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CHAPTER 9

LOCKED NUCLEIC ACID
OLIGONUCLEOTIDES TOWARD
CLINICAL APPLICATIONS
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Nucleic Acid Center Department of Physics and Chemistry, University of Southern
Denmark, Odense, Denmark

JESPER WENGEL
School of Chemistry and Molecular Biosciences, The University of Queensland,
Brisbane, Australia

9.1. INTRODUCTION

Nucleic acid–based therapeutic technologies (Figure 9.1) have significantly
advanced in the past two decades toward the treatment of many diseases. The
first such drug to enter clinic was vitravene®, an antisense oligonucleotide for
the treatment of cytomegalovirus retinitis [1]. Later, research on aptamers led to
the marketing of macugen®, an inhibitor of vascular endothelial growth factor
(VEGF) for the treatment of age related macular degeneration (AMD) [2].
Nucleic acid–based therapeutic approaches mainly include antisense [3,4],
ribozymes [4], small interfering RNA (siRNA) [4–6], microRNA (miRNA)
[7–10] targeting and aptamers [11–15]. Oligonucleotides composed of naturally
occurring DNA or RNA nucleotides pose some limitations because of their poor
RNA binding affinity, low degree of nuclease resistance, and low bioavilability.
To overcome these limitations, chemically modified nucleic acids have been
introduced, among which locked nucleic acid (LNA) [16–20] proved to be
unique and is now used extensively for various applications in chemical biology
[21–23].

Medicinal Chemistry of Nucleic Acids, First Edition. Edited by L.H. Zhang, Z. Xi and J. Chattopadhyaya.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

335

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15119818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Zhang c09.tex V1 - 04/29/2011 2:22pm Page 336

336 LOCKED NUCLEIC ACID OLIGONUCLEOTIDES TOWARD CLINICAL APPLICATIONS

Figure 9.1 Schematic illustration of various nucleic acid gene silencing techniques. (Full-
color version of the figure appears in the color plate section.)

9.2. LOCKED NUCLEIC ACID (LNA)

LNA nucleotides are generally considered to be RNA mimicking molecule in
which the ribose sugar moiety is locked by an oxymethylene bridge connect-
ing the C2′ and C4′ carbon atoms, imposing conformational restriction to adopt
C3′-endo/N -type furanose conformation (Figure 9.2) [16,19,24]. Structural inves-
tigation by NMR spectroscopy has shown that LNA-containing oligonucleotides
tend to adopt A-type duplex geometris [25,26]. Commercially available LNA
contains natural phosphodiester linkages and therefore resembles natural nucleic
acids in terms of aqueous solubility, Watson-Crick mode of binding, and straight-
forward automated synthesis using standard phosphoramidite chemistry.
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Figure 9.2 Structural representation of LNA monomers.



Zhang c09.tex V1 - 04/29/2011 2:22pm Page 337

LOCKED NUCLEIC ACID (LNA) 337

TABLE 9.1 Examples of melting temperatures (Tm values) for
hybridization of LNA and DNA oligonucleotides to complementary
DNA and RNA oligonucleotide sequences. (Data collected from
Singh et al . [12]). LNA modifications are represented in bold
underlined capital letters; DNA monomers in capital letters; RNA
monomers are in capital italic letters

DNA/LNA: Melting
DNA/RNA duplexes temperatures (◦C)

5′-TTTTTT: AAAAAA <10
5′-TTTTTT: AAAAAA 32
5′-TTTTTT: AAAAAA <10
5′-TTTTTT: AAAAAA 40
5′-GTGATATGC: CACTATACG 28
5′-GTGATATGC: CACTATACG 44
5′-GTGATATGC: CACUAUACG 28
5′-GTGATATGC: CACUAUACG 50

LNA offers unique properties needed for successful therapeutic application
of oligonucleotides. First and most important, LNA oligonucleotides possess
extremely high binding affinity to complementary DNA and RNA oligonu-
cleotides as evidenced by thermal denaturation studies, that is, an increase in
melting temperature (Tm) of +2 to +8◦C per LNA monomer compared to the
unmodified duplexes [16–20]. It is also noted that this increase in affinity goes
hand in hand with preserved, or even improved, Watson-Crick base-pairing
selectivity. Some examples of melting temperatures for LANs hybridized to
RNA are listed in Table 9.1. LNA:LNA base paring is also very strong [17]
and should be considered in relation to the risk of self-complementarity
when designing LNAs for biological experiments (for LNA design tools. visit
www.exiqon.com). In addition to increased binding affinity, properly designed
LNA oligonucleotides display improved mismatch discrimination (or improved
Watson-Crick base-pairing selectivity) relative to unmodified nucleic acids,
and high stability in biological systems (i.e., resistance toward enzymatic
degradation) [22,23].

9.2.1. Therapeutic Applications of LNA

For effective modulation of gene expression, the advantages of synthetic oligonu-
cleotides are exploited through binding of an antisense oligonucleotide (AON) to
a specific mRNA or noncoding RNA by Watson-Crick base pairing. Upon bind-
ing, the oligonucleotide can modulate RNA processing and inhibit translation,
induce splice switching, or promote degradation. Various such techniques include
classical antisense, siRNA, antimiRs (antagomirs), and DNAzymes. The useful-
ness of LNA-modified oligonucleotides in gene silencing techniques (Figure 9.3)
has been the subject for many scientific investigations, and successful studies on
LNA oligonucleotides have already been the topic of detailed reviews [27–29].
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Figure 9.3 Examples of various applications of LNA technology. LNA nucleotides can
be incorporated at desired sites in these constructs.

9.2.2. LNA Antisense

The first- and second-generation antisense oligonucleotides (AsONs) have been
evolved to contain DNA phophorothioate nucleotides coupled with other chemi-
cal modifications such as 2′-O-Methyl-RNA (2′-OMe) and 2′-O-Methoxyethyl-
RNA (2′-MOE) [30]. The latest generation of AsONs includes LNA, which
shows exceptionally high binding affinity to RNA and nuclease stability. This
might account for low nanomolar or high picomolar IC50 values for mRNA
down-regulation that have generally been achieved in cell-culture for LNA-
AsONs [31,32]. The majority of the antisense experiments made with LNA
have been focused on mRNA inhibition by RNase H recruitment, although
non-RNase H mechanisms have also been reported. Wahlestedt et al ., [33] first
reported the effect of LNA as an antisense molecule by demonstrating the fea-
sibility of LNA to act as potent and nontoxic nucleic acid modification in
vivo. The experiments involved two different types of LNA AsONs, namely
LNA/DNA mixmer and LNA/DNA/LNA gapmer constructs (Figure 9.4), target-
ing the delta opioid receptor (DOR) mRNA in the central nervous system of
rats. An efficient knockdown of DOR was induced with both types on direct
injection of the LNA AsONs into the rat brain. A number of reports have sub-
sequently highlighted the broad potential of LNA-modified oligonucleotides in
antisense mediated gene silencing applications in vitro and in vivo [27–29]. A
recent report from Jacobsen et al . [34], for example, showed that LNA AONs
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Figure 9.4 Design of LNA AsONs; mixmer and gapmer constructs.

are effective inhibitors of HIV-1 expression. Another recent report by Sapra
et al ., [35] demonstrated efficient down-regulation of survivin expression thereby
inhibiting tumor growth in vivo using an LNA AsON. Santaris Pharma and its
partner, Enzon Pharmaceuticals, have advanced three LNA AsONs-based drugs
into clinical trials. Each of these LNA-based drug candidates targets mRNAs that
are fundamental to cancer biology, enabling them, if successful, to be used in
the treatment of solid and nonsolid tumors.

Stein et al ., [37] recently developed a method called “gymnosis” to deliver
LNA AsONs to the target and does not require any transfection reagents or any
additives to serum as the oligomers were delivered naked. This technique takes
advantage of the normal growth properties of cells in tissue culture to promote
productive oligonucleotide uptake and permits sequence-specific silencing of mul-
tiple targets in a large number of cell types in tissue culture at low micromolar
concentrations. Using this approach, they targeted a 16-mer AsON containing
phosphorothioates and LNA nucleotides to the codons 1–6 of the Bcl-2 mRNA
using 518A2 melonoma cells. They observed substatial silencing of Bcl-2 pro-
tein expression. However, also note that gymnotic silencing is relatively slow
compared to lipofection-mediated silencing.

9.2.3. LNAzymes (LNA-Modified DNAzymes)

DNAzymes are catalytically active DNA molecules that are able to cleave RNA in
a sequence-specific manner after hybridization, thereby functioning as a specific
RNA endonuclease by cleaving the phosphodiester backbone of the RNA target
[38,39]. Studies conducted with LNA-modified DNAzymes, termed LNAzymes,
showed an enhanced efficiency of RNA cleavage [39,40]. In this direction, Vester
et al . [40] investigated the effect of LNA by incorporating two LNA nucleotides
in each of the binding arms of the DNAzyme, which yielded an LNAzyme with
a highly enhanced efficiency of RNA cleavage. The experiment demonstrated
cleavage of highly structured targets (a 58n long RNA with known secondary
structure and 2904n long 23S ribosomal RNA subunit), which was significantly
improved using LNAzymes instead of the corresponding unmodified DNAzymes.
A similar approach was employed by Schubert et al . [41] who incorporated 3–4
LNA monomers at the ends of the binding arms and observed a highly enhanced
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Figure 9.5 Schematic illustration of siRNA- and sisiRNA-based gene silencing approach.

efficiency of RNA cleavage. In addition, they later demonstrated that LNAzymes
containing 3–4 LNA monomers at the ends of the binding arms can cleave viral
RNA structures that are resistant to cleavage by the corresponding unmodified
DNAzymes [42]. More recently, Jacobsen et al ., reported efficient inhibition
of HIV-1 expression by targeting LNAzymes to functionally selected binding
sites [36], whereas targeting of miRNAs by using LNAzymes was recently been
reported by Jadhav et al . [43]. No LNAzymes have entered preclinical drug
development.

9.2.4. LNA in RNA Interference (siLNA)

RNA interference (RNAi) has emerged as a powerful approach to knock down
gene expression [44]. In this method, double-stranded small interfering RNA
(siRNA) constructs are used to target mRNA and induce its degradation on incor-
poration of the so-called antisense strand into the RNA-induced silencing complex
(RISC; Figure 9.5). Chemical modification can be introduced in synthetic siRNA
candidates for improved biostability, pharmacokinetics, and effective RNA tar-
geting. In this approach, the application of LNA-modified siRNA, termed siLNA,
has been investigated.

Braasch et al . [45]. first conducted a study in mammalian cells using LNA-
modified siRNA (siLNA) and observed that the introduction of LNA nucleotides
substantially increased the thermal stability of the modified RNA duplex with-
out compromising the efficiency of RNAi. Another study by Elmén et al . [46].
showed that LNA-modified siRNA duplexes display remarkably enhanced serum
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half-life compared to the corresponding unmodified siRNAs. The report also high-
lighted an improved efficacy of LNA-modified variants on certain RNA motifs
relevant for targeting the SARS-CoV virus, in addition to providing evidence
that the use of siLNAs reduces sequence-related off-target effects. Mook et al .
[47]. Evaluated the effect of LNA-modified siRNA both in vitro and in vivo.
They positioned two LNA-T nucleotides at the 3′-end of the sense and antisense
strand, and the sense strand was further modified by single or multiple LNA
nucleotides at the 5′-end. They showed that minimal LNA-modifications at the
3′-end of siRNA are effective to stabilize siRNA, and that multiple LNA mod-
ifications may lead to decreased efficacy in vitro and in vivo. The study further
revealed a reduced off-target gene regulation when using LNA-modified siRNA
compared to the unmodified siRNA. Very recently, Bramsen et al ., introduced
a three-stranded siRNA construct termed “small internally segmented interfer-
ing RNA” (sisiRNA), in which the antisense strand is complexed with two short
sense strands of approximately 10–12 nt in length [48]. In the sisiRNA approach,
only the antisense strand is functional as the nick completely eliminates unin-
tended mRNA targeting by the sense strand (Figure 9.5). LNA nucleotides were
incorporated to stabilize the sisiRNA constructs, which proved efficient for gene
silencing on transfection into an H1299 lung carcinoma cell line [48]. A recent
report by Laursen et al . [49] shows that the destabilizing properties of unlocked
nucleic acids (UNA) can be applied to enhance the potency of siRNAs, which
are heavily modified by LNA. No siLNA construct has entered preclinical drug
development.

9.2.5. LNA Probes for MicroRNA Targeting

MicroRNAs (miRNAs) are short, typically 19- to 25-nt long, endogenous non-
coding RNAs that are processed from longer hairpin transcripts by the enzyme
Dicer [7–9]. MicroRNAs repress the expression of protein-coding genes posttran-
scriptionally by hybridizing with the 3′-untranslated regions (UTRs) of the target
messenger RNAs, and emerging evidence demonstrates that miRNAs present
in animals are important in controlling many biological processes [7–9]. Simi-
lar to classical AsONs developed for the inhibition of coding RNAs, synthetic
oligonucleotides (antimiRs) are the only rational approach for specific inhibi-
tion of the individual miRNAs and therefore have the potential to be developed
as an important new class of drugs. In this direction, the application of LNA
modifications has been investigated by Válóczi et al . [50], who described an
efficient detection of miRNAs by Northern blot analysis using LNA-modified
oligonucleotide probes and demonstrated their improved sensitivity to detect dif-
ferent miRNAs in animals and plants. The probes were between 20 and 23 nt
long and modified with seven LNA nucleotides at variuos positions from 5′-
to 3′-end. Wienholds et al . [51]. determined the temporal and spatial expres-
sion patterns of 115 conserved vertebrate miRNAs in zebra fish embryos by in
situ hybridizations using LNA-modified oligonucleotide probes. Another report
highlighted a sensitive microarray platform using LNA-modified capture probes
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for miRNA expression profiling [52]. Elmén et al . [53] described that effective
LNA antimiRs (LNA/DNA mixmer olionucleotides) mediated miRNA silencing
in nonhuman primates of liver-expressed miR-122. Their findings demonstrate
the potential of these compounds as a new class of potential therapeutics for dis-
ease associated with miRNAs. Fabani et al . [54]. showed that lipofection of an
antisense oligonucleotide based on a LNA/2′-O-methyl RNA mixmer oligomer
is effective at blocking miR-122 activity in human and rat liver cells. Another
recent report demonstrates an effective silencing of liver expressed miR-122 in
primates with chronic hepatitis C virus (HCV) infection [10]. They show that an
LNA-modified oligonucleotide (SPC 3649) complementary to miR-122 success-
fully inhibits miR-122, a microRNA important for hepatitis C viral replication,
thereby significantly reducing hepatitis C virus in the bloodstream in chimpanzees
chronically infected with the hepatitis C virus. This LNA antimir (SPC3649) is
the first microRNA-targeted drug to enter human clinical trials, as the Phase 1
clinical trial is ongoing [36].

9.2.6. LNA Aptamers

Aptamers [11–15] are short DNA or RNA oligonucleotide sequences that can
bind to their targets with high affinity and specificity because of their abil-
ity to adopt three-dimensional structures. Aptamers are generated by a process
referred to as SELEX (Systematic Evolution of Ligands by Exponential enrich-
ment) [55–58]. The remarkable properties and applications of LNA highlighted
earlier, particularly their increased binding affinity and high degree of nuclease
resistance, substantiate the desire to evolve aptamers containing LNA-modified
nucleotides to improve aptamers composed of unmodified RNA or DNA. There
are two ways to introduce LNA modifications in aptamers. One is to evolve
a natural nucleotide aptamer by conventional SELEX processes and then to
chemically modify the evolved aptamer sequences with LNA nucleotides (post-
SELEX method). Another approach is to use LNA-modified sequence libraries
to generate LNA aptamers by normal SELEX-based strategy. So far, the use
of LNA in aptamer technology has been limited to the post-SELEX approach.
In this direction, Darfeuille et al . [59,60] introduced LNA modification to an
existing RNA aptamer sequence targeting the TAR RNA element of HIV-1. Sur-
face Plasmon resonance (SPR)–based experiments identified LNA/DNA mixmer
oligonucleotides binding to TAR RNA with a dissociation constant in the low
nanomolar range comparing favorably to the originally evolved RNA aptamer.
Schmidt et al . [61] described the capability of LNA modifications to improve the
in vivo stability of aptamers and their targeting function. Another work showed
that an aptamer modified with LNA nucleotides targeting the TAR RNA element
of HIV-1 displayed good binding properties and competed with the viral protein
Tat for binding to TAR [62]. Further studies from the same lab later reported an
improved HIV-1 TAR element binding by modifying a TAR RNA aptamer with
LNA/2′-O-methyl RNA mixmers [63]. Furthermore, Hernandez et al ., recently
showed the binding affinity of a DNA aptamer selected against avidin can be
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significantly improved by introducing just one LNA-G nucleotide. They further
demonstrated that 2′-amino LNA-T nucleotide can also be added by maintainging
similar KD values, which will function as a carrier unit for additional molecualr
entities [64].

All these results gathered from the post-SELEX approach discussed earlier
show the potential of developing LNA aptamers and the need to evolve LNA
aptamers by conventional SELEX-based procedures. To apply LNA nucleotides
in SELEX selection, their substrate specificities to various DNA or RNA poly-
merases must be studied. Toward this path, Veedu et al ., [65–68] and oth-
ers [69,70] have reported the synthesis and enzymatic incorporation of LNA
nucleotides into DNA and RNA oligonucleotides. They successfully applied LNA
nucleoside 5′-triphosphates as substrates for polymerases directed primer exten-
sion, PCR, and transcription reactions. With these findings, the evolution of LNA
aptamers by SELEX processes should be possible in the near future. No LNA-
modified aptamer has entered preclinical drug development.

9.3. CONCLUDING REMARKS AND FUTURE PROSPECTS

LNA is a highly versatile nucleic acid analogue in the context of nucleic acid
base drug development with respect to their remarkable hybridization proper-
ties with high affinity and specificity. LNA nucleotides are compatible with
other chemistries to make mixmer oligonucleotides with improved hybridization
and pharmacokinetic properties for applications in molecular biology research,
biotechnology, and RNA targeting. We envision that aptamer technology may
prove useful in developing nucleic acid drugs against an array of human health
issues. Along this line, we are focusing on evolving LNA aptamers by con-
ventional SELEX processes. The reports discussed in this chapter highlight that
LNA will be an important molecule for future development of nucleic acid–based
technologies.
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