to the optimization problem in 

which the number of variables is equivalent to the number of genes. 

In the GA, more fitted new populations replace older populations. Therefore, the algorithm 

requires a fitness function, which refers to the cost of a chromosome. After generating 

randomly the initial population, new populations are produced by three genetic operators 

called pairing, mating and mutation:  

(1) The pairing operator chooses the suitable parent chromosomes from the current 

population for pairing. The objective function determines the cost of each chromosome and 

its chance for selection. 

(2) The mating operator produces one or more offspring from the selected pairs. After 

selecting the pairs, they are mated by a random function and two children are produced. 

(3) The mutation operator applies a random change in a small proportion of genes in all 

chromosomes. Mutation results in introducing new characteristics to the chromosomes that 
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did not exist in the previous ones. This operator avoids quick convergence to a local 

minimum especially for objective functions which have many local minima. 

 

4.6. Sensitivity analysis 

The solution to all inverse problems involves a sensitivity analysis. For inverse heat transfer 

problems, the sensitivity or the Jacobian matrix (J) is calculated by taking the first order 

partial derivatives of the calculated temperature with respect to the expected (or the sought) 

parameters (Pj) at time ti (Eq. 4.34) [13, 14, 16, 104]. 
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j
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TJ P
P

        (4.36) 

Jij is called the sensitivity coefficient, which indicates how T(ti) changes with respect to Pj.  

In the present study, the sensitivity analysis is carried out for the five parameters: ρCp, k, h, 

SOCn,0, SOCp,F. Due to the difference in magnitude of these parameters, it is convenient to 

use the relative sensitivity coefficient defined as:  

i
ij j

j

TJ P
P
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


        (4.37) 

The sensitivity coefficients are computed with a finite-difference approximation 
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 


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     (4.38) 

ε is an arbitrarily small number of the order of ~10-5 [14]. Figures 4.7a, b, c, d and e illustrate 

the sensitivity coefficients for the five expected parameters at different discharge rates. The 

sensitivity curves indicate that the higher the discharge rate, the larger the magnitude of the 

sensitivity coefficients for these parameters. Therefore, it is recommended to conduct the 

parameter estimation at higher discharge rates. Moreover, the curves represent that the order 

of magnitude of the sensitivity coefficients of the thermophycal parameters (ρCp, k, h) is 10 

and 100 higher than that of SOCn,0, and SOCp,Final, respectively.   
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(a)             (b) 

 
(c)           (d) 

 
(e) 

Figure 4.7: Relative sensitivity coefficients. (a) Heat capacity (JρCp); (b) Thermal conductivity(Jk); (c) 
Convection heat transfer coefficient (Jh); (d) Initial SOC of the negative electrode; (e) Final SOC of the 

positive electrode 
 

4.7. Results 

The parameters of the Li-ion battery are provided in Table 4.2. The range of the five 

parameters, i.e., ρCp, k, h, SOCn,0, and SOCp,Final, as reported in the open literature, are 

summarized in Table 4.3 [66, 117, 122, 123]. The experimental data are provided for five 

discharge curves (2C, 4C, 8C, 10C and 15C). Eq. 4.34 is employed to minimize the objective 

function of the inverse problem.  
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Table 4.2: Parameters for the direct model 
Parameter Unit Value 

Radius of the cylinder m 0.0129 
Height of the cylinder m 0.0542 

Sandwich layer thickness m 4.6e-4 
Tsur °C 25 
I1C A 1.05 
I2C A 2.1 
I4C A 3.94 
I8C A 7.88 
I10C A 10.50 
I15C A 15.75 

 
Table 4.3: Range of the expected parameters for the inverse model 

Symbol Unit Min Max 

ρCp J/m3K 1.5e+6 5e+6 
k W/mK 0.05 5 
h W/m2K 1 20 

SOCn,0 - 0.7 0.9 
SOCp,Final - 0.6 0.8 

 

The GA optimization procedure was initiated with a population of 400 chromosomes and a 

mutation rate of 5%. The resulting estimated parameters are provided in Table 4.4 which 

demonstrate good agreement with the values used in previous studies [110, 111, 125]. The 

estimated and measured surface temperatures are also compared in Figure 4.8. The 

agreement between the predictions and experimental data is very reasonable, considering the 

fact that the measurement error is 0.5ºC. 

 
Table 4.4: Estimated parameters 

Symbol Unit Value 

ρCp J/m3K 3.25e+6 
k W/mK 0.1052 
h W/m2K 15.65 

SOCn,0 - 0.81 
SOCp,Final - 0.61 
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Figure 4.8: Estimated and measured surface temperature 

 

Figure 4.9a illustrates the time-varying the maximum (near to centerline) and surface 

temperature profiles of the cylindrical Li-ion battery for a discharge rate of 10C. As 

expected, the temperature near to the center of the battery is higher than that at the surface. 

At the end of discharge, the temperature difference is 6ºC which is compatible with results 

of other experimental research [109, 126]. The heat generation functions are also calculated 

using the predicted temperature distribution and Eqs. 4.19 and 4.20. Figure 4.9b depicts the 

total, reversible, and irreversible heat generation terms of the cylindrical Li-ion battery at 

10C discharge rate. As discussed previously, the reversible heat generation term may be 

either negative or positive. Due to the existence of a plateau in the LFP open- circuit 

potential, the mean total heat generation during most of the discharge period remains equal 

to 6.0 (W). It reaches 8.0 (W) at the end of discharge, and with a significant increase of the 

reversible heat generation. This thermal behavior must be taken into account when designing 

a thermal management system for the battery.   
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(a) 

 
(b) 

Figure 4.9: (a) Center and surface temperature at 15C discharge rate; (b) Predicted total, reversible, 
and irreversible heat generation terms. 

 

The effect of the convection heat transfer coefficient on the centerline temperature of the 

battery (the maximum temperature), is depicted in Figure 4.10a.  This figure reveals that the 

maximum temperature diminishes from 50°C to 35°C for a ten-fold increase in the heat 

transfer coefficient.  

The surrounding temperature (Tsur) is another parameter that must be considered for when 

designing the battery thermal management system. As Tsur increases, the battery 
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performance is negatively affected. The effect of Tsur on the battery centerline temperature 

for a discharge rate of 8 C is illustrated in Figure 4.10b. Obviously, increasing the heat 

transfer coefficient (h) is beneficial to reducing the maximum temperature. But this action 

seems pointless when the ambient temperatures exceeds 50°C. In this case, another battery 

cooling technique must be devised.     

 

 
(a)      (b) 

Figure 4.10: Effect of (a) h, (b) Tsur and h on the battery maximum temperature 
 

4.7. Conclusion 

An inverse parameter estimation of the thermophysical properties of a cylindrical lithium-

ion (Li-ion) battery was conducted. The identification of these parameters is necessary for 

predicting the thermal behavior of the battery. A direct heat transfer model of the cylindrical 

Li-ion battery was developed to estimate the thermophysical parameters. The direct model 

was then applied to simulate experimental data including surface temperature profiles for 

different discharge rates. The experimental data were collected from a commercial 

cylindrical Li-ion battery containing a LFP cathode material. The model contains both 

reversible and irreversible heat generation terms. It also employs the experimental cell 

potential function as an input to account for the temperature dependence of the 

electrochemical parameters such as the diffusion coefficients and reaction rate constant of 

the electrodes. An approximate relation, independent of the electrochemical parameters, was 

proposed for the cell potential change with the ambient temperature. An inverse heat transfer 

method based on a Genetic Algorithm (GA) was employed for estimating the five unknown 

parameters. The results show that the proposed parameter estimation method is reliable, 

robust and accurate for all discharge rates. Recommendations were also made concerning 

the effect of the convection heat transfer coefficient on the Battery Management Systems 

(BMSs) performance. 
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Revue: Electrochimica Acta 

Titre français: Un modèle mosaïque modifié (MM) pour les piles aux ions lithium 

commerciales basées sur le LiFePO4/Graphite 

Contribution au document: Un nouveau modèle mathématique, permettant d’estimer les 

propriétés électrochimiques et thermophysiques de piles aux ions lithium comprenant des 

électrodes positives de LFP, est présenté et utilisé pour l’analyse de leur performance. Ce 

modèle a permis de combiner un modèle électro-thermique simplifié de pile aux ions lithium 

avec les équations mathématiques du modèle mosaïque modifié (MM). 

Résumé français :  

Un nouveau modèle mathématique est présenté pour l’analyse des piles aux ions lithium (Li-

ion) commerciales basées sur le LiFePO4/Graphite. Le modèle est développé en couplant un 

modèle électro-thermique simplifié de pile Li-ion avec les équations mathématiques 

représentant le modèle mosaïque modifié (MM). Le modèle électro-thermique repose sur un 

modèle à particule unique (SPM) modifié et sur une équation de conservation d’énergie. 

Dans le modèle MM, le processus d’intercalation et de désintercalation du Li+ dans les 

particules de LFP est supposé se produire à différents sites identiques de forme sphérique. 

Le rayon effectif ou de façon équivalente le coefficient de diffusion solide du Li+ dans les 

particules de LFP est considéré comme variable en fonction du taux de charge/décharge. Le 

modèle ne prétend pas représenter les mécanismes réels d’insertion et d’extraction des ions 

Li+ au sein des particules de LFP. Toutefois, il simule avec succès le comportement 
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macroscopique de la pile. Quatre différents scénarios sont étudiés, dépendant de l’électrode 

dominante et du mode de fonctionnement de la pile, en charge ou en décharge. Le modèle 

MM est utilisés pour analyser le comportement de trois piles Li-ion commerciales avec des 

capacités différentes et opérées sous diverses conditions. Les résultats montrent que leur 

comportement peut être simulé avec précision tant à bas qu’à haut niveau de décharge. 
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5. A Modified Mosaic (MM) Model for Commercial Li-ion 

Batteries Based on LiFePO4/Graphite 
 

5.1. Abstract 

A novel mathematical model is presented for analyzing commercial lithium-ion (Li-ion) 

batteries based on LiFePO4(LFP)/graphite. The model is developed by coupling a simplified 

electro-thermal Li-ion battery model with the Modified Mosaic (MM) mathematical 

equations. The electro-thermal model rests on a modified Single Particle Model (SPM) and 

the energy balance equation. In the MM model, it is assumed that the Li+ 

intercalation/deintercalation processes into LFP particles occur at different sites with 

identical spherical shapes. The effective radius or the Li+ ion diffusion coefficient of the LFP 

particle is considered to be dependent on the battery discharge/charge rates. The model does 

not support the actual insertion/extraction mechanism of Li+ ions at the LFP particles on the 

micro-scale (particle-by-particle process), however, it is successful in simulating the battery 

behavior at a macro-scale. Four different scenarios are investigated depending on which 

electrode is dominant during the charge and/or discharge processes. The MM model is 

employed to investigate the behavior of three commercial Li-ion batteries operated under 

different conditions and battery capacity. The results show that their behavior is accurately 

simulated for both low and high discharge rates.  

  

Keywords: Li-ion battery; Li-ion battery model; LiFePO4 (LFP) electrode; Modified 
Mosaic model. 
 

Nomenclature: 

cellA   Total cell surface area exposed to surroundings, m2  
,s kc   Solid-state concentration of Li+ of electrode k (k=p,n), mol/m3 
,e kc  Electrolyte concentration of Li+ in region k (k=p,s,n), mol/m3 

,
ini
s kc  Initial concentration of Li+ in the particles of electrode k (k=p,n), mol/m3  
max
,s kc  Maximum concentration of Li+ in the particles of electrode k (k=p,n), mol/m3 

,
surf
s kc  Concentration of Li+ on the surface of the particles of the electrode k (k=p,n), mol/m3 

kC  Capacity of the electrode k (k=p,n), Ah 
max
kC  Maximum capacity of the electrode k (k=p,n), Ah 

,s kD  Li+ diffusion coefficient in the particles of electrode k (k=p,n), m2/s 
ref
s,kD  Ds,k at reference temperature (k=p,n), m2/s 

D,kEa   Solid phase diffusion activation energy (k=p,n), kJ/mol 
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K,kEa  Reaction rate constant activation energy (k=p,n), kJ/mol 
F  Faraday’s constant, C/mol 
h  Convection coefficient between the battery and its surroundings, W/m2K 
I   Applied current, A 

kJ  Wall flux of Li+ in the particles of k (k=p,n), mol/m2s 

kK   Reaction rate constant of electrode k (k=p,n), m2.5/mol0.5s 
ref
k

K   Kk at reference temperature (k=p,n), m2.5/mol0.5s 

n   Negative electrode  
N The charge or discharge rate 
q   Volumetric heat generation, W/m3 
p  Positive electrode  
r   Radial coordinate, m 
R  Universal gas constant, J/mol K   

cR   Cell radius, m 

cellR   Solution phase resistance, Ω 

,s kR   Radius of the particles of electrode k (k=p,n), m 
s Separator 

kS   Total electroactive area of electrode k (k=p,n), m2 

kSOC   State Of Charge of electrode k (k=p,n) 

,0kSOC  Initial State Of Charge of electrode k (k=p,n) 
Dis.
k,0SOC  Initial discharge State Of Charge of the electrode k (k=p,n) 

t   Time, s 
*t   End time of the charge/discharge process, s 

*
1Ct   End time of the battery discharge process at 1C, s 
T  Absolute temperature, K  

refT  Reference temperature, K  

surT   Surrounding temperature, K 

kU  Open-circuit potential of electrode k (k=p,n), V 
ref
k

U  Uk at reference temperature (k=p,n), V 

cellV  Voltage of the cell, V 

,s kV  Total volume of the electrode k (k=p,n), m3 

tV   Total volume of the battery, m3 
x   Spatial coordinate, m 

 
Greek  

k  Porosity of the electrode k (k=p,n) 

j  jth eigenvalue 

,s k   Overpotential of electrode k (k=p,n), V 
c   Battery heat capacity, J/m3K 

,s k  Solid-phase potential of electrode k (k=p,n), V 

,e k  Electrolyte potential in region k (k=p,s,n), V 
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5.2. Introduction  

Lithium-ion (Li-ion) batteries play a key role in the development of green technologies. This 

type of battery exhibits high power and high energy density. This is why Li-ion batteries are 

employed in many applications for storing electricity and delivering electric power on 

demand.  

Li-ion batteries are available in different shapes including cylindrical, prismatic, coin and 

pouch types. The internal structure of the battery usually comprises four main components: 

two electrodes (positive and negative), electrolyte and separator. Over the years, the design, 

structure, materials and operating conditions of these batteries have been modified so as to 

improve their efficiency, safety and performance, as well as to drive down their cost [7, 127]. 

One of the most important advances in Li-ion battery technology has been the introduction 

of LiFePO4 (LFP) as the cathode material [22]. The electronic and ionic conductivities of 

LFP powder were improved by decreasing the grain size to nanoscale and by using a 

conductive carbon-coating to encapsulate the LFP particles [19, 128]. Stable and safe olivine 

LFP has become an attractive cathode material in batteries for electric vehicles [22, 129]. 

The discharge/charge curves of LFP exhibit a voltage plateau at 3.5 (V) which is independent 

of the electrode State-Of-Charge (SOC). This behavior occurs because of the two-phase 

condition inside the LFP particles [22, 130, 131]. 

Most electrochemical models available in the open literature, for example the Pseudo-Two-

Dimensional (P2D) model and the Single Particle Model (SPM), cannot adequately simulate 

the behavior of batteries with LFP cathodes [19]. The main reason is that these models rely 

on Fick’s law which does not take into account the intercalation/deintercalation of Li+ ions 

in the LFP particles. To overcome this difficulty, alternative approaches have been proposed.   

In 1997, Padhi et al. suggested the shrinking-core idea to describe the insertion and the 

extraction processes of Li+ ions at the surface of LFP particles (Figure 5.1a). They considered 

a shrinking interface inside the LFP particles where the two-phase mechanism occurs. The 

interface  around the FePO4 core shrinks during Li+ ion insertion, and grows back during Li+ 

ion extraction [22]. 

Anderson and Thomas presented a radial model based on the shrinking-core concept. They 

considered an inactive region in the center of spherical LFP particles (Figure 5.1b). They 

assumed that this inactive region is responsible for first-cycle capacity loss in the LFP 

electrode [124]. 

Srinivasan and Newman employed the shrinking-core concept and implemented these two-

phase phenomena in LFP spherical particles into the porous electrode theory. They 
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determined the two-phase interface position by incorporating a mass balance between Li-

rich (shell) and Li-poor (core) regions [131]. 

The shrinking-core porous electrode model has been developed to identify LFP electrode 

behavior in macro-scale and by assuming the isotropic diffusion of the LFP particles [19, 

132]. Different experiments showed, however, an anisotropic ionic mobility of the Li+ ion 

inside the LFP crystal. Therefore, the shrinking-core two-phase concept cannot describe the 

intercalation/deintercalation of Li+ ions at the surface of LFP particles at the micro scale 

[133, 134]. Chen et al. showed that the Li+ ions migrate along 1D channels inside the LFP 

particles (the b direction at the phase boundary) [133]. Based on this fact, Laffont et al. 

presented a “new core-shell” conceptual model (Figure 5.1c) [135]. By means of the X-ray 

diffraction and electron microscopy, Delmas et al. reported a simultaneous existence of fully 

intercalated and fully deintercalted LFP particles in the electrode. They proposed a “domino-

cascade” mechanism representing the phase boundary displacement during charge/discharge 

process (Figure 5.1d) [136].  

To simulate the hysteresis and the phase transition behaviour in LFP electrode, Dreyer et al. 

developed a thermodynamic-based model, namely “many-particle” model (Figure 5.1e). A 

non-monotonic chemical potential function profile is considered for each LFP single 

particle. The approach is, then, applied to all particles by allowing the Li+ ion exchange 

between particles. The results show that the lithiation/delithiation process of LFP occurs in 

a sequential particle-by-particle at low rates. However, two critical drawbacks remain with 

this model: the slow and quasi-static charge/discharge process, and lack of the transport and 

kinetic phenomena effects [137, 138]. Inspired by the many-particle model, Farkhondeh et 

al. developed a mesoscopic model in which the LFP electrode is discretized into meso-scale 

units. An ohmic overpotential is defined for each unit, while the unit volume fraction is 

calculated by virtue of a Gaussian distribution. Despite the many-particle approach, this 

model can be used for higher rates [137, 139]. Recently, they have also applied this method 

to the porous-electrode theory to simulate a Li/LFP cell. The results are promising and 

represent that the Li+ ion intercalation/deitercalation processes at higher rates switch to a 

mixed sequential-parallel regime at lower rates [140]. Meanwhile, Bazant groups developed 

the phase-field models in order to predict the displacement of the phase boundaries inside 

the LFP nanoparticles. These models rest on the non-equilibrium thermodynamics based on 

the Cahn-Hilliard phase-field models. While the approach is expensive and time-consuming 

to simulate the whole LFP electrode, it is powerful to explain different LFP crystal behaviors 

during the Li+ intercalation/deintercalation process [141-144].  
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The main drawback of the aforementioned models is that they are slow and expensive for  

simulating the performance of the LFP electrode in the commercial Li-ion batteries. All 

equations should be separately solved for each particle or unit. Therefore, they can be useful 

for off-line applications but cannot be applied to the Battery Management System (BMS) to 

be used for the on-line monitoring, the parameter estimation, etc.  
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Figure 5.1: Schematic representation of different LFP models (a) shrinking-core, (b) radial, (c) new 

core-shell, (d) domino-cascade, (e) many-particle, and (f) mosaic. 
 

Anderson and Thomas proposed a mosaic model for describing the 

intercalation/deintercalation mechanisms of Li+ ions at the surface of LFP spheres (Figure 

5.1f). This model assumes that the shrinking-core process occurs at different nucleation sites 

inside a LFP particle. It also assumes that the sites have identical spherical shapes with 

smaller radius compared to the LFP particle. According to the mosaic model, the effective 
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radius of LFP particles is different from the real particle radius, and it is dependent on the 

battery discharge/charge rates. In other words, the diffusion coefficient for the Li+ ions in 

the LFP particle varies according to the current density. Anderson and Thomas did not, 

however, present a mathematical model for the calculation of the mosaic particles [124].  

Delacourt and Safari applied this approach to model the early stages of discharge curves of 

a Li/LFP cell. The Li+ ion diffusion coefficient was maintained constant while the LFP 

particle radii were adjusted to achieve the best fitting between experimental and calculated 

data for different discharge rates. The authors did not reveal the mathematical relation 

between the effective radius of the LFP particles and the current density. They show, 

however, that the higher the current density, the lower the effective radius of the LFP 

particles. This means that the number of nucleation sites inside the LFP particles increases 

with the discharge rate [145]. Prada et al. presented a simplified electro-thermal model by 

using a simplified P2D model and the mosaic concept to simulate a commercial Li-ion 

battery based on LFP/Graphite. They adjusted the effective radius not only for the LFP 

particles, but also for graphite particles at different discharge/charge rates. The diffusion 

coefficients were kept constant. Once again, the inverse relation between the current density 

and the effective radius for both electrodes was illustrated. Prada et al. believed that since 

the insertion/extraction Li+ ions are faster in smaller particles, it is possible to model the 

overpotential for different discharge/charge rates. Their model was validated with 

experimental data. No mathematical equations were suggested, however, for the mosaic 

model [123]. Recently, Maheshwari et al. applied the mosaic method to simulate, with two 

approaches, a Li-ion battery based on LFP/Graphite. First, the effective radius of the LFP 

particles was considered. The effective radius of the graphite particles remained however 

constant. This is due to the fact that the positive electrode is typically the dominant electrode 

in the Li-ion battery while the negative electrode is typically overdesigned. Second, the 

positive diffusion coefficient was adjusted with the current density while the LFP radius was 

maintained constant. The simulation results showed good agreement with experimental data 

for both approaches. Moreover, a quadratic correlation was observed between the LFP 

effective radius and the diffusion coefficient at each current density. All of the adjusted 

parameters were estimated so as to achieve the best fitting for the battery discharge curves. 

Once again, the authors did not provide any mathematical models for the mosaic approach 

[146].  

In a nutshell, while the actual insertion/extraction mechanism of Li+ ions at the LFP particles 

(the particle-by-particle process) is not supported by the mosaic model, the best results have 



 

95 

been achieved by virtue of the mosaic model implemented by Prada et al. for the Li-ion 

commercial cell [123]. Mathematical equations of the mosaic model for the simulation of 

commercial Li-ion cells based on LFP/Graphite still need to be developed. This is precisely 

the purpose of the present paper, which proposes a porous electrode model coupled with the 

mathematical equations of the Modified Mosaic (MM) concept. A combination of the SPM 

and the battery energy balance equations is employed to develop the electro-thermal model. 

The SPM accuracy at high current densities is increased by adding an electrolyte resistance 

term in the overpotential function. In order to develop the MM model, the electro-thermal 

governing equations are then modified based on the LFP battery behavior according to the 

mosaic concept. The results show that commercial Li-ion batteries are successfully 

simulated by considering the mosaic model at low and high discharge rates. 

 

5.3. Modified Mosaic (MM) model development  

The macroscopic Modified Mosaic (MM) model is developed for Li-ion batteries with LFP 

as the cathode material. It employs the mosaic approach and an electro-thermal model for 

modeling the Li-ion batteries based on LFP/Graphite.  

The main reason for developing electrochemical models is to predict the electrochemical and 

the thermal performances of the Li-ion batteries [9, 10]. They can be classified into two 

groups: empirical-based models and electrochemical engineering models.  

Empirical models utilize electrochemical experimental data to predict the battery 

performance. Equivalent circuit-based and neural network models are the most popular 

empirical models. They are widely used in the electronics and automotive industries. 

However, they cannot simulate the performance of aging batteries or batteries operated in 

harsh ambient conditions [9]. Electrochemical models are, on the other hand, more 

sophisticated and also more predictive. These models are based on chemical/electrochemical 

kinetics and transport equations. They are used to simulate the Li-ion battery characteristics 

and reactions [9, 10]. The Pseudo-two-Dimensional (P2D) model [34] and the Single Particle 

Model (SPM) [54] are among the most popular electrochemical-based models. The P2D 

model developed by Doyle et al. was extensively used in Li-ion battery investigations [34]. 

The P2D model includes aspects of the porous electrode theory, concentrated solution theory 

and resolution of kinetics equations. Its predictions are accurate and it has shown repeatedly 

good agreement with experimental data [9, 10, 34].  



 

96 

In order to reduce the computational time, a simplified version of the P2D model, called the 

SPM, was developed by Zhang et al. [54]. In the SPM, the electrolyte properties are ignored 

and the transport phenomena are treated in a simple manner [9, 10, 54].  

In the present study, a combination of the SPM and the battery energy balance equations is 

employed to develop the electro-thermal model. The SPM accuracy at high current densities 

is increased by adding an electrolyte resistance term in the overpotential function, and by 

considering the battery temperature effects. In order to develop the MM model, the electro-

thermal governing equations are then modified based on the LFP battery behavior according 

to the mosaic concept.    

 

5.3.1. Electro-thermal model 

The SPM rests on two main assumptions: (i) each electrode (Figure 5.2) is modeled as a 

spherical particle in which intercalation and deintercalation occur, and (ii) variations in the 

electrolyte properties are ignored [54, 64]. Due to its simple equations and the low 

computational time, the SPM model is useful in many practical applications such as 

parameter estimation, real-time control modeling and life cycle modeling of Li-ion batteries 

[10].  
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Figure 5.2: Schematic of the Single Particle Model (SPM) 

 

The main equation of the SPM is the solid-state concentration which is calculated by Fick’s 

second law for both the negative and the positive spherical particles [64]: 

   , , ,2
2

, ,s k s k s kc r t D c r t
r

t r rr

  
  

   
       (5.1) 

Eq. 5.1 is solved by using the initial and the boundary conditions for each particle [64]:  

 , ,, 0 ini
s k s kc r t c           (5.2) 
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 , ,
,

,s k s k
s k k

c r R t
D J

r
 

 


        (5.4) 

 Jk is the wall flux of Li+ ions on the surface of each particle, and it is constant in the SPM. 

This parameter is calculated by using Eq. 5.5 for each electrode.  

,

,

3
, , k s k

n p k
n p s k

VI IJ J S
F S F S R


           (5.5) 

The battery current (I) has a negative value when the battery is being discharged. The Butler-

Volmer kinetics equation makes a connection between the wall flux (Jk), the over potential 

function (μs,k) and the Li+ surface concentration at each particle [64]: 

   
   0.5 0.5 , ,max 0.5

, ,, ,
0.5 0.5

( ) ( ) exp exps k s ksurf surf
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J K c c t c t c
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     

       
     

  (5.6) 

The overpotential function is the difference between the actual and the equilibrium potential 

of the battery. The overpotential function and the battery cell potential are calculated as 

follows [64]: 

             s,k s,k e,k k cell s,p s,nμ t =Φ t -Φ t -U t ; V t =Φ t -Φ t    (5.7) 

In order to improve the SPM accuracy, the potential drop between the positive and negative 

electrodes in the electrolyte is simplified with the following equation [64]: 

, ,e p e n cellI R           (5.8) 

Note that the diffusion coefficients (Ds,k) and the reaction rate constants (Kk) are 

temperature-dependent parameters which are connected to the Arrhenius’ equation [64]. 

,
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      (5.10) 

All the experimental data for the present study were gathered at the reference temperature 

(ambient temperature) Tref = 25°C. The open circuit potential function (Uk) is also updated 

with the battery operation temperature in the following manner [64]: 

   ref k
k refk

ref

U
U T U T T

T T


  


      (5.11) 

Guo et al. presented a solution for Eqs. 5.5 to 5.8 to determine the cell potential function of 

the Li-ion battery [64]: 
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Moreover, they derived an analytical solution for the electrode State-Of-Charge (SOC) in 

the constant current (I) and cell temperature (T) conditions [64]: 
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    (5.15) 

It is noted that, to evaluate the SOC at variable temperature condition (T), Eqs. 5.1 to 5.4 

should be simultaneously solved by numerical methods, such as Finite Difference Method 

(FDM). In order to calculate the cell potential function, it is imperative to consider the battery 

operating temperature in Eqs. 5.9 to 5.14. The temperature distribution inside the Li-ion 

battery is, however, non-uniform and depends on the geometry. For the present study, a 

lumped heat transfer model is employed to cover all shapes of Li-ion batteries. The thermal 

model equations must, of course, be adapted according to the specific geometry. The 

governing heat transfer equations for the battery are as follows [109]:  

 
 .

1
irrev rev conv

dT q q q
dt c

         (5.16) 
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  
      (5.18) 

 .conv cell surq hA T T        (5.19) 

 0 surT T         (5.20) 

Vt and Acell are the total volume and external surface area of the battery, respectively. The 

current is negative when the battery is being discharged. Figures 5.3 and 5.4 depict the open 

circuit potential functions (Uk) and the (∂Uk/∂T) values for the graphite and LFP used in this 

paper. 
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Figure 5.3: Open circuit potential function as a function of SOC for graphite (a) [64] and LFP (b) [119] 

 
Figure 5.4: Entropic heat change as a function of SOC for graphite (a) [64] and LFP (b) [120] 

 

5.3.2. LFP/graphite designs 

In order to take into account the two-phase region in the LFP intercalation/deintercalation 

process, the mathematical model developed in the previous section must be refined further. 

It is seen in Fig. 3b that the prominent feature of the open-circuit potential curve for LFP is 

the plateau around 3.5 (V). This is the potential characteristic that differentiates LFP from 

other cathode materials such as LiCoO2 and LiMn2O4.  

In Li-ion batteries with LFP/Graphite, the cell potential curve is dependent on the electrode 

capacity. The capacity (Ck) of each electrode can be calculated from the active material 

volume and the difference in the SOC [123]:    
max

, , , ,0 / 3600k k s k s k k Final kC FV c SOC SOC       (5.21) 

The difference in the SOC defines the operating window of the battery. These conditions 

become more restrictive as the battery ages and/or the solid electrolyte interphase (SEI) layer 

grows. Note that the initial and final SOC values are determined according to the battery 

charge/discharge process. The discharge process is initiated from ,0
Dis
pSOC  and ,0

Dis
nSOC . But 

the end points are dependent on the electrode capacity. If the positive electrode capacity (Cp) 
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is lower than the negative electrode capacity (Cn), the final SOCp value may reach 1 as the 

positive electrode is fully charged. If, on the other hand, Cp is higher than Cn, the final SOCn 

value may become zero as the negative electrode is fully discharged. Therefore, the SOCp 

varies from ,0
Dis
pSOC  to 1, while the SOCn varies from zero to ,0

Dis
nSOC . The maximum value 

of the electrodes capacity can then be calculated as follows:   

 max max .
, , ,01 Dis

p p s p s p pC FV c SOC       (5.22) 

max max .
, , ,0

Dis
n n s n s n nC FV c SOC       (5.23) 

Figure 5.5 illustrates the different possible conditions for the battery charge/discharge 

processes depending on the maximum values of the electrode capacity.  
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Figure 5.5: Schematic presentation of different possible conditions for Li-ion batteries with 

LFP/Graphite during (a) discharge (b) charge processes. 
 

Four different regions are identified during the charge and discharge processes: 

• Region A (early stage): During discharge, the initial open-circuit potential of graphite is 

negligible compared to that of LFP (3.8 V). Therefore, the effect of the positive electrode 

(LFP) is dominant over that of the negative electrode (graphite). On the other hand, during 

charge, the effect of both electrodes is important for determining the cell potential curve.  

• Part B (LFP plateau): The open-circuit potential of the LFP is approximately constant due 

to the two-phase processes. This means that the shape of the cell potential curve is dictated 

by the graphite open-circuit potential and the battery polarization functions.  

• Part C (later stage): If the negative electrode capacity (Cn) is lower than that of the positive 

electrode (Cp), the charge/discharge processes will terminate at point F. In other words, the 

negative electrode is dominant at the end of the battery charge/discharge process. During 

discharge, the final value of the SOCn at point F tends toward zero and, the lack of Li+ ions 



 

101 

in the negative electrode eventually stops the process. During charge, the Li+ ion saturation 

of the negative electrode eventually interrupts the charge. The open-circuit potential of the 

LFP remains constant and the positive electrode has the capacity for further reaction.  

• Part D (final stage): If the negative electrode capacity (Cn) is higher than that of the 

positive electrode (Cp), the charge/discharge processes will terminate at point F*. In this case, 

the positive electrode is dominant at the end of the battery charge/discharge process. The 

SOCp value at point F* tends towards 1 at the end of discharge, and towards  ,0
Dis
pSOC at the 

end of charge. The lack of the positive electrode capacity interrupts the process. 

The overall cell potential profile of Li-ion batteries with LFP/Graphite differs according to 

the dominant electrode (Fig. 5.6). When the negative electrode is dominant (Fig. 5.6a), the 

different discharge curves converge to one point. This happens because the SOCn can drop 

to zero while the final SOCp reaches a plateau (region C). On the other hand, when the 

positive electrode is dominant (Fig. 6b), the end point shifts towards the left side as the 

discharge process reaches the end of the LFP curve. In this region, the polarization is 

significant [147]. It is noted that, as the battery ages, the active material is consumed and/or 

the SEI layer grows on the negative electrode. Thus, it is possible for the battery to change 

the dominant electrode condition. 
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Figure 5.6: The schematic cell potential shape of Li-ion battery with LFP/Graphite at different C-rates 

when (a) the negative and (b) positive electrode is dominant 
 

 5.3.3. Modified Mosaic (MM) model 

In this section, the electro-thermal model is modified so that it can be used to simulate the 

behavior of commercial Li-ion batteries with LFP/Graphite. The electro-thermal model 

modification is implemented for four different scenarios that depend on the charge and 

discharge processes, and the relative capacities of each electrode in the Li-ion batteries. It is 
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noted that, in all scenarios, the effective radii of both electrodes are first calculated at the cell 

temperature (T) condition, and then used for the variable operation temperature conditions.  

 

Scenario 1: Process: discharge; Dominant electrode: negative (point F in Figure 5.5a). 

In this scenario, the cell potential function converges to one point for different discharge 

rates. This point corresponds to the maximum capacity of the negative electrode. It is 

estimated as follows:  
* *

1 1C CC I t I t          (5.24) 

 I1c and *
1Ct  are the current and the discharge time (approximately 3600 s), respectively when 

the battery discharge rate is 1C. The final SOCn is near zero at the end of discharge. For the 

negative electrode, Eq. 5.15 becomes:  
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,0
Dis
nSOC  is the initial SOCn at the beginning of discharge. According to our calculations, the 

first term on the right-hand side of Eq. 5.25 is negligible with respect to the other terms. 

Therefore, Eq. 5.25 can be rearranged to provide the effective radius of the graphite particles 

in the MM model: 
2 max . max .
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N is the battery discharge rate and I1c has a negative sign during discharge. These equations 

show the relation between the radius and the diffusion coefficient for the negative electrode 

particles. It is seen that the higher the discharge rate, the lower the effective graphite radius. 

This relation is compatible with the effective graphite radius adjusted by Prada et al [123].   

The calculation for the effective radius for the LFP particles is tricky when the negative 

electrode is dominant. As illustrated in Figure 5.5a, the operating point for the LFP electrode 

falls on the plateau at the end of discharge. The LFP potential curve is insensitive to the 

SOCp on the plateau. This makes it difficult to determine precisely the location of the end 

point on the LFP potential curve. To solve this problem, the relation for the electrode 

capacity at point F in Fig. 5a is employed: 

   @ @n pC F C F          (5.28) 
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By substituting Eq. 5.21 into Eq. 5.28, the operation window for the positive electrode can 

be estimated as follows: 

 
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    (5.29) 

Moreover, by substituting Eq. 5.29 into Eq. 5.15 and using a similar approach, the effective 

radius for the LFP particles in the MM model can be determined as follows:  
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Eq. 5.31 shows how the negative electrode dictates the effective radius of the positive 

electrode.  

 

Scenario 2: Process: charge; Dominant electrode: negative (point F in Figure 5.5b). 

A schematic of this scenario is depicted in Figure 5.5b with the end point F. It is assumed 

that the SOCn increases from zero to ,0
Dis
nSOC  during charge. Using an approach similar to 

that of scenario 1, the effective negative and positive radius equation is calculated with Eqs. 

5.27 and 5.31, respectively. In order to avoid overcharging, the charge process may be 

interrupted before the SOCn reaches ,0
Dis
nSOC .   

 

Scenario 3: Process: discharge; Dominant electrode: positive (point F* in Figure 5.5a): 

Since the capacity of the positive electrode is lower than that of the graphite electrode, the 

final SOCp tends toward 1 at point F*. Eq. 5.24 is not valid for this scenario since the LFP 

discharge curves are shifted to the left side (see Figure 5.6b) when the discharge current is 

increased. Therefore, the cut-off time (t*) in each discharge rate should be employed instead 

of *
1Ct . The effective radius of the LFP particles in the MM model is then calculated as 

follows: 
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These equations show the relation between the radius and the diffusion coefficient of the 

positive electrode particles. The higher the discharge rate, the smaller the effective positive 
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radius. This relation is compatible with the effective radius for positive particles as adjusted 

according to the analyses of Delacourt and Safari [145], Prada et al. [123], and Maheshwari 

et al. [146].  The electrode capacities have the same value at point F* in Figure 5.6a, that is, 

   * *@ @p nC F C F        (5.34) 

By substituting Eq. 5.21 into Eq. 5.34, the operation window for the negative electrode can 

be estimated as follows: 
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  (5.35) 

By substituting Eq. 5.35 into Eq. 5.15, the effective radius for the graphite particles in the 

MM model can be determined from Eq. 5.37.  
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Eq. 5.37 shows how the positive electrode dictates the effective radius of the negative 

electrode.  

 

Scenario 4: Process: charge; Dominant electrode:  positive (point F* in Fig. 5b): 

The schematic of this scenario is shown in Fig. 5b with the end point F*. It is assumed that 

SOCp decreases from one to .
,0

Dis
pSOC during charge. The effective positive and negative radius 

equations are achieved with Eqs. 5.33 and 5.37, respectively. In order to avoid overcharging, 

the charge process may be interrupted before the SOCp reaches .
,0

Dis
pSOC .   

The overall MM model is summarized in Figure 5.7.  
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Figure 5.7: Flowchart of the MM model 
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5.4. Model Validation 

The MM model was validated for three different Li-ion batteries based on LFP/Graphite at 

low and high discharge rates. Table 5.1 reports the data needed to run these tests. The results 

of the simulations are presented in the following sections.     

 
Table 5.1: Electrochemical and thermophysical parameters for the three different Li-ion batteries 

Parameter Symbol Unit 
Case A Case B Case C 

p n p n p n 
Cell Radius Rc cm 1.29† 1.29▼ - 

Cell lateral surface Acell cm2 43.93† 63.4▼ 55* 
1C current density I1C A 1.05 2.3 6.0 

Solid diffusion 
coefficient (25ºC) Ds,k m2/s 9.66×10-18* 9.06×10-15* 5.9×10-20▼ 3.0×10-15▼ 2.2×10-14■ 3.9×10-14■ 

Reaction rate 
constant (25ºC) Kk m2.5/mol0.5s 1.86×10-12* 1.98×10-11* 2.98×10-12* 2.53×10-11* 1×10-9■ 2×10-11■ 

Porosity εk - 0.383* 0.566* 0.374▼ 0.58▼ 0.1805■ 0.46■ 
Initial SOC SOCk,0 - 0.013* 0.813* 0.035▼ 0.811▼ 0.00001■ 0.5■ 

Maximum solid 
phase concentration 

max
,s kc  mol/m3 22806▼ 31370● 22806▼ 30555▼ 22806 ■ 31370■ 

Average electrolyte 
concentration ce mol/m3 1000● 1200▼ 1000■ 

Electrode volume Vs,k cm3 5.14† 2.7† 14.4▼ 6.12▼ 51.37* 35.00* 
Solution phase resistance Rcell Ω 0.049* 0.018* 0.0051* 

Heat capacity ρc J/m3K 3.53×10+6* 3×10+6* 2.028×10+6■ 
Convection coefficient h w/m2K 19.5* 10* 5■ 

Surrounding temperature Tsur ºC 25† 23▼ 27■ 
Solid phase diffusion 

activation energy EaD,k kJ/mol 39▼ 35● 39▼ 35▼ 35■ 35■ 

Reaction rate constant 
activation energy EaK,k kJ/mol 13▼ 20● 13▼ 20▼ 20■ 20■ 

1C charge/discharge 
duration 

*
1Ct  s 3550† 3600▼ 3300■ 

Maximum electrode 
capacity value 

max
kC  Ah 1.1565▲ 1.0952▲ 3.1766▲ 2.3574▲ 5.6684▲ 6.7681▲ 

Dominant electrode Negative▲ Negative▲ Positive▲ 
* Parameter Estimation, † Measurement, ▲ Calculation, ▼ Ref. [123], ● Ref. [64], ■ Ref. [146]. 

 

5.4.1. Case A  

The experimental data for case A come from a commercial 1.05 Ah 18650 LixC6/LiyFePO4 

cylindrical Li-ion cell, which was provided by the industrial partner for the present research 

project. Experiments were conducted to generate the cell potentials and the surface 

temperatures as a function of the discharge time. The surrounding temperature in the climatic 

chamber was constant at 25°C [105]. The electrochemical parameters were estimated with a 

calculation methodology reported in previous studies [13, 104]. The dominant electrode was 

determined following the MM model flowchart (Figure 5.7). According to Table 5.1, the 

positive electrode capacity is higher than that of the negative electrode. As a result, the 

graphite electrode is dominant. Eqs. 5.30 and 5.31 are then used to calculate the cell potential 

and the surface temperature profiles. Figures 5.8 and 5.9 indicate a good agreement between 

the numerical predictions and the experimental data for the cell potential and the surface 

temperature. Moreover, Figure 5.10 shows the (R2/D)k for both electrodes with respect to 
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the discharge rates. As expected, the higher the discharge rate, the lower the effective radius 

for a constant diffusion coefficient. 

 

      
Figure 5.8: MM model predictions versus experimental data for the cell potential (case A) [105] 

 

 
Figure 5.9: MM model predictions versus experimental data for the surface temperature (case A) [105] 
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Figure 5.10: MM model calculations of (R2/D)k versus Crate (case A) 

 

5.4.2. Case B 

This case represents the Li-ion battery used by Prada et al. to validate their model. The 

battery is a commercial LFP/Graphite cell with 2.3 Ah capacity that was provided by A123 

Systems [123]. The main parameters for the battery are reported in Prada’s paper. According 

to Table 5.1, the graphite electrode is dominant. As a result, Eqs. 5.30 and 5.31 are employed 

to calculate the cell potential and the surface temperature profiles. The good agreement 

between the model predictions and the experimental data is depicted in Figures 5.11 and 

5.12. Figure 5.13 illustrates the (R2/D)k for both electrodes with respect to the discharge 

rates.  
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Figure 5.11: MM model predictions versus experimental data for the cell potential (case B) [123] 

 

 
Figure 5.12: MM model predictions versus experimental data for the surface temperature (case B) 

[123] 
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Figure 5.13: MM model calculations of (R2/D)k versus Crate (case B) 

 

5.4.3. Case C 

This case represents the Li-ion battery used by Maheshwari et al. to validate their model. 

The battery is a commercial LFP/Graphite cell with 6 Ah capacity. It is provided by Lithops 

S.r.l [146]. The main parameters for the battery are reported in Maheshwari’s paper. 

Contrary to the previous two cases, the LFP electrode is dominant, according to Table 2.1.  

Therefore, Eqs. 5.36 and 5.37 are used to calculate the cell potential and the surface 

temperature profiles. Figure 5.14 shows that the model predictions for the cell potential are 

in excellent agreement with the experimental data. According to Figure 5.15, the MM model 

could successfully predict the maximum cell temperatures at the end of discharge. However, 

to increase the calculation accuracy during discharge process, it is necessary to consider the 

geometry effects on the heat transfer equations. The results also reveal that the LFP electrode 

performance curve shifts to the left with increasing discharge rate leading to a change in the 

cut-off time with C-rate. By using t* in each discharge rate, Figure 5.16 shows the (R2/D)k 

for both electrodes with respect to the discharge rates.  
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Figure 5.14: MM model predictions versus experimental data for the cell potential (case C) [146] 

 

 
Figure 5.15: MM model predictions versus experimental data for the surface temperature (case C) 

[146] 
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Figure 5.16: MM model calculations of (R2/D)k versus Crate (case C) 

 

5.5. Conclusion 

A novel mathematical approach was presented for modeling commercial lithium-ion (Li-

ion) batteries based on LiFePO4(LFP)/graphite technology. The model was developed by 

coupling a simplified electro-thermal Li-ion battery model with the modified mosaic (MM) 

mathematical equations. The electro-thermal model rests on a modified Single Particle 

Model (SPM) and the energy balance equations. In the mosaic approach, it is assumed that 

the Li+ intercalation/deintercalation processes into LFP particles occur at different sites with 

identical spherical shapes. The effective radius or the Li+ ion diffusion coefficient in the LFP 

particles is considered to be dependent on the battery discharge/charge rates. The model does 

not support the actual insertion/extraction mechanism of Li+ ions at the LFP particles in the 

micro-scale (particle-by-particle process), however, it is successful to simulate the battery 

behavior in macro-scale. Four different scenarios were investigated that consider which 

electrode is dominant during the charge and/or discharge processes. The MM model was 

employed to investigate the behavior of three commercial Li-ion batteries with different 

capacities that operated under different conditions. The results showed that their behavior 

may be simulated with accuracy at both low and high discharge rates. By applying the MM 

model to a Li-ion battery based on LFP/Graphite technology, it is possible to estimate its 

parameters, to simulate its performance in a battery pack, and to evaluated its behavior to be 

used in a Battery Management System (BMS).   
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Titre français: Une méthode inverse pour l’estimation couplée des paramètres électro-

thermiques des piles cylindriques aux ions lithium basées sur le LFP-Graphite 

Contribution au document: Cet article présente une étude d’estimation de paramètres dans 

laquelle les paramètres électrochimiques et thermophysiques d'une pile cylindrique Lithium-

ion, faite à partir d’électrodes de graphite et de LiFePO4 (LFP), sont simultanément 

déterminés. Les paramètres inconnus comprennent neuf paramètres électrochimiques et trois 

paramètres thermophysiques. 

Résumé français :  

Une étude d’estimation de paramètres est effectuée pour déterminer simultanément les 

paramètres électrochimiques et thermophysiques d’une pile cylindrique aux ions lithium (Li-

ion) fait à partir d’électrodes de graphite et de LiFePO4 (LFP). Les inconnues incluent neuf 

paramètres électrochimiques et trois propriétés thermophysiques. Les paramètres 

électrochimiques sont les coefficients de diffusion solide (Ds,n et Ds,p), les constantes des 

réactions d’intercalation et de désintercalation (Kn et Kp), les états de charge initiaux (SOCn,0 

et SOCp,0), les porosités (εn et εp) et la résistance de la solution électrolytique (Rcell). Les 

paramètres thermophysiques sont la capacité calorifique (ρCp), la conductivité thermique (k) 

et le coefficient de convection thermique (h). Un problème inverse multi-objectif est défini 

en utilisant le potentiel de la pile et les températures de surface. Les données expérimentales 

sont tirées de tests menés à des taux de décharge variant entre 1C et 15 C. Un modèle de 

type mosaïque modifié (MM) est proposé pour simuler les données expérimentales. Le 
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modèle direct MM comprend un sous-modèle électro-thermique représentant le 

comportement des particules de LFP. Une fonction multi-objectif basée sur la différence 

normalisée entre les prédictions du modèle direct et les données expérimentales est défini. 

Les paramètres recherchés sont déterminés en minimisant la fonction objective à l’aide d’un 

algorithme génétique. En dépit de la complexité des équations et du nombre élevé de 

paramètres inconnus, les prédictions inverses sont en excellent accord avec les mesures 

expérimentales et ce, pour tous les taux de décharge. Finalement, la méthode inverse 

proposée pour l’estimation de paramètres est prometteuse pour le design des systèmes de 

gestion thermique des batteries.  
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6. An inverse method for the coupled electro-thermal parameter 

estimation of cylindrical lithium-ion batteries based on 

LFP/Graphite   
 

6.1. Abstract 

A parameter estimation study is conducted to determine simultaneously the electrochemical 

and the thermophysical parameters of a cylindrical lithium-ion (Li-ion) battery made with 

graphite/LiFePO4 (LFP) electrodes. The unknown parameters include nine electrochemical 

and three thermophysical parameters. The electrochemical parameters are the solid diffusion 

coefficients (Ds,n and Ds,p), the intercalation/deintercalation reaction-rate constants (Kn and 

Kp), the initial SOC (SOCn,0 and SOCp,0), the porosities (εn and εp), and the solution phase 

resistance (Rcell). The thermophysical parameters are the heat capacity (ρCp), the thermal 

conductivity (k), and the convection heat transfer coefficient (h). A multi-objective inverse 

problem is defined by using the cell potential and the surface temperature profiles. 

Experimental data are taken from tests conducted at discharge rates ranging from 1C to 15C. 

To simulate the experimental data, a Modified Mosaic (MM) model is proposed. The MM 

direct model comprises an electro-thermal model that mimics the behaviour of LFP particles. 

A multi-objective function based on the normalized discrepancy between the predictions of 

the direct model and the experimental data is defined. The sought-after parameters are 

determined by minimizing the objective function with a genetic algorithm (GA). In spite of 

the complexity of the equations and the large number of unknown parameters, the inverse 

predictions show excellent agreement with the experimental data for all discharge rates. As 

a result, the proposed parameter estimation inverse method is a promising tool for the design 

of battery thermal management systems.   

  

Keywords: Multi-objective parameter estimation; Thermophysical parameters; 

Electrochemical parameters; Inverse method; Cylindrical Li-ion battery; LiFePO4 (LFP) 

positive electrode material. 

 

Nomenclature: 
,s kc  Solid-state concentration of Li+ of electrode k (k=p,n), mol/m3 
,e kc  Electrolyte concentration of Li+ in region k (k=p,s,n), mol/m3 

,
ini
s kc  Initial concentration of Li+ in the particles of electrode k (k=p,n), mol/m3  
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max
,s kc  Maximum concentration of Li+ in the particles of electrode k (k=p,n), mol/m3 

,
surf
s kc  Concentration of Li+ on the surface of the particles of the electrode k (k=p,n), mol/m3 

,s kD  Li+ diffusion coefficient in the particles of electrode k (k=p,n), m2/s 
ref
s,kD  Ds,k at reference temperature (k=p,n), m2/s 

D,kEa   Solid phase diffusion activation energy (k=p,n), kJ/mol 

K,kEa  Reaction rate constant activation energy (k=p,n), kJ/mol 
F  Faraday’s constant, C/mol 
h  Convection coefficient between the battery and its surroundings, W/m2K 
I   Applied current, A 

kJ  Wall flux of Li+ in the particles of electrode k (k=p,n), mol/m2s 
k Thermal conductivity of the cylindrical battery, W/mK 

kK   Reaction rate constant of electrode k (k=p,n), m2.5/mol0.5s 
ref
k

K   Kk at reference temperature (k=p,n), m2.5/mol0.5s 

n   Negative electrode  
O.F. Objective function 
Q  Total heat generation of the cylindrical battery, W 

q   Volumetric heat generation, W/m3 
p  Positive electrode  
r   Radial coordinate (micro grid), m 

*r   Radial coordinate (macro grid), m 
R  Universal gas constant, J/mol K   

cellR   Solution phase resistance, Ω 

,s kR   Radius of the particles of electrode k (k=p,n), m 

cR   Radius of the cylindrical battery, m   
s Separator 

kS   Total electroactive area of electrode k (k=p,n), m2 

kSOC   State Of Charge of electrode k (k=p,n) 

,0kSOC  Initial State Of Charge of electrode k (k=p,n) 
t   Time, s 

*
1Ct   End of discharge time of the battery at 1C, s 
T  Absolute temperature, K  

refT  Reference temperature, K  

surT   Surrounding temperature, K 

surfT   Battery surface temperature, K 

surfT    Normalized battery surface temperature 

kU  Open-circuit potential of electrode k (k=p,n), V 
ref
k

U  Uk at reference temperature (k=p,n), V 

cellV  Voltage of the cell, V 

cellV   Normalized voltage of the cell 

,s kV  Total volume of the electrode k (k=p,n), m3 

tV   Total volume of the battery, m3 
x   Spatial coordinate, m 
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Greek  

k  Porosity of the electrode k (k=p,n) 

j  jth eigenvalue 

,s k   Overpotential of electrode k (k=p,n), V 
pC   Battery heat capacity, J/m3K 

,s k  Solid-phase potential of electrode k (k=p,n), V 

,e k  Electrolyte potential in region k (k=p,s,n), V 

 

6.2. Introduction  

The demand for the storage of electricity using lithium-ion (Li-ion) batteries is growing. This 

trend is supported by the numerous applications in electronics and in electric vehicles. In 

order to maintain their operation uninterrupted, and to ensure their reliability, the electric 

storage devices usually rely on a battery management System (BMS).  The BMS is employed 

to monitor, to control, and to manage the performance of the batteries, as well as to check 

their safety and integrity. The interactions between the battery pack and the other system 

components are also monitored by the BMS. Moreover, the BMS keeps the operational 

temperature of the battery pack within limits so as to avoid battery thermal runaways and to 

maintain good energy efficiencies. Sometimes, the BMS must face challenging operating 

conditions such as rapid charge and discharge processes and extreme ambient conditions. As 

a result, it is imperative for the BMS to receive feedback from the working environment, and 

to predict the electrochemical and the thermal performance of the batteries. To achieve this 

goal, the BMS relies on electro-thermal models that simulate the Li-ion battery performance 

[7, 68, 72, 106]. 

In the high tech industry and in the automotive industry, the BMS is usually constructed with 

empirical-based models. These models are simple and provide fast response. They cannot 

however predict the performance of the battery as it ages. Moreover, they are only applicable 

to a specific cell, i.e., they cannot be transposed to other battery technologies without 

recalibration [9, 10]. On the other hand, more complex and rigorous electrochemical models 

of Li-ion batteries based on electrochemical kinetics and mass and energy transport have 

been developed. They overcome the shortcomings of empirical models and are more 

accurate and robust. 

Among the electrochemical Li-ion battery models, the pseudo-two-dimensional (P2D) 

model and the Single Particle Model (SPM) appear to be the most popular. These models 

will be discussed in Section 3 [9, 10, 34, 54].  
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The success of the electrochemical Li-ion battery models is strongly dependent on the 

precise knowledge of the electrochemical parameters and the thermophysical properties of 

the battery. These parameters and properties may be classified into three groups: geometry, 

materials and operating conditions [11, 13]. The thermophysical properties belong to the 

second group. These properties can be obtained from experimental measurements. They may 

also be available from the manufacturer. The third group comprises electrochemical 

parameters that are more difficult to obtain. Indeed, the direct experimental measurement of 

these physical properties is a tedious task. It usually requires the dismantling of the battery. 

To make matters more complicated, the measured properties may also depend on the battery 

age and may vary according to the measurement technique. 

One interesting alternative for overcoming the difficulties of measuring the battery 

properties is to resort to inverse methods. Inverse methods estimate the unknown parameters 

of a system by means of easily measurable data. The parameter estimation methodology 

usually comprises five elements: input parameters, direct model, experimental data, 

objective function and optimizer. Such a methodology is based on optimization algorithms 

whose aim is to minimize the discrepancy between the predictions of a direct model 

(including the estimated parameters) and the experimental data [14, 15].  

Many computational investigations have been conducted for identifying the operational 

parameters of Li-ion batteries. Most of these studies focused however on the estimation of 

the electrochemical parameters only. The coupling of the thermophysical parameters to the 

electrochemical variables has been largely ignored.  

 In 2007, Santhanagopalan et al. estimated five electrochemical parameters of the Li-ion 

battery by minimizing the least-square objective function with the Levenberg-Marquardt 

(LM) technique. The parameters include the diffusivity of Li+ ions in the positive electrode 

(Ds,p), the reaction rate constants at the electrode/electrolyte interfaces (Kn and Kp) and the 

initial state-of-charge of the negative and positive electrodes (SOCn,0 and SOCp,0). The 

authors  employed both the SPM and the P2D model as the direct models to develop the 

objective function [11].  

Ramadesigan et al. performed a parameter estimation study to investigate the effect of five 

electrochemical parameters on the Li-ion battery capacity fade by studying the discharge 

curves at different charge/discharge rates. Their direct model is a simplified version of the 

P2D model. The parameters are the diffusion coefficients De, Ds,n and Ds,p, and the 

electrochemical reaction rate constants for the negative and positive electrodes (Kn and Kp) 

[92].  
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Forman et al. implemented a full electrochemical parameter estimation using the P2D model 

as the forward model and a genetic algorithm (GA) as its optimizer. The electrochemical 

parameters and the geometric characteristics were extracted from the charge/discharge 

curves [93].  

Marcicki et al. used curve fitting to identify the Li-ion battery parameters. The composition 

characteristics of the electrodes were determined with an open circuit potential curve. The 

resistance parameters were estimated from discharge curves for different temperature 

conditions. The diffusion coefficients were estimated by tuning the model parameters [88].  

Zhang et al. conducted a multi-objective parameter estimation study by virtue of the 

discharge curves and the surface temperatures of Li-ion batteries. Only the electrochemical 

parameters were identified. The thermo-physical variables were not estimated. A modified 

multi-objective genetic algorithm was employed. Their results showed good agreement with 

experimental data only for low discharge curves [98].  

Masoudi et al. reported another parameter estimation study for a Li-ion battery based on a 

reduced order model of the P2D model. The homotopy optimization approach was chosen 

to estimate six electrochemical parameters, namely the volume fraction of the separator (εs), 

Li+ transference number (t+), electrical conductivity of the solid phase of the negative 

electrode (σn), and the initial electrolyte concentration in three regions [99].  

Rahman et al. identified four electrochemical variables by using the Particle Swarm 

Optimization (PSO) method [100].  

Jokar et al. presented a method for the estimation of eight electrochemical parameters of Li-

ion batteries by using a sensitivity analysis for three common positive electrode materials: 

LiCoO2, LiMn2O4 and LiFePO4 (LFP) [13, 104]. 

Despite the electrochemical parameter estimation studies, the identification of the 

thermophysical properties of the Li-ion battery is rare. A lumped heat transfer model was 

proposed by Forgez et al. to simulate cylindrical Li-ion batteries. The resistance parameters 

were estimated using the temperatures measured at the surface and at the center of the 

cylindrical batteries [111]. Jeon and Baek employed polynomial fitting functions for 

estimating the entropy changes in the heat generation equation inside a cylindrical Li-ion 

battery [113].  

The present paper pursues the aforementioned studies by tackling a more challenging 

problem. It proposes an inverse method for estimating simultaneously the electrochemical 

parameters and the thermophysical properties of Li-ion batteries. The sought-after 

parameters include nine electrochemical parameters and three thermophysical properties. 
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The electrochemical parameters are the solid diffusion coefficients (Ds,n and Ds,p), 

intercalation/deintercalation reaction-rate constants (Kn and Kp), initial SOC (SOCn,0 and 

SOCp,0), porosities (εn and εp), and solution phase resistance (Rcell). The thermophysical 

properties are heat capacity (ρCp), thermal conductivity (k), and convection heat transfer 

coefficient (h). To estimate these parameters and properties, two experimental data sets for 

a graphite/LFP cylindrical Li-ion battery are employed. The data include the cell potential 

and the surface temperature profiles for different discharge rates. The Modified Mosaic 

(MM) model is adopted as the direct model. The MM model includes an electro-thermal 

model and a mathematical form of the mosaic approach that mimics the behaviour of the 

LFP particles. The electro-thermal model is developed from the SPM and the heat transfer 

equations for cylindrical Li-ion batteries. A multi-objective function is defined by means of 

the normalized values of the cell potential and of the surface temperatures. Due to the 

complexity of the system, a genetic algorithm (GA) is used to minimize the objective 

function and to calculate the sought-after parameters.  

 

6.3. Experimental data 

The experimental data were obtained from a commercial 1.05 Ah 18650 LixC6/LiyFePO4 

cylindrical Li-ion battery, Figure 6.1 [105]. The data were kindly provided by Hydro-

Québec. The experiments were conducted so as to generate the cell potentials and the surface 

temperatures as a function of the discharge time. The electrochemical/thermochemical 

parameters were estimated with these experimental data for both low and high discharge 

rates (1C, 2C, 4C, 8C, 10C, and 15C).  The surrounding temperature in the climatic chamber 

was kept constant at 25°C. Figures 6.2a and 6.2b present the cell potential and the surface 

temperature with respect to the discharge capacity, respectively. Figure 6.2b indicates that 

the surface temperature exceeds the safe temperature of 35°C for discharge rates of 10C and 

above. Operating the battery pack under these conditions without an effective thermal 

management system is obviously not recommended. The integrity and the safety of the 

storage system would be threatened.  
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Figure 6.1: Experimental setup used for testing cylindrical Li-ion batteries [105] 

 

 
(a)      (b) 

Figure 6.2: (a) Cell potential and (b) surface temperature curves of the Li-ion battery [105] 
 

6.4. The direct model 

The electro-thermal direct model predicts simultaneously the cell potential and the surface 

temperature. It couples an electrochemical model to the heat transfer conservation equation. 

As mentioned above, electrochemical models can be classified into empirical-based models 

and electrochemical engineering models [9, 10]. Empirical models, such as the equivalent 

circuit-based models and the neural network models, rest entirely on experimental data. 

These models are widely used in electronics and in the automotive industry. They are simple 

and computationally fast. They cannot however simulate the performance of aging batteries 

or batteries that are operated in harsh ambient conditions [9, 28]. On the other hand, 

electrochemical engineering models are more sophisticated. They are based on the 

chemical/electrochemical kinetics and transport equations. They may be used to simulate the 

the electrochemical behaviour of Li-ion batteries. The Pseudo-two-Dimensional (P2D) 

model and the Single Particle Model (SPM) are among the most popular electrochemical-

based models [9, 10]. The P2D model developed by Doyle et al. has been extensively used 
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for Li-ion battery investigations. It rests on the porous electrode and concentrated solution 

theories and uses kinetic equations to represent intercalation/desintercalation phenomena 

[34]. Its predictions are accurate and it has shown repeatedly good agreement with 

experimental data [9]. To reduce the computational time, a simplified version of the P2D 

model, called the SPM, has been developed by Zhang [54]. In the SPM, the electrolyte 

properties are ignored and the transport phenomena are treated in a simple manner [10, 54].  

Most electrochemical models available in the open literature, such as the P2D model and the 

SPM, cannot simulate properly the behavior of batteries with LFP positive electrode.  

The main reason is that they rest on Fick’s law which does not take into account the two-

phase region in the LFP intercalation/deintercalation process. To overcome this 

shortcoming, Padhi et al. suggested the shrinking-core idea to describe the insertion and the 

extraction processes of Li+ ions at the surface of LFP particles. They considered a shrinking 

interface inside the LFP particles where the two-phase mechanism occurs [22]. Srinivasan 

and Newman employed the shrinking-core concept and implemented these two-phase 

phenomena in LFP spherical particles into the porous electrode theory. They determined the 

two-phase interface position by incorporating a mass balance between Li-rich (shell) and Li-

poor (core) regions [131]. The shrinking-core porous electrode model has been developed to 

identify LFP electrode behavior on a macro-scale and by assuming the isotropic diffusion of 

the LFP particles. Different experiments showed, however, that the Li+ ions migrate along 

1D channels inside the LFP particles (the b direction at the phase boundary) leading an 

anisotropic ionic mobility of the Li+ ion inside the LFP crystal and a particle-by-particle 

intercalation/deintercalation of Li+ ions [133, 134]. Therefore, based on this study, it is 

concluded that the shrinking-core two-phase concept cannot describe the 

intercalation/deintercalation of Li+ ions at the surface of LFP particles at the micro scale. 

Alternative approaches have been proposed to simulate the micro-scale behavior of the LFP 

particles, such as the new core-shell model [135], domino-cascade model [136], many-

particle model [138], and phase-field models [141, 142, 144]. However, the main drawback 

of these models is that they are slow and expensive for simulating the performance of the 

LFP electrode in full scale commercial Li-ion batteries. All equations should be separately 

solved for each particle or unit. Therefore, they can be useful for off-line applications but 

cannot be applied for the coupled electro-thermal parameter estimation of cylindrical 

lithium-ion batteries. 

In the present study, the mosaic model is employed to simulate the performance of the 

battery. The mosaic model was first proposed by Anderson and Thomas [124]. The model 
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assumes that the shrinking-core process can occur at different nucleation sites inside a LFP 

particle. It also assumes that the sites have identical spherical shapes with a radius smaller 

than that of LFP particles. According to the mosaic model, the effective radius of LFP 

particles is dependent on the battery discharge/charge rates. In other words, the diffusion 

coefficient for the Li+ ions in the LFP particle varies according to the current density [124]. 

The model does not support the actual insertion/extraction mechanism of Li+ ions in the LFP 

particles at the micro-scale (particle-by-particle process). However, it is successful to 

simulate the battery behavior at macro-scale. Different studies have been conducted with 

this model for investigating commercial Li-ion batteries for both negative and positive 

electrode particles. However, these studies did not provide any mathematical models for the 

mosaic approach. They simply tuned the effective radii of the LFP and the graphite particles 

at different discharge/charge rates to predict the batteries performance [123, 145, 146].  

In the present paper, a Modified Mosaic (MM) model is employed. The MM model is a 

mathematical model that combines the mosaic approach to an electro-thermal model of the 

Li-ion battery. The electro-thermal model is developed by combining the SPM and the 

battery energy balance equations. To increase the SPM accuracy, an electrolyte resistance 

term is considered in the overpotential function. The details of this model are presented 

elsewhere [148].  

 

6.4.1. The electro-thermal model 

The SPM rests on two main assumptions: First, each electrode (Figure 6.3) is modeled as a 

spherical particle in which intercalation and de-intercalation phenomena occur. Second, 

variations of the electrolyte properties are ignored. Due to its simple equations and the low 

computational time, the SPM model is befitting many practical applications such as 

parameter estimation, real-time control modeling and lifetime modeling of Li-ion batteries 

[9, 10, 54].  
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Figure 6.3: Schematic of the Single Particle Model (SPM) 
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The main equation of the SPM is the solid-state concentration. It is calculated with Fick’s 

second law for both the negative and the positive spherical particles [64]. 
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       (6.1) 

Eq. 6.1 can be solved knowing the initial and the boundary conditions for each particle [64]:  
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Jk is the wall flux of Li+ ions on each particle. The wall flux is assumed to be constant in the 

SPM. This parameter is calculated by using Eq. 6.5 for each electrode.  
3 ,, ,

,
p

n

VI I k s kJ J Sn kF S F S Rp s k


           (6.5) 

The battery current (I) is negative when the battery is discharged. The Butler-Volmer 

kinetics equation makes a connection between the wall flux (Jk), the over potential (μs,k) and 

the Li+ surface concentration at each particle [64]: 
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 (6.6) 

The over potential is the difference between the actual and the equilibrium potential of the 

battery. The over potential and the battery cell potential are calculated as follows: 

             s,k s,k e,k k cell s,p s,nμ t =Φ t -Φ t -U t ; V t =Φ t -Φ t     (6.7) 

In order to improve the SPM accuracy, the potential drop between the positive and the 

negative electrodes in the electrolyte is simplified with the following equation [64]: 

, ,e p e n cellI R           (6.8) 

Note that the diffusion coefficients (Ds,k) and the reaction rate constants (Kk) are 

temperature-dependent parameters which are updated by virtue of an Arrhenius equation 

[64]. 

,
, ,

1 1( ) exp D kref
s k s k

ref

Ea
D T D

R T T

  
   

    

       (6.9) 

, 1 1( ) exp K kref
k k

ref

Ea
K T K

R T T

  
   

    

       (6.10) 

In this study, all the experimental data were collected at the reference temperature (ambient 

temperature) of Tref =25ºC. The open circuit potential function (Uk) was also updated with 

the battery operation temperature in the following manner [64]: 
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      (6.11) 

Guo et al. presented a solution for Eqs. 6.5 to 6.8 to determine the cell potential of the Li-

ion battery [64]: 
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It is noted that, to compute the SOC at the variable cell temperature condition (T), Eqs. 6.1 

to 6.4 should be simultaneously solved by numerical methods, such as Finite Different 

Method (FDM). In order to calculate the cell potential function, it is imperative to consider 

the battery operating temperature in Eqs. 6.9 to 6.14. For the present study, the Li-ion battery 

is cylindrical. Therefore, the thermal model is developed with the energy conservation 

formulated in cylindrical coordinates. The model rests on the following assumptions: (1) The 

temperature gradient is dominant in the radial direction (r*); (2) The model is radial and not 

spiral; (3) There is no gap and no contact resistance between the sandwiched layers; (4) The 

materials are homogeneous and isotropic; (5) The thermophysical properties are considered 

to be constant; (6) The heat transfer across the battery external shell case is neglected; (7) 

The heat generation is uniform in each layer; and (8) Radiation heat transfer is negligible.  

Figure 6.4 shows a schematic of the cylindrical Li-ion battery used in solving the thermal 

model equations.  
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Figure 6.4: Concentric model for the cylindrical Li-ion battery 
 

The governing heat transfer equations for the temperature distribution T(r*,t) across the 

cylindrical Li-ion battery may be stated as follows [109]:  
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The current is negative when the battery is being discharged. The initial and boundary 

conditions for the heat transfer model are presented in Eqs. 6.19 to 6.21.  
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 *,0 surT r T        (6.21) 

Tsur is the temperature of the surroundings. The set of Eqs. 6.15 to 6.21 is solved with a Crank 

Nicolson Finite Difference Method based on the grid presented in Figure 6.4 [121].  

The variation of the heat generation during the charge/discharge period can now be estimated 

by using the temperature distribution. The total heat generation comprises two terms: the 

reversible heat generation term ( Qrev ) and the irreversible heat generation term ( Qirrev ). 

Referring to Figure 6.4, 
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where Vj is the volume of layer j. The magnitude of Vj is determined from, 
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Substitution of Eqs. 6.17, 6.18 and 6.23 into Eq. 6.22 yields,  
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Figures 6.5 and 6.6 depict the open circuit potential functions (Uk) and the (∂Uk/∂T) values 

for the graphite and for the LFP. 
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Figure 6.5: Open circuit potential function as a function of SOC for (a) Graphite [64] and (b) LFP 

[119] 

 
Figure 6.6: Entropic heat change as a function of SOC for (a) Graphite [64] and (b) LFP [120] 

 

6.4.2. The Modified Mosaic (MM) model 

The mosaic approach allows us to change the particle radius instead of the diffusion 

coefficient in order to represent the specific behavior of graphite/LFP Li-ion batteries at 

different current density. The MM model employs a mathematical approach to find the 

appropriate effective radii to be used in the porous electrode theory. This approach is based 

on the identification of the dominant electrode which is the electrode with the lowest quantity 

of active material. Depending on which electrode is dominant, the effective radius is 

calculated by considering the battery behavior on its discharge/charge curves [148]. For the 

batteries tested in this study, the negative electrode has been identified as the dominant 

electrode. Therefore, the effective radii of the negative and of the positive particles can be 

calculated as follows [148]: 
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I1c and *
1Ct  are the current and the end of discharge time (approximately 3600 s) respectively, 

both at a dischange intensity of 1C. N is the battery discharge rate. The overall MM model 

used to simulate the discharge process is illustrated in Fig. 6.7.  
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Figure 6.7: The overall MM model used to simulate the discharge process 

 

6.5. The inverse method 

The cell potential and the temperature distribution along the cylindrical Li-ion battery can 

be determined by means of the direct model presented in section 6.4. To run the model, it is 

necessary to know the different electrochemical and thermophysical parameters. 

Unfortunately, some of the properties and parameters of the battery are unknown. 

Furthermore, their magnitudes may change as the battery ages. To determine the unknown 

parameters, an inverse method is employed. The inverse method is fed with experimental 

data for the cell potential and the surface temperature of the battery. The main advantage of 

the inverse method is to be able to identify the sought-after parameters without resorting to 

invasive measurements techniques or without dismantling the battery. In the present study, 

the surface temperature profiles are the sole experimental data that are used for estimating 

the thermophysical parameters.   

The unknown parameters include nine electrochemical parameters and three thermophysical 

properties. The electrochemical parameters are the solid diffusion coefficients (Ds,n and Ds,p), 

intercalation/deintercalation reaction-rate constants (Kn and Kp), initial SOC (SOCn,0 and 

SOCp,0), porosities (εn and εp), and solution phase resistance (Rcell). The thermophysical 

properties are the heat capacity (ρCp), thermal conductivity (k), and convection heat transfer 

coefficient (h).  

Figure 6.8 provides an overall view of the proposed inverse procedure. The aim of the 

inverse method is to minimize the objective function (O.F.) in order to determine the 

unknown parameters and properties. As there are two kinds of experimental data, the 
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objective function is defined as a multi-objective function. Once the objective function is 

satisfactorily minimized, the unknown parameters and properties are automatically 

determined.  
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Figure 6.8: Schematic of the inverse procedure for the coupled electro-thermal parameter estimation 

 

The experimental data for the Li-ion battery were recorded at a constant time interval 

between zero and the cut-off time (0 < t ≤ tc). Therefore, the procedure used for the inverse 

method involves a “whole time domain” approach.   

To derive a general multi-objective function, let us start with one charge/discharge curve. 

The measured cell potential (Vcell,m) and the surface temperature (Tsurf,m) vectors with N time 

intervals during one charge/discharge process may be written as, 
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As the order of magnitude and the physics of these two vectors are very different, it is 

necessary to normalize their values into the range [0, 1]: 
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The minimum surface temperature is set equal to the initial temperature. The maximum 

temperature depends however on the charge/discharge rate. A similar approach is considered 

for the normalization of both the calculated cell potential (Vcell,c)  and the surface temperature 

(Tsurf,c) functions that were determined by the direct model: 

    
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The vector P comprises the sought-after parameters. The most common form of the objective 

function in inverse problems is the least-square objective function [14, 15]. Here, there are 

two least-square functions that correspond to the normalized cell potential and to the 

normalized surface temperature. Therefore, the inverse problem is a multi-objective 

optimization. The Weighted global criterion method [149] is invoked to define the multi-

objective function for one charge/discharge rate in a matrix form: 
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The superscript T indicates the transpose of the function. The weights in this multi-objective 

objective function are set equal to 0.5. This means that the relative importance of the cell 

potential and of the surface temperature functions is similar. The objective function can be 

rewritten in the following explicit form:  
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By substituting Eqs. 6.30 to 6.33 into Eq. 6.35, the objective function becomes 
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For M charge/discharge curves (at different rates), the objective function is then: 
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The electrochemical and the thermophysical parameters (P) are determined by minimizing 

the objective function (O.F.) in the following manner: 

 min . . . . subject toP j,low j j,highO F O F P P P         (6.39) 

Pj,low and Pj,high are the minimum and the maximum values of Pj values, respectively. Eq. 

6.38 is solved with an optimizer that determines the global minimum. 
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The optimization process for inverse problems is usually mathematically challenging, slow  

converging and computationally expensive [15]. Colaço et al. reviewed different solution 

methods for inverse problems among which we find the steepest descent method, the 

conjugate gradient method, the Newton-Raphson method, the quasi-Newton method, the 

Levenberg-Marquardt method (LM), the Genetic Algorithms (GA), differential evolutions, 

the particle swarm method and the simulated annealing method [17]. In general, these 

optimization methods are divided into two categories: the deterministic methods and the 

stochastic methods. Deterministic methods are usually faster than stochastic methods. 

However, they easily fall onto local extrema and have complex structures. On the other hand, 

stochastic-based optimization methods employ random-based operation functions that are 

ideally suited for reaching system global extrema [17, 18].  

Due to the complexity of the governing equations (Eqs. 6.1 to 6.27) and due to the number 

of sought-after parameters, a stochastic technique called the Genetic algorithm (GA) was 

adopted in the present study. The GA minimizes the objective function and estimates the 

electrochemical and the thermophysical parameters of the Li-ion battery.  

The Genetic algorithm (GA) was first introduced by Holland in the 1970s [101]. The GA 

originates from natural selection mechanisms. It starts from a strong random database, 

namely an initial population, and moves upward to many extremum points. Inspired by the 

living organism’s structure, each member of the initial population is called a chromosome 

containing some genes. Each chromosome represents a probabilistic solution to the 

optimization problem in which the number of variables is equivalent to the number of genes. 

In the GA, more fitted new populations replace older populations. Therefore, the algorithm 

requires a fitness function, which refers to the cost of a chromosome. After generating the 

initial population randomly, new populations are produced by three genetic operators called 

pairing, mating and mutation. 
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6.6. Results 

The numerical simulations conducted with the direct model adopted the following physical 

characteristics for the battery (Table 6.1)  

 
Table 6.1: Characteristics of the battery 

Symbol Unit 
Case A 

p n 
Rc cm 1.29† 

Acell cm2 43.93† 
I1C A 1.05 
max
,s kc  mol/m3 22806[123] 31370[64] 
ce mol/m3 1000[64] 

Vs,k cm3 5.14† 2.7† 
Tsur ºC 25† 

EaD,k kJ/mol 39[123] 35[64] 
EaK,k kJ/mol 13[123] 20[64] 

*
1Ct  s 3550† 

Vcell,min V 2.0 
Vcell,max V 3.4 
Tsurf,min ºC 25.0 

Tsurf,1C,max ºC 26.2 
Tsurf,2C,max ºC 27.2 

Tsurf,3.75C,max ºC 29.5 
Tsurf,7.5C,max ºC 35.4 
Tsurf,10C,max ºC 39.6 
Tsurf,15C,max ºC 47.0 

† Measurement 
 

The GA optimization procedure was initiated with a population of 400 chromosomes and a 

mutation rate of 5%. The initial chromosomes were generated by using a random function 

that spans the range of each sought-after parameter as reported in the open literature. The 

range of each parameter was also employed to update the chromosome during mutation. The 

objective function (Eq. 6.38) was then minimized by using the genetic operators and the 

experimental data for the six discharge curves (1C, 2C, 3.75C, 7.5C, 10C and 15C). The 

sought-after parameters were finally determined at the optimum point. Table 6.2 reports the 

range and the estimated values for both the electrochemical parameters and the 

thermophysical properties.  
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Table 6.2: Electrochemical and thermophysical parameters estimated for the Li-ion battery 

Symbol Unit Min Max Value 
Electrochemical Parameters 

Ds,p m2/s 1.00×10-18 10.00×10-18 9.66×10-18 
Ds,n m2/s 1.00×10-15 10.00×10-15 9.06×10-15 
Kp m2.5/mol0.5 s 1.00×10-12 10.00×10-12 1.86×10-12 
Kn m2.5/mol0.5 s 1.00×10-11 10.00×10-11 1.98×10-11 
εp - 0.30 0.40 0.383 
εn - 0.50 0.60 0.566 

SOCp,0 - 0.01 0.06 0.013 
SOCn,0 - 0.75 0.85 0.810 

Rcell Ω 0.010 0.100 0.049 
Thermophysical Parameters 

ρCp J/m3K 1.0×10+6 5.0×10+6 3.53×10+6 
k W/mK 0.10 2.00 0.24 
h W/m2K 0.1 30 19.50 

 

To check the accuracy of the estimated parameters and properties, they were fed back as 

input data to the direct model. The predictions of the direct model were then compared to 

the experimental data (Figs. 6.9 and 6.10). The agreement between the predictions and the 

experimental data is excellent.  

 

 
Figure 6.9: Predictions of the cell potentials versus experimental data 
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Figure 6.10: Predictions of the surface temperatures versus experimental data 

 
 

By using the predicted temperature distribution and Eqs. 6.24 and 6.25, the heat generation 

functions were calculated for different discharge rates. Figure 6.11 depicts the total heat 

generation term of the cylindrical Li-ion battery. Due to the existence of a plateau in the LFP 

open-circuit potential, each heat generation profile has a plateau during most of the discharge 

period. Moreover, the higher the discharge rate, the higher is the heat generation value. The 

small jump at the end of heat generation curves corresponds to the jump of the graphite 

entropic heat change curve at low values of the SOCn. As a result, the simultaneous 

estimation of the electro-thermal parameters allows the heat generation profile to be taken 

into account in the design of the battery thermal management system. 
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Figure 6.11: Prediction of the heat generation for different discharge rates 

 

6.7. Conclusion 

A parameter estimation study was conducted to determine simultaneously the 

electrochemical and the thermophysical parameters of a cylindrical Lithium-ion (Li-ion) 

battery made with graphite/LiFePO4 (LFP) electrodes. The unknown parameters include 

nine electrochemical and three thermophysical parameters. The electrochemical parameters 

are the solid diffusion coefficients (Ds,n and Ds,p), the intercalation/deintercalation reaction-

rate constants (Kn and Kp), the initial SOC (SOCn,0 and SOCp,0), the porosities (εn and εp), 

and the solution phase resistance (Rcell). The thermophysical parameters are the heat capacity 

(ρCp), the thermal conductivity (k), and the convection heat transfer coefficient (h). A multi-

objective inverse problem was defined by using the cell potential and the surface temperature 

profiles. Experimental data were collected from tests conducted at discharge rates ranging 

from 1C to 15C. To simulate the experimental data, a Modified Mosaic (MM) model was 

proposed. The MM direct model comprises an electro-thermal model that mimics the 

behaviour of LFP particles. A multi-objective function based on the normalized discrepancy 

between the predictions of the direct model and the experimental data was defined. The 

sought-after parameters were determined by minimizing the objective function with a 

Genetic Algorithm (GA). In spite of the complexity of the mathematical equations and the 

large number of unknown parameters, the inverse predictions show excellent agreement with 
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the experimental data for all discharge rates. The proposed parameter estimation method was 

shown to be a promising tool for the design of battery thermal management systems.   
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Titre français: Modèle mésoscopique et estimation de paramètres d’une pile aux ions 

lithium basée sur le LFP/Graphite 

Contribution au document: Un nouveau modèle mésoscopique, permettant de simuler les 

phénomènes d’intercalation et de désintercalation du Li+ à l’intérieur des particules de LFP  

et de représenter le comportement d’une pile aux ions lithium à base de LiFePO4/Graphite,  

est présenté. Ce modèle est basé sur le modèle à particule unique (SPM) couplé à une 

approche mésoscopique afin de prendre correctement en compte les électrodes à base de 

LiFePO4 (LFP).  

Résumé français :  

Un nouveau modèle numérique simulant le comportement des piles aux ions lithium (Li-

ion) basées sur le LiFePO4/graphite est présenté. Ce modèle est basé sur le modèle à particule 

unique modifié (SPM) couplé à une approche mésoscopique prenant en compte les 

électrodes à base de LiFePO4 (LFP). Le modèle comprend une particule sphérique 

représentant l’électrode de graphite et N unités de LPF représentant l’électrode positive. 

Toutes les équations du modèle SPM sont gardées pour simuler la performance de l’électrode 

négative. Le modèle mésoscopique, de son côté, s’appuie sur des conditions 

thermodynamiques de non-équilibre et fait usage d’un potentiel à circuit ouvert non-

monotone pour chaque unité de LFP. Une étude d’estimation de paramètres est également 

conduite pour identifier tous les paramètres requis dans le modèle. Les inconnues identifiées 

sont le coefficient de diffusion solide de l’électrode négative (Ds,n), la constante des réactions 
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d’intercalation et de désintercalation de l’électrode négative (Kn), la porosité des électrodes 

négative et positive (εn et εn), l’état initial de charge de l’électrode négative (SOCn,0), la 

composition partielle initiale des unités de LFP (yk,0), Les résistances minimum et maximum 

des unités de LFP (Rmin et Rmax) et la résistance électrique de la solution (Rcell). Les résultats 

montrent que le modèle mésoscopique peut simuler avec succès le comportement électrique 

des piles Li-ion tant à bas qu’à haut taux de décharge. Les prédictions du modèle sont en 

parfait accord avec les données expérimentales utilisées. Le modèle peut aussi décrire 

adéquatement le processus de lithiation/délithiation se déroulant au sein des particules de 

LFP. La principale limitation de ce nouveau modèle vient du temps de calcul élevé, surtout 

lorsque comparé à un modèle de type macroscopique.   
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7. Mesoscopic modeling and parameter estimation of a lithium-

ion battery based on LFP/Graphite    
 

7.1. Abstract 

A novel numerical model for simulating the behavior of lithium-ion batteries based on 

LiFePO4/Graphite is presented. The model is based on the modified Single Particle Model 

(SPM) coupled to a mesoscopic approach for the LiFePO4 (LFP) electrode. The model 

comprises one representative spherical particle as the graphite electrode, and N LFP units as 

the positive electrode. All the SPM equations are retained to model the negative electrode 

performance. The mesoscopic model rests on non-equilibrium thermodynamic conditions 

and uses a non-monotonic open circuit potential for each unit. A parameter estimation study 

is also carried out to identify all the parameters needed for the model. The unknown 

parameters are the solid diffusion coefficient of the negative electrode (Ds,n), 

intercalation/deintercalation reaction-rate constant of the negative electrode (Kn), negative 

and positive electrode porosity (εn and εn), initial State Of Charge of the negative electrode 

(SOCn,0), initial partial composition of the LFP units (yk,0), minimum and maximum 

resistance of the LFP units (Rmin and Rmax), and solution resistance (Rcell). The results show 

that the mesoscopic model can simulate successfully the electric behavior of lithium-ion 

batteries at low and high charge/discharge rates. The predictions of the model are in excellent 

agreement with the experimental data. The model can also describe adequately the 

lithiation/delithiation of the LFP particles. The main limitation of the model is that it is 

computationally expensive compared to macro-based models.  

 

Keywords: Parameter estimation; Electrochemical parameters; Mesoscopic model; Inverse 

method; Cylindrical Li-ion battery; LiFePO4 (LFP) positive electrode material. 

 

Nomenclature: 
A,B The coefficients of the Murgules equations 
Ap Total area of the positive electrode, m2 
cs,n Solid-state concentration of Li+ of the negative electrode, mol/m3 
cs,p Solid-state concentration of Li+ of the positive electrode, mol/m3 
ce Electrolyte concentration of Li+, mol/m3 

,
ini
s nc  Initial concentration of Li+ in the particle of the negative electrode, mol/m3  
max
,s kc  Maximum concentration of Li+ in the particle of electrode k (k=p,n), mol/m3 

,
surf
s nc  Concentration of Li+ on the surface of the particle of the negative electrode, mol/m3 

Ds,n Li+ diffusion coefficient in the particle of the negative electrode, m2/s 
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F Faraday’s constant, C/mol 
ik Partial current of the kth LFP unit per mole of the active material, A/mol 
I  Applied current, A 
Jn Wall flux of Li+ in the particle of the negative electrode, mol/m2s 
Kn Reaction rate constant of the negative electrode, m2.5/mol0.5s 
Lp Total thickness of the positive electrode, m 
n  Negative electrode  
O.F. Objective function 
p Positive electrode  
r  Radial coordinate (micro grid), m 
R Universal gas constant, J/mol K   
R  Mean Ohmic resistance of the LFP units, Ω mol     
Rcell  Solution phase resistance, Ω 
Rmax  Maximum Ohmic resistance of the kth LFP unit, Ω mol     
Rmin  Minimum Ohmic resistance of the kth LFP unit, Ω mol     
Rk  Ohmic resistance of the kth LFP unit, Ω mol   
Rs,n  Radius of the particle of the negative electrode, m 
S  Standard deviation of the Ohmic resistance of the LFP units, Ω mol   
Sn  Total electroactive area of the negative electrode, m2 
SOCn  State Of Charge of the negative electrode 
SOCn,0 Initial State Of Charge of the negative electrode 
t  Time, s 
T Absolute temperature, K  
U0 Standard equilibrium potential of the LFP, V 
Un Open-circuit potential of the negative electrode, V 
Uk Open-circuit potential of the kth LFP unit, V 
Vcell Voltage of the cell, V 
Vs,n Total volume of the negative electrode, m3 
yk  Li+ partial composition in the kth LFP unit 
yp,0  Initial partial composition of the LFP units 
 
Greek  

εk Fraction of active material in the kth LFP unit 
εn Porosity of the negative electrode 
εp Porosity of the positive electrode 
μs,n  Overpotential of the negative electrode, V 
μs,k  Overpotential of the kth LFP unit, V 
Φs,k Solid-phase potential of electrode k (k=p,n), V 
Φe,k Electrolyte potential in region k (k=p,n), V 

 

7.2. Introduction 

The high power and high energy density of lithium-ion (Li-ion) batteries make them 

attractive for storing electricity and delivering electric power on demand. Over the years, the 

design, structure, materials and operating conditions of these batteries have been 

continuously improved. As a result, their cost has been driven down and their efficiency, 

safety and performance have steadily increased [7, 127]. 

One of the most important advances in Li-ion battery technology has been the introduction 

of LiFePO4 (LFP) as the cathode material [22]. The electronic and ionic conductivities of 

LFP powder has been improved by decreasing the grain size to nanoscale and by introducing 

a conductive carbon-coating to encapsulate the LFP particles [19, 128]. Moreover, stable 

and safe olivine LFP has become an attractive cathode material in batteries for electric 



 

141 

vehicles [22, 129]. The discharge/charge curves of LFP exhibit a voltage plateau at 3.5 (V) 

which is independent of the electrode state-of-charge (SOC). This behavior occurs because 

of the two-phase condition inside the LFP particles [22, 130, 131]. 

Nowadays, mathematical modelling has become an inescapable tool for the design, operation 

and control of Li-ion batteries. Two of the most popular electrochemical models available 

in the open literature are the Pseudo-Two-Dimensional (P2D) model and the Single Particle 

Model (SPM). In spite of the fact that that these models have been employed extensively for 

predicting the behavior of Li-ion batteries, they cannot, however, handle LFP cathodes [19]. 

The main reason is that the P2D and SP models rely on Fick’s law which ignores the 

intercalation/deintercalation of Li+ ions in the LFP particles. To overcome this difficulty, 

alternative approaches have been proposed.   

In 1997, Padhi et al. suggested the shrinking-core idea to describe the insertion and the 

extraction processes of Li+ ions at the surface of LFP particles. A shrinking interface inside 

the LFP particles is considered where the two-phase mechanism occurs. The interface around 

the FePO4 core shrinks during Li+ ion insertion, and grows back during Li+ ion extraction 

[22]. Srinivasan and Newman employed the shrinking-core concept and implemented these 

two-phase phenomena in LFP spherical particles into the porous electrode theory [131]. 

They then determined the two-phase interface position by incorporating a mass balance 

between the Li-rich shell and the Li-poor core regions. 

By assuming isotropic diffusion of the LFP particles, the shrinking-core porous electrode 

model was used to identify the behavior of the LFP electrode at macro-scale [19, 132]. 

Experiments showed, however, an anisotropic ionic mobility of the Li+ ion inside the LFP 

crystal. As a result, the shrinking-core two-phase concept could not describe the 

intercalation/deintercalation of Li+ ions at the surface of LFP particles [133, 134].  

Chen et al. showed that the Li+ ions migrate inside the LFP particles along 1D channels (the 

b direction at the phase boundary) [133]. Based on this fact, Laffont et al. suggested a “new 

core-shell” conceptual model [135]. By means of X-ray diffraction and electron microscopy, 

Delmas et al. reported the simultaneous existence of fully intercalated and fully deintercalted 

LFP particles in the electrode [136]. They proposed a “domino-cascade” mechanism for 

representing the phase boundary displacement during a charge/discharge process.  

To simulate the hysteresis and the phase transition behaviour in LFP electrodes, Dreyer et 

al. [137] developed a thermodynamic-based model called the “many-particle” model. A non-

monotonic chemical potential function profile was considered for each LFP single particle. 

The approach was then applied to all particles by allowing Li+ ion exchanges between the 
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particles. The results showed that the lithiation/delithiation process of LFP occurs in a 

sequential particle-by-particle at low rates. Their model is however plagued by two 

limitations: the charge/discharge process is quasi-static and the transport and kinetic 

phenomena are ignored [137, 138]. Inspired by the many-particle model, Farkhondeh et al. 

[139] developed a mesoscopic model in which the LFP electrode is discretized into meso-

scale units. An ohmic overpotential is defined for each unit, while the unit volume fraction 

is calculated by virtue of a Gaussian distribution. Despite the many-particle approach, the 

mesoscopic model can be used for higher charge/discharge rates [139].  

Recently, the authors simulated a Li/LFP cell with the mesoscopic model coupled to the 

porous-electrode theory. Their results are promising. They showed that the Li+ ion 

intercalation/deitercalation processes at higher rates switch to a mixed sequential-parallel 

regime [140]. Meanwhile, the team of Bazant developed “phase-field” models for predicting 

the displacement of the phase boundaries inside the LFP nanoparticles [141-144]. These 

models rest on non-equilibrium thermodynamics based on the Cahn-Hilliard phase-field 

models. In spite of the fact that this approach is expensive and time-consuming, it can predict 

successfully the micro behavior of LFP crystal during the Li+ intercalation/deintercalation 

process [141-144].  

The main drawback of all the aforementioned Li-ion battery models is that their 

computations are slow and expensive. All the conservation equations are solved separately 

for each particle or unit. As a result, these simulation models are useful for off-line 

applications. They cannot be implemented into Battery Management Systems (BMS) for on-

line monitoring.  

Anderson and Thomas proposed a mosaic model for describing the 

intercalation/deintercalation mechanisms of Li+ ions at the surface of LFP spheres. This 

model assumes that the shrinking-core process occurs at different nucleation sites inside a 

LFP particle. It also assumes that the sites have identical spherical shapes with smaller radius 

compared to the LFP particle. Moreover, the effective radius is dependent on the battery 

discharge/charge rates. In other words, the diffusion coefficient for the Li+ ions in the LFP 

particle varies according to the current density [124]. Different works have   employed the 

mosaic approach to model the Li-ion battery with the LFP cathode materials [123, 145]. The 

results are promising. Unfortunately, the actual insertion/extraction mechanisms of Li+ ions 

at the LFP particles (the b direction at the phase boundary and the particle-by-particle 

process) are not supported by this approach.  
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The purpose of the present paper is to model a commercial Li-ion battery by means of a 

mesoscopic approach for the LFP electrode. An isothermal model resting on the modified 

SPM with the mesoscopic model is developed. A parameter estimation study is performed 

in order to identify the parameters needed to run the model. The model is then employed to 

predict the battery performance at low and high charge/discharge rates.  

 

7.3. Experimental data 

The experimental data stem from a commercial 1.05 Ah 18650 LixC6/LiyFePO4 cylindrical 

Li-ion battery. The data were kindly provided by Hydro-Québec. The experiments were 

conducted so as to generate the cell potential as a function of the discharge time. The 

electrochemical parameters were estimated for both low and high discharge rates (1C, 2C, 

3.75C, 7.5C, 10C, and 15C).  The experiments were performed in a climatic chamber where 

the temperature was maintained at 25°C. Figure 7.1 illustrates the measured cell potential 

functions with respect to the discharge capacity.  

 

 
Figure 7.1: Cell potential curves of the Li-ion battery with respect to the capacity [105] 

 
 
7.4. Model development 

The “many-particle” model [137] twinned with the mesoscopic approach [139] was retained 

for simulating the unit-by-unit Li+ intercalation/deintercalation processes inside LFP 

particles. The SPM was applied to model the negative electrode behavior. The negative 

electrode is represented by a spherical particle with the Rn radius. An equivalent surface area 
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is considered for the total electroactive area of the negative electrode (Sn). In order to 

improve the SPM accuracy, the potential drop between the positive and negative electrodes 

in the electrolyte is mimicked with a constant resistance (Rcell). Figure 7.2 illustrates the 

schematic of the model. As it can be seen, the whole graphite electrode is modelled as a 

spherical particle of radius Rn into which intercalation and deintercalation occur. The 

positive (LFP) electrode is comprised of different active units surrounded by carbon.   

 

Lp

Electrolyte

Load
Discharge

- - - -

Charge

cs,n(r)

Electrolyte
ce=Const.

LixC6

+
Rn Rcell

+
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Carbon Black

LFP Electrode

 
Figure 7.2: Schematic of the single particle and the mesoscopic model 

 

7.4.1. The negative (C) electrode 

The solid-state concentration of the negative spherical particle is estimated with Fick’s 

second law [64]: 
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Eq. 7.1 is solved by using the following initial and boundary conditions for the graphite 

particle [64]:  
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Jn is constant in the SPM. It is calculated as follows:  
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Note that the battery current (I) takes a negative value when the battery is being discharged. 

The Butler-Volmer kinetics equation makes a connection between the wall flux (Jn), the over 

potential function (μs,n) and the Li+ surface concentration at the negative electrode [64]: 

   
0.5 0.5 , ,max 0.5

, , ,
0.5 0.5

exp exps n s nsurf surf
n n s n s n s n e

F F
J K c c c c

RT RT
     

       
    

  (7.6) 

The over potential function of the negative electrode (μs,n) is the difference between the 

actual and the equilibrium potential of the graphite particle:  

s,n s,n e,n nμ =Φ -Φ -U          (7.7) 

Figure 7.3 depicts the open circuit potential function for the graphite (Un) used in the present 

study [64]. 

 

 
Figure 7.3: Open circuit potential function as a function of SOC for graphite [64] 

 

7.4.2. The positive (LFP) electrode 

Let us now define the concept of each unit in the LFP electrode as proposed by Dreyer et al. 

[137] and Farkhondeh el al. [139]. The LFP electrode is divided into N “elementary 

lithiating/delithiating units” (or “units”  for short) with no specific geometry in the range of 

50 to 1000 nm [137]. The size of each unit is small enough so that the intra-unit phase 

transition processes may be ignored, and large enough so that the Li+ 

intercalation/deintecalation processes may take place.  

By assuming the non-equilibrium condition and a homogenous lithiating/delithiating inside 

the units, a non-monotonic open circuit potential is considered for each unit. This function 

is calculated by taking the first derivative of the bulk free-energy density with respect to the 
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particle composition [137]. Here, a one-parameter Margules model is employed to compute 

the open circuit potential for the kth unit as follows [150]: 

   k
k 0 k

k

1 yRT RTU U ln A 2y 1 ; k 1,2,...,N
F y F

 
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 

     (7.8) 

U0 and A are the standard equilibrium potential and the coefficient of the Margules model, 

respectively. The A value is positive as the intercalated Li+ ions attract each other and as it 

tends to increase the system energy. It is noted that the two-parameter Margules equation 

(Eq. 7.9) can be also used to improve the model accuracy [150]. 

 2k
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  

  (7.9) 

The Li+ partial composition (yk) is defined as follows:  
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,

,
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c
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c
          (7.10) 

The unit partial composition function (yk) is function of the charge/discharge time only. 

Figure 7.4 depicts the non-monotonic open circuit potential (Uk) of the single LFP unit with 

respect to the Li+ partial composition (yk). The points A and B define the spinodal region on 

the Uk curve. In this region, the LFP unit behavior is unstable. This means that the potential 

tends to jump from point A to point A* when the battery is being discharged (or the LFP unit 

is being lithiated). The lower the discharge rate, the faster the jumping process as the 

discharge process gets closer to equilibrium conditions at low rates. On the other hand, the 

unit exhibits a rapid motion from point B to point B* during the battery charge process (or 

the LFP unit delithiation). Based on this fact, Dreyer et al. were able to model the voltage 

hysteresis of the LFP electrode [137]. It is noted that the Li-poor region can be defined as 0 

< yk < 0.2 (from the beginning of the discharge process to the point A). Also, the Li-rich 

region occurs from point B to the end of the discharge process (or 0.8 < yk < 1.0). Therefore, 

the lithiation/delithiation process at each LFP unit occurs between the Li-poor and the Li-

rich conditions. The Li+ ions insertion or extraction phenomena continue until all units reach 

to the Li-rich/Li-poor condition. This process occurs in a sequential unit-by-unit depending 

on the unit resistance.  
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Figure 7.4: The Uk function of the single LFP unit versus yk 

(The blue and black lines show stable conditions and the red line unstable) 

 

By defining an ohmic resistance (Rk), the polarization function (μs,k) for each unit can be 

determined as [139]: 

 , , ,s k k k s p e p kR i U ; k 1,2,...,N             (7.11) 

Φs,p and Φe,p are the solid-phase and the electrolyte potential of the LFP electrode 

respectively. The magnitudes of these potentials are the same for all units as they are 

connected to each other. It is assumed that the resistance values vary linearly between the 

minimum (Rmin) and the maximum resistance (Rmax). For consistency, the Rmin and the Rmax 

are assigned to the first and Nth unit, respectively.  

Due to the fact that the Li+ concentration is assumed uniform in each unit, the partial current 

(ik) can be calculated by means of the material balance law [139], 

  k
k

dy
i F ; k 1,2,...,N

dt
           (7.12) 

The partial current (ik) is calculated per mole of LFP material. This current is negative when 

the battery is being discharged. The total current density applied to the LFP electrode is equal 

to the sum of the partial currents, that is:   
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N
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

         (7.13) 

εp is the total active material volume fraction in the LFP electrode. Also, εk is the fraction of 

active material in the kth unit (Σk εk=1). In order to compute the εk values, a normal 

distribution function is suggested by Farkhondeh et al. based on the resistance values [139]:     
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       (7.14) 

S and R are the standard deviation and the mean resistance respectively. Eqs. 7.8 to 7.14 are  

solved simultaneously with the Newton–Raphson method for all units. Their solution yields 

the solid-phase potential of the LFP electrode. This solution procedure is however 

computationally slow and expensive compared to that of the macro-based model.  

 

7.4.3. The electrolyte 

As mentioned before, a constant resistance is employed for the electrolyte potential drop. 

This assumption increases the SPM accuracy for high charge/discharge rates and thick 

electrodes. As a result, the solution potential drop may be simplified with the following 

equation [64]: 

, ,e p e n cellI R            (7.15) 

Finally, the battery cell potential can be calculated as follows [64]: 

cell s,p s,nV =Φ -Φ          (7.16) 

 

7.5. Parameter estimation method 

In order to apply the model developed in Section 7.4 to commercial Li-ion batteries, it is 

imperative to specify the geometric and the electrochemical parameters. Unfortunately, 

some of these parameters are unknown. Moreover, their magnitude may change as the 

battery ages. To determine the unknown parameters, an inverse method is proposed. The 

inverse method is supplied with the experimental data for the cell potential of the battery. 

The inverse method is then able to identify the sought-after parameters without resorting to 

invasive measurements techniques or without dismantling the battery. A detailed description 

of the parameter estimation method employed in the present study is reported in [13, 104]. 

The nine unknown parameters are the solid diffusion coefficient of the negative electrode 

(Ds,n), the intercalation/deintercalation reaction-rate constant of the negative electrode (Kn), 

the negative and positive electrode porosity (εn and εp), the initial State Of Charge of the 

negative electrode (SOCn,0), the initial partial composition of the LFP units (yk,0), the 

minimum and maximum resistance of the LFP units (Rmin and Rmax), and the solution 

resistance (Rcell). The SOCn,0 variable is defined as follows: 
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The calculated cell potential is compared with the experimental cell potential for five 

discharge rates (1C, 2C, 3.75C, 7.5C, and 10C). The objective function (O.F.) is defined as 

the ordinary least-square function of the measured data ( *
,cell mV  ) and the calculated values 

(Vcell). The objective function for the inverse problem of N time intervals and M 

charge/discharge processes [13] is defined as:  

        
2

* * *
, , , ,. . ,V V P V V P P

M NT
cell m cell cell m cell cell m ij

j=1i=1
O F V Vcell ij        (7.18) 

The superscript T indicates the transpose of the function. The expected parameters (P) are 

determined by minimizing the objective function (O.F.) in the following manner: 

 min . . . . subject toP j,low j j,highO F O F P P P         (7.19) 

Pj,low and Pj,high are the minimum and the maximum values of Pj, respectively.  

Due to the complexity of the governing equations and due to the number of sought-after 

parameters, the objective function is minimized by means of a Genetic Algorithm (GA) [13]. 

 

7.6. Results 

Numerical simulations with the direct model were carried out for a battery whose physical 

characteristics are summarized in Table 7.1. 

 
Table 7.1: Known cell variables used in the model 

Parameter Symbol Unit Value 

1C current density I1C A 1.05 
Max LFP solid 

phase concentration 
max
,s pc  mol/m3 22806 

Max graphite solid phase concentration max
,s nc  mol/m3 31370 

Average electrolyte concentration ce mol/m3 1000 
Negative electrode volume Vs,n cm3 2.7 

Radius of the negative particle Rn m 1.0×10-6 
Positive electrode thickness Lp m 5.197×10-6 
Positive electrode surface Ap m2 0.159 

Number of unit N - 200 
The standard deviation of the εk S Ω mol 1.28×10-3 [139] 

The standard equilibrium potential U0 V 3.38 
The Margules coefficient A - 3[139] 
Surrounding temperature Tsur ºC 25 

 

The GA optimization procedure was initiated with a population of 200 chromosomes and a 

mutation rate of 5%. The initial chromosomes were generated by using a random function 
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that spans the range of each sought-after parameter as reported in the open literature. The 

range of each parameter was also employed to update the chromosome during mutation. The 

objective function (Eq. 7.18) was then minimized by using the genetic operators and the 

experimental data for the six discharge curves (1C, 2C, 3.75C, 7.5C, 10C and 15C). The 

expected parameters were finally determined at the optimum point. Table 7.2 reports the 

range and the estimated values for the unknown parameters.  

 
Table 7.2: Electrochemical parameters estimated for the Li-ion battery 

Symbol Unit Min Max Value 
Ds,n m2/𝑠 1.00×10-15 10.00×10-15 9.7×10-15 
Kn m2.5/mol0.5 s 1.00×10-11 10.00×10-11 9.44×10-11 
εn - 0.50 0.60 0.58 

SOCn,0 - 0.75 0.85 0.76 
εp - 0.30 0.40 0.376 

yp,0 - 0.01 0.06 0.044 
Rmin Ω mol 1.0×10-5 10.0×10-5 9.55×10-5 
Rmax Ω mol 1.0×10-3 10.0×10-3 2.30×10-3 
Rcell Ω 0.01 0.10 0.039 

 

To check the accuracy of the estimated parameters, they were plugged back into the direct 

model. The predictions of the direct model were then compared to the experimental data 

(Figure 7.5).  

 

 
Figure 7.5: Predictions of the cell potentials versus experimental data 
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Fig. 7.5 shows that the agreement between the predictions and the experimental data is 

excellent. The computational time for the mesoscopic-based model was found, however, to 

be roughly 10 times larger than that for the Modified Mosaic (MM) model (the current-

dependent radius). A detailed description of the MM model is provided in [148].  Figure 7.6 

compares the results from the mesoscopic-based model to that from the MM model for 

discharge rates varying from 1C to 15C. Note that the mesoscopic-scale model is based on 

isotherm conditions, while the effects of the battery temperature change are taken into 

account in the MM model. It is seen that the predictions of both models are close to the 

experimental data for both low and high discharge rates. The bottom line is that the 

mesoscopic-based model is accurate but slow. Therefore, it would be helpful for off-line 

applications and the prediction of the LFP electrode behavior.   

 

 
Figure 7.6: The mesoscopic-based model versus the MM model 

 

Figure 7.7 shows the Li+ partial composition (yk) for all LFP units with respect to the 

discharge time at 1C rate. It also illustrates the evolution of the cell potential (Vcell). The yk 

values are chiefly composed of two regions: the Li-poor (blue color) and Li-rich (yellow 

color). Only a few LFP units are in the spinodal region (0.2 < yk < 0.8) at the end of discharge 

process. Due to the negative electrode capacity and/or due to the dominance of the negative 

electrode, the unstable condition in the spinodal region does not shift to the stable region.    

 



 

152 

 
Figure 7.7:  yk values for all units and Vcell versus the discharge time at 1C rate 

 

7.7. Conclusion 

A novel numerical model for simulating the behavior of lithium-ion batteries was presented. 

The model is based on the modified Single Particle Model (SPM) coupled to a mesoscopic 

approach for the LiFePO4 (LFP) electrode. The model comprises one representative 

spherical particle as the graphite electrode, and N LFP units as the positive electrode. All the 

SPM equations are retained to model the negative electrode performance. The mesoscopic 

model rests on non-equilibrium thermodynamic conditions and it uses a non-monotonic open 

circuit potential for each unit. A parameter estimation study was carried out to identify all 

the parameters needed for the model. The unknown parameters are the solid diffusion 

coefficient of the negative electrode (Ds,n), the intercalation/deintercalation reaction-rate 

constant of the negative electrode (Kn), the negative and positive electrode porosity (εn and 

εp), the initial State Of Charge of the negative electrode (SOCn,0), the initial partial 

composition of the LFP units (yk,0), the minimum and maximum resistance of the LFP units 

(Rmin and Rmax), and the solution resistance (Rcell). The results showed that the mesoscopic 

model can simulate successfully the electric behavior of lithium-ion batteries at low and high 

charge/discharge rates. The predictions of the model are in excellent agreement with the 

experimental data. The model can also mimic adequately the lithiation/delithiation of the 

LFP particles. The main limitation of the model is that it is computationally expensive 

compared to macro-based models.  
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Résumé français :  

Une technique en ligne basée sur les réseaux neuronaux (NN) est proposée pour l’estimation 

de propriétés électrochimiques de piles aux ions lithium (Li-ion). Le modèle à particule 

unique (SPM) a été retenu pour entraîner le modèle NN, qui est ensuite utilisé pour 

l’estimation des coefficients de difusion (Ds,n et Ds,p), des constantes pour les réactions 

d’intercalation et de désintercalation (Kn et Kp) aux électrodes, la résistance de l’électrolyte 

(Rcell) et la courbe de décharge. Les résultats montrent que le modèle NN proposé est précis, 

performant en terme de temps de calcul et donc approprié à l’estimation en ligne de 

paramètres. Le modèle NN peut aussi être adapté à l’estimation d’une quantité importante 

de paramètres d’entrée et de sortie. Finalement, il est probable que le modèle NN présenté 

trouve des applications au sein des systèmes de gestion des batteries.  
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8. An on-line electrochemical parameter estimation study of 

lithium-ion batteries using neural networks   
 

8.1. Abstract 

A real time neural network (NN) technique is presented for estimating the electrochemical 

properties of Li-ion batteries. The Single Particle Model is retained to train the NN model. 

The resulting NN model is then used to estimate the diffusion coefficients (Ds,n & Ds,p) and 

the intercalation/deintercalation reaction-rate constants (Kn & Kp) of the electrodes, the 

electrolyte resistance of the battery (Rcell) and its discharge curve. The results show that the 

proposed NN model is computationally performant, accurate and befitting on-line parameter 

estimations. The NN model is also adaptable to a multitude of input variables and output 

parameters. As a result, it is expected that the present NN model will find applications in 

Battery Management Systems.    
 
Keywords: On-line parameter estimation; Inverse method; Li-ion battery; Neural Networks; 
Battery management systems. 
 

Nomenclature: 

,s kc   Solid-state concentration of electrode k (k=p,n), mol/m3 

,e kc  Electrolyte concentration in region k (k=p,s,n), mol/m3 
max
,s kc  Maximum concentration of Li+ in the particle of electrode k (k=p,n), mol/m3 

,
surf
s kc  Concentration of Li+ on the surface of the particles of the electrode k (k=p,n), mol/m3 

,s kD  Li+ diffusion coefficient in the particle of electrode k (k=p,n), m2/s 
d  Desired value in neural networks 
E   Error function in neural networks 

re   Relative error, % 
F  Faraday’s constant, C/mol 

if  Activation function of neurons of neural networks 
I   Applied current density, A/m2 

kJ  Wall flux of Li+ on the particle of  k (k=p,n), mol/m2s 

kK   Reaction rate constant of electrode k (k=p,n), m2.5/mol0.5s 
n   Negative electrode  
O  Output variable in neural networks 
p  Positive electrode  

r   Radial coordinate, m 
s  Separator   
R  Universal gas constant, J/mol K   

cellR   Solution phase resistance, Ω 

,s kR   Radius of the particle of electrode k (k=p,n), m 
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kS   Total electroactive area of electrode k, m2 

kSOC   State Of Charge of electrode k (k=p,n) 

,0kSOC  Initial State Of Charge of electrode k (k=p,n) 
t   Time, s 
T  Absolute temperature, K  

kU  Open-circuit potential of electrode k (k=p,n), V 
cellV  Voltage of cell, V 
kV  Total volume of electrode k, m3 
ijw   Weights between neurons of neural networks 

x   Spatial coordinate, m 
 
Greek  

i  Error of each neuron of neural network 

k  Porosity of region k (k=p,s,n) 
η Learning rate of neural networks 

,s k   Overpotential of electrode k (k=p,n), V 

,s k  Solid-phase potential of electrode 𝑘 (𝑘 = 𝑝, 𝑛), V 

,e k  Electrolyte potential in region k (k=p,s,n), V 

 

8.2. Introduction  

Several studies have been devoted to the electrochemical modeling of lithium-ion (Li-ion) 

batteries. The pseudo-two-dimensional (P2D) model and the Single Particle Model (SPM) 

appear to be the most popular electrochemical models for this battery [1, 9, 10, 34]. The 

success of these models depends, among other things, on the precise knowledge of the 

electrochemical properties of the battery [11-13]. Direct measurement of these properties is, 

however, a tedious task. It typically requires the dismantling of the battery. Moreover, the 

measured properties are dependent on the battery’s age and may vary according to the 

measurement technique. 

To overcome the difficulties of measuring the battery properties, parameter estimation 

techniques coupled to inverse methods have been proposed. These techniques are based on 

optimization algorithms that aim at minimizing the discrepancy between the predictions of 

a direct model (including the estimated parameters) and the experimental data.  

Santhanagopalan et al. employed a Levenberg-Marquardt (LM) technique to identify five 

internal parameters of Li-ion batteries [11]. Ramadesigan et al. investigated the effect of five 

different parameters on the capacity fade of Li-ion batteries using battery discharge curves 

and the Gauss-Newton technique [92]. Forman et al. implemented a full parameter 

estimation using the P2D model as the forward model and a Genetic Algorithm (GA) as the 

optimizer [93]. Zhang et al. conducted a multi-objective parameter estimation by means of 
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the discharge curves and the surface temperatures of Li-ion batteries made with LiCoO2 and 

LiFePO4 cathodes [98]. Masoudi et al. proposed a mathematical model based on a reduced 

order of the P2D model and the homotopy optimization approach. Their model was 

employed to estimate six internal parameters of the Li-ion batteries [99]. Rahman et al. 

identified four electrochemical variables of Li-ion batteries by using Particle Swarm 

Optimization (PSO) and a reduced P2D model [100]. More recently, the authors developed 

a parameter estimation method for conducting sensitivity analyses. Eight electrochemical 

parameters of Li-ion batteries made of different cathode materials were successfully 

identified, for both low and high discharge rates [13]. 

The major drawback of all the aforementioned inverse parameter estimation methods is that 

they are computationally expensive. This is due to the complexity of the model equations of 

the Li-ion battery and to the limited performance of the optimizers. As a result, the inverse 

parameter estimation methods are not pertinent for on-line control, monitoring and Battery 

Management Systems (BMSs). The promising alternative to these methods is the Artificial 

neural network (NN). 

An artificial neural network (NN) is a computing system comprising many nonlinear 

processing elements connected to each other. These elements are called neurons. Each 

connection has a weight to be determined in the NN training. The training process is 

generally implemented by means of known experimental data. The data provide the input 

neurons. The trained NN may then simulate and identify the system by using a black box 

approach [102, 152, 153]. 

 NNs have been employed in the past to investigate the performance of Li-ion batteries. 

Ulltah et al. proposed a neural-fuzzy approach to design a fast battery charger by using data 

from the characteristics curves of batteries [154]. Grewal and Grant applied the artificial 

NNs to a Li-ion battery pack for cellular phones. The model was employed to determine the 

State of Charge (SoC) of the battery pack [155]. Affanni et al. used the NN to estimate the 

SoC of a Li-ion battery pack in order to control electric vehicles [156]. Chau et al. employed 

a combination of the NNs and fuzzy concepts, namely adaptive neuro-fuzzy inference 

system, to calculate the state of available capacity of Li-ion batteries. The discharge capacity 

and the operating temperature were used for NN training [157]. Li et al. applied fuzzy NNs 

using B-spline membership into Li-ion battery. A genetic algorithm was also adopted for 

adjusting the free parameters and for computing the battery pack SoC [158]. Parthiban 

applied a NNs-based approach to a Co/Li cell in order to predict the charge/discharge 

capacity from charge/discharge cycle data. Parthiban was then able to predict accurately the 
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cell capacity after 50 cycles [159]. Charkhgard and Farrokhi employed radial basis function 

and neural networks coupled to Kalman filter (KF) to estimate the SoC of a Li-ion battery. 

Their results showed good agreement with experimental data. Unfortunately, their model 

could not account for the effect of the temperature and the aging process on the battery [160]. 

Finally, Eddahech et al. [161] and later Lin et al. [162] took on NNs to predict the State of 

Health (SoH) of Li-ion batteries.  

Nearly all of the above mentioned studies were conducted however with the sole purpose of 

calculating the SoC or the SoH of Li-ion batteries. Furthermore, the data needed for training 

the NNs all rely on empirical battery models.  

The present paper proposes a new NN method for real-time control and monitoring of 

Battery Management Systems (BMSs).  The NN method identifies five electrochemical 

parameters: the diffusion coefficients of the electrodes (Ds,n & Ds,p), their 

intercalation/deintercalation reaction-rate constants (Kn & Kp) and the electrolyte resistance 

of the battery (Rcell). The black box approach rests the 1C discharge curve of a Li-ion battery 

made with a LiCoO2 cathode. The data needed for the training of the NN are generated with 

an improved SPM. The 1C discharge curves are first calculated for a range of the expected 

parameters. The data are then used to determine the weights and the functions of the NN.  

 

8.3. Artificial Neural Networks 

Artificial neural networks are comprised of many processing elements (neurons) connected 

to each other. A feed forward multilayer NN is commonly used for the simulation of physical 

systems. It consists of an input layer, an output layer and one or more hidden layers. The 

input variables are introduced to the network through the input neurons (Figure 8.1). The 

output information is then determined from the output neurons by means of nonlinear 

transformations in the hidden layer(s). The nonlinear transformations are composed of the 

weights of the connection between two neurons. A distinct nonlinear function pertains to 

each neuron [152, 163]. 
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Figure 8.1: The overall schematic of a feed forward multilayer NN 
 

The back-propagation error algorithm is a common method to obtain the optimum value of 

the weights in a NN. It minimizes a quadratic cost function by the gradient descent method. 

During the network training process, the weights are adjusted according to the inputs and the 

corresponding outputs. At the beginning of the training process, inputs are introduced into 

the network and propagated forward to generate the outputs. An error is generated by the 

difference between the computed and the desired outputs. The weights are then fine-tuned 

by the back-propagation error algorithm. The process is repeated until an acceptable 

tolerance error is achieved [152, 153]. The network weights are calculated by means of 

decreasing the network error function. This function is defined as follows [163]: 

2
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p pk pk
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   (8.1) 

Ep is the error function, dpk is the desired value, and Opk is the output variable. According to 

the back-propagation error algorithm, the output of each neuron is computed as follows 

[152]:   
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Oi is the output of the ith neuron from its layer, Oj is the output of the jth neuron from the 

previous layer, fi is the activation function of the ith neuron, wij is the weight between the jth 

and the ith neuron and m is the total number of inputs applied to the ith neuron including bias. 

The weights are adjusted by the back-propagation error algorithm according to the following 

rule [159]: 
( 1) ( . )w n Oij i i     (8.3) 

n indicates the number of iterations or epochs, η is the learning rate, and i  is the error on 

the ith neuron. The value of i  for the output ith neuron is the difference between the desired 



 

160 

values, i.e. di and Oi . The recommended range for the learning rate or for the convergence 

coefficient (η) is 410 1     [152]. 

In this paper, the batch learning method is retained. This method is known to be memory 

efficient and it provides accurate training [163]. In spite of the fact that the batch learning 

method is computationally slower than the pattern-by-pattern learning method, it is not, 

however, sensitive to the order of the training pattern. Moreover, no data are dismissed in 

the network. Hence, during the first iteration of the training process (the first epoch), the 

network weights are trained by the entire data set in the following manner [163]: 

1

1 P

j ij
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w w
P



    (8.4) 

p represents the number of training patterns. To alleviate the problem of slow convergence 

of the batch training method and to avoid falling into local minimums, an adaptive η 

approach is used. In this technique, η is computed based on the variations of training errors 

as follows:  
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k1 and k2 are constant. Their magnitudes are in the range 1 20 1k k   . These constants 

depend on the type of data and the network size [163]. For the present study, they were 

estimated at k1=0.94 and k2=1.04 by means of a sensitivity analysis. Moreover, the optimum 

number of hidden layers and the optimum number of neurons are chosen according to the 

type of system under simulation and the number of training data [152]. Of course, the bigger 

the number of layers and the number of neurons, the longer the training run-times.  

 

8.4. Single Particle Model 

Electrochemical models of Li-ion batteries are more sophisticated that empirical-based 

models [10, 11]. To this day, the Pseudo-two-Dimensional (P2D) model appears to be the 

most accurate electrochemical-based model. This model was first developed by Doyle et al. 

[1, 34]. In order to reduce the computational time, Zhang et al. proposed a simplified version 

of the P2D model known as the Single Particle Model (SPM). The SPM rests on two main 

assumptions: First, each electrode (Figure 8.2) is modeled as a spherical particle in which 

intercalation and de-intercalation phenomena occur. Second, variations of the electrolyte 

properties are ignored [9, 54]. Due to its simple equations and the low computational time, 
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the SPM model is befitting many practical applications such as parameter estimation, real-

time control modeling and life modeling of Li-ion batteries. 
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Figure 8.2: Schematic of the Single Particle Model (SPM) 

 

Eqs. 8.6) and (8.7) show the governing equations of the SPM. These equations are comprised 

of the solid-state concentration and the Butler-Volmer kinetics relations for both the negative 

and the positive electrodes [54, 64]. 
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μs,k is the over potential function of each electrode. It is calculated as follows: 

       μ x,t =Φ x,t -Φ x,t -U ; V t =Φ -Φs,k s,k e,k k cell s, p s,n    (8.8) 

In order to improve the SPM accuracy, the potential drop between the positive and the 

negative electrodes in the electrolyte is simplified with the following equation [64]: 
-, , IRe p e n cell           (8.9) 

The cell potential function of the Li-ion battery can then be determined as [64]: 
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  (8.12) 

If the SPM is to be retained for a BMS, it is imperative to know the geometric properties, 

the material properties and the operating parameters of the battery. The geometric and the 

material properties can be determined from direct measurements. They may also be provided 
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by the manufacturers. The operating parameters are, on the other hand, not readily available. 

Some of these parameters may vary according to the measurement techniques or the battery 

age. Moreover, the measurement of the parameters sometimes requires the dismantling of 

the battery. To avoid such a brute force solution and maintain the integrity of the battery, a 

NN parameter estimation method was developed for estimating five key parameters. These 

parameters are the diffusion coefficients (Ds,n & Ds,p) and the intercalation/deintercalation 

reaction-rate constants (Kn & Kp) of the electrodes, and the electrolyte resistance (Rcell) of 

the battery. Table 8.1 lists the other cell variables used in the SPM. The open circuit potential 

functions for LiyCoO2 and LixC6 cathodes are provided by Eqs. 8.13 and 8.14 respectively 

[64]. 

 
Table 8.1: Cell properties used in the SPM [64] 

0 
 

Unit k=n k=p 

R J/mol K 8.3143 
T K 298 
F C/mol 96485 
I A/m2 1.656 

ec  mol/m3 1000 

Rk m 12.5e-6 8.5e-6 

,0kSOC  - 0.742 0.495 

kS  m2 0.7824 1.1167 
max
,s kc  mol/m3 31833 51410 

 
4.04596 exp( 42.30027 16.56714) 0.04880arctan (50.01833

26.48897) 0.05447arctan(18.99678 12.32362) exp(78.24095

78.68074)

p p p

p p

U SOC SOC

SOC SOC
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

   (8.13)  

 
0.13966 0.68920 exp( 49.20361 ) 0.41903 exp( 254.40067 )
exp(49.97886 43.37888) 0.028221arctan(22.52300 3.65328)
0.01308arctan(28.34801 13.43960)

n n n

n n

n

U SOC SOC
SOC SOC

SOC

     

   



  (8.14) 

 

8.5. The on-line inverse PE 

Inverse problems are ill-posed mathematical problems. As a result, their solution is usually 

more challenging than that for direct problems. Inverse problems are dependent on the initial 

and the boundary conditions, as well as on the measured signals [14, 15].  

The inverse parameter estimation approach has been employed to identify the unknown 

characteristics of Li-ion batteries. This technique is based on optimization algorithms whose 
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aim is to minimize the discrepancy between the predictions of a direct model (including the 

estimated parameters) and the experimental data. The major drawback of inverse methods is 

that they are computationally expensive. The equations of Li-ion battery models are complex 

and the performance of the optimizers is limited. Consequently, inverse methods are poor 

candidates for on-line control, monitoring and/or Battery Management Systems (BMSs). 

Further details concerning inverse methods can be found in [11, 13]. 

 To tackle this difficulty, an original inverse method resting on a trained NN was developed. 

This method is adapted to the on-line estimation of electrochemical parameters of Li-ion 

batteries. The input of the NN is comprised of a 1C discharge curve of a Li-ion battery made 

with a LiCoO2 cathode. The input matrix is introduced into the NN as a time domain 

parameter that includes a small time interval between zero and the cut-off time (0 < t ≤ tc): 
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N is the number of cell potential measurements. N is equal to the number of neurons in the 

NN input layer. The outputs of the model are the five electrochemical properties of the 

battery, that is, Ds,n , Ds,p, Kn , Kp and Rcell. Due to the matrix-based structure of the NN, the 

model estimates immediately the expected parameters after the training process. Figure 8.3 

shows a schematic of the on-line estimator.  
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Figure 8.3: On-line parameter estimation for Li-ion batteries using neural network 
 

8.6. The NN training 

The NN modelling of Li-ion batteries was implemented with four different layers: one input 

layer, two hidden layers and one output layer. The input layer contains 37 neurons for the 

1C discharge curve matrix. Measurements were taken at time intervals of 100 seconds over 
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a time period of one hour. Furthermore, two hidden layers comprising 50 and 75 neurons 

were employed in order to minimize the training error. The output layer provided the five 

signals that characterize the electrochemical properties. Figure 8.4 exemplifies the resulting 

network architecture. 
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Figure 8.4: Network structure for the NN on-line parameter estimation of Li-ion batteries 

 

The data needed for the training of the NN were generated with the SPM. The 1C discharge 

curves were first calculated for a range of the expected parameters. This range was delineated 

by considering five different values of each parameter (Table 8.2). As a result, the SPM was 

run for 3125 datasets (55) for computing the 1C discharge curves of the Li-ion battery. 

 
Table 8.2: Range for the expected parameters 

Symbol Unit 
Dataset 

Min (1) (2) (3) (4) Max (5) 

Ds,p m2/s 5.00e-15 7.50e-15 1.00e-14 1.25e-14 1.50e-14 

Ds,n m2/s 1.50e-14 2.25e-14 3.00e-14 3.75e-14 4.50e-14 

Kp m2.5/mol0.5 s 3.30e-11 4.975e-11 6.65e-11 8.325e-11 1.00e-10 

Kn m2.5/mol0.5 s 9.00e-12 1.35e-11 1.80e-11 2.25e-11 2.70e-11 

Rcell Ω 0.01 0.0125 0.015 0.0175 0.02 

 

The data were then employed to train the NN so as to determine the internal weights and 

functions. The training process was next deployed into three steps. First, all inputs and 
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outputs variables were normalized in the interval of [-1,1]. Second, the optimum number of 

training iterations (epochs) was calculated. Seventy percent (70 %) of the generated data was 

randomly employed to train the network. The remaining data (30%) were used to test the 

performance of the network. It was found that the 2000th epoch is the optimum training 

epoch, i.e., it is the epoch for which the computational cost is minimized. Figure 8.5 

illustrates the training and the test error as a function of the training epoch number.  Third, 

once the optimum number of iteration was determined, the model was trained once again for 

all the available data. Figure 8.6 shows the training error as a function of the number of 

training epochs. Finally, the resulting neural network was used to estimate the 

electrochemical properties for different 1C discharge curves.  

 

 
Figure 8.5: Training and test error as a function of the number of learning epochs 

 

 
Figure 8.6: Training error as a function of the number of training epochs 
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8.7. Implementation 

The performance of the on-line parameter NN estimator was tested for the following two 

scenarios.  

 

8.7.1. Scenario 1: The calculated discharge curve 

In this scenario, the NN-based model is compared to the computed data obtained with the 

SPM. First, the SPM is run to determine the calculated cell potential function by using the 

known parameters. Table 8.3 shows the values retained for the expected parameters. Second, 

the calculated cell potential function is introduced into the trained NN for estimating the 

expected variables. And third, the results for the parameters and the cell potential are 

compared. The flowchart of Scenario 1 is depicted in Figure 8.7. 

 
Table 8.3: Known parameters used in scenario 1 

Symbol Unit Value 

Ds,p m2/s 1.0e-14 

Ds,n m2/s 3.9e-14 

Kp m2.5/mol0.5 s 3.67e-11 

Kn m2.5/mol0.5 s 1.76e-11 

Rcell Ω 0.0162 
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Figure 8.7: Flowchart of Scenario 1 
 

Figure 8.8 illustrates the relative error for the estimated parameters. The relative error is 

defined as  

100E real
r

real

P Pe
P


         (8.16) 

PE is the estimated parameter and Preal is the known parameter. Examination of Figure 8.8 

reveals that the predictions of the NN are excellent.  
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Figure 8.8: Relative error for the estimated parameters 
 

Figure 8.9 compares the calculated and the estimated cell potential using the NN model and 

the SPM model. Once again, the results are in very good agreement.   

 

 

Figure 8.9: Calculated (SPM) and estimated (NN) cell potentials 
 

8.7.2. Scenario 2: The experimental discharge curve 

In Scenario 2, the NN-based parameter estimator is validated with an experimental discharge 

curve. The experimental data come from a Li-ion battery made with a LiCoO2 cathode. The 

1C discharge curve is provided in reference [11]. The other parameters are summarized in 

Table 8.1. Scenario 2 consists of two separate parameter estimation studies: One is 
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conducted with the NN-based model and the other is carried out with the regular parameter 

estimation model reported in reference [13]. The experimental cell potential was introduced 

into these models in order to determine the expected parameters. The flowchart of Scenario 

2 is presented in Figure 8.10. 
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Figure 8.10: Flowchart of Scenario 2 
 

Table 8.4 shows the estimated parameters from the two methods. Convergence of the NN 

PE method is achieved in 0.02 s while that of the regular parameter estimation method is 

obtained in 4 s. The former is 200 times faster than the latter! The predictions of the on-line 

NN estimator are also nearly indistinguishable from the predictions of the regular parameter 

estimation technique and the experimental cell potentials (Figure 8.11). 

   
Table 8.4: Estimated parameters with the NN on-line model and the regular PE model 

Symbol Unit 
Estimated Values 

Regular PE NN PE 
Ds,p m2/s 0.895e-14 1.076e-14 

Ds,n m2/s 1.968e-14 2.535e-14 

Kp m2.5/mol0.5 s 6.084e-11 6.676e-11 

Kn m2.5/mol0.5 s 1.894e-11 1.962e-11 

Rcell Ω 0.011 0.0147 
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Figure 8.11: Estimated and experimental cell potentials 

 

8.8. Conclusion 

A real time Neural Network (NN) technique was presented for estimating the 

electrochemical properties of Li-ion batteries. The Single Particle Model was retained to 

train the NN model. The resulting NN model was then used to estimate the diffusion 

coefficients (Ds,n & Ds,p) and the intercalation/deintercalation reaction-rate constants (Kn & 

Kp) of the electrodes, the electrolyte resistance of the battery (Rcell) and its discharge curve. 

The results showed that the proposed NN model is computationally performant, accurate and 

befitting on-line parameter estimations. The NN model is also adaptable to a multitude of 

input variables and output parameters. As a result, it is expected that the present NN model 

will find applications in Battery Management Systems. The NN model remains, however, 

bounded to the input variables adopted for the training scenario.  
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9. Conclusion and future work 
9.1. Conclusion 

The main goal of this thesis was to develop a general method to simultaneously estimate 

different electrochemical and thermophysical parameters and to predict the performance of 

different types of Li-ion batteries. To achieve this goal, a technique based on the inverse 

method procedure was developed. The inverse method rests on five elements: (1) the 

reference data, (2) the expected parameters, (3) a direct model, (4) an objective function, and 

(5) an optimizer. Here are the important characteristics of all inverse method elements: 

 (1) The reference data: The experimental data provided by Hydro-Québec were selected 

depending on which parameters are supposed to be estimated. Two types of the experimental 

data belonging to different commercial Li-ion batteries were employed including the cell 

potential and the surface temperature at different charge/discharge rates.    

(2) The expected parameters: Different electrochemical and thermophysical parameters were 

estimated in this thesis. In Chapter 3, eight electrochemical parameters were identified by 

using the cell potential experimental datasets. In Chapter 4, the thermophysical variables of 

the battery were only estimated independent of the electrochemical parameters. Finally, the 

coupled electro-thermal parameter estimation study was presented in Chapter 6. All of the 

estimation processes were carried out for different cathode materials. 

(3) The direct model: Three kinds of Li-ion battery direct models were developed in this 

thesis to capture the electrochemical and thermal behavior of the battery. A simplified 

version of the P2D model was introduced for Li-ion batteries with LMO and LCO positive 

electrode materials. Also, two types of LFP models were developed for simulating the 

performance of these types of positive electrode material, namely the MM model and the 

mesoscopic-based model. It is noted that these models are useful in different applications 

like control, online-monitoring, BMSs, etc.    

(4) The objective function: To estimate the expected parameters, it is necessary to define an 

objective function based on the normalized discrepancy between the predictions of the direct 

model and the experimental data. In Chapter 3, a novel method was presented to increase the 

accuracy of the inverse method and to accelerate the parameter estimation process. The best 

time domain for the estimation of each parameter was calculated. It was determined with the 

sensitivity curves for all parameters. 

(5) The optimizer: Due to the numerous parameters used in the objective function of the 

study, the optimization process for the inverse problem is mathematically challenging, slow 



 

171 

to converge and computationally expensive. Therefore, the Genetic Algorithm (GA) is 

employed as a stochastic method to minimize the objective function. 

By virtue of the inverse method, the parameter identification and performance study was 

conducted. The method was successful to simultaneously estimate the electrochemical and 

thermophysical parameters of a cylindrical Lithium-ion (Li-ion) battery. The cell potential 

and the surface temperature functions were also predicted at low and high charge/discharge 

rates. In spite of the complexity of the mathematical equations and the large number of 

unknown parameters, the inverse predictions show excellent agreement with the 

experimental data for all discharge rates. The proposed parameter estimation method was 

shown to be a promising tool for the design of battery thermal management systems. Finally 

in Chapter 8, a real time neural network (NN) technique was presented for estimating the Li-

ion batteries properties. The results showed that the proposed NN model is computationally 

performant, accurate and befitting on-line parameter estimations. As a result, it is expected 

that the present NN model will find applications in Battery Management Systems. The NN 

model remains, however, bounded to the input variables adopted for the training scenario.  

 

9.2. Conclusion in French 

L'objectif principal de cette thèse était de développer une méthode générale permettant 

d'estimer simultanément différents paramètres électrochimiques et thermophysiques et de 

prédire les performances de différents types de batteries Li-ion. Pour atteindre cet objectif, 

une technique basée sur la méthode inverse a été développée. La méthode inverse repose sur 

cinq éléments: (1) les données de référence, (2) les paramètres attendus, (3) un modèle direct, 

(4) une fonction objective et (5) un optimiseur. Voici les caractéristiques importantes de tous 

les éléments de la méthode inverse: 

 (1) Les données de référence: Les données expérimentales fournies par Hydro-Québec ont 

été choisies en fonction des paramètres censés être estimés. Deux types de données 

expérimentales appartenant à différentes batteries commerciales au Li-ion ont été utilisés, y 

compris le potentiel de la cellule et la température de surface à différents taux de charge / 

décharge. 

(2) Les paramètres attendus: Différents paramètres électrochimiques et thermophysiques ont 

été estimés dans cette thèse. Au chapitre 3, huit paramètres électrochimiques ont été 

identifiés en utilisant les ensembles de données expérimentales sur le potentiel mesuré. Au 

chapitre 4, les variables thermophysiques de la batterie ont été estimées indépendamment 

des paramètres électrochimiques. Enfin, l'étude d'estimation des paramètres 
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électrothermiques couplés a été présentée au chapitre 6. Tous les processus d'estimation ont 

été réalisés pour différents matériaux de cathodes. 

(3) Le modèle direct: Trois types de modèles directs de batteries Li-ion ont été développés 

dans cette thèse pour capturer le comportement électrochimique et thermique de la batterie. 

Une version simplifiée du modèle P2D a été introduite pour les batteries Li-ion avec des 

matériaux d'électrode positive LMO et LCO. En outre, deux types de modèles LFP ont été 

développés pour simuler les performances de ces types de matériau d'électrode positive, à 

savoir le modèle MM et le modèle mésoscopique. Il est à noter que ces modèles sont utiles 

dans différentes applications comme le contrôle, la surveillance en ligne, les BMS, etc. 

(4) La fonction objective: Pour estimer les paramètres attendus, il est nécessaire de définir 

une fonction objective basée sur l'écart normalisé entre les prédictions du modèle direct et 

les données expérimentales. Au chapitre 3, une nouvelle méthode a été présentée pour 

accroître la précision de la méthode inverse et accélérer le processus d'estimation des 

paramètres. Le meilleur domaine temporel pour l'estimation de chaque paramètre a été 

calculé. Il a été déterminé avec les courbes de sensibilité pour tous les paramètres. 

(5) L'optimiseur: En raison des nombreux paramètres utilisés dans la fonction objective de 

l'étude, le processus d'optimisation du problème inverse est mathématiquement difficile, lent 

à converger et coûteux en calculs. Par conséquent, l'algorithme génétique (GA) est utilisé 

comme une méthode stochastique pour minimiser la fonction objective. 

Cette méthode inverse a permis l'identification des paramètres, l'étude des performances et 

l’estimation simultanément des paramètres électrochimiques et thermophysiques d'une 

batterie cylindrique Lithium-ion (Li-ion). Les fonctions du potentiel de la cellule et de la 

température de surface ont également été prédites à des taux de charge / décharge faibles et 

élevés. Malgré la complexité des équations mathématiques et le grand nombre de paramètres 

inconnus, les prédictions inverses montrent un excellent accord avec les données 

expérimentales pour tous les taux de décharge. La méthode d'estimation des paramètres 

proposée s'est révélée être un outil prometteur pour la conception de systèmes de gestion 

thermique des batteries. Enfin, au chapitre 8, une technique de réseaux de neurones en temps 

réel (NN) a été présentée pour estimer les propriétés des batteries Li-ion. Les résultats ont 

montré que le modèle NN proposé est performant, précis et convenant aux estimations de 

paramètres en ligne. En conséquence, il est prévu que le modèle NN actuel trouvera des 

applications dans les systèmes de gestion de batterie. Le modèle NN reste cependant limité 

aux variables d'entrée retenues pour le scénario de formation. 
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9.3. Suggested future work 

• A parameter estimation study is suggested to investigate the effect of battery aging on 

the parameters values. To conduct this study, it is vital to modify the direct model. The 

model should adjust with some age-dependent variables to model the side reactions and 

the active material consumption as the battery ages. Then, the parameter estimation 

study can be ready for charge/discharge curves with different battery cycles.  

• It is suggested to complement the electro-thermal modeling with a mechanical model in 

order to investigate all concerns over the safety of the Li-ion batteries. The model would 

be useful to predict the battery mechanical failure and its effects on the battery 

performance. This model should employ a micro- and a macro-scale approach at the 

same time to be able to simulate both crack initiation in the electrode and the cell 

structural failure in a battery pack.  

• The parameter estimation method developed in Chapter 3 could be applied to other 

electrochemical systems like Li-S battery. The sensitivity analysis should be performed 

to find out the best time estimation for each parameter.  

 

9.4. Suggestions de travaux futurs 

• Une étude d'estimation des paramètres est suggérée pour étudier l'effet du vieillissement 

de la batterie sur les valeurs des paramètres. Pour mener cette étude, il est indispensable de 

modifier le modèle direct. Le modèle doit s'ajuster avec certaines variables dépendantes de 

l'âge pour modéliser les réactions secondaires et la consommation de matière active au fur 

et à mesure que la pile vieillit. Ensuite, l'étude d'estimation des paramètres peut être prête 

pour représenter les courbes de charge / décharge avec différents cycles de charge / décharge 

des batteries Li-ion. 

• Il est suggéré de compléter la modélisation électrothermique par un modèle mécanique afin 

d'étudier toutes les problèmes relatifs à la sécurité des batteries Li-ion. Le modèle serait utile 

pour prédire la défaillance mécanique de la batterie et ses effets sur les performances. Ce 

modèle devrait utiliser une approche micro- et macro-échelle en même temps pour simuler 

à la fois l'amorçage de la fissure dans l'électrode et la défaillance structurale de la pile dans 

une batterie. 

• La méthode d'estimation des paramètres développée au chapitre 3 pourrait être appliquée 

à d'autres systèmes électrochimiques tels que les batteries Li-S. Une analyse de sensibilité 

devrait être menée afin de trouver la meilleure estimation en fonction du temps et ce, pour 

chaque paramètre.  
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