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Abstract 

Landslides are natural hazards that contribute to tremendous economic loss and result in fatalities 

if there is no well-prepared mitigation and planning. Assessing landslide hazard and optimizing 

quality to improve susceptibility maps with various contributing factors remain a challenge when 

working with various geospatial datasets. Also, the system of updating landslide inventories 

which identify geometry, deformation, and type of landslide with semi-automated computing 

processes in the Geographic Information System (GIS) can be flawed. This study explores 

landslide geoanalytics approaches combined with empirical approach and powerful analytics in 

the Zagros and Alborz Mountains of Iran. Light Detection And Ranging (LiDAR)-derived 

Digital Elevation Models (DEMs), Unmanned Aerial Vehicle (UAV) images, and Google Earth 

images are combined with the existing inventory dataset. GIS thematic data in conjunction with 

field observations are utilized along with geoanalytics approaches to accomplish the results. 

 The purpose of this study is to explore the challenges and techniques of landslide 

investigations. The study is carried out by studying stream length-gradient (SL) index analysis in 

order to identify tectonic signatures. A correlation between the stream length-gradient index and 

the graded Dez River profile with slopes and landslides is investigated. By building on the 

previous study a quantitative approach for evaluating both spatial and temporal factors 

contributing to landslides for susceptibility mapping utilizing LiDAR-derived DEMs and the 

Probability Frequency Ratio (PFR) model is expanded. Furthermore, the purpose of this study is 

to create an algorithm and a software package in MATLAB for semi-automated geometric 

analysis to measure and determine the length, width, area, and volume of material displacement 

and flow direction, as well as the type of landslide. A classification method and taxonomy of 

landslides are explored in this study. LiDAR-derived DEMs and UAV images help to 
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characterize landslide hazards, revise and update the inventory dataset, and validate the 

susceptibility model, geometric analysis, and landslide deformation. 

 This study makes the following accomplishments and contributions: 1) Operational use 

of LiDAR-derived DEMs for landslide hazard assessment is estimated, which is a realistic 

ambition if we can continue to build on recent achievements; 2) While a steeper gradient could 

potentially be a signature for landslide identification, this study identifies the geospatial locations 

of high-gradient indices with potential to landslides; 3) An updated inventory dataset is achieved, 

this study indicates an improved landslide susceptibility map by implementing the PFR model 

compared to the existing data and previous studies in the same region. This study shows that the 

most effective factor is the lithology with 13.7% positive influence; and 4) This study builds a 

software package in MATLAB that can a) determine the type of landslide, b) calculate the area 

of a landslide polygon, c) determine and measure the length and width of a landslide, d) calculate 

the volume of material displacement and determine mass movement (i.e. deformation), and e) 

identify the flow direction of a landslide material movement. In addition to the contributions 

listed above, a class taxonomy of landslides is introduced in this study. The relative operating 

characteristic (ROC) curve method in conjunction with field observations and the inventory 

dataset are used to validate the accuracy of the PFR model. The validation of the result for 

susceptibility mapping accuracy is 92.59%. Further, the relative error method is applied to 

validate the performance of relative percentage of error of the selected landslides computing in 

the proposed software package. The relative percentage of error of the area, length, width, and 

volume is 0.16%, 1.67%, 0.30%, and 5.50% respectively, compared to ArcGIS. Marzan Abad 

and Chalus from Mazandaran Province of Iran and Madaling from Guizhou Province of China 

are used for validating the proposed algorithm.  
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Chapter 1 

Introduction 

1.1 Introduction to Landslides 

Landslide is a general term used to describe the downslope movement of materials such as soil 

and rock under the effects of gravity. A landslide is a very common phenomenon of the 

geological and geomorphological process (Varnes, 1984; Cruden, 1991; Highland and 

Bobrowsky, 2008) on the Earth’s surface that occurs on a wide range of spatial and temporal 

scales. Landslides can change landscapes; for example, a recent massive landslide on a 

California highway went into the Pacific Ocean, hit a Californian community, and added to a 

record cost of one billion dollars in highway damage from one of the state’s wettest winters in 

decades (Canadian Press, 2017). Landslides are natural hazards that contribute to tremendous 

economic loss and result in fatalities if they are not recognized, assessed, and monitored with a 

well-prepared mitigation and loss-reduction program. The term “landslide” denotes events such 

as ground movement, rock fall, failures of slopes, topples, slides, spreads, and flows. Also, it 

may involve debris flows, mudflows, or mudslides. Landslides happen rapidly in the world every 

year, particularly in Asia (Figure 1.1). These landslide events have drawn the interest of non-

geologists based on the need to practice catastrophic and visible mass movements that are widely 

recognized by other disciplines. Landslides cause several thousand deaths worldwide often. 

However, the long-term average of spatiotemporal distribution and the impacts on the 

environment and people may still be underestimated due to the non-availability of data as well as 

outdated inventory datasets to reinforce the foundation for smart decision-making (Petley, 2012; 

Sassa, 2017a; Sassa, 2017b; Sassa, 2017c; UN-GGIM, 2017). One global dataset of fatalities 
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from tectonic actives and non-seismically triggered landslides resulting in loss of life and 

worldwide data recorded during a seven-year period indicated 2,620 fatal landslides causing a 

total of 32,322 recorded fatalities. Environmental impacts and human losses from landslides have 

mostly occurred in Asia, especially along the Himalayan Arc, China, and certain regions of Iran 

in the Alborz and Zagros Mountains and parts of the Himalayas. 

 

Figure 1.1: Fatal landslides from 2004-2010 with white dots. Source: NASA-

http://www.nature.com/news/death-toll-from-landslides-vastly-underestimated-1.11140. 

 In this study, geoanalytics are used to interpret location-based landslide data combined 

with powerful analytics and logical correlation among objects. Geoanalytics provides a new 

context for and perspective of data with a complex mathematical calculation and topological 

relationships to investigate a landslide in a way which cannot be presented with tables and charts. 

Developing methods to map susceptible landslide areas with acceptable accuracy, extract the 

geometry of a landslide polygon automatically, and simulate the material displacement and mass 

movement flow direction of deformation require a geoanalytical and modelling approach. 

Geoanalytic is the location-based data, combined with powerful analytics puts a wealth of 

information at fingertips. Modelling is also the act of building a model that has been carried out 

in this research for landslide study. Also, geodata is information about all geographic locations of 
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landslide or any object that is stored in a format and can be used with a geographical information 

system (GIS).  

Although an semi-automated classification of landslides is challenging, the goal of this 

thesis is (a) to investigate the challenges, quality, and issues of the landslide study in the Zagros 

and Alborz Mountains of Iran; (b) to improve landslide susceptibility mapping and update the 

inventory dataset; and (c) to develop a solution package consisting of semi-automated landslide 

geometry extraction for determining the length, width, area, volume, and landslide type as well 

as the deformation pattern and flow direction of the material movement simulation. In this study, 

utilizing Light Detection And Ranging (LiDAR)-derived DEMs and high resolution of 

orthoimages could prove reliable for upgrading inventory datasets in real-world applications. In 

addition, the proposed landslide geometry and deformation pattern algorithm and code could 

probably be used for establishing a platform for data collection and sharing data based on the 

future direction of the United Nation Global Geospatial Information and Resources Management 

(UN-GGIM) sustainable development goals (http://ggim.un.org/).  

 Following the introduction, this chapter describes the general thesis and motivation in 

Section 1.2; the problem statement, research assumptions and core research issues in Section 1.3; 

the objectives of thesis in Section 1.4; and the thesis organization in Section 1.5. 

1.2 Motivation   

In the last decades, we have observed the following: (1) Remote sensing technologies have been 

used from the realm of research for operational use in natural hazards. Furthermore, satellite 

images and DEMs are useful for reducing and preventing damages in conjunction with 

Geographical Information System (GIS) techniques for susceptibility modelling and mapping. 

(2) Private industries, government agencies, and public/private stakeholder consortiums are 
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planning or may have recently formed their intentions to work with large-scale acquisitions data 

of LiDAR data utilizing Unmanned Aerial Vehicle (UAV) for natural hazard studies as well as 

landslide investigations (Pirasteh and Li, 2016). In developed countries, this will likely take 

place before 2020 (Evans et al., 2009); and in developing countries such as Iran, this will likely 

take place before 2030 (UN-GGIM, 2015). (3) LiDAR data acquisition, digital processing, 

quality, updating, and validation of landslide inventory dataset. Also, optimization of utilizing a 

DEM in landslide investigation and semi-automated extraction of landslide geometry and 

landslides classification are elements to encourage the author to study. In addition to the 

aforementioned, determining the volume of mass movement and landslide deformation pattern 

simulation have remained a challenge and a key interest of researchers in defining unlimited 

applications such as landslide monitoring and assessment. (4) Furthermore, LiDAR and user-

driven products for decision-makers and consistent standards in project planning have not yet 

been probably well-introduced in some applications, as they are still undiscovered across 

multiple disciplines. 

 By considering the issues outlined above, it is concluded that remote sensing products 

such as DEM particularly with a high-resolution in pixel size are increasingly being used in the 

landslide community. These products are becoming an essential tool for landslide studies. Thus, 

this study may expect that in a few years, LiDAR sensors and UAV will have likely become 

standard tools for landslide investigations, susceptibility mapping, and monitoring. However, 

remote sensing products may still require practical recommendation to the users and applications 

of investigations of geometric analysis, deformation analysis, classification, quality, updating, 

and validity of the existing inventory landslides dataset. The real challenge is to not only use and 

benefit from the products of LiDAR and UAV technologies such as high resolution DEMs and 

satellite images, but also to develop more methods and technical computing algorithms and 
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codes to assess recent landslides, update inventory dataset, prediction, geometry analysis, 

deformation analysis, and classification. Also, researchers have not yet notably attempted to 

extract DEM derivatives with new information (Pirasteh and Li, 2016).  

 Therefore, the motivation of this research is not only to explore the use of DEM 

derivatives accompanying satellite images in landslide recognition and GIS techniques for 

susceptibility modelling and mapping, but also to (a) develop an algorithm for semi-automated 

extraction of landslides geometry, (b) conduct deformation analysis, and (c) determine the 

landslide type from the updated inventory dataset in conjunction with LiDAR and UAV 

technologies to optimize the quality of data. More concretely speaking, this study aims at 

building and advancing semi-automated extraction of landslide geometry and deformation 

patterns simulation, modelling, and mapping with MATLAB. The two proposed MATLAB 

codes not only enable generating of geometric representation and report, but also support the 

validation of landslide deformation description within the inventory dataset. The proposed 

algorithm and the MATLAB codes compute the geographical coordinates of the landslide 

polygon, slope angle (θ), length, width, area, and classification of a landslide. These data are 

supported and identified by high resolution satellite images of Google Earth, UAV orthoimages, 

LiDAR-derived DEMs, and an inventory dataset in conjunction with field observations. Also, 

this proposed algorithm enables simulating, modelling, and mapping of before and after 

landslides for deformation, volume, and failure material displacement direction. 

1.3 Research Assumptions and Core Research Issues 

1.3.1 Research Assumptions 

This study observes that: (1) Landslide assessment is a very important issue in deformation of 

environment and the Earth’s surface, and such assessment is useful for reducing and preventing 

damages; (2) Conventional surveying techniques can only provide data measurements with very 
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low sampling and may not provide detailed information for landslide deformation description, 

particularly for a large geographical area being monitored object; (3) Satellite images may not be 

a desirable choice for generating a high-resolution of a DEM to study the landslide, but may be 

used for geologic and geomorphologic interpretation to identify influential parameters such as 

vegetation, faults, folds, and drainage networks for landslides assessment; (4) LiDAR and UAV 

have alternative advantages in capturing high-density 3D point cloud data and images that open 

substantial potential for landslide ; and (5) The utilization of the probability frequency ratio 

(PFR) model (see Chapter 4) in the GIS environment accompanied with the LiDAR-derived 

DEM, temporal Google Earth images, and UAV images of the high-resolution data can enrich 

the extraction of DEM derivatives such as slope, aspect, and drainage density with qualitative 

and detailed information for landslide susceptibility mapping. They may also increase the quality 

of geometric analysis such as volume of materials displacement, length, width, and area 

measurement of a landslide. This study presumes that these techniques could possibly validate 

and update any existing landslide inventory dataset. Also, these techniques may result in 

identifying more precise evaluation in ranking the landslide contributing factors such as 

lithology, land use, drainage, vegetation, and lineaments in the grid form.  

1.3.2 Core Research Issues  

In general, this research looks at landslide investigations from two perspectives: (1) inside the 

landslide boundary, and (2) outside the landslide boundary. Therefore, the research focuses on 

(a) assessing the quality of landslide assessment (i.e. both inside and outside the landslide 

boundary) and exploring the tectonic geomorphology features utilizing a LiDAR-DEM for 

landslide investigations; (b) evaluating geodata analytics and empirical approaches of landslide 

assessment by implementing PFR model for susceptibility mapping of a large to small area (i.e. 
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outside the landslide boundary); and (c) developing an algorithm as well as codes for semi-

automated geometric analysis (i.e. for inside the landslide boundary), deformation simulation, 

modelling, and mapping.  This study also focuses on a classification of landslides using LiDAR-

derived DEMs, Google Earth images, UAV images, and the existing inventory dataset in 

conjunction with field observations to support the quality and validation of the landslide analysis. 

The following questions and problems are answered in this Ph.D. research thesis:   

 Problem-1: How are landslides assessed using LiDAR-derived DEM and GIS techniques 

by implementing empirical and analytical approaches? What are the factors influencing a 

landslide in the Alborz Mountains? This research focuses on the use of the LiDAR-derived 

DEMs, Google Earth images, and UAV images to represent an improved landslide susceptibility 

map, support validation, and update the inventory dataset. This study explores and identifies 

empirical and geoanalytics methods which enable the extraction of tectonic geomorphology 

features and susceptible hazard-prone areas for landslide investigations from the DEMs and PFR 

model.  

 Problem-2: What are the different geometric types of landslides? How can a semi-

automated algorithm be developed to determine the type of landslide? Which algorithm can be 

used in developing a software tool to determine length, width, area, and volume of a landslide? 

ArcGIS software has limitation in detecting and determining landslide length, width, or type. In 

addition, it cannot determine length (long side) and width (short side), and also type of a 

landslide. In this study, the researcher must first understand the phenomenon of landslide and 

identify the main modelling analysis requirements to represent a landslide’s geometry and 

classification. Moreover, this study needs to understand the length, width, deformation, and 

classification of landslides. Furthermore, this study needs to determine which equation might be 

used to evaluate and measure the length, width, and area of a landslide polygon as well as the 
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volume of a mass movement. Of course, this automatic computing technical process should 

benefit from evaluating and analyzing the landslide investigations mentioned in Problem-1. 

1.4 Objectives of the Thesis 

The objectives of this research are:  

1) To apply LiDAR-derived DEMs and user-driven products such as drainage network and 

to determine stream length-gradient index anomalies for undiscovered approaches of 

landslide identification and assessment by determining the value of the stream length-

gradient index and the river topography profile;  

2) To evaluate the inventory datasets by applying PFR model for quality improvement and 

landslide susceptibility mapping using LiDAR-derived DEMs;  

3) To develop a semi-automated algorithm to extract landslide geometry and analyze 

deformation patterns using LiDAR-derived DEMs and UAV imaging system; and 

4) To develop a  semi-automated algorithm and to determine landslide type.  

1.5 Thesis Organization 

This thesis is organized into seven chapters including this introduction chapter.  

Chapter 2 presents the general methodology of this thesis, including descriptions of the 

study area and the whole research work shares in common, and defines how the following 

chapters connect to geoanalytics for susceptibility mapping and the semi-automated extraction of 

landslide geometric analysis and deformation simulation using scripting and coding associated 

with remote sensing and GIS technologies. Moreover, this chapter outlines the advantages and 

disadvantages of the various techniques and models from previous studies based on challenges, 

quality, and recommendations using LiDAR-derived DEMs for the landslide assessment.  
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Chapter 3 presents the stream gradients analysis in the RiverTools and ArcGIS software to 

identify signatures, interpret, and improve landslide investigations and mapping. Moreover, this 

chapter identifies the correlation between stream length-gradient index and the graded 

topographic profile with slopes and landslides.  

Chapter 4 describes the integrations of LiDAR-derived DEMs, ASTER DEMs, and GIS-

based analysis in conjunction with the inventory dataset and field observations and applies the 

PFR model for landslide susceptibility mapping.  

Chapter 5 presents a semi-automated algorithm for extraction of landslide geometry, 

including landslide polygon extraction, and determination of the length, width, and area of a 

landslide, and use of MATLAB for generation of geometric representation and reports and 

validation of an updated landslide deformation description.  

Chapter 6 describes an algorithm to simulate and model the material displacement volume 

and flow direction as well as landslide classification. This chapter also presents a landslide 

classification method based on the geographical coordinates, slope angle (θ), and geometry of 

landslides..  

Chapter 7 presents the conclusions from the thesis and recommendations  

for future work. 
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Chapter 2 

Description of Methodology 

This chapter describes the general methodology of this thesis and attempts to show the 

relationships among the chapters. Section 2.2 presents the skeleton of the strategic research 

design of the thesis. Section 2.3 details the study area, and Section 2.4 presents the data 

acquisition and the datasets used. Section 2.5 describes the accessibility and quality of data, 

determining datasets for landslide investigations, geoanalytics approaches based on data 

availability, as well as past occurrence of catastrophic landslides. Section 2.6 demonstrates the 

proposed approach of a tectonic geomorphological analysis utilizing remote sensing and GIS 

techniques for landslide investigations of the Zagros Mountains. Section 2.7 presents the PFR 

model and improvement of landslide susceptibility mapping based on the existing and updated 

inventory datasets and LiDAR-derived DEMs in conjunction with field observations. Section 2.8 

presents an algorithm for semi-automated extraction of the length, width, and area of a landslide 

polygon. Section 2.9 describes an algorithm for simulation of volume material displacement, 

deformation pattern, and flow direction. Section 2.10 summarizes this chapter. 

2.1 Introduction 

Landslide investigations, which involve several qualitative or quantitative approaches, are 

discussed in many scholarly research papers (Wu and Sidle, 1995; Pack et al., 1998; Lee et al., 

2002; Zhou et al., 2003; Schulz, 2007; Watts, 2004; Pradhan et al., 2006; Yilmaz and Yildrim, 

2006; Ercanoglu et al., 2008; Yalkin, 2008; Pradhan and Buchroithner, 2010; Pradhan and 

Pirasteh, 2010; Yilmaz, 2010; Goetz et al., 2011; Choi et al., 2012; Solaimani et al., 2013; Zarea 

et al., 2013; Jebur et al., 2014; Lee et al., 2014; Su et al., 2015). Moreover, the amount and the 

quality of available data such as DEM, appropriate methodology of analysis, and modelling are 
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significant elements of landslide susceptibility mapping (Carrera et al., 1991; Montgomery and 

Dietrich, 1994; Dai and Lee, 2002; Huabin et al., 2005; Evans et al., 2009; Mehrdad et al., 2010; 

Guzzetti et al., 2012; Konstantinos et al., 2016). 

 Researchers have implemented the diagnosis of landslide processes by means of 

geographical distribution of landslides, by developing algorithms and codes, and by generating 

susceptibility maps and models. Also, some researchers have attempted the semi-automated 

approach by identifying landslide-contributing factors, measuring accuracy performance, 

forming a geological and engineering perspective, utilizing remote sensing technologies, and 

considering early warning systems (Wu and Sidle, 1995; Zhou et al., 2003; Watts, 2004; Jebur et 

al., 2014; Lee et al., 2014; Su et al., 2015; Siyahghalat et al., 2016). 

 There are three major remote sensing techniques used in landslide investigations. They 

are (1) aerial photography, which is considered an early technique (Su and Stohr, 2000); (2) 

interferometric synthetic aperture radar (InSAR) (Travelletti et al., 2008; Jaboyedoff et al., 2012; 

Bianchini et al., 2016); and (3) LiDAR (Su and Bork, 2006). All of these techniques have 

advantages, disadvantages, and limitations. 

2.2 Research Design 

This thesis investigates the relationship between tectonic geomorphology and landslide hazards, 

and explores the modelling, simulating, and mapping of landslides using LiDAR-derived DEMs 

(5m). 

 Figure 2.1 illustrates the relationships among chapters, datasets, and methods used in this 

thesis. In this study, data availability and data quality for modelling, simulating, mapping, and 

geometric analysis have been determined, and challenges have been identified. Some 

recommendations are provided in Section 2.5. Landslide influencing factors have been studied 

and a new technique of assessing landslides has been developed by investigating the stream 
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length-gradient index and empirical interpretations of the Dez River profile in conjunction with 

field observations (see Chapter 3). 

 The quality of landslide susceptibility evaluation was improved by applying the PFR 

model to consider the effects of landslide-related and predisposing factors associated with the 

existing inventory dataset, LiDAR-derived DEMs, Google Earth images, and field observations 

(see Chapter 4). An algorithm and three codes for semi-automated extraction of geometric 

analysis, deformation simulation, and classification of the landslide were developed by 

implementing the proposed approaches (see Chapters 5 and 6). Throughout this entire 

development process, empirical data and analytical data have been used for investigating, 

simulating, modelling, and mapping landslides using RiverTools, ArcGIS, and the MATLAB. 

 

 

Figure 2.1: Skeleton of strategic research plan and relationships among chapters. 
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2.3 Study Area 

The study area is comprised of parts of the Himalaya mountain range which covers the Zagros 

and Alborz Mountains of Iran.  

 A) The Zagros Mountains extend from northwestern to southeastern Iran and end at the 

strait of Hormoz in the Persian Gulf. This mountain range has the lithostratigraphy such as 

Bakhtiyari Formation with conglomerates, Kashkan Formation with marls, and Papdeh 

Formation with sandstones, and also geomorphology features such as steep slopes, hogbacks, 

scarps, and knickpoints with rugged topography, high tectonic activities, and potential for 

landslide hazards. It is situated in the Zagros Fold Belt (ZFB) in Iran’s southwest (Figure 2.2). 

This part of the study area is bounded by Longitude 47º 58' 10.42'' - 49º 18' 50.63'' E and 

Latitude 32º 21' 40.94'' – 34º 29' 10'' N. The elevation, which varies from 142 m to 4,200 m, 

covers a high density of canopy in the spring and winter. The temperature varies between 49°C 

to -5°C. Geologically, the study area consists of various lithological units ranging from the 

Cretaceous age at the Sanandaj Sirjan Zone (SSZ) contact in the northeast (dominated by 

calcareous strata), and Sub-recent and Recent age in the Zagros Structural Belt (ZSB) in the 

south. The closure of the Zagros Basin during the Cretaceous-Miocene time period has generated 

diverse styles of folding and faulting. These structures, especially in the ZFB, exhibit tight, NW-

SE trending folds with closely-spaced fracture systems which explain the potential acceleration 

of landslide hazards occurrence. 

 B) The Iranian plateau is the part of the Eurasian Plate that is wedged between the 

Arabian and Indian plates. The Alborz Mountains extend from northwestern to northeastern Iran 

and cover the Central Alborz from the Mazandaran Province of Iran. This part of the study area 

is located in the Central Alborz close to the Caspian Sea in the north and Tehran in the south. 

The study area is located in the Central Alborz at a distance of 30 km from the Caspian Sea in 
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the north, and 100 km from the capital city of Tehran in the south. The study area, which is 

approximately 1,048 km
2
, is located between Latitudes 36°15'00" N to 36°35'00" N and 

Longitudes 51°07'30" E to 51° 27'30" E (4014000N-4048000N and 511184E-541004E in UTM). 

High tectonic activities have created an immature and rugged topography with high slopes and 

scarps in various locations that are indicators of susceptible landslides (Figure 2.2). The study 

area covers forests with a high density of vegetation. The elevation of the study area decreases 

from the south (by approximately 4000 m) to the north in the runoff of Chalus River. Chalus 

River, which is one of the most important rivers in the Central Alborz because it cuts the area in 

the northeast to form a deeply incised valley. This river transfers water from the highlands with 

an annual precipitation of less than 400 mm to the lowlands to the south of the Caspian Sea with 

annual precipitation of more than 1000 mm. 

 

Figure 2.2: Study areas in the Zagros and Alborz Mountains. 
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2.4 Data Acquisition  

Data quality and challenges for landslide investigations from geo-informatics perspective have 

been measured to understand the limitations of future study directions. Data collection and 

preparation are the first fundamental and essential steps of landslide investigations including 

susceptibility mapping, geometry analysis, and deformation and mass movement simulation. 

Table 2.1 depicts the GIS data layer of landslide studies as well as the source of the data for this 

study. In general, this study has organized the GIS database into five parts:  

I. Generating a 5 m resolution LiDAR-derived DEM and a 30 m resolution DEM of short 

wave infra red (SWIR) from the ASTER; 

II. Google Earth images and UAV images; 

III. Landslide inventory map which was developed by the Natural Resources of Iran from 

aerial photography collected from 1990-2010 for the Zagros and Alborz Mountains (Source: 

Natural Resources of Iran); 

IV. Thematic layers and landslide predisposing factors such as geology, geomorphology, soil, 

land use, seismic activity, vegetation, drainages, and topographic maps, and  

V. Global Positioning System (GPS) for data collection from field observations. The 

landslide inventory spatial dataset is composed of points and polygons. The Google Earth images 

(dated in December of 2009, 2010, 2011, 2012, 2013, 2014, 2015, and 2016) and 5 m resolution 

LiDAR-derived DEMs in conjunction with field observations have been acquired. 

 These components have assisted in drawing new landslide polygons in the ArcGIS 10.4 

software using ArcBruTile tool. This study used the GPS Real Time Kinematic (RTK) smartnet. 

The UAV has been used for a case study in the Chalus District of the study area to characterize 

landslide hazards and capture new landslide data. The 20 cm resolution UAV images can aid in 

improving the existing landslide inventory map as well as in verifying some of the landslide 
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polygons associated with field observations. The eBee sensefly UAV with 16mb camera with 

4000 pixel × 4000 pixel and RGB camera was used to take images of Chalus area. The weight of 

the UAV is 1.2 kg. The technical specification of this UAV is provided at 

https://www.sensefly.com/drones/ebee-plus.html.  

Table 2.1: GIS data layer of landslide studies. 

Data layers Remote sensing/source GIS data type 

Landslide data 
Collected from field and GPS, 

geospatial distribution collected from database 
Point coverage 

Slope 
DEM derivative derived from ALS, SRTM, aerial 

photographs 
GRID 

Aspect 
DEM derivative derived from ALS, SRTM, aerial 

photographs 
GRID 

Curvature 
DEM derivative derived from ALS, SRTM, aerial 

photographs 
GRID 

Distance from drainage 

DEM derivative derived from ALS, SRTM, aerial 

photographs 

Developed in GIS environment, buffer 

GRID 

Geology (litho types) 

Extracted from satellite images based on digital 

and visual interpretation and digital image 

processing, collected from field and GPS, 

geospatial distribution collected from database 

GRID 

Distance from 

lineaments 

Extracted from satellite images based on digital 

and visual interpretation and digital image 

processing, collected from field and GPS, 

geospatial distribution collected from database, 

developed in GIS environment, buffer 

GRID 

Soil types 

Extracted from satellite images based on digital 

and visual interpretation and digital image 

processing, collected from field and GPS, 

geospatial distribution collected from database, 

developed in GIS environment 

GRID 

Land cover 

Extracted from satellite images based on digital 

and visual interpretation and digital image 

processing, collected from field and GPS, 

geospatial distribution collected from database, 

developed in GIS environment 

GRID 

Normalized Difference 

Vegetation Index 

(NDVI) 

Extracted from satellite images based on digital 

image processing, geospatial distribution collected 

from database, developed in ENVI environment 

GRID 

Rainfall data Non-spatial data collected from stations GRID 

  

 Ninety-five landslides were selected from the updated inventory spatial dataset to test the 

proposed algorithm. These landslide were selected based on accessibility to the ground 

observation, type of landslide, location, and the type of available data (i.e. point type or polygon 
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type). The RiverTools 3.0 software was used to extract the tectonic geomorphologic parameters 

such as the stream gradient-length index and the Dez River profile which are amended in 

landslide investigations and landslide hazards assessment.  

 Furthermore, some landslide points and polygons from the landslide inventory dataset 

were chosen. Required analyses of quality, conversion, field observations, and updating have 

been applied to identify specifications of the program for designing the architecture of the 

proposed algorithm in the MATLAB platform. The ArcGIS 10.4 software was used in 

conjunction with field observations and traditional measurements and simulation to validate and 

evaluate the performance assessment of the proposed algorithm’s results. 

2.5 Accessibility and Quality of Data 

Although this study contains a detailed literature review of the remote sensing of landslide 

investigations, this section describes the accessibility of data and data preparation with 

acceptable quality in the study of landslides.  

 The availability of data, data preparation, quality, and challenges of landslide 

investigations were studied. This study is carried out based on the motivations, available data, 

and the presumption of occurrence of landslides. A peer review of review literature and data 

were implemented by studying available data as an object to see how it works and therefore 

enhance the studying of other objectives of the research based on the designed strategic research 

plan (Pirasteh and Li, 2016). Therefore, this study could aid in determining:  

 The type of data to be used in this research and to create significant outcomes; 

 The study area, which has a significant impact on and contribution to landslide 

assessment and investigation; 

 Existing methods (i.e. algorithms, software, and hardware) and the gaps of landslide 

studies including both within and beyond landslide boundary; and 
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 The future direction of this study. 

 For landslide assessment and investigation in the Zagros and Alborz Mountains, the 

available data include landslide inventory datasets; moderate to high resolution of satellite 

images; Google Earth images; various spatial maps such as geology, geomorphology, land use, 

soil, vegetation, lineaments, and UAV images; LiDAR-derived DEMs; and DEMs’ derivatives 

were used. Some available data were checked in conjunction with field observations and then 

analyzed by ENVI software, Rivertool software, as well as ArcGIS software. Throughout the 

collection of data, it was realized that some of the data would be derived or updated while other 

data were not of a good quality and form to be used further either due to being old and traditional 

data or geospatially incorrect or inconsistent data lacking standardization (Pirasteh and Li, 2016). 

It is because most of the data were in analog form or sometimes were required to be regenerated. 

 Nevertheless, this method of evaluating and analyzing accessibility of data and data 

preparation with an acceptable quality helped to prepare the fundamental landslide investigations 

in Zagros and Alborz Mountains using LiDAR and UAV. It allowed for the expansion of the 

problem and solution through further studies on modelling, simulating, and mapping of a 

landslide. Therefore, the following sections show the required connections through the entire 

study.   

2.6 Remote Sensing Investigations of Landslides 

2.6.1 Mapping Challenges 

Landslide mapping and modelling have been developed in many parts of the world; however, 

most cases consist of prototypic approaches. Numerous methods have focused on generating 

landslide investigations (Pike, 1988; Wu et al., 1995; Pack et al., 1998; Lee et al., 2002; McKean 

and Roering, 2003; McKean and Roering, 2004; Hodgson and Bresnahan, 2004; Yilmaz and 

Yildrim, 2006; Glen et al., 2006; Streutker and Glenn, 2006; Su and Bork, 2006; Mahdavifar et 
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al., 2006; Oppikofer et al., 2009; Pradhan and Pirasteh, 2010; Rau et al., 2011; Goetz et al., 2011; 

Spaete et al., 2011; Niethammer et al., 2012; Choi et al., 2012; Solaimani et al., 2013; Ren et al., 

2014; Mohamed et al., 2015; Mohamed et al., 2016; Yousef et al., 2015; Su et al., 2015; Lee et 

al., 2014). Nevertheless, previous studies have discovered that a number of shortcomings need to 

be overcome (Pirasteh and Li, 2017).  

 This section of the thesis has been published in Geomatics, Natural Hazards and Risk 

Journal in 2016 because to cover a review of literature; and to identify challenges and quality of 

data that to be used further in this study. The following challenges were identified: 

 (1) It may not be surprising that a complex interrelationship causes landslides, and that 

agreement about how to influence variable factors involved in landslide hazard assessment is not 

uniform among the researchers. Clearly, no general agreement has been reached on the scope, 

techniques, and methodologies for landslide hazard investigations. 

 (2) Previous studies have discovered that structural features and geomorphologic analysis 

play an important role in landslide assessment (Ali and Pirasteh, 2004; George et al., 2012). 

However, no study notably has identified the interface of thrust fault, scarp, strike-slip fault, fold, 

hogback, lineament density, drainage density, elevation drop, water gap, net erosion, channel 

slope, sinuosity, straight-line length, and stream gradient index in a rugged topography to assess 

landslides utilizing LiDAR-derived DEM. 

 (3) It seems that LiDAR permits the improvement of geological mapping as well as 

landslide inventory mapping. It also seems that increasing the resolution of the landslide 

contours leads to the identification of geomorphologic features such as scarps and displaced 

material. These conceptual methods are usually employed to detect landslides in different 

climates and environments such as tropical and mountainous regions (Keaton and DeGraff, 

1996; Soeters and VanWesten, 1996). Some morphological features of landslides are easily 
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extracted while others cannot be delineated from DEMs or hillshades produced only by 

photogrammetry techniques, satellite images, and LiDAR. Limitations vary from technique to 

technique, and depend upon the resolution of the images, topography, climate, and 

environmental conditions. However, one of the main issues in laser scanning is vegetation 

removal either by automatic methods or manually (Hopkinson et al., 2004). Nevertheless, any 

remote sensing approach does not replace field investigations. However, remote sensing 

approaches change the fieldwork methods and can be considered part of the validation process of 

a landslide inventory produced by high resolution DEMs. 

2.6.2 Feature Extraction and Analysis 

This study presents a detailed method of landslide investigations in the Zagros Mountains in 

Chapter 4. This section explores how empirical and analytical tectonic geomorphology analysis 

and modelling using LiDAR-derived DEMs of the Zagros Mountains have been studied. This 

study (Chapter 4) explores an empirical and interpretational method of landslide investigation, 

particularly for a high tectonic active region such as the Zagros Mountains. 

 In this study, 5 m resolution LiDAR-derived DEMs, slope, stream gradient-length index, 

Dez River profile, and river network of the Zagros Structural Belt (ZSB) were considered for 

landslide investigations and assessments. Pre-processing techniques were applied to the LiDAR 

point clouds data to achieve a certain level of quality before using the data for tectonic 

geomorphological analysis, visual interpretation, and landslide investigations. The LiDAR-

derived DEMs of the ZSB are the most useful representation of terrain in the GIS for the spatial 

analysis and stream length-gradient index. The stream length-gradient index (Figure 2.3) is a 

signature that is sensitive enough to analyze the reach scale variability of tectonic function, rock 

resistance, and topography associated with landslide processes. The Dez River tends to flow over 

the rocks and soils in the Zagros Mountains and attain equilibrium with distinct longitudinal 



21 

 

profiles and hydraulic geometries (Bull, 2007). Geospatial analysis was applied on the stream 

length-gradient index in the GIS environment. By employing visual interpretation techniques of 

geotechnical elements such as drainage, slope, and vegetation, the relative tectonic activity in the 

Dez River basin (Dar et al., 2014) that influences the potential for landslide phenomenon was 

estimated. The Dez River network and the Dez River profile (Figure 2.4) were extracted by using 

the river network and channel profile functions in the RiverTools 3.0 software, respectively. The 

morphometric parameters were converted to the ArcGIS format, in which the stream length-

gradient index map was generated and assessed for landslide investigations. 

This landslide investigation in the Zagros Mountains developed the motivation to study 

the Alborz Mountain comparatively with a Probabilistic Frequency Ratio (PFR) of an analytical 

approach. It is because most of the available methods have limitations in some extend depending 

on their implementation in various environments (Safaie et al. 2010; Pirasteh and Li, 2016). 

Therefore, the following section and Chapter 5 explore landslide susceptibility mapping in the 

Alborz Mountains. The Zagros Mountain is rugged topography with high tectonic activities 

while the Alborz Mountain is covered by forests and tectonically active. In the Zagros 

Mountains, the tectonic geomorphology analysis has employed as a tool to the landslide 

investigation while in the Alborz Mountain the Probability Frequency Ratio (PFR) was 

implemented to landslide susceptibility mapping. Generally speaking, the south of Iran is 

connecting the north by rail and road, and major crude and gas pipelines crossing the Zagros 

mountains and streams are under influence of active landslides hazards while in the Alborz 

Mountain this is not the case. The most of available data have limitations in some extend 

depending on their implementation in various environments (Safaie et al. 2010; Pirasteh and Li, 

2016). In addition to above, the author was interested in experiencing different environmental 

conditions. The Zagros Mountain contains sedimentary rocks while the Alborz Mountain 
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consists of tuffs, igneous, sedimentary, and metamorphic rocks with a very dense forest. Perhaps, 

the author could show how to investigate the landslide in a tectonic active region with limited 

data (i.e., only DEM) while in the Alborz Mountain some predisposing factors are considered to 

landslide susceptibility mapping. However, the review literature (Pirasteh and Li, 2016) 

evidenced that the researchers have not used 5m resolution in the Zagros and Alborz Mountains. 

2.7 Landslide Susceptibility Mapping, Data Analysis and PFR Model   

By building on the previous section’s discussion of the LiDAR-derived DEMs and tectonic 

geomorphology techniques to assess landslides in the Zagros Mountains, PFR modelling and 

susceptibility mapping of landslides in the Alborz Mountains are explored. This approach 

delivers an updated landslide inventory dataset and improved susceptibility mapping using 

LiDAR-derived DEMs as compared to previous studies using Fuzzy or logistic regression (Lee 

et al. 2004; Mahdavifar et al. 2006; Safaiee et al. 2010; Lee et al. 2014) and DEMs in lower 

resolution than 5m. This susceptibility mapping in conjunction with LiDAR-derived DEMs (5m) 

and UAV images promote the elaboration of further research on the selected landslides including 

the revising and updating of the landslide inventory dataset, analyzing the geometry of a 

landslide, simulating a landslide deformation, and classifying landslides (see Chapter 5 and 

Chapter 6).  

 Data analysis and the PFR model are followed by strategic research design (Figure 2.1). 

This allows for a study area to be selected from the Central Alborz Mountains in Mazandaran 

Province of Iran’s north, adjacent to the Caspian Sea.  

 The PFR model has been adopted to consider the effects of landslide-related factors 

associated with Google Earth high resolution images and field observations. Some ground 

control points (GCPs) were used in the ENVI 4.2 software to georeference the Landsat Thematic 

Mapper (TM) satellite images and to extract landslide marks by using geotechnical and 
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photographic elements of the interpretational method. ENVI 4.2 software allows for the 

operation of digital image processing (DIP) such as geometric correction, enhancement, and 

filtering on Google Earth images. The geomorphology map was created based on the geological 

and topographic map in 1:25000 scales associated with the ASTER DEM. The PCI Geomatica 

9.1 was used to generate ASTER DEMs. Also, image interpretation was applied on the available 

ASTER DEM (30 m); it is supported  and enhanced by LiDAR-derived DEMs (5 m) to detect 

landslides in the study area. 

 

Figure 2.3: Stream length map. ZT: Zagros Thrust, ZSB: Zagros Structural Belt. 
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Figure 2.4: Dez River profile on LiDAR-derived DEM of the Zagros Mountains.  

 In this study, LiDAR-derived DEMs and existing landslide inventory dataset were used. 

The LiDAR point clouds data in the LAS format allowed for the creation of high resolution 

DEMs in the ArcGIS environment. The pre-processing technique to the point cloud data was 

applied to achieve a certain level of quality before using the data for landslide susceptibility 

mapping in ArcGIS software. The slope map and hillshade map (Figure 2.5) were extracted from 

the 5 m resolution LiDAR-derived DEMs.  

 The Ministry of Natural Resources of Iran provided the soil map of the study area in 

1:25000 scale. To verify the soil map, this study attempted a field survey. By using the 
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topography map of the study area (National Cartographic Center organization) of 1:25000 scale, 

the road and drainage maps were extracted in the GIS environment. The land use thematic map 

and the Normalized Difference Vegetation Index (NDVI) of the study area were collected from 

the Natural Resources of Mazandaran Province.  

 The GIS-based analysis allowed for the performance of high quality landslide 

susceptibility assessments using inventory datasets as compared to the previous studies. Because 

existing studies have rarely used high resolution DEMs, predisposing factors were considered in 

this study. A spatial database of landslide-related factors was constructed in the GIS platform to 

apply the PFR model. In this study, factors such as geology, geomorphology, land use, soil, 

slope, and distance from roads and drainage were evaluated to represent, manipulate, and analyze 

landslide contributing factors. Also, this study evaluated the performance success of the rate 

curve of landslide hazards prediction. A detailed methodology of landslide susceptibility 

mapping is provided in Chapter 4. 

This study analyzed the development of a semi-automated extraction of the geometry 

inside a landslide boundary from the selected landslides in a particular area (Chapter 5) of 

Mazandaran Province in the Central Alborz Mountains. The process of updating the inventory 

dataset of landslides is presented in Chapter 4 and Chapter 5.   

2.8 Extraction of Landslides Geometry and Computing and Analysis 

Developing an algorithm and a code for semi-automated extraction of landslide geometry 

(length, width, and area) required a technical computing Geoanalytics approach. The general 

flowchart methodology of the algorithm is depicted in Figure 2.6. 

 The Numerical Integral Trapezoidal Rule (NITR) method was implemented and the 5 m 

resolution LiDAR-derived DEMs were utilized in the Alborz Mountains to support and enhance 
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the on screen digitization of landslide polygons for a better certainty than previous studies (Lee 

et al. 2004; Poiraud, 2014; Shirzadi et al. 2017). The LiDAR-derived DEMs in conjunction with 

field observations and the Google Earth images were assisted the revision and updating of the 

available inventory datasets. 

 In order to perform computing and analysis of landslides, every landslide polygon from 

the landslide inventory dataset was calculated in ArcGIS environment. The algorithm and codes 

were developed in the MATLAB platform, and the scripts were implemented through an 

analytics process. 

 

Figure 2.5: Hillshade of the study area extracted from the 5 m LiDAR-derived DEM. 
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Figure 2.6: Flowchart of the algorithm. 

 The following steps are considered when writing the code for developing semi-automated 

extraction of a landslide geometry: 

a. Input data; 

b. Find maximum and minimum X and Y; 

c. Calculate d1=(l1) and d2=(w1) and their slopes; 

d. Determine a landslide type; 

e. For a wide landslide, recognize top and bottom points and sort them into two separate 

matrices; 

f. Calculate the area under the top and bottom curves; 

g. Identify, measure, and determine width (Alpha angle between length and width); 

h. Calculate area and print output (type, length, width, and area); 

i. For a long landslide, recognize right and left points and sort them into two separate 

matrices; 
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j. Calculate the area under right and left curves; 

k. Identify, measure, and determine width (Alpha angle between length and width); and 

l. Calculate area and print output (type, length, width, and area). 

 This semi-automated geometric analysis code allows the simulation and modelling of a 

landslide polygon by introducing geographical coordinate systems of polygons or points in the 

MATLAB platform (Figure 2.7). The algorithm is based on the geographical coordinates system 

(Universal Transverse Mercator [UTM]), slope angle (θ), and geometry (i.e. length and width) of 

a landslide. The analytical and numerical approaches compute the data and divide the landslides 

into four geometric classes automatically (see Chapter 6). The result performance and validation 

of the algorithm were conducted through field observations and tested in conjunction with 

ArcGIS software. The mean error percentage of measurement was determined from the selected 

landslide polygons. The basis for error is zero% defined from relative error equation (Erwin 

Kreyszig, 2011), 10 Edition, page 794, chapter Numerics in General. It means that as we get closer to 

zero, then the relative error is more précised. In this study, the relative error and validation of the 

output results of MATLAB code have been attempted with ArcGIS, GPS-RTK Smartnet ground 

truth (for simulation), and also check with the existing inventory dataset. The findings of this study 

overcome the shortcomings of the previous efforts by other researchers (Booth et al. 2009; 

Niculit, 2016) to analyze the length and width of the landslides computed using GIS techniques.  

When working with landslide polygons, the analysis of the length and width of the landslides 

computed using usual GIS techniques (like bounding boxes) can be flawed. Niculitˇa (2016) 

determined the length and width of a landslide using a boundary rectangle box in which the four 

space' corners of rectangle are missing and impacts the accuracy of the output result for 

measuring the length and width. In this study, the trapezoidal method was used to measure and 

calculate all parts of a polygon. Also, Niculitˇa (2016) algorithm cannot detect and determine the 
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length, width, volume, and type of a landslide automatically. However, the proposed algorithm in 

the MATLAB platform contributes the following while the previous studies can only determine 

and measure the length and width of a landslide within a boundary box: 

• Determining the landslide type; 

• Calculating the area of a landslide polygon; 

• Determining and measuring the length and width of a landslide; 

• Calculating the volume of material displacement and determining mass movement 

(deformation); and 

• Identifying the flow direction of a landslide material movement. 

 

 This proposed method of semi-automated geometric analysis of a landslide is followed by 

exploring an algorithm and two codes including a) semi-automated volume material 

displacement (i.e. deformation) and flow direction simulation, as well as b) determining the type 

of a landslide. This method also introduced a class taxonomy of landslides (see Chapter 6). This 

study used semi-automated term because some of the process allows to calculate geometry of a 

landslide without a human action in MATLAB environment.  

 The basis for error measurement was the Natural Resources of Iran inventory dataset and 

the ground measurement the author attempted. In this study, the precision refers to the level of 

measurement and exactness of the GIS database. The field measurements were done by using the 

RTK for simulation purposes. Then the measuring tape was used on the ground to see the error. 

The validation is through comparing field observation and measurement. The ArcGIS was used 

to measure the collected RTK points and later the same points were processed and measured by 

the proposed algorithm. In general, the study was done by a) ground truth measurement aand 

measuring tape, b) RTK, c) ArcGIS output, and d) the proposed algorithm's output. As for 
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landslide inventory dataset of the Alborz Mountain, the output result was validated by (1) using 

the inventory dataset, and (2) field observations. The data were collected from the Natural 

Resources of Iran. The author also collected the data from the ground measurement for the 

simulation of some of the landslide polygons. 

 

Figure 2.7: Simulation of a landslide polygon in MATLAB.  

  Chapter 5 presents a detailed explanation of the method of the semi-automated extraction 

of the geometric parameters of a landslide. 

2.9 Deformation and Classification  

Simulation and modelling of landslide deformation are required data in the form of points or 

pixels before and after the event. This is the fundamental data and structure to develop an 

algorithm and a code that determine the volume of material displacement and flow direction. In 

this study, the two different DEMs (5m and 30m) of a particular selected landslide before and 

after occurrence in Madaling, Guizhou Province of China help to model and simulate the 

deformation of a mass movement. It is because to test and validate the performance of the 

proposed algorithm in different environment condition. 
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 The updated landslide inventory dataset was amended to the selected landslide polygons 

to investigate the landslide classification. Also, this study incorporates the geographical 

coordinates system, slope angle (θ), and geometry (i.e. length and width) of a landslide to 

determine the landslide type. 

2.9.1 Simulation of Deformation and Modelling  

To semi-automatically and incrementally extract deformation of the landslide, this study 

considered the “pixel” or “point” into deformation simulation and modelling. This thesis built on 

the previous study of landslide geometry analysis and it is done by expanding the previous 

scripts to determine the volume of the mass movement and identification of flow direction (see 

chapter 5). Simulation of material movement and volume calculation, as well as flow direction, 

were performed based on the x,y,z of points or pixels values before and after a landslide. In other 

words, sometime we may or may not have same spatial resolution of the two different datasets of 

DEMs from before and after a landslide. Therefore, this study used two algorithms to model and 

simulate the length, width, area, and deformation. There are two possibilities of the DEMs 

resolutions from before and after a landslide. First, if both DEMs are in the same pixel 

resolution, then the pixels of both DEMs are converted into points (x,y,z) by using ArcGIS 

software. Further, the script recommends introducing points from before and after a landslide 

and running the program to determine the deformation and flow direction of the material 

movement. Second, if the DEMs have different pixel resolutions, then the pixels of both DEMs 

are re-sampled to a similar pixel resolution. This study recommends re-sampling the high to low 

pixel resolution for the purpose of distributing the high pixel resolution of a DEM to the low 

pixel resolution of a DEM. Then the pixels of both DEMs are converted into points (x,y,z) by 

using ArcGIS software. Similar to the first option, the script recommends introducing points 

from before and after a landslide and running the program to determine the deformation and flow 
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direction of the material movement. It is important to know that the model is based on the 

assumption of nAfter ≥ nBefore because this proposed algorithm has been designed in a way that 

to accept running the program when the number of points for after landslide is more than the 

number of points for before landslide otherwise, the output result map will be incorrect. In 

addition to above, often the high-resolution LiDAR-derived DEMs are not available for before a 

landslide. In other words, the number of points/pixels in a DEM (i.e. after a landslide) is more 

than the number of points/pixels in a DEM before a landslide. Because the assumption is nAfter 

≥ nBefore and if the analyst considers number of points or grids for after a landslide less than 

number of points/grids before a landslide (i.e., nAfter<nBefore or nAfter=nBefore) the code 

cannot be processed in the MATLAB. The reason that this study has considered this assumption 

is because in real-practical life, the high resolution of DEMs from LiDAR are not normally 

available for landslides due to its costs. In addition to the above, no one knows when landslide 

occur in a particular area, however, it has been seen that sometime likely the LiDAR-derived 

DEMs with high resolution are available. For example, in Malaysia where landslides have 

occurred ever year because of the environmental condition, slopes, and deforestation. 

 The MATLAB platform was used to code and script the algorithm. This platform allowed 

computing landslide geometry and to simulate the deformation of a landslide and measure the 

volume of the material displacement as well as the flow direction of the mass movement (Figure 

2.8). In other word, the proposed algorithm in MATLAB platform can run the code with many 

iteration of selecting maximum/minimum x and maximum/minimum y points to determine d1 

and d2. It also runs the code and scripts to measure, detect and determine the length, width, and 

type of landslide and volume of material displacement as well. This algorithm and code allowed 

the analysis, computation, simulation, and modelling of a landslide material displacement. 
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Nevertheless, the following procedure describes the scripts for simulation of deformation and 

volume calculation. 

a. Input data (points); 

b. Find maximum and minimum x & y; 

c. Calculate d1=(l1) & d2=(w1) and their slopes; 

d. Determine landslide type; 

e. For wide landslide, recognize top and bottom points and sort them into two separate 

matrices; 

f. Calculate the area under top and bottom curves; 

g. Identify, measure, and determine width (Alpha angle between length and width); 

h. Calculate area and print output (type, length, width, and area); 

i. Plot direction; and 

j. Calculate volume. 

 

Figure 2.8: Simulated result of before and after landslides. 

 The detailed procedure of deformation and flow direction simulation and modelling is 

explained in Chapter 6. 
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2.9.2 Determining Landslide Type  

This study (see Chapter 6) presents the utilization of LiDAR-derived DEMs and Google Earth 

images as well as UAV captured images of the selected landslide of the Chalus area in the 

Alborz Mountains. An analytical approach was attempted to develop an algorithm for the semi-

automated derivation of landslide classification (i.e. type of landslide) (Figure 2.6). Similar to the 

landslide geometric analysis of length, width, and area, this study used the NITR method to write 

a code in the MATLAB. The code is scripted to be interpreted in accordance with the proposed 

landslide classification into a) very long, b) long, c) very wide, and d) wide. This geometric 

classification of landslides is based on the geographical coordinates system, slope angle (θ), 

length (L), and width (W) (Table 2.2). 

Table 2.2: Classification of landslides. 

Type of Landslide Slope angle (θ) 

Long 90° LS>67.5° 

Very long 67.5° LS>45° 

Wide 45° LS>22.5° 

Very wide 22.5° LS>0° 

 This study revised and updated 95 landslides from the existing inventory dataset. The 

resulting performance and validation of the algorithm were conducted by field observations and 

tested in conjunction with the ArcGIS software (Figure 2.9). The purpose of this algorithm is to 

improve the performance of landslide geometry analysis and semi-automated measurements as 

compared to Niculitˇa (2016) and typical GIS techniques in the ArcGIS. 

 Please note that Chapter 6 provides more detailed information about the methodology of 

the semi-automated extraction of the new landslide classification and mass movement volume 

and flow direction simulation. 
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Figure 2.9: Proposed algorithm for a landslide classification vs. ArcGIS.   

2.10 Chapter Summary 

In this chapter, a framework of landslide investigations was identified by understanding the type 

of data and LiDAR remote sensing technologies, quality of data, challenges, accessibility to the 

study area, method flaws, and research gap. Three different approaches of landslide 

investigations including inside and outside of the landslide boundary were described by 

implementing a) tectonic geomorphology features’ determination from empirical and analytical 

perspectives b) the PFR model for susceptibility mapping from remote sensing data, LiDAR-

derived DEMs, and GIS spatial analysis; and c) development of the proposed algorithms and 

codes for geometric analysis and simulation of deformation. LiDAR-derived DEMs, Google 

Earth images, ASTER DEM, thematic geospatial maps, UAV images, GPS data, and field 

observations were used for landslide investigations. Flowchart steps for development of 

algorithms (Figure 2.6) and the proposed classification of landslides were discussed.  

 The proposed methods are described in detail in Chapters 3, 4, 5, and 6. 
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Chapter 3 

Use of LiDAR-derived DEM and a Stream Length-Gradient 

Index Approach to Investigate Landslides in Zagros 

Mountains, Iran 

This chapter presents an approach to stream length-gradient index analysis in the identification 

of tectonic signatures. The graded profile of the Dez River in Zagros Mountains, Iran, indicates 

that the area has been tectonically disturbed, and this triggers landslide hazards. The high-

gradient index shows that a steeper gradient could be a potential signature for landslide 

identification. The digital surface models acquired by Airborne LiDAR were used in this study to 

generate the high-resolution DEM. The result showed great potential for improving landslide 

investigations by implementing stream length-gradient index derived from the high-resolution 

DEM in conjunction with the landslide inventories dataset in the GIS environment. Also, this 

study identified a correlation between the stream length-gradient index and the graded 

topographic profile with slopes and landslides. This empirical approach was verified by 

geospatial analysis in GIS and a landslide inventories data set in conjunction with field 

observations. This study recognized the locations of high-gradient indices with susceptibility to 

landslides.  

3.1 Background and Introduction 

In the Zagros Mountains, the mechanisms of landslides are complex in geological-

geomorphological activities. These activities have created an immature and rugged landscape 

that imposes various natural hazards. A high slope can influence the stability of the region, 
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particularly with high tectonic activities. Also, the presence of active faults influences the 

occurrence of landslides. At times earthquakes trigger landslides in this region. Thus, finding a 

logical relationship between slopes and tectonic geomorphologic signatures such as stream 

length-gradient index and graded topographic profile could be effective in suggesting landslide-

susceptible areas. Moreover, the high rainfall and erosion in some rock types such as marls, 

calcareous, and silt are major concerns of stability in the Zagros Mountains. The Zagros 

Mountains have experienced catastrophic landslides to low magnitude landslides in the form of 

rock falls, rock slides, and debris flows. Sometimes a high density of lineaments and faults 

control the landslides in this region. Thus, tectonic geomorphologic signatures play a significant 

role in landslide assessments (Burbank and Anderson, 2001; Ali et al. 2003). 

 Landslides are the movement of a mass of rock, debris, or earth down an unstable slope 

(Highland et al., 2008; Farrokhnia et al., 2011; Seefelder et al., 2016; Pirasteh and Li, 2017). 

Definitions of the landslide are diverse and reflect the complex nature of various disciplines such 

as geology and geomorphology (Ali et al., 2003a, 2003b; Ali and Pirasteh, 2004). This study 

considers landslides as a general term used to describe the downslope movement of soil and rock 

under the effects of gravity (Cruden, 1991). Landslide hazards can be investigated qualitatively 

or quantitatively. Many efforts have been made to investigate the causes and mechanisms of 

landslides using remote sensing data, GIS-driven techniques, and statistical models (Carrara et 

al., 1991; Montgomery and Dietrich, 1994; Zhou et al., 2003; Gomez and Kavzoglu, 2005; 

Yilmaz and Yildirim, 2006; Ardizzone et al., 2007; Yalkin, 2008; Abellan et al., 2010; Yilmaz, 

2010; Goetz et al., 2011; Pirasteh et al., 2011a; Pirasteh et al., 2011b; Schicker and Moon, 2012; 

Cavalli et al., 2013; Zare et al., 2013; Guan et al., 2014; Jebur et al., 2014; Lee et al., 2014; Su et 

al., 2015; Yousef et al., 2015; Ciampalini et al., 2016). Very few studies have noted the role of 

tectonic geomorphology such as stream length-gradient index in landslide investigations (Bull, 
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2007; Hamdouni et al., 2010; Catani et al., 2013). These studies suggest that the stream length-

gradient index in river segments with higher landslide frequencies is associated with the slope 

instability and lithology in active tectonics structures. 

 One remote sensing technique that has been undergoing rapid developments for landslide 

investigations is LiDAR point cloud processes and extraction of high-resolution LiDAR-derived 

DEM. LiDAR, which can provide high resolution point clouds of the topography, has 

demonstrated great potential for monitoring landslide or rockfall displacements (McKean and 

Roering, 2004; Ardizzone et al., 2007; Teza et al., 2007; Abellan et al., 2010). There has been 

much scholarly research in different aspects of image processing (Rau et al., 2011; Li et al., 

2015a, 2015b; Pirasteh et al., 2015; Su et al., 2015) and natural hazards such as landslides (Wu 

and Sidle, 1995; Pack et al., 1998; McKean and Roering, 2003; McKean and Roering, 2004; 

Watts, 2004; Van Den Eeckhaut et al., 2005; Su and Bork, 2006; Glenn et al., 2006; Safaiee et 

al., 2010; Spaete et al., 2011; Schicker and Moon, 2012; Guzzetti et al., 2012; Choi et al., 2012; 

Solaimani et al., 2013. 

 An overview of the different applications of LiDAR techniques for landslide 

investigations is given in Jaboyedoff et al. (2012). The authors present how LiDAR-derived 

DEMs can be used to investigate landslide hazards, including detection and characterization of 

mass movements, modelling, hazard assessment, and susceptibility mapping. Nevertheless, most 

of the existing landslide studies of the Zagros Mountains have not been presented well due to the 

lack of detailed surface information about the region. Aerial photographs, satellite images, and 

DEM derived from topographic maps have been used by various statistical and deterministic 

approaches (Rajabi et al., 2011). Thus, this lack of detailed surface information has motivated the 

utilization of the LiDAR-derived DEMs to investigate landslides in this region. 
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 This study has attempted to take advantage of the LiDAR-derived DEMs to support the 

investigation of landslide hazards by mapping stream length-gradient index anomalies and 

assessing graded topographic profile in the Zagros Mountains, southwest Iran (Figure 2.2). This 

study contributes to the visual interpretation and tectonic geomorphology of geodata analytics in 

the ArcGIS 10.4 version software by utilizing LiDAR-derived DEM. The objective of this 

research is to investigate the stream length-gradient index and graded channel profile of the Dez 

River in conjunction with the landslide inventory dataset and field observations. This study 

examines how landslides are associated with various tectonic geomorphology, faults, folds, and 

stream length-gradient indices. Detailed information and the lineament map were used to 

improve landslide investigations. Point cloud data was used to extract the DEM derivatives in the 

GIS environment. The Dez River profile was digitally drawn on screen using RiverTools 

software and the prone-area of landslide hazards was determined by visual interpretation and 

interpreting indicators such as stream length-gradient index anomalies and graded closely spaced 

step-like of the Dez River profile to address landslide-prone areas.  The performance of this 

study was validated by the existing landslide inventory data-set and several field observations. 

3.2 Geological and Tectonic Setting 

Geologically, the study area consists of various lithological units ranging from Cretaceous age at 

the Sanandaj Sirjan Zone (SSZ) contact in the north-east (i.e. dominated by calcareous strata), 

and subrecent and recent age in the Zagros Structural Belt (ZSB) in the south. A generalized 

stratigraphic column (Figure 3.1) and a geological map (Figure 3.2) for the Zagros Simple 

Folded Belt show Cretaceous through Miocene strata grouped into four units according to 

relative resistance to erosion. Also, Figure 3.2 depicts the spatial distribution of landslides 

inventory on the geological map of the study area in the GIS environment. The area is mostly 
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dominated by calcareous Cretaceous dolomite, limestone, shale, and marls in the north and 

evaporites (such as gypsum) and highly cemented conglomerate of the Pliocene Bakhtiari 

Formation in the south. The closure of the Zagros Basin during the Cretaceous-Miocene period 

has generated diverse styles of folding and faulting. 

 

Figure 3.1: Generalized stratigraphic column of the study area (Ali et al., 2003). 

 These structures, especially in the ZFB, exhibit tight, NW-SE trending folds with closely-

spaced fracture systems that can be interpreted as accelerating the potential of landslide hazards 

occurrence. These types of geological settings have facilitated severe erosion (Figure 4.3), the 
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formation of rugged and immature topography, and a closed drainage system. In southwest Iran, 

the movement of the Arabian plate has been approximately NNE and has resulted in the closure 

and subduction of the Neo-Tethys beneath the Iranian plate from approximately the Late 

Cretaceous onwards. Also, the movement has formed roughly NW-SE trending Zagros fold 

mountains from approximately the Miocene onwards.  

 

Figure 3.2: (a) New landslides identified in ZSB by red dots. (b) Landslide inventory data-set 

overlaid on the Dez River Basin represented by red triangle. 

 However, the details of the collision are complex and have been accounted for by various 

diverse models. While the details of the sub-surface structural geology such as folds and faults 

may be unresolved, the scenario at the surface using a DEM (Figure 3.4) and structural 

lineaments forming field checks (Figure 3.5) are relatively clear in this research. In the study 

area once fold growth has ceased, the landscape remains subject to uniform uplifting at a rate of 

1 mm/yr due to crustal thickening at depth (Berberian, 1995). Uplifting and folding are the two 
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most important factors that accelerate landslides over time. As the uplifting continues, the 

drainage networks are adjusted and controlled by the structure and lithology. Thus, the drainage 

network influences landslides in some parts of the area where the lineament density and slope are 

high. 

 

Figure 3.3: Field photo shows landslides due to erosion in the Zagros Mountains. 

 Tectonic force is a spontaneous event that occurs at the beginning of the geomorphic 

cycle and further influences landslides. Subsequently, geomorphic processes attack and degrade 

the topography and susceptibility of the landslide hazards. Since tectonic activities in the area 

first started during the Triassic and Late Cretaceous periods, the oldest geomorphic features have 

formed in the Zagros Mountains and resulted in the rugged topography. The effects of tectonic 

activities in the Zagros Mountains are more than those of sedimentation and the rate of erosion. 

Therefore, erosion may not have a significant contribution to changes in topography, landscape 

uplifting, and landslides. The zone of rapid rock uplift has a steeper gradient, higher relief, and 
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higher gradient indices than the gentle topography zone (Burbank and Anderson, 2001; Kirby 

and Whipple, 2012).  

 
(a)      (b) 

Figure 3.4: (a) Dez River on DEM with three landslide-prone areas, (b) The Dez River 

topographic profile and closely spaced step-like of folding and faulting of study area. 

 

Figure 3.5: Development of folds and faults in Poledokhtar area. 

 To emphasize the stream length-gradient index as one of the tectonic geomorphologic 

signatures on landslide hazards recognition, the lineament density map that was developed by Ali 



44 

 

and Pirasteh (2004) has been compiled with the stream gradients of the Dez River profile derived 

from the DEMs (Figure 3.4). Nevertheless, a visual interpretation and stream length-gradient 

index analysis on the LiDAR-derived DEMs have contributed considerably to the investigation 

of landslides, and it seems that the proposed method can deliver a reasonable support for 

landslide susceptibility mapping. It is to applying analytic techniques to data which has a 

geographical or spatial aspect. In this research, for tectonic geomorphology analysis the author 

employed RiverTools software that is capable of rendering maps processing spatial data, and 

applying LiDAR data or geographical datasets, including the use of ArcGIS. Therefore, 

information about geographic locations of each stream length-gradient index and anomalies are 

stored in a format with location-based that can be used in a geographic information system 

(GIS). This study has interpreted the anomalies  and the results and data output can be stored in a 

GIS database as a shapefile, raster image, or even a dbf table or Microsoft Excel spreadsheet 

where anyone can use it in the future studies (Burbank and Anderson, 2001, Farrokhnia et al. 

2011). In other word, the geospatial analysis was carried out in the GIS platform and the 

drainage network stream length-gradient index value was analysed to determine the behaviour of 

drainages. The behaviour of stream length-gradient index was interpreted based on Burbank and 

Anderson (2001) statement.  Normally, value near to 1 or above 1 is considered as a tectonic 

active region. 

 The following section describes the methodology of how DEMs are processed and 

stream-gradient index is determined. 

3.3 Methodology for Landslide Investigations  

3.3.1 Data Characteristics, Acquisition and LiDAR-derived DEM 

In spatial analysis measurements, the DEM, slope, stream profile, and river network of the ZSB 

were considered. The DEM of the ZSB is the most useful representation of terrain in the GIS for 
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spatial analysis. A DEM is the raster representation in which each grid cell records the elevation 

of the Earth’s surface and reflects a view of terrain as a field of elevation values. 

 In this study, the acquisition of point cloud data over the ZSB was completed using a 

Leica ALS80-UP airborne LiDAR system in July, 2015. The data are in digital form with x, y, 

and z. The airborne LiDAR dataset consists of first pulse returns. The fly altitude was 4,200 m 

above ground with a laser scanning swath width of 5000 m. The laser scan's Field of View 

(FOV) was set up for max 75
o
. This was up to 70 Hz (FOV dependent) scan rate and 24-25 kHz 

laser pulse rate, and 3 at 45 kHz laser returns for less than 30 cm RMSE absolute positional 

accuracy. airborne LiDAR specifications are depicted in Table 3.1.  

 The Iranian Survey Organization (ISO) had used the Hierarchy Robust Filter (HRF) on 

LiDAR data and applied four processing steps including (1) thinning out, (2) filtering, (3) 

interpolating, and (4) sorting out (Pfeifer et al., 1998). After HRF was completed by the ISO, the 

pre-processed LAS data were collected to create DEMs of the study area. The LAS data were 

used in ArcGIS 10.2 and the DEM was derived from the current data set by interpolation 

approach and using LAS to raster function in ArcGIS software. Also, the LAS data were 

converted to txt format in x,y,z coordinates and the DEMs were generated in RiverTools 

software 3.0. Therefore, the DEM (5m) is ready to use in the GIS environment for tectonic 

geomorphology analysis and visual interpretation to identify susceptible landslide-prone areas. 

This landslide assessment was done based on the empirical approach in conjunction with the 

updated landslide inventory dataset and field observations. 

Table 3.1: Airborne LiDAR system specifications. 

 

 
Measuring frequency 24-25 kH 

Flight height 800 m 

Scanning frequency 70 Hz 

Scanning angle 75
o
 max 
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3.3.2 Determining Stream Length-gradient Index in GIS 

Tectonic activities have formed different geomorphic features on the Earth’s surface. These 

features are signatures and insights which guide an understanding of the tectonic activities of the 

Zagros Mountains. Sometimes landslides are influenced by tectonic activities and triggered by 

earthquakes. These signatures have shown that they can be good indicators to recognize 

landslides in an active tectonic region. Various factors such as slope and lithology can cause a 

landslide. A high stream length-gradient index and a step-like graded profile can be found in 

high slopes and scarps with low resistance rock types such as sandstone, limestone and marls of 

Aghajari Formation, and evaporites of the Pliocene Bakhtiari Formation (i.e. ZFB). The 

resistance rock type are such as schist, igneous and slate in SSZ. Thus, this study could possibly 

establish a logical interpretation of the correlation between stream length-gradient index and 

topographic graded profile with the slope and resistance of rock type for landslide recognition. 

 The DEM was used in the RiverTools 3.0 to extract the river profiles, networks, and 

stream length-gradient index for landslide investigations. Also, the stream length-gradient index 

and topographic graded profile of the ZFB were extracted. The Dez River profile (Figure 3.6) 

was extracted from the DEM to represent the relationships between topography, slope, and 

tectonic geomorphic features on the landslide assessments. This process was conducted by 

utilizing the channel profile function from the Tools menu in the shaded relief windows of the 

RiverTools. Then the stream length-gradient index (SL) was calculated automatically (Figure 

3.7). The three classes of potential prone landslide areas are determined based on the density of 

the landslide locations correlated with tectonic signatures such as stream length-gradient index 

anomaly and closely spaced step-like lineaments, folds, and faults (Safari et al. 2009). They are 

considered as tools to map landslides. 
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Figure 3.6: The Dez River step-like graded profile with landslide susceptible areas. 

 The stream length-gradient index is a signature that is sensitive enough to analyze the 

reach scale variability of tectonic function, rock resistance, and topography associated with the 

landslide process (Burbank and Anderson, 2001). It is because the stream length-gradient 

describes the morphology of the stream network using distribution of the topographic gradient 

along rivers or streams. Also, in the study area direction of streams are followed by lithology, 

tectonic, resistance of rock, and structural features. These features and parameters could be 

considered as predisposing factors to determine a landslide in conjunction with the stream 

length-gradient anomalies mapping that possibly supports identification of landslide and it seems 

to be a promising tool. The Dez River, which flows over the rocks and soils in the Zagros 

Mountains, tends to attain equilibrium with distinct longitudinal profiles and hydraulic 

geometries (Bull, 2007). By employing visual interpretation techniques, the study estimated the 

relative tectonic activity in a river basin that influences potential landslide phenomena (Burbank 

and Anderson, 2001; Dar et al., 2014). 

 The stream length-gradient index (SL) is approximated by  

 SL = ΔH∕ΔL × L       (3.1) 
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where L is the total river length from the midpoint of the chosen reach whose index is calculated 

to the highest point on the channel. ΔH/ΔL is the channel slope or gradient of the reach, in which 

ΔH is a change in elevation for a particular channel of the reach with respect to ΔL which 

represents the length of the reach (Figure 3.7). To calculate the stream length-gradient, I used the 

Dez River profile from Chalanchoolan police station close to Brojerd City which is in contact 

with the Sanandaj-Sirjan Zone (SSZ), High Zagros (HZ), and Zagros Fold Belt (ZFB). Figure 3.6 

shows the Dez River step-like graded profile with a total stream length of approximately 165 km. 

The profile shows closely spaced step-like and knickpoints that are indicators of high tectonic 

activity and landslide-prone areas. In geomorphology, knickpoint is part of a river or channel 

where there is a sharp change in channel slope such as water fall and scarpment. The HZ 

topographic profile almost does not appear of closely spaced folds and faults density whereas in 

the ZFB, due to the high tectonic activity, this area has experienced moderate to high potential 

for landslide susceptible areas. 

 

Figure 3.7: Concept to calculate stream length-gradient index. 

 In the next step, the literature of tectonics and the structural features of the study area 

including the structural map and the lineament density map have been compiled and overlaid on 

the LiDAR-derived DEM in  GIS (James and Wynd, 1965; Alavi, 1994; Pirasteh et al., 2009; 

Safari et al., 2009). Ground observation in conjunction with the landslide inventory dataset and 
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image interpretation techniques of the DEM (5m), enhanced the expression of the stream length-

gradient index anomalies to recognize tectonic signatures for investigation of landslides in UTM 

system. The precision of the map is based on the DEM (5m) in which the stream length-gradient 

index anomalies is depicted in Figure 3.8. 

The final stage of the process was extracting the Dez River network. This was accomplished by 

using the river network function in the RiverTools 3.0 software. The morphometric parameters 

such as stream length, stream length-gradient were converted to the ArcGIS format, in which the 

stream length-gradient index map was generated (see Figure 3.8). The step-like river profile of 

the study area has been predicted by field observations to approach a graded profile. This study 

indicates that the area has been tectonically disturbed and is therefore associated with a high 

probability of landslides. The stream length-gradient index was deduced in each part of the 

profile (Figure 3.6). The stream length-gradient index map of the study area shows the tectonic 

zones in the ZSB and landslide-prone areas (see Figure 3.6) to pinpoint the areas prone to 

landslide). The high-gradient index anomalies on the map indicate the areas prone to landslide. 

 However, the susceptible or landslide-prone areas are detected based on the (a) stream 

length-gradient index value, and (b) the Dez River topographic profile indicators such as graded 

step-like that most likely show knickpoints, scarps, and high slopes. Landslide-prone areas on the 

map are determined by high value of stream length-gradient index. As it goes near to 1 or more 

than 1, it means the area is more prone to tectonic activities and possibly prone to landslides. 

Overlaying the inventory landslide map on the stream length-gradient index map shows the 

agreement between my result and the training landslides occurred in the past. Therefore, the 

boundary of landslide-prone areas were drawn manually on the map associated with the support 

of ground truth observations. 
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Figure 3.8: The stream length-gradient index map (see Figure 3.6 to pinpoint areas susceptible to 

landslide. 

3.3.3 Performance Assessment 

One fundamental step in the proposed approach to the landslide recognition process is validation. 

In this study, a reliable process was applied to ensure the reliability of the previous landslides 

inventory map and model used by the Geological Survey of Iran and the National Geoscience 
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Database of Iran (Safaiee et al., 2010; Rajabi et al. 2011). The validation of thematic GIS layers 

was obtained through ground truth observations and surveys. This method determined the 

performance of the output information derived from the stream length-gradient index and the 

visual interpretation of the LiDAR-derived DEMs. The proposed approach was assessed as one 

of the supporting tectonic geomorphology tools and methods of landslide investigations to 

incorporate it with further study of landslide susceptibility mapping in Chapter 4, if required. 

Moreover, the performance of detected landslide-prone areas (Figures 3.6 and 3.8) were 

validated based on the existing landslide inventory maps and a field observations. An example of 

Shahbazan’s landslide-prone area visualization is pinpointed on the map shown in Figure 3.8. 

3.4 Results  

Although this study has not explored or discussed in detail the influential factors of landslides, it 

shows that the LiDAR-derived DEMs for stream length-gradient index anomalies mapping are 

probably good tools for landslide investigations in the Zagros Mountains. The LiDAR-derived 

DEMs of the study area obtained using the Hierarchy Robust Filtering (HRF) algorithm and 

RiverTools 3.0 software have shown considerable improvement in landslide investigations 

compared to other filtering such as adaptive TIN (ATIN) and Maximum Local Slope (MLS) 

because this HRF could deliver a reasonable result in a high and rugged topographic area such as 

Zagros Mountains (Yang and Li, 2013; Korzeniowska et al. 2014; Pirasteh and Li, 2016). 

Moreover, this method enhanced the landslide features that are in harmony with the stream 

length-gradient index and tectonic geomorphic signatures. 

 Based on the field observations and the stream length-gradient index anomaly map 

associated with the river topographic profile and lineament map, this study has indicated 

possibly, a direct relationship between slope instability, graded Dez River topographic profile, 
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and active tectonics in the Zagros Mountains as expressed by anomalous stream length-gradient 

index values on the map (Figure 3.8). In other word, it is interpreted that where stream length-

gradient index is near to 1 or greater than 1, the more tectonic activities, the more graded profile 

with closely space step-like shape and high lineament density are seen; therefore, possibly it 

addresses areas with more potential to landslide-prone (Burbank and Anderson, 2001). The 

analysis of the stream length-gradient index in the Dez River with the landslide inventory dataset 

and high landslide frequency reveals that slope instability is associated with stream length-

gradient index anomalies. This result corresponds to active tectonics structures in the Zagros 

Mountains with active faults and the presence of earthquakes. However, there are exceptions for 

debris flows and rock falls in conglomerates of Bakhtiyari Formation. This proposed approach is 

intended mainly for tectonic active regions such as Zagros Mountains which have complex 

landslides and rock falls that are mainly associated with not only upper fault blocks (where slope 

angles are increasing) but also with scarps and high angle slopes (approximately 90°).  

 The stream length-gradient index could possibly be applied as an indicator to determine 

areas prone to landslides, thus it may be considered as one of the predisposing factors to support 

the landslide susceptibility mapping for the future studies. The stream length-gradient index 

(SL), which shows anomalies of the stream geomorphic parameter, has proven to be possibly a 

suitable tool for detecting stream-profiles related to active tectonics and surface processes such 

as landslides.  

 Second derivatives of the DEM such as slope, stream profile, and drainage network 

resulted in improving the visual interpretational method and processing data to map the spatial 

distribution of the SL index in the ArcGIS environment. This method uses stream length-gradient 

index as a tool to identify landslide prone areas. Figure 3.8 shows the landslide prone areas 

around the stream segments where the extreme index values occur.  
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 An increase in stream length-gradient index values signifies elevated tectonic activity and 

accelerates the potential for landslides (Burbank and Anderson, 2001). The study demonstrated 

the existence of active deformation associated with landslides in the ZSB as an indicator by 

steeper gradients in the zone of rapid rock uplift (Berberian, 1995; Safari et al., 2009). High 

index values are supported by ground truth observations and it shows that the steeper gradient 

and high tectonic activities associated with landslides in some areas mainly consist of thrusting 

and faulting, such as the Main Zagros Thrust, Hoor Thrust, Chamsangar fault, Shahbazan strike-

slip fault (Figure 3.8), and Baraftab fault (Figure 3.4). The Dez River profile indicates that the 

most active tectonic zone and landslide prone areas fall within the Folded Zagros (Figure 3.6). 

The reduction in the gradient values towards the Dezful Embayment is interpreted as low 

tectonic activities and landslide probability. 

 The different formations dominating various types of rocks like limestone and evaporates 

of the Gachsaran Formation, shale of the Aghajari Formation, marls of the Kashkan Formation, 

and Cretaceous calcareous (i.e. contact of the Imbricate Zone and the Zagros Fold Belt with the 

Sanandaj-Sirjan Zone) may also approach the graded profile of the Dez River and be associated 

with landslides. Therefore, this study has mapped new landslides based on the stream length-

gradient index anomalies, the Dez River graded topographic profile evidenced by the ground 

truth observations (Figure 3.8). This study emphasized that the ZSB has formed and developed 

landslides as compared to the existing inventory dataset not only because of the tectonic 

processes, but also because of rugged and immature topography (Farrokhnia et al. 2011; Safari et 

al., 2009). A river profile of the study area is predicted to exhibit a graded profile, indicating that 

the area has been tectonically disturbed slowly rather than rapidly and that most occurrences of 

landslides depend upon high tectonic activities. 
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 The systematic stream-gradient map of the ZSB in the GIS environment shows the 

correlation between tectonic and landslides. From the map (Figure 3.8), it is evident that the 

Sanandaj-Sirjan Zone exhibiting 0 to 0.483 (i.e. SL slope) has low tectonic activity with no 

landslide visibility. This map also reveals that the stream length-gradient index in the Zagros 

Fold Belt exhibits up to 6.687m. In other words, the area has a moderate to high tectonic activity 

and significant potential for landslides. This study revealed that a low gradient index is less 

prone to landslides in comparison to a high-gradient index (Figure 3.8) (Burbank and Anderson, 

2001). However, these tectonic activities in the Zagros Mountains have generated terraces and 

different types of landslides such as rock fall, flow debris, and complex geomorphic structures. 

3.5 Discussion 

LiDAR systems have been reviewed and discussed in Wehr and Lohr (1999). A clear reference 

to an updated discussion is commented on in Shan and Toth’s (2008) book. A brief review of 

LiDAR and other remote sensing techniques utilized in landslide studies is found in Prokop and 

Panholzer (2009). The DEM of the study area allowed for the detection of more informative 

landslide features than the coarse-resolution (e.g. 20 m or 30 m) DEMs derived from traditional 

techniques such as aerial photographs, topographic maps, and other remote sensing techniques 

(Farrokhnia et al. 2011; Pirasteh and Li, 2016). 

 However, obtaining flight permission from the Iranian authorities remains a challenge, 

and using airborne LiDAR for studying landslides and monitoring natural hazards from time to 

time is not wise. Moreover, the cost is high. Airborne LiDAR cannot be used on a regular basis 

to monitor a landslide before and after the event. Thus, when considering the future direction of 

landslide investigations in Iran, it is not possible to study landslides before and after their 

occurrence nor expect to practice an early warning system using LiDAR techniques. The study 
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area is a dense vegetation area which may obscure the morphology of landslides both in the field 

and in remotely sensed data. LiDAR data is processed to reveal the topography beneath 

vegetation (James et al., 2006). It has proven to be useful in identifying tectonic fault scarps and 

folds, and in generating high quality DEM derivatives such as river networks, previously 

unmapped landslides, and other geomorphic landforms (Haugerud and Harding, 2001; Haugerud 

et al., 2003; Sherrod et al., 2004). 

 The strength of using airborne LiDAR-derived DEMs in comparison to other techniques 

lies in the generation of high-resolution DEMs. Still, it is a challenge for users to develop a 

software tool to detect landslides using LiDAR-derived DEM automatically. The experience of 

this research shows the particular challenge of obtaining clear shots in certain areas (e.g. the 

ZSB) with very steep terrain and cliffs (Pirasteh and Li, 2016). Also, geological features such as 

bedding and layering can sometimes be mistaken for instability. Therefore field verification is 

always an essential component of the process. 

3.6 Conclusions and Recommendations 

Steep hillslopes and graded river profiles are mostly susceptible to landslide processes, but they 

are also affected by lithology and structure. Identification of streams in hillslopes with DEM is a 

difficult task. Therefore, it is recommended that researchers fit certain analytical models with the 

help of existing landslide inventory dataset and stream gradient. These models will differ in 

different geological areas. Thus, the stream gradient alone cannot identify the landslide prone 

areas.  

 This study concludes that the zone of rapid rock uplift in the ZFB has steeper gradient 

and higher gradient indices than the SSZ in north of the map (Figure 3.8), and likely has highly 

susceptible zones to landslides. This study found that the LiDAR-derived DEM provided 
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detailed information about the stream-profile metrics and thereby may improve the landslide 

investigations as compared to the previous studies used 20m resolution DEMs developed by 

photogrammetric techniques (Safaiee et al. 2010; Farrokhnia et al. 2011). Possibly, this 

improvement may be because of the extracted more information of the streams behavior and 

changes in the Dez River profile. The stream profile and stream length-gradient index map could 

possibly provide insights with high potential to support landslide-prone areas assessment with 

limited resources in a very short time when no data such as land use, vegetation, precipitation 

and other influencing factors are available (see Chapter 4). In particular, the method of this study 

has shown a very promising approach to identify landslides in the Zagros Mountains. This 

proposed method has also shown potential to detect landslides that directly reach the streambeds 

as well as landslides whose magnitude and activity are high enough to generate stream 

perturbations in the Zagros Mountains.  

3.7 Chapter Summary 

This study identified features that can provide insights for landslide assessments. The high 

stream length-gradient indices in the study areas are determined in conjunction with field 

observations and an available dataset of landslide inventories. Remote sensing data such as 

LiDAR-derived DEM sometimes may be a better choice as compared to the DEMs that are 

generated from topographic maps or sensors such as ASTER (Pirasteh et al. 2011a; Burden and 

Faires 2011; Caimpalini et al., 2016) for extraction of the stream length-gradient index to assess 

landslides. This study used an empirical approach with spatial analysis of drainages in the GIS 

environment to estimate landslide-prone areas. This chapter delivered an empirical approach in 

conjunction with the GIS analysis for landslide investigations from LiDAR-derived DEMs. 
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 Finally, this study contributed by: a) Expanding upon previous efforts to present a 

tectonic geomorphology approach of localizing landslide-prone areas; b) Suggesting stream 

length-gradient index and topography river profile for landslide investigation when we have only 

a DEM, and do not access to related data; and c) Updating the landslide inventory map of the 

study area. 
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Chapter 4 

Probabilistic Frequency Ratio Model for Landslide 

Susceptibility Mapping from LiDAR-derived DEMs 

This chapter presents a quantitative approach to terrain analysis. LiDAR point clouds were 

utilized to evaluate both spatial and temporal factors contributing to landslides in the Alborz 

Mountains, Iran. The probabilistic frequency ratio (PFR) model was used to possibly improve 

the quality of landslide susceptibility evaluation. The PFR model was applied to consider the 

effect of landslide-related factors associated with Google Earth’s high-resolution images and 

field observations. The LiDAR point cloud data and GIS-based analysis have allowed in 

landslide hazard assessments to be performed using inventory dataset as compared to previous 

studies. This chapter contributes a revised and updated landslide inventory map of the 

Mazandaran Province. Image elements interpretation was applied on the available 30 m ASTER 

Digital Elevation Model (DEM), LiDAR-derived DEM (5 m), and Google Earth high spatial 

resolution images (0.5m-1m) in conjunction with field observations. In this study, factors such as 

geology, geomorphology, land use, soil, slope, and distance from roads and drainage were 

evaluated to represent, manipulate, and analyze landslide susceptibility. Also, the performance 

success of the rate curve of landslide susceptibility was evaluated. Results led to an improved 

landslide susceptibility map from LiDAR-derived DEM by implementing the PFR model with 

92.59% accuracy performance in comparison to the existing data and previous studies in the 

same region (Safaiee et al. 2010; Farrokhnia et al., 2011). Furthermore, this study revealed that 

all factors have relatively positive effects on landslide susceptibility mapping in the study area. 
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However, the most effective predisposing factor for landslide occurrence is lithology with 

13.7%. 

4.1 Introduction 

Landslides are one of the most common deformation scenarios in the real-world environment. 

Almost every year catastrophic landslides cause loss of life and result in billions of dollars in 

property damage around the world. Landslide-prone areas reconnaissance is playing a major role 

in motivating decision-makers to prepare a loss reduction plan. Identification and spatial 

distribution of landslides require knowledge of not only geologic and geomorphic processes, but 

also techniques including GIS. Moreover, LiDAR and UAV techniques have become excellent 

tools for improving landslide recognition processes in mapping (Haugerud et al., 2003; Eeckhaut 

and Van, 2007). 

 Significant research on landslide hazards has been conducted in an effort to study slope 

instability hazards mapping (Carrara et al., 1991; Carrara et al., 1999; Guzzetti et al., 2005; 

Roering et al., 2009; Pirasteh et al., 2011; Su et al., 2015). Also, some researchers have applied 

deterministic models for landslide susceptibility mapping and modelling (Binaghi et al., 1996; 

Zhou et al., 2003; Watts, 2004; Sarkar and Kanungo, 2004; Lee et al., 2004; Lee and Dan, 2005; 

Westen et al., 2008; Jebur et al., 2014). Moreover, researchers have applied the logistic 

regression model to landslide hazard mapping (Choi et al., 2012). Recently, landslide hazard 

evaluation has been carried out by using fuzzy logic and artificial neural network models (Lee et 

al., 2004; Yilmaz, 2010; Lee et al., 2014). During the last decade, landslide susceptibility and 

deformation measurement has been performed extensively, particularly for landslide assessment 

(Luzi et al., 2000; Su and Bork, 2006; Streutker and Glenn, 2006; Schulz, 2007). For example, 

McKean and Roering (2003) studied low-density DEM to determine the potential of 
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differentiating components within a landslide morphologically (Lee and Dan, 2005; Glen et al., 

2006; Yilmaz, 2008; Niculitˇa, 2016). Also, McKean and Roering (2003) explored how to 

provide insight into the material type and activity of the slide. As a result of this exploration, the 

literature review indicated that these techniques and low pixel resolutions of DEM and satellite 

imageries could not provide sufficient accuracy to visualize the objects extracting an informative 

description of the landslide locations, nor could they predict the probability of landslide 

occurrence.  

 In this study, a 5 m resolution LiDAR-derived DEM was used. Google Earth images were 

used in conjunction with existing landslide inventory maps (1:25,000 scale, Natural Resources of 

Iran) to apply the PFR model. This approach could potentially contribute the PFRmethod for 

research scholars by improving landslide evaluation and possibly the quality of susceptibility 

mapping prediction. Therefore, the existing inventory spatial distribution of landslide data, 

Google Earth images, LiDAR point clouds, and ASTER data were collected to study landslide 

probability prediction in Iran’s Alborz Mountains.  

 The Iranian plateau has potential for earthquakes and various types of landslides (Ali and 

Pirasteh, 2004) due to its high tectonic activity, rugged topography, geological setting, and 

climatologic variety. Most landslides occur within the following mountain ranges: a) Alborz 

range with NE-NW trend; and b) Zagros range with NW-SE trend. Landslide risk in Alborz 

range, particularly in Central Alborz, is higher risk than it is in other regions. Often, the study 

area has experienced landslides in Central Alborz, for example Hajiabad-Oshan Road in 2003, 

Fasham-Meygon road in 2006, and Atashgah-e-Karaj in 2008. Moreover, several landslides and 

rock falls occurred on Chalus-Tehran Road that were induced by the Baladeh-Kojour earthquake 

on May 28
th

, 2004. These catastrophic landslides have proven that an improved method such as 

LiDAR-derived DEMs associated with the PFR approach is required for landslide susceptibility 
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mapping. Therefore, the Marzan Abad area of Central Alborz has been selected for this study 

due to its high population and susceptibility to landslides-particularly those which are triggered 

by earthquakes. 

 The objectives of this study are: a) To use the LiDAR-derived DEMs in association with 

contributing factors; and b) To improve the quality performance of the PFR model in assessing 

and predicting landslide susceptible areas in Central Alborz by evaluating LiDAR-derived DEMs 

and other impacting factors. Nevertheless, this study contributes high resolution of LiDAR-

derived DEMs for landslide susceptible assessments, and by increasing the quality of PFR model 

outcomes. To satisfy the above objectives, landslide susceptibility analysis techniques have been 

applied and verified in the study area by using previous research outcomes and the existing 

landslide inventory map in conjunction with some ground truth data. Landslide-related factors in 

GIS software (ArcGIS 10.4) were assessed by implementing the analysis tools for spatial 

management and data manipulation. Finally, satisfactory accuracy of landslide hazards 

prediction was achieved by applying the PFR model and using a LiDAR-derived DEM. 

4.2 Materials and Method 

4.2.1 Data Collection 

Data collection and preparation are the first fundamental and essential steps to landslide hazard 

analysis. In this study, the GIS database was composed of five parts: 1) Generation of a 5 m 

resolution LiDAR-derived DEM and a 30 m resolution of the ASTER DEM; 2) Google Earth 

images; 3) Landslide inventory map shows landslides specification such as location, soil type, 

lithology, cause, type, length, width, area for 1990-2010; 4) Landslide predisposing factor maps 

and topographic maps; and 5) Collection of data by GPS from field observations. 

 The existing landslide inventory spatial distribution of the area (Figure 4.1) provided 

insights into the recognition of landslide prone areas. The study area is bounded by latitudes 
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4015000m N-4047000m N and longitudes 52300m E-54500m E in UTM. In this study, 

landslides have been extracted from LiDAR-derived DEMs and ASTER DEM in conjunction 

with field observations (Figure 4.2). The visual image interpretation of the DEMs and Google 

Earth images (dated from 2009 to 2016, all in December) were used in conjunction with field 

observations. The ENVI 4.2 software allowed for the operation of digital image processing (DIP) 

such as geometric correction, enhancement, and filtering on Google Earth images.   

 

Figure 4.1: Study area of the Central Alborz Mountains and inventory landslide of geographical 

distribution in Iran. 

 

Figure 4.2: Landslides in Imamzadeh Ali, Marzan Abad, Central Alborz Mountains. 
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 Landslide susceptibility evaluation requires knowledge of factors leading to landslide 

analyses. This study determined the factors influencing landslides. The literature review and field 

investigations identified the most influential factors in the study area as topography, lithology, 

soil, geomorphology, steepness of slopes, land use, and distance from road networks and 

drainage (Varnes, 1978; Anbalagan, 1992; Brunsden, 1996; Donati and Turrini, 2002; Zhou et 

al., 2002; Nichol and Wong, 2005; Metternicht et al., 2005; Jebur et al., 2014; Anbalagan et al., 

2015). Each category was subdivided into different classes based on its value or feature. All 

influential factors, which have been obtained or created in the form of maps, represent large 

quantities of spatial data. The preparation of hazard and susceptibility mapping involves 

manipulating, analyzing, and presenting data in the GIS. 

 

 This study prepared the digital geology map of the study area based on a combination of 

two analog geological sheet maps at 1:100,000 scale, namely Marzan Abad and Chalus (Geology 

Survey of Iran, 2001) and Google Earth image interpretation. The scale of the map was changed 

based on the spatial resolution of the satellite images as well as the existing maps. On screen 

digitization in ArcGIS was applied on the analog geological maps, and spatial analysis was 

carried out for all lithological units. The manual processing system in ArcGIS was applied to 

name each litho-unit type as attribute input data in a table. The image elements such as 

photographic and geotechnical element (i.e. texture, shape, vegetation, slope) were used to map 

the geology of the area. The geomorphology map was created based on the geology and 

topography map in 1:25000 scale associated with the LiDAR-derived DEM (5m). It was done by 

on screen digitization in ArcGIS in conjunction with field observations. A slope thematic map 

was extracted from the LiDAR-derived DEM of the area with a spatial resolution of 5 m.  
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Figure 4.3: Flowchart of the method. 

The soil map (1:25000 scale) was collected from the Ministry of Natural Resources of Iran. A 

field survey verified the given digital soil map. Road and drainage maps were extracted from the 

topography map of the study area (National Cartographic Center organization, 2015) at 1:25000 

scale. The land use map and the Normalized Difference Vegetation Index (NDVI) of the study 

area were provided by Natural Resources of Mazandaran. The land use map was modified by a 

field check. However, the following figure (Figure 4.3) depicts the flowchart of the method.  

Also, Table 4.1 depicts a summary of data layer information. 
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Table 4.1: Predisposing factors for landslide occurrence and GIS data in the study area. 

Classification  Sub-Classification  GIS Data Type  
Scale or 

Resolution 

Geological 

Hazard  
Landslide inventory  

Point, polygon 

coverage  
1:25,000 

Basic maps 

LiDAR-derived 

DEM 
Slope  

 

 

GRID  5m 

ASTER DEM GRID 30m 

Topographic  

map  

roads and 

drainage 
Poly line coverage 1:25,000 

Geology  Polygon coverage 1:100,000 

Soil  Polygon coverage 1:25,000  

Land use  GRID  30m 

NDVI GRID 30m 

Geomorphology  Polygon coverage 1:25,000 

4.2.2 Processing of LiDAR Point Cloud Data and DEM Generation 

In spatial analysis measurements, high resolution DEM and its derivatives such as slope have 

been considered for landslide hazard prediction and susceptibility mapping. The high-resolution 

DEM of Central Alborz is the most useful representation of terrain in the GIS for spatial 

analysis. A high-resolution DEM is the raster representation, in which each grid cell records the 

elevation of the Earth’s surface and reflects a view of terrain as a field of elevation values. In this 

study, a resolution of 5m in the pixel was applied for grids to generate the high-resolution DEM.   

 LiDAR point cloud data in LAS format were collected for the Marzan Abad of the 

Central Alborz Mountain from ISO. LAS data were used to generate a DEM in ArcGIS software. 

To process the data, a semi-automated method was used to remove the noise and classify the 

objects (Evans et al., 2009). This semi-automated method allowed for the detection and 
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interpretation of particular objects in the study area. The pre-processing technique was applied to 

the point cloud data to achieve a certain level of quality data before being used for landslide 

hazard prediction and susceptibility mapping. The bare-earth was extracted by applying SCOP++ 

software (i.e. segregating objects such as trees from the surface and extracting the earth’s 

surface). This process has a direct impact on the quality of the DEM and landslide investigations. 

 During the last two decades, various solutions and algorithms for the classification of the 

LiDAR data have been published (Glenn et al., 2006; Derron and Jaboyedoff, 2010; Su et al., 

2015). The method was based on the surface interpolation and the DEM was generated based on 

the x,y,z points of the entire study area (Pfeifer et al., 1998). In other word, the Hierarchical 

Robust Filtering (HRF) method and ArcGIS 10.4 software were used to develop the high-

resolution DEM of the study area. The HRF method was originally designed for laser data in 

vegetated and rugged topography areas such as Central Alborz Mountains. To determine the 

relationship and influence of each individual grid of factors such as land use within the whole 

DEM of the study area in the GIS, the whole DEM and individual factors must be considered to 

identify the number of pixel/grids contributing to a landslide.  

 This HRF algorithm is embedded in the SCOP++. After HRF was completed by the ISO, 

the pre-processed LAS data were collected to create DEMs of the study area. The LAS data were 

used in ArcGIS 10.2 and the DEM was derived from the current data set by interpolation 

approach and using LAS to raster function in ArcGIS software.  

4.2.3 ASTER DEM  

This study imported ASTER images by using Ortho-Engine software as part of the PCI 

Gemomatica 9.1. The DEMs were generated automatically by using the DEM extraction tool 

from the PCI Gemomatica 9.1 (Figure 4.4). A detailed description of the procedure of generating 
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ASTER DEMs has been provided by Al-Rousan et al. (1997). The quality of the ASTER DEM 

was satisfactory after applying re-sampling (Al-Rousan et al., 1997). The satisfaction is 

determined by how it is acceptable, but maybe not great in creating a 3D model when to 

visualize a 3D surface view in ENVI platform and to see objects. Also, this satisfaction is 

achieved by field observations and consultation with the Natural Resources of Iran. 

 

 

Figure 4.4: 3D surface view of ASTER DEM 30 m. 

4.2.4 Probability Frequency Ratio (PFR) Model Approach 

This study assumed that future landslides would occur under similar circumstances to those of 

previous landslides. This study applied the PFR model based on the given assumption. This 

model is used because the author assumed that the accuracy of map could be increased. Also, this 

is because to compare it to other existing models' accuracy and quality such as logistic 

regression; and finally to improve the quality of the proposed susceptibility landslide map (Table 

4.6). Frequency ratio approach is based on the observed relationships between the distribution of 

landslides and each landslide-related factor to reveal the correlation between landslide locations 

and factors in the study area (Lee and Pradhan, 2006). Frequency ratio (FR) describes how often 
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something happen divided by all outcomes. The PFR is a statistical relationships between 

historical target location (inventory data) and its conditioning factors. A bivariate statistical 

analysis method is based on spatial distribution of dependent and conditioning factors such as 

slope. To apply the PFR model, a spatial database of landslide-related factors was constructed in 

the GIS platform. All data layers (Table 3.1) were converted to the GIS format and geo-

referenced into the Universal Transverse Mercator (UTM) coordinate system. Maps represent 

each factor in the GIS environment (Figure 4.5).  

 This research constructed maps of various factors in different classes. A fine grid was 

overlaid over the study area with each grid cell representing a small unit area (rasterization). The 

data layers obtained a square-grid matrix with 3,400 lines by 2,982 columns. Each pixel of 

LiDAR-derived DEM represents 5×5 m area on the ground (Figure 4.5). By utilizing the overlay 

of training subsets of landslides, geospatial distribution map, and predisposing factor ranges such 

as topography, the spatial relationship between landslide locations and each factor’s range was 

extracted. The number of landslide occurrence pixels in each class were evaluated, and then the 

Frequency Ratio (FR) value for each factor’s range was calculated. This allowed for the division 

of the occurrence landslide ratio by the area ratio. Landslide frequency ratio was calculated by 

the ratio of percent domain of a factor class and percent landslide in that class. Next, the 

frequency ratio (FR) method was implemented to evaluate the rank of correlation between the 

selected factor’s ranges (i.e. slope, land use, soil, lithology, distance from drainage, and distance 

from the road network) and landslide locations in the study area. The value of 1 for FR value is 

an average value. 

This study defined the greater ratio above the unity as meaning that the stronger correlation is 

between the selected factors and landslide geographical distribution. Likewise, the lower ratio 

than unity means a lower correlation between landslide occurrence and the given factors 
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attribute. Therefore, based on the calculated FR values, the relation of each category’s factor 

with landslide occurrences have been evaluated. After the FR values calculation, this study 

calculated the Landslide Susceptibility Index (LSI) for each pixel of the study area. This method 

considers point x with m (number of layers) pixel values (x1,…, xm) in the study area. In pixel x, 

LSI can be calculated by summation pixel values (x1,…., xm), as indicated by the following 

equation (4.1):  

LSI=∑ FR = FR1+FR2+FR3+…..+FRm  (4.1) 

 

 

Figure 4.5: Predisposing factors and maps in the GIS environment. a) Slope map, b) Road map, 

c) DEM, d) Land use map, e) Soil map, and f) Lithology map of Marzan Abad and study area. 
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 Where FR is the rating of each factor’s range (Frequency ratio value) and Landslide 

Susceptibility Index (LSI) represents the relative susceptibility to landslide occurrence in unit of 

area.  

4.2.5 Contribution of the PFR and the High Resolution DEM to the High Accuracy Relative 

to Other Methods 

 

The FR method was produced using the weights for each class of each conditioning factor. The 

PFR model was applied in order to evaluate the landslide susceptibility of the area based on the 

observed spatial relationship between landslide occurrences and conditioning factors. In general, 

the landslides that will occur in the future have the same condition as past landslides. The FR is 

the ratio of the probability of the presence to the absence of landslide occurrence (Yilmaz, 2009). 

The advantages of this model are that it can be simply implemented and its result is completely 

easy to comprehend (Yalcin et al. 2008). The spatial relationship between each related 

conditioning factor and all landslides were derived utilizing the frequency ratio.  

 Though the resolution of DEM is playing a role in landslide susceptibility mapping and 

hazard assessment, a finer resolution is not always necessarily result in a higher accuracy of 

landslide susceptibility mapping. For example, Tian et al. (2008) studied the effects of raster 

resolution on landslide susceptibility mapping in Shenzhen of China and they selected eight 

factors to calculate landslide susceptibility with eleven groups of different resolutions (5m to 190 

m). They found that 90m resolution has the best accuracy and the 150m resolution has the worst 

one. It is basically because when we use a different type of predisposing factors and a model that 

has its precision. That is why the difference sometimes is caused by the method and the kind of 

data we use.  

     Sometimes, the spatial resolution is essential, especially when we study small landslides 

and the dimensions of slope failures vary. If the spatial resolution is relevant to the surface 
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features found in the landslide morphology, it will help improve the extraction, identification, 

and mapping of landslide surface features. For example, Mora et al. (2014) studied the effect of 

spatial resolution on small landslide susceptibility mapping, and they concluded that the spatial 

resolution affects the accuracy and surface features extracted for small landslide susceptibility 

mapping, as the performance is dependent on the scale of the landslide morphology. 

    Also, the resolutions may be variable due to the size of the study area. In this study, the 

prediction capability of the performed PFR model is considered for predisposing factors for 

landslide susceptibility mapping. That is why, this study with the LiDAR-derived DEM probably 

impacts the PFR model outcomes and increases the precision and quality of susceptibility 

hazards mapping in comparison to the DEM with lower resolution used in previous research than 

5m used (Figure 4.11, Table 4.5) (Guns and Vanacker 2012; Chen et al. 2014; Rui et al. 2017). 

However, in all methods, the DEM is the base for deriving the slope and other predisposing 

factors such as drainages and aspect. Normally, by any methods we use, the grid size of 

predisposing factors including slope-derived from DEM may not also be a similar size.  

 Gholami et al. (2017) studied FR, Fuzzy Gamma (FG) and Landslide Index method 

(LIM) with 20m DEM resolution. This study determined landslide prone areas in Sari-Kiasar 

watershed, Mazandaran Province of Iran. The DEM was derived from aerial photographs in the 

1:25,000 scale of topographic maps and extensive field observations. Some of similar 

predisposing factors were considered, and spatial relationships among them in the GIS allowed 

to evaluate the predictability of  landslide hazards. The 20m resolution DEMs and predisposing 

factors such as geomorphology, rock type, vegetation, and distance to road employed to the three 

above methods.  This study revealed that the most important factors in landslide occurrence were 

rainfall, slope, and vegetation. The performance of the prediction capability of the models was 

evaluated by using Receiver Operating Curve (ROC) and the Area Under Curve (AUC). It 
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revealed that PFR has a better accuracy than FG and LIM regardless the spatial resolution of the 

DEMs.  

 Nevertheless, in the present  research, the slope-derived from DEM with 5m resolution 

was calculated to identify FR and the percentage of its contribution to landslide susceptibility 

mapping. The prediction capability of the performed model is compared with the previous 

research (Guns and Vanacker 2012; Chen et al. 2014; Gholami et al. 207; Rui et al. 2017) with 

almost similar predisposing factors for landslide susceptibility mapping (see Figure 4.11, Table 

4.5). Perhaps, the 5m resolution DEM affects the accuracy of the surface features extracted for 

landslide susceptibility mapping because it depends on the scale of the landslide morphology. 

The lithology has more influence to the landslide susceptibility mapping.  

4.2.6 Performance of the Effect Analysis 

One of the most fundamental steps in the FR approach and the landslide hazard prediction and 

susceptibility mapping process is validation. The authentic process was applied to determine the 

reliability of the previous data and parameters involved in the present study. For this study, the 

data were obtained from the Geological Survey of Iran and the National Geoscience Database of 

Iran. This study verified the performance of the result by relative operating characteristic (ROC) 

curve method of comparing the existing landslide inventory geospatial distribution map with the 

landslide susceptibility map (a cross-validation technique) (Chung and Fabbri, 2003; Paolo et al., 

2010; Wen et al., 2017). In other words, the ROC curve was used to validate the accuracy of the 

PFR model Eq. (4.1). Previous studies have used “success rate” to evaluate model performance 

(Dietrich et al., 1995; Duan and Grant, 2000; Lee and Dan, 2005; Liu et al., 2012; Jebur et al., 

2014). The success rate is defined as a ratio of how many actual landslide sites are successfully 

predicted. This allows researchers to estimate the goodness of the fit of the predictive models 
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with actual landslide sites.  

 In this study, the results of the landslide susceptibility analysis and the prepared landslide 

prediction map have been verified by using the test subset of landslides for the same study areas. 

Test subset includes unconsidered landslide locations (20% of all) and some newly mapped 

landslides through image interpretation and ground truth observations with the help of the Global 

Positioning System (GPS) (Figure 4.6). Intersections between the prediction images and total 

landslide locations allowed for the computation of the number of occurred landslides in each LSI 

value. The method could determine the performance of the output information. Overall, the 

approach has positively improved the method of landslide evaluation for susceptibility mapping 

by utilizing the LiDAR-derived DEM and PFR model (see Table 4.5). However, the 

effectiveness of DEMs has not been studied to identify whether the LiDAR-derived DEM (5m) 

compared to DEMs with lower resolution might possibly achieve the improved landslide 

susceptibility or not (Safaiee et al. 2010; Rajabi et al. 2011; Jebur et al. 2014). 

 

 

Figure 4.6: Field observations and newly mapped landslides. 

 Nevertheless, a far less conventional procedure in conjunction with technologies such as 

LiDAR high resolution data and PFR method results in a much more satisfying outcome for all 
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concerned. The calculated index values of cells were sorted in descending order to obtain the 

success rate of the curve. This study divided the ordered cell values into one hundred classes and 

accumulated 1% intervals to present the percentage of landslides in the study area. Also, some 

landslide occurrences in each index value are represented as a percentage of total landslides 

cumulatively. Effect analysis studies associated with the high resolution of DEM and landslide 

influential factors have possibly indicated how a solution could change when the input factors 

are changed. In this study, the effect analyses were conducted by the exclusion of each factor in 

turn during the summation stage using Eq. (4.1). However, the effect of each contributing factor 

evaluated the related success rate by using the area under the curve calculation. 

4.3 Results and Discussion 

4.3.1 PFR Model and Factors Analysis 

LiDAR-derived DEMs and ASTER DEM were used to identify new landslides from an existing 

inventory dataset in conjunction with field observations. The high resolution of LiDAR-derived 

DEM exhibits better performance in identifying new landslides in comparison to ASTER DEM. 

As well, implementing the PFR model from LiDAR DEM demonstrates acceptance precision 

and quality of susceptibility mapping. The study shows that geology plays a major role in 

controlling factors for landslides in Central Alborz, since the geology of this area is very 

complex. Lithologically, the study area is comprised of several formations as depicted in Table 

4.2. The FR calculations (Table 4.3) indicate that the highest FR values are the most susceptible 

groups for landslide occurrences. The calculation of FR is belong to areas with some geological 

layer outcrops such as Q1, K11,Pn, KM2, and K1M2 (FR: 39.5, 9.0, 3.3, 1.5, and 1.5, respectively). 

  

 These groups primarily include marl, marl limestone, limestone, shale associated with old 

landslides, and rock stream traces which are mostly fissile, soluble, and easily weathered 
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materials. The lowest FR values (FR=0) belong to geological groups including J1, TR3Js, Pd, Ed, 

E1, O1, P1q, and PEe. FR values show a very low correlation with landslide occurrence (Table 

4.3). Thus, we predict a very low susceptibility of landslide occurrence in these classes. The 

strata mostly contain dolomite, cherty dolomite sandstone, siltstone, and quartzite. These strata 

were identified as being among the resistance and hard fracturing litho units in the study area.  

 

Table 4.2: Different formations and litho-units in the study area. 

Era Period Formation Code 

Lithology Area covered 

 

 

 

 

 

(KM
2
) % 

Paleozoic 

Up-Pre.  

Cambrian 
KAHAR PEK 

Salty shale, sandstone, minor 

dolomite, quartzite 
148.33 14.64 

Cambrian SOLTANIEH PEe 

Thick bedded to massive light-

coloured dolomite, locally with 

chert bands 

53.64 5.30 

 

 
BARUT Eb 

Micaceous variegated siltstone and 

shale, cherty dolomite intercalations 
8.8 0.87 

 

 
LALUN E1 Red arkosic sandstone 19.77 1.95 

Ordovician MILA O1 
Sandstone, shale, limestone, marl 

phosphatic layers 
2.08 0.21 

Carboniferous MOBARAKL CM 
Black limestone, dolomitic 

limestone, marl intercalations 
80.38 7.94 

Permian 

DORUD Pd 
Sandstone, shale, limestone 

intercalations, quartzite, siltstone 
26.93 2.66 

 

 

 

PV Basic flows, pyroclastics, sandstone 0.99 0.10 

 

 
RUTEH Pr 

Fusulina limestone, dolomitic 

limestone 
43.97 4.34 

 

 
NESEN Pn 

Cherty limestone, marly limestone, 

marl and sandy shale 
3.88 0.38 

Mesozoic 

Triassic 

ELIKA TRem 
Thin-bedded limestone, calcareous 

shale, quartzitic sandstone 
2.77 0.27 

 

 

 

TRdc Massive dolomite 36.04 3.56 

 

 

SHEMSHAK TR3JS 

Shale, sandstone, siltstone, 

claystone, quartzite, conglomerate, 

local limestone intercalations: coal 

seams and lenses 

179.45 

15.28 

Jurassic 
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LAR J1 

Limestone, local dolomitic 

limestone 
8.35 0.82 

Cretaceous TIZ_KUH K1 
Orbitolina limestone (Apian - 

Cenomanian) 
31.09 3.06 

 

 

CHALUS K11 
Limestone (Berriasian - 

Valanginian) 
2.04 0.20 

 

 

 

Kv21 
Alkali basalt, spilitic basalt 

conglomerate, tuff braccia, tuff 
71.05 6.07 

 

 

 

KV22 
Trachyandesitic basalt, tuff breccia, 

pyroclastics, tuffite 
41.58 4.10 

 

 

 

K12 
Globotruncana limestone, marl 

limestone 
69.77 6.89 

 

 
 KM2 

Marl, calcareous marl, marly 

limestone 
51.11 5.05 

 

 
 K1M2 Alternations of limestone and marl 33.06 3.26 

Cenozoic 

Tertiary  P1Q 
Conglomerate, sandstone, siltstone, 

siltymarl 
28.28 2.74 

Quaternary  Q 

Undifferentiated young and old 

alluvial fans, traces, colluvium, 

residual soils, fill valley sediments 

lake deposits 

90.81 8.90 

 

 
 Q1 Landslide and rock stream 11.48 1.13 

 

river 

and 

lake 

Water body, terraces, colluvium, 

residual soil 
2.80 0.27 

 

 
total 1048.45 100.00 

 

Table 4.3: Frequency Ratio (FR) of factors to landslide occurrence. 

Factor 

Class 
Total number of pixels Landslide 

occurrence pixels Frequency 

 ratio  

 
Number

a
 % Number

b
 % 

Soil 

Weathered 85091 0.84 0 0.00 0.00 

Medium soil from 

 alluvial 
804145 7.94 0 0.00 0.00 

Thin soil over rock 658226 6.50 15979 7.80 1.20 

Medium soil over 

 rock 
2185002 21.57 80 0.04 0.00 

Medium soil over 

 colluvial 
1746851 17.24 60913 29.72 1.72 

Deep soil from  

alluvial 
111793 10.32 5300 2.59 2.34 

Fine alluvial soils 1045712 3.45 45430 22.17 2.15 

Thin sandy soils 349206 31.04 1939 0.95 0.27 
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Rocks 3145180 1.10 75275 36.73 1.18 

Distance from 

drainage 

(m) 

100 4424123 43.67 76569 37.36 0.86 

200 2464779 24.33 59288 28.93 1.19 

400 2222416 21.94 53917 26.31 1.20 

800 987245 9.75 15042 7.34 0.75 

>800 40237 0.40 100 0.05 
0.12 

 

Slope 

(degree) 

0-5 490045 4.83 3442 1.68 0.35 

5-10 669427 6.60 12333 6.02 0.91 

10-20 2746384 27.09 67408 32.89 1.21 

20-30 3200304 31.56 67151 32.77 1.05 

30-40 2530305 24.96 47358 23.11 0.94 

40-50 453592 4.47 6937 3.38 0.76 

>50 48743 0.48 310 0.15 0.31 

Lithology 

TRem 27679 0.27 785 0.36 1.33 

PEE 536418 5.30 2 0.00 0.00 

Pn 38776 0.38 2735 1.27 3.31 

Pr 439706 4.34 5295 2.45 0.56 

PV 9875 0.10 39 0.02 0.19 

Q 901467 8.90 10859 5.02 0.56 

Q1 114961 1.13 96880 44.81 39.49 

TR3JS 1547999 15.28 654 0.30 0.02 

K1M2 330740 3.26 10652 4.93 1.51 

KM2 511173 5.05 16768 7.76 1.54 

KV22 415791 4.10 12040 5.57 1.36 

P1Q 277810 2.74 0 0.00 0.00 

Pd 269380 2.66 42 0.02 0.01 

TRdc 360447 3.56 764 0.35 0.10 

CM 804135 7.94 11461 5.30 0.67 

O1 20800 0.21 0 0.00 0.00 

Factor 

Class 
Total number of pixels Landslide 

occurrence pixels 
Class 

 

 
Number

a
 % Number

b
 % 

Lithology 

E1 197786 1.95 0 0.00 0.00 

Eb 87995 0.87 1 0.00 0.00 

PEK 1483288 14.64 6760 3.13 0.21 

J1 83479 0.82 147 0.07 0.08 

K1 309512 3.06 1364 0.63 0.21 

K11 20444 0.20 3925 1.82 9.00 

K12 697915 6.89 10374 4.80 0.70 

kv21 614502 6.07 13330 6.17 1.02 

river 25575 0.25 0 0.00 0.00 

lake 2424 0.02 64 0.03 1.24 

Land use 
 

Agricultural land 1467497 14.49 78969 38.53 2.66 

Settlement 407629 4.02 9869 4.82 1.20 

Open Vegetation 2914371 28.77 49777 24.29 0.84 
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Lake 2101 0.02 163 0.08 3.84 

Grassland 1395207 13.77 36045 17.59 1.28 

Dense vegetation 3385573 33.42 30078 14.68 0.44 

Bad land 558122 5.51 38 0.02 0.00 

Distance  

from road(m) 

50 226534 2.23 15779 7.70 3.45 

100 223772 2.21 14477 7.06 3.20 

200 428101 4.22 20930 10.21 2.42 

400 784725 7.74 30603 14.93 1.93 

800 1344647 13.26 31178 15.21 1.15 

>800 7131021 70.33 91972 44.88 0.64 

Geomorphology 

Debris land 255864 2.53 15629 7.23 2.86 

Deep valley 670098 6.61 45181 20.90 3.16 

Limestone Relief 1373183 13.56 3040 1.41 0.10 

Moderate Relief 2238436 22.10 58355 26.99 1.22 

Alluvial Fan 263711 2.60 0 0.00 0.00 

Alluvial Plain 385201 3.80 0 0.00 0.00 

Alluvial Terrace 311277 3.07 10000 4.63 1.51 

Volcano Relief 4632287 45.73 72711 33.64 0.74 

a: Total number of pixels in the study area: 10,138,800 pixels. 

b: Total number of landslide occurrence pixels: 204,939 pixels (Estimation group).  

 The land use map has indicated that the most hazardous classes are in the lake area 

(coastal landslides), agricultural lands, and grasslands (FR value 3.8, 2.6, and 1.3, respectively). 

This is due to geological characteristics (K1M2 and Q1) and water influences in the coastal area. 

Thus, higher FR values are expected in these areas in comparison to that of other locations. In 

the study area, the results pertaining to the agricultural lands are controversial bbecause the land 

use and land cover situation of Marzan Abad area at the time of failure is unknown. Moreover, it 

is not possible to know whether the presence of agricultural lands was a cause of failure or 

consequence. In fact, it is possible that the changes in steepness are due to the evolution of the 

scarps that may have favoured agricultural lands. This study shows that deep soils from alluvial 

and fine alluvial soils are the most susceptible groups for landslide occurrence with FR>2. 

Geomorphologically, deep valleys and debris lands are the most susceptible classes with FR>2. 

Unexpectedly, alluvial fan and alluvial plain areas have the lowest susceptibility of landslide 

occurrence with FR=0. 
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 The relationships between landslide occurrences and slope show that gentle slopes have a 

low frequency of landslides because they have a lower shear stress. This study found that at a 

slope of 10° or less, the frequency ratio is below 1. This result indicates a low probability of 

landslide occurrence. However, slopes above 11° have a ratio of >1. This result shows a higher 

likelihood of landslide occurrence. The areas with slope steepness of more than 40° covering less 

than 4% of the area are mostly covered by bedrocks (i.e. volcanic rocks). However, this part of 

the study area with slope steepness of more than 40° has a lower probability of landslide. 

 This study revealed that road networks have a strong relationship with landslide 

occurrence because of cut-slope creations through road construction. It was found that the closer 

the distance to the road, the greater the chance of a landslide occurring. Areas with a distance of 

<100m from the road are the most susceptible class with FR>3, and areas with a distance of 

>800m from the road network show a minor relationship with landslide occurrence (FR<1).   

4.3.2 Landslide Susceptibility Map 

Landslide Susceptibility Index (LSI) calculation shows that the LSI has a minimum range value 

of susceptibility class of 2.3, a maximum range value of susceptibility class of 55.7, an average 

value of 6.95, and a standard deviation of 5.02 (Table 4.4). This study prepared the geospatial 

distribution of the updated landslide inventory dataset which is illustrated on the Landsat TM. 

This revised and updated inventory dataset includes recent landslides, minor-medium and human 

casualty landslides (Figure 4.7). The final landslide susceptibility map in five susceptibility 

prediction class is based on the LSI values (Figure 4.8).  

 Figure 4.9 shows that the evaluated success rate curve is very steep in the first part of the 

curve. This indicates an excellent predictive capability. This study found that more than 50% of 

the landslides are located in 3% of the area where the landslide hazards index has a higher rank. 
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Approximately 22% of the study area has been predicted to be the most hazardous, and it was 

found that 90% of landslides are in these regions. 

Table 4.4: Statistics of the LSI value for all classes. 

 Min. value Max. value Mean 

value 

Std. AUC 

ratio 

Except drainage 1.50 53.87 5.95 5.01 0.92 

Except soil 1.80 53.34 5.95 4.85 0.91 

Except slope 1.52 53.86 5.95 5.01 0.92 

Except road 1.66 52.05 5.95 4.87 0.90 

Except land use 1.85 52.41 5.95 4.83 0.92 

Except geology 2.21 13.83 5.95 1.93 0.78 

Except geomorphology 1.56 51.91 6.0 4.81 0.92 

Total factors 2.30 55.07 6.95 5.02 0.92 

 

 The area under the curve (AUC) (Figure 4.10) assesses the prediction accuracy, and the 

total area=1 denotes a perfect prediction. In this study area, the ratio is approximately 0.926. The 

study indicates 92.6% agreement between the prepared hazards map and landslide locations from 

the existing landslide inventory geospatial distribution map and the field observations. Based on 

this  promising result, the quality of the landslide susceptibility and hazards prediction mapping 

was improved by using the LiDAR-derived high resolution DEM associated with the PFR model 

(Table 4.5) compared to logistic regression, fuzzy, and AHP methods (Chen et al. ,2014; Guns 

and Vanacker, 2012;Gholami et al., 2017; Rui et al. 2017).  

 The ROC curve method was used to validate the accuracy of the PFR model (Deng et al. 

2017; Wen et al., 2017; Kreyszig et al., 2011). The validation of the results proves the 

relationship between the susceptibility map and the landslide location data, as the prediction 

accuracy is 91.45%. Furthermore, the result showed a satisfactory prediction rate of 92.6% in 

comparison to the existing landslide location data in this study. 
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Figure 4.7: Geospatial distribution of landslides inventory. 

  

Figure 4.8: Landslide susceptibility map of Marzan Abad area, Central Alborz Mountains. 
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Figure 4.9: Success rate of the curve. 

 

Figure 4.10: Prepared success rates by the exclusion of each factor’s values. 

 Figure 4.10 shows seven success rates prepared by the exclusion of each factor’s values 

from the original susceptibility map. Also, Table 4.4 depicts the statistics of the LSI value for all 

cases. 

 This study reveals that by using the effect analysis, we can qualitatively know the 

influence of factors on the landslide susceptibility map. However, the selection of positive 

factors associated with the PFR and possibly a high-resolution DEM and its derivatives can 
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improve the prediction accuracy of the landslide susceptibility map. Table 4.4 shows that the 

geology of the area is the most important and effective factor of landslide analysis (AUC 

ratio=0.79) in the Marzan Abad area. In addition to geology, the roads network (AUC 

ratio=0.91) and soil (AUC ratio=0.92) are influential factors related to the evaluation of landslide 

susceptibility mapping. Aside from the factors mentioned above, all other effective factors show 

a relatively small positive effect on landslide analysis (AUC ratio<0.93). It can be concluded that 

all selected factors exert some positive influence on landslide hazard analysis and improved 

landslide prediction. 

4.4 Conclusions and Suggestion 

The results of this study could motivate the Iranian Government to capture the LiDAR point 

cloud data for development of big data and geodata analytics for the landslide inventory of Iran. 

This study concluded that probably the LiDAR-derived DEM impacts the PFR model outcomes 

and increases the precision and quality of susceptibility hazards mapping in comparison to the 

DEM with lower resolution used in previous research than 5m used (Figure 4.11, Table 4.5) 

(Guns and Vanacker 2012; Chen et al. 2014; Rui et al. 2017). As an advanced technique, LiDAR 

could provide a good set of three-dimensional data with x, y, and z axis of Marzan Abad area. 

The PFR model applies the high-resolution DEM, and its derivatives such as slope have provided 

an improved quality of outcomes of landslide susceptibility mapping in conjunction with the 

ASTER DEM and Google Earth images. This study provides detailed colour, geologic, and 

geomorphic information using LiDAR data to generate an improved quality of DEM’s 

derivatives to assess and predict landslides. 
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Table 4.5: Comparative models for percentage accuracy. 

Author/Year DEM 

Res (m) 

AHP 

Accuracy 

(AUC)% 

LIM 

Accuracy 

(AUC) % 

Fuzzy 

Accuracy 

(AUC) % 

LR Accuracy 

(AUC) % 

ANN 

Accuracy 

(AUC) % 

PFR 

Accuracy 

(AUC) % 

Gholami et al.  

(2017) 

20 

 

N/A 73.61 81.08 N/A N/A 82.04 

Rui et al.  

(2017) 

30 

 

N/A N/A N/A 83 85.9% N/A 

Pirasteh et al. 

(2017) 
5 N/A N/A N/A N/A N/A 92.59 

Chen et al.  

(2014) 

30 75.97 N/A N/A N/A N/A N/A 

Guns and 

Vanacker 
(2012)  

20 N/A N/A N/A 81.1 N/A N/A 

ANN-Artificial Neural Network. 

LR-Logistic Regressions. 

AHP- Analytic Hierarchy Process. 

LIM-Landslide Index Model. 

PFR-Probabilistic Frequency Ratio. 

 

 This study concludes that movements and landslide predisposing factors such as 

topography are similar to those that have been verified by landslides in the past. This study 

constructs acceptable relationships between improved landslide inventory spatial distribution and 

influential factors for landslide susceptibility mapping by utilizing PFR model and LiDAR 

approach to extract a high-resolution DEM. The PFR was applied to study the influence of 

different earth surface factors upon landslide occurrence and to evaluate the landslide 

susceptibility of hazards prediction. This model is advantageous in its simplicity; moreover, 

inputs, outputs, and calculation processes are understandable. Also, a large amount of data can be 

quickly and easily processed in the GIS environment. Based on qualitative studies, influential 

factors on the landslide susceptibility map were evaluated to select positive factors and to 

improve the prediction accuracy of the landslide susceptibility map. Thus, the selection of factors 

is significant to landslide susceptibility mapping. This study emphasizes that the most significant 

causative factors for landslide susceptibility are geology, soil, and road networks. Additionally, 

this study identified that other factors such as lithology and land use have positive influences on 
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landslide susceptibility analysis.  

 

Figure 4.11: Model accuracy vs. DEM resolution. Comparison of the previous research used 

DEMs with the accuracy of the model given in the table 4.5. 

 Nevertheless, this study concludes that the most sensitive classes of landslides in the 

Central Alborz are: (a) Quaternary deposits, (b) Chalus Formation, and (c) Nesen Formation. In 

addition, this study confirmed that areas located less than 100m from the roads with more than 

10° slope have potential for landslides. The results of this study are valuable to decision-makers 

because the most landslide-susceptible areas are in deep alluvial soils, deep valleys, debris lands, 

and areas near water. This study prepared an improved landslide susceptibility and hazards 

prediction map which shows recent landslides. This map may be used by decision-makers for 

future operations. As well, the information provided by this map can help citizens, planners, and 

engineers for loss reduction caused by existing and future landslides. Because high tectonic 

activities and earthquakes can trigger landslides, this study suggests that factors such as tectonic 

activities, seismicity, and vulnerability of buildings be considered for evaluating the PFR model 

when researchers use LiDAR point cloud data and satellite images. 

4.5 Chapter Summary 

This chapter identified potential susceptible areas for landslides in Marzan Abad, Central Alborz 

Iran. This study has improved the quality of landslide evaluation by using high-resolution DEM 
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to identify new landslides in the study areas. LiDAR remote sensing data are useful for landslide 

investigations, particularly in conjunction with high-resolution DEM. This study estimated the 

operational use of the LiDAR technology associated with geoanalytical approaches for landslide 

investigation and susceptibility mapping. 

 This study delivered an integration method of LiDAR data associated with the ASTER 

DEM and Google Earth images by applying the PFR model to evaluate landslide analysis, and to 

increase the quality of susceptibility mapping in Alborz Mountains. 
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Chapter 5 

An Approach of Semi-Automated Geometric Analysis and 

Classification of Landslides Incorporating LiDAR-derived 

DEMs 

This chapter presents a method of utilizing LiDAR-derived digital elevation model (DEM) to 

update the existing inventory landslide database for the Alborz Mountains, Iran. The method 

consists of the automated derivation of landslide geometry (length, width, and area) followed by 

classification of landslide types. The Trapezoidal Rule for Numerical Integration (TRNI) was 

first implemented through coding in MATLAB. The landslides were then classified into four 

types (very long, long, very wide, and wide) based on slope, length, and width. A total of 95 

landslides were updated from the existing inventory database. The proposed method was verified 

and evaluated by field observations and fourteen samples tested in conjunction with ArcGIS 

using the relative error method (Kreyszig et al., 2011). The results demonstrate that the mean 

percentage relative error is 0.496% in length and width and 0.008% in area, respectively, as 

compared to that from ArcGIS.  

5.1 Introduction 

Landslides, a natural hazards phenomenon, are common deformation scenarios on the Earth’s 

surface. This geomorphic process is significant in developing the geometry of landslides and can 

be used to determine landslide typology (Hattanji and Moriwaki, 2009; Niculiţǎ, 2016). 

Characterization of topography and morphology and classification of landslides requires 

knowledge of not only geologic and geomorphic processes, but also technologies such as 
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LiDAR. In the last two decades, researchers have applied the high-resolution DEM derived from 

LiDAR point clouds to improve landslide delineation (Ali et al., 2003b; Su and Bork, 2006; 

Ardizzone et al., 2007; Teza et al., 2007; Travelletti et al., 2008; Jaboyedoff et al., 2012; Pirasteh 

et al., 2017). LiDAR-derived DEMs allow for the detailed exploration of morphology and 

geometry of landslides that could possibly be used for updating of landslide inventory (McKean 

and Roering, 2003; Schulz, 2007).   

 Landslide inventory contains a collection of polygon shapes, types, lengths, widths, areas, 

locations, and other information related to landslides. With such information, landslides can be 

represented digitally in the GIS environment either manually of semi-automatically (Freeman, 

1991; Ali et al., 2003a; Malamud et al., 2004; Martha et al., 2010; Lyons et al., 2014). Landslide 

inventory and spatial analysis have played a significant role for decision-makers in preparing a 

loss-reduction plan as well as in establishing an early warning system. However, few studies 

have focused on the development of semi-automated algorithms for geometry characterization 

and landslide classification (Ardizzone et al., 2002; Malamud et al., 2004; Mondini et al., 2011; 

Lyons et al., 2014; Niculiţǎ, 2016). Characterization of landslide geometry depends upon various 

factors. For this reason, classification of landslides has been based on different discriminating 

factors and is therefore at times very subjective (Varnes, 1978; Hutchinson, 1988; Cruden and 

Varnes, 1996; Dikau et al., 1996). However, some researchers have abstracted the shapes of the 

landslide to a rectangle to define the long side (i.e. length) and short side (width), instead of the 

factual shape of a landslide. The length of a landslide is defined as the length of the line from the 

crest to the end of the toe in the failure direction of a landslide area. The landslides are then 

classified based as either a long or a wide type upon the geometry (length and width) of the 

defined rectangle that covers the landslide (Niculiţǎ, 2016). Moreover, most researchers have 

considered the failure direction as the length of a landslide with respect to engineering geology 
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and have dealt with vector system, three-dimension, and dynamic system. Therefore, the failure 

direction is  defining the length of a landslide. Although Taylor and Malamud (2012) assumed 

that all landslide shapes can be abstracted to a rectangle to define the long side (i.e. length [L]) 

and short side (width [W]) (Figure 5.1), previous researchers developed semi- semi-automated 

tools (Ardizzone et al., 2002; Malamud et al., 2004; Mondini et al., 2011; Lyons et al., 2014; 

Niculitˇa, 2016) to measure the length and width of landslide polygons.  

 

Figure 5.1: Schematic drawings of long and wide cases of landslides with X-Axis and Y-Axis: 

(a) Rotational slide – long type, (b) Gully bank slides – long type, (c) Translational slide – 

wide type, (d) Flow – long type, and (e) River bank slide – wide type. (Source: Niculitˇa, 

2016). 

 In contrast, this study uses the Numerical Integral Trapezoidal Rule (NITR) (Burden and 

Faires, 2011) to develop an algorithm for semi-automated landslide geometric analysis and 

classification. The proposed approach includes determination and measurement of the length, 

width, and area; as well as the identification of the landslide type. The 2D scalar system for 
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characterization of the landslide geometry is applied regardless of the failure direction, type of 

materials, and speed of movement and type of materials. 

 This chapter presents the proposed approach to semi-automated landslide detection 

through determining the length, width, area, and type of landslide in a 2D, scalar, and static-

based polygon covering the factual shape of the landslide. The approach is utilized to update the 

landslide inventory in the Alborz Mountains, Iran, where typical geomorphologic features and 

various shapes of landslides exist. The 2D scalar static system is based on the projected 

geographic coordinates system for representing the slope angle, length, and width of landslide 

polygons. The slope angle, which is the angle of the segment with respect to X-axis, is not a 

topographic slope. The LiDAR-derived DEMs along with field observations and remotely-

sensed images are used to support on screen manual digitization of landslide polygon in GIS 

environment and to update the landslide inventory.  

5.2 Data Process and Method 

The landslide inventory archives of the Alborz Mountains, Mazandaran Province (Figure 5.2) 

and Google Earth images (dated in December of 2009, 2010, 2011, 2012, 2013, 2014, 2015, and 

2016) were used together with the 5 m resolution LiDAR-derived DEMs. The Real Time 

Kinematic (RTK) Global Positioning System (GPS) SmartNet was also used during field 

observations to enable digital drawing of landslide polygons in ArcGIS using ArcBruTile tool. 

There are complex landslides and a single event in the inventory database of the study area. This 

landslide inventory contains 173 points and polygons representing landslides small to large in 

length, width, and area. To update the landslide inventory and to test the performance of the 

proposed algorithm, 20 cm resolution unmanned aerial vehicle (UAV) images covering the 

Chalus District in the study area were also used and; integrated with the airborne LiDAR point 
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clouds with point spacing of 20 cm (Figure 5.3) in order to support on screen manual digitization 

of landslide polygon in GIS environment. A total of 95 landslides were selected from the 

landslide inventory database to convert points into polygons based on screen manual digitization 

of the landslide polygon in GIS environment by using visual image interpretation techniques of 

high-resolution of UAV, Google Earth images as well as LiDAR-derived DEM; fourteen 

samples were used to test the proposed algorithm.  

 

Figure 5.2: Landslide inventory of geographical distribution in Iran. 
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Figure 5.3: a) Landslide polygons and UAV images, b) Selected landslide polygon in the 

proposed software package. Location: Chalus District. 

 Materials move towards downslope, and the distance of the mass displacement in a 

landslide is greater than the width of the displaced material. This occurs especially for flows, but 

also for the majority of slides, and it means that the length is greater than the width (L>W) 

(Figure 5.1). In some landslides, this phenomenon does not happen and we might have a smaller 

length than width (L<W). In the proposed method, the maximum distance of two points (i.e., the 

longest segment) in either X-axis or Y-axis in the 2D scalar system is taken into account to 

discern the length and width of a landslide and to define the landslide type. The following 

section details the proposed methodology.   

 In engineering geology, the length of a landslide is defined as the length of the line from 

the crest to the end of the toe in the failure direction of a landslide area. However, the proposed 
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approach assumes that a landslide polygon can be represented in a 2D static scalar system, 

instead of considering the failure direction as the length of the landslide to be represented in a 3D 

dynamic vector system. As such, landslide length, width, area, and type can be applied for 

determining the landslide geometry regardless of the failure direction, speed of materials 

movement, type of materials, and type of materials movement. 

5.2.1 Numerical Integral Trapezoidal Rule 

In this study, the trapezoidal rule was used to analyze landslide geometry and to classify 

landslides. The trapezoidal rule is a numerical analysis method that has been applied to 

approximate the value of a definite integral (Burden and Faires, 2011). The integral is 

approximated by using n trapezoids formed by straight line segments between the points 

            and        , for      , as shown in Figure 5.4. Each trapezoid in a landslide 

polygon is calculated by:   

     
 

 
   

  

 
                                     (5.1) 

 

Figure 5.4: Each trapezoid is shown in a landslide polygon. 

 The numerical integral trapezoidal rule (NITR) method was coded by matrix-based 

MATLAB language in several lines to run the computational process of a landslide and to 

determine the length, width, area, and type of landslide. The script code is available at 

www.widm.ca upon request.  
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 In this study, RTK SmartNet with 14-20 cm accuracy was used in ground truthing to 

collect ground control points (GCPs) for simulating landslide polygons. Then the polygons were 

created both in ArcGIS by using the measurement tools (Figure 5.5) and in the proposed 

software to calculate the length, width, and area and to identify the landslide of the polygons. 

This study used ArcGIS 10.4 version to determine the boundary' points of a landslide polygon by 

moving curser manually on the screen visualization to identify the coordinates of each point on 

the polygon. The coordinates of each selected point was recorded in Excel that is to be used 

further in the proposed algorithm and MATLAB software. Later, the points in Excel with 

geographical coordinate system (x,y) were introduced to ArcGIS and the proposed software to 

draw the polygon and to calculate the geometry of the polygon.  

 The proposed algorithm was tested and verified by ArcGIS and field observations. 

However, ArcGIS and other software package are possibly not available to determine the length 

and width of a landslide automatically, and to classify landslide types automatically as well. In 

contrast, the proposed software package performs these functions automatically. The following 

figure describes the procedures of automated computation of the landslide geometry and 

classification.   

 

Figure 5.5: (a) A polygon in ArcGIS. (b) The same polygon in the proposed software package. 
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5.2.2 Geometric Analysis and Rules of Classification 

In the Alborz Mountains, variable shapes of landslides cause uncertainty in determining the 

length, width, area, and landslide type of a polygon. Instead of using the existing methods, this 

study develops semi-automated computing approach to landslide geometry by taking advantage 

of LiDAR-derived DEMs, Google Earth images, and UAV images for analyzing available 

landslides in the study area. The boundary of a landslide was determined by visual on screen 

digitization on the Google Earth and UAV images using image element techniques that are 

supported by field observations and inventory data. 

 In order to perform the semi-automated calculation of segments in landslide polygons in 

this study, the rectangular coordinate system has the X-axis coincide with the east-west direction 

and the Y-axis coincide with the north-south direction, in which the x-coordinates are referred to 

as latitude/northing and the y-coordinates are referred to as longitude/easting in the UTM with 

unit of meters (see Figure 5.6). Polygons were converted to points in ArcGIS to measure the 

length and width. These points were then introduced to the proposed software as attributing data 

in a table containing x- and y-coordinates. The following steps describe the procedure of 

computing length, width, and area by the proposed algorithm.  

 Step 1: To determine the Xmax (A) and Xmin (B) as well as Ymax (C) and Ymin (D) (Figure 

5.6) in scalar system. Points A(Xmax, YXmax), B(Xmin,YXmin), C(XYmax, Ymax), and D(XYmin, Ymin) 

are in the geographical coordinates system. The segment between points A and B is “d1” and the 

segment between points C and D is “d2”. The d1 is always in the favour of the X-axis and is 

considered to be x-coordinate or Latitude/Northing (m).  

 Step 2: To calculate AB(d1) and CD (d2) using the following equations:  

AB=d1=                             (5.2) 
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CD=d2=                                 (5.3) 

 

 Step 3: To compare          and to determine which landslides are classified into long 

types or wide types. The following section describes the next step and explains how this study 

classifies landslides based on the geometric features.  

 

 

Figure 5.6: (a) A landslide polygon in the x-y coordinate system. (b) Photo taken during the field 

observation in the study area. 

 Furthermore, the semi-automated classification of landslides was carried out in this study. 

Landslides were classified upon the    and   values with respect to the x- and y-coordinates as 

well as the slope angle (θ). Geometrically, the maximum distance between the two points can 

define the type of landslide aligning along either the X-axis or the Y-axis. If d1 is larger than d2, 

then the landslide polygon will be classified as the wide type and d1 will be the “length” of the 

landslide polygon. If d1 is smaller than d2, then the landslide polygon will be classified as the 

long type. Figure 5.7 depicts the conceptual flowchart of the proposed landslide classification 

algorithm. This algorithm calculates both the maximum and minimum x-coordinates and y-

coordinates of the landslide polygon. The maximum segment distance along the X-axis is 



97 

 

determined the long side of the polygon, while the maximum segment distance along the Y-axis 

is determined the short side of the polygon. The algorithm also compares these two distances. In 

other words, the algorithm computes the maximum and minimum Latitude/Northing (m) 

coordinates of points (x,y) from the landslide polygon in favour of the X-axis to estimate the 

“maximum horizontal segment distance”. It also computes the maximum and minimum 

Longitude/Easting (m) coordinates of points coinciding with the Y-axis from the landslide 

polygon to estimate the “maximum vertical segment distance”. The algorithm compares the 

maximum horizontal and vertical segments distance. 

 

Figure 5.7: Flowchart of the proposed landslide classification method.  

 

 Following the previous steps, the fourth stage considers the amount of the slope angle (θ) 

in order to sub-classify landslides (Table 5.1).  

 To classify a landslide based on the proposed algorithm, this study has considered long 

segment (d1) length, angle of slope with respect to x-axis, and failure direction. The side which 

is close to horizontal is considered to be very wide and as it gets close to vertical is very long. 

The selection of degrees in angle is based on bisector angle (i.e. equal angle) and of division in 

angle between 0° to 90°. 
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Table 5.1: Classification of landslides by the proposed method. 

Type of Landslide Slope angle (θ) 

Long 90° LS>67.5° 

Very long 67.5° LS>45° 

Wide 45° LS>22.5° 

Very wide 22.5° LS>0° 

 The slope angles can be calculated by: 

         
            

 

           
                       (5.4) 

        
           

            
 
                      (5.5) 

 

where L is the length and W is the width of a landslide polygon (see lines 38 and 39 of the code). 

The slope is always defined as Δy/Δx. Slope L describes the drawn segment slope between Xmax 

and Xmin in scalar 2D static system and slope W describes the slope of a drawn segment between 

two points that are with maximum y and minimum y.   

 Step 4: This step aims to determine the slope angle (θ) in order to sub-classify landslides 

(Table 5.1). The slope angle (θ), which is the angle of the segment with respect to X-axis, is not a 

topographical slope. If the slope angle (θ) is below 45°, then the landslide is classified as the 

wide type. If the slope angle (θ) is above or equal to 45°, then the landslide is classified as the 

long type (Table 5.1). For wide type landslides, there are two possibilities: (1) If the slope angle 

(θ) is below or equal to 22.5°, then the proposed algorithm identifies the landslide as the very 

wide type; or (2) If the slope angle (θ) is above 22.5° but below or equal to 45°, then the 

landslide is classified as the wide type. For long type landslides, there are two possibilities: (1) If 

the slope angle (θ) is above 45° but below or equal to 67.5°, then the landslide is classified as the 

long type; or (2) If the slope angle (θ) is above 67.5° but below or equal to 90°, then the landslide 
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is classified as the very long type. The upper and lower limits of the slope angle depend on the x- 

and y-coordinates (Figure 5.8). In this study, the classification of landslides into the very wide 

type (0°-22.5°), very long type (67.5°-90°), wide type (22.5°-45°), and long type (45°-67.5°) was 

dependent on the angle indicating the inclination of a landslide to either X-axis or Y-axis. In 

other words, the upper and lower limits of slope angle for the landslide classification rely on 

each section of the 2D space. xoy (Figure 5.8) has an angle of 90° between each axis. Because 

the bisector in each region is 45°, the criterion of this angle is the middle limit of 45° and it is 

evaluated by the proposed algorithm. Notably, this study implemented the scalar system to run 

the process. However, it is not important which region of the Cartesian coordinate system a 

landslide polygon falls in. Also, in classification of “very wide (0°-22.5°) or long (67.5°-90°)” 

and “wide (22.5°-45°) or long (45°-67.5°)”, the criteria was the angle between the bisector to x-

axis/y-axis because this angle defines the closeness to the x-axis or y-axis which indicates the 

inclination of a landslide to either the x-axis or the y-axis (see code lines 38 and 39). 

 
Figure 5.8: Each section of the 2D space of xoy. 

 

 The final stage calculates the width and identifies the length of the landslide. Therefore,  

to determining d1, d2, the semi-automated calculation of length and width was created. In this 

study, the landslide geometry was determined in the 2D scalar system where the maximum 

distance between points (i.e., longest length of a segment) in a landslide polygon was considered. 

The proposed algorithm calculates and compares d1 and d2. The d1 is the length of the landslide if 
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d1>d2, or the width of the landslide if d1<d2. The algorithm can determine the longest segment 

when d1 is perpendicular to d2 (Figure 5.9).  

 

Figure 5.9: (a) The longest segment of the landslide polygon. (b) Wide type and long type of 

landslides.  

5.2.3 Use of LiDAR-derived DEMs and Inventory Dataset 

In this study, 5 m resolution LiDAR-derived DEM was generated and represented in ArcGIS 

(Figure 5.10). This figure shows geographical distributions and locations of landslides in the 

study area. Those generated DEM derivatives were used to assist landslide classification along 

with field observations, UAV images, and Google Earth images.   

The raw LiDAR point clouds were first converted into the LAS format. LiDAR-derived 

DEM was used in ArcGIS to be integrated with the existing inventory datasets, while Google 

Earth images were used for better visual interpretation of landslides. In addition, 20 cm 

resolution UAV images covering Chalus District were used together with some field 

observations (Figure 5.11) to identify new landslides, test the proposed algorithm, and update the 

landslide inventory map of the study area (Figure 5.3). Only some landslide polygons from the 

inventory database containing a total of 173 landslides were selected to test the proposed 

method. These polygons were converted into the points with x- and y-coordinates. These x- and 
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y-coordinates were used to measure the long and short sides of the landslide polygon as well as 

to determine the landslide length, width, area, and type. 

5.2.4 Validation 

The performance of the algorithm was verified in ArcGIS using field observations in conjunction 

with the inventory dataset. Fifty eight landslide polygons were selected from the study area.  

Fourteen actual and simulated polygons were selected to test the proposed algorithm. for A 

polygon was selected and calculated in ArcGIS and in the developed software, respectively. 

Other landslide polygons were also calculated in ArcGIS, ground truth, and in the developed 

software, respectively, for the algorithm performance and relative error analysis. The proposed 

method was verified using field observations, measurement tools, and the Real Time Kinematic 

(RTK) SmartNet system in ground truth. Basically, the RTK technique is used to collect points 

with x,y,z and to measure the length and width of the segment on the ground truth for further 

geometric analysis in ArcGIS as well as the proposed software. RTK satellite navigation is a 

technique that has been used in this study to enhance the precision of landslide position data 

during ground truth measurement for simulation of the model. This RTK has derived from 

satellite-based positioning systems (global navigation satellite systems, GNSS) such as GPS.  

The percentage relative error was calculated by Ken et al. (2007), Irigaray et al. (2007), and 

Kreyszig et al. (2011).                

                       
(5.6) 

 
(5.7) 
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Figure 5.10: Landslide inventories on the DEM of the study area. 

 

Figure 5.11: Field photo of a long type landslide in Haraz District, Mazandaran Province. 
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5.3 Results and Discussion 

The results of this study form a response to the previous studies attempted by Taylor and 

Malamud (2012) and Niculita  (2016). This study presented a semi-automatic landslide length 

and width extraction based on the NITR geometric processing of the landslide polygon and the 

geomorphometric analysis of LiDAR-derived DEMs.  

  

 The results of this study demonstrated that the proposed algorithm was able to 

automatically determine the landslide length, width, and type which probably shows a promising 

approach in contrast to the existing GIS software and algorithm delivered by Booth et al. (2009) 

and Niculia (2016). Both the long side and the short side of the landslide polygon can be 

measured automatically and the type of the landslide can be classified with the proposed method 

at an acceptable level. This investigation classified landslides into a) long, b) very long, c) wide, 

and d) very wide.  

  

 Table 5.2 depicts the comparative measurement and relative percentage error with 

ArcGIS and the proposed algorithm. The dimensions of one of the selected polygon samples are 

83.74 m in length and 69.30 m in width in ArcGIS, in comparison with 83.75 m in length and 

69.31 m in width in the proposed software, respectively. The calculated area of the selected 

polygon in ArcGIS is 3606.7 m
2
, in comparison with 3606.4 m

2
 in the proposed software, 

respectively. The percentage relative errors obtained were 0.496% in length and width, and 

0.008% in area when using the proposed software as compared to ArcGIS software (Table 5.2a). 

Also, Table 5.2b depicts another example of the comparative measurement and relative 

percentage error with ArcGIS and the proposed algorithm. 
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Table 5.2: Comparative measurement and relative percentage error of ArcGIS and the proposed 

algorithm. 

(a) 

Geometry ArcGIS Proposed Algorithm Relative  

Error (%) 

Length (m) 83.74 83.75 0.01 

Width (m) 69.30 69.31 0.01 

Area (m
2
) 3606.7 3606.4 0.008 

(b) 

Geometry ArcGIS Proposed Algorithm Relative  

Error (%) 

Length (m) 113.12 113.40 0.30 

Width (m) 101.34 99.64 1.67 

Area (m
2
) 6976.91 6988.20 0.16 

 

 Also, the relative error of measurement of a tested landslide length and width of the 

polygon is 0.01% and 0.01%, respectively (i.e. the proposed algorithm in MATLAB vs. ArcGIS) 

(Figure 5.12). Also, a ground truth sample polygon (Figure 5.13) was simulated and measured by 

using RTK technique. The relative mean error percentage of measurement for the landslide 

polygon tested in area is 0.49% (i.e. the proposed algorithm in MATLAB vs. ground truth 

measurement) and 0.43 (i.e. ArcGIS vs. ground truth measurement). These results showed that 

the developed algorithm can calculate the length, width, and area of landslide polygons . 

 Moreover, this study indicated that the LiDAR-derived DEM plays an important role to 

support enhancing landslide on screen visualization to determine a landslide polygon boundary 

and to revise landslide inventory. This method also helps in determining the length, the width, 

and particularly the area of landslide polygons when integrating such DEM with the UAV and 

Google Earth high-resolution images. To support the output results, this study has compared the 

selected landslide to inventory data and the ground truth observations (Figure 5.13). However, 
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this study has not attempted a quantitative research on accuracy performance of the output 

results. It would be suggested for the future works to compare a quantitative study on the output 

result by the proposed software and available inventory data. 

Finally, the proposed method can semi-automatically determine and classify the landslide type 

from the landslide inventory database. 

 

Figure 5.12: Landslide polygon by the proposed software vs. ArcGIS. 

 (a)   (b) 

Figure 5.13: (a) Ground truth measurement using RTK system, (b) schematic of a simulated 

polygon on the ground. 
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5.4 Concluding Remarks 

This chapter has presented a method to define the landslide polygon in a 2D scalar Cartesian 

coordinate system. The landslides can be classified based on geographic coordinates (x, y), long 

side or maximum distance of the segment in a landslide polygon, and slope angle (θ). This study 

has implemented geometric calculation and landslide classification through NITR-based 

MATLAB coding. The results showed that the proposed method can discern the length and 

width of a landslide at a satisfactory level for any landslide polygon shapes. In general, there are 

regular and irregular shapes. Regular shapes are such rectangle, triangle, and square. Regular 

shapes have sides that are all equal and interior (inside) angles that are all equal. Irregular shapes 

have sides and angles with any length and size. Landslides are in various shapes in nature. That 

is why, this study presumed they can be in regular shape such as rectangle or they can be 

irregular shape (Figure 5.12, Figure 5.13). 

 This study concluded that use of the LiDAR-derived DEM together with UAV images 

and Google Earth images can possibly not only improve visual interpretation and recognition of 

landslides, but also increase the performance in measurements of landslide geometry when 

integrated with field observations. Therefore, this approach can be used to revise and update the 

landslide inventory in the study area. This study also identified that the majority of landslides in 

the study area are rhombic or hexagonal, trapezoid, and oriented to the downslope direction of 

the hillslope. Also, this study found that the round-shaped landslides are associated with highly 

dense vegetation. The field observation showed that in a few cases, the material movement and 

displacement are towards the bed and strata dip direction of the rocks.   

 The findings of this study suggest that the flow direction or aspect value of mass 

displacement should be considered for determining landslide type in future studies. Also, the 

failure direction and slope direction in the 3D vector system and dynamic environment (before 
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and after a landslide) should be considered when determining the deformation, materials 

displacement, and flow direction. Given the fact that the algorithm developed in this study was 

not able to accurately identify the right direction or aspect value, a logic relationship should be 

defined. Further development is required for computing the volume of material displacement 

using a high-resolution LiDAR-derived DEM and UAV images obtained before and after 

landslides.  

 However, the results of this research could possibly motivate researchers to begin a new 

driving point in developing algorithms for automatic geomorphometric analysis of landslides in 

the GIS environment toward this future direction delivered by the UN-GGIM 

(http://ggim.un.org/). 

5.5 Chapter Summary 

This chapter identified the geometric process to determine landslide length, width, area, and type 

by developing the proposed algorithm. Remote sensing data such as LiDAR are useful to 

improve the enhancement of determining landslide boundary polygons, geometric analysis, 

particularly when a high-resolution DEM is acquired. The contribution of this study is on semi-

automated geometric and classification of landslides. This contribution allows to do the 

necessaries action for emergency response and disaster planning and management after a 

landslide occurrence because we can do geometry calculation immediately by implementing 

DEMs of before and after a landslide associated with high-resolution of UAV and satellite 

images. This study aimed to introduce an approach to landslide geometry analysis and 

classification for future GIS techniques. This study perhaps predict that future geodata analytical 

and numerical approaches will be explored more in-depth for geometric analysis using UAV for 

http://ggim.un.org/
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landslide studies. This study delivered a geoanalytical and numerical method to landslide 

analysis and classification.  
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Chapter 6 

Landslide Deformation Modelling-Simulation and Flow 

Direction Using LiDAR-derived DEMs and UAV 

A modelling and simulation procedure for landslide deformation including calculating landslide 

displacement and flow direction are presented in this chapter. The proposed algorithm is coded 

in MATLAB based on the DEMs of before and after a landslide. The proposed method 

calculates: (a) the volume of the material displacement, (b) the potential displacements of the 

slide mass after the onset of failure, and c) the flow direction of the material movement. The 

proposed algorithm is used to model, simulate, and calculate the displacements of landslides in 

the Zagros and Alborz Mountains of Iran and potentially other locations in the world. An 

example of modelling the landslides of Guizhou Province in China was used to test and validate 

the proposed algorithm for deformation pattern and volume calculation as well as failure flow 

direction of material displacement. However, more ground truth validations in other 

geographical locations are required to implement the algorithm and to confirm the proposed 

model for calculating displacements which are compared favourably with field measurements. 

6.1 Introduction 

One of the most important phenomenon in environmental science and engineering is deformation 

of landslide and calculation of materials’ movement. Assessment of such deformation process is 

not only scientifically interesting, but also beneficial for hazard/risk control and prediction. This 

assessment may also be used for regional planning and development. This geomorphic process 

phenomenon, which is significant in developing the geometry of landslides, can be used in 
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conjunction with DEMs (before and after landslide) to determine landslide typology as well as 

deformation pattern and flow direction (Hattanji and Moriwaki, 2009; Niculitˇa, 2016).    

 Assessing topography and morphology of landslide for geometric analysis, deformation, 

and flow direction of materials’ movement requires knowledge of not only geologic and 

geomorphic processes and computing techniques, but also of technologies including remote 

sensing and GIS. In the last decades, researchers have identified considerable improvements in 

landslide delineation by using the high resolution of DEM derived from LiDAR techniques 

(Wehr and Lohr, 1999; Su and Stohr, 2000; Ali et al., 2003b; Tarchi et al., 2003; Su and Bork, 

2006; Ardizzone et al., 2007; Teza et al., 2007; Travelletti et al., 2008; Roering et al., 2009; 

Pirasteh et al., 2011; Liu et al., 2012; Jaboyedoff et al., 2012; Ren et al., 2014; Pirasteh and Li, 

2016). GIS, remote sensing techniques, and LiDAR-derived DEMs allow for an extensive and 

detailed exploration of geomorphology, geometry, and deformation assessment of landslides 

with an acceptable level of certainty. These methods have also helped in improving and updating 

landslide inventories. Every landslide inventory contains a collection of information such as 

polygon shape, type, length, width, area, location, and other related information including 

volume of mass displacement. These landslides can be drawn digitally in the GIS environment 

using manual and semi-automated methods (Freeman and Shapira, 1975; Freeman, 1991; Ali et 

al., 2003a; Malamud et al., 2004; Martha et al., 2010; Mondini et al., 2011; Lyons et al., 2014). 

Landslide inventories and geospatial data analytics are certainly playing a significant role in 

decision-makers’ preparation of a loss reduction plan as well as in challenging the established 

infrastructure of an early warning system.  

 However, very few researchers have studied the development of semi-automated 

algorithms for geometric analysis and deformation pattern of landslides (Ardizzone et al., 2002; 

Malamud et al., 2004; Booth et al., 2009; Mondini et al., 2011; Taylor and Malmud, 2012; Lyons 
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et al., 2014; Niculitˇa, 2016). The method proposed in this chapter presents how to measure, 

determine, and calculate landslide length, width, area, volume, and flow direction. This semi-

automated algorithm has been implemented for the landslide inventory dataset in the Alborz 

Mountains, Iran because this area is composed of typical geomorphologic features and a variety 

of landslide shapes. A landslide at the coal mine of Madaling in Guizhou Province, China was 

used to implement the proposed algorithm based on the LiDAR-derived DEMs of before and 

after the landslide for validation and algorithm performance. This semi-automated geometry 

extraction and deformation of landslides in the 2D scalar system (see Chapter 5) are further 

expanded in the dynamic 3D vector system. LiDAR-derived DEMs in conjunction with field 

observations, UAV images, and Google Earth images assist in updating the available inventory 

dataset. 

6.2 Expanding Algorithm and Computing  

Based on the built database and designed architecture in the previous chapter, the same data are 

used to process the landslide modelling and simulation deformation by implementing the 

proposed model and software package. Semi-automated calculation of segments in landslide 

polygons, semi-automated classification of landslide, and determining d1, d2 for semi-automated 

calculation of length and width have been described in Chapter 5. Further, to develop logic 

corresponding to the previous chapter and to develop an algorithm to determine the deformation 

of material displacement and flow direction, it is necessary to understand how materials move.  

 Sometimes materials move towards the downslope, and the distance of the mass 

displacement in a landslide is greater than the width of the displaced material (especially for 

flows, but also for the majority of slides). This means that length is greater than width (L>W). In 

some landslides, this phenomenon does not happen and there may be a smaller length than width 
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(L<W) (Figure 6.1). The proposed method determined the maximum distance of mass 

displacement (i.e. the longest segment) with respect to failure flow direction either in X-axis or 

Y-axis (with respect to the geographical coordinate system) to discern landslide length and 

width, and to define landslide type. For this reason, a logical computing approach was expanded 

to determine the length, width, area, volume, and flow direction of the material movement as 

well as to classify landslides. Therefore, this study used the previous concept of NITR and the 

model that was built in the previous chapter (see Chapter 5). This allowed for the expansion of 

the scripts and of the code for computing, simulating, and modelling the landslide geometry 

including volume of material displacement deformation and flow direction. Section 6.2.2 

describes how the scripts from the previous chapter have been expanded.   

  

Figure 6.1: Mass displacement of downslope is smaller than the displaced materials in width. 

6.2.1 Geometric Analysis and Semi-Automated Calculation of Area 

To study and classify the shapes of landslide geometry is at times highly subjective. In the 

Alborz Mountains, landslides’ shapes may be regular or irregular, which causes uncertainty in 

determining the length, width, area, volume, and type of landslide polygon. The geometry of 

landslides can be computed using different methods (Ghuffar et al., 2013; Pirasteh et al., 2015; 

Niculitˇa, 2016) and tools such as ArcGIS software (http://support.esri.com/technical-

article/000006109). This study used geodata analytical computing and NITR to improve the 

precision of the measurement of landslide polygons extracted from LiDAR-derived DEMs, 

Google Earth images, UAV images by using visual image interpretation of photographic and 
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geotechnical elements such as texture, shape, vegetation, and slope, and the available landslide 

inventory dataset.  

 This study expanded upon semi-automated geometrical extraction of landslide 

deformation. Similar to the previous chapter, this study followed the 2D scalar system followed 

by further expansion to the 3D vector system by using two different dates of LiDAR-derived 

DEMs (i.e. before and after landslide) to model and simulate the deformation pattern and flow 

direction of material movement. This allowed for calculating the volume of mass displacement 

before and after landslide. In addition, failure direction was considered and expanded upon in the 

proposed algorithm with respect to 3D vector form.  

 In order to perform semi-automated calculation of area, the proposed software package 

computes maximum and minimum projected geographical coordinates of points (Easting and 

Northing) of a polygon boundary from the input data in the scalar. Next, a line (long side 

segment) is stretched between the maximum and minimum values of the polygon predisposed in 

x-coordinate. If a landslide is a “Wide” type, then a curve is drawn above the line to coincide 

with the X-axis. The curve above the line is called “Top Curve” (A1). Also, the points under the 

line (long side segment) create another curve which is called a “Bottom Curve” (A2). The area 

below the stretched line (i.e. Bottom Curve) is computed using the NITR formula. The same 

process is followed for the “Bottom Curve” and the area under the line is computed. Then the 

system begins to subtract the area of the top and bottom curves (Figure 6.2). The area of the 

polygon is calculated as follows: 

Ap= A1-A2           (6.1) 
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Figure 6.2: Schematic of a Wide landslide. 

 If a landslide is a “Long” type, then the polygon is divided into “Left Curve” and “Right 

Curve” coinciding with the Y-axis; and the area of “Right Curve” and “Left Curve” are 

computed separately. Therefore, the system begins to subtract the area of “Right Curve” and 

“Left Curve” (Figure 6.3), and the area of the polygon is computed.  

 

Figure 6.3: (a) A polygon sketched using proposed software model, (b) “Right Curve”, (c) “Left 

Curve”. 

6.2.2 Simulation of Deformation and Flow Direction 

An algorithm and a code for modelling, simulation, and semi-automated determination of a 

landslide deformation and flow direction of the material displacement are explored. This 

algorithm has performed an approach to analyzing, computing, simulating, and modelling 

landslide materials displacement and measurement of z value before and after a landslide. This 
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study used the MATLAB platform to code and script the algorithm. Therefore, computing 

machines were used as tools to simulate the deformation of a landslide, measure the volume of 

the material displacement, and identify the failure flow direction of the mass movement. LiDAR-

derived DEMs, UAV remote sensing techniques, and Google Earth images with related field 

observations helped to characterize before and after landslide hazards and validate the material 

displacement and flow direction of a landslide in the Alborz Mountains of Iran.  

 In order to perform technical analysis of computing material displacement and flow 

direction, a simulation and modelling of landslide deformation require data in the form of points 

or pixels of before and after the event. This is the fundamental data and structure needed to 

develop an algorithm and a code to determine the volume of material displacement and flow 

direction. Figure 6.4 depicts the procedure of simulation and modelling of a landslide 

deformation and flow direction.  

 In this study, the two different dates of DEMs of a particular landslide before and after 

occurrence helped to simulate and model the deformation of a mass movement. In order to 

automatically and incrementally extract deformation of the landslide, a “pixel” or “point” is 

considered as a cell or grid value for deformation simulation and modelling. The DEMs are 

divided into a number of cells or grids (Figure 6.5) and the centre of each cell or grid represents a 

point with x, y, and z value. In other words, each cell or grid represents a point.  

 To build on the previous study in this thesis, the previous scripts are expanded upon in 

this chapter to determine the volume of the material movement and identification of flow 

direction. The six steps of deformation and volume calculation procedure are as follows: 

i. Ask for data of points (x,y,z); 

ii. Number of points for before a landslide (nbl) and after landslide (nal). 
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iii. Input points for before and after a landslide, with each point’s dataset representing a 

matrix before landslide (Mbl) and a matrix after landslide (Mal).  

iv. Resample and convert matrix (Mal) to a new matrix after landslide (Mnal), while 

generating the equal dimensions of both matrices. In other words, nbl =nnal, where nbl 

is the number of points before a landslide, nal is the number of points after a 

landslide, and nnal is the number of points at the “new after landslide”. The 

following matrices and Figure 6.6 illustrate how points are defined for each cell or 

grid. 

v. Use previous algorithm and code developed in Chapter 5.  

vi. Calculate volume. 

 

Figure 6.4: Flowchart of modeling and simulation of a landslide deformation and flow direction 

procedure.  
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x1bl      y1bl        z1bl 

x2bl        y2b         z2bl 

...      ....     .... 

...      ...     ... 

xnbl        ynbl      znbl  

            (6.2) 

x1al     y1bl     z1bl 

              x2al    y2al     z2al 

...     ...   .... 

...     ...     ... 

xnal     ynal     znal   

            (6.3)       

    x1nal    y1nal       z1nal 

          x2nal     y2na     z2nal 

...     ...     ... 

...     ...     ... 

xnnal     ynnal     znnal 

            (6.4) 

 

Mbl= 

Mal= 

Mnal=

= 
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Figure: 6.5: Conversion of pixels to points and matrix conversion of points. 

 To calculate the volume of landslide material displacement, Figure 6.6 depicts the logic 

behind the volume calculation of each pixel or a grid. 

 

Figure 6.6: Cell or grid of DEMs before and after a landslide. 

 To calculate the volume of material displacement, the following equation is used: 

          
            

        
                           (6.5) 
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where            
 and Ai are the volume and area of material displacement of an arbitrary cell or 

a grid respectively, and         
 and        

 are elevations of an arbitrary cell or a grid for before 

and after a landslide, respectively.    

 To calculate the area of a cell or a grid the following equation is used: 

Ai= A/nbl,      (nbl = nnal)   (6.6) 

where A is the total area of a landslide polygon.  

 The total volume of a landslide material displacement can be calculated by summation of 

the volume of the material displacement of each cell or grid from the following equation:  

                            

          
    (6.7) 

 Simulation of material movement and volume calculation, as well as flow direction, were 

performed based on the coordinates x,y,z of grid values before and after a landslide. The two 

different datasets of DEMs from before and after a landslide with the same resolution (may or 

may not be) incorporated into the algorithm to simulate and model the deformation. There are 

two possible DEMs resolutions of before and after a landslide. First, if both DEMs are in the 

same pixel resolution, then the pixels of both DEMs are converted into points (x,y,z) by using 

ArcGIS software. Further, the script recommends introducing points of before and after a 

landslide and running the program to determine the deformation and flow direction of the 

material movement. Second, if the DEMs have different pixel resolutions, then the pixels of both 

DEMs are re-sampled to a similar pixel resolution (Figures 6.7 and 6.8) in 30m. This study 

recommends re-sampling of the high pixel resolution to the low pixel resolution in order to 

distribute the high pixel resolution of a DEM among the low pixel resolution of a DEM. Then the 

pixels of both DEMs are converted into points (x,y,z) by using ArcGIS software. Therefore, two 

matrices are indicated for before and after a landslide, and they are presented by point (x,y,z) 
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values. To develop nnal = nbl, the points of “after landslide” in the matrix were converted to a 

matrix that indicates “new after landslide” (Figure 6.9). Consequently, similar to the first 

resolution, the script recommends introducing points of before and after a landslide and running 

the program to determine the deformation and flow direction of the material movement.  

 It is important to know that the model is based on the assumption of nAfter ≥ nBefore. In 

other words, the number of points/pixels or grids in a DEM after a landslide is more than the 

number of points/pixels or grids in a DEM before a landslide. This means that DEMa=high 

resolution and DEMb=low resolution where “a” indicates “after landslide” and “b” indicates 

“before landslide”.  

 The MATLAB platform was used to code and script the algorithm. It allows computing 

machine tools to simulate the deformation of a landslide and measure the volume of the material 

displacement as well as the flow direction of the mass movement (Figure 6.9). This is an 

algorithm and a code that allows the analysis, computation, simulation, and modelling of a 

landslide material displacement. 

 

Figure 6.7: Points at centre of pixel (ASTER DEM in 30m resolution).  
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Figure 6.8: Points at centre of pixel (LiDAR-derived DEM in 5 m resolution). 

 The following procedure describes the scripts for simulation of deformation and volume 

calculation. 

i. Input data (points) and find maximum and minimum x and y; 

ii. Calculate d1=(l1) and d2=(w1) and their slopes; 

iii. Determine a landslide type (if required use 2D scalar system or 3D vector system with 

considering failure slope and flow direction); 

iv. For wide landslide: recognize top and bottom points and sort them into two separate 

matrices; 

v. Calculate the area under top and bottom curves; 

vi. Identify, measure, and determine width (ALPHA angle between length and width); 

vii. Calculate area and output printing (type, length, width, and area); 

viii. Plot direction; and 

ix. Calculate volume. 
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Figure 6.9: Landslide simulated for before and after a landslide. 

 6.2.3 Incorporating LiDAR-derived DEMs, UAV Imagery, and Inventory Dataset 

The most useful representation of the Alborz Mountains terrain is the high resolution of the 

LiDAR-derived DEM in the GIS environment. In this study, the pixel resolution of the DEM was 

5 m, and grids were envisaged to generate the high-resolution DEM derivatives of the study area 

(Figure 6.10) to assist landslide recognition in conjunction with field observations, UAV images, 

and Google Earth images.  

 

Figure 6.10: Landslide inventories on the hillshade. 
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 The post-processed LiDAR point cloud data in the LAS format were collected and used 

in ArcGIS software to be incorporated with the existing inventory dataset and Google Earth 

images for the purpose of enriching the empirical research and visual interpretation of landslide 

detection. This study used UAV images with 20 cm spatial resolution for the Chalus District to 

identify new landslides, test the proposed algorithm with a satisfactory performance, and update 

the landslide inventory map of the study area. This was done in conjunction with the existing 

landslide inventory map and field observations. The inventory dataset of the spatial distribution 

of landslides was composed of points. The LiDAR-derived DEMs, UAV images, and Google 

Earth images were used in ArcGIS software to digitally draw the landslide polygons and to 

update the landslide inventory dataset. Some selected landslide polygons from the updated 

inventory dataset were used to test the proposed algorithm. These polygons were converted to 

points with x, y coordinates, and then these points were used in the proposed algorithm. The 

proposed software can accept the table containing x, y, and z coordinates to measure the long and 

short sides of the landslide polygon as well as determine the landslide length, width, area, 

volume, and type. The inventory map was updated manually after geometric analysis of all 

landslides is done. The attribute data table of landslide geometry specification is updated in 

ArcGIS environment.   

6.2.4 Validation 

The DEMs of before and after the landslide were used to compute the landslide dimensions in 

ArcGIS as well as in the proposed algorithm and package. Fifty eight landslide polygons were 

selected from this study. Fourteen landslides actual and simulated polygons were selected to test 

the proposed algorithm for determining and measuring the length, width, area and type of 

landslide; and one actual landslide polygon was tested for determining and measuring the 
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volume of material displacement. The algorithm was validated by the relative error method (Ken 

et al., 2007; Irigaray et al., 2007; Kreyszig et al., 2011; Niculitˇa, 2016) of the inventory dataset 

and field observations (Figure 6.11) by using ArcGIS software vs. the proposed algorithm and 

software package in MATLAB. A selected polygon from the coal mine of Madaling in Guizhou 

Province, China was used to validate the proposed algorithm based on the landslide inventory 

data collected from Chengdu University. To calculate the relative percentage of error of the 

measurement, Equation 5.6, 5.7 and the following equation (6.8) were used (Kreyszig et al., 

2011). 

  Relative Error %= [(VInventory -VProposed  software) / VInventory ] ×100                            

(6.8) 

 where VInventory is the calculated volume from the inventory dataset and the report and 

VProposed software is the calculated volume by the proposed algorithm.  

 

Figure 6.11: Field photo shows Lasem landslide in Mazandaran. 
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6.3 Results and Discussion 

This study resulted in modelling and simulating the deformation pattern of the materials and flow 

direction of a landslide. This work is based on the NITR geometric process incorporated with the 

LiDAR-derived DEM, UAV images, Google Earth images, and the inventory dataset. The 

significance of the developed algorithm in contrast to the previous studies is the computation of 

the landslide polygons without selecting a boundary box outside of the landslide polygon. This 

method increased the precision of geometric analysis of a landslide polygon. The developed 

package computes the length, width, and area, and identifies the landslide type as well as the 

volume of the material displacement and flow direction with an acceptable result. 

 The results for the tested sample landslide polygons are: Example (1) The area of the 

selected landslide polygon in ArcGIS was 6976.92 m
2
 (Figures 6.12) and the proposed software 

package showed 6988.20 m
2 

(Figures 6.13). This means that the relative percentage of error is 

0.16% (Table 5.2). Example (2) The length and width of the landslide polygon in ArcGIS were 

113.12m and 101.34m, respectively; and the length and width in the proposed software package 

were 113.46m and 99.64m, respectively. This means that the percentage of error is 1.67% and 

0.30% for length and width, respectively. Example (3) The proposed algorithm has also 

calculated the landslide polygon which length is 113.47m, width is 99.64, area is 69886.30 m
2
, 

and volume of the mass displacement of the selected landslide from the coal mine of Madaling in 

Guizhou Province is 3479.50m
3
. Therefore, it shows a close agreement achievement to the 

inventory data. This means that the result is acceptable (Table 6.1) as it is below ten percents of 

accuracy (Mousavi et al. 2011; Shirzadi et al. 2017). Based on the landslide inventory, the mass 

displacement volume for the same landslide was reported as 3682.35m
3
. Therefore, the relative 

error percentage is 5.50% which promised in an acceptable agreement with the existing available 

data. 
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Table 6.1: Comparative measurement and relative error. 

Geometry ArcGIS Proposed 

Algorithm 

Inventory 

dataset 

Relative 

Error (%) 

Length (m) 113.12 113.46 N/A 0.30 

Width (m) 101.34 99.64 N/A 1.67 

Area (m
2
) 6976.92 6988.20 N/A 0.16 

Volume 

(m
3
) 

N/A 3682.35 3479.50 5.50 

 

 The results of validation of the algorithm, simulation, and modelling were followed by 

field observations and the ArcGIS software using relative error method (Irigaray et al., 2007; 

Kreyszig et al., 2011).   

 

 The comparative computing techniques of geometric analysis and classification of 

landslides in ArcGIS and the proposed model were attempted. This allowed for the measurement 

of length, width, area, and volume of the landslides as well as for the determining of failure flow 

direction and type of a landslide. However, it seems that there are no GIS software that can 

automatically determine the length, width, volume, and type of a landslide. In contrast, the 

proposed algorithm resolved the shortcomings of the previous study that was attempted by 

Niculitˇa (2016). For example, one of the shortcomings is volume calculation and material 

displacement where in this study the author has achieved it. This study has also not found a 

notably research to indicate detecting, determining, and measuring length, width, volume and the 

type of landslide automatically or semi-automatically. This study revealed that the suggested 

approach and measurement tool have resolved the flaws and can measure and determine the long 

and short sides (i.e. long and short segments), volume, flow direction, and type of landslide 

polygon. 



127 

 

 

Figure 6.12: A landslide polygon overlaid on the UAV image and ASTER DEM as well as 

LiDAR-derived DEM. 

 

Figure 6.13: Simulation and modelling of a landslide using the proposed algorithm.  

6.4 Conclusions and Recommendations 

The proposed semi-automated geometric analysis algorithm and code resulted in a satisfactory 

performance of measurement and determination of length, width, area, volume of material 

displacement, flow direction, and landslide type using MATLAB (Mousavi et al. 2011; Shirazi et 

al. 2017). Although classifications of landslides are subjective, this study concluded that 
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geometric analysis can define a the proposed classification of landslides based on geographical 

coordinates (x,y), long side or maximum distance of the segment (either d1 or d2) in a landslide 

polygon, and slope angle (θ) in 2D scalar system. Further, the proposed algorithm including the 

failure direction has concluded classification of landslides in 3D and vector form. Also, this 

study concluded that employing LiDAR-derived DEM, UAV images, and Google Earth images 

in ArcGIS impacted enhancement of landslide boundary polygon and the visual interpretation 

and recognition of landslides. The proposed model might possibly revise and update the 

inventory dataset by measurements of landslide geometry in conjunction with field observations 

and high-resolution of images as well as DEMs. Therefore, this approach could review and 

improve the landslide inventory dataset of Mazandaran Province.   

 The proposed algorithm was tested and verified by ArcGIS software and field 

observations (Figure 6.14) with the relative error method. However, this study recommends 

collecting more landslide data and field observations for volume calculation and to validate the 

modelling and simulation of deformation as well as failure flow direction that were generated by 

the proposed algorithm. Also, this study recommends collecting more samples from other 

environmental conditions to test the developed software package.  

  

 

Figure 6.14: (a) Long-type landslide in Alborz Mountain, Iran (b) landslide of Madaling in 

Guizhou Province, China. 

a b 
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 However, the review literatures (Booth et al. 2009; Niculita, 2016; Pirasteh and Li, 2016) 

concluded that there are not a considerable study of inside boundary of a landslide to detect, 

measure, and determine length, width, area, volume and type of a landslide all together at the 

same time. Therefore, this seems that the proposed algorithm could possibly be a reasonable 

approach and to be used for landslide geometric analysis. This study has not also found a notably 

research on automated system to determining length, width, and type of a landslide in GIS 

environment. Therefore, defining the angles and scripting the proposed code for geometry 

analysis and classification of landslide seem to be a new approach.  

6.5 Chapter Summary 

This study delivered geodata analytical and computing method to landslide geometric analysis 

and deformation assessment. Although the real challenge is to develop the proposed algorithms 

to better benefit from incorporating UAV images and LiDAR-derived DEMs for landslide 

geometric analysis, this study found that LiDAR-derived DEM and UAV images can possibly 

provide a considerable amount of new information which has not yet been gathered by research. 

While great advances have been developed by researchers in the past for geometric analysis of 

landslides, it seems that most of these methods remain tied to the past. Could researchers 

incorporate these accurate high resolution DEMs and UAV images in conjunction with inventory 

dataset and geometric analysis to develop better modelling of landslide mechanisms? Is it 

possible to integrate landslide geometric measurements with early warning systems? 
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Chapter 7 

Conclusions and Recommendations for Future Work 

This chapter presents a summary, a conclusion, and suggestions for future work that will reflect 

expansion of the landslide geometric analysis and deformation pattern, as well as classification.  

7.1 Conclusion 

Amending landslide inventories is immensely important to policy-makers and decision-makers 

alike. Sliding creates geometric shapes on the Earth’s surface, which this study explored it in 

both 2D static scalar system and 3D dynamic vector system. This study presented the utilization 

of LiDAR-derived DEMs, Google Earth images, UAV images, and GIS techniques in Iran’s 

Zagros and Alborz Mountains to investigate landslide assessment, revise and update 

susceptibility mapping, and refurbish the existing landslide inventory dataset by implementing 

the proposed algorithm.  

 Tectonic geomorphologic parameters such as stream gradient-length index and the Dez 

River profile assisted in the identification and localization of landslides in the Zagros Mountains. 

This study found that there is real potential in developing a semi-automated algorithm and codes 

for landslide assessment using tectonic geomorphologic features.  

 The PFR model improved the landslide susceptibility mapping and revised the inventory 

dataset in conjunction with field observations and LiDAR-derived DEMs in Mazandaran 

Province of Iran. However, the effectiveness of DEMs has not been studied to identify whether 

the LiDAR-derived DEM (5m) compared to DEMs with lower resolution than 5m may possibly 

achieve a desired improvement of landslide susceptibility mapping or not (Safaiee et al. 2010; 

Rajabi et al. 2011; Jebur et al. 2014).  
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 This study also explored the algorithms of semi-automated geometric landslide analysis, 

landslide deformation, and landslide classification. A modelling and simulation procedure for 

landslide deformation including calculating displacement of a landslide and flow direction are 

presented in this thesis. The proposed algorithm is used to model, simulate, and calculate 

displacements of a landslide in the Zagros and Alborz Mountains of Iran and potentially other 

locations in the world. The deformation and flow direction codes may be improved in MATLAB 

to directly incorporate the pixels of a DEM into the algorithm. Pixels are converted to points and 

they were also used to analyze, simulate, and model a deformation of mass movement and 

volume material displacement.  

 Although, this study has not attempted a quantitative research on accuracy performance 

of the output results, but this study identified that there are some limitations such as availability 

and cost of a high-resolution LiDAR data. They include before and after a landslide, and UAV 

flight permission as well. The disadvantage of the proposed algorithm is conversion of pixels to 

point. The proposed algorithm cannot upload two or more Excel files and to calculate two or 

more landslide polygons geometry at the same time. In addition to the above, the proposed 

algorithm cannot directly process the raster (i.e., cells) without using Nearest Neighbor 

Assignment (NNA) re-sampling technique (i.e., converting cells to points) in ArcGIS. The flow 

direction arrays sometimes do not appear on the windows and it may possibly be because of the 

updated MATLAB version.  

 There are sources of error in the proposed algorithm and software package such as 

computational error, equipment error, and modelling error (i.e. lack of adjustment of points, 

pixels, and grids from before and after a landslide). However, the present package in MATLAB 

platform contributes by: 



132 

 

 Determining the landslide type; 

 Calculating the area of a landslide polygon; 

 Determining and measuring the length and width of a landslide; 

 Calculating the volume of material displacement and determining mass movement 

(deformation); and 

 Identifying the flow direction of a landslide material movement. 

     In addition to the above, this study introduced a taxonomy of landslides which is based 

on the geometry and geographical coordinates of a landslide in this Ph.D. thesis. 

7.2 Recommendations for Future Work 

This study recommends exploring tectonic geomorphologic features such as sinuosity of river 

and drainage slope for landslide investigations for the future work. In addition to explore tectonic 

geomorphology, this study recommends utilizing the recent Google Earth images associated with 

RADAR data for landslide detection and susceptibility mapping. Therefore, this study suggests 

determining the effectiveness of high-resolution of DEMs as compared to low-resolution DEMs 

on landslide susceptibility mapping performance. This study may also suggest exploring 

landslide susceptibility mapping using PFR at Sari-Kiasar Watershed, Northern Iran as well as 

the Dez River watershed, south-west of Iran with a higher resolution of LiDAR-derived DEM 

than 5m. 

     This study recommends researchers to collect more data samples from other geographical 

locations to implement the scripts for the future work. Because, it is to reconfirm the proposed 

model performances for calculating volume, material displacement, and flow direction as 

compared to the developed algorithms in alignment with the field measurements. Also, this study 

may recommend developing a code that improves re-sampling technique without giving any 
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assumption (i.e., nAfter ≥ nBefore) that can accept any pixel resolution of the DEMs of before 

and after a landslide. This study recommends researchers to compare a quantitative research on 

the output result by the proposed algorithm using available inventory data. This study also 

suggests applying the concept algorithm in developing a code by implementing ArcScript or 

Python languages that can be easily worked in ArcGIS.   

     Finally, this Ph.D. research thesis recommends that a web interface platform be created to 

use this algorithm and the three developed codes for geospatial location-based landslide 

polygons in shape file format; and to process geometric analysis, volume calculation, flow 

direction, and classification of a landslide automatically. This platform will allow analysts in the 

world to update landslide inventory datasets in real-time. 
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