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Abstract: In this paper, we study a nonlinear cointegration type model Yk =

m(Xk) + wk, where {Yk} and {Xk} are observed nonstationary processes and

{wk} is an unobserved stationary process. The process {Xk} is assumed to be

a null–recurrent Markov chain. We apply a robust version of local linear regression

smoothers to estimate m(·). Under mild conditions, the uniform weak consistency

and asymptotic normality of the local linear M-estimators are established. Fur-

thermore, a one–step iterated procedure is introduced to obtain the local linear

M-estimator and the optimal bandwidth selection is discussed. Meanwhile, some

numerical examples are given to show that the proposed theory and methods per-

form well in practice.
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1. Introduction

Two time series {Yk} and {Xk} are said to be linearly cointegrated if they
are both nonstationary and if there exists a linear combination

aXk + bYk = wk (1.1)

such that {wk} is stationary. This implies that the time series {Yk, Xk} move
together when considered over a long period of time. Since the introduction of
unit root and cointegration analysis in time series analysis, linear models have
dominated empirical work in the application of these methods. This emphasis on
linearity is convenient for practical application, and accords well with the linear
framework of partical summation in which the integrated process and cointegra-
tion concepts have been developed. However, the linear assumption is restrictive
in application and one often encounters situations where a particular parametric
linear model cannot be adopted with confidence and thus a nonlinear type model
is used as an alternative.

Since the time series {Yk} and {Xk} may not be linearly cointegrated, this
leads to a study of the nonlinear cointegration type model defined by

Yk = m(Xk) + wk, (1.2)
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where m(·) is some continuous function. Throughout the paper, we assume that
{Xk} is a null–recurrent Markov chain and {wk} is a sequence of independent
and identically distributed (i.i.d.) random variables independent of {Xk}. In
fact, when Ew1 = 0, m(·) can be viewed as the conditional expectation, i.e.,

m(x0) = E(Yk|Xk = x0).

The theory of nonlinear time series has been systematically examined by
many authors, see Fan and Yao (2003), Gao (2007) and Li and Racine (2007) and
the references therein. However, when tackling economic and financial issues from
a time perspective, we often deal with nonstationary components. For example,
neither prices nor exchange rates follow a stationary law over time. There is now
a large literature on parametric linear and nonlinear models of nonstationary time
series (see Park and Phillips (2001) for example). In nonparametric estimation
of nonlinear regression and autoregression of nonstationary time series models,
existing studies include Phillips and Park (1998), Karlsen and Tjøstheim (2001),
Schienle (2006), Wang and Phillips (2006) and Karlsen, Mykelbust and Tjøstheim
(2007).

The main goal of this paper is to investigate the estimation theory for the re-
gression function m(·). For the nonlinear cointegration type model (1.2), Karlsen,
Mykelbust and Tjøstheim (2007) applied the Nadaraya–Watson (NW) method
to estimate m(·) and established the asymptotic theory of the proposed estima-
tor. Although the NW estimator is central in most nonparametric regression
methods, Fan and Gijbels (1996) showed that this method suffers from several
drawbacks, such as poor boundary performance, excessive bias and low efficiency.
To overcome such drawbacks, the local linear method was developed. It is defined
as the solution to the weighted least squares problem

n∑
k=1

(Yk − a − (Xk − x0)b)2K
(

Xk − x0

h

)
, (1.3)

where K(·) is some kernel function and h := hn is a sequence of positive numbers
which tends to zero as n tends to infinity. The local linear smoother has become
popular in recent years because of its attractive statistical properties. It has
advantages over the popular kernel method, in terms of design adaptation and
high asymptotic efficiency. Furthermore, the local linear method is adaptive to
almost all regression settings and copes well with edge effects.

Although the local linear regression estimator has many advantages, it is not
robust due to the fact that the local linear regression estimator can be consid-
ered as a local weighted least–squares estimator and the least–squares estimator
is sensitive to outliers and does not perform well when the error distribution is
heavy–tailed. Outliers or aberrant observations are common in economic time



M-ESTIMATORS IN NULL RECURRENT TIME SERIES 1685

series, finance, and many other applied fields. To attenuate the lack of robustness
of the local linear estimator, M-type regression estimators are natural candidates
for achieving desirable robustness properties. There is extensive literature con-
cerning asymptotic properties of the robust nonparametric regression estimation
for stationary time series. For example, Fan and Jiang (2000) studied the robust
version of local linear regression smoothers augmented with variable bandwidth
for i.i.d. observations; Jiang and Mack (2001) and Cai and Ould-Säıd (2003)
considered local polynomial M-estimators and local linear M-estimators for sta-
tionary dependent observations. To the best of our knowledge, however, local
linear M-type estimation has not been developed for nonstationary time series.
We propose estimating m(x0) by a local linear M-type estimation method. That
is, find a and b to minimize

n∑
k=1

ρ(Yk − a − (Xk − x0)b)K
(

Xk − x0

h

)
, (1.4)

where ρ(·) is a given convex function. Here and in the sequel, the local linear M-
estimators of m(x0) and m′(x0) are denoted by m̂n(x0) and m̂′

n(x0), respectively.
Sometimes, the following is also applied to define the local linear M-estimators
of m(x0) and m′(x0): find a and b to satisfy

n∑
k=1

ψ(Yk − a − (Xk − x0)b)K
(

Xk − x0

h

)(
1

Xk−x0
h

)
=

(
0
0

)
. (1.5)

A natural method of obtaining (1.5) is to take the derivative of (1.4) with respect
to (a, b) when ρ(·) is continuously differentiable, and equate it to null (cf., Fan
and Jiang (2000)). In this paper, we apply a suitably chosen function ψ(·) to
(1.5) that brings in many common cases such as the least square estimator and
the least absolute distance estimator (see Section 3 for details).

In the traditional stationary time series analysis, some sort of mixing con-
dition is assumed for {Xk} to obtain the asymptotic properties of m̂n(x0) and
m̂′

n(x0) (cf., Jiang and Mack (2001) and Cai and Ould-Säıd (2003)). However,
the mixing condition is difficult to verify and is ruled out in general. A minimal
condition for undertaking the asymptotic analysis on m̂n(x0) is that, as the num-
ber of observations increases, there must be infinitely many observations in any
neighborhood of x0, which means that {Xk} must return to a neighborhood of
x0 infinitely often. Throughout the paper, {Xk} is assumed to be φ–irreducible
Harris recurrent, making asymptotics for nonparametric estimation possible. We
establish the uniform weak consistency and asymptotic normality for the local
linear M-estimators under mild conditions. The asymptotic properties of local
linear estimators and the least absolute distance estimators can also be obtained
by suitably choosing the function ρ(·). Furthermore, the one–step iterated proce-
dure of M-estimators and the choice of optimal bandwidth are discussed. Finally,
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numerical examples are given to show that the proposed theory and methods per-
form well in practice.

The rest of the paper is organized as follows. Section 2 gives a brief sum-
mary of some key terminologies in the theory of Markov chains together with
some necessary conditions. The main asymptotic results, with some remarks
and some interesting examples, are provided in Section 3. The one–step iterated
procedure of the local linear M-estimators is discussed in Section 4. The robust
cross–validation method to select the optimal bandwidth, with some numerical
examples, are given in Section 5. All the proofs of the main results, as well as
the key lemmas, are concentrated in the Appendix.

2. Markov Theory and Assumptions

2.1. Markov theory

Let {Xk, k ≥ 0} be a φ–irreducible Markov chains on the state space (E, E)
with transition probability P . This means that for any set A ∈ E with φ(A) > 0,∑∞

n=1 Pn(v,A) > 0 for all v ∈ E. To make asymptotics for nonparametric
estimation possible, we assume that the φ–irreducible Markov chain {Xk} is
Harris recurrent.

Definition 1. The chain {Xk} is Harris recurrent if, given a neighborhood Nv

of v with φ(Nv) > 0, {Xk} returns to Nv with probability one, v ∈ E.
The Harris recurrence of {Xk} allows one to construct a split chain which

decomposes the partial sum of functions of {Xk} into blocks of i.i.d. parts and
the negligible remaining parts (see the proofs in Appendix for example). The
number of the independent parts Nn indicates how often the process regenerates.
Since Nn ≤ n for the null recurrent case, this indicates that the convergence rate
for the proposed estimator here will be slower than that for stationary time series.
On the other hand, Harris recurrence only yields stochastic rates of convergence
for estimators, where distribution and size of the regeneration times Nn have no
a priori known structure but fully depend on the underlying process. The class of
stochastic processes we are dealing with is not the general class of null recurrent
Markov chains. Instead, we need to impose some restrictions on the tail behavior
of the distribution of the recurrence time of the chain.

Definition 2. A Markov chain {Xk} is β–null recurrent if there exist a small
nonnegative function f(·), an initial measure λ, a constant β ∈ (0, 1), and a
slowly varying function Lf (·) such that

Eλ

[ n∑
i=0

f(Vi)
]
∼ 1

Γ(1 + β)
nβLf (n) as n → ∞, (2.1)

where Eλ stands for the expectation with initial distribution λ, and Γ(1 + β) is
the Gamma function with parameter 1 + β.
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Assuming β–null Harris recurrence restricts the tail behavior of the recur-
rence time of the process to be a regular varying function. As a standard result
(cf., Karlsen and Tjøstheim (2001)), the regeneration times Nn of the β–null
recurrent Markov chain {Xk} have the following asymptotic distribution

Nn

nβLs(n)
d−→ Mβ(1), (2.2)

where Ls = Lf/(πsf), πs is the invariant measure of the Markov chain {Xk},
and Mβ(1) is the Mittag–Leffler distribution with parameter β (cf., Kasahara
(1984)). Furthermore, for a stationary or positive recurrent process β = 1, and
for a univariate random walk β = 1/2.

2.2. Assumptions

The following assumptions are necessary to establish the asymptotic theory
of the local linear M-estimators.

A1. The kernel function K(·) is continuous, symmetric, and has a compact sup-
port, say [−1, 1].

A2. m(·) has continuous second derivative at x0.
A3. There exists a positive constant λ1 such that, as |u| → 0, E[ψ(w1 + u)] =

λ1u + O(u2).
A4. (i) E[ψ2(w1)] = σ2 > 0;

(ii) E[(ψ(w1 + u) − ψ(w1))2] ≤ λ(|u|), where λ(·) is a nonnegative function
continuous at 0 with λ(0) = 0.

A5. The invariant measure πs of the β–null recurrent Markov chain {Xk} has a
continuous density function ps(·) and ps(x0) > 0.

Remark 1. The above assumptions are relatively mild in this kind of problem
and can be justified in details. For example, A1 and A2 are quite natural in
nonparametric estimation for stationary time series (cf., Fan and Yao (2003)).
A3 and A4 are some conditions on the function ψ(·) that are mild and cover
some well–known special cases such as the least square estimate (LSE), the least
absolute distance estimate (LADE), and the mixed LSE and LADE. See Section
3 for some specific examples. A5 corresponds to the continuity condition on the
density function in the stationary case.

3. Large Sample Theory

3.1. Weak consistency and asymptotic normality

Next, we present the asymptotic properties of the local linear M-estimators
defined in Section 1. We first give the uniform weak consistency of the proposed
estimators and then establish their asymptotic distributions.
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Theorem 1. Assume that A1−A5 are satisfied and nβ−ε0h → ∞ for some
0 < ε0 < β. If infx∈S ps(x) > 0 for some compact support S and

E
[
ψ2m(w1)

]
< ∞, E

[(
ψ(w1 + u) − ψ(w1)

)2m
]
≤ λ(|u|),

where m > max{(1 + β)/ε0 − 11/8, 5/4} and λ(·) is defined in A4, then we have

sup
x∈S

(
m̂n(x) − m(x)

h(m̂′
n(x) − m′(x))

)
= oP (1). (3.1)

Remark 2. Aside from the uniform weak consistency of the local linear M-
estimators, we conjecture that

sup
x∈S

(
m̂n(x) − m(x)

h(m̂′
n(x) − m′(x))

)
= oP

( 1√
nβ−ε0h

)
+ OP (h2),

where 0 < ε0 < β. Since different methods and more technicalities will be
involved, such issues are left for future research.

Let µt =
∫

utK(u)du and νt =
∫

utK2(u)du for t = 0, 1, . . .. We next
state the asymptotic normality of local linear M-estimators for β–null recurrent
processes.

Theorem 2. Assume that A1−A5 are satisfied and that nβ−ε0h → ∞ for some
0 < ε0 < β. Then there exists a unique solution to equation (1.5) such that

(Nnh)1/2

{(
m̂n(x0) − m(x0)

h(m̂′
n(x0) − m′(x0))

)
−

(1
2
h2Γ−1(x0)b(x0) + oP (h2)

)}
d−→ N

(
(0, 0)τ , Γ−1(x0)Σ(x0)Γ−1(x0)

)
, (3.2)

where

Γ(x0) = λ1ps(x0)

(
µ0 µ1

µ1 µ2

)
, Σ(x0) = σ2ps(x0)

(
ν0 ν1

ν1 ν2

)
,

and b(x0) = λ1ps(x0)m′′(x0)(µ2, µ3)τ .

Remark 3. From Theorem 2, the bias of local linear M-estimators is O(h2), the
same as in stationary time series. Furthermore, by Theorem 3.2 in Karlsen and
Tjøstheim (2001), Nn = OP (nβLs(n)) which, combined with (3.2), implies that
the asymptotic mean square error of the estimator is

O(h4) + O
( 1

nβLs(n)h

)
. (3.3)
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This leads to the optimal bandwidth Ck0(n
βLs(n))−1/5, where Ck0 is some posi-

tive constant. On the other hand, since K(·) is symmetric, µ1 = 0. From (3.2),
we know that m̂n(x0) is asymptotically independent of m̂′

n(x0).

Remark 4. Sometimes, the regeneration times of the Markov chain Nn in (3.2)
are unobservable. In practice, Nn can be replaced by

NC(n) =
n∑

k=1

IC(Xk),

where C is some small set and IC(·) is the indicator function. Furthermore, by
Lemma 3.2 in Karlsen and Tjøstheim (2001), we have NC(n)/Nn = πsIC + o(1),
a.s. Hence, by (3.2), we have

(NC(n)h)1/2

{(
m̂n(x0) − m(x0)

h(m̂′
n(x0) − m′(x0))

)
−

(1
2
h2Γ−1(x0)b(x0) + oP (h2)

)}
d−→ N

(
(0, 0)τ , (πsIC)−1Γ−1(x0)Σ(x0)Γ−1(x0)

)
.

Remark 5. Using the Cramér–Wold device, Theorem 2 can be extended to
the multi–dimension case by similar arguments. It seems from the proof in the
Appendix that the i.i.d. assumption on {wk} can be relaxed. For example, we
can obtain analogous results when {wk} is a stationary sequence of α–mixing
random variables (cf., Karlsen, Mykelbust and Tjøstheim (2007)).

As an application of Theorem 2, we obtain the asymptotic distributions
of local linear estimators and least absolute distance estimators in the following
corollaries. First we consider local linear estimation, which corresponds to ρ(x) =
x2 and ψ(x) = 2x in (1.4) and (1.5). Since ψ(·) is continuous, by an elementary
calculation we have λ1 = 2 and σ2 = 4Ew2

1.

Corollary 1. Assume 0 < Ew2
1 < ∞, the conditions A1, A2, A5, and nβ−ε0h →

∞ for some 0 < ε0 < β. Let Γ1(x0), Σ1(x0), and b1(x0) be defined as Γ(x0),
Σ(x0) and b(x0) with λ1 and σ2 replaced by 2 and 4Ew2

1, respectively. Then we
have

(Nnh)1/2

{(
m̂n(x0) − m(x0)

h(m̂′
n(x0) − m′(x0))

)
−

(1
2
h2Γ−1

1 (x0)b1(x0) + o(h2)
)}

d−→ N
(
(0, 0)τ ,Γ−1

1 (x0)Σ1(x0)Γ−1
1 (x0)

)1/2
.

Next we consider least absolute distance estimation, which corresponds to
ρ(x) = |x| and ψ(x) = sign(x). Assume that F (·) has density function f(·) in a
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neighborhood of 0 and f(0) > 0, where F (·) is the distribution function of w1.
Then, as in Bai, Rao and Wu (1992), we have λ1 = 2f(0) and σ2 = 1.

Corollary 2. Assume A1, A2, A5, it nβ−ε0h → ∞ for some 0 < ε0 < β, and
F (·) has density function f(·) in a neighborhood of 0 and f(0) > 0. Then

(Nnh)1/2

{(
m̂n(x0) − m(x0)

h(m̂′
n(x0) − m′(x0))

)
−

(1
2
h2Γ−1

2 (x0)b2(x0) + o(h2)
)}

d−→ N
(
(0, 0)τ ,Γ−1

2 (x0)Σ2(x0)Γ−1
2 (x0)

)1/2
,

where Γ2(x0), Σ2(x0), and b2(x0) are Γ(x0), Σ(x0), and b(x0) with λ1 and σ2

replaced by 2f(0) and 1.

Remark 6. The least absolute distance estimators for stationary time series have
been discussed by many authors, see Basset and Koenker (1978) and Bai, Chen,
Wu and Zhao (1990) for example. Corollary 2 is a new result for nonstationary
time series.

3.2. Some extensions

The technique in this paper can be extended to local polynomial M-estima-
tion, which has been considered by many authors in the stationary case (cf.,
Jiang and Mack (2001)). Thus, find a and bj , 1 ≤ j ≤ q, to satisfy

n∑
k=1

ψ

(
Yk − a −

q∑
j=1

bj(Xk − x0)j

)
K

(Xk − x0

h

) 
1

Xk−x0
h

· · ·(
Xk−x0

h

)q

 =
(

0
0

)
,

where 0 is a null vector of length q. Then m(x0) is estimated by the solution
m̂n(x0) and m(j)(x0) is estimated by j!m̂(j)

n (x0), 1 ≤ j ≤ q. The asymptotic prop-
erties in Sections 3.1 still hold for robust local polynomial fitting. For example,
we can show that under mild conditions supx∈S Tn(x) = oP (1), and

(Nnh)1/2

(
Tn(x0) −

1
(q + 1)!

hq+1Γ−1
3 (x0)b3(x0) + oP (hq+1)

)
d−→ N

(
(0,0τ )τ , Γ−1

3 (x0)Σ3(x0)Γ−1
3 (x0)

)
,

where

Tn(x) =

(
m̂n(x) − m(x), h(m̂′

n(x) − m′(x)), . . . , hq

(
m̂(q)

n (x) − m(q)(x)
q!

))τ

,
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Γ3(x0) = λ1ps(x0)(µi+j−2)(q+1)×(q+1), Σ3(x0) = σ2ps(x0)(νi+j−2)(q+1)×(q+1),

b3(x0) = λ1ps(x0)m(q+1)(x0)(µq+1, . . . , µ2q+1)τ .

Besides weak consistency and asymptotic normality, the Bahadur represen-
tation of an M-estimator is another important topic, since it not only provides
a kind of asymptotic representation for the estimator but also gives the order of
the remainder term. There has been a large literature on Bahadur representation
of parametric and nonparametric M-estimators for stationary time series, see He
and Shao (1996), Hong (2003), and Cheng and Gooijer (2005) for details. Next
we introduce the strong Bahadur representation for the local linear M-estimator
in null recurrent time series. When ψ(·) in (1.5) is Lipschitz continuous of order
one and

nβ−ε0h → ∞, nβ−ε0h5 = O(1), (3.4)

we can show that(
m̂n(x0) − m(x0)

h(m̂′
n(x0) − m′(x0))

)
= Γ−1(x0)

n∑
k=1

ηnk + O
( 1

nβ−ε0h

)
a.s., (3.5)

where

ηnk =
1

Nnh
K

(Xk − x0

h

)
ψ

(
Yk − (m(x0) + m′(x0)(Xk − x0))

)(
1

Xk−x0
h

)
.

From (3.5), we can obtain the strong Bahadur representation for the nonparamet-
ric Huber estimator since the Huber ψ–function is Lipschitz continuous. However,
the Lipschitz continuity on ψ(·) seems too restrictive in some cases. For example,
the least absolute distance estimator is excluded in this case since ψ(x) = sign(x)
is not continuous at 0. In fact, if (3.4) is satisfied and the Lipschitz continuity
on ψ(·) is replaced by

E[ψ(w1+u)−ψ(w1+v)]p+E[ψ(w1+u)−ψ(w1+v)]2 = O(|u−v|), |u−v| → 0,

(3.6)
where p = [(72β +3ε0 +60)/(120β−40ε0)]+1 for some 0 < ε0 < β, the following
strong Bahadur representation holds:(

m̂n(x0) − m(x0)
h(m̂′

n(x0) − m′(x0))

)
= Γ−1(x0)

n∑
k=1

ηnk + O
(
(nβ−ε0h)−3/4

)
a.s.. (3.7)

From (3.7), we can obtain the strong Bahadur representation for the least abso-
lute distance estimator. Meanwhile, the strong consistency for the local linear
M-estimators can be obtained from (3.5) and (3.7). The detailed proofs of (3.5)
and (3.7) are similar to those in Chen, Li and Zhang (2008).
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In practice, the errors in model (1.2) might depend on the nonstationary
regressor {Xk}. Thus, it is interesting to consider

Yk = m(Xk) + σ(Xk)wk,

where σ(·) is a continuous function satisfying some mild conditions. The above
model with heteroscedastic errors is important in econometrics and finance. The
proposed estimation procedure in this paper can be extended to the model with
heteroscedastic errors. Furthermore, with some modification, we can show that
the asymptotic results in this paper still hold for the case of heteroscedastic
errors.

For the case of multivariate {Xk} with Xτ
k = (Xk1, Xk2, . . . , Xkd), d ≥ 3, it

is known that the regression function m(x0) may not be estimated with accuracy
due to “the curse of dimensionality”. The curse of dimensionality problem has
been clearly illustrated in several books, such as Fan and Gijbels (1996). The
issue of how to avoid it is particularly important in nonlinear regression analysis.
A way to solve this problem is to consider the nonlinear additive cointegration
model

Yk =
d∑

t=1

mt(Xkt) + wk, (3.8)

where the functions m1(·), . . . ,md(·) are univariate. Several different methods
have been proposed to deal with the additive model generated by stationary time
series. For example, Fan, Härdle and Mammen (1998) considered the method
of marginal integration, and Mammen, Linton and Nielsen (1999) applied the
smoothed backfitting approach that has been extended to additive models gen-
erated by nonstationary time series by Schienle (2006). Recently,Lin, Li and
Gao (2009) proposed a local linear M-type marginal integration method to study
the additive models in the stationary case. We can extend the Lin, Li and Gao
(2009) method to model (3.8). To obtain large sample theory for local linear
M-smoothers in model (3.8), we need uniform weak consistency for the proposed
estimators. Since more technicalities are involved, this is left for future research.

4. One-step Iterated Procedure

As pointed out in Section 1, the local linear M-estimators inherit many
nice statistical properties from local linear smoothers and M-type estimators.
However, it seems that it is difficult to obtain local M-estimators directly. A
natural method is to apply an iterated procedure defined as follows:

m̂(s)
n = m̂(s−1)

n +
(
W (s−1)

n (x0)
)−1(

NnΨn(m̂(s−1)
n , x0)

)
, s = 1, . . . , (4.1)
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where m̂(i)
n := m̂(i)

n (x0) is the value obtained from the i-th iteration at point x0,

Ψn(t, x0)=
1

Nn

n∑
k=1

ψ

(
Yk − tτ

(
1

Xk−x0
h

))
Kkh

(
1

Xk−x0
h

)
=:

(
Ψn1(t, x0)
Ψn2(t, x0)

)
,

W (s)
n (x0)=


Nn

(
∂
∂aΨn1(t, x0) ∂

h∂bΨn1(t, x0)
∂
∂aΨn2(t, x0) ∂

h∂bΨn2(t, x0)

) ∣∣∣∣
t= bm

(s)
n

, if ψ(·) is differentiable,

Nnλ̂n1p̂s(x0)
(

µ0 µ1

µ1 µ2

)
, otherwise.

Here λ̂n1 is some consistent estimator of λ1 and Nnp̂s(x0) = (1/h)
∑n

k=1 K[(Xk−
x0)/h]. The initial value m̂(0)

n can be arbitrarily chosen, and the above procedure
is terminated at s0 if ‖m̂(s0)

n − m̂(s0−1)
n ‖ < 0.0001.

The full iterated procedure is time–consuming when the sample size is large,
and it may stop because of the singularity of W

(s)
n (x0). To overcome these diffi-

culties, we apply the one–step iterated procedure

m̂n = m̂0 +
(
W (0)

n (x0)
)−1

(NnΨn(m̂0, x0)), (4.2)

where the initial value m̂0 satisfies some mild conditions. Fan and Chen (1999)
and Fan and Jiang (2000) studied this for stationary time series, and we show
that it works well in theory and practice for nonstationary time series. If the
initial estimators satisfy

m̂n0(x0) − m(x0) = OP

(
h2 +

1√
nβLs(n)h

)
,

m̂′
n0(x0) − m′(x0) = OP

(
h +

1

h
√

nβLs(n)h

)
, (4.3)

then the asymptotic distribution in (3.2) holds for the one–step local linear M-
estimator. The detailed proof is similar to that of Theorem 4.1 in Fan and Jiang
(2000). Furthermore, (4.3) is mild and can be satisfied by many commonly used
estimators such as the local linear estimators (cf., Corollary 1).

5. Examples of Implementation

5.1. Bandwidth selection

A difficult problem in simulation is the choice of optimal bandwidth. In
this section, we mainly consider the special case of the random walk. It is not
difficult to see that the rates for the random walk are different from that for
stationary processes with n being replaced by

√
n. From Karlsen, Mykelbust

and Tjøstheim (2007), it can be seen that the cross–validation method works
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well in NW estimation for null–recurrent processes. Here we apply this method
for local linear M-estimators.

Cross–validation is very useful in assessing the performance of estimators via
estimating their prediction errors, here defined as

CV (h) =
n∑

k=1

(Yk − m̂h,−k(Xk))2, (5.1)

where m̂h,−k(Xk) is the local linear M-estimator with bandwidth h and the k–th
observation left out. The bandwidth is selected to minimize CV (h).

For simplicity, we apply the following method in a simulation study. For a
predetermined sequence of h’s selected from a wide range, say from 0.01 to 0.7
with increment 0.01, we choose the bandwidth that minimizes CV (h).

5.2. Numerical examples

Suppose

Yk = m(Xk) + wk, m(x) =
1
3
ex +

2
3
e−x, (5.2)

where {Xk} is generated by the random walk process Xk = Xk−1 + xk. Here
{xk} is a sequence of i.i.d. N(0, 0.12) random variables, {wk} is independent of
{xk} and is taken from one of the following distributions.

(i) Standard normal distribution N(0, 1).

(ii) Symmetric contaminated normal distribution 0.8N(0, 1) + 0.2N(0, 152).

(iii)Cauchy distribution C(0, 1).

The data from each of the above distributions consisted of 1,000 replica-
tions of samples of sizes n = 500 and n = 1, 000. The uniform kernel K(u) =
(1/2)I(|u| ≤ 1) was applied in this example and the cross–validation method was
used to choose the optimal bandwidth. The iterated procedure for M-estimator
in Section 4 was applied in our simulation and the local linear estimators were
chosen as the initial value. The measure for the performance of the estimators
was taken to be the mean square error (MSE) of the form

1
n

n∑
k=1

(m̂n(Xk) − m(Xk))2 and
1
n

n∑
k=1

(m̂′
n(Xk) − m′(Xk))2. (5.3)

The simulation results are reported in Tables 1 and 2 below (LLE: local linear
estimator, LLME: local linear M-estimator).

From Tables 1 and 2, we can see that when {wk} was standard normal, both
the local linear estimators and the local linear M-estimators performed well, when
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Table 1. The average of MSE for m(·).

Distribution Sample size LLE LLME
Standard normal n = 500 0.0390 0.0412
Standard normal n = 1, 000 0.0345 0.0302
Contaminated normal n = 500 0.7748 0.0485
Contaminated normal n = 1, 000 0.4127 0.0337
Cauchy distribution n = 500 34.0389 0.1302
Cauchy distribution n = 1, 000 21.2932 0.0876

Table 2. The average of MSE for m′(·).

Distribution Sample size LLE LLME
Standard normal n = 500 0.0968 0.0811
Standard normal n = 1, 000 0.0471 0.0489
Contaminated normal n = 500 1.1386 0.1238
Contaminated normal n = 1, 000 1.0264 0.1483
Cauchy distribution n = 500 47.1866 0.3390
Cauchy distribution n = 1, 000 22.9225 0.1676

{wk} was contaminated or heavy–tailed (C(0, 1)), the local linear M-estimators
were much more robust.

Next, we consider the following linear cointegration model (cf., Karlsen,
Mykelbust and Tjøstheim (2007) and Chen, Li and Zhang (2009))

Yk = Xk + wk, k = 1, . . . , 1000,

where Xk = Xk−1 + xk, {xk} is a sequence of i.i.d. N(0, 0.12) random variables
and {wk} is independent of {xk} and has the common symmetric contaminated
normal distribution as above.

To compare the local linear M-estimator with the NW estimator, which was
considered by Karlsen, Mykelbust and Tjøstheim (2007), we report the estimated
curves in Figure 1. The solid line is the true regression function, the dashed line
is the NW estimator and the star line is the local linear M-estimator. From it,
we can see that the local linear M-estimator performed better than the NW esti-
mator when {wk} was contaminated. Furthermore, the local linear M-estimator
overcame the boundary effect in our study.
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Appendix. Proofs of the Main Results

Let t = (a, hb)τ and tx = (m(x), hm′(x))τ , and write

Θn(t, x) =
1

Nn

n∑
k=1

ρ

(
Yk − tτ

(
1

Xk−x
h

))
Kkh(x),

Θn(tx, x) =
1

Nn

n∑
k=1

ρ

(
Yk − tτx

(
1

Xk−x
h

))
Kkh(x),

Ψn(tx, x) =
1

Nn

n∑
k=1

ψ

(
Yk − tτx

(
1

Xk−x
h

))(
1

Xk−x
h

)
Kkh(x),

where Kkh(x) = (1/h)K[(Xk −x)/h]). Before giving the proof of Theorem 1, we
establish the following two lemmas which are critical in its proof.

Lemma A.1. Suppose that {Xk} and {wk} are independent, {Xk} is β–null
recurrent, and {wk} is i.i.d. Then the compound process {Xk, wk} is β–null
recurrent.

Proof. The lemma is an immediate consequence of Lemma 3.1 in Karlsen,
Mykelbust and Tjøstheim (2007).
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Lemma A.2. Suppose the conditions of Theorem 1 hold. Then for any constant
c > 0, we have

sup
x∈S

sup
‖t−tx‖≤c

∣∣∣∣Θn(t, x) − Θn(tx, x) − (t − tx)τΨn(tx, x)

−1
2
(t − tx)τΓ(x)(t − tx)

∣∣∣∣ = oP (1), (A.1)

where ‖ · ‖ is the L2–norm in R2.

Proof. By the convexity of ρ(·), it suffices to show that for ‖t− tx‖ ≤ c, x ∈ S,

sup
x∈S

∣∣∣∣Θn(t, x) − Θn(tx, x) − (t − tx)τΨn(tx, x) − 1
2
(t − tx)τΓ(x)(t − tx)

∣∣∣∣ = oP (1).

(A.2)
Note that

Θn(t, x) − Θn(tx, x) − (t − tx)τΨn(tx, x)

−E
[
Θn(t, x) − Θn(tx, x) − (t − tx)τΨn(tx, x)

]
=

n∑
k=1

(Vnk(t, x) − EVnk(t, x)),

where

Vnk(t, x) =
1

Nn
Kkh(x)

[
ρ

(
Yk − tτ

(
1

Xk−x
h

))
− ρ

(
Yk − tτx

(
1

Xk−x
h

))

−(t − tx)τ

(
1

Xk−x
h

)
ψ

(
Yk − tτx

(
1

Xk−x
h

))]
.

Next, we prove that for ‖t − tx‖ ≤ c, x ∈ S,

sup
x∈S

∣∣∣∣ n∑
k=1

[
Vnk(t, x) − EVnk(t, x)

]∣∣∣∣ = oP (1). (A.3)

Since S is a compact set, it can be covered by a finite number of subsets {Si}
centered at si with radius (nβ−ε0/2h)−(2m−1), where m > max{(1 + β)/ε0 −
11/8, 5/4}. If Hn is the number of these sets, then Hn = O((nβ−ε0/2h)2m−1).
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Observe that

sup
x∈S

∣∣∣∣ n∑
k=1

[
Vnk(t, x)−EVnk(t, x)

]∣∣∣∣
≤ max

1≤i≤Hn

∣∣∣∣ n∑
k=1

[
Vnk(t, si) − EVnk(t, si)

]∣∣∣∣
+ max

1≤i≤Hn

sup
x∈Si

∣∣∣∣ n∑
k=1

[
Vnk(t, x) − Vnk(t, si)

]∣∣∣∣
+ max

1≤i≤Hn

sup
x∈Si

∣∣∣∣ n∑
k=1

[
EVnk(t, x)−EVnk(t, si)

]∣∣∣∣
=: In,1 + In,2 + In,3.

By Lemma 3.4 in Karlsen and Tjøstheim (2001), we have, with probability 1,

nβ−(ε0/8) ¿ Nn ¿ nβ+(ε0/8).

Thus, by A1, it is easy to check that

In,3 = OP

(
H−1

n n1−β+(ε0/8)h−2
)

= oP

(
n−ε0m+1+β−(11/8)ε0

)
= oP (1), (A.4)

since m > (1 + β)/ε0 − 11/8. Analogously, we can also show that

In,2 = oP (1). (A.5)

In view of (A.4) and (A.5), to show (A.3) we only need to show that

In,1 = oP (1). (A.6)

We apply the truncation method and the independence decomposition in the
split Markov chain to prove (A.6). Define

V ′
nk(t, x) = Kkh(x)

[
ρ

(
Yk − tτ

(
1

Xk−x
h

))
− ρ

(
Yk − tτx

(
1

Xk−x
h

))

−(t − tx)τ

(
1

Xk−x
h

)
ψ

(
Yk − tτx

(
1

Xk−x
h

))]
,

Ql(t, x) =



τ0∑
k=0

V ′
nk(t, x), l = 0,

τl∑
k=τl−1+1

V ′
nk(t, x), l = 1, . . . , Nn,

n∑
k=τNn+1

V ′
nk(t, x), l = (n),

(A.7)
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where the definitions of τl and Nn are given in Nummelin (1984). By (1.2),
V ′

nk(t, x) can be rewritten as a function of (wk, Xk). Hence, by Lemma A.1
and the Nummelin (1984) result, we know that {Ql(t, x), (τl − τl−1), l ≥ 1} is a
sequence of i.i.d. random variables for fixed t and x. Obviously,

n∑
k=1

Vnk(t, x) =
1

Nn

(
Q0(t, x) +

Nn∑
l=1

Ql(t, x) + Q(n)(t, x)
)

. (A.8)

By arguments similar to those used in the proof of Theorem 5.1 in Karlsen and
Tjøstheim (2001), we have

1
Nn

max
1≤i≤Hn

∣∣∣Ql(t, si) − EQl(t, si)
∣∣∣ = oP (1) (A.9)

for l = 0, (n). Thus, to show (A.6), we need only prove for any small ε > 0

P

{
max

1≤i≤Hn

∣∣∣∣ 1
Nn

Nn∑
l=1

(Ql(t, si) − EQl(t, si))
∣∣∣∣ > ε

}
→ 0. (A.10)

By Lemma 3.4 in Karlsen and Tjøstheim (2001), to show (A.10), we need only
prove

P

{
max

1≤i≤Hn

∣∣∣∣ 1
Nn

Nn∑
l=1

(Ql(t, si)−EQl(t, si))
∣∣∣∣>ε, nβ−(ε0/8) ¿ Nn ¿ nβ+(ε0/8)

}
→ 0.

(A.11)
Next, we apply the truncation method. Let

Ql(t, i) = Ql(t, si)I
(
|Ql(t, si)| < nβ−(ε0/4)

)
and Q̃l(t, i) = Ql(t, i) − Ql(t, i).

By standard arguments, and noting EQl(t, i) = 0, we have

P

{
max

1≤i≤Hn

∣∣∣∣ 1
Nn

Nn∑
l=1

(Ql(t, si)−EQl(t, si))
∣∣∣∣ > ε, nβ−(ε0/8) ¿ Nn ¿ nβ+(ε0/8)

}

≤ P

{
max

1≤i≤Hn

∣∣∣∣ 1
Nn

Nn∑
l=1

(Ql(t, i)−EQl(t, i))
∣∣∣∣ >

ε

2
, nβ−(ε0/8) ¿ Nn ¿ nβ+(ε0/8)

}

+P
{

max
1≤i≤Hn

∣∣∣∣ 1
Nn

Nn∑
l=1

(Q̃l(t, i)−EQ̃l(t, i))
∣∣∣∣ >

ε

2
, nβ−(ε0/8) ¿ Nn ¿ nβ+(ε0/8)

}
.

(A.12)

By Lemma 5.2 in Karlsen and Tjøstheim (2001), Lemma D.1 in Gao, King, Lu
and Tjøstheim (2008), and an elementary calculation, we have

max
1≤i≤Hn

E|Ql(t, i)|2m ≤ Ch−2m+1. (A.13)
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As m > 5/4, we have

P

{
max

1≤i≤Hn

∣∣∣∣ 1
Nn

Nn∑
l=1

(
Q̃l(t, i) − EQ̃l(t, i)

)∣∣∣∣ >
ε

2
, nβ−(ε0/8) ¿ Nn ¿ nβ+(ε0/8)

}

≤ CHnP

{∣∣∣∣ 1
Nn

Nn∑
l=1

(
Q̃l(t, 1) − EQ̃l(t, 1)

)∣∣∣∣ >
ε

2
, nβ−(ε0/8) ¿ Nn ¿ nβ+(ε0/8)

}

≤ CHnnβ+(ε0/8)P

{
|Q1(t, 1)| > nβ−(ε0/4)

}
≤ CHnnβ+(ε0/8)h1−2mn−2m(β−(ε0/4)) = O

(
n−((ε0m/2)−(5/8)ε0)

)
= o(1), (A.14)

where C denotes a positive constant which may change from line to line. On the
other hand, by the Bernstein Inequality, we have

P

{
max

1≤i≤Hn

∣∣∣∣ 1
Nn

Nn∑
l=1

(
Ql(t, i) − EQl(t, i)

)∣∣∣∣ >
ε

2
, nβ−(ε0/8) ¿ Nn ¿ nβ+(ε0/8)

}

≤ CHn

c2nβ+(ε0/8)∑
k=c1nβ−(ε0/8)

P

{∣∣∣∣1k
k∑

l=1

(
Ql(t, 1) − EQl(t, 1))

)∣∣∣∣ >
ε

2

}

≤ CHn

c2nβ+(ε0/8)∑
k=c1nβ−(ε0/8)

exp
{
−kn−β+(ε0/4)

}
≤ CHn exp

{
−n(ε0/8)

}
= o(1), (A.15)

where c1 and c2 are some positive constants. By (A.12), (A.14), and (A.15),
(A.11) is proved, which implies that (A.3) and (A.6) hold. Finally, it is easy to
show that

E
[
Θn(t, x)−Θn(tx, x)−(t−tx)τΨn(tx, x)

]
=

1
2
(t−tx)τΓ(x)(t−tx)+o(1). (A.16)

(A.3) and (A.16) imply that (A.2) holds. Furthermore, since Θn(t, x)−Θn(tx, x)−
(t− tx)τΨn(tx, x) is convex in t and (t− tx)τΓ(x)(t− tx) is continuous and convex
in t, (A.1) follows from (A.2) and Theorem 10.8 in Rockafellar (1970).

Proof of Theorem 1. Let m̂n(x) = (m̂n(x), hm̂′
n(x))τ . To show (3.1), it is

enough to prove that, for any small ε > 0,

P

(
sup
x∈S

∥∥∥m̂n(x) − tx

∥∥∥ ≥ ε

)
→ 0. (A.17)

Taking c = ε in (A.1), we have

sup
x∈S

sup
‖t−tx‖≤ε

∣∣∣Θn(t, x) − Θn(tx, x) + (t − tx)τΨn(tx, x)

−1
2
(t − tx)τΓ(x)(t − tx)

∣∣∣ = oP (1). (A.18)
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Since infx∈S ps(x) > 0, then for ‖t − tx‖ = ε we have

1
2
(t − tx)τΓ(x)(t − tx) ≥ ε2κ0(x)

2
, (A.19)

where κ0(x) is the smallest eigenvalue of Γ(x). On the other hand, using the
decomposition technique of (A.7) in the proof of Lemma A.2, we can prove

sup
x∈S

Ψn(tx) = oP (1). (A.20)

Hence, by (A.18)−(A.20), the convexity of ρ(·) and the definition of m̂n(x) , we
can obtain (A.17). Therefore, the proof of Theorem 1 is completed.

In order to establish asymptotic normality of the local linear M-estimators,
we need the following.

Lemma A.3. Under the conditions of Theorem 2, we have∥∥∥Ψn(m̂n(x0), x0) − Ψn(tx0 , x0) + Γ(x0)(m̂n(x0) − tx0)
∥∥∥ = oP

( 1√
nβLs(n)h

)
.

Proof. Using the same method as in the proof of Lemma A.2, and by Theorem
2.5.7 in Rockafellar (1970), we can prove Lemma A.3. Details are omitted here.

Proof of Theorem 2. Recall that Ψn(m̂n(x0), x0) = (0, 0)τ and, by Lemma
A.3, we have

m̂n(x0) − tx0 = Γ−1(x0)Ψn(tx0 , x0) + oP

(
1√

nβLs(n)h

)
, (A.21)

which is a weak Bahadur representation of the estimator m̂n(x0). Let R(Xk) =
m(Xk) − m(x0) − m′(x0)(Xk − x0). We consider EΨn(tx0 , x0). Note that

Ψn(tx0 , x0) =
1

Nn

n∑
k=1

{
ψ(wk) +

[
ψ(wk + R(Xk)) − ψ(wk)

]}
Kkh

(
1

Xk−x0
h

)
.

(A.22)
By A2, A3, A5 and an elementary calculation, we have

EΨn(tx0 , x0) =
1
2
h2b(x0)(1 + o(1)). (A.23)

Moreover, by (A.23), we have

1
Nn

n∑
k=1

[
ψ(wk + R(Xk)) − ψ(wk)

]
Kkh

(
1

Xk−x0
h

)
=

1
2
h2b(x0)(1 + oP (1)) + oP

(
1√

nβLs(n)h

)
. (A.24)
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By (A.21), (A.22) and (A.24), we need only prove√
h

Nn

n∑
k=1

ψ(wk)Kkh

(
1

Xk−x0
h

)
d−→ N((0, 0)τ , Σ(x0)). (A.25)

(A.25) can be proved using the Cramér–Wald device and Theorem 3.1 of Karlsen,
Mykelbust and Tjøstheim (2007).
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