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ABSTRACT

Measurement of the cortical thickness from 3D Magnetic Resonance Imaging (MRI) can aid diagnosis and
longitudinal studies of a wide range of neurodegenerative diseases. We estimate the cortical thickness using a
Laplacian approach whereby equipotentials analogous to layers of tissue are computed. The thickness is then
obtained using an Eulerian approach where partial differential equations (PDE) are solved, avoiding the explicit
tracing of trajectories along the streamlines gradient. This method has the advantage of being relatively fast
and insure unique correspondence points between the inner and outer boundaries of the cortex. The original
method is challenged when the thickness of the cortex is of the same order of magnitude as the image resolution
since partial volume (PV) effect is not taken into account at the gray matter (GM) boundaries. We propose
a novel way to take into account PV which improves substantially accuracy and robustness. We model PV by
computing a mixture of pure Gaussian probability distributions and use this estimate to initialize the cortical
thickness estimation. On synthetic phantoms experiments, the errors were divided by three while reproducibility
was improved when the same patients was scanned three consecutive times.
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1. INTRODUCTION

The cerebral cortex is a sheet of gray matter (GM) located on the outer surface of the brain. Measurement of the
cortical thickness from 3D magnetic resonance (MR) images can aid diagnosis and longitudinal studies of a wide
variety of neurodegenerative and psychiatric disorders, such as Alzheimer’s disease, schizophrenia and epilepsy.

The accuracy of the thickness estimation is limited by the partial volume effect (PVE), where the resolution
of MR image is such that voxels may consist of more than one tissue type. Due to PVE, the classification of a
voxel reflecting the dominant tissue type, does not reveal all possible tissue content of that voxel and PVE results
in a loss of accuracy. We define the gray matter/white matter (WM) interface as the inner boundary of the
cortex, and the gray matter/cerebrospinal fluid (CSF) interface as the outer boundary. Niessen et al.! showed
that consistently misplacing by a single pixel the tissue borders in a 1 mm? isotropic MR brain image in each slice
resulted in volume errors of approximately 30%, 40% and 60% for WM, GM, and CSF respectively. Ballesteros
et al.? showed also that PVE and discrete sampling at boundary locations lead to volume measurement errors
in the range of 20%-60%. We are thus working on estimating of the fractional content of each tissue type to
correct the estimation of boundary location, with the goal of improving the accuracy of the cortical thickness
measurement.

PV estimation has been tackled for MR, segmentation following two different approaches. First, several stud-
ies® ® assumed that all the voxels in the image were subject to PVE and that the fractional content proportions
changed smoothly across the image. The smoothing constraint was imposed by a Markov Random Field model.
The second approach, originally proposed by Santago and Gage,® did not take into account the spatial depen-
dence of the tissue fractions between the voxels, but explicitly assumed a uniform prior probability for all mixed
tissues. Their approach derived the intensity distribution for PV between two normally distributed tissue types.
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Santago and Gage only addressed the problem of estimating the total volume of each tissue for a entire brain.
Other authors™ 1% have extended the method to estimate the amount of every tissue in each individual voxel.
This extension, referred as indirect,'® assumed that each voxel contained at most two types of tissue when only
one MRI contrast was available. The methods identified the two tissue types present in each voxel followed
by the estimation of their fractional content. All of the mentioned methods have been proposed for improving
tissue segmentation, but to our knowledge none were incorporated into a framework to improve cortical thickness
estimation.

Indeed, our objective is to increase the accuracy and robustness of the cerebral cortical thickness measurement
using PV estimated from MRI T1W. We improved upon the Laplacian method to measure cortical thickness
originally published by Jones et al.'' with the Eulerian implementation of Yezzi and Prince.'? Because the GM
thickness is only about three millimeters and the MRI resolution is 1mm? isotropic, significant PV is present at
the GM boundaries with CSF and WM. The original method used binary segmented masks which introduced
up to 6% error on our test with a hollow spherical synthetic phantom. This error is too important for measuring
atrophy between mild cognitive impairment and Alzheimer’s disease patients reported to be between 10-20%
in'? for example. This paper presents a novel extension of Jones’ et al.'! method to estimate cortical thickness
which takes into account PV using fractional tissue content estimated from a tissue classification step.

In section 2 we describe the proposed model for thickness estimation correction with the inclusion of PV.
Section 3 presents the validation method and experimental results. Finally, in Section 4 we discuss important
points of our method and conclude.

2. METHOD

In the first step, we segmented the three pure tissue classes (GM, WM, CSF) plus the background using a
maximum likelihood (ML) algorithm.'* Next, we modeled two mixed classes (GM/WM and GM/CSF) and the
image was segmented using a Markov random field technique. Once the PV voxels were segmented, we computed
their mixture of pure tissues. In a second step we initialized the cortical thickness estimation with the tissue
mixture and integrated following the gradient of the Laplacian equation using partial differential equations.

2.1 Pure Tissue Segmentation Using The Expectation-Maximization Algorithm

The input MR T1W image was segmented using the expectation maximization segmentation algorithm proposed
by Van Leemput et al.'* The intensity histogram of the MR image was modeled as a mixture of Gaussian dis-
tributions. The expectation-maximization (EM) algorithm was used to iteratively update the model parameters
and tissue classifications in order to maximize the likelihood of the image data. Bias field correction and a
Markov random field to increase robustness to noise noise were included in the EM algorithm. We then per-
formed a maximum a posteriori (MAP) classification by assigning each voxel to its most likely tissue type. Hard
segmentations (Figure 1(a)) and resulting mean u; and covariance matrix 3;, of every tissue class j were used
as an input for the following partial volume estimation stage.

2.2 Partial Volume Estimation

For estimating the partial volume of each voxel, three pure classes (GM, WM and CSF) were considered and two
mixture classes: GM/CSF and GM/WM. The Background was excluded from the analysis as it was assumed
to be correctly segmented by the EM algorithm. We assumed also that the EM algorithm segmented correctly
pure voxels. Since voxels containing partial volume were mostly present along inner and outer boundaries, PV
evaluation was performed on a region formed by the dilated gray matter masks generated from the previous
MAP classification.

Two different tissue models were considered, one for pure tissues and one for voxels containing a mixture
of two tissue types. Pure tissue intensities were modeled using a single Gaussian probability density function.
Voxels containing a mixture of two tissue types were modeled with a probability density function proposed by
Santago and Gage® and computed numerically from normal distribution parameters of the pure tissues:
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Figure 1. (a) Initial hard segmentation. (b) Refined hard segmentation including PV classes. (¢) Grey matter PV map.

where
p(w) = wig + (1 — w)pk; B(w) = w?S; + (1 —w)?y, (2)

¢; denotes the class of a mixed voxel z; formed by classes j and k, and w represents the fractional content.

Given the observed intensity of a voxel x;, the probability of this voxel belonging to any of the five classes
was computed using a mixture of the Gaussian distributions for the pure tissues and the computed probability
density functions of the two PV tissue models. A new MAP classification was computed. To take into account
spatial correlation between voxels, we included a Markov random field model using a labeling performed using a

Potts model:®
p(A) = %exp <—ﬂz Z 5(&,)%)) , (3)

i kEN;
where A is the labeled image, N; represents the voxels in the neighborhood of voxel i, Z is a scaling constant,
A; and Ay are the labels (classification) of the voxels ¢ and &k and [ controls the strength of the prior. Using a
Bayesian formulation, we aimed to find the labeled image A with the highest conditional probability. We use
the ICM algorithm'® to search for the optimal labeling.

Once voxels were classified as PV (Figure 1(b)), their fractional content (Figure 1(c)) was computed using
the bias corrected intensity z;, and the means of the corresponding two pure tissue types p; and p:

. M — X4
fk_U(uj—uk) W

where U(+) is a limiter restricting the range of the fractional content to [0, 1].

We used the resulting means and covariance matrices of the EM algorithm (Section 2.1) to initialize the PV
estimation and estimate the labelling.

2.3 Thickness estimation without PV model

In the original method by Jones et al.,!! binary masks for GM, WM, and CSF were used. A second order PDE
was implemented to simulate the Laplacian equation with the WM and CSF voxels adjacent to the boundaries
of the gray matter set to fixed potentials. The Laplace equation was then solved in the gray matter volume. The
solution f(z,y,z) was a scalar field which divided the cortex into a set of equipotential sublayers.

The gradient of the Laplace solution was then computed and normalized to obtain a vector field perpendicular
to the equipotential streamlines generated by the Laplace equation. The length of the trajectories going through
each voxel was computed using a pair of first order linear partial differential equations as proposed by Yezzi and
Prince.!?

Let Lo(z,y, z) be a function that measures the arc length of the trajectory from the inner boundary to an
arbitrary point p with coordinates (z,y,z) in the gray matter, Li(x,y, z) the arc length of the trajectory from
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Figure 2. The distance equation.

the outer boundary to p, and T the unit vector that is tangent to the streamline passing through p. The total
length W of the trajectory passing through the point p could be estimated as the sum of Ly and L; (Figure 2),
and defined the thickness of the cortex at every point p:

W(z,y,z) = Lo(z,y,2) + L1(z,y, 2) (5)

Since the distance between adjacent voxels was measured from the center of the voxel, a correction factor
was included that took into account anisotropic resolution:

(6)

Lo(inner) = Ly (outer) = — (%b—i—c)

where the spacing between neighboring voxels in the z, y and z directions were a, b and c, respectively. This
shifted the measurement from the edge to the center of the voxel.

2.4 Improvement of the thickness estimation using fractional content

Initialization of boundaries to half of the negative mean voxel spacing (Equation 6) considered that there is
no partial volume effect and that the boundaries between different tissues were infinitely sharp. As stated by
previous works® 2 this assumption limits greatly accuracy, especially when measuring GM thickness where two
voxels are subject to PVE out of the 3 or 4 along the thickness of the cortex. A more accurate initialization
of the boundaries Ly and L; should take into account partial volume. Moreover, the fractional content of the
different tissues should be measured along the boundaries.

This constraint can be added to the thickness estimation framework in a simple manner, by using the fractional
content computed in 4. For every boundary voxel, the fractional content from (Equation 4) was added to half
of the negative mean voxel spacing in order to shift the point where the thickness measure started according to
the presence or absence of partial volume effect. For a voxel i along the GM/CSF boundary the initialization

became
a+b+c
Ly, =— <T> + fom, (7)
and along the GM/WM boundary became
a+b+c

where fgy was given by 4.

For a resolution of 1 mm, if the PVE is not taking into account the initialization of the cortical thickness
with the original method would be set to -0.5 at the boundary voxels. The next voxel in the direction of the
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| Noise 0% | Noise 1% | Noise 3% | Noise 5% | Noise 7% | Noise 9% |

GM
WM
CSF

0.2
0.04
0.24

0.17
0.02
0.27

0.08
0.01
0.28

0.07
0.02
0.31

0.08
0.05
0.33

0.1
0.09
0.35

Table 1. Average RMS error per level of noise of the fractional content of PV voxels.

cortex would then be computed to be +0.5 after integrating the trajectory (assuming T is parallel to one axis).
This would result in a virtual boundary exactly at the border between the two voxels. With our extension, if
the boundary voxel is found to contain 10% of gray matter, we would initialize it to -0.5-0.1=-0.6, effectively
shifting the boundary to account for the PVE.

3. EXPERIMENTS AND RESULTS

Experiments were focused in validating three important points: 1) accuracy of the fractional content computation
and PV labeling, 2) accuracy of the thickness measurement using PV estimation, and 3) reproducibility of our
new measurement technique.

3.1 Fractional content and PV Validation

Experiments were performed on Brain Web simulated data set'® to evaluate the accuracy of the fractional content
computation and PV labeling. The images had an isotropic voxel resolution of 1mm? and varying degrees of
noise and intensity inhomogeneity. Evaluation was performed by comparing the resulting PV maps to the ground
truth fractional volumes!® using the RMS error.

In order to decrease computing time, we limited the computation of the PV to a region formed by a dilated
gray matter (radius 4). Low average values of the computed RMS error (Table 1) demonstrated that most of
the partial volume effect occurred along tissue boundaries, validating our area limitation for PV labeling. A
higher RMS error for CSF was attributed to the fact that the mixture between CSF and background was not
considered. Since this boundary was not taken into account in our thickness measurement the large error that
we found were without consequences.

3.2 Accuracy of the thickness measurement

Experiments with synthetic spherical shells were performed to determine accuracy of the thickness measurement
using PV estimation. Perfect sphere could not be generated on a discrete grid. For our experiment, we generated
hollow sphere on a very high resolution grid (10 times greater than the final grid size) that we downsampled to
similar MRI brain resolution to simulate partial volume effect. In summary to generate hollow partial volumed
sphere images with size r; x 7, x ., we performed the following steps:

1. A hollow sphere with inner radius r and external radius R was constructed on a grid size 1100x1100x1100
with resolution (r,/10) x (r,,/10) x (r,/10). Voxels inside the hollow sphere were labelled 1, whereas those
outside were set to 0. This simulated a hollow sphere with a thickness similar to the one of the brain
cortex, R — r = 3mm.

2. The image was downsampled by averaging voxels to obtain a new volume with resolution r; X ry X r,.

3. Partial volume for every voxels of the low resolution phantom could be estimated directly from its intensity
with values between 0 and 1.

The comparison of the thickness estimation method with and without using PV estimation over spherical
shells is shown on Table 2. The error caused by the partial volume effects on the sphere mean thickness were
significantly reduced with our new method. For a 1 mm?® resolution image the error was reduced from 6.66% to
2.33%. The results also show that the PV estimation produced accurate results for both isotropic and anisotropic
data and that the accuracy was proportional to the image resolution.
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Resolution | No PV Estimation | PV Estimation
Mean £+ SD Mean £+ SD
0.5x0.5x0.5 2.86 £ 0.08 3.02 + 0.05
0.5x0.5x1 2.80 + 0.16 3.02 £ 0.15
1x1x1 2.72 + 0.17 3.07 £ 0.10
1x1x1.5 2.68 + 0.24 3.07 £ 0.20

Table 2. Accuracy comparison. Synthetic spherical shells 3 mm thick were generated to compare accuracy of the thickness
estimation with and without using PV estimation.

| | Mean + SD (No PV Estimation) | Mean + SD (PV Estimation) |

Image 1 3.23 £ 1.61 3.33 £ 1.41
Image 2 3.18 £ 1.54 3.33 £ 1.36
Image 3 3.18 £ 1.54 3.31 £ 1.35
Overall 3.20 + 0.03 3.32 £ 0.01

Table 3. Comparison of mean cortical thickness on three scans of the same subject with and without using PV estimation.

3.3 Reproducibility of the thickness measurement

Actual patient MRI were used for testing the reproducibility of our technique. The mean cortical thickness
was computed across T1-weighted images of a subject scanned three times the same day. The results (Table 3)
show that our approach is very reproducible with a smaller standard deviation compared to the original method
without PV estimation. In addition the obtained mean values with PV estimation were considerably higher
than with the original method. This behavior was consistent with our validation experiments on hollow spheres,
and was expected since our approach compensated mis-detection of gray matter over the tissue boundaries by
shifting the initialization values of Ly and L;. Figure 3 shows results obtained at different stages of the process.

4. DISCUSSION AND CONCLUSIONS

We presented an improvement of voxel-based cortical thickness estimation that used PV estimation in order
to improve accuracy and reproducibility. The definition of thickness was based on the solution of the Laplace
equation!! simulated in the GM. In the original method it was assumed that tissue interfaces were sharp neglecting
partial volume effect. Previous studies''? have shown that excluding these effects over the boundaries could
lead to a significant degradation of measurement accuracy in volume measurement. Our new approach uses a
probabilistic modeling of partial voluming along boundaries in order to improve the accuracy of the cortical
thickness measurement.

We performed validation of the PV estimation on synthetic phantom. Results on spherical hollow sphere
showed that the error in thickness measurement was considerably reduced when the partial volume was taken
into account. In addition, results on actual patients brain MRI allowed us to validate the reproducibility of the
method. In the near future we plan to validate our method over a large database of patients from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study.'®

Boundary voxels initialization correction was performed assuming that the tissue interface was parallel to
one of the edges of the voxel. This could generate small inaccuracies for complicated folding of the brain cortex
especially for anisotropic data. Future work will combine the PV estimation with the direction of the tangent
vector fields to determine accurately the tissue interface position for the initialization of the distance equation.
Mis-segmented sulci results in an overestimation of cortical thickness. Use of PV estimation over regions with
abnormal thickness can provide a way to detect sulci and reduce this effect on the overall accuracy of the
technique.

In conclusion, we present an original approach to embed PV computation inside cortical thickness estimation.
Results showed an increase in accuracy and precision of the thickness measurements. Our experiments over
synthetic hollow spheres showed a diminution of the error of 4.33% and experiments over patient data show an
improvement on the reproducibility of the measurement.
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Figure 3. Example of PV estimation use on the cortical thickness measurement. Marked area over a slice of the original
image (a) contains a high level of PV effect. Initial GM hard segmentation (b) classifies PV voxels as GM. PV Map of GM
(c) detects the PV voxels allowing the refinement of the original segmentation (d). According to experimental measures
of the cortex,'” resulting thickness map (e) (black is 0 mm thickness, white is 7 mm) obtains a more accurate measure
than the thickness map without PV estimation (f).
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