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Abstract

Human beings quickly and confidently attribute more or less intelligence to one another.

What is meant by intelligence when they do so? And what are the surface features of human

behaviour that determine their judgements? Because the judges of success or failure in

the quest for ‘artificial intelligence’ will be human, the answers to such questions are an

essential part of cognitive science. This thesis studies such questions in the context of a

maze world, complex enough to require non-trivial answers, and simple enough to analyse

the answers in term of decision-making algorithms.

According to Theory-theory, humans comprehend the actions of themselves and of

others in terms of beliefs, desires and goals, following rational principles of utility. If

so, attributing intelligence may result from an evaluation the agent’s efficiency – how

closely its behaviour approximates the expected rational course of action. Alternatively,

attributed intelligence could result from observing outcomes: billionaires and presidents

are, by definition, intelligent. I applied Bayesian models of planning under uncertainty

to data from five behavioural experiments. The results show that while most humans

attribute intelligence to efficiency, a minority attributes intelligence to outcome.

Understanding of differences in attributed intelligence comes from a study how people

plan. Most participants can optimally plan 1-5 decisions in advance. Individually they

vary in sensitivity to decision value and in planning depth. Comparing planning perfor-

mance and attributed intelligence shows that observers’ ability to attribute intelligence

depends on their ability to plan. People attribute intelligence to efficiency in proportion

to their planning ability. The less skilled planners are more likely to attribute intelligence

to outcome.

Moreover, model-based metrics of planning performance correlate with independent

measures of cognitive performance, such as the Cognitive Reflection Test and pupil size.

Eyetracking analysis of spatial planning in real-time shows that participants who score

highly on independent measures of cognitive ability also plan further ahead. Taken to-

gether, these results converge on a theory of attributed intelligence as an evaluation of how

efficiently an agent plans, such that depends on the observer’s cognitive abilities to carry

out the evaluation.
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Chapter 1

Introduction

To read without joy is stupid.

John Williams

The NASA engineers building the Voyageur spacecraft had a problem: the spacecraft

would leave the solar system forever, and the engineers wanted unknown aliens who might

encounter it to attribute intelligence to its builders. Their solution, an assembly of sounds,

images and text, is highly unlikely to evoke any associations in the cognition of truly alien

creatures. But even if the other beings do not share our senses, might they nevertheless

see intelligence in the mere intent of sending a message?

In common-sense psychology attributing mental states to others seems intuitive. How-

ever, a large body of artificial intelligence (AI) research shows that it is by no means trivial.

Most humans easily infer each others’ thoughts and feelings, as a practical evolutionary

advantage for any social being [18]. At the same time, the information processing prob-

lem associated with social perception has proved immensely difficult for AI. Unlike many

aspects of human problem-solving that have been successfully abstracted in AI (e.g. play-

ing computer games or traffic scheduling), social perception appears to require complex,

abstract and overlapping representations.

Formally defining intelligence is hard because our intuitive understanding of it has many

sides. Clearly, some behaviours appear more intelligent than others. Rote memorisation
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is not as intelligent as the ability to adapt to new situations and solve new problems. It

is intelligent to infer laws of nature by observation. It is intelligent to compose music. An

organism that seems intelligent at first strikes us as unintelligent once we discover that it

is inflexible. A spider-web may seem a magnificent feat of architecture until we realise that

it is produced by a genetically-scripted behaviour without awareness or an explicit plan of

deceiving the prey.

In general, humans associate intelligence with reasoning, creativity and problem-solving.

However, the abstract mental properties of intelligence can be interpreted in different ways.

People may see intelligence as a disjunction of abilities [42, 80, 22] or disagree about the

behaviours expected of an intelligent agent [139]. Impulsive or silly behaviours, such as

gambling, are sometimes evaluated as intelligent if they lead to a favourable outcome [38].

Understanding how humans attribute intelligence has valuable applications. For ex-

ample, making software act intelligently in human terms produces a more trusted AI.

Marketing intelligent-looking applications is easier than marketing uninterpretable re-

sults [67, 120, 145, 130]. Moreover, a theory of attributed intelligence has important

social implications. Understanding the psychological mechanism by which people make

value judgements about others could explain why some people see rich as deserving of

wealth and poor as undeserving, and inform an effective social policy for promoting equal

opportunities. Furthermore, although we expect intelligent individuals to have successful

careers, intelligence quotient or test scores do not predict career outcomes as well as social

skills [84, 50]. Understanding the mechanism by which humans arrive at accurate insights

about others may inform more accurate formal assessments of intelligence itself.

This thesis proposes a methodology for investigating planning and plan evaluation in

an experimental task that combines behavioural metrics, psychophysics and eyetracking.

Intuitive evaluations of intelligence are modelled formally by probabilistic computations

conditioned on observed behaviour, based on a Partially Observable Markov Decision Pro-

cess (POMDP) [62, 5]. The model is compared to empirical results. This thesis proposes

and tests the efficiency hypothesis of attributed intelligence: that people attribute in-

telligence in proportion to their rational evaluation of how efficiently the agent maximises

its utility over time. The results show that participants attribute intelligence to planning

efficiency in proportion of their own planning ability. The better people can approximate

2



optimal planning, the more likely they are to attribute intelligence to efficiency. Poor

planners often evaluate short-term outcomes as a heuristic. Moreover, both planning and

attributing intelligence varies with independent metrics of cognitive performance, suggest-

ing that both depend on a common cognitive resource.

The structure of the next chapters is the following. Chapter 2 reviews the history of so-

cial perception and mental state attribution to motivate a study of attributed intelligence.

Chapter 3 describes a Bayesian computational framework of spatial planning in a proba-

bilistic environment based on a theory of Partially Observable Markov Decision Process

(POMDP). The framework is used throughout the thesis as a formal model of planning

under uncertainty. Chapter 4 applies the framework to interpret human attributions of

intelligence, showing that the majority of observers (about two thirds of the tested sam-

ple) attributed intelligence to the efficiency of the observed behaviour. A smaller group,

however, attributed intelligence to outcome. Chapter 5 measures human planning in a nat-

uralistic maze task, showing that the variability between individuals can be quantified as a

variability in sensitivity to decision value. Chapter 6 describes experimental results show-

ing that an individual’s problem-solving ability predicts attributed intelligence. Chapter 7

describes an empirical eye-tracking study of planning, prompting further refinements of

the model. Chapter 8 summarises the contributions of this thesis and directions of future

research.
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Chapter 2

Background

One notable way of misunderstanding the actions of people in the past is to

over-rationalise them.

Bernard Williams

This chapter begins by a review of the history of social attribution in Section 2.1, leading

up to the view agents are assumed to act intentionally and be rational. Section 2.2 discusses

related studies of mental state attribution from an information-processing perspective and

provides background for understanding the modelling methodology in this thesis.

2.1 A Brief History of Social Perception

Psychological science originates in the 18-th century empiricist approach to the nature of

knowledge. A predominant view at the time, most notably held by Decartes, stated that

experience merely awakens innate ideas. Empiricists, however, argued that knowledge

is learned from experience. For example, Hume argued that causality is learned from

experiencing conjunctions: if A and B always follow each other people expect the co-

occurrence to continue and say that A causes B [57]. Infant experiments reveal that
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Figure 2.1: An artist interpretation of a Heider and Simmel cartoon. Image credit: Liz

Little (modified with permission).

attribution of causality indeed emerges gradually, although its rudiments appear as early

as the first six month of life [107, 113].

Empiricism made perception an acceptable object of experimental study, a measurable

phenomenon comparable to the movement of physical bodies. Furthermore, Darwin’s study

of universal emotions (happiness, sadness, anger, fear, surprise, and disgust) showed that

emotional behaviour predates the emergence of humanity and can be explained by physical

causes, without necessitating a non-physical mind [24].

A second trend foreshadowing psychological science was phenomenology, a style of phi-

losophy associated with Husserl in the late 19th and the early 20th centuries. Phenomenol-

ogy understands mental states as having an intention, reflecting, but not identical to, the

objective reality. Phenomenology clearly distinguished between a phenomenon (a mental

representation leading to a qualitative experience) and the object being experienced. Em-

piricism, and later phenomenology, provided a foundation for the scientific study of the

human mind.
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Figure 2.2: A launching display.

2.1.1 Attribution theory

In 1940s Fritz Heider and Marianne Simmel made a short film of moving geometric shapes

[53]. It showed a larger triangle moving in the presence of two smaller circles ( a single

frame is shown in Figure 2.1). Most viewers see the circle as a nice character who avoids

the angry triangle. People describe the film by attributing thoughts and emotions to the

figures, saying things such as: ‘The triangle is bullying the smaller guy’ ‘The other circle

wants to help his friend but is scared’, or ‘The big triangle is angry’. Remarkably, all

viewers in the nonclinical population attribute mental states to the cartoon shapes, with

nobody saying that they saw a film about moving shapes [1].

This simple experiment shows that viewers automatically engage in elaborate social

inference and attribute mental states even to inanimate objects. Animated displays such

as this reveal the building blocks of social perception and are still used to study social

attribution today [138, 95, 96, 58]. But how is social attribution learned and why does it

emerge?

Behaviourists claim that organisms respond to rewarding stimuli. If one perceives a

moving triangle as aggressive, it must be because they learned to avoid angular fast-moving

bodies in the past [148]. In contrast, an information-processing approach interprets per-

ception as reverse-engineered computation: an observer infers the agent’s motivation (e.g

pursuing a moving target, searching, helping another) by reconstructing the information-

processing problem faced by the agent [6, 9, 58, 138].

To understand how inferences of emotions, goals, and beliefs, such as occur in Heider

and Simmel experiment, build on each other we will consider the order in which they

emerge during development. The earliest inference that infants make is differentiating

between agents (physical bodies that generate behaviour) and objects (bodies that move

only when a force is applied to them ), which occurs at 6 month of age [127].
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Perception of causal interactions is studied using launching displays, as shown in Fig-

ure 2.2: Object (A) moves until it is adjacent to object (B), at which point (A) stops moving

and (B) starts moving [83]. Such displays create a subjective impression of (A) causing

(B)’s motion. In adult viewers the strength of the causal perception is mediated by three

perceptual parameters: (1) relative speeds of objects, (2) speed-mass interactions, and (3)

spatio-temporal delays between events. The perception of launching interactions as causal

disappears completely if the delay between collision and launch is 500ms or more [109].

In contrast, a body that moves from rest, without an obvious physical cause is seen as

animate. Adult viewers attribute animacy automatically, based on changes of velocity,

angular direction, or alignment between the principal axis of the object and its direction

of motion [132, 116].

Attributions of causality and agency are straightforward enough to be modelled by a

mapping of sensory cues to precepts. However, this does not mean that simple sensory

cues, such as change of velocity, are all there is to recognising agency. A leaf blown in the

wind seems alive only until the observer identifies it as a leaf. Seeing moving bodies as

possessing intent may be a practical trick for predicting and anticipating physical motion

and behaviour [82, 18]. The use of intentional metaphors is often apparent in language,

when people say things such as: ‘The ball wants to go into the left hole’.

Following the understanding of agents and objects, six-to-ten-month-old babies can

infer physical goals and distinguish between helpful and malicious behaviour [138]. At 14

months a baby expects an agent to act efficiently in accord with their goals, such as running

straight to the ball that they intend to pick up [43]. Two year old children understand and

value competence, preferring to play with competent agents, who can perform an action

on the first attempt, even if the agent is antisocial [60].

Reasoning about beliefs and knowledge of others, usually referred to as Theory of Mind

(ToM) is mentally demanding. ToM emerges gradually after 3-4 years of age, at which time

children can clearly articulate that some beliefs are mistaken [114, 124] and often break

down in mental health disorders [125, 1]. In primates the evidence of social reasoning, such

as forming alliances and deception [146] is observed with frequency proportional to the size

of the neocortex [20].
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2.1.2 Attributing Emotions

(-0.88,1), (-0.5,0) Yorick (0,1) I knew him, Horatio:

a fellow of (1,1) (0.74, 0.69), of (0, 0.8) (0.85, 0.1) (0.68, 0.2): he hath

borne me on his back a thousand times; and now, how (-1,1) in my

imagination it is!

Alas, poor Yorick! I knew him, Horatio: a fellow of infinite jest, of most

excellent fancy: he hath borne me on his back a thousand times; and now,

how abhorred in my imagination it is!

Hamlet, Act 5

Skilled puppeteers effortlessly convey elation and melancholy, pride and resentment,

vice and generosity by manipulating inanimate objects. The illusions of complex thoughts

and feelings arise automatically, despite the audience’s full knowledge that puppets are

inanimate. Neurophysiological and psychophysical evidence shows emotion processing is

fast. For example, an angry face elicits response in the amygdala within 40 milliseconds of

exposure [118]. People generally spot angry faces faster than happy faces [36], presumably

because avoiding angry con-specifics helped our ancestors to survive. Moreover, emotional

expressions, both happy and sad, influence consumer decisions and judgements of value,

even if the exposure to the emotion cue is too brief to reach awareness [144]. The effect of

emotional expression on consumption can be reversed, however, if the customer consciously

notices the cue [106].

Attributing basic emotions to facial expressions happens before cognitive reflection.

There are two basic models of categorising emotions that produce significant correlations

with corresponding brain activity: a combination of five or six categories of basic facial

expressions [72] (the same ones that were studied by Darwin [24]), the circumplex model,

described by a two-dimensional space of Valence and Arousal [121, 98], or a combination

of these two [100]. These models do little justice to the richness of human sensibilities.

(The epigraph rewrites a sentence from Hamlet by replacing every sentiment by a number

corresponding to valence, dominance and arousal).

An alternative view is that our ability to identify others emotions is better described by
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complex inference about others’ feeling and thoughts based on contexts and relationships.

For example, such inference may involve distinguishing between existential frustration and

outward hostility, thoughtless generosity and political investment [93]. The approach,

known as appraisal theory, aims to characterise emotions in terms of interpretations of

the value of the events people encounter based on an intuitive causal theory [30]. The

dimensions of emotion appraisal are thus causal: is the event caused by self or other?

is the event expected? what is the subjective value of the outcome? was the outcome

intended? how likely was the outcome given the subject’s abilities?, and so on [115].

Appraisal theory explains the representational spaces in medial prefrontal cortex (MPFC)

as well as intuitive judgements about situations that cause different emotions better than

5-6 emotion dimensions or the circumplex model [122].

People also have prior expectation of an agent’s ability to experience various cognitive

states and feelings. For example elephants are judged as far more capable of feeling love,

embarrassment or rejection than goats, robots or beetles. Moreover, people attribute

complex cognitive states (e.g. sympathy, melancholy, intelligence) less consistently and

with higher variance than sensory states (e.g. feeling cold, feeling hungry) [139]. It is

unclear whether the variance in mental state attribution comes from a disagreement about

definitions, or from a difficulty recognising such states. The strength of prior expectations

could be measured by the amount of observation it takes to change the observer’s inference,

however, so far this has not been measured experimentally.

2.1.3 Attributing Goals and Beliefs

Any sequence of behaviour can have a multitude of causes. Thus, reliably inferring mental

states requires reducing the hypotheses space by common-sense assumptions, such as as-

suming that others are rational [48, 28]. For example, it is easy to interpret running by a

likely cause, such as catching a train. It is harder to come up with unlikely explanations,

such as that the person has spotted an undesirable acquaintance. Both children and adults

more readily attribute goals to agents who act efficiently [9, 43, 96].

This common-sense assumption of rationality is known as Dennett’s rationality princi-

ple, when applied to interpreting physical actions, and as Grice’s maxims [48] when applied

9



to interpreting communication. The view is that people expect agents act efficiently to

achieve its goals, given the agents’ knowledge and abilities. Assuming rationality allows

observers to infer hidden goals and anticipate behaviour. In a collaborative environment

the agent might maximise the utility of a partner, rather than its own, and such actions

are still seen as rational [34, 138].

Mental state attribution may occur by several theoretical mechanisms. Theory-theory

assumes that organisms have a theory of how rational beings behave independent of one’s

own decision-making mechanisms, although used to rationalise one’s actions [102]. An

alternative account, Simulation Theory, states that organisms use themselves to understand

others, and interpret behaviour by performing a mental simulation of the actions they

observe [41]. Both theories have their strengths and weaknesses.

Simulation Theory is often applied to explain physical inference, such as deciding how

much force it takes to move an object (but see [112]). When used as a model of so-

cial attribution Simulation Theory assumes that observers use their own decision-making

mechanisms to anticipate behaviour, and so predictions should be biased by the observers

preferences. For example, people find it difficult to choose lunch for a friend whose dietary

preferences contradict their own [128]. However, according to Simulation Theory people

are expected to experience empathy as an effortless consequence of identifying the other’s

emotional state, which has not been observed. Automatic emotion contagion occurs only

with basic emotions, most notably fear and disgust [47]. In contrast, whenever empathy in-

volves cognitive appraisal people generally find it effortful and actively avoid it [21]. Thus,

it is unlikey that Simulation Theory can explain attributing mental states.

According to Theory-theory observers use a folk theory of rational behaviour and over-

attribute rationality when interpreting others’ actions and their own [112]. Indeed, people

generally believe themselves and others to be more rational than people actually are. For

example, people have little awareness that their choices are influenced by recency, primacy

and availability heuristics [137], by the order of presenting evidence [117] or by social

pressure [14]. Human expectations of how they and others reason resemble normative

theories of logic and utility more closely than does actual behaviour [45, 88, 137].
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2.2 Computational Modelling

Mental state attribution is fast for primitive states (agency, anger, excitement), but slow

for casual inference (embarrassment, pride, amusement). In a series of thought experiments

Valentino Braitenberg proposed that primitive robotic devices built with only sensors and

motors can induce an intuitive sense of agency, memory and intent [17]. For example,

a vehicle with two light-powered motors connected to sensors on the same sides of the

vehicle will flee the light, creating an impression that it does not like the light. A vehicle

with motors connected to the opposite sides will approach and appear to like the light

(Figure 2.3). To a human observer such vehicles might appear as possessing intent.

Figure 2.3: Left: Braitenber’s vehicle. Right: A moth attracted to light

Braitenberg hypothesised that a combination of sensors, motors and simple generative

rules selected through an evolutionary process could develop fitness qualities which hu-

mans identify as intelligent. Agents that are better adapted to their environment achieve

better evolutionary success and may appear to be more rational. Given a suitable environ-

ment, evolutionary process is expected to gradually approach an approximately optimal

behavioural strategy.

Pantelis and Feldman tested Braitenberg’s paradigm in a software simulation of re-

producing autonomous agents competing for resources. They found that evolved agents

were indeed perceived as more intelligent [96]. However, on average evolved agents also

achieved better outcomes compared to nonevolved agents. After accounting for outcome,
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the agent’s evolved status was still a significant, but a weak predictor of perceived intelli-

gence. Thus, on average participants likely assessed how well the agent was doing, although

some adjusted their assessment by taking the agent’s strategy into account.

In addition, participants attributed more intelligence to agents who maintained a con-

sistent goal state, copied the actions of their adversaries and avoided fighting. Participants

were better able to infer mental states of evolved agents compared to nonevolved agents,

suggesting that people are better at interpreting agents that are more rational [96]. Thus,

attributing intelligence likely depends on the observer’s ability to interpret the agent’s

behaviour as rational, infer the agent’s goal states and evaluate how well the agent’s inten-

tion is carried out. However, it is unclear whether attributions of intelligence are sensitive

to the level of perceived rationality and whether intelligence can be attributed based on

the agent’s actions alone when the outcome is not seen, or when the outcome is negative

despite the agents best rational actions.

One way of modelling mental state inference formally combines Bayesian planning with

an expected utility calculus. Such models formalise the rationality principle by defining

a rational action as one that maximises the agent’s expected utility [62, 13], taking into

account uncertainty over observations, action outcomes and knowledge of the environment.

Of special interest is a class of computational ToM theory models encoding goal-based

agents and their interactions. According to the rationality principle, beliefs and desires

lead to rational actions that bring into being a goal state of the world. Likewise, inference

over mental states conditioned on behaviour finds a combination of desires and beliefs

that would have generated the observed behaviour. Goal-based rational agents are conve-

niently implemented by a combination of Bayesian forward planning and backward filtering

algorithms, together called the Bayesian theory of mind (BToM) [6, 9, 58, 138, 7, 5, 68].

Since formal approaches to planning, such as MDP or a POMDP are designed to solve

practical problems, one might suppose that they encode the principles of human folk theory

of rationality, formalising the rationality principle. BToM reasons as follows. Any solution

to a planning problem is a sequential process in discrete time. At each time step the

agent’s state is described by beliefs, observations, affordances, rewards and goals. At each

step the agent chooses from its set of actions the action expected to maximise its pay-off,
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Figure 2.4: Image from [32] showing a ‘self-conscious’ Bayesian agent planning a route to

avoid an unhealthy temptation.

within a time horizon. An observer who knows some components of the planning process

can sharpen the distribution over the unknowns, treating behaviour as a random variable

dependent on hidden beliefs and goals.

A simple BToM models goal inference, which occurs when the observer sees an agent

approach an object and infers that the object is the agent’s goal. An observer who only

sees the agent take the same direct path to the goal can still predict the agent’s actions

correctly in a new environment by knowing that the agent goes to the goal by the shortest

route. A Bayesian model based on an MDP can describe such reasoning [8] and make

predictions that match those of humans [43]. Likewise, BToM models can infer changing

or multiple goals [9]. Multi-agent models can encode interactions between agents. For

example, maximising the other’s reward is seen as helping, while minimising the other’s

pay-off is seen as hindering [138].

BToM models also capture behaviour that appears as self-awareness, preferences or

beliefs [58, 32]. An example in Figure 2.4 shows a BToM agent planning a route to get

lunch. A ‘naive’ BToM agent on the left has no knowledge of its own reward function and

can not predict its future decisions. The ‘naive’ agent plans the shortest route toward the

green cafe which it prefers, but upon passing a doughnut chain, it is tempted to satisfy its
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hunger immediately and settles for the lesser option. A ‘sophisticated’ BToM agent plans

a longer route, which guarantees that it reaches its favourite goal and gets a higher pay off

in the long run. BToM methodology is a convenient modelling tool to interpret attributed

intelligence as inference over the agent’s efficiency, which I will call the efficiency hypothesis

of intelligence, discussed in detail in Chapter 3.

BToM methodology has important limitations. The most prominent arise from objec-

tions to utility calculus per se. Deciding between work and skiing, an apple and an orange,

or a new xylophone and a retro bicycle, assumes that each object and experience is reduced

to a value on a common utility scale. In practice, eliciting value assignments is hard and

the results are often inconsistent.

This is a reasonable objection. One possible response is that all models address reality

only at some level of abstraction. The mechanism by which decision values are obtained

is external to the model. A vale of an experience can be estimated by a proxy of be-

havioural correlates of decision-making, such as neural activation in brain areas related to

value processing (anterior cingulate (ACC), dorso-lateral prefrontal cortex (dlPFC), the

orbitofrontal cortex (OFC) [101, 27, 19] ). Psychophysical measurements, such as reac-

tion times and choice probabilities are another common estimate of the hidden decision

value [94, 101, 129, 70, 56]. In economics, the approach to estimating the utilities of goods

through patterns of consumption has a long history as revealed preferences [111]. It re-

mains to be seen whether behavioural metrics produce consistent value estimates. Since

behavioural metrics result from aggregating many measurements during a choice trial, to

the extent that inconsistency in human behaviour is driven by decision noise, random ef-

fects should cancel out resulting in a more consistent estimate of decision value. However,

inconsistency in human behaviour can be also caused by a systematic error due to heuristics

and biases, leading to the second objection.

The second objection is that naive utility calculus is more often explained by heuristics

and biases than by normative utility calculations. The perceived probability of a hypothesis

is higher when the hypothesis is described as a disjunction of typical examples [35, 135] but

lower when it is defined by atypical examples [123, 49]. People are more likely to accept a

claim if a straw-man argument is presented as an alternative [33, 143]. Numeric estimates

(e.g. estimating an age of a tree or a distance between cities) can be primed by irrelevant
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numbers prompted at the start [136].

Indeed, individual decisions are often inefficient, sub-optimal and seemingly irrational.

This, however, does not rule out applications of utility theory to understanding social at-

tribution. When attributing intelligence to an agent we may expect it to behave more ra-

tionally than we would ourselves. Even one’s own accidental behaviour can be rationalised

in retrospect. Moreover, utility-theory-based models might explain individual decisions

better if resource-rationality is taken into account. Thus, when making a decision agents

are not only maximising an observable monetary pay-off and minimising an observable

monetary cost. In most real-life situations agents also minimise decision cost reflected

by decision time and cognitive effort. Taking time and effort into account, most human

decisions can be explained as rational [73].

The third objection is that the BToM models work well only on small hypothesis sets.

Most real-world tasks include large actions spaces and infinite planning horizons, making

POMDP-based planning intractable. The response to this objection is to consider that

people usually prune the hypothesis space and evaluate only a few salient option while

dismissing multitudes of uninteresting ones. The many models of hypotheses sampling,

such as sampling by utility of outcomes [76], importance sampling [89], or Markov Chain

sampling [25] provide possible solutions to how the hypothesis space may be pruned by

discarding the less relevant options [25]. Given an efficient way of pruning of the available

action space as well as a way of managing planning horizons, observers could still engage

in Bayesian planning in such simplified scenarios.

Moreover, the utility calculus can fail in multi-agent scenarios. For example, an agent

who wants to maximise average utility will be driven to eliminate every agent whose utility

is lower than average. An agent who seeks to maximise total utility will be indifferent

between multitudes of others with minimal non-zero utility and a small group of high-

utility others. Although humans, and other social animals, care about the utility of others,

such inferences appear clearly nonsensical.

This reasonable objection is not yet successfully resolved and remains an important

question for future research. Indeed, it makes no sense to talk about aggregate utility so

as to treat two half-persons as equivalent to a whole individual. However, it is possible to
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describe utilities of social agents as dependent on each other. For example, for agents A

and B: U(A) = R(A) +βU(B) and U(B) = R(B) +αU(A), where R(A), R(B) are reward

functions. By arithmetic this reduces to U(A) = (R(A) + βR(B))/(1 − αβ). Collective

utility modelling captures common intuitions that people seek to share their positive ex-

perience to feel better. It remains to see whether behaviours resulting from combining an

appraisal theory of emotions with methods for approximating group utility correlate with

measures produced by psychophysical or neurophysiological measurements.

This thesis concerns itself with models of intelligence attribution in problem-solving

scenarios involving one agent. BToM modelling has proven successful in capturing the

quantitative and qualitative intuitive-psychology judgements of adults and children in sim-

ilar goal-directed scenarios [6, 5, 59, 138, 7]. Attributed intelligence is a new question that

has not yet been addressed. It has important implications for building better AI and

understanding practical social issues. The next chapter addresses specific applications of

the BToM methodology to attributed intelligence and serves as a reference to support the

experimental methodology used in the rest of this thesis.
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Chapter 3

The Planning Framework

Nature has placed mankind under the governance of two sovereign masters,

pain and pleasure. It is for them alone to point out what we ought to do, as

well as to determine what we shall do.

Jeremy Bentham, The Principles of Morals and Legislation, 1780

This chapter describes a formal model of how people plan and how they interpret the

plans made by others. People associate intelligence with problem-solving. Intelligence may

thus be attributed on the basis of an evaluation of the agent’s problem-solving process.

The chapter begins by discussing a naturalistic model environment in which intelligent

behaviour can be observed. Next it discusses a formal definition of planning and of inference

mechanisms used to evaluate planning in the model environment based on a Partially

Observable Markov Decision Processes (POMDP) [62]. The goal of the modelling is to

define how observers can identify an agent as efficient and to distinguish attributions of

intelligence to efficiency from attributing intelligence to outcome.
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3.1 The Problem of Planning Under Uncertainty

Consider a simple example of planning under uncertainty. You are shopping at a mall

when you discover that you are missing something: a backpack, a glove, a scarf. Where

should you look? You remember when you last had the missing item and reconstruct the

places you visited since. You consider the order in which to visit those places, so as to

minimise the time and effort spent searching. You will likely consider the effort of going

from one place to another and the probability of finding the lost item in each place.

This humble example captures the essence of most planning: a mostly known environ-

ment, critical unknown information, which must be gained by costly actions and a goal

that terminates the execution of the plan. Even the first action requires some prior plan-

ning. In a simple case all planning may be completed prior to the first action. In more

complex cases the plan is likely to evolve as more information is gained. Such planning

under uncertainty is central to many natural behaviours, from hunting-and-gathering to

managing investments. The rewards are sparse, the uncertainties are many, and to get by,

organisms must maintain distant goals while reasoning many steps in advance.

To study planning in natural environments we abstract the planning problem as a

model-world consisting of mazes with corridors and rooms. Consider the example of lost

keys. The layout of the maze corresponds to the spaces in which the keys are likely to

be. Some rooms are far and remote, so that visiting them is costly. Some rooms are

close. Some rooms are big, highly likely to contain the lost object, and some are small and

unlikely to be of interest. And while looking for the lost object, one intends to traverse

the maze in a way that minimises the expected searching time.

The planning problem is a search for a hidden goal in a world with progressively dis-

closed information. A schematic example of the problem as seen from an overhead view is

shown in Figure 3.1. An agent looks for a target in a maze-like environment. It is familiar

with the layout of the world and knows that the goal exists, but does not know where it is.

The agent can move into or within rooms, but not through walls and must inspect each of

the spaces in turn to find the goal. The goal may be in any of the locations not yet seen

by the agent. In the example in Figure 3.1 the solid arrow shows the optimal route, which

reveals the whole space in the fewest steps, the dashed arrow shows a suboptimal path.
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Figure 3.1: Dark cells indicate that the agent has not yet seen the area. Known areas are

coloured as walls (grey) or floor (white). The goal is behind one of the black squares.

Assuming that the agent wants to get to the goal quickly, it wants to reveal unseen

cells while minimising the length of its path. So, the agent balances the expected rewards,

measured in the number of cells revealed, against the costs, measured as the number of

moves, in effect maximising the expected utility of the path [87]. Depending on the agent’s

location, moving can result in revealing new cells and updating its beliefs about the world.

To minimise one’s expected path the agent must reason about the possible outcomes of

observations encountered along the way.

POMDP-based planning captures sequential decision-making such as this, with costs,

rewards and observation confidence, all of which vary over time. POMDPs can admit a

variety of belief models, observation models, reward functions, cost functions and discount

rate models resulting in a multitude of routine decision-making scenarios. For example, an

agent who steeply discounts future rewards seeks fast gratification. An agent with a noisy

observation model seems to doubt its senses, since it needs to sample each observation

several times.

To evaluate the agent’s reasoning an observer infers the agent’s mental state (desires,

goals and beliefs) and infers a planning procedure consistent with the observed behaviour.

Following the logic of BToM, an observer attributes intelligence to the agent by assuming
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Figure 3.2: (a) POMDP is a sequential process described by beliefs Xt, observations Ot,

rewards Rt and actions At at time step t. Arrows indicate a causal relationship.

that the agent is using a planning procedure to achieve its goal while minimising cost.

Based on this assumption, the observer is likely to conclude that agents who adopt a more

efficient planning procedure also look more intelligent.

3.2 The POMDP Model

To define a POMDP model we need to formally describe the agent and the world, which

is a maze like the one in Figure 3.1.

The model world is described by discrete time, 0 ≤ t ≤ T , and a grid of cells, W =

{w(i, j)} 0 ≤ i ≤ width, 0 ≤ j ≤ height, w(i, j) ∈ {wall, empty, goal}. A unique cell

contains a goal: ∃(ig, jg)→ w(ig, jg) = goal.

The agent knows its location at time t, Lt, and acts based on its belief about the world,

which is a set of probabilities Xt = {P (xs)t}. Here {xs} is the set of all possible world

states with the goal in cell s. X0 is the set of the agent’s initial beliefs.

The generic POMDP process shown in Figure 3.2 is a sequence of belief state transitions.

The model has no objective knowledge of the world W and makes decisions based on

subjective beliefs X. Each belief state, Xt, encodes the agent’s knowledge of the world

at time t. A transition to the next belief state occurs as a consequence of performing an
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action At and collecting new observations Ot. Actions are chosen based on their expected

rewards Rt.

3.2.1 Initial Beliefs

For simplicity, assume that the location of the walls is initially known to the agent. Since a

wall can not be the target location, X0 encodes every wall cell as 0: ∀i, j, w(i, j) = wall→
X0(i, j) = 0. Non-wall grid cells are initialised with positive probabilities, corresponding

to the probability that the cell contains the goal. Thus, assuming that every cell is equally

likely to contain the goal, X0 is initialised with a uniform prior: ∀i, j, w(i, j) 6= wall →
X0(i, j) = 1/n, where n is the number of non-wall cells in the world.

Each element of Xt, which is a set encoding beliefs about the goal location, represents

the probability that a specific cell contains the goal. For example, for the 6x5 grid-world

shown in Figure 3.1 the initial belief X0 is initialised as follows.

Initial belief, X0, assuming an unbiased agent:

0.05 0.05 0.05 0.05 0.05 0.05

0.05 0 0 0.05 0 0

0.05 0 0.05 0.05 0.05 0

0.05 0 0 0.05 0 0

0.05 0.05 0.05 0.05 0.05 0.05

3.2.2 Belief Updating

The beliefs are updated based on new observations. The agent can see cells adjacent to its

location that are not occluded by walls. Formally, a cell s is visible if the four rays cast from

each of the corners of Lt to the corresponding corners of cell s do not intersect walls. The

observations are a grid of probabilities Ot = P (W |Xt, Lt), such that for every visible cell

(iv, jv) 0 ≤ Ot(iv, jv) ≤ 1 and for every invisible cell (ii, ji) Ot(ii, ji) = 1. For simplicity we

restrict the model to deterministic observations setting ∀iv, jv → Ot(iv, jv) = 0. (Setting

0 < Ot(iv, jv) < 1 could encode observation uncertainty.)
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The agent moves one grid cell at a time, choosing among deterministic actions A(Lt) ∈
{N,S,W,E}. Actions moving into a wall are forbidden. In the general case the action

model can be probabilistic, encoded by a set of probabilities P (At|Xt), so that taking an

action has probabilistic results. For example, given non-deterministic actions it is possible

that the agent chooses to move West, but the result is a move to the South.

At each step t the agent updates its beliefs by observations using standard Bayesian

updating, Xt+1 = XtOt
1. The distribution of beliefs narrows during the course of the trial

as the agent collects more observations.

Consider belief updating in the above example. The agent enters the world at the

top-left location (0, 0). The first observation received by the agent reveals the cells to the

East (right) and to the South (down) visible from its location, represented by the first row

and column of the belief matrix. None of the revealed cells contain the target, and so the

set of beliefs X1 becomes:

Beliefs after the first observation is made, X1, assuming an unbiased agent:

0 0 0 0 0 0

0 0 0 0.1 0 0

0 0 0.1 0.1 0.1 0

0 0 0 0.1 0 0

0 0.1 0.1 0.1 0.1 0.1

The agent chooses between going South or East based on its belief X1, as described in

the next subsection. Since the value of visiting a cell is proportional to the probability of

the cell being the exit, the value of going East should be higher, since more cells can be

accessed by a shorter route.

3.2.3 Decision Value

After updating observations the agent chooses an action a from a set At based on

its value function Q(a, Lt, Xt) calculated from a Bellman Equation for POMDP [51]. In

1Here the notation XtOt defines element-wise multiplication of the two sets, followed by a normalisation
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general terms, the value function is equal to a sum of an immediate reward from performing

action a and an expectation of future rewards in states accessible after that action. For a

comprehensive review of methods used to model and solve such equations please see [51].

In a general case the outcomes of actions are probabilistic and actions have different costs.

The model in this thesis in a special case with deterministic actions and a constant cost:

(3.1)Q(a, Lt, Xt) = Xt(Lt + a)ρ(Xt, Lt + a) + γ
∑
Xt+1

max
ai∈A(Lt+a)

{Q(ai, Lt + a,Xt+1)},

where 0 < γ < 1 is a cost factor, affecting the value for future rewards, ρ is the

expected reward of visiting location Lt + a and Xt(Lt + a) is the probability that the

goal is in the cell Lt+a. The first term is the value of the immediate reward of performing

action a given current beliefs. The second term describes the expected value of future

rewards. Given a constant action cost, the expected reward of entering a goal state after

moving one cell ρ(Xt, Lt + a) = k, where k > 0 is a constant. The cost rate γ encodes the

requirement of arriving at the goal state sooner.

An optimal agent always chooses the action with the highest value. More generally, the

agent chooses an action with a probability proportional to the action value by applying a

reward function R : Xt×At 7→ R, which effectively translates action values to probabilities.

The reward function is defined as:

R(Qt(ai)) =
exp(Qt(ai)/τ)∑
j exp(Qt(aj)/τ)

(3.2)

where τ is a softmax parameter controlling decision noise described in detail in the next

subsection.

3.2.4 Deviations from optimal policy

The schematic model in Figure 3.2 describes a generic agent that acts optimally. However,

in reality deviations from optimal policy are common. Such deviations can be intentional,
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for example as a way to control uncertainty [133] or unintentional, resulting for example

from constraints on the available cognitive resources [44].

For this reason, the planning framework considers three causes of deviation from the

optimal policy: guessing (biased initial knowledge about the world), decision noise and

forgetting. Initial knowledge encodes prior belief about the goal’s location. In terms

of belief bias, an unbiased agent has uniformly distributed priors and a guessing agent

has non-uniformly distributed initial beliefs. Decision noise is captured by τ , a parameter

controlling the strength of mapping between action values and the probability of taking an

action. Forgetting regresses the agent’s beliefs toward the mean, so that the agent’s belief

about previously observed locations gradually decay. While this model does not fully

capture the complexities of human planning, it provides a computational ideal-observer

benchmark to test against experimental data.

Softmax decision noise

Softmax decision noise causes deviations from optimal policy, with the probability of de-

viation inversely proportional to the relative value of the available actions. Decision noise

in effect treats values as probabilities by normalising values in a cell to add up to 1. The

degree to which decisions deviate from optimality is controlled by τ . As limτ→0 the agent

deterministically chooses the action with the highest value, and as limτ→∞ the agent acts

at random. Intermediate values of τ result in choosing actions probabilistically, with the

probability of choosing an action increasing with its expected value.

The choice of τ depends on the range of values Q(a, Lt, Xt) generated by the model,

which depend on the degree of uncertainty over the goal location. The implementation used

in this thesis produces action values 0 ≤ Q(a, Lt, Xt) ≤ 1, where 1 is the value of entering

the goal state and intermediate values between 0 and 1 reflect the estimated distance to

the goal. Importantly, although model values fall in the same range as probabilities, the

model values are not probabilities since the sum of values of all actions in a cell is not

required to add up to 1.

To choose a good range of τ for model values in this range we run a simulation with

value distributions of length 4 sampled from (0, 1) so that: vi,1 + vi,2 + vi,3 + vi,4 = 1,
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Figure 3.3: A simulation of mapping probability values sampled from (0, 1) to softmax

probabilities.

i ∈ (1, 50), sampling values as if they were probabilities. To each set of probabilities vj i
corresponds a set of softmax probabilities prj i. Figure 3.3) shows softmax probability

plotted against value, showing that τ = 1 results in a practically equal probability of

choosing any value, τ = 0.001 results in choosing optimally, and τ ∈ [0.01, 0.1] produces

intermediate probabilities.

Guessing

Biased initial knowledge about the world simulates guessing: an agent with biased initial

knowledge appears to guess the target location. In contrast, a non-biased agent assumes
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a uniformly distributed probability of each unseen location containing the goal. In the

example discussed above, a biased agent might start with a hunch that the goal is at the

bottom-left:

Example of an initial belief, X0, assumed by a biased agent. One cell is considered

highly likely to contain the goal – 0.81 in contract to 0.01 for all other cells:

0.01 0.01 0.01 0.01 0.01 0.01

0.01 0 0 0.01 0 0

0.01 0 0.01 0.01 0.01 0

0.01 0 0 0.01 0 0

0.01 0.81 0.01 0.01 0.01 0.01

Behaviours produced by decision noise and by biased priors often resemble one another.

For example, going down in the example shown in Figure 3.1 may result either from a hunch

that the goal is in the bottom-left corner, as captured by a biased belief or from choosing

the option with a lesser value due to decision noise.

Forgetting

A forgetting parameter 0 ≤ f ≤ 1 regresses the agent’s beliefs toward the mean after each

step so that the agent gradually forgets whether a previously observed cell is empty and

must re-check already visited locations.

3.2.5 Inferring a planning procedure from observed behaviour

The planning framework can be applied to infer parameters that generated a sequence of

actions by calculating the probability of the agent’s path given the parameters (equation 3.4

and equation 3.3). So, the observer infers the most likely combination of parameters driving

planning, and uses it to predict how well the agent will perform in the long run.

The observer who assumes that the deviations from optimal behaviour arise from deci-

sion noise will perform an inference that takes only τ into account, the SOFTMAX model:

26



(3.3)P (τ | W, path) ∝
∏
Li,ai

P (τ | W,Li, ai)

A slightly more sophisticated observer infers the causes of sub-optimal behaviours by

varying the values of three parameters: forgetting, initial beliefs and softmax decision

noise, the Model3 model.

(3.4)P (τ, f,X0 | W, path) ∝
∏
Li,ai

P (τ, f,X0 | W,Li, ai)

In theory, the observer could keep in mind many possible causes of the agent’s be-

haviour. However, evaluating efficiency in this way can be computationally costly. The

observer may need to consider many counter-factual agents and environments to come to

a conclusion about the fitness of this particular agent in relation to hypothetical others.

An observer may thus have empirical heuristics such as: ‘Agents with decision noise will

generally do better than agents who forget’ or ‘An agent with one source of noise is better

than an agent with two’. Even so, evaluating the agent still incurs the computational cost

of inferring its parameters.

Attributed Intelligence

This thesis tests two hypothesis of attributed intelligence. The outcome hypothesis

supposes that participants attribute intelligence based on the agent’s outcome. The effi-

ciency hypothesis suggests that participants attribute intelligence based on the agent’s

efficiency. To differentiate between attributing intelligence to outcome and to efficiency,

we need a formal definition of efficiency and of outcome.

The agent’s efficiency is defined as a measure of how well the agents’ planning proce-

dure maximises reward and minimises cost. To evaluate the agent’s efficiency an observer

must understand the costs and rewards facing the agent and how to plan under uncertainty

to maximise the probability of success. The agent’s efficiency can be measured by various
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model-based metrics, such as: (1) a relative rankings of agents with different sets of pa-

rameters, (2) the magnitude of the inferred decision noise and (3) the fraction of optimal

moves made by the agent.

Likewise, the agent’s outcome is defined as a metric of how the agent does in a single

trial. The agent’s outcome can be measured by perceptual metrics, such as: (1) the number

of moves to achieve the goal or (2) the number of times a cell is revisited 2. Outcomes

differ with transient aspects of the environment. While inefficient planning will occasionally

produce low cost lucky outcomes, an efficient optimal planning is expected to maximise

the expected reward overall. In effect, the outcome is a random variable, which varies trial

to trial, and efficiency is the expectation of outcome.

Implementation

There are many ways to implement POMDP planning. A common approach to solving

POMDP planning completely is n-step lookahead [51], which entails simulating a decision

tree with nodes every time an action can be taken or an observation is made, so as to

achieve the highest average payoff given all possible future outcomes. Approaches that are

common with solving Markov Decision Process (MDP), such as Value Iteration, [110] can

be used to plan the trajectory after the goal location is known, for example if there is only

one dark cell remaining. MDP planning can be also used to simulate guessing, however

such an interpretation of guessing is not modelled in this thesis.

Animated videos were generated in a free Java programming environment called Pro-

cessing 3.0, which is convenient for generating graphics. The modelling, inference and video

generation described in this manuscript were run using a Java simulation of equations 3.1

and 3.2. The implementation evaluates each action (N, W, S, E) at the agent’s location

while keeping track of the visited cells, so that each cell is accounted for only once. In case

of the earlier example, the order in which the value of each cell will be counted is shown

in Figure 3.4. The agent is located as (0, 0) and can go East or South.

2For example, during pilots some participants pointed out that agents who backtrack seem less intelli-

gent.
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Figure 3.4: The order in which the value of cells will be accounted for.

In the example above, assuming that the agent is optimal with a belief X1 as described

above and γ = 0.7, the value of going East for the steps shown in Figure 3.4 is:

γ0× 0 + γ1× 0 + γ2× 0 + γ3× 0.1 + γ4× 0.1 + γ5× 0.3 + γ6× 0.1 + ... = 0.343× 0.1 +

0.24× 0.1 + 0.16× 0.3 + 0.11× 0.01 + ... The full value of going East is 0.148 and the full

value of going South is 0.093.

The inference implementation also tracks the frequency with which the agent’s trajec-

tory includes zero-valued actions. An example of a zero-valued action is entering empty

rooms. Humans taking zero-valued actions are most likely doing so unintentionally, likely

due to inattention. The frequency of such zero-value moves can be a proxy metric of atten-

tion of human participants. A metric of attention is essential for interpreting the results

of experiments conducted online.

In summary, this chapter describes a formal model of agents in a partially observable

environment and of an observer evaluating the intelligence of such agents. The model

represents deviations from optimal panning, as generated by decision noise, biased beliefs

and forgetting. The model can be used to generate examples of optimal and sub-optimal

planning behaviours and compare such model-generated normative solutions to how people

actually plan. An observer who attributes intelligence to an agent’s efficiency is represented

by a Bayesian inference over the agent’s planning procedure. An observer who attributes
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intelligence to outcome is represented by model-free metrics such as the length of the

agent’s path.

The following chapters apply this model to explaining how humans plan and to how

they evaluate plans made by others. Chapter 4 describes an experimental study in which

people attribute intelligence to computer-generated agents controlled by the model. While

the experiment supports the efficiency hypothesis of intelligence, it also revels that a sub-

population attributes intelligence to outcome. Chapter 5 is an experimental study of

how people actually plan, in which human plans are analysed both empirically in terms

of psychophysical measurements, and by comparison to models. The results show that

the plans averaged across individuals, taking a majority vote at every step, are indeed

model-optimal. However, about a half of the individual solutions deviate from the optimal

path. Chapter 6 looks for correlations between individuals’ own planning abilities and their

attributions of intelligence and shows that more proficient planners are generally more likely

to attribute intelligence to efficiency. Chapter 7 describes an eye-tracking experiment that

elucidates the nature of mental processing required by planning tasks.
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Chapter 4

Attributed Intelligence: Outcome

and Efficiency

People expect others to behave efficiently [28, 48, 43, 5] and describe behaviour as

stupid if it disagrees with their expectations of efficiency [2]. However, reality is often dif-

ferent: movements slip, attention wanders, memories change, beliefs are false and decisions

are distorted by biases [137]. How do people make sense of inefficient agents? According

to the efficiency hypothesis, attributed intelligence reflects the observer’s inference of

the agent’s efficiency. At the same time, people may see lucky others as deserving [71]

and assume that agents are responsible for their outcomes regardless of external circum-

stances [38]. According to the outcome hypothesis attributed intelligence reflects the

observers appraisal of the agent’s outcome.

Consider an intelligent agent exploring a 2-D maze in search of a treat. The agent is

familiar with the layout of the maze and knows there is a reward in the maze, but does not

know where the reward is. The agent’s view is obstructed by walls, so that at any time

only part of the maze is visible. The reward is equally likely to be in any location. The

agent incurs a cost when it moves, reflecting the physical effort of motion. Figure 4.1 shows

several examples of such mazes, seen from an overhead view. In an environment such as

this the agent’s outcome can be measured by the path-length to the goal or by inverse of
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the number of times the agent revisits previous locations. In the two experiments described

below participants view animated movies of agents and evaluate their intelligence.

Figure 4.1: Examples of maze environments shown to participants. Mazes are from a bird’s

eye view. Dark cells indicate that the agent has not yet seen the area, while cells previously

seen are patterned as walls or floor. The agent can move through empty areas, but not

through walls. The goal (a red circle) can be anywhere.

In our maze example an efficient agent may visit rooms in a systematic order that

ensures seeing the whole maze in the fewest steps. In contrast, an inefficient agent may

visit rooms in an inefficient order and seem the less intelligent of the two. An agent who

moves at random until it stumbles upon the reward might appear as outright unintelligent.

Regardless of the agent’s planning procedure, given an uncertain environment and the

probabilistic nature of rewards, the agent is expected to encounter a variety of outcomes.

It might be lucky and find the goal in the first place it looks or it might be unlucky and

search the maze exhaustively.

An observer seeing a lucky agent might wonder whether the agent’s trajectory is justified

and attribute intelligence only if the agent’s planning is efficient. In contrast, the observer

might decide that if the agent achieved its goal quickly, then it must have done something

right, and so must be intelligent. Likewise, seeing an efficient, but an unlucky, agent the

observer might reason that the agent would have achieved a better outcome under most

counterfactual scenarios, and judge the agent as intelligent. In contrast, an observer who

attributes intelligence to outcome might decide that the agent is not intelligent, since it
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Figure 4.2: An example of an optimal-lucky condition. The agent makes an (optimal)

decision to go into the room on the left (reader’s perspective). Incidentally, it finds the

goal quickly.

took a long path to the goal. Alternatively, it is possible that attributed intelligence is

explained neither by outcome nor efficiency, in which case we should see no relationship

between the agent’s planning or outcome and the intelligence attributed to the agent.

The first experiment is an exploratory study run with a small group of participants in

the lab to validate the experimental procedure and test the two hypotheses. The results

support the efficiency hypothesis. The second experiment applies the experimental proce-

dure of the first experiment to a larger group of participants recruited online and shows

that intelligence attribution varies among participants. While two-thirds of the sample

attributed intelligence to efficiency, the remainder attributed intelligence to outcome.

The experiments received ethics clearance from a University of Waterloo Research

Ethics Committee and from the MIT Ethics Review Board. Full instructions are avail-

able in the Appendix.
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4.1 Experiment 1

If the efficiency hypothesis is correct, then there should be no difference in ratings of opti-

mal agents, regardless of their outcome, and most of the variation in attributed intelligence

is explained by model-based metrics of agent’s efficiency (defined below). If the outcome

hypothesis is correct, then lucky agents should be rated higher than the unlucky ones,

regardless of their planning policy, and most of the variation in attributed intelligence is

explained by the agent’s outcome, measured as the length of path in steps and the fre-

quency of revisits of the same cells. To test the two hypotheses, participants rate the

intelligence of various optimal and sub-optimal agents generated by the POMDP frame-

work. Both optimal and sub-optimal agents incurred a variety of lucky (low cost) and

unlucky (high-cost) outcomes.

The agents are sampled from six POMDP planners generated by varying the values

of the three parameters in Model3 (forgetting, initial beliefs and decision noise). Each

planner is assigned an optimality rank, an ordinal measurement reflecting its expected

performance as measured by simulating planning trajectories on a set of procedurally gen-

erated mazes [4]. In addition, the random planning model showed an agent that appeared

to move at random, but constrained to reach the goal in the number of steps not greater

than the average number of steps taken by the other agents. The full list of planning

behaviours along with their optimality ranks is shown in Table 4.1.

4.1.1 Participants

Twelve participants were recruited from a University of Waterloo participant pool, 4 fe-

males and 8 males, median age 27.5. The participants were volunteers and their small

group size is due to this experiment being an initial study to test the experimental design.

4.1.2 Method

Participants are told that they would watch movies of different mice looking for a treat,

and instructed that each dark square was equally likely to hide the treat. Participants
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Rank Label

1 optimal (lucky or unlucky)

2 softmax

3 lucky-guess

4 softmax-guess

5 softmax-forgetful

6 softmax-forgetful-guess

7 random

Table 4.1: Agent policies generated varying the three parameters according to Model3. The

conditions are ranked according to their performance across different mazes. For example,

the lucky-guess agent is rank 3, and a random agent is rank 7, indicating that on average

a lucky-guess agent would find the goal faster than a random agent, over a set of different

mazes.

are told that a mouse wants to get to the treat as quickly as possible. The appearance of

the mouse, the layout of the maze, the textures of the maze, and the POMDP parameters

were varied on each trial. At any time the cells yet unseen by the mouse were portrayed

as dark, and cells previously seen portrayed as patterned (see Figure 4.2). In every movie,

the mouse eventually found the goal.

Participants are asked to watch each movie at least once, and to rate the intelligence of

each mouse using a Likert scale ranging from 1 (least intelligent) to 5 (Most intelligent).

Full instructions are available in the Appendix, and the set of stimuli is available at http://

www.cgl.uwaterloo.ca/~mkryven/attributionStimuliLab.zip. Each participant read

the instructions on the computer screen, and viewed four familiarisation examples followed

by the stimuli in two blocks. After viewing each movie, participants marked their rating

in a provided answer sheet.

4.1.3 Stimuli

Thirty animated movies of an agent (described as a ‘mouse’) were shown on a high-

resolution LCD display in two blocks, using Psychtoolbox [16]. The movies were presented
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in two blocks to compare the early and the late trials, to see if ratings change over time.

After viewing each movie a participant marked their rating in a provided answer sheet. The

movies were generated by solving POMDP planners on 9 mazes with each of the planning

models described above. Each movie shows a triangular agent moving through a maze at

a uniform speed. The agent orients in the direction of its motion, so that in the corridors

the agent moves straight ahead, and upon arriving at intersections it makes turn between

−90 and 90 degrees until it is facing in the chosen direction. Each movie was labelled

according to its agent condition. A ‘lucky’ or ‘unlucky’ label reflects the outcome cost.

The location of the goal was counterbalanced so that in one half of the mazes the mouse

could find it equally quickly by optimal planning or by pure luck. In the other half of the

mazes, the goal was placed so that an optimal mouse had to search exhaustively, while a

mouse making a lucky guess could finish in fewer steps.

In summary, there were 8 possible movie conditions: optimal-lucky, optimal-unlucky,

softmax, lucky-guess, softmax-guess, softmax-forgetful, softmax-guess-forgetful and ran-

dom. Each of the conditions was shown four times. The random condition occurred

twice, once in each block. Both random movies showed agents getting to the goal in fewer

than 20 steps, matching the average length of movies in non-random conditions.

4.1.4 Results

Most of the variation in the ratings of each trial can be explained by the agent’s condi-

tion, with more efficient agents rated as more intelligent. Analysis of Variance (ANOVA)

of rating 1 against (condition, steps × revisits, block) shows a significant main effect of

condition, (F (7, 18) = 67.8453, p < .0001), with mean ratings of each condition are shown

in Figure 4.3). There was also a small main effect of block (F (1, 17) = 7.6421, p = 0.013),

with early trials rated higher than later trails (d = 0.24, p = p = .013). The effects of steps

and revisits are not significant (p = .3). The adjusted R2 of the regression model is .9423.

According to Tukey HSD post-hoc test, the difference between the ratings of optimal-

lucky and optimal-unlucky agents was not significant (p = 1), in support of the efficiency

1Mean ratings of each trial calculated between participants.
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hypothesis. At the same time, there was a significant difference between the optimal-lucky

and the lucky-guess conditions (p = .005, d = .79), meaning optimal agents were rated

higher then suboptimal lucky ones. The softmax agents are rated as more intelligent than

softmax-forgetful (p < .0001, d = 1.1) and the softmax-forgetful higher than softmax-

guess-forgetful (p = .001, d = 0.9). The lucky-guess agents are rated higher than softmax-

forgetful (p = .002, d = 0.88) condition. The difference between lucky-guess and softmax

conditions was not significant (p = .92). In summary, the participants attributed the

highest intelligence to optimal agents, and judged forgetful agents as less intelligent than

the noisy agents. Random-looking agents were seen as least intelligent of all, and are not

included in the subsequent analysis. Thus, the results support the efficiency hypothesis

over the outcome hypothesis, meaning people are able to tell when an agent was being

lucky, and seeing rationally planning agents as more intelligent than agents who got to the

goal quickly, but did so in a way that indicated sub-optimal planning.

1
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4

5

OU OL SM GL SG SF SGF R
Condition

R
at
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g

Figure 4.3: Ratings by condition OL-optimal-lucky, OU-optimal-unlucky, SM-softmax,

GL-lucky-guess, SG-softmax-guess, SF-softmax-forgetful, SGF-softmax-guess-forgetful, R-

random. Error bars indicate 95% confidence intervals.

A a significant multiple linear regression predicts attributed intelligence based on op-

timality rank and block, F (2, 25) = 117.4, p < .0001 with an adjusted R2 = .896. The

predicted rating is equal to 4.961 − 0.462(rank) − 0.179(block), where block is coded as

1 or 2 and rank is given in Table 4.1. Optimality was a significant predictor or rating

(p < .0001), but not block (p = 0.11).

37



However, if the inference of efficiency is not available to the observer, could revisits

and steps be used as a heuristic for attributing intelligence? ANOVA of rank against

(revisits × steps) shows a significant effect of steps (F (1, 24) = 9.3630, p = .005) and of

revisits (F (1, 24) = 7.4435, p = 0.01), thus indicating the number of steps and revisits

could be used as a proxy to optimality. For example, forgetting leads to a longer route

and more revisits. A multiple linear regression predicting ratings based on revisits, steps

and block is significant, F (4, 23) = 7.152, p < .0001 with an adjusted R2 = .476. Predicted

rating is equal to 4.27 + 0.07(steps)− 0.29(revisits)− 0.5(block). However, neither steps

(p = .2), revisits (p = .1) nor block (p = .07) are significant predictors.

In summary, model-based optimality metrics explain some of the variance in human

attributions of intelligence better than perceptual outcome cues. However, model-based

optimality metrics also accurately predict the absence of a significant difference between

the ratings of lucky or unlucky optimal agents, in support of the efficiency hypothesis.

4.1.5 Discussion

The results of Experiment 1 validate the experiment design and support the efficiency

hypothesis. Participants appear to attribute intelligence in proportion to the agent’s ef-

ficiency, which measures how closely the agent approximates the optimal path. However,

the planning problems viewed by participants are simple, and it is unclear how intelligence

may be attributed if the participants themselves cannot efficiently approximate an optimal

trajectory in the agent’s task.

Although in practice people often revisit places while searching, forgetful agents in the

task were consistently judged as unintelligent. Given that the revealed areas of the maze

remain visible to the observer, the observer probably assumes that they are also visible to

the agent. In addition, forgetful agents make comparatively more revisits and take longer

paths, which introduces a dependency between planning accuracy and outcome. For this

reason, forgetful agents are not included in the subsequent experiment. Excluding forgetful

agents decreases the discriminating power of the optimality rank inferred according to

Model3. Other graded metrics of efficiency, such as decision noise inferred by fitting

SOFTMAX, and the fraction of optimal steps are more useful in that regard.
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In addition, in this experiment the agent always finds the goal. However, in many

real-life situations observers attribute intelligence having seen only brief examples of be-

haviour, without witnessing an outcome. For example, someone admitting a mistake is

more intelligent than a person insisting on being right; having a savings account is more

intelligent than buying a cell phone insurance. Such inferences occur because the observer

compares the statistical expectation of the consequences of the agent’s actions to that of

possible alternatives. To address this limitation the next experiment includes examples of

partial plans, in which the movie stops part-way, before the outcome is seen.

4.2 Experiment 2

The second experiment tests the efficiency hypothesis and the outcome hypotheses with a

more diverse selection of online participants. It includes examples of incomplete solutions,

in which the movie stops after the agent chooses one of the rooms, but before the reward

is found. Forgetful agents are excluded, which leaves four POMDP planners with varying

initial beliefs and decision noise: optimal, softmax, lucky-guess and softmax-guess. A

random model represents an agent that appears to move at random, though constrained to

reach the goal in the number of steps not greater than the average number of steps taken

by the other agents.

Complete trials are assigned three model-based efficiency metrics: an optimality rank

and decision noise τi inferred by the SOFTMAX model, and the fraction of optimal

steps, optstepi, where i indexes the trial. Agents’ efficiency is assumed to be proportional

to the fraction of their optimal steps, and inversely proportional to decision noise. In

addition, complete examples are assigned two outcome metrics: the number of steps and

revisits. Incomplete trials are labelled as optimal or suboptimal since they are too short to

generate an accurate inference of model-based metrics. The efficiency and outcome metrics

are independent, the number of steps and τi have no measurable correlation, Spearman

r = −.02, p = .94.

If participants attribute intelligence based on efficiency, they should rate optimal agents

higher, even if the outcome is not shown, and most of the variation in intelligence attributed
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to agents in complete trials should be explained by the agent’s efficiency according to model-

based metrics. If participants instead attribute intelligence based on outcome, there should

be no significant difference between their ratings of optimal and sub-optimal incomplete

trials, and most of the variation in intelligence attributed to complete trials should be

explained by the agent’s outcome. It is also possible that participants attribute intelligence

based neither on efficiency nor on outcome.

4.2.1 Participants

Thirty-two participants were recruited via Amazon Mechanical Turk, restricted to US

participants, 2 were discarded for failing to answer questions. The analysis thus included

30 participants (11 females, median age 34).

4.2.2 Stimuli

Forty animated movies were generated by 5 POMDP planners, including random, on 8

different mazes. The appearance of the agent, the layout, textures, the orientation of

each maze, the location of the goal, and the specific planning model used to generate

each movie are varied trial to trial. Movies are labelled according to the agent’s planning

model, and as ‘lucky’ or ‘unlucky’ according to the agent’s outcome, resulting in 8 condi-

tions: optimal-lucky, optimal-lucky, softmax, lucky-guess, softmax-guess, optimal-partial,

suboptimal-partial and random. The list of conditions is shown in Table 4.2.

Each of the optimal-unlucky, lucky-guess, softmax and softmax-guess conditions oc-

curred 4 times and optimal-lucky occurred three times. Two movies generated by the ran-

dom model constrained to 20 steps to match the average length of movies in non-random

conditions occurred two times as an attention check. Half of the trials were incomplete.

Of the incomplete movies, 12 showed a suboptimal decision (suboptimal-partial condition)

and 7 showed an optimal decision (optimal-partial condition).
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Rank Label

1 optimal-(lucky or unlucky)

2 softmax

3 lucky-guess

4 softmax-guess

5 random

suboptimal-partial

optimal-partial

Table 4.2: List of conditions along with their optimality rank.

4.2.3 Method

Participants read the instructions on a computer screen in a web browser, and viewed 4

familiarisation examples followed by 40 movies randomly sorted into two blocks to com-

pare early and late trials to see if ratings change over time. After viewing each movie,

participants selected a rating from a Likert scale between 1 (least intelligent) to 5 (most

intelligent). At the end of the survey participants were asked: How did you make your

decision?. Full instructions are available in the Appendix, and the set of stimuli is available

at http://www.cgl.uwaterloo.ca/~mkryven/attributionStimuliTurk.zip.

4.2.4 Results

The results are analyzed separately for complete and incomplete trials. For complete trials,

repeated measures ANOVA of rating 2 against (condition, steps × revisits, block) shows

a significant main effect of condition, (F (5, 11) = 53.1001, p < .0001). There were no

significant effects of steps (F (1, 11) = 1.8901, p = .196), revisits (F (1, 11) = 0.7212, p = .4)

or block p =, 7. The adjusted R2 of the regression model is .929. According to Tukey

HSD post-hoc test the difference between optimal˙lucky and optimal˙unlucky agents is not

significant, d = 0.47, p = .219, as well as the difference between lucky˙guess and softmax

agents is d = 0.57, p = .796. As in the first experiment, the random condition was judged

2These are mean ratings of each trial calculated between participants.
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as least intelligent (p < .0001). For partial trials, Welch Two Sample t-test indicates that

the ratings of optimal trials (M = 3.49, SD = 0.253) are not significantly different from

the suboptimal trials (M = 3.3, SD = 0.274), t(13.583) = 1.4726, p = .163. The mean

ratings of each condition are shown in Figure 4.4). In contrast to the first experiment,

there is not enough evidence to support the efficiency hypothesis. However, the result of

ratings of incomplete trials partly support the outcome hypothesis.
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Figure 4.4: Comparing ratings between the two groups OL-optimal-lucky, OU-optimal-

unlucky, SM-softmax, GL-lucky-guess, SG-softmax-guess, OP-optimal-part, SP-suboptimal-

part, R-random. Error bars indicate 95% confidence intervals.

Two Groups of Participants

The online participants in the second experiment might have preferred lucky agents. Al-

ternatively, they may have used more than one way of attributing intelligence. To find

out, we analyse their verbal responses. Two independent raters coded the participant an-

swers to the question ‘How did you make your decision?’ into two groups: outcome and

efficiency. Comments that fall into the efficiency group talk about looking for efficient

planning strategies that can minimise the agent’s cost over time, which corresponds to our

definition of efficiency. Comments that fall into the outcome group talk about the length

of path or the number of revisits on the current trial. For example, a response was coded

as efficiency if it said: ‘Based on if the mouse checked every nook and cranny.’ and as

outcome if they said ‘Based on how long it took for the rat to find the treat’.
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Figure 4.5: Spearman rank correlations of individual ratings with path length and with

model-based metrics coloured according to self-report as Outcome or Efficiency. Each

data-point corresponds to a participant.

The raters agreed on 27 out of 30 participants, coding 8 of them as outcome and 19 as

efficiency. The remaining 3 were assigned to the outcome group after a discussion, since

their comments were hard to interpret (for example Depends on if the mouse made logical

decisions with no backtracking.). The results that follow are not affected by the choice of

method for handling these 3 exceptions.

Another way to cluster participants is to plot a 2-dimensional space of Spearman rank

correlations of individual ratings with model-based and with outcome metrics. The model-

based dimension is represented by calculating the correlations of individual ratings with

optstepi or with τi. The outcome dimension is represented by correlations of individual’s

ratings with the length of each trial. The plots shown in Figure 4.5 situate participants

in the space of the two correlations. Each point represents a participant, coloured by the

individual’s self-report as ‘Outcome’ or ‘Efficiency’

Unsupervised clustering on the correlation space using a Gaussian Mixture Model

(GMM) [12] identifies two clusters of participants as more likely than three clusters or

one cluster (BIC of a one-component model −19.5418, two-component −30.0407 and three-

component −24.8234). Two-component GMM also coincides with the two groups of partic-

ipants independently coded as ‘Outcome’ or ‘Efficiency’ based on their free-form response

as to how they made their judgements. The 8 participants independently agreed on as
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outcome by both raters (using verbal measures) were also identified as belonging to the

outcome cluster by the two-component GMM. So, participants in the two groups attributed

intelligence in opposite ways: either based on the agent’s efficiency, or based on the agent’s

outcome.
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Figure 4.6: Comparing ratings between the two groups OL-optimal-lucky, OU-optimal-

unlucky, SM-softmax, GL-lucky-guess, SG-softmax-guess, OP-optimal-part, SP-suboptimal-

part, R-random. Error bars indicate 95% confidence intervals.

Next, we analyse the responses of the efficiency and outcome groups. The mean

ratings of each condition by group of participants are shown in Figure 4.6. For complete

trials, repeated measures ANOVA of rating against (condition× group) shows significant

effects of condition (F (5, 30) = 62.5010, p < .0001) and a significant interaction between

condition and group (F (5, 30) = 8.6635, p < .0001). The adjusted R2 of the regression

model is .894.

According to Tukey HSD the outcome but not the efficiency group rated lucky exam-

ples higher in terms of intelligence. The difference between the outcome group’s ratings

of optimal˙lucky and optimal˙unlucky agents is significant (d = 1.48, p = .0001) as well

as between ratings of guess˙lucky and softmax agents (difference 1.55, p < .0001). The

differences between the efficiency group’s ratings of the lucky and unlucky agents are not

significant. The difference between ratings of optimal˙lucky and optimal˙unlucky agents

is p = 1, and between ratings of guess˙lucky and softmax agents is p = 1. In summary,

the outcome, but not the efficiency participants preferred lucky agents regardless of their

planning policy.
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Next, we analyse the ratings of optimal and suboptimal (excluding the random agents)

agents by both group. For the efficiency group, Welch Two Sample t-test indicates that the

ratings of optimal trials (M = 4.4, SD = 0.19) are significantly higher from the suboptimal

trials (M = 3.99, SD = 1.1), t(16.128) = 3.8936, p = .001. In contrast, for the outcome

group the ratings of optimal (M = 3.95, SD = 1.25) and suboptimal (M = 4.1, SD = 0.8)

agents are not significantly different t(12.601) = 0.31079, p = .7. So, the efficiency, but not

the outcome participants prefer efficient agents regardless of their outcome.

For ratings of partial trials by the outcome group, Welch Two Sample t-test indicates

that the ratings of optimal trials (M = 3, SD = 0.645) are not significantly different from

the suboptimal trials (M = 3.1, SD = 0.487), t(10.039) = 0.47357, p = .6. In contrast,

ratings of partial trials by the efficiency group were higher for optimal (M = 3.7, SD =

0.14) than for suboptimal trials (M = 3.39, SD = 0.24) trials, t(16.982) = 3.9689, p = .001.

So, there is no evidence that participants who self-identify as attributing intelligence to

outcome rate optimal and suboptimal agents differently if the outcome is not observed,

which provides conclusive evidence in favour of attributing intelligence to outcome. In

contrast, those who self-identify as attributing intelligence to efficiency attribute more

intelligence to optimal decisions, even when they cannot see the outcome.

A linear regression was calculated to predict intelligence rating attributed by the ef-

ficiency group to full trials based on optimality rank (excluding the random agents). A

significant regression equation was found, F (1, 17) = 9.305, p = .007 with an adjusted

R2 = .3157. Predicted rating is equal to 4.339 − 0.153(rank), where rank is given in

Table 4.2. Optimality is a significant prefictor of rating (p = .005). Intelligence at-

tributed by the efficiency group may be also explained by τi. Calculating a polynomial

regression to predict ratings of full trials based on τi results in a significant equation

F (2, 16) = 8.243, p = .003, with an adjusted R2 = .4459. Predicted rating is equal to

4.14474 − 0.64333(τi) + 0.66787(τ 2i ). Both τ (p = .01) and τ 2 (p = .048) are significant

predictors of rating. In contrast, a linear regression of rating against steps × revisits is

not significant, F (3, 15) = 0.1585, p = .923.

A linear regression of intelligence attributed by the outcome group to full trials based on

optimality rank (excluding the random agents) is not significant, F (1, 17) = 1.118, p = .3 as

well as the polynomial regression of rating based on τi, F (2, 16) = 1.116, p = .4. However,
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a significant linear regression equation was found predicting ratings of the outcome group

against steps × revisits, (F (3, 15) = 32.99, p < .0001, Adjusted R2 = .842). Predicted

rating is equal to 6.336 − 0.133(steps) − 0.36(revisits). Only steps (p = .002) but not

revisits (p = .08) were a significant predictors. In summary, the ratings of participants

in the efficiency group can be predicted by the model-based metrics, supporting the

efficiency hypothesis. However, the ratings of participants in the outcome group are

better explained by outcome. 3

4.2.5 Discussion

Converging evidence from model-based statistical analysis and verbal responses reveals

participants used two different methods for attributing intelligence: attributing intelligence

to efficiency, and attributing intelligence to outcome (Figure 4.6). While the majority (19

participants) rated more efficient solutions as more intelligent, a minority relied instead

on outcome. Attributing intelligence to outcome was not observed in the first experiment.

However, MTurk participants are likely to exhibit a wider variety of behaviours.

How should we explain attributing intelligence to outcome? Participants in the out-

come group may not understand the agent’s task and fall back on counting the number of

steps. To address this limitation subsequent experiments described in this thesis include

an instruction quiz. The responses of participants who fail to answer the quiz correctly are

not analyzed.

In addition, participants may attribute intelligence based on prior experience with other

humans, and find it difficult to interpret model-generated behaviours. If so, participants

could apply the outcome heuristic to behaviours that they have difficulty interpreting and

attribute high intelligence to any behaviour they can rationalise as opposed to just the

optimal strategies. For example, an observer might think: ‘I see why someone would

search that way, so this agent is intelligent.’ or ‘That does not make sense.’. If so, then

3The relationship between the ratings of each group and model-based or outcome metrics can be also

shown by calculating simple Pearson correlations.
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participants should rate all behaviours generated by other humans equally. Conversely,

observers who attribute intelligence to efficiency should rate trajectories in proportion to

their model-based efficiency metrics. To address this limitation in Chapter 6, participants

evaluate behaviours generated by other humans.

Moreover, the efficiency hypothesis implicitly assumed that people can generate the

optimal strategy. But what if the optimal strategy is not available to the observer? Ac-

cording to Simulation Theory participants could use themselves as a model for evaluating

others, in which case people who plan sub-optimally should attribute high intelligence

to other sub-optimal planners (e.g. If I play lottery I should think that playing lottery is

smart.) as opposed to just the lucky sub-optimal trajectories. In contrast, participants who

specifically attribute intelligence to outcome, should rate only lucky sub-optimal agents as

intelligent. At the same time, even participants who attribute intelligence to efficiency may

judge others might depend on the basis od their own planning skills. Young children, for

example, attribute goals to reaching actions only if the action is known to the child: an

experimenter pulling on the tablecloth to get a duck makes sense to an infant only after

the infant acquires the pulling action [103]. If participants’ judgements of intelligence are

limited by their own planning ability, participants in the efficiency group should attribute

more intelligence to efficiency in proportion to their own planning ability. The experiment

described in Chapter 6 tests this hypothesis and compares the individuals’ planning to

their attributions of intelligence to others.
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Chapter 5

An Empirical and a Model-Based

Study of Planning Under Uncertainty

Misce stultitiam conciliis brevem

Horace

Might the variability in individual planning explain the variability in attributing intel-

ligence? The efficiency hypothesis implicitly assumes that participants are able to generate

the optimal trajectory given simple mazes. But how likely are participants to plan effi-

ciently? On one hand participants’ ability at attributing intelligence to efficiency might

critically depend on their planning skills. If so, participants who attribute intelligence to

outcome might lack the ability to produce an efficient solution themselves and fall back

on outcome as a heuristic. On the other hand, participants could use themselves as a

reference for predicting how others plan. If so, participants who plan sub-optimaly should

evaluate other sub-optimal planners highly, not just the lucky ones. The experiment de-

scribed in this chapter measures human planning using a maze planning task, similar to

the agent’s task in Chapter 4, with a difference that participants control the agent search-

ing the maze. The results inform an empirical model of human planning and illustrate

variability in participants’ ability to approximate optimal planning.
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The POMDP-based framework described in Chapter 3 formalises rational planning and

can be used to measure planing efficiency (e.g. by inferring the level of decision noise that

can explain a particular trajectory). However, in a general case, solving a planning proce-

dure by a POMDP fully is computationally intractable [62]. In practice people are likely

to use heuristics to balance computation cost against expected utility [74, 44]. Most for-

mal models of searching in natural environments deal with this complexity by interpreting

search as step-by-step information sampling [78, 77, 85, 86], in effect planning one step

in advance. For example, models of searching hypothesis spaces in active learning [78]

and Bayesian Ideal Observer models [85] reward the agent for maximising the information

gained (IG) one step at a time. In addition, novelty preference models, common in robotics,

directly give the agent small rewards for taking novel actions [15, 11, 26]. At the same

time, it appears counter-factual reasoning that seems to accompany natural behaviour is

not represented by IG-based models, making them an unlikely candidate for explaining

how humans actually search.

Previous work on exploratory search shows that mental and spatial search engages a

shared cognitive mechanism: for example priming strategies of spatial foraging affects how

humans subsequently search for words in memory [55]. This suggests that there may be a

shared cognitive resource that handles planning under uncertainty as well, so as to enable

knowledge transfer across domains. However, so far there has been little work on decision-

making models that could explain human planning under uncertainty and make falsifiable

quantitative predictions of behaviour.

An empirical model of human planning should be informed by quantitative empiri-

cal evidence. In general terms, such a model should predict the observed distribution of

decisions, explain the variability between individuals and the relative decision difficulty re-

flected by decision times of human participants. The next Section outlines the experimental

methodology, using which we empirically calculate the three metrics. The result of fitting

the POMDP-based framework to human trajectories shows that participants rarely plan

optimally, however the probabilities of taking each action are proportional to model-based

estimates of action value. Model-free RT distribution analysis shows that participants sub-

divide planning problem into sub-problems with nodes at observations and plan more than

one observation in advance.
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5.1 Method

How might a rational agent form a plan in a maze planning problem? Optimal planning

algorithms in machine learning compute a policy that prescribes a decision for each state

before moving. Once the policy is computed, the algorithm simply rolls out the policy,

matching pre-computed behaviour to the states it encounters [110]. If participants employ

a pre-computed policy, they spend a long time thinking during the starting state, with only

small differences in reaction times through the rest of the trial, caused by searching for the

goal at observation locations.

In contrast, current formal models of search under uncertainty assume decisions to be

made step-by-step, which in the context of the maze task means planning one step at a

time in every cell, or planning each time new information is gained (one observation at

a time). If participants make decisions one step at a time then the time spent in a cell

should depend only on the number of exits leading out of the cell and on visual search.

If participants consider decisions one observation at a time, then the time spent in a cell

should depend only on whether this cell reveals new observations, and the number of exits,

but not on subsequent observations.

Moreover, participants might balance the computational costs associated with planning

by planning several observations ahead and by evaluating a subset of actions in each state.

If participants evaluate all available options, then the mental effort measured as decision

time should increase with the number of exits. If participants decide between at most

two options, then the mental effort should not depend on the number of exits from a cell.

There also may be individual differences between participants, with some planning further

in advance or subdividing the space differently.

Each planning decision, such as deciding which way to go in a maze, requires a way

of estimating the values of the available actions. For example, a participant might think:

‘I should go North then South because the northern room is bigger’. Participants might

estimate the values of actions by visually scanning the maze for a route that lets them

see the most space quickly, or engage in mental arithmetic balancing steps against cells

revealed. The hidden value estimates made by participants can be measured indirectly

through empirical probability of taking an action, since we assume that participants prefer
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more rewarding actions. And when modelling the planning procedure formally, an accurate

planning model should produce objective value estimates proportional to the empirical

action values of human participants.

In addition, the relationship between empirical action value and decision time might

be informative about the nature of computations driving decisions. According to Drift-

Diffusion Models (DDM) of decision-making, actions with higher value should be chosen

faster [129, 29]. So, assuming that action likelihood measures the hidden action value

estimate, highly likely actions should elicit faster RT. Moreover, according to DDM the

choice is easy when the difference between action values is large, since a larger difference

in values translates to a steeper ‘drift’ [129, 29]. So, RT should be proportional to the

differences between the empirical probabilities of actions in a state.

Next, we turn to collecting empirical data: trajectories of human participants, empirical

likelihoods of actions in each state and reaction times during the task. Using empirical

evidence allows us to test and falsify the above assumptions.

5.1.1 Procedure

Participants are instructed to find a hidden goal location (‘exit’) in a series of mazes, by

controlling an agent inside a maze. Each maze consists of a grid of cells, where each cell is

either a space or a wall. The agent can move one grid cell at a time: N, W, S, E and has a

view of the maze limited by walls. Each of the non-wall cells can contain the exit. Spaces

that are obstructed by walls are not visible to the agent. Participants must navigate the

maze until the exit is found, which may be not until all spaces are seen. Upon reaching

the exit the trial automatically terminates.

All walls are visible at the start of the trial, so participants initially know the layout

of the rooms, but not the location of the goal, which is marked as a bright red circle once

visible. Participants are instructed that each of the dark cells is equally likely to hide the

‘exit’, and that they should find it in as few steps as possible. The full set of instructions

is listed in the Appendix.

After reading the instructions, participants complete three practice mazes and answer
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instruction-comprehension questions. Participants who fail to answer the instruction-

comprehension questions correctly proceed with the experiment, but their responses are

discarded. The participants’ reaction time (RT) (the time to move from one cell to an-

other) and trajectory is recorded on each trial. At the end of the experiment participants

are asked how they made their decisions.

5.1.2 Participants

A total of 120 participants were recruited via Amazon Mechanical Turk, restricted to US

residents, 46 female and 74 male, mean age 33, SD=10.13. Half of the participants did the

experiment in the Bonus condition, in which the top 20% of participants received a bonus

for finishing with the lowest total step cost. The other half in the No Bonus condition

received no bonus. Bonus was intended to motivate attention, as is common practice with

online participants [79].

The exclusion procedure involved an instruction quiz and an automated check for mul-

tiple answers coming from the same IP address. Ten participants were excluded for failing

to answer quiz questions and five more because they were generated by one person with

multiple MTurk accounts 1. Experiments received ethics clearance from a University of

Waterloo Research Ethics Committee and from an MIT Ethics Review Board. The full

experimental procedure and the set of stimuli used in this and subsequent experiments can

be downloaded from http://www.cgl.uwaterloo.ca/mkryven/solving/int.php

5.1.3 Stimuli

The test stimuli are the 12 mazes, shown in Figure 5.6.
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Figure 5.1: Examples of mean reaction time (RT) heat-maps in each of the visited maze

locations. Note that the heat-maps are approximate, since the median RT is calculated

independently of whether the cell is visited for the first time or revisited, however RT are

shorter upon revisits. Longer reaction times are mapped to a more saturated red hue.

5.2 Results

5.2.1 Model-Free Analysis

Planning Depth and Planning Breadth

RT shorter than 200ms were removed, since they are likely accidental [75], removing 0.25%

of responses. Another 0.25% of responses longer than 10 seconds are also removed. We

assume that RT is a sum of a normally distributed non-decision time, such as time to

perform a click, and decision time. The decision time varies with decision difficulty, while

the non-decision time depends only on participant due to factors such as age, gender other

participant-specific effects [37]. Informally, median RT appears to be longer in certain

maze locations, as shown on Figure 5.1.

If the participant effect on non-decision time is significant, then the data needs to

be normalised to reduce the participant effect. To test for participant effects on non-

decision time we select a subset of RT in cells in which no observations were revealed,

1It is possible that two different MTurk workers use the same IP address. However, the person also

gave the same answers to demographics each time he repeated the experiment and took fewer steps on

each re-run.
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rtNoObs. From this subset we recursively remove outliers more than two SD from the

mean [119] to maximise the accuracy of ANOVA [141]. ANOVA of rtNoObs against (bonus,

agegroup, gender, participant) shows significant effects of all factors, where age group is

coded by dividing participants into two equal groups (younger and older) by a median split.

The effect of bonus is F (1, 6781) = 56.718, p < .0001, of age F (1, 6781) = 241.468, p <

.0001, of gender F = (1, 6781) = 105.079, p < .0001 and of participant F (85, 6781) =

46.186, p < .0001. According to Tukey HSD the difference between the No Bonus and

Bonus condition is (d = 11ms., p < .0001), between older and younger participants (d =

22ms., p < .0001) and between females and males (d = 15ms., p < .0001). Mean of the

median participant’s RT in no-observations states is 397ms. SD=59ms.

Assuming that the participant effect is linear and additive, it can be reduced by sub-

tracting each participant’s median RT in no-observation cells from their data. Repeating

the same ANOVA on the normalised data shows significant, but smaller, effects of gender

(F (1, 6626) = 15.8064, p < .0001), age (F (1, 6626) = 5.9892, p = .01) and participant

(F (85, 6626) = 4.2449, p < .0001) and no effects of bonus (p = .9). After normalisation

mean of the median participant’s RT in no-observations states is 0ms, SD=18ms. Although

normalisation significantly reduces the participant effect, the actual effect turned out to

be non-linear, so residual participant effects remain in the normalised data.

Decision times might depend on observations, the visible area of the maze and the

agent’s location in the maze. To test for differences in mental processing between maze

locations, the steps in each path were coded based on the function of the location in the

path, as shown in Figure 5.2. Observation states are states labelled ‘D’, ‘O’ and ‘G’. An

‘O’ state is associated with decision-free observations, such as looking around a corner. In

a ‘G’ state the goal first becomes visible and all that remains is to approach it. A ‘D’

state requires a decision regarding which way to go (e.g. an intersection). An ‘X’ state is

the starting state, when the participants first sees the maze. The differences between RT

distributions in each state reveals different in demands on mental processing arising during

the task.

Since the RT distributions are clearly not Gaussian (see Figure 5.2), t-test validity is

limited. Neither is the RT distribution log-normal, according to Kolmogorov-Smirnov Test

(D = 0.71567, p < .0001). Median RTs in each state are as following: In ‘N’ states Mdn =
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Figure 5.2: Left: Maze location codes: X - the starting state , N - non-observation states,

O - observation, no planing required, D - decision state, G - the goal is observed. Right:

distribution density of RT mean-subtracted by participant in each type of cells.

427ms, in ‘G’ states Mdn = 765ms, in ‘O’ states Mdn = 850ms, in ‘D’ states Mdn =

1036ms, and in X states Mdn = 1426ms The significance of the differences between RT

distributions between states is demonstrated by MannWhitney tests, which do not assume

normality. Four pairwise Mann-Whitney tests indicate the following differences in RT: in

‘G’ states RT was greater compared to ‘N’ states (d = 308ms,W = 1500600, p < .0001);

in ‘O’ states RT was greater compared to ‘G’ states (d = 95ms,W = 946320, p < .0001);

In ‘D’ states RT was greater than in ‘O’ states (d = 161ms,W = 1574000, p < .0001); In

‘X’ states RT was greater than in ‘D’ states (d = 450ms,W = 903000, p < .0001). This

result rejects the hypothesis that participants plan their actions one step at a time.
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To calculate the cost of visual search for the goal, we select RT in observation states

(‘O’ and ‘D’) and remove outliers greater than 2 SD away from the mean. For the re-

maining data-set (Mdn = 868ms, sd = 389) a significant regression equation was found,

F (1, 3561) = 9.046, p = .003 with an adjusted R2 = .002. Predicted RT is equal to

871ms+ 12.6ms×n, where n is the number of revealed cells. Thus, the difference between

RT in ‘O’ and ‘N’ states is too large to be explained by visual search for the target, and

thus must be due to planning the next steps.
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Figure 5.3: Mean RT by number of revealed cells.

In addition, we expect visual search in ‘G’ states to be easier than in ‘O’ states. In ‘O’

states participants process the entire revealed space because the exit is not seen. In ‘G’

states search terminates early once the exit is noticed. The observed difference between

RT in ‘O’ and ‘G’ states is too large to arise from differences in visual processing, and

so must reflect the differences in planning costs. Thus, pre-computed policy hypothesis is

rejected, since the differences between RT in observation and non-observations states are

too large to be explained by visual search for the goal.

In summary, RT analysis shows that participants make some of the decisions as they

go along and mostly plan at observation locations, treated as decision nodes. While it is

evident that participants plan their path from one observation to the next, they might plan

more than one observation in advance. Participants may also prune unpromising decision

options and evaluate only the a subset of alternative trajectories.

A ‘D’ state can have at most four exits (N,E,W,S), of which participants may evaluate
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Figure 5.5: RT tends to increases with the number of exits.

only a subset. Participants might restrict their choices to the two most promising actions or

use only exits that do not go backwards. For example, Figure 5.4 shows that participants

rarely use all of the exits available in a cell, possibly pruning unpromising alternatives.

But even if certain exits from a state are never used in practice, participants might be still

considering every option, as may be evident from analysing their RT.

To test whether RT depends on the number of exits, observation and non-observation

states are analysed separately. First, we consider ‘D’ states after removing outliers greater

than 2 SD away from the mean (Mdn = 1001ms, SD = 606) linear regression of RT

against exits is significant (F (1, 2349) = 46.89, p < .0001) with an adjusted R2 = .019.

Predicted RT is equal to 733ms+127ms×e, where e is the number of exits. For ‘O’ states

after removing outliers greater than 2 SD away from the mean (Mdn = 818ms, SD = 371)
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linear regression of RT against exits is significant, (F (1, 1493) = 42.07, p < .0001) with an

adjusted R2 = .0268. Predicted RT is equal to 687ms + 76ms × e. For ‘X’ states after

removing outliers greater than 2 SD away from the mean (Mdn = 1358ms, SD = 651)

linear regression of RT against exits is significant, (F (1, 473) = 18.15, p < .0001) with an

adjusted R2 = .0349. Predicted RT is equal to 1187ms+336ms× e. Distribution densities

of the data used in the above analysis are shown on Figure 5.5. In contrast, in non-

observation states, excluding dead-ends (states with only one exit) and outliers greater

than 2 SD away from the mean, linear regression of RT against exits is not significant

(p = .14).

In summary, in observation states RT increases with the number of exits, suggesting

that on average participants evaluate all actions available in a state. In contrast, no such

relationship is evident in non-observation states, and so non-observation states are rarely

used for planning. Most real-life planning problems involve more than four possible actions

in a state, in which case it is unlikely that people evaluate all actions; the result described

above is specific to our planning problem and more research in needed to understand how

planning breadth scales in the general case.

Moreover, since the RT distributions in observation and non-observation states overlap,

it is likely that observation states are also used to roll-out pre-planned actions, suggesting

that participants plan more than one observation in advance. In addition, there may be

differences between individuals not apparent in the averaged data.

One Observation Model

To examine the hypothesis that participants plan one observation in advance, we define

a heuristic that considers costs and rewards one observation node at a time. Assume

decision state S has at most four exits: N,W,S,E. Exit i, i ∈ N,W, S,E reveals ni squares

after si steps. The One Observation Model (OOM) chooses the direction with the highest

value ni − ksi, where k is an unknown cost coefficient. Choosing 2 < k < 3 fits 75% of

the individual decisions made by participants. Seven out of 12 solutions produced by the

fitted OOM agree with the majority solutions shown on figure 5.6. However, the remaining

5 OOM solutions shown on Figure 5.7 capture neither the majority solution, nor the most
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Figure 5.6: Examples of paths taken by participants. The solid line shows the average path.

The dashed arrow shows the second most common alternative. The first three images are

practice mazes.

common alternative. Thus, OOM can not explain participant’s trajectories, which rejects

the hypothesis of planning one observation at a time. 2

Observation Decision-Tree Model

Participants conceptualise mazes in terms of observations rather than steps and plan their

actions several observations in advance. When first seeing the maze participants might

identify the observation states, approach the first observation point, at which point they

must reason about uncertainty. Participants might either complete the entire plan while

2An alternative one-step heuristic with action value equal to ni/ksi predicts that the chosen actions

are better than the best alternative, nc/sc > na/sa. Since cost must be positive, k > 0. However, only

62% of decisions made by participants satisfy this constraint.
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Figure 5.7: Solutions of the OOM heuristic that are different from the POMDP-based

solution.

at the first observation state, plan a limited number observations ahead, or revise their

plan at each observation.

Participants are likely to think of each observation as associated with a cost, how far

away is it, and a reward, how many cells does it reveal. Such reasoning can be formalised

by a decision tree with decision-nodes at observation states. Each observation state is

associated with a cost in steps si and a number of revealed cells ni as a reward, where i

indexes observation states. The full decision tree of a maze includes all possible trajectories

such that eventually lead to revealing the entire space. Each node is associated with

a reward, which is a function of the path length from the root until the node and the

revealed cells. The optimal trajectory goes from the root of the full decision tree to the

leaf with the highest reward.

If all planning is completed at the first observation state, then RT at the first observation

state should be long, while in subsequent states RT should be not different from ‘G’ states.

In contrast, if participants do some planning at each observation, then RT in ‘D’ states

may decrease with each subsequent observation, but should be always longer than in ‘G’
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Decision Depth

Figure 5.8: Mean RT by decision number.

states.

To test whether most planning is completed at the first observation state we label each

decision with its position in the path. The first decision state in a path is labelled ”1”, the

second decision state is labelled ”2” and so on. The mean RT by decision number after

removing outliers 2 SD away from the median are shown on Figure 5.8. A significant linear

regression of RT against decision number was found, F (1, 920) = 62.87, p < .0001 with

adjusted R2 = .0312. Predicted RT is equal to 1384ms − 108ms × d, where d is decision

number. According to Mann-Whitney tests, there is a significant difference between RT

in ‘D’ state at the fourth decision and ‘G’ states (d = 183ms,W = 55223, p < .0001), but

not at the fifth decision (p = .5).

In summary, planning effort increases with the depth of the planning sub-tree that

remains to be traversed. With each subsequent observation the difficulty of the problem

decreases, requiring lass mental effort. However, mental effort spent in D states is nearly

always greater than in ‘G’ states, suggesting that participants update their plan every time

new evidence is received. Possibly, updating leads to a greater confidence over the planning

policy, or participants might plan only up to a limited observation depth and update the

plan as one goes along.

One way to implement an observation decision tree is the N-Observation Model (NOM),

which applies OOM recursively. NOM builds a maze decision tree and chooses the leaf with
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the highest value of
∑i=N

i=1 ni− k
∑i=N

i=1 si, where k is an unknown cost coefficient, ni is the

number of revealed cells at each node and si is the number of steps from one node to the

next. NOM is equivalent to minimising the length of path that reveals the entire maze

and predicts the majority trajectories shown in figure 5.6, however, deviations from the

majority trajectory remain to be explained.

The Empirical Action Probability

Assume a state S is visited by N subjects and {nw, ne, nn, ns} are the number of subjects

taking each of the actions {W,E,N, S} respectively. The variability of choices in each

state is described by empirical action probability, calculated as:

Pri =
ni
N
, i ∈ {E,W,N, S} (5.1)

The average path taken by participants in each maze, defined as the sequence of most

likely actions in each cell, is shown in Figure 5.6 by a solid red line. The average path

is also equivalent to the path taken by the majority of participants. The most common

alternative solution is the dashed blue line shown for comparison.

Assuming that empirical action probability measures the hidden action value, we test

two predictions of DDM: that highly likely actions elicit faster RT and that RT is propor-

tional to the differences between action values. The differences between action values can

be measured as entropy over action probabilities :

(5.2)E(S) = −
∑

I∈{E,W,N,S}

Pr(I)log(Pr(I))

As shown in Figure 5.9, highly likely actions are indeed taken faster (Pearson

r = −.28, p < .0001), and high entropy states elicit longer RT (Pearson r = .42, p < .0001),

in agreements with DDM predictions.

The next section discusses model-based analysis of the individual trajectories and the

average solution in the light of the formal POMDP framework described in Chapter 3.
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Figure 5.9: Higher entropy states elicit longer RT. RT is faster for highly likely actions.

Bands indicate 95% confidence intervals of the linear model.

5.2.2 POMDP-Based Inference

By fitting the POMDP-based model as described in Chapter 3, each solution is assigned

model-based planning accuracy metrics: decision noise, SOFTMAX τp,j, and fraction of

optimal steps optstepp,j. Here p refers to participant and j is the trial. A solution (p, j)

labelled as optimal if τp,j = 0, softmax if τp,j > 0, and softmax0 if τp,j > 0 and the trial

included zero-valued actions. Importantly, participants who produce POMDP-optimal

solutions do not necessarily implement an internal POMDP, since there may be other

methods that give the same result.

For each participant we calculate model-based metrics of planning accuracy: the

fraction of optimal steps taken by the participant, optstepp, and the mean decision

noise inferred from the participant’s solutions, τp. On average individuals took 84% opti-

mal steps ( standard deviation 5.9%) and made 75% optimal decisions at decision points

(‘D’ states) (standard deviation 8.6%). There was no evidence of a difference between the

fractions of optimal steps t = −0.6204, p = .5 of participants in the Bonus and the No

Bonus conditions.
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Table 5.1: Model-based inference over individual trials.

optimal softmax softmax0

Bonus 45% 48% 7%

No Bonus 45% 39% 16%

The average paths taken by participants, shown in Figure 5.6, are identical to the opti-

mal solution. Individual solutions are optimal on 45% of the trials (Table 5.1). The most

common non-optimal solutions taken by participants are shown by the blue dashed lines in

Figure 5.6. Non-optimal decisions may minimise cognitive effort, with some participants

more inclined to save effort than others. Alternatively, participants may make non-optimal

decisions intentionally, because of mistaken assumptions that the experimenter is trying to

trick them.

5.2.3 Variability Between Individuals
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Figure 5.10: Participants self-describing as thinking (right) were more optimal than those

self-describing as guessing (left)

Participants’ self-reported reasons for their decisions offer insight into their decision-

making. Inspecting the answers, it appears that some participants preferred words referring

to intuition, feelings and guessing, suggesting that they generated their solutions by a more
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intuitive approach. In contrast, other participants self-reported as generating solutions by

cognitive effort and deliberate optimisation. Two independent raters coded all responses

into two categories: thinking and guessing. The raters agreed on 90% of participants,

coding 45 of them as thinking and 37 as guessing. For example, a response was coded

as thinking if it read: ‘I tried to maximise the number of squares revealed per step.’

and as guessing if it read ‘I followed my gut. The remainder were discarded from the

analysis. The results that follow are not affected by the choice of method for handling

these participants. According to a Welch two sample t-test, participants who self-described

as thinking on average made more optimal steps (M = 0.87, SD = 0.06) (t(79.978) =

5.5898, p < .0001) than those who self-described as guessing (M = 0.81, SD = 0.05).

Likewise, considering only ‘D’ states, participants who self-described as thinking were

more optimal (M = 0.79, SD = 0.084) (t(78.668) = 4.8318, p < .0001) than those who

self-described as guessing (M = 0.71, SD = 0.06) (Figure 5.10).

5.2.4 Guessing

What do participants mean by ‘guessing’? One way to interpret ‘guessing’ is deciding

by chance, making decisions indistinguishable from choosing at random. Alternatively,

guessing can mean approximating decision value by choosing actions with the likelihood

proportional to their reward, as modelled by a softmax rewards (section 3.2.3). It is also

possible that some of the participants who self-describe as guessing decide at chance, while

others approximate decision value.

To identify participants who decide at chance, each individual’s decisions were fitted

to the Bernoulli distribution. The Bernoulli distribution describes binary choices, so each

decision in a ‘D’ state was coded as ‘1’ if the person chose the optimal action (computed

by the POMDP model described above) and ‘0’ otherwise. If a participant was as likely to

make the optimal move as any other move, then the participant is considered deciding at

chance. Such a test provides an upper bound estimate of guessing at chance, since most

‘D’ states have more than two exits. As a result, 15 participants were identified as deciding

at chance, 9 of whom were previously coded as ‘guessing’ and 6 as ‘thinking’.

One might expect that participants who guess might well make their decisions by a
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Figure 5.11: Fractions of decisions explained only by optimal POMDP, only by OOM, by

both models and by neither model.

heuristic, compared to those who plan. However, participants who self-reported as ‘think-

ing’ are better fitted by a OOM model than those who were ‘guessing’, t = 4.2777, p <

.0001. On average ‘thinking’ participants made 82% of OOM-fit decisions, and ‘guessing’

made 74%. Thus, in the context of maze planning, guessing can be explained neither by

deciding at chance, nor by limiting one’s planning horizon to one observation at a time.

Comparing the OOM and the optimal POMDP as shown on Figure 5.11 shows that

the two models agree in most cases. However, OOM can not explain full trajectories as

well as the POMDP model, suggesting that participants plan more than one observation

node in advance.

Action Values and Action Likelihoods

Next, we test the assumption that the model-based action values are proportional to em-

pirical action likelihoods. Figure 5.12. 3 shows that in ‘D’ states model-based action values

and action likelihoods are indeed correlated, Pearson r = .35, p < .0001.

The difference between the two best actions and the likelihood of choosing the better

action are correlated as well (Figure 5.13), Pearson r = −.23, p = .002, so participants are

3The model-based values depend on γ, here γ = 0.6.
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Figure 5.12: The relationship between model-based action values and empirical action

likelihoods. Left: all states. Right: only ‘D’ states.
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Figure 5.13: Left: action values plotted against empirical RT. Right: the difference between

the two highest model-based action values and likelihood of choosing the better action.

more likely to choose optimally when the difference is action values is higher. In addition,

actions with a higher value are chosen faster (Figure 5.13, left), Pearson r = .13, p < .0001,

however, there is no evidence of a relationship between the difference in values and RT,

p = .9.

The softmax function described in Chapter 3 select actions with likelihood propor-
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Figure 5.14: Left: Softmax of the model-based action values plotted against RT. Right:

Softmax of the model-based action values is highly correlated with action likelihood.

tional to their value by transforming values as probabilities. The parameter τ controls

the degree of values normalisation. For example, for τ = 0.1 softmax(0.1, 0.5, 0.1, 0.0) =

(0.018, 0.958, 0.018, 0.006), and for τ = 0.05 softmax(0.1, 0.5, 0.1, 0.0) = (0.0003, 0.9993, 0.0003, 0).

The softmax model fits the data quite well, with the highest Pearson correlation r =

.83, p < .0001 for τ = 0.01 (Figure 5.14, right). Actions with a higher softmax value are

chosen faster (Figure 5.14, left), Pearson r = .23, p < .0001 and lower levels of decision

noise are fitted more often than higher levels (Figure 5.15).
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Figure 5.15: Frequency of different levels of τ fitted to individual solutions. Optimal

solutions correspond to τ = 0.
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Figure 5.16: Left: Normalised model-based action values plotted against RT. Right: Nor-

malised model-based action values are highly correlated with action likelihood.

A simpler alternative to softmax is to normalise all actions in a cell. Such a normalising

transformation may be considered a linear version of softmax:

{v′

w =
vw∑
vi
, v

′

e =
ve∑
vi
, v

′

n =
vn∑
vi
, v

′

s =
vs∑
vi
}. (5.3)

The normalised values explain the action likelihoods and RT equally well, Pearson

r = .83, p < .0001 (Figure 5.16, right) and with RT is r = .23, p < .0001 (Figure 5.16, left).

In conclusion, empirical action likelihoods can be explained by a softmax mapping or by a

normalisation of model-based values, so that the likelihood of selecting an action is indeed

proportional to the action rewards.

5.3 Discussion

The research described in this chapter gathers empirical evidence to describe an empirical

model of how people plan. Fitting the POMDP-based framework to empirical evidence

shows that the optimal POMDP-based model rarely predicts individual planning. However,

the model is useful for defining model-based metrics of planning efficiency, which measure
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how closely individuals approximate the optimal plan. According to model-based metrics

participants who self-report as thinkers more closely approximate optimal planning than

participants who guess. However, self-attributed descriptions are only approximately ac-

curate, since efficiency metrics of the ‘thinking and guessing groups overlap. On one hand

people may believe their actions to be more rational then they are. At the same time,

people may self-describe as ‘guessing’, simply because they have no conscious awareness of

their thought process, and not because their actions are independent of value.

Empirical analysis of reaction times shows that participants divide planning into sub-

problems tied to observations. A planning problem requires the participant to plan se-

quences of steps leading from one observation to the next as well as a sequence of decisions

that specify the order in which observation cells are visited. On average participants eval-

uate all of the at most 4 of the available exits from an observation state. The average

trajectory produced by participants coincides with the optimal trajectory generated by

the optimal POMDP planner. However, this result does not mean that given arbitrary

mazes the average path taken by participants will always be optimal - only that given

simple mazes such as these, the average path that humans take requires reasoning several

observations in advance. Based on the current results, accurately quantifying the limits of

planning breadth and depth will require more complex mazes.

Whenever trajectories generated by participants are not optimal, such trajectories can

be explained by a softmax mapping of model-based action values to empirical action prob-

abilities. Assuming that empirical action probabilities reflect the average hidden value

estimates made by participants, human value estimates approximate action values gener-

ated by the POMDP framework. In addition, human choices are also likely to be affected

by decision difficulty, reflected by the depth and breadth of the planning planning problem.

The relationship between the strength of mapping of action values to probabilities and the

difficulty of the planing problem remains to be explored.

Participants could also implicitly interpret the planning task in a social context, think-

ing of the experimenter as an adversary who is hiding the exit. If so, participants might

think that the adversary would place the exit in the last cell an optimal agent would look.

To test if participants expect to be tricked, we must reason about 5 types of planners:
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• L0: Non-recursive optimal agents with uniform initial beliefs.

• L0: Non-recursive softmax agents with uniform initial beliefs.

• L1: Recursive optimal agents with one level of recursion. An L1 agents assume that

the exit is hidden in the last place that an L0 agent will look.

• L2: Recursive optimal agents with two levels of recursion. An L2 agent believes that

the exit is hidden in the last place L1 or L0 will look.

• L3: Recursive optimal agent with two levels of recursion. An L3 agent believes that

the goal is hidden in the last place an L0, L1 or L2 will look.

Recursion is costly, so for participants who use recursive reasoning the number of trials

fitted by L1, nL1 should be greater than the number of trials fitted by L2, nL1 and nL2 > nL3

.

The choice and reaction time data collected in this experiment can be also interpreted

as a Drift-Diffusion Model (DDM) [129, 94]. A DDM interprets decision-making as a

process of accumulating evidence for each choice over time, until enough evidence for one

option is reached. When applied to value-based decision-making, such models assume that

the decision is the result of integrating value computations [129]. DDMs predict that the

choices are sensitive to relative differences in values, but not to absolute value.

DDMs take longer to decide between options relatively close in value, which is indeed

observed in our results. RT and the difference in model-based values is anticorrelated,

Pearson r = −.2, p < .0001. A second prediction of DDMs is that the likelihood of

choosing the lesser option is higher when choosing between options close in value, which is

evident in Figure 5.13. Fitting a DDM entails fitting two parameters to each choice: the

evidence accumulation rate, µ, and the diffusion coefficient, σ. The parameters probably

differ between individuals and between thinking and guessing groups.

The results described in this chapter provide a set of human solutions, which can be

used to study attributed intelligence. The construct validity of the intelligence attribution

task would be stronger if participants rated actual humans rather than model-generated
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behaviours. At the same time, the described maze-planning task can be used to measure

individual planning efficiency as a proxy for individual planning ability. The next chapter

combines the planning task and the intelligence attribution task described in Chapter 4 to

look for an effect of planning ability on attributing intelligence to others.
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Chapter 6

Planning Ability Predicts Attributed

Intelligence

Chapter 4 shows that observers attribute intelligence by evaluating an agent’s efficiency

or their outcome. At the same time, Chapter 5 shows that participants describe their

planning as ‘thinking’ or ‘guessing’ in a way that agrees with model-based metrics of

planning accuracy and sensitivity to decision value. These results suggest that observers’

attributions of intelligence might critically depend on their planning ability. Those who

find planning easy may easily evaluate the efficiency of the viewed trajectories and attribute

intelligence to efficiency. Conversely, less skilled participants may simply rely on agents’

outcomes.

This chapter compares the results of the intelligence attribution task and the plan-

ning task within participants. The planning task elicits metrics of planning accuracy

based on self-report and model-based inference. The intelligence attribution task elicits

metrics of sensitivity to efficiency, measured as the difference between the participants’

ratings of optimal and suboptimal trials and of sensitivity to outcome, measured as a

difference between the ratings of lucky and unlucky trials, as well as verbal-self reports.

If attributed intelligence depends on planning ability, then the variation in sensitivity to

efficiency should be explained by planning accuracy. However, if attributed intelligence is
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independent of planning, then metrics of planning accuracy and sensitivity to efficiency

should be independent of each other.

The order in which participants complete the planning and the attribution tasks is

significant. If participants complete the attribution task before the planning task, they

may be biased by the exit locations they encounter, and repeat some of the trajectories

they see. Viewing sub-optimal examples may also bias observers to guess. At the same

time, engaging in planning can improve participants’ planning ability, and bias their in-

telligence attribution toward efficiency. In the experiment described in this chapter all

participants completed the planning task followed by the attribution task. This design has

a potential weakness, in the difficulty of reaching a strong conclusion regarding the effect

of planning practice on intelligence attribution. However, it has the advantage of excluding

retrospective effects of prior familiarity with the agent’s task on planning.

6.1 Participants

Participants were recruited via Amazon Mechanical Turk restricted to US residents, out of

110 participants 104 completed the experiment. An attention check included an instruction

comprehension quiz, an automated check for multiple answers coming from the same IP

address, and the number of zero-valued steps. 10 participants were excluded for failing

the attention check: three did not answer the instruction comprehension question, and

the others made zero-valued steps on half or more of the trials. Of the remaining 94

participants 41 were female and 53 male, mean age was 34, SD=9.7.

6.2 Method

Participants completed two tasks, always in the same order. Participants first completed

a planning task, in which they searched for a goal in a series of mazes, using the procedure

described in Chapter 5. Participants next completed an intelligence attribution task, in

which they watched and rated replayed solutions of other participants, who have previously
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completed the planning task. The intelligence attribution task follows the same procedure

as used in Chapter 4. The stimuli were presented in a web-browser using a Java Script

interface developed in our lab, and hosted on a University of Waterloo web-server.

6.3 Planning Task

Participants look for a hidden goal location (‘exit’, marked when visible as a bright red

circle) in a series of mazes, by controlling an agent using a mouse. The agent moves one

grid square at a time: N, W, S or E and has a 180 degree view of the maze limited by

walls. The maze is initially dark, but is uncovered as the agent moves along, so participants

initially know the layout of the rooms and location of the barrier walls, but not where the

goal is. Participants are instructed that each of the dark squares is equally likely to hide

the ‘exit’, and that they should find it in as few steps as possible. All participants received

a performance-based bonus of up to $1 for finishing all mazes while minimising step cost.

To receive the maximal bonus participants need to achieve a step cost within 5% of the

optimal solution. The bottom 10% of participants receive a zero bonus.

6.3.1 Stimuli

After reading the instructions, participants complete three practice mazes and answer an

instruction comprehension quiz. Participants who answer the quiz incorrectly proceed with

the experiment, but their responses are discarded. The test stimuli are 12 more mazes,

which are shown in Figure 6.1. Black cells indicate unseen areas. Empty cells that were

previously revealed are shown white. The location of the walls is always visible, shown

as grey. The agent can move through empty areas, but not through walls. The starting

location is always assigned to the top-left corner and the exit is hidden behind one of the

black squares. At the end of the experiment participants are asked how they made their

decisions. The reaction times (times to make a move) and path are recorded for each trial.

Instructions are listed in the Appendix. The full experimental procedure is available at

http://cgl.uwaterloo.ca/mkryven/attribute/int_exp.php.
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Figure 6.1: Paths taken by participants. The solid line shows the optimal path, which is

also the most common solution. The dashed arrow shows the second most common path,

which is non-optimal. The first three images are practice mazes.

6.3.2 Results

Each path is analysed using the SOFTMAX model described in Chapter 3 and assigned

model-based planning accuracy metrics: decision noise, SOFTMAX τp,j, and fraction of

optimal steps optstepp,j. Here p refers to participant and j is the trial. A solution (p, j)

labelled as optimal if τp,j = 0 (51% of the trials), softmax, if τp,j > 0 (46% of the trials)

and softmax0 if τp,j > 0 and the trial included zero-valued actions (3% of the trials). All

trajectories were consistent with τ ∈ [0, 0.1], as shown in Figure 5.15, with lower levels of

decision noise fitted more frequently than higher levels. The majority path is identical to

the optimal solution, shown in Figure 6.2.

Two independent raters coded participant’s responses as thinking or guessing. For

example, a response is categorised as thinking if the participant said: ‘I tried to maximise
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Figure 6.2: Frequency of τ fitted to individual trajectories. Optimal trajectories correspond

to τ = 0, lower levels are fitted more often than higher levels.

the number of squares revealed per step.’ and as guessing if they said ‘I followed my gut’.

The raters agreed on 92% of participants (86 out of 94), coding 52 of them as thinking

and 34 as guessing. The remaining 8 were excluded from the subsequent analysis.

Each participant is assigned three planning accuracy metrics: their verbal-self report

code, the fraction of optimal steps they took (optstepp), and the mean decision noise

(SOFTMAX τp), fitted to the individual’s solutions. Here p indexes the participant. The

mean fraction of optimal steps is 86.3% ( SD = 4.8%). According to Welch Two Sam-

ple t-test participants who self-reported as thinking were on average closer to optimal

(t(81.405) = 2.8292, p = .006), taking optimal steps 87% of the time. The guessing group

took optimal steps 84% of the time. So, the two ways in which participants self-describe

their planning, as more a deliberate or more intuitive, are associated with generating tra-

jectories that differ according to model-based metrics.

6.3.3 Discussion

In summary, we find that the optimal POMDP model predicts the majority solution. That

is, in a given trajectory, the action taken by the majority of the participants is the same
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action that an optimal POMDP would take. This does not mean that given arbitrary

mazes the majority solution will always be optimal, only that given simple mazes such as

these participants were able to produce an optimal plan. At the same time, suboptimal

trajectories are explained by solving a POMDP with a softmax decision noise, so that the

likelihood of choosing an action is proportional to its model-based value. Participants’ self-

reports, ‘thinking’ or ‘guessing’, correspond to differences in planning efficiency, measured

by model-based metrics.

In the two replications of the planning task (the first one described in Chapter 5)

participants self-report as ‘thinking’ and ‘guessing’. At the same time, participants have

previously self-reported as attributing intelligence to ‘outcome’ or to ‘efficiency’, suggesting

that there might be a correspondence between solving mazes and attributing intelligence.

The next section replicates the intelligence attribution task and compares individual plan-

ning accuracy to intelligence attribution.

6.4 Intelligence Attribution Task

Participants rated the intelligence of maze-solving agents, using the procedure described

in Chapter 4. The movies are generated by replaying representative solutions (including

optimal, suboptimal and pseudo-random solutions with lucky and unlucky outcomes) of

previous participants. Half of the viewed solutions are optimal, matching the optimality

statistics typical of human solutions. As before, the experiment includes incomplete tra-

jectories to detect participants who attribute intelligence to outcome. Participants who

attribute intelligence to outcome should rate all incomplete trajectories equally, regardless

of the agent’s efficiency, while those attributing intelligence to efficiency should rate in-

complete optimal trajectories higher. The ratings of complete trials are used to measure

the participant’s sensitivity to efficiency and outcome.

The movies show a variety of representative behaviours and outcomes, corresponding to

one of 8 conditions: optimal-lucky, optimal-unlucky, optimal-fair, softmax-unlucky, softmax-

lucky, softmax0, optimal-partial and suboptimal-partial. Incomplete examples are labelled

optimal-partial or suboptimal-partial. A lucky, fair or unlucky label reflects the agent’s
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Figure 6.3: Frequency of different levels of τ fitted to movies. Half of the solutions were

optimal, with τ = 0.

outcome measured in number of steps to the goal. Agents who encounter the exit in the

first room they visit are labelled as lucky ; agents who search the maze exhaustively are

labelled as unlucky ; other agents are labelled as fair. So, a softmax-lucky agent finds the

goal quickly by sheer luck, analogous to the lucky-guess condition in the second experiment.

The softmax-unlucky agent corresponds to the softmax or softmax-guess conditions in the

second experiment. The softmax0 condition is similar to the random condition in the

Experiments 1 and 2 and captures lapses of attention (e.g. re-entering empty rooms) and

typos. We hypothesised that unlike pseudo-random behaviours generated by a model, such

human behaviours may be rationalised. For example, someone visiting every square in a

maze may be looking for hidden trap-doors. Each movie is additionally labelled with an

inferred fraction of optimal steps, optstepi and SOFTMAX τi, where i indexes the movie.

The frequencies of fitted τi are shown in Figure 6.3. 1

1Given that participants have no prior knowledge of the maze and can always see the already visited

areas the optimality ranks inferred by Model3 do not apply to the current experiment design.
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Figure 6.4: Average ratings for conditions OL-optimal-lucky, OF-optimal-fair, OU-optimal-

unlucky, SL-softmax-lucky, SU-softmax-unlucky, S0-softmax0, OP-optimal partial, SP-

suboptimal partial. Error bars indicate 95% confidence intervals.

6.4.1 Stimuli

Participants read the instructions on a computer screen in a web browser, and viewed

four familiarisation examples followed by the 28 test movies. Each condition occurred four

times in a randomised order. After viewing each movie, participants rated the intelligence

of the agent selecting a rating from a Likert scale between 1 (less intelligent) and 5 (more

intelligent) by choosing a radio button. At the end of the survey participants were asked:

How did you make your decision? Full instructions are listed in the Appendix. The

experimental procedure is available online at http://www.cgl.uwaterloo.ca/mkryven/

attribute/int_exp.php

6.4.2 Results

ANOVA of rating against condition shows a significant main effect of condition, (F (7, 24) =

73.45, p < .0001). The adjusted R2 of the regression model is .942. Mean ratings for each

condition are shown in Figure 6.4. The difference between ratings of optimal conditions

was not significant. According to Tukey HSD the difference between ratings of optimal-

unlucky and optimal-lucky conditions was not significant (d = 0.15, p = .9) as well as the

difference between optimal-lucky and optimal-fair (d = 0.04, p = .99) and optimal-unlucky
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Figure 6.5: Comparing intelligence attribution of outcome and efficiency groups. OL-

optimal-lucky, OF-optimal-fair, OU-optimal-unlucky, SL-softmax lucky, SU-softmax un-

lucky, OP-optimal-partial, SP-suboptimal-partial, S0-softmax0.

and optimal-fair (d = 0.1, p = .99) conditions. So, participants rated all optimal trials

highly regardless of outcome.

Incomplete optimal trials were rated higher than incomplete suboptimal trials (d =

0.59, p = .028). So incomplete trials were rated according to their efficiency, rejecting the

outcome hypothesis 2. At the same time, suboptimal decisions with lucky consequences are

rated differently than unlucky ones. The difference between optimal-unlucky and softmax-

unlucky is significant (d = 1.41, p < .0001), showing that among unlucky agents optimal

agents are preferred. However there is no evidence of a difference between ratings of

optimal-lucky and softmax-lucky (d = .41, p = 0.2) trials.

Two independent judges coded participant’s responses to ‘How did you make your

decision?’ as ‘outcome’ or ‘efficiency’. The raters agreed on 93% of participants, coding 33

as outcome and 55 as efficiency . The remaining 6 gave mixed answers, such as: I tried to

base it on if I would do the same thing and how few of steps were taking and were assigned to

a group after a discussion. For complete trials, repeated measures ANOVA of rating against

(condition×group) reveals a significant effect of condition (F (5, 36) = 173.9816, p < .0001)

and a significant interaction between group and condition (F (5, 36) = 3.0124, p = .02).

2The reader will remember that according to the outcome hypothesis intelligence is attributed to the

agent’s outcome. Thus, the attribution can not be made if the outcome is not observed.
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Group Number of responses Optimal Steps

Thinking-Efficiency 41 m = .88, sd = .05

Guessing-Outcome 21 m = .84, sd = .03

Guessing-Efficiency 13 m = .86, sd = .05

Thinking-Outcome 11 m = .86, sd = .04

Table 6.1: Planning and Intelligence Attribution

Mean ratings are shown in Figure 6.5.

Both groups rated optimal trials highly, regardless of outcome. According to Tukey

HSD, the difference between outcome group’s ratings of optimal-lucky and optimal-unlucky

agents is not significant (p = .4). Likewise, there is no significant difference between ef-

ficiency group’s ratings of optimal-lucky and optimal-unlucky agents (p = 1). However,

there is no evidence that the outcome group rated lucky suboptimal and optimal agents

differently. While both groups rated optimal agents highly regardless of outcome, only the

efficiency group preferred efficient agents to lucky but inefficient ones.

In contrast to the results of the second experiment, both groups rated incomplete

optimal trials higher than the suboptimal ones. For ratings of partial trials by the out-

come group, a Welch Two Sample t-test indicates that the ratings of optimal trials (M =

3.35, SD = 0.19) are significantly different from the suboptimal trials (M = 2.98, SD =

0.04), (t(3.2535) = 3.7789, p = .028). Likewise, ratings of partial trials by the effi-

ciency group were higher for optimal (M = 3.7, SD = 0.41) than for suboptimal trials

(M = 2.99, SD = 0.3) trials, (t(5.5407) = 2.8127, p = .033).

Comparing verbal-self reports in the planning and attribution tasks shows that re-

sponses are correlated (Kendall’s rank τ = 0.4, p = .0002). Participants who self-report as

thinking are more likely to self-report as efficiency. A third of participants also gave in-

consistent self-reports, such as thinking-outcome and guessing-efficiency, suggesting

that participants do not use themselves as a model to evaluate others.

For each participant we calculate their sensitivity to efficiency defined as the dif-

ference between the participant’s average ratings of optimal and suboptimal trials and
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sensitivity to outcome defined as the difference between participant’s average rating

of lucky and unlucky trials. The sensitivities to outcome and efficiency measured in this

way are independent of self-report and anti-correlated, Pearson (r = −0.27, p = .0086).

Figure 6.6 shows the relationship between individual sensitivities to outcome and efficiency

for participants in each group. Thus, although better efficiency is on average expected to

result in better outcomes, whenever the two dimensions can be dissociated they appear

to contribute to attributed intelligence in opposite ways. As participants become more

sensitive to efficiency they also become less sensitive to outcome.

Two factor ANOVA of sensitivity to efficiency against self-report of planning×attribution
shows significant effects of attribution (F (1, 82) = 7.9467, p = .006), but no significant

effect of planning (p = .2) and no interactions between factors (p = .3). Tukey HSD iden-

tifies significant differences between the thinking-efficiency and the guessing-outcome

participants, (d = 0.49, p = .03), as well as between efficiency and outcome groups

(d = 0.41, p = .006). The data on which ANOVA was calculated is shown on Figure 6.6.

So, the efficiency group attribute more intelligence to efficiency compared to the outcome

group.

Two factor ANOVA of sensitivity to outcome against self-report of planning×attribution
shows significant effects of attribution (F (1, 82) = 10.4198, p = .002) and of planning

(F (1, 82) = 8.1147, p = .006), with no interactions between factors (p = .14). Tukey

HSD shows that guessing-outcome participants are more sensitive to outcome compared

to thinking-efficiency participants, (d = 0.49, p = .001) and guessing-efficiency are

more sensitive to outcome compared to thinking-efficiency participants, (d = 0.45, p =

.01). There is also a significant differences between guessing and thinking groups

(d = 0.26, p = .01) and between outcome and efficiency groups (d = 0.33, p = .001).

The data used to calculate ANOVA is shown on Figure 6.6. So, self-reporting as guessing

or as outcome is correlated with attributing more intelligence to outcome.

The relationship between planning and attributed intelligence is confirmed by consid-

ering the correlation between planning efficiency, measured as the fraction of optimal steps

during planning, and sensitivity to efficiency. The sensitivity to efficiency and optstepp are

positively correlated (r = .54, p < .0001), showing that participants attributed intelligence

to efficiency in proportion to their own planning skills.
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Figure 6.6: Plots show the relationships between self-report and model-based metrics.

Individual sensitivity to efficiency, defined as the difference between the participant’s

average ratings of optimal and suboptimal trials and sensitivity to outcome, defined as

the difference between participant’s average rating of lucky and unlucky trials.

Two factor ANOVA of optstepp against self-report of planning × attribution shows a

significant effect of attribution (F (1, 82) = 6.8677, p = .01), but not of planning (p = .07).

According to Tukey HSD, the efficiency participants are more likely to make optimal moves

compared to the outcome participants (d = 0.03, p = .01), and the thinking-efficiency

participants are more likely to move optimally compared to the guessing-outcome group

(d = 0.04, p = .01). (Table 6.1). Two factor ANOVA of optstepp against sensitivity to

efficiency and sensitivity to outcome shows a significant effect of efficiency (F (1, 83) =

34.2377, p < .0001) but not of outcome (p = .3). The data used to calculate the ANOVA

is shown on Figure 6.6.
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In addition, according to Welch Two Sample t-test participants who self-reported as

efficiency were on average more optimal (t(3.2069) = 75.81, p = .002), taking optimal

steps 87% of the time. The outcome group took optimal steps 84% of the time. Lastly,

participants are not using themselves as a model for evaluating others, since the outcome

group, despite being on average more likely to plan sub-optimally, rated only the lucky

sub-optimal planners highly.

Together, these results show that planning skills affect attributed intelligence. While

participants in the efficiency group attempt to evaluate the proximity of the observed

behaviour to the optimal strategy, people are able attribute intelligence to efficiency in

proportion to their planning skills.

6.4.3 Discussion

The results show people attribute intelligence to efficiency in proportion to their planning

skills. Attributing intelligence to outcome is correlated with poor planning. However, the

correspondence between verbal self-reports as efficiency or outcome and as thinking or

guessing is approximate, verbal self-reports may be a weak predictor of behaviour. On one

hand, some participants who were coded as thinking-outcome might have incorrectly ra-

tionalised their behaviour. On the other hand, participants coded as guessing-efficiency

might have had difficulty planning, but improved their planning skills by the time they

completed the planning task.

In agreement with Experiment 2 in Chapter 4, about a third of participants self-identify

as attributing intelligence to outcome. However, this time the outcome group rated all

optimal agents highly and rated incomplete optimal trials higher than the suboptimal

ones, suggesting that planning practice may affect intelligence attribution by improving

one’s planning skills. To validate this hypothesis a controlled experiment needs to compare

participants who practice planning before attributing intelligence, to a control group who

complete an irrelevant task. Notably, even after planning practice, outcome participants

still attribute less intelligence to efficiency than the efficiency ones. Participants might

learn to recognise optimal solutions before being able to identify mistakes in inefficient

ones. The outcome group may also lack empathy, which is primed by the planning task.
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However, poor planning and lack of empathy might have a common cause since both are

cognitively demanding [21]. The cognitive cost of empathy added to the cost of planning

might be prohibitive to observers with limited mental resources. If planning ability depends

on a general cognitive resource, then variation in both planning accuracy and attributed

intelligence may be explained by an independent metric of general intelligence.

The efficiency hypothesis explains human reasoning in simple goal-directed scenarios.

However, many real-life situations are complex, the observer’s mental resources are limited

and so intelligence attribution may be noisy. In complex scenarios people might use a

mixture of outcome and efficiency approaches. Indeed, comparing a participant’s sensi-

tivity to outcome and to efficiency shows that participants fall along a continuum rather

than falling into separate groups. Since intelligent agents are more likely to achieve good

outcomes, the outcome heuristic is expected to do better than chance. So, in real-life

scenarios implicit attributions of intelligence to outcome may be made automatically but

revised upon reflection. For example, stereotype-consistent judgments are exacerbated

during fast responses, but are rarely reported if participants are given time to think [10].

One way to investigate this possibility is to collect evaluations of intelligence in real time,

such as asking participants to give continuous evaluations by controlling a joystick.

Furthermore, even if the observer is skilled, the agent’s problem might be too difficult

for the observer. In such a case, do people immediately fall back on attributing intelligence

to outcome, or do they evaluate the agent planning partly, for example, by following its

reasoning up to a certain depth? Given that the accuracy of Bayesian inference increases

with an increasing number of observations, the observer might choose to evaluate a subset

of decisions instead of evaluating the whole plan and come to a conclusion once a sufficient

confidence is reached.

Lastly, attributing intelligence to lucky agents may be an adaptive automatic response.

When one’s resources are limited by a cognitive load, people perceive lucky persons as

more likeable [92] and young children tend to evaluate lucky others as nice [91, 90]. Liking

lucky others is rational, to the extent that it promotes favourable social connections. 3. To

differentiate between liking lucky others and attributing intelligence to outcome it would

3A comment by a participant in Experiment 3: ‘Generally I attributed intelligence to their efficiency,

but also we all like lucky winners!’
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be necessary to separately ask participants about their liking of the agent and about the

agent’s intelligence. One measure of liking is to instruct participants to share bonus with

other participants. Moreover, if liking lucky agents is adaptive, then attributing intelligence

to outcome should disappear if the agent appears mean.

Importantly, the efficiency hypothesis implicitly assumes that the observer understands

the agent’s abilities and constraints and has the cognitive resources needed to evaluate the

agent’s planning. The intelligence attribution task is designed to make inference of the

agent’s mental states easy by explicitly informing participants about the agent’s goal and

its view of the maze. Under such conditions, competent planners interpret the agent’s

intelligence as planning efficiency. One important difference between the stimuli used for

intelligence attribution and the actual human planning is that participants’ speed varies

during a planning trial, while in the intelligence attribution movies the agents move at a

uniform speed. Varying the agent’s speed during the pilots was confusing to the partici-

pants (see Section 4.2.5), however pausing for 500ms at every observation cell is not what

people actually do. Showing the participants’ planning in real-time might convey a more

accurate idea of thinking.

In summary, most participants attribute intelligence to goal-directed agents by evaluat-

ing the efficiency of the agent’s planning, as suggested by the rationality principle. To the

extent that the skills needed to accurately evaluate the agent’s planning are not available

to the observer, attributing intelligence to outcome may be a rational alternative. Both

methods optimise the use of the resources available to the observer.
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Chapter 7

Eyetracking

Chapter 5 shows that participants differ in planning ability. Those who self-report as

‘thinking’ are more optimal according to model-based metrics. Reaction time (RT) analysis

shows that participants divide maze problems into planning sub-problems with decision

nodes at observation states, and that mental effort spent in a maze location increases with

the number of available actions. However, RT are insufficient to make conclusions about the

planning depth and breadth of individual participants. A replication of the maze-solving

experiment with eye-tracking may offer additional evidence in that regard. Moreover, it is

unclear whether verbal self-report and model-based metrics measure performance specific

to the planning task, or to a more general cognitive ability.

Searching for a goal in a maze, participants are likely to think visually and trace hy-

pothetical paths to find the best route. Although eye-movements generally do not fol-

low problem-solving algorithms as a one-to-one mapping between fixations and cognitive

processing, the stochastic distributions of fixations inside a maze are expected to reveal

elements of the problem that are maintained in working memory in the current stage of the

task [31]. In particular, the distance from the agent to fixation, fixation depth, might re-

flect the depth of participant’s planning. Fixation depth can be measured as the distance

from the agent’s location to fixation in three ways: (1) a distance in a straight line; (2) the

number of steps from the agent to reach the fixated location; (3) the number of observation

nodes between the agent and the fixated location. At the same time, the frequency with
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which different types of cells (dark, white, wall) are fixated reflects the distribution of par-

ticipant’s attention within the maze. So, optimal planning might involve fixating a higher

proportion of dark cells and looking further ahead and eye-movements while collecting

information about the environment might predict the optimality of subsequent planning.

In addition, if attributed intelligence and planning depend on a common cognitive

resource, there may be a correspondence between planning/plan evaluation and numeric

intelligence, as measured by a version of the Cognitive Reflection Test (CRT) [39]. The CRT

consists of three problems that measure a person’s numerical ability, rational thinking and

inhibition of incorrect impulsive response. It is a relatively simple task correlated with more

time-consuming established measures of general intelligence, such as intelligence quotient

and rational thinking [131, 140]. If planning accuracy depends on general cognitive ability

then the variation in model-based metrics (decision noise inferred by the SOFTMAX model

and the fraction of optimal steps) can be explained by the participant’s CRT score. In

addition, pupil size correlates with cognitive performance [134], working memory [63] and

expected utility of the task [61]. So, simple pupil dilation measured during eye-tracking

provides a proxy metric of a participant’s cognitive performance.

The experiment described in this chapter replicates the maze-solving experiment with

eye-tracking to test two hypotheses. First, planning accuracy may correlate with specific

patterns of eye-movements and fixation depth. Second, model-based metrics of planning

accuracy reflect a general cognitive ability. The next section reviews related work on eye-

tracking during planning, followed by the experimental method in Section 7.2 and the

results of the planning task in Section 7.3. Section 7.4 describes the results of the intel-

ligence attribution task and comparing model-based metrics of planning and intelligence

attribution.

7.1 Related Work

Previous research on planning in a fully observable space using eye-tracking shows

that participants differ in how far ahead they plan, and proposes a classification of eye-
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movements into two categories: motor guidance and exploration [149]. Motor guidance

fixations immediately precede motor actions (e.g. guiding the hand moving the cursor).

Exploration fixations look ahead, collecting information about the environment, while the

cursor is stationary, their signature is the divergence of eye and the cursor. While motor

guidance fixations are highly stereotypical, exploration fixations are idiosyncratic. Some

participants explore extensively before moving, while others alternate between exploration

and guidance [149]. In addition, saccadic eye movements are often formalised by Informa-

tion Gain models [104] as selecting locations most relevant to the spatio-temporal demands

of the task [52, 105]. Early sequences of fixations when first seeing an environment are

often formalised as discovering its structure [104, 105].

So, when first seeing a maze a participant studies the environment, the rooms and

the walls in a maze, which engages a specific eye-movement pattern. Through the rest

of the trial participants usually generate a combination of motor guidance and planning

fixations. While navigating previously observed parts of the maze (fixations landing on

white cells) the eye-movements are expected to be similar to fixations described in [149].

In contrast, fixations landing on black cells might relate to decision planning and reasoning

about probabilities.

At the same time, in the intelligence attribution task, participants who evaluate the

agent’s efficiency might do something like predicting the agent’s behaviour and then com-

paring it to observed actions. According to Event Segmentation Theory, humans routinely

make short-term predictions of trajectories of moving objects or agents and segment the

stream of perceptual experience into events when predictions fail [147, 103]. Might partic-

ipants’ predictions of the agent’s behaviour influence how they evaluate its intelligence?

Such predictions can be measured indirectly using eye-movement analysis, since action

perception is accompanied by patterns of eye-movements that alternate between fixating

the supposed goal and the agent. Action interpretation is known to be idiosyncratic.

Healthy adults consistently segment streams of visual information into events with intra-

individual agreement higher than the inter-individual agreement [126], suggesting that

translating perception to events may recruit the observer’s planning mechanisms [103]. On

one hand, participants might limit themselves to certain predictions, only expecting the

agent to approach the next observation. On the other hand, people could also look ahead
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of the agent along the path they anticipate it to take.

Moreover, the agents in the intelligence attribution task move through the maze in

a way that elicits smooth pursuit eye-movements. Such eye-movements are automatically

initiated by sensory motion cues and can not be performed at will. However, smooth pursuit

eye-movements vary between tasks, in a way that results from an interaction between low-

level cues (e.g. motion) and high-level cognitive processes (goals, beliefs). Thus, the

observer’s beliefs about the agent’s mental states might influence smooth pursuit eye-

movements as well [66].

7.2 Method

The experiment used the methodology described in Chapter 6 while tracking eye-movements.

Eye movements were recorded using the EyeLink 1000 Plus Desktop Mount with a head-

free upgrade, sampling at 1000 Hz from the left eye. The eye-tracker measures projections

of gaze onto the screen and pupil size in eye-tracker pixel units. The pupil size measured

by the device depends on the eye-tracker calibration, which optimises tracking for each

participant. So, pupil size measurements indicate relative effort within participants but

not between participants.

Participants first complete a calibration trial comprising the usual Eyelink 9-point cal-

ibration routine followed by a custom pupil diameter calibration while looking at black,

grey, and white rectangle subtending 15 degrees of visual angle. Each rectangle is dis-

played for 4 seconds, during which time the participant’s pupil size is recorded. Following

calibration participants answer a mental arithmetic question ‘How much is 14 times 15? ’

to measure pupil dilation during mental effort. The pupil size is recorded for 4 seconds

starting at 4 seconds after the question is presented. The question is presented on a grey

screen.

Next, participants complete the planning task followed by the intelligence attribution

task. Upon completing the eye-tracking session, participants provide a free-form answer to

two questions: How did you make your decisions while solving mazes? and How did you
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make your decisions while judging others? by writing the answer on a provided answer

sheet. Lastly, participants complete an untimed CRT.

The validity of the original CRT is disputed owing to the popularity of the test [23]. A

common solution is providing a different but analogous set of problems [23]. In our version

of CRT participants answer the following questions:

• A slime mould doubles in size every 2 hours. One gram of slime mould can fill a

container in 8 hours. How long does it take to fill half of the same container?

• It takes 10 people 10 hours to knit 10 scarfs. How long does it take 100 people to

knit 100 scarfs?

• A coffee and a sandwich cost $12. A sandwich costs $10 more than a coffee. How

much does a coffee cost?

During the experiment the experimenter was nearby, ready to handle technical prob-

lems. 1 Stimuli were presented on a 21.5-inch Apple LCD Display (Display width: 18.7

inches (47.498cm), display height 10.5 inches (26.67cm)), 1024 × 768 resolution, which

is the lowest possible resolution 2, 60 Hz refresh rate. The stimuli were presented using

Psychtoolbox [16]. The display was viewed from a distance of 60 cm.

7.2.1 Participants

Thirty-five participants, median age 27, standard deviation 12, 18 females and 17 males

were tested with approval of an MIT University Institutional Review Board and a Uni-

versity of Waterloo ethics committee. Four were excluded because of technical problems.

Participants were recruited from the MIT Psychology subject pool, which includes a mix

of MIT students and members of the general public, who sign up to participate via an

online system and are paid $12 for a 30 minute session. All had normal or corrected to

normal vision.

1This is to make sure that the eye-tracker is recording and has not disconnected or crashed.
2Pixel size 0.46mm × 0.34mm
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Figure 7.1: The distribution of decision noise inferred from solutions produced by partici-

pants according to the SOFTMAX model.

7.3 Planning task

7.3.1 Stimuli

Seventeen mazes including 5 practice mazes and 12 test mazes are presented to each par-

ticipant centred on the screen, subtending between 5 and 8 cells. Each maze cell is 80

pixels tall and 80 pixels wide (36mm × 28mm, 1.7×1.3 degrees of visual angle). The start

location is always assigned to the top left corner of the maze. Participants are instructed

to look for a hidden ‘exit’, marked when visible as a bright red square in a series of mazes,

by controlling an agent using arrow keys on a keyboard. The agent moves one grid square

at a time: N, W, S, E and has a 180 degree view of the maze limited by walls. The

maze is initially dark, but is uncovered as the agent moves along, so participants initially

know the layout of the rooms and location of the barrier walls, but not where the goal

is. Participants are instructed that each of the dark squares is equally likely to hide the

‘exit’, and that they should get to it in as few steps as possible. To incentivise attention

at the end of the experiment participants see how many steps they have taken compared

to others before them. 3 During the trial current step count is displayed above the maze.

Once the exit is reached, the participant immediately starts the next maze.

3This data is available based on pilot and previous runs of the experiment
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Figure 7.2: The distribution of CRT scores across the tested participant sample.

7.3.2 Results

Model-Based Inference

For each participant we calculate model-based metrics of planning performance, the frac-

tion of optimal steps taken by the participant, optstepp, and the mean decision noise

inferred from the participant’s solutions by SOFTMAX , τp, where p is the participant in-

dex. In addition, relative pupil size is calculated as a ratio on the mean pupil size while

viewing the grey screen during calibration to the maximal size of the pupil during mental

arithmetic.

Of all solutions generated by participants 47% were optimal (τ = 0) , another 47%

had decision noise (τ > 0) and another 6% included zero-utility actions, most likely due

to a difficulty using keyboard with the eye-tracking setup. Participants took 87% optimal

steps on average, standard deviation 6%. As shown in Figure 7.1, among the suboptimal

solutions, solutions with lower decision noise were more frequent. Of the 32 participants

6 self-reported as solving mazes by ‘guessing’, 4 of whom also self-reported as attributing

intelligence to outcome. Another 25 self-reported as solving mazes by ‘thinking’. The

distribution of CRT scores in Figure 7.2 shows that about a third of participants answered

all questions correctly, a third answered two questions, and another third answered one or

fewer questions.

Next, we test the relationship between the model-based metrics and the independent

metrics of cognitive performance (the CRT score and pupil relative size during mental
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Figure 7.3: Example 1. Left: The start of the trial shows the participant scanning the

layout of the maze. Right: After taking a step the participant looks at the cells to be

revealed next.

effort). ANOVA of CRT score against optstepp and τp shows a significant effect of τp

(F = 7.5079, p = .01) but not of optstepp (F = 0.1109, p = 0.7). So, the participants’

CRT scores predicts their decision noise. ANOVA of the relative pupil size vs. optstepp

and τp shows a significant effect of optstepp (F = 6.8387, p = .01442), but not of τp

(F = 3.7832, p = .06). So, the variation in the participants’ relative pupil size predicts

planning planning optimality. Pearson correlation between the relative pupil size and

optstepp is r = .53, p = .002 and between CRT score and τp r = −.45, p = .009. In

summary, the variation in planning accuracy can be explained by the variation in cognitive

performance measured by CRT and relative pupil size.

Eye-movement Analysis

All recorded eye-movements can be viewed frame-by-frame here: http://www.cgl.uwaterloo.

ca/mkryven/comic_all_subjects_1.pdf. Real-time replays with superimposed fixations

can be downloaded from: http://www.cgl.uwaterloo.ca/mkryven/replayMovies.zip.

Each green dot corresponds to a recorded of gaze projection sampled at 500Hz. A satu-

rated green dot indicates several superimposed samples, a fixation. Transparent dots are

artefacts, such as blinks or saccades. The size of each dot is proportional to pupil size.
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A pre-processing script 4 interprets the data recorded by the eye-tracker as fixations.

Each fixation is labelled by the coordinates of the maze cell where it falls. If a fixation

drifts across several maze cells then it is recorded as two fixations, which keeps track of

all fixated maze cells. Each fixation inside the maze is labelled as falling on a black, white

or wall cell and assigned the median pupil size, the distance in pixels from the agent and

the distance in steps from the agent. Next, we informally describe the patterns of eye-

movements that occur during a trial. Two trial examples are shown in Figures 7.3-7.6 and

Figures 7.7 - 7.8. Example 1 in Figures 7.3 - 7.6 shows an optimal solution. Example 2,

Figures 7.7 - 7.8, shows a non-optimal path.

4I wrote the script because I needed extra processing on top of the standard eyetracking fixation-

processing algorithm.
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Figure 7.4: Example 1, continued. The participant alternates between looking at the

immediate next steps (motor guidance) and looking ahead at unrevealed areas (decision

planning).
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Figure 7.5: Example 1, continued. The participant looks at white cells near the agent.
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Figure 7.6: Example 1, continued. The participant looks on white cells immediately ahead,

similar to motor guidance fixations described in [149], or at the agent.
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Figure 7.7: Example 2. After scanning the maze the participant approaches the first

decision point. Fixations occurring at this stage land on white cells, suggesting motor

guidance.
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Figure 7.8: Example 2, continued. At the first decision point the participant fixates the cells

associated with two alternative choices (going right and going down). More fixations on

black and white cells are made at observation locations, while moving between observations

is accompanied by making relatively few fixations on white cells.
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Figures 7.3-7.8 show eye-movements leading the future actions. While traversing al-

ready revealed areas eye-movements fall on the immediate next steps. When approaching

unrevealed areas (black cells), eye-movements alternate between possible directions, pre-

sumably assessing the value of each choice. The correspondence between eye-movement

states and RT states discussed in Chapter 5 is not one-to-one. Rather, there appear to be

three distinct patterns of eye-movements.

• Scanning Maze Layout: In the starting cell participants scan the maze to discover

its structure.

• Guidance: Looking at already revealed (white) cells close to the agent.

• Decision Planning: Looking at black cells associated with different possible tra-

jectories.

To test whether planning depends on eye-movement patterns, we calculate frequency of

looking at black, white, wall or agent cells in a maze ((Dblack, Dwhite, Dwall, Dagent) for each

participant. For example, frequency of looking at black cells Dblack is the total duration of

fixations on black cells divided by the total duration of all fixations inside the maze. Median

distance from agent to fixation measures how far ahead participants look at each type of

cell ((pdblack, pdwall, pdwhite). Moreover, since the distance in pixels to fixation ignores the

maze structure of corridors and rooms, distances in steps to fixation (sdblack, sdwhite, sdwall)

are also calculated, as the number of steps to reach the fixated location, as an alternative

metric of looking ahead.

ANOVA of optstepp against (Dblack, Dwall, Dagent) shows a significant effect of Dwall

(F = 5.6522, p = .024), but not of other variables. The Pearson correlation of optstepp

and Dwall is r = −.39, p = .03, showing that better planners are less likely to fixate

walls. ANOVA of optstepp against ((pdblack, pdwall, pdwhite) shows a significant effect of

pdblack, (F = 4.0457, p = .05) but not of other variables. The Pearson correlation of

optstepp and pdblack, r = .35, p = .05 shows that the fraction of optimal steps increases

with median distance to fixated black cells ( Figure 7.9). ANOVA of optstepp against

sdblack, sdwhite, sdwall shows no significant effects. In summary, more optimal planners fixate
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Figure 7.9: The median distance to fixated black cells increases with fraction of optimal

steps. Bands represent 95% confidence intervals for means of the linear model.

black cells further away, with distance to fixation measured as a straight line between the

fixation and the agent. However, there is no evidence that more optimal planners look

further ahead in terms of distance measured in steps. One possible explanation of this effect

is that the distance in steps is not available to the visual system as the eye-movements are

planned. Even without this information, the visual system plans eye-movements further

away under conditions when the observers have more cognitive resources at their disposal

and can process the sensory evidence collected by such eye-movements (but see page 110

later in this Chapter).

Next, we test whether participants fixation patterns vary with CRT score by calculating

the Spearman rank correlations of CRT score with each of the above metrics. Spearman

rank correlation of CRT and Dblack is r = .49, p = .006, of CRT and Dwall is r = −.65, p <

.0001, of CRT and Dwhite is r = −.36, p < .05 and of CRT and Dagent is r = .46, p < .01.

Spearman rank correlations of CRT and median distance to fixation are significant for

all three types of cells: r = .56, p = .001 for black, r = .47p = .009 for white and

r = .5p = .005 for walls. Spearman rank correlations of CRT and median distance to

fixation measured in steps are significant for fixations on white cells (r = .47, p = .009) and

walls (r = .54, p = .002) but not black cells (r = .11p = .5639). In summary, participants
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with a higher CRT score preferentially fixate black cells and the agent, and spend less

time looking on white cells and walls. They also look further ahead, with distance to

fixation measured as a straight line between the fixation and the agent. However, there

is no evidence that distance in steps to fixation depends on the participants’ CRT score.

While participants with higher CRT score look more steps ahead during motor planning,

most looking at white cells is accomplished in a straight line.

Taking only the fixation data while Scanning Maze Layout we calculate the fre-

quency of looking at black, white, wall or agent cells ((DS,black, DS,wall, DS,agent), as well as

the median distances to fixation in pixels ((pdS,black, pdS,wall, pdS,white) . ANOVA of frac-

tion of optimal steps against (DS,black, DS,wall, DS,agent shows no significant effects. Like-

wise, ANOVA of optimal step fraction against (pdS,black, pdS,wall, pdS,white shows no effects.

Thus, there is no evidence that decision-making optimality depends on the type of fixations

participants make at the start of the trial.

Decision-Tree Model

As discussed in Chapter 5, participants may conceptualise mazes in terms of observations

rather than steps, with most mental effort occurring after new cells are revealed. So,

participants might think of each observation as associated with a cost, how far away is

it, and a reward, how many cells does it reveal. Such reasoning can be formalised by a

decision tree with decision-nodes at observation states. An illustration of the tree-solving

paradigm is shown in Figure 7.10. Each fixation falls at a certain observation depth in the

decision sub-tree, measured as the number of observations that occur until the fixated cell

becomes visible. Each observation state is associated with a cost in steps si and a number

of revealed cells ni as a reward, where i indexes observation states. The full decision tree

of a maze includes all possible trajectories through the decision tree, such that eventually

lead to revealing the entire maze. The optimal trajectory goes from the root of the full

decision tree to the leaf with the highest reward. The decision-tree paradigm can be also

used to part-solve a maze, up to a certain depth. So, a solution of depth d finds the optimal

path within a sub-tree of depth d. So, when arriving at an observation, a participant may

either follow a pre-calculated plan, or compute a new plan up to a certain planning depth
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Figure 7.10: A simple maze represented by decision-tree. Examples of eye-movements are

shown in each of the states visited by participants.

for the decision sub-tree rooted at the current location. The planning depth is defined as

the depth of the sub-tree used to compute the plan.

To solve a maze-planning problem using the decision-tree model we use the formal

framework described in Chapter 3, but with states corresponding to observation nodes

instead of cells. And when given a path through the tree, the same framework can be used

to infer the planning depth of the path at each observation node, by looking for a sequence

of sub-trees within which the corresponding path fragments are optimal.

Next, we analyse the distribution of fixations within a decision tree to measure plan-

ning depth in terms of observations and test for a relationship between participant’s eye-
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Figure 7.11: Fixation depth at observation and no-observation locations while looking at

black cells. Most fixations on black cells fall one observation node in advance. However,

the decision tree becomes more shallow as a trial progresses and so the depth of fixations

on each step relative to the maximal possible depth are shown on the right.

movements and model-based decision value. Inspection of eye-movements at decision states

reveals that eye-movements are often biased toward the chosen branch of the decision tree.

So, participants preferentially look into the branch they are about to visit. However,

fixations on white cells are explained by motor planning. So, the relationship between

eye-movements and choice is analysed for fixations on black cells, which likely accompanies

reasoning about the likelihoods of finding the exit.

Participants may fixate black cells associated with a decision even before they arrive

at a decision state, possibly reasoning about the upcoming choice. Figure 7.11 shows

that participants look ahead into the decision sub-tree at both decision states (‘D’) and

neutral states (’N’) while approaching an observation or a decision. So, planning is only

approximately linked to observations. However, fixation depth is easier to analyse if only

decision states are considered (‘D’ cells described in Chapter 5), without integrating fixa-

tions on tree branch throughout the trial, although this limits the discriminatory power of

the analysis.

In each decision state visited by participants we calculate the mean duration in mil-

liseconds of fixating on black cells in each branch of the corresponding decision sub-tree.

This duration is correlated with the model-based action value (Pearson r = .36, p < .0001)

and with its empirical probability (Pearson r = .24, p = .002.). ANOVA of empirical prob-
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Figure 7.12: Left: Model-based action value plotted against the mean looking duration on

black cells in the corresponding tree branch. Right: Action likelihood at decision states

plotted against the mean looking duration on black cells in the corresponding tree branch.

Bands represent 95% confidence intervals for means of the linear model.

ability against fixation duration on black and on white cells shows a significant effect of

black (F = 10.166, p = .002), but not of white cells (F = 3.172, p = .08).

In agreement with Chapter 5, model-based action values predict the empirical proba-

bility of the actions, Pearson r = .59, p < .0001. The Pearson correlation of the softmax

of action value (τ = .04) and empirical probability is r = .93, p < .0001. So, participants

fixate tree branches in proportion to the associated decision value. Actions, which are

never taken are still fixated (Figure 7.12, right) and so fixation duration may be a better

correlate of an action is being evaluated than the empirical probability of the action.

Next, we test for a link between planning accuracy and fixation depth measured in ob-

servations. When passing a decision point, a participant might look at several consecutive

observation depths. Thus, we consider the maximal depth fixated on each step. Accurate

planners might look deeper into the decision tree. In addition, they also may finish their

planning early. So, fixations on black cells early in the trial might be associated with

planning, wheres fixations on black cells later on might indicate decision retrieval.

Each visited decision state is associated with a decision depth, equal to the depth

107



0.0

0.5

1.0

0 1 2
Decision Number

Fi
xa

tio
n 

de
pt

h CRT
high

middle

low

Figure 7.13: The mean fixation depth through the trial by participants with high, middle

and low crt scores.

of the decision sub-tree rooted at the agent’s current location. ANOVA of fixation depth

against sub-tree depth and CRT shows a significant effect of CRT (F = 8.3268, p = .0003),

of sub-tree depth (F = 98.5822, p < .0001), and a significant interaction between factors

(F = 3.8062, p = .004). All participants fixate deeper at the start of the trial. However,

participants with high CRT scores look deeper compared to the lower scoring participants

at the first decision occurring in the trial (Figure 7.13). According to TukeyHSD, at the

first decision the difference between fixation depth of high and low scoring participants is

significant (.46, p < .0001).

In addition, ANOVA of optstepp against fixation depth and sub-tree depth shows a

small effect of fixation depth (F = 4.8254, p = .02), but not of sub-tree depth and no

interactions between factors. Spearman correlation between optstepp and fixation depth is

r = .09, p = .009. ANOVA of τp against fixation depth and sub-tree depth shows a small

effect of fixation depth (F = 6.1525, p = .01), but not of sub-tree depth and no there are

interactions between factors. Spearman correlation between decision and fixation depth is

r = −.12, p < .0001

In summary, participants with high CRT scores look deeper into the decision tree early

in the trail. In addition, optimal planning is weakly correlated with fixation depth, suggest-

ing that fixating deeper into the decision tree is associated with more accurate planning.
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Figure 7.14: The relative depth of fixations during optimal decisions.

Importantly, participants may see deeper into the decision tree than they fixate because

smaller rooms may be visible without fixating them directly 5. Figure 7.14 shows the depth

of fixations relative to the maximal possible fixation depth during optimal decisions. To

make an optimal decision participants must have a plan equivalent to an optimal policy

at the full depth of the decision sub-tree. Because participants rarely fixate at full depth,

either the decision policy has been prepared in advance, or the participants can see deeper

than they look.

By fitting the decision-tree model to paths we calculate the planning depth of each

decision made by participants. Figure 7.15 (left) shows the planning depth of each decision

plotted against its fixation depth. Planning and fixation depth are positively correlated,

Spearman r = .22, p < .0001, so fixating deeper into the decision tree results in deeper

planning. Figure 7.15 (left) shows that sometimes participants fixate deep into the decision

tree, and make decisions that cannot be explained by a limited planning depth (decision at

planning depth 0). Thus, limited planning depth is not the only reason why the POMDP

model and participants decisions disagree. Alternative reward models, such as softmax

decision noise or a variable discount rate may be useful in that regard.

However, fixations reflect planning depth only approximately. Fixation depth is mea-

5Recall that a cell subtends 1.7× 1.3 degrees of visual angle, and so participants can see approximately

the 8 cells surrounding the fixation quite clearly.

109



sured as the shortest path, measured as the number of observations to the fixated location.

Planning depth is measured as the depth of the optimal planning sub-tree. So, maxi-

mal planning depth of a sub-tree is often greater than maximal possible fixation depth.

In the example in Figure 7.10 maximal possible fixation depth at the root of the tree is

two. However the depth of the planning tree is 4. Plotting the maximal possible fixation

depth against actual measured fixation depth as shown in Figure 7.15 (right), shows that

the depth of fixation is higher in deeper decision trees, Pearson r = .37, p < .0001. As

discussed earlier, the actual fixation depth likely differs from the maximal possible fix-

ation depth because participants likely see deeper into the decision tree than the depth

of fixation. An extended model of fixation depth is needed to control for this effect. If,

after controlling for the perceived fixation depth the disparity between planning depth and

fixation depth remains, that would suggest that participants are rolling out a plan made

several observations in advance. Alternatively, participants might re-plan their path within

the smaller sub-tree every time they come upon a new observation. A participant might

reason that since the complexity of the planning problem decreases after each observation,

each solution regeneration improves their plan.

Discussion

The analysis of eye-movements during planning clarifies the earlier RT analysis. Eye-

movements at simple observation states (labelled ‘O’ in Chapter 5) usually accompany

motor guidance. In contrast, eye-movements at decision states (labelled ‘D’ in Chapter 5)

include decision planning fixations that alternate between possible paths, as well as motor

guidance fixations approaching the chosen direction. Eye-movements also illustrate that

decision planning can be spread-out across several steps, rather than occurring exclusively

in decision states.

Eye-movement analysis supports the earlier conclusion that participants sub-divide

planning by observations. Reasoning about mazes in terms of observations is conveniently

formalised by a decision-tree solver, which treats paths between observations as costs and

observations as rewards. Inverting the decision-tree solver can be used to infer the depth of

the optimal planning sub-tree starting at the agent’s current location, thus estimating the
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Figure 7.15: Left: Inferred planning depth against fixation depth. Participants usually

plan deeper than they fixate. Right: Maximal possible depth of fixation in the current

sub-tree against actual fixation depth. The dot locations are jittered for readability.

depth at which each decision can be explained by optimal planning. The depth of tree nodes

fixated by decision planning eye-movements is positively correlated with planning depth

inferred by the decision-tree model, suggesting that eye-movements are used to evaluate

available decision options.

Moreover, the duration of looking into a tree branch is proportional to its objective

decision value. So, eye-movements can be interpreted as sampling the value of each choice.

Participants with higher CRT scores look further ahead and are better at directing their

attention to the relevant aspects of the maze (the black cells and the cell where the agent

is located), which may be explained by a general action-planning ability. In addition, the

depth at which maze decision trees are fixated varies with CRT, so that participants with

higher CRT scores look deeper into possible counter-factual outcomes of observations they

might encounter. Analysing the planning depth by inference over the decision-tree solver

reveals a positive relationship between looking deeper into the decision tree and more

accurate planning. However, eye-movements measure planning depth only approximately.

Decision-tree based inference shows that participants are usually able to plan deeper than
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they look and might provide a more accurate metric of planning depth.

Several other questions will be addressed in future research. What do good planners

do better than poor ones? A larger working memory capacity might allow participants to

evaluate more alternatives. Better planners may select options to evaluate more effectively.

Moreover, quality of planning might depend on fixation sequence. For example, the order in

which tree branches are fixated may contribute to primacy or recency effects. In addition,

eye-movements during planning are accompanied by series of pupil dilations. The extent

of pupil dilation may be associated with the sensitivity to decision value, and the baseline

pupil size when approaching decisions might be predictive of the tendency to update one’s

plans or exploit a planning policy. If so, then baseline pupil size might predict planning

depth according to decision-tree inference.

More accurate planning might depend on higher sensitivity to decision value sampled

by eye-movements. If so, sampling decision value can be modelled by a drift-diffusion

model, where each fixation contributes a fragment of evidence for a decision option. So,

a higher sensitivity to decision value might entail a steeper drift or a lower noise in the

drift-diffusion model. Moreover, if eye-movements sample decision value, then priming

observers to fixate at particular locations by increasing its sensory salience can potentially

influence decision quality.

7.4 The Intelligence Attribution Task

The intelligence attribution task follows the procedure described in Chapter 6. Half of

the solutions were optimal, matching the optimality statistics typical of human solutions.

Others showed examples of deviations from optimal policy.

7.4.1 Stimuli

Participants read the instructions on a computer screen and viewed 3 familiarisation ex-

amples followed by 26 test movies, 8 of which showed incomplete trajectories, stopping
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before the exit was found. Stimuli were generated by replaying solutions of participants in

the planning task descried in Chapter 5.

The movies were labelled according to inverse planning inference as softmax or optimal.

The complete examples were also labelled as lucky or unlucky according to the length of

path taken by the agent. In summary, there were 6 movie conditions: softmax-unlucky, soft-

max˙lucky, optimal˙unlucky, optimal˙lucky, softmax0, subpotimal-partial andoptimal˙part.

Each of the conditions occurred 4 times. The softmax0 condition occurred two times since

such trajectories are infrequent among human solutions. Each movie was assigned a frac-

tion of optimal steps in the movie, optstepi and the inferred decision noise τi. After viewing

each movie, participants rated the intelligence of each solution by selecting a rating from a

Likert scale between 1 (less intelligent) to 5 (more intelligent). Full instructions are listed

in the Appendix.

7.4.2 Results

The results replicate the main findings described in Chapter 6, followed by a comparison

of the model-based metrics of intelligence attribution to relative pupil size and the CRT

score. For each participant we calculate metrics of individual sensitivity to efficiency and

to luck. Sensitivity to efficiency is the difference between the participant’s average ratings

of optimal and suboptimal trials. Sensitivity to luck is the difference between participant’s

average rating of lucky and unlucky trials.

ANOVA of rating for (participant, condition) shows a main effect of participant (p <

.0001, F = 3.6873) and of condition (p < .0001, F = 93.5942). The adjusted R-squared

of the regression model is r2 = .4336. The mean ratings of each condition are shown

in Figure 7.16). According to Tukey HSD the difference between the optimal lucky and

unlucky conditions is not significant, −0.3, p = .17, however there is a significant difference

between the ratings of lucky and unlucky softmax conditions−0.56, p = .0002. There is also

a significant difference between ratings of incomplete conditions, with optimal incomplete

conditions rated higher than suboptimal ones −0.89, p < .0001.

Participants’ metrics of planning accuracy predict their sensitivity to efficiency. ANOVA
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Figure 7.16: Comparing ratings between the two groups OL-optimal-lucky, OU-optimal-

unlucky, SL-softmax-lucky, SU-softmax-unlucky, S0-softmax0, OP-optimal-partial, SP-

suboptimal-partial. Error bars indicate Standard Error of the Mean.

of optstepp against sensitivity to efficiency and sensitivity to luck shows a marginally sig-

nificant effect of sensitivity to efficiency (F = 4.499, p = .043) but not of sensitivity to

luck (F = 0.0331, p = .86). Pearson correlation of sensitivity to efficiency and optstepp

is r = .37, p = .04. In addition, regressing τp against sensitivity to luck is significant

(F = 6.1909p = .01), adjusted R-squared .14. The Pearson correlation between sensitivity

to luck and τp is r = .41, p = .02.

Analysing complete trials separately, ANOVA of rating for (participant, condition,

steps, revisits) shows a main effect of participant (p = .002, F = 1.9804), of condition

(p < .0001, F = 137.0509), steps (p < .0001, F = 50.9197) and an interaction between

steps and revisits (p = .01, F = 6.0016). Earlier the effects of steps and revisits in rating

were explained by the presence of the outcome group. This time only 5 participants self-

reported as ‘outcome’, (4 of whom also self-reported as ‘guessing’), which is insufficient to

analyse the outcome and strategy groups separately. However, there may be differences in

individual intelligence attributions based on the participant’s CRT score.

Indeed, the ANOVA of rating against (participant, CRT, condition) shows main ef-

fects of participant, (F = 3.9168, p < 0.0001), of condition (99.41958, p < 0.0001) and a

significant interaction between CRT and condition (F = 4.8062, p < 0.0001). The mean

ratings are shown in Figure 7.16). According to Tukey HSD participants with low CRT
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Figure 7.17: Comparing ratings between high, middle and low scoring participants OL-

optimal-lucky, OU-optimal-unlucky, SL-softmax-lucky, SU-softmax-unlucky, S0-softmax0,

OP-optimal-partial, SP-suboptimal-partial. Error bars indicate Standard Error of the Mean.

scores (those scoring 0 and 1) rated lucky examples higher. At the same time, there is no

evidence that participants with high and middle CRT scores attribute intelligence to out-

come. The difference between optimal-lucky and optimal-unlucky conditions is significant,

(d = 0.89, p = .01). However, the difference is not significant for high (d = 0.077, p = 1)

and middle scoring (d = 0.075, p = 1) participants. Likewise, difference between the

softmax-lucky and softmax-unlucky conditions is significant for participants with low CRT

scores (d = 1.02, p = .01), but not significant for high (d = 0.2, p = 99) and middle scor-

ing (d = 0.57, p = 46) participants. So, only participants with low CRT scores attribute

intelligence to outcome.

Participants with low CRT scores show no evidence of difference between ratings of

optimal and suboptimal incomplete trials (d = 0.36, p = .99). At the same time, the

difference is significant for middle (d = 1.45, p < .0001) and high-scoring participants

(d = 0.83, p = .002). Therefore, there is no evidence that participants with low CRT

scores attribute intelligence to efficiency. In contrast, high and middle scoring participants

attribute intelligence to efficiency even if the outcome is not seen.

Testing whether participants’ relative pupil size is linked to their attributions of in-

telligence, ANOVA of relative pupil size against sensitivity to efficiency, sensitivity to

luck and fraction of optimal steps shows a significant effect of sensitivity to efficiency
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(F = 5.2731, p = .03) and of optimal step fraction (F = 6.8725, p = .01), but not of

sensitivity to luck (F = 0.9040, p = 0.4). Pearson correlation of relative pupil size and

sensitivity to efficiency is r = .37, p = .046. Thus, relative pupil size during mental effort

predicts participants’ attribution of intelligence to efficiency.

The results agree with the observation described in Chapter 6 that planning ability

predicts attributed intelligence. The variation in attributed intelligence is also explained by

independent metrics of cognitive performance, pupil size and CRT score. So, participants

who have more cognitive resources at their disposal are more likely to attribute intelligence

to efficient plans.

7.5 Discussion

The variations in planning ability can be explained by independent metrics of cognitive

ability (CRT score and pupil size). So, participants’ evaluations of plans made by others

reflect a subjective judgement of cognitive ability, rather than a metric of task-specific

planning. Available cognitive resources, efficient planning and attributing intelligence to

efficiency go together. Participants who score highly on CRT are both more likely to plan

efficiently and to attribute intelligence to efficiency, so that having more cognitive resources

available for planning also correlates with skill at evaluating plans made by others.

Possibly, people engage a shared planning mechanism when attributing intelligence and

when making plans. Such a mechanism must be able to work with arbitrary perspectives,

affordances and beliefs. However, this does not mean that, as suggested by Simulation

Theory, people automatically imagines themselves in the agent’s place. Rather, learning

to plan in a variety of domains likely leads to skill and knowledge transfer among unrelated

planning activities. The extent to which planning ability is shared across domains needs

clarification by future research.

Eye-movement analysis suggests that people likely represent maze problems as graphs

consisting of observation nodes and paths between them, than use a step-based repre-

sentation. Both step-based and observation-based models predict the average trajectories
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generated by participants. However, the decision-tree model also requires fewer compu-

tations and explains the differences in mental effort (RT) and eye-movements throughout

the trial.

Planning frameworks such as these offer a variety of ways to formalise costs and rewards.

The calculations in this thesis adopt a simple model of discounted utility, which discounts

the rewards exponentially with distance. The downside of discounted utility models is that

the values they produce depend on the discount rate. So, changing the discount rate affects

the solutions predicted by the model. The discount rate used in this thesis was fitted by

simulation of procedurally-generated grid-world mazes. It was validated in practice by

comparing its predictions to solutions generated by human participants. Nevertheless, the

discounted rate reward model might be more appropriate for reasoning about long-term

investment rather a short path through a maze. Alternative ways to calculate rewards

need to be considered in future work. The decision-tree model is particularly well-suited

for reasoning about maze exploration as information gain, where the participant’s goal is

to minimise the entropy (e.g. Shannon entropy) over one’s beliefs while minimising cost.

Reward calculations could also be based on prospect theory [64] or might extend the One

Observation model described in section 5.2.

Regardless of the reward function used by the model, comparing empirical action likeli-

hoods to model-based action values shows that participants reason about rewards within a

certain precision and scale. According to the softmax model of rewards, which fits well the

empirical likelihoods of actions during the planning task, participants compare the values

of actions locally, relative to other actions in the same state. So, empirical probability does

not depend on values of actions in earlier states. For example, the softmax model treats

equally deciding between one cent and two cents on one trial and between one dollar and

two dollars on a subsequent trial. However, people should be more disposed to undertake

risk when choosing between low rewards than when choosing between high rewards. The

sensitivity to decision value might depend on the magnitudes and the outcomes of choices

on previous trials. There must be better models of how decision values are scaled taking

the absolute action value and the choice history into account.
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Chapter 8

General Discussion

Intelligence is difficult to define explicitly. Yet people readily make attributions of in-

telligence and the lack of it - ‘We know it when we see it’. But how do we go from

seeing to knowing, from observing external behaviour to evaluating the reasoning process

of someone else? The efficiency hypothesis explains intelligence attribution in the context

of goal-directed agents whose distribution of rewards and mental states are known to the

observer. It asserts that observers attribute intelligence to a capacity for reasoning about

probabilities, as opposed to certain quantities. If so, hypothetical aliens encountering the

NASA spacecraft could reason that its architects are intelligent, because sending a message

requires the sender to consider the (minuscule) probability of encountering other sentient

species in outer space.

Intelligence attributed to efficiency reflects the statistical expectation of outcome, on

the assumption that the distribution of rewards in the environment is known and stable.

However, in many real-life situations the observer’s knowledge of the reward distribution

is uncertain. Attributing intelligence to outcome, in contrast, requires only the general as-

sumption that intelligent agents are more likely to achieve good outcomes. Such a heuristic,

although imprecise, is informative in the absence of other inference. The outcome heuristic

is often employed in marketing uninterpretable algorithms: ‘We should trust the program

because it produces reasonable classification performance’ although may lead to prejudice

and biases (billionaires are intelligent by definition).
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Both attributing intelligence to outcome and poor planning, are correlated with poor

performance on the Cognitive Reflection Test (CRT). This suggests that the ‘outcome’

participants may have difficulty reasoning about probabilities. 1 However, such partici-

pants could also attribute intelligence to a different cognitive ability. Participants whose

numerical reasoning is weak might compensate by learning reward probabilities implicitly,

and likewise by assuming that lucky agents have successfully learned the implicit distribu-

tions of rewards. The observation that participants who do a task in a certain way rate

others highly if they seem to do the task in the same way resembles homophily - the phe-

nomenon of preferring others with similar physical or acquired characteristics (e.g. social

class, beliefs, education) [69, 81]. However, homophily based on cognitive style remains

little researched.

The results described in Chapter 6 show that all participants exhibit some sensitivity to

outcome and efficiency when evaluating others. On one hand, participants might compen-

sate for the lack of confidence in their evaluations of efficiency by attributing intelligence

to a combination of efficiency and outcome. On the other hand, attributing intelligence

to both outcome and efficiency may reflect an implicit assumption that intelligent agents

expect the environment to change. In a stable environment assuming that the reward

distributions are constant is an advantage. However, in a changing environment, such as

most real-world situations, intelligent agents continuously update their knowledge of how

the rewards are distributed. 2 Thus, the variance in attributions of intelligence might re-

flect interpreting deviations from the optimal policy as uncertainty over the distribution

of rewards.

Taking a broader perspective, goal-directed agents are only the tip of the iceberg of in-

telligent behaviour. The efficiency hypotheses assumes that intelligent behaviour must be

intentional; an observer attributing intelligence infers the agent’s goal, recognises that the

agent approaches it in an efficient way, and evaluates the agent’s planning procedure. How-

ever, agents may appear to behave intelligently while unaware of the goal. For example,

1A participant in the planning task: To me this task is mostly a matter of luck, since you have no

way of knowing where the exit is. Upon reading that the exit location is not deterministic the participant

decided that the task is entirely outside of his control.
2A participant’s comment after solving all mazes optimally: ‘I was so greedy it is embarrassing.’
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creative activity, such as composing music, requires intelligence, however often proceeds by

gradual elaboration, without a well-defined end goal. In practice, people attribute intelli-

gence to unintentional or exploratory agents, such as artists. Possibly, but not necessarily,

observers might do so by attributing a specific goal to an exploratory agent even if the agent

itself is not aware of it. But might observers also evaluate actions as intelligent without

necessitating goal-based inference? More research is needed to test this possibility.

In addition, intelligence is often attributed to evidence of social awareness. For example,

many people see octopuses as intelligent because octopuses seem to be aware of humans as

social agents: they hide when watched, extend tentacles to make contact with divers and

break equipment, apparently, to sabotage experiments [46]. This suggests that attributed

intelligence could result from assuming that an octopus has a Theory of Mind (ToM),

since not all social agents are seen as intelligent – ants are certainly not. The relationship

between the degree of attributed intelligence and the agent’s ability to apply ToM to social

interactions remains to be explored.

There may be a practical evolutionary reason for humans to have an ‘intelligence de-

tector’ to identify intelligent others that are worth modelling on. If people attribute high

intelligence to optimal social models, then the agents seen as the most intelligent would be

such that generate the optimal information gain for the observer. For example, a teenager

might attribute more intelligence to a classmate than to a parent. People may see other

members of the same profession as the most intelligent, and members of other professions

as less so. In summary, ‘intelligent’ might be intuitively defined as ‘better than me in

something I want to do’. 3.

But if one needs an intelligence detector to identify who to model on to become intel-

ligent, how does one start? Children prefer lucky agents [90] and those who can perform

a sporting action on the first attempt [60], in effect favouring agents with good outcomes.

However, physical fitness and luck are necessary for success independently of and in addi-

tion to intelligence. Simply modelling on agents who are fit and lucky would not produce

efficient learning per se. A practical intelligence detector should thus reason backwards,

3Participant’s comment: ‘Generally when I saw that they did something that I would have done I rated

them as 3. Whenever I saw them do something that I haven’t thought of that was good, I gave them a 5’.
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rationalising behaviour that the observer can not spontaneously produce, but can never-

theless recognise as efficient. 4

Lastly, the results of the planning task show that participants plan their actions when

new observations are received, making plans several observations in advance. The POMDP-

based model used in this thesis describes planning in a general case. However, given that

participants limit their planning horizon, there may be simpler models that explain human

behaviour. For example, A* type models [110] can minimise the path through a maze

by going to a node with a minimal total path length plus expected path length to the

goal. Comparison of reaction-time predictions made by different planning models remains

a topic of future research. The choice of the planning model used to explain solutions does

not alter the conclusion presented in this thesis that people plan several observations in

advance and attribute intelligence to evidence of efficient planning.

In conclusion, common sense suggests that intelligence attribution is based on percep-

tual evaluation of behaviour according to which more complex behaviour or better outcomes

seem more intelligent. However, the results presented in this thesis reveal a different story:

attributed intelligence depends on reasoning about the mental states of other agents. Peo-

ple expect intelligent organisms to reason probabilistically about uncertain environments

and attribute intelligence in proportion to the quality of probabilistic reasoning ascribed to

the agent. This research takes a step toward understanding how people interpret intelligent

behaviour in a variety of domains. The next chapter summarises the findings of this thesis

and describes possible directions of future work.

4A participant in Chapter 7: I was systematically visiting rooms left to right and top to bottom. Then I

saw someone going into bigger room first, then into a smaller room and I thought, that’s interesting, why

would they do that? That was smart! Now I would like to go back and play again.
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Chapter 9

Conclusions and Future Work

The main contributions of this thesis are:

• An experimental method for evaluating planning and attributed intelligence in nat-

uralistic environments;

• An empirical study of planning under uncertainty;

• A theory of attributed intelligence.

9.1 Summary

Chapter 4 measures empirical, common-sense attributions of intelligence to planning un-

der uncertainty during exploratory search. The proposed efficiency hypothesis explains

intelligence attributions made by the majority of participants as resulting from a subjec-

tive evaluation of the agent’s planning. However, a minority of participants attributes

intelligence to outcome, how quickly the agent completes a particular trial.

Thus, understanding how humans plan is essential to understanding how actions are

interpreted as intelligent or not. Chapter 5 describes an experimental planning task to

quantitatively study planning in natural environments. The proposed methodology uses
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non-verbal representations of costs (path length) and rewards (revealed cells) in a form

that people can easily understand regardless of age and education. The decision times,

decisions and eye-movements that occur during planning reflect the subjective value of

the underlying planning decisions. Analysing planning behaviour as probabilistic Bayesian

computations shows that on average participants produce optimal plans. At the same

time, individuals choose non-optimal actions with likelihoods proportional to the expected

utility of the choice.

Chapter 6 shows that individuals’ attributions of intelligence depend on their plan-

ning ability. Competent planners attribute intelligence to efficiency, while less skilled ones

attribute intelligence to outcome. The results suggest that planning practice leads to at-

tending to efficiency when attributing intelligence, possibly as a result of improved planning

skills. Chapter 7 shows that eye-movements correlate with the hidden process of estimating

decision value. In addition, both planning ability and attributing intelligence to efficiency

vary with metrics of cognitive ability. So, both planning and attributing intelligence prob-

ably rely on a shared cognitive resource, such that is measured by Cognitive Reflection

Test and pupil dilation. Participants who have more cognitive resources at their disposal

are more adept at attributing intelligence to efficiency and at making efficient plans and

so attributing intelligence to outcome is due to limited cognitive resources.

9.2 Future work

Efficient modelling hypothesis of intelligence. An experiment that tests the effi-

cient modelling hypothesis of attributed intelligence might involve three tasks. First, an

incentivised planning task assesses participants’ planning. Second, an intelligence attri-

bution task assesses participants’ evaluations of others. Finally, participants complete an

incentivised planning task to measure learning. Incentivising the planning task motivates

participants to learn from others during the intelligence attribution task. If the efficient

modelling hypothesis is correct, we expect to see more intelligence attributed to efficiency

under such circumstances, since individual outcomes are less relevant to learning planning

strategies.
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Intelligence attribution and planning in development. The intuitive experimen-

tal methodology described in this thesis is engaging, easy to learn and suitable for children

and adults. So far, little is known about planning and attributing intelligence during devel-

opment. Although children recognise and value competence [60], attributing intelligence

to efficiency requires complex mental computations. In contrast, attributing intelligence to

outcome may be available early. So, children might transition from judging by outcome to

judging by efficiency as their Theory of Mind (ToM) and cognitive abilities develop. Young

children might attribute intelligence differently than adults. For example, children might

rate efficient agents as intelligent so far as the problems solved by the agents are useful for

learning, so that the efficient modelling hypothesis, attributing intelligence to agents who

are efficient models, might hold for children, but not for adults.

Implicit assumption about the environment. Giving participants no explicit in-

structions about the distribution of rewards or about the stability of the world, the planning

task can be used to elicit implicit assumptions held by participants. When exploring the

reward distribution participants are more likely to converge on the true distribution if it

is close to their implicit assumptions. Participants might also be influenced by the out-

come of the previous trial, a phenomenon commonly described as ‘win stay, lose switch’.

Assuming an unstable environment should result in a higher likelihood of switching after

an unlucky outcome. To simplify the analysis, participants may be instructed that the

experiment may have been designed by the good, the bad, or the random experimenter,

priming three possible hypotheses about the distribution of rewards.

Shared resource. Furthermore, electrophysiological correlates of planning and of

intelligence attribution may clarify the nature and time-course of the common resource

recruited by the two tasks. If people attribute intelligence by comparing a reference solution

to the agent’s actions, then the functional neuroanatomy involved in planning should be

recruited prior to observing the agent’s decisions in intelligence attribution task. Observing

unexpected actions that differ from the observer’s predictions might correlate with higher

functional activation [65]. So, attributed intelligence might correlate with two factors: (1)

is the action expected? and (2) is the action optimal? The observer’s prediction may be

sub-optimal, but if observing an optimal action leads to learning, attributed intelligence

should be high. Alternatively, participants might attribute high intelligence to expected
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actions , regardless of planning policy. Moreover, participants who attribute intelligence

to outcome might recruit different functional networks (possibly associated with emotions

rather than planning) compared to participants who attribute intelligence to efficiency.

Planning under uncertainty in abstract domains. The planning task developed

in this thesis raises several questions of interest to future research. Planning under un-

certainty is central to most natural behaviour, from hunting-and-gathering to managing

investments. The rewards are usually sparse, the uncertainties are many, and to get by, or-

ganisms must maintain distant goals and reason in advance. Previous work on exploratory

searching shows that mental and spatial search engages a shared cognitive mechanism:

priming strategies of spatial foraging affects how humans subsequently search for words in

memory [55]. This suggests that there may be a shared cognitive resource that handles

planning under uncertainty as well, so as to enable knowledge transfer across domains. If

all planning under uncertainty evokes an abstract mechanism of probabilistic reasoning,

then priming a particular style of planning in one domain should influence how people

subsequently make their choices in other domains. For example, priming attention to

costs in the planning task should make people spend frugally while shopping. In contrast,

instructing participants to reveal as much space as possible should make people spend

more.

Models of value-based reasoning. The model of planning supported by the exper-

iments in this thesis puts the evaluation of action values at the centre of planning. The

softmax reward function produces a human-like mapping of action values to probabili-

ties. However, softmax rewards ignore the magnitude of choices faced on earlier trials. In

contrast, humans remember the choices they faced, retrieve the reasoning they used and

reason about action values globally within a certain time-window. More recent values may

be weighted more strongly, or weighted with respect to reference points, as suggested by

prospect theory. This concern may be partly addressed by Drift-Diffusion (DDM) models,

in which action values are fitted to to eye-movements, RT and electrophysiological mea-

surements [29, 129]. Model-based metrics of value appraisal can be further compared with

established metrics of impulsivity [142, 97], reward appraisal [99] and personality [40]. Re-

ward appraisal is known to differ between individuals, e.g. diminished reward appraisal is

common in depression [3, 108, 54]. The methodology described in this thesis can be used
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to measure value processing and characterise the mechanisms by which differences between

individuals arise.

The common principle motivating all biological cognition is the need to make sense

of uncertain evidence. Perception, from the brightness of sunlight to fleeting emotions of

an acquaintance, arises from a process of inference combining expectations and sensory

stimuli. Human behaviour may seem irrational at times, simply because most cognition is

unconscious and because first impressions are often wrong. However, a careful application

of computational modelling, psychophysics and behavioural experiments reveals a system

precisely balancing computation costs and quality of inference while adapting to uncertain

environments. Humans intuitively identifying efficiency as the basis of intelligence likely

generalise this principle, that efficiency is to intelligence what transporting entropy across

a boundary is to life.
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APPENDICES

Instructions, Chapter 5, Escape a maze

The following instructions were displayed in a computer monitor using a browser. The

experiment used our own interface, with code written in HTML 5, JavaScript and PHP.

Welcome to our study!

To participate in this study you need a desktop computer or a laptop, not a mobile device.

In this study you will move in a maze and try to find the exit in fewest moves possible.

There are 3 practice mazes and 12 test mazes.

The study takes approximately 8 minutes.

The top 20 % of participants who find the exit in fewest moves receive a 10 % bonus!

Thanks for participating!

Participants in the No Bonus condition saw the same set of instructions, but without

the line about the bonus.

Instructions, Chapter 4, Experiment 1

The following instructions were displayed on a computer monitor before starting the

experiment using Psychtoolbox [16].
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Thank you for participating in our experiment!

You will see a mouse in a maze. The mouse is hungry. The mouse is familiar with the space,

but does not know where the food is and wants to get to the food.

The food can be anywhere.

Rate how intelligent is the mouse on the scale 5 (more intelligent) .... 1 (less intelligent).

Please write your rating in the provided answer sheet.

We will start with 4 familiarization examples.

After completing the 4 practice trials the participant saw a message:

If you have questions about the experiment please ask them now.

Otherwise press any key to continue.

The experimenter was in an adjacent room to answer questions at that may arise this

point. Most participants did not have questions.

Instructions, Chapter 4, Experiment 2

The following welcome instructions were displayed in a computer monitor using a

browser via an interface created in Survey Gizmo TM.

Welcome to our study!

In this study you will see 40 videos of a mouse trying to get to a target.

For each movie, you will rate the intelligence of the mouse.

The study takes approximately 18 minutes.

Thanks for participating!
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The welcome instructions were followed by an informed consent agreement and a form

collecting age and gender. After accepting the informed consent, participants saw task-

specific instructions:

Instructions, please read carefully!

In this study you will see a many hungry mice looking for food in a maze.

The food can be anywhere in the maze.

Each movie shows a different mouse.

Each mouse is familiar with the maze it is running through,

and knows where the walls are.

In the beginning, a mouse DOES NOT KNOW WHERE THE FOOD IS.

Areas not yet seen by a mouse are initially dark,

and become uncovered as the mouse goes along.

You will rate how intelligent each mouse is, on a scale of

1 (less intelligent) to 5 (more intelligent).

Each movie takes approximately 10 seconds.

It is important to watch each movie at least once before submitting a rating.

On the next page are 4 example movies as a warm-up,

after that each movie will be displayed on a separate page.

When you are ready, please continue to the next page.
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Instructions, Chapter 6, Experiment 1

The following instructions were displayed in a computer monitor using a browser. The

experiment used our own interface, with code written in HTML 5, JavaScript and PHP.

Welcome to our study!

To participate in this study you need a desktop computer or a laptop, not a mobile device.

This study has two parts.

In the first part you will look for an exit in a maze.

In the second part you will view and evaluate the solution of other participants.

The study takes approximately 20 minutes.

Thanks for participating!

The welcome instructions were followed by an informed consent agreement and a form

collecting age and gender. After accepting the informed consent, participants saw instruc-

tions specific to the maze-solving task:
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PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

Your task is to exit the maze by reaching the red square in as few steps as possible.

You can move one square at a time,

by clicking on the white squares near your character.

Blue squares are walls. You cannot see through the walls,

so the squares you cannot see yet are black.

The exit is equally like to be hidden behind any of the black squares.

In the end of the experiment we will add all

steps you took and show you how you did compared to previous results.

You have an opportunity to earn a bonus for completing the mazes in fewer steps.
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After completing practice examples participants answered instructions quiz.

Great, you have finished practice!

Please answer the instructions quiz below to proceed with the experiment.

Question 1: My task is to ..

o visit every square in the maze.

o finish in as little time as possible.

o solve the mazes in as few steps as possible.

o click as fast as possible.

Question 2: My bonus will be bigger if I ...

o finish the mazes in less time.

o finish the mazes in fewer steps.

o am lucky at guessing.

o The bonus will be given at random.
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Additionally, a short reminder message was displayed during the experiment on the top

of the screen.

Find the exit in as few steps as possible.

The exit is equally like to be hidden behind any of the black squares.

After finishing the maze-solving task, participants were asked to provide free form

answers:

Thank you for completing the first half of the experiment!

Please answer the question below to move on to the second half.

How did you make your decisions about which way to go?

————————————————-

This is optional, but we would love to hear any comments that you may have.

————————————————-
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Before beginning the intelligence attribution task participants read the following in-

structions:

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

Your task is to evaluate another person’s solution on the scale

1 (less intelligent) to 5 (more intelligent).

The person wants to get to the exit in fewest moves and knows

that the exit is equally likely to be behind any of the black squares.

In some videos you will see only a part of the path.

Please take a moment to review each maze before viewing the solution,

then press ‘ ¿¿ Play/Pause’ to start the video.

Each video shows a different person.

It is important to view each video at least once.

Instructions, Chapter 7, Planning Task

Welcome to our study!

IT IS IMPORTANT TO READ THE INSTRUCTIONS CAREFULLY

Part 1: Decision-making

Escape the maze in AS FEW MOVES AS POSSIBLE by reaching the exit (the red square).

Blue squares are walls. You cannot see through the walls. The squares you cannot see yet are black.

The exit is EQUALLY LIKELY to be behind ANY of the black squares.

In the end you will see how many steps you took compared to other people.

There are 5 practice mazes and 12 test mazes.

Press SPACE to start, then use keyboard arrow keys to move.
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Instructions, Chapter 7, Intelligence Attribution Task

Part 2: Judging Others

You will see 26 solutions of other people to puzzles like the ones you just solved.

Each video shows a different person.

Please rate each solution between 1 (less intelligent) and 5 (more intelligent) using the mouse.

Some videos will show only a part of the path.

Take a moment to study each maze, then press SPACE to view the solution.

(Press SPACE to start...)
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