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Abstract  

Portable wireless ultrasound has been emerging as a new ultrasound device due to its 

unique advantages including small size, lightweight, wireless connectivity and 

affordability. Modern portable ultrasound devices can offer high quality sonogram images 

and even multiple ultrasound modes such as color Doppler, echocardiography, and 

endovaginal examination. However, none of them can provide elastography function yet 

due to the limitations in computational performance and data transfer speed of wireless 

communication. Also phase-based strain estimator (PSE) that is commonly used for 

conventional elastography cannot be adopted for portable ultrasound, because ultrasound 

parameters such as data dumping interval are varied significantly in the practice of portable 

ultrasound. Therefore, this research aims to propose a new elastography method suitable 

for portable ultrasound, called the robust phase-based strain estimator (RPSE), which is 

not only robust to the variation of ultrasound parameters but also computationally effective. 

Performance and suitability of RPSE were compared with other strain estimators including 

time-delay, displacement-gradient and phase-based strain estimators (TSE, DSE and PSE, 

respectively). Three types of raw RF data sets were used for validation tests: two numerical 

phantom data sets modeled by an open ultrasonic simulation code (Field II) and a 

commercial FEA (Abaqus), and the one experimentally acquired with a portable ultrasound 

device from a gelatin phantom. To assess image quality of elastograms, signal-to-noise 

(SNRe) and contrast-to-noise (CNRe) ratios were measured on the elastograms produced 

by each strain estimator. The computational efficiency was also estimated and compared. 
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Results from the numerical phantom experiment showed that RPSE could achieve highest 

values of SNRe and CNRe (around 5.22 and 47.62 dB) among all strain estimators tested, 

and almost 10 times higher computational efficiency than TSE and DSE (around 0.06 vs. 

5.76 seconds per frame for RPSE and TSE, respectively).   
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Introduction 

Elastography refers to an imaging modality for describing various elastic attributes of 

tissues using ultrasound techniques [1, 2]. It uses palpation principle to detect and classify 

pathological lesions by comparing relative strains in different tissues [3]. Since 

pathological lesions are normally stiffer than benign tissues, strains in malignant lesions 

are smaller than those in surrounding tissues when forces are applied [4]. Based on this 

principle, elastography can visualize mechanical properties of soft biological tissues to 

facilitate the detection of malignant lesions. For instance, elastography can provide various 

clinical information in breast [5, 6] and prostate [7]. It is also useful to monitor thermal 

changes and ablation [8], to assess tendon motion [9], and to measure the stiffness of 

muscle and tendon [10, 11]. However, elastography function is provided only by high-end 

console style ultrasound scanners (e.g. Philips iU22 xMATRIX; Hitachi HI VISION 

Ascendus) due to the requirements for heavy computational loads. 

Recently, portable ultrasound is emerging as a new ultrasound device that is 

considerably smaller and lighter than the conventional console style ultrasound scanners.  

Its high portability and mobility allow practitioners to make diagnostic and therapeutic 

decisions on site in real-time without having to take the patients out of their environment. 

This makes the portable ultrasound an attractive medical modality particularly for harsh 

and remote sites [12]. Some of the modern portable ultrasound devices and their weights 

are summarized in Table 1. Typically, the weight is less than 3 kg, and the size is 

comparable to or smaller than a laptop computer, so it can be easily hand-carried to the 

patient's bedside in or out of hospital environment. These lightweight units, therefore, now 

have wide range of applications including prehospital, austere and remote ultrasound. 
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Furthermore, wireless portable ultrasound can be a useful tool for veterinarians to examine 

large animals in the farm or out of hospital. 

 Although recent portable ultrasound devices offer high image quality and multiple 

ultrasound modes, none of them offers elastography function, mainly due to the limitations 

of hardware performance and data transfer speed of wireless communication. Particularly, 

typical strain estimation processes using signal correspondence function and heavy image 

processing requires high computational complexity, which is hard to be achieved by 

portable ultrasound system. Note that a conventional console style ultrasound device 

performs large proportion of computation for elastography using dedicated hardware that 

is specially designed to perform substantial amount of data acquisition (i.e. 192 channels 

of echo data with 20 MHz sampling rate) and sophisticated image processing. Portable 

ultrasound devices, whereas, cannot call on dedicated hardware for such computation; 

instead, they have to utilize wireless-connected mobile device or laptop computer for 

elastography computation. Although computing power of laptop computer has been 

increasing rapidly, it is still not comparable to that of dedicated hardware. Furthermore, 

wireless communication cannot ensure consistent and stable data transfer speed between 

the ultrasound transducer and the computing device. 

To overcome the limitations without significant improvement of the hardware system, 

it is essential to employ an efficient strain estimation method that requires minimal 

computational resources while providing high quality elastography. Many strain estimation 

methods for elastograhpy have been proposed to assess the map of strain distribution 

induced by externally or internally applied loading; they can be classified into three main 

categories: time-domain-based, spatial-domain-based and phase-based. Time-domain-
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based strain estimation methods such as time-delay strain estimation (TSE) [1] estimate 

the displacement using the time delays between two data sets acquired at different time 

points. Strains are calculated from the time delay generally obtained by cross-correlation 

of pre- and post-compression radiofrequency (RF) echo signals (Fig. 1(a)), i.e. 

ε1 =
(𝑡𝑡1𝑏𝑏 − 𝑡𝑡1𝑎𝑎) − (𝑡𝑡2𝑏𝑏 − 𝑡𝑡2𝑎𝑎)

𝑡𝑡1𝑏𝑏 − 𝑡𝑡1𝑎𝑎
, (1) 

where 𝑡𝑡1𝑎𝑎  and 𝑡𝑡1𝑏𝑏  are the arrival times of the pre-compression echoes from the two 

reference windows (proximal and distal), respectively, and 𝑡𝑡2𝑎𝑎 and 𝑡𝑡2𝑏𝑏 are the arrival times 

of the post-compression echoes from the same windows, respectively.  

Space-domain-based strain estimation methods such as displacement-gradient strain 

estimator (DSE) [5, 6] directly estimate the displacement in compressed region using 

digital image correlation (DIC) technique which measures the degree of deformation by 

comparing two ultrasound B-mode images of the same region acquired at two different 

stages, i.e. pre- and post-compression. Strains are estimated by taking the gradients of the 

displacements (Fig. 1(b)) : 

ε1 =
(𝑥𝑥1𝑏𝑏 − 𝑥𝑥1𝑎𝑎) − (𝑥𝑥2𝑏𝑏 − 𝑥𝑥2𝑎𝑎)

𝑥𝑥1𝑏𝑏 − 𝑥𝑥1𝑎𝑎
,  

 ε2 =
(𝑦𝑦1𝑏𝑏 − 𝑦𝑦1𝑎𝑎) − (𝑦𝑦2𝑏𝑏 − 𝑦𝑦2𝑎𝑎)

𝑦𝑦1𝑏𝑏 − 𝑦𝑦1𝑎𝑎
, 

(2) 

where (𝑥𝑥1𝑎𝑎,𝑦𝑦1𝑎𝑎) and  (𝑥𝑥1𝑏𝑏 ,𝑦𝑦1𝑏𝑏) are the coordinates of the proximal and distal windows in 

the pre-compression image, respectively, and (𝑥𝑥2𝑎𝑎,𝑦𝑦2𝑎𝑎) and  (𝑥𝑥2𝑏𝑏 ,𝑦𝑦2𝑏𝑏) are the coordinates 

of the same windows in the post-compression image, respectively.  

In phase-based strain estimation (PSE) methods, the strain can be obtained from the 

measure of strain rate acquired by Doppler tissue imaging techniques, as temporal 

integration of the strain rate is equivalent to the spatial derivative of the velocity [13]. 
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Depending on the velocity measures at each point in the region of interest, the amount of 

the deformation of tissues and the speed of the deformation caused by an applied external 

compression can be estimated. Typically, the axial differentiation of velocity field Δ𝑉𝑉 is 

calculated by autocorrelation algorithm [14] based on the assumption that the speed of 

sound c, sampling frequency 𝑇𝑇𝑠𝑠 , and the pulse repetition period 𝑇𝑇𝑃𝑃𝑃𝑃  are the known 

constants. Then, strains can be defined as 

ε1 =
2
𝑐𝑐
𝑇𝑇𝑃𝑃𝑃𝑃
𝑇𝑇𝑠𝑠

Δ𝑉𝑉. (3) 

However, in portable ultrasound, the pulse repetition period is equivalent to the data 

dumping interval via Wi-Fi network, which varies significantly depending on the size of 

dataset and/or CPU load; thus it cannot be regarded as constant. Furthermore, the speed of 

sound varies depending on the acoustic impedance of tissues. Therefore, although PSE is 

computationally very efficient, it cannot be adopted for portable ultrasound in its current 

form. 

In this study, we propose a new strain estimation method, called the robust phase-based 

strain estimation (RPSE), which is robust to the variations ultrasound parameters such as 

the speed of sound, sampling interval and pulse repetition period, thus can overcome the 

limitations of portable ultrasound devices in implementing elastography function. 

Furthermore, the RPSE algorithm is computationally very efficient, so it can be operated 

in wireless-connected mobile device or laptop computer without adding much 

computational burden. For the validation of the proposed method, the quality of the 

elastograms produced by RPSE are evaluated and compared with those by other strain 

estimation methods by means of image quality measures and computation speed.  
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Robust Phase-based Strain Estimation 

Velocity Estimation 

The fundamental Doppler equation expresses the frequency shift (Doppler frequency) 𝑓𝑓 of 

acoustic energy scattered from a target moving at some velocity 𝑉𝑉 in terms of the frequency 

of the incident wave 𝑓𝑓𝑐𝑐, the speed of sound c in the propagation medium, and the angle 𝜃𝜃 

between the direction of motion and the direction of sound propagation as 

𝑓𝑓 = 2𝑓𝑓c
𝑉𝑉
𝑐𝑐

cos 𝜃𝜃. (4) 

This implies that the Doppler frequency carries information about the axial velocity 𝑉𝑉a (=

𝑉𝑉 cos 𝜃𝜃) of the moving reflector. If the axial velocity is sufficiently slower than the speed 

of sound c, the axial velocity can be obtained as 

𝑉𝑉a =
c
2
𝑓𝑓
𝑓𝑓𝑐𝑐

 (5) 

In the practice for elastography, the wave direction is usually identical to the moving 

direction, so 𝜃𝜃 can be regarded as zero. Therefore, the axial velocity 𝑉𝑉a can be estimated 

by determining only the Doppler frequency 𝑓𝑓 , assuming that c and 𝑓𝑓𝑐𝑐  are known and 

constant. Since this conventional Doppler method uses information from a relatively 

narrow band of frequencies to measure the phase changes in the carrier frequency, it is also 

called narrowband Doppler.  

1D Autocorrelation 

In 1985, Barber et al [15] proposed a phase-coherent Doppler velocity estimator based on 

1D autocorrelation. This method estimates the mean Doppler frequency 𝑓𝑓 ̅by measuring I 

and Q components of the reflected pulsed signals at different time frame (slow-time axis), 

i.e. 
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𝑓𝑓̅ =
1

2π𝑇𝑇𝑃𝑃𝑃𝑃
arctan

𝐼𝐼𝐼𝐼[𝛾𝛾(0,1)]
𝑅𝑅𝑅𝑅[𝛾𝛾(0,1)]

=
1
2π

arg{𝛾𝛾[0,1]}
𝑇𝑇𝑃𝑃𝑃𝑃

 (6) 

where 𝛾𝛾[0,1] is the autocorrelation function of the RF signals at lags in slow-time axis,  

𝑇𝑇𝑃𝑃𝑃𝑃 is pulse repetition period (slow-time sampling rate), and arg{𝛾𝛾[0,1]} is the phase of 

𝛾𝛾[0,1]. By combining (5) and (6), the axial velocity is obtained as 

𝑉𝑉a =
c

2𝑓𝑓𝑐𝑐
1
2π

arg{𝛾𝛾[0,1]}
𝑇𝑇𝑃𝑃𝑃𝑃

. (7) 

Using the velocity difference between two reference points, strain between the points can 

be calculated (Eq. (3)). High computational efficiency of 1D autocorrelation algorithm has 

made this a suitable algorithm for real-time elastography. However, due to stochastic nature 

of the RF signal and the variations of c and 𝑓𝑓𝑐𝑐, derived 𝑉𝑉a usually exhibits large fluctuations 

[16]. 

2D Autocorrelation 

To reduce the variance of the velocity estimates, Wilson [16] proposed broadband pulsed 

Doppler based on 2D fast Fourier transform by considering RF data as a 2D function of 

depth and time. He showed that the 2D FFT of RF data from a moving target forms a line 

whose slope is proportional to the target velocity. Loupas et al. [18] extended Wilson’s 

work to discrete limited-duration signals by examining the case of an ideal point target. 

They showed that 2D spectrum of a discrete version of backscattered RF signal is zero 

apart from a line passing though the origin of the 2D frequency plane with a slope equal to  

𝑓𝑓̅

𝑓𝑓𝑐𝑐�
=

2𝑉𝑉
𝑐𝑐

 (8) 

which is in principle the same as conventional narrowband Doppler equation. Eq. (8) also 

implies that although mean RF center frequency 𝑓𝑓𝑐𝑐�  may fluctuate randomly, corresponding 
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mean Doppler frequency 𝑓𝑓 ̅tracks these fluctuations so that their ratio is always constant 

and proportional to the mean axial velocity. The center frequency can be estimated using 

the autocorrelation of the signal in the depth direction (fast-time axis) as 

𝑓𝑓𝑐𝑐� =
1

2π𝑇𝑇𝑠𝑠
arctan

𝐼𝐼𝐼𝐼[𝛾𝛾(1,0)]
𝑅𝑅𝑅𝑅[𝛾𝛾(1,0)]

=
1
2π

arg{𝛾𝛾[1,0]}
𝑇𝑇𝑠𝑠

 (9) 

where 𝑇𝑇𝑠𝑠 is the sampling interval (fast-time sampling rate). 

By combining Eq. (6), (8) and (9), the mean velocity 𝑉𝑉�  evaluated by 2D autocorrelator 

can be expressed as 

𝑉𝑉� =
𝑐𝑐
2
𝑇𝑇𝑠𝑠
𝑇𝑇𝑃𝑃𝑃𝑃

arg 𝛾𝛾[0,1]
arg 𝛾𝛾[1,0]

=
𝑐𝑐
2
𝑇𝑇𝑠𝑠
𝑇𝑇𝑃𝑃𝑃𝑃

Γ (10) 

where Γ = arg 𝛾𝛾[1,0]/ arg 𝛾𝛾[0,1]. Since Eq. (10) does not include center frequency term 

𝑓𝑓𝑐𝑐 anymore, the velocity estimated by 2D autocorrelation shows much less fluctuation than 

the one by 1D autocorrelation (Eq. (7)); however, it is still a function of the sampling rate 

𝑇𝑇𝑠𝑠  and the pulse repetition period (sampling interval between frames) 𝑇𝑇𝑃𝑃𝑃𝑃 . In portable 

ultrasound, 𝑇𝑇𝑃𝑃𝑃𝑃 is equivalent to data-dumping interval via Wi-Fi network that cannot be 

constant, but varies with RF data file size and wireless communication environment. 

Therefore, the 2D autocorrelation cannot be directly applied to the elastography for 

portable ultrasound. 

Strain Estimation using 2D Autocorrelation 

The axial strain of a segment that has been deformed along loading direction is defined as 

ε =
∆𝐿𝐿
𝐿𝐿0

=
𝐿𝐿 − 𝐿𝐿0
𝐿𝐿0

 (11) 

where ∆𝐿𝐿 is the difference between the final length L and initial length 𝐿𝐿0 of the segment. 

In elastography, it can be assumed that an ultrasonic transducer transmits waves toward 
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an object moving with an instantaneous velocity V as depicted in Fig. 2. If a segment is 

defined as the region of axial length L0, and the upper and the lower endpoints of the 

segment are away from the transducer by the distance λ1 and λ2, respectively (Fig. 2), the 

echo delays from the upper and the lower endpoints at time 𝑇𝑇0 + 𝑇𝑇𝑃𝑃𝑃𝑃 are 

𝜏𝜏1 =  
2(𝜆𝜆1′ − 𝜆𝜆1)

𝑐𝑐
, and  𝜏𝜏2 =  

2(𝜆𝜆2′ − 𝜆𝜆2)
𝑐𝑐

 ,  (12) 

respectively. Since 𝐿𝐿0 =  𝜆𝜆2 − 𝜆𝜆1 and L = 𝜆𝜆2′ − 𝜆𝜆1′, the axial strain can be written with 

echo delays by combining Eq. (11) and (12) as  

ε =
𝑐𝑐

2𝐿𝐿0
(𝜏𝜏2 − 𝜏𝜏1) =

𝑐𝑐
2𝐿𝐿0

Δ𝜏𝜏.  (13) 

The change in the length of the segment ∆𝐿𝐿 = 𝑇𝑇𝑃𝑃𝑃𝑃(𝑉𝑉2 − 𝑉𝑉1), so the echo delay Δ𝜏𝜏 is 

related to the velocity as 

Δ𝜏𝜏 =
2𝑇𝑇𝑃𝑃𝑃𝑃
𝑐𝑐

(𝑉𝑉2 − 𝑉𝑉1). (14) 

By substituting Eq. (14) into Eq. (13), the speed of sound c is canceled and the axial strain 

can be rewritten as 

ε =
𝑇𝑇𝑃𝑃𝑃𝑃
𝐿𝐿0

(𝑉𝑉2 − 𝑉𝑉1). (15) 

Now let's consider an axial segment along single scan line. If the segment is centered at m 

depth samples with the upper and lower endpoints given by 𝐼𝐼1 = 𝐼𝐼 − Δ𝐼𝐼/2 and 𝐼𝐼2 =

𝐼𝐼 + Δ𝐼𝐼/2, the axial length of the segment is 

𝐿𝐿0 = 𝛥𝛥𝐼𝐼
𝑐𝑐
2
𝑇𝑇𝑠𝑠,  (16) 

where the tunable parameter Δm controls the length of the axial length of the segment. By 

substituting Eq. (16) into (15) and rewriting 𝑉𝑉1 and 𝑉𝑉2 using Eq. (10), the local axial strain 

can be rewritten as 
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ε =
𝑇𝑇𝑃𝑃𝑃𝑃

𝛥𝛥𝐼𝐼 𝑐𝑐
2𝑇𝑇𝑠𝑠

𝑐𝑐
2
𝑇𝑇𝑠𝑠
𝑇𝑇𝑃𝑃𝑃𝑃

(Γ2 −Γ1)  (17) 

that can be further simplified as 

ε =
Γ2 − Γ1
𝛥𝛥𝐼𝐼

,    (18) 

where Γ1 and Γ2  are the 2D autocorrelation values at both endpoints of the segment. 

Note that Eq. (18) contains only segment length Δm and the phase angle Γ at the upper 

and lower end points of the segment, and is not affected by sampling intervals along depth 

(𝑇𝑇𝑠𝑠)  and frame (𝑇𝑇𝑃𝑃𝑃𝑃 ). Therefore, although data dumping interval is not consistent in 

portable ultrasound, strain estimation accuracy is not degraded, which makes the proposed 

RPSE method as a feasible strain estimator for the elastography in portable ultrasound. 

Least-Squares Strain Estimation 

The local axial strain estimator in Eq. (18) only uses the autocorrelation samples at the 

endpoints 𝐼𝐼1  and 𝐼𝐼2 , which can cause strain estimate very sensitive to signal noise. 

Assuming that the 2D autocorrelator Γ in Eq. (10) is linear along the depth within the 

segment, where the segment is centered at depth 𝐼𝐼, then the autocorrelation relationship 

can be rewritten as 

Γ[m] = a ∙ m + b,    (19) 

where the index 𝐼𝐼 is a natural number restricted by 𝐼𝐼1 ≤ 𝐼𝐼 ≤ 𝐼𝐼2. The relationship can 

be rewritten by the matrix form as Γ = A �𝑎𝑎𝑏𝑏�. In case only the inaccurate (noisy) measured 

vector Γ� is known and the true vector Γ is unknown, the sum of the squared error between 

the linear model and the measured autocorrelation is minimized by the least-squares 

method, and the minimized  a� can be regarded as the axial strain. 
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Elastographic Processing 

Strain estimators generally compute the average strain experienced over the small time-

period. When the strains are generated by periodic forces, the frame-to-frame strain values 

are not only changed periodically but also contaminated with significant noise, so the strain 

images are too crude to illustrate the relative stiffness in elastogram. In order to improve 

the contrast of relative stiffness of the regions, an elastographic post processing has been 

developed [14] by combining statistical thresholding and data smoothing. In this study, the 

mean (µ) and the standard deviation (σ) of a strain image are calculated and the strain 

magnitudes are thresholded to the range 𝜇𝜇 ± 3𝜎𝜎. Afterward, median filter is applied for 

data smoothing, i.e. a grey value of a pixel is replaced with the median of m by n matrix 

around the pixel to reduce the local noise and to improve the visual appearance of the 

elastographic images.  
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Methods 

This section describes the numerical simulation and experimental methods to validate the 

performance of RPSE method. 

Numerical Phantom Data Sets 

A numerical phantom of the size 40 × 50 × 10 mm with a stiff cylindrical inclusion (10 

mm) in a soft matrix was modeled using commercial finite element analysis (FEA) code 

(Abaqus/CAE 6.10) (Fig. 3, left). The FEA model was meshed with approximately 427,000 

3D quadratic tetrahedron elements and 77,000 nodes. The elastic modulus of the matrix 

and the inclusion was set to 20 kPa and 100 kPa, respectively, mimicking a carcinoma in a 

breast tissue. Poisson’s ratio of 0.49 was applied to the whole phantom. The movement in 

the vertical direction at the bottom of the phantom was constrained while 0.1% axial 

compressive strain was applied to the top surface. We selected 0.1% compression (0.05 

mm, 0.11 λ (wavelength)) because it is within the correlation range of all strain estimators. 

The coordinate of each node was saved to generate the deformation field data sets.  

Field II code [19, 20], a Matlab-based ultrasound simulation code, was used to add 

random scatters to the nodal displacements and generate the corresponding pre- and post-

deformation RF signal data from the numerical phantom (Fig. 3, center). The amplitudes 

of the random scatters were kept constant throughout the phantom; thus the inclusion could 

not be detected in the RF signal or B-mode image. In order to simulate both the 

conventional and the portable ultrasound devices, two kinds of linear probe were virtually 

modeled by Field II. The first one was modeled to have 192 ultrasound elements and 64 

active elements to mimic conventional ultrasound device, while the other had 152 and 24 

elements simulating portable ultrasound device. The numerical data sets acquired by these 
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virtual probes are called NP-64 and NP-24, respectively, in the rest of the paper. Other 

acoustic parameters were set to the same values in both phantoms: the center frequency of 

the transducer was placed at 3.5 MHz and the sampling rate of RF signals was set to 28 

MHz. The speed of sound through the phantom was set to 1540 m/s. In this setting, Field 

II generated 128 simulated RF lines (A-lines) and each RF line contained 2,589 samples 

for the phantom depth. Acoustic parameters used in the numerical phantoms are listed in 

Table 2. 

Various strain estimation methods (RPSE, TSE, PSE and DSE) were applied to the 

simulated RF data sets to estimate the strain fields (Fig. 3, right). The differences between 

the strain estimates and the true strains computed by the FEA were regarded as estimation 

errors.  

Gelatin-based Phantom Data Set  

A gelatin-based phantom containing a stiffer cylindrical inclusion was designed to mimic 

a carcinoma in a normal tissue [5]. Following the protocol in Madsen et al. [21], the 

inclusion and the matrix were made with the same constituents to have the similar 

echogenicity (Fig. 4). The fabricated phantom contained a cylindrical inclusion (12 mm 

diameter) five times stiffer than surrounding matrix (47±2 kPa vs. 9±1 kPa). 

A commercial portable ultrasound scanner, Sonon 300C (Healcerion Ltd., Korea) with 

wireless connectivity via Wi-Fi IEEE 802.11 b/g/n, was used for the experiment on the 

gelatin phantom. SononPlayer, the debugging software for developers, provided the 

functions to record and export RF data of each ultrasound frame to personal labtop 

computer for post-processing. Each recording consisted of 128 channels RF data (A-lines), 

acquired using a 3.5 MHz convex probe with sampling frequency of 28 MHz. 
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Ultrasound RF data were acquired while the phantom was being compressed with a 

portable ultrasound probe fixed to a TA micro test machine (TA.xt Plus, Stable Micro 

Systems Ltd, UK) with a 5 kgf load cell (Fig. 5). The portable ultrasound probe was 

connected to the personal computer via wireless connection. For the data acquisition, the 

portable ultrasound probe was moved downward to pre-compression position at which the 

curved probe perfectly touched the surface of the phantom. Then the probe was moved 

downward stepwise with the displacement at each step corresponding to 0.1% strain 

increase in the phantom. An ultrasound frame was recorded in the computer via wireless 

communication at each step. 0.1% strain (equivalent to 0.130 mm displacement) was 

chosen as a step size, because the corresponding phase change (0.29𝜆𝜆 (wavelength)) was 

within the detectable limit of PSE and RPSE (0.5 𝜆𝜆 ). This was repeated until 1% 

compressive strain was reached in the phantom (total 11 frames).  

Implementation of Strain Estimators 

TSE, PSE, RPSE and DSE were implemented using MATLAB (The MathWork Inc., MA, 

USA) as conceptually illustrated in Fig. 6. The algorithms for each strain estimator are 

briefly described in this section. 

TSE [1] was based on the time delay of raw RF signals (Fig. 6(a)), which was found 

by the correlation function as the peak of correlation between the pre- and post-

compression signals. Since FFT-based correlation is significantly faster and is also 

equivalent to linear convolution, it was selected as the TSE algorithm. Window size for 

correlation was chosen to be 45 samples (1.237 mm) for all data sets. In addition, 

subsample algorithm was implemented to enhance the estimation accuracy by adopting 

cosine fitting method using 3 points adjacent maximum correlation point. Least-squares 



17 
 

strain estimation was also employed to compute the strain distribution that is the slope of 

fitted displacement curve. 

For implementing PSE and RPSE, phase delay between a pair of ultrasound analytic 

signals formed with the RF data and its Hilbert transform was first estimated (Fig. 6(b) and 

(c)). Since each data frame of both numerical and gelatin phantom data sets was acquired 

from time-independent systems (data was dumped at each displacement), pulse repetition 

period (𝑇𝑇𝑃𝑃𝑃𝑃) cannot be assigned as a constant value; thus the conventional PSE method can 

not be implemented. For the comparison with other strain estimators, pulse repetition 

periods of gelatin and numerical phantom were set to 11, 4 seconds, respectively, which 

produced the similar scale of strain values to other methods. In RPSE (Fig. 6(c)), strains 

were directly estimated using 2D autocorrelation (Eq. (15)). Phase unwrap function in 

MATLAB was performed to expand the phase limit of PSE and RPSE up to a half 

wavelength (0.5𝜆𝜆 ) by preventing aliasing. Least-square method was also utilized to 

compute the curve-fitted slope of phase delay and the corresponding strain distribution.  

Since DSE directly estimates displacement distribution from spatial domain, the raw 

RF data should be converted to B-mode image using Hilbert transform and log-

compression (Fig. 6(d)). In addition, bi-interpolation was conducted to increase data 

resolution of B-mode image because sampling interval in the axial direction is significantly 

higher than that in the lateral direction (typically more than 10 times) [22]. A block 

matching algorithm based on 2D fast normalized cross-correlation (FNCC) calculated the 

displacements of the selected grids in a pair of pre- and post- compression B-mode images. 

2D subsample method using a second order polynomial equation was used to enhance the 

accuracy of the displacement estimate. Then the strain distributions can be estimated by 
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finding the 2D gradient function from the displacement field. The detailed block matching 

algorithm used in this study is provided in the reference [5]. The distances between grid 

points in both lateral and axial directions were set to 15 and 60 pixels, respectively, 

considering computation efficiency and image resolution. The side lengths of squared 

blocks centered at grid points for both the pre- and post-compression B-mode images were 

45 and 68 pixels, respectively.  

Image Quality Measures 

Strain errors were quantified using signal-to-noise ratio (SNRe) and contrast-to-noise ratio 

(CNRe) that were employed as metrics for the quality of the elastograms. The elastographic 

SNRe identifies the quantitative measurement of the accuracy and precision of the 

elastograms, and is defined as [23] 

SNRe =
𝐼𝐼𝑠𝑠

𝜎𝜎𝑠𝑠
 , (20) 

where 𝐼𝐼𝑠𝑠 is the mean value of the strain, and 𝜎𝜎𝑠𝑠 is the standard deviation of the measured 

strain. The elastographic CNRe is an important parameter to determine the detectability of 

a stiff lesion in elastograms and is defined as [24] 

CNRe =
2(𝐼𝐼𝑜𝑜 −𝐼𝐼𝑖𝑖)2

𝜎𝜎𝑜𝑜2 + 𝜎𝜎𝑖𝑖2
 , (21) 

where 𝐼𝐼𝑖𝑖 ,𝐼𝐼𝑜𝑜 ,𝜎𝜎𝑖𝑖2, and 𝜎𝜎𝑜𝑜2 are the mean and the variance values for the inside (subscript 𝑖𝑖) 

and the outside (subscript 𝑜𝑜) of the lesion, respectively. 
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Results and Discussion 

RPSE, TSE, DSE and PSE were applied to the numerical data sets acquired from the 

numerical phantoms with virtual probes and the experimental data sets from the gelatin 

phantom with the portable ultrasound device. Virtual probes with 24 and 64 active elements 

were used to simulate portable ultrasound device and conventional one, respectively. 

Displacement field and elastogram produced by each estimator were investigated to 

evaluate their estimation accuracy. Computational efficiency was also assessed by 

measuring the computation time spent by each algorithm to generate elastograms.  

Displacement Estimation 

The displacement fields for two types of numerical data sets (NP-64 and NP-24) estimated 

by RPSE, TSE, DSE and PSE are presented in Fig. 7. The velocity fields by PSE are scaled 

to match with displacement fields from the other methods. Although the fields generated 

by RPSE (Fig. 7(a) and 7(e)), TSE (Fig. 7(b) and 7(f)) and PSE (Fig. 7(d) and 7(h)) look 

similar, the RPSE shows more delicate and smoother patterns with less decorrelation errors 

than the others. On the other hand, DSE (Fig. 7(c) and 7(g)) cannot generate the right 

pattern and the field around the circular inclusion is significantly mingled. No significant 

differences are found between the displacement fields for NP-64 (virtually acquired by 

conventional ultrasound) and NP-24 (portable ultrasound), but the ones for NP-24 (Fig. 

7(e)-(h)) show slightly lower resolutions and more decorrelation errors than those for NP-

64 (Fig. 7(a)-(d)), due to less number of active elements and lower lateral resolutions. The 

above results can be quantitatively represented using the displacement plots measured 

along the vertical centerline across the displacement fields (Fig. 7(i) and 7(j)). Note that 

the FEA plot was formed using the noiseless data from FEA, while the other plots were 
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produced from the data in which slight random noises were introduced by Field II. RPSE, 

TSE and PSE plots show relatively good agreement with the FEA plot, with slight 

variations caused by the random noises. The DSE plot presents the smoothest trend; 

however, it is deviated from the FEA plot in some regions. The displacement plots for NP-

64 (Fig. 7(i)) and NP-24 (Fig. 7(j)) show similar trends over all, although slightly higher 

levels of deviations are observed in NP-24 plot.  

The displacement fields for the gelatin phantom were also analyzed (Fig. 8). Since the 

experimental data contained higher level of signal noises than the numerical data, the 

estimated displacement fields are generally nosier and coarser than those of numerical 

phantom. The displacement field generated by RPSE (Fig. 8(a)) shows smooth and 

continuous pattern and the inclusion in the center is discernable with smaller displacement 

than the surrounding matrix at the same depth. Both TSE and PSE displacement fields (Fig. 

8(b) and 8(d)) poses similar behavior to RPSE field, but much noisier patterns are observed. 

A short black line in the middle of the image indicates a spot where decorrelation occurs. 

The result from DSE (Fig. 8(c)) shows blurred and mingled pattern, especially in the soft 

matrix region under the inclusion. The above behaviors are also demonstrated by the 

displacement plots in Fig. 8(e) where RPSE and TSE generate similar plots except a local 

peak around the middle of the depth in TSE. DSE plot is the smoothest, but slightly deviates 

from the others in some regions, which is consistent with the trends observed in Fig. 7. The 

displacement plot for PSE converted from velocity shows much higher variations than the 

others, particularly after 35mm depth. 

Elastograms 

Elastograms depicting the axial strain fields generated by different strain estimators were 
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presented in Fig. 9. The elastograms generated by RPSE (Fig. 9(a) and 9(e)) successfully 

describe the shape of the inclusion as a low strain region in the center. Furthermore, the 

strains inside the inclusion and in the outer matrix are almost constant, respectively, which 

is in accordance with the FEA result. The elastogram of NP-64 seems more delicate and 

smoother, but the one of NP-24 also demonstrates clearly discernable patterns. In TSE 

elastograms (Fig. 9(b) and (f)), the inclusion is readily detectable; however, the shape of 

the inclusion is distorted and the matrix strain is inconsistent and noisy. The elastogram of 

NP-64 (Fig. 9(b)) shows reasonably preserved pattern, but that of NP-24 (Fig. 9(f)) is much 

more degraded, particularly in matrix region. In DSE elastograms (Fig. 9(c) and 9(g)), low 

strain region corresponding to the inclusion is observed in the center, but the patterns are 

significantly dispersed and degraded. PSE elastograms (Fig. 9(d) and (h)) also show the 

existence of the inclusion; however, the shape of the inclusion and the matrix strain are 

much more distorted and noisier than RPSE. 

Strain plots along the vertical centerline of numerical phantoms (Fig. 9(i) and 9(j)) 

show the comparison between the FEA results and those from strain estimators. For NP-64 

(Fig. 9(i)), both RPSE and TSE plots show good agreement with the FEA plot, and clearly 

indicate the existence of stiff inclusion in the depth between 15 mm to 25 mm. DSE plot is 

over-smoothed, and the shape and size of the inclusion are hard to be identified.  PSE plot 

shows similar trend to FEA plot, however, it varies significantly within the inclusion and 

in the matrix, particularly in the deep region between 30 mm and 35 mm depth. In the strain 

plots of NP-24 (Fig. 9(j)), the plots from strain estimators present generally large deviations 

from the FEA plot; RPSE plot still follows the true strain relatively well, while large 

differences are found in TSE plot, particularly in the matrix region under the inclusion. 
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Over-smoothing is observed in DSE plot, with much more serious manner than for that in 

Fig. 9(i), while PSE shows very noisy and degraded results.  

As for the elastograms of gelatin phantom, RPSE (Fig. 10(a)) describes the shape of 

the inclusion relatively well. TSE also indicates the existence of the inclusion; however, 

the strain patterns are highly noisy and scattered both in the inclusion and in the 

surrounding matrix. In the DSE elastogram (Fig. 10(c)), the shape of the inclusion is 

unclear and dispersed; furthermore, there are many degraded spots in the surrounding 

matrix. The elastogram from PSE (Fig. 10(d)) fails to describe the inclusion and only shows 

highly noisy pattern. In the strain plots along the vertical centerline (Fig. 10(e)), the strain 

levels inside the inclusion and the matrix are supposed to be constant, respectively; 

however, both RPSE and TSE plots show significant variations. Since both plots present 

similar trends, there is a possibility that gelatin phantom was not cured uniformly and 

material properties were not homogenous. Meanwhile, DSE plot shows significant 

variations in an over-smoothed manner compared to the other plots. PSE plot seems to 

deviate from the trend of the other plots across the entire depth. 

Image Quality Measures 

Two image quality measures, SNRe and CNRe, were evaluated over 11 frames of 

elastograms produced by RPSE, TSE, DSE and PSE, as presented in Fig. 11 using box 

plots. Note that the width of the band plots along vertical direction represents the dispersion 

of the measures over the frames. For the elastograms of NP-64 numerical phantom (Fig. 

11(a)), SNRe plot associated with the RPSE elastograms yields the highest median of 6.15, 

but the dispersion is relatively large. The SNRe plot for TSE forms very narrow band with 

the medians of 4.93, while that of DSE is slightly more dispersed and the median is around 
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3.1. The lowest SNRe is delivered by PSE at around 2.5. As for CNRe plots, RPSE 

produces the highest median of 53.52 dB followed by TSE (45.33 dB), PSE (34.87 dB) and 

DSE (30.1 dB). The widths of the CNRe bands for RPSE, PSE and DSE are approximately 

the same, while that of TSE is widely dispersed. Overall, RPSE shows the best SNRe and 

CNRe combination with the highest median, while the repeatability over 11 frames is 

approximately the same.  

For the elastograms of NP-24 (Fig. 11(b)), the SNRe for RPSE also shows the highest 

median at around 5.22 followed by TSE (3.27), DSE (2.74), and PSE (1.81). The width of 

SNRe band is the narrowest for both RPSE and PSE and becomes wider in the order of 

TSE and DSE. As for CNRe, PSE yields slightly higher median at around 49.14 than RPSE 

(47.62dB), followed by TSE (33.03 dB) and DSE (23.07 dB). In regard to the dispersion 

of CNRe, RPSE shows the narrowest level and the others are almost same. 

For the elastograms of gelatin phantom (Fig. 11(c)), the SNRe for TSE shows slightly 

higher median at around 4.61 than RPSE (4.39); however, its dispersion is larger than that 

for RPSE. PSE produces the lowest SNRe (1.98) and DSE (3.88) shows the largest 

dispersion. As for CNRe, both RPSE and TSE produce similar medians at around 40.65 dB 

and 40.44 dB, respectively, with almost equivalent band width. PSE produces slightly 

lower CNRe (30.43 dB), while DSE is associated with the lowest median (16.77 dB) and 

much wider band width. Overall, both RPSE and TSE show similar level of image qualities 

while RPSE demonstrates slightly better repeatability.  

In conclusion, the results of image quality measures suggest that RPSE produces the 

best elastogram from the numerical data sets; however, for the experimental data set from 

gelatin phantom containing relatively high level of noise, RPSE and TSE shows similar 
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performance, while PSE and DSE produces much lower SNRe and CNRe in all cases. 

Computational efficiency 

Since the correlation function for strain estimation imposes high computational load while 

portable ultrasound device has limited resources, computational efficiency is one of the 

critical factors in assessing the strain estimators for portable ultrasound. Computation times 

were measured on a Windows 7 computer (2.3 GHz, i7-3610 CPU with 12 GB RAM, 

ASUS-K55VD) using in-house developed Matlab code. 

Fig. 12 presents the computational times for the strain estimators to generate 

elastograms from numerical and gelatin phantom data sets. Overall, both phase-based strain 

estimation methods (RPSE and PSE) delivered much higher computational efficiency than 

correlation-based methods (TSE and DSE) by a significant margin. In order to perform the 

calculations for the strain estimation over 11 frames from NP-64 numerical data set of the 

size 1600 (length) × 80 (scanline) per each frame (Fig. 12(a)), RPSE and PSE spent only 

0.64 and 0.53 seconds, respectively, while 65.95 and 77.92 seconds were taken by TSE and 

DSE, respectively. For each RF frame, RPSE and PSE recorded only 0.06 and 0.05 second 

computation times, while TSE and DSE spent around 6 and 8 seconds. Similar amount of 

computation times were required for the elastogram from NP-24 phantom (Fig. 12(b)) by 

each method, with RPSE and PSE taking much less time (around 0.6 seconds) than TSE 

and DSE (63.57 and 85.56 seconds, respectively). The computations of each frame were 

0.06, 0.05, 5.78, and 7.78 seconds by RPSE, PSE, TSE, and DSE, respectively.  

The gelatin phantom data set is composed of 11 frames with each frame size of 2000 

(length) × 66 (scanline). The computation of the whole frames took only 0.69 seconds for 

RPSE and 0.59 seconds for PSE, while TSE and DSE recorded 66.25 and 99.46 seconds, 
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respectively. Both RPSE and PSE also show almost 100 times faster computational 

performance than TSE and DSE in the strain estimation of each frame (0.05~0.06 seconds 

vs. 6.3~7.68 seconds). Computation time for each frame using RPSE can be converted to 

16.6 fps (frame per second), that can be regarded as quasi-real-time processing. This 

implies that RPSE, without using C programming and MEX interface in Matlab, may be 

an efficient strain estimation algorithm for portable ultrasound, and although not as fast as 

high-end console style ultrasound device implemented with dedicated hardware (around 

30 fps), RPSE running on a general personal computer have the potential to provide near-

real-time elastography. 

Comparison of the Strain Estimators 

Strengths and weaknesses of each strain estimator identified through the above evaluation 

processes can be summarized as below. The strengths of RPSE lie in good accuracy of 

elastogram, high computational efficiency, and easy parameter setting. As discussed above, 

RPSE demonstrated the best image quality measures for numerical phantoms and the faster 

computation speed than those of both TSE and DSE. Moreover, parameter setting for RPSE 

is straightforward because it directly estimates the displacement from the phase delay 

between a pair of RF data sets, and does not require any searching process. On the other 

hand, RPSE has the phase limitation that it cannot estimate the displacement larger than a 

half ultrasound wavelength. However when the frame rate of ultrasound devices is over 15 

fps, the displacement between consecutive frames in elastography practice is mostly within 

this limitation. Therefore, the phase limitation of RPSE is not a significant concern to 

implement the elastography in the portable US device. However, if the frame rate is very 

low, or the movement of the target object is fast, this can cause a problem.  
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The strengths of TSE are decent accuracy of elastogram and the robustness in 

estimating the large displacement. Unlike the RPSE with phase limitation, TSE does not 

have the displacement limitation because the correlation function finds the maximum 

correlation value throughout the searching region of which the size can be easily adjusted 

to increase the measurement range. However, due to the correlation algorithm involving 

intensive computation, TSE requires higher computational cost and more sensitive 

parameter settings than those for RPSE.  

The benefit of DSE is that it uses B-mode images, and does not require raw RF data 

sets. Since most of commercial US scanners provide B-mode images, DSE can be an 

affordable option to generate the elastograms from various types of medical imaging 

modalities. However, the accuracy of DSE is relatively low and the computational cost is 

extremely high due to its 2D block matching algorithm. Also, the parameter settings in 

DSE for its 2D correlation is very sensitive and requires multiple empirical trials to obtain 

acceptable quality elastogram images. 

 The PSE demonstrates the best computational efficiency among all methods tested. 

However PSE delivers the highest error levels (lowest SNRe values) because it is sensitive 

to the variation of acoustic parameters. Moreover, PSE cannot be directly applied to the 

current portable ultrasound device, because pulse repetition period, an essential parameter 

for velocity estimation, is not constant, but varies with data size and communication 

environment.  
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Conclusion 

In order to overcome the limited computational performance of portable ultrasound device 

in realizing elastography function, we proposed a robust phase-based strain estimator 

(RPSE) that is independent of the speed of sound, sampling frequency and pulse repetition 

period. Thorough the comparative study with other representative strain estimation 

methods including time-delay and displacement-gradient strain estimators, it was found 

that the RPSE method can deliver the acceptable level of elastography in terms of 

elastogram quality and computational efficiency. For the numerical phantom data, RPSE 

showed the best SNRe and CNRe values than the other methods. TSE also generated decent 

quality of elastograms; however, due to its high sensitivity to signal noise, estimated strain 

values were locally deviated from the true strains estimated by FEA. As for the 

experimental data set from the gelatin phantom, RPSE and TSE demonstrated similar 

performance, while PSE and DSE delivered much worse SNRe and CNRe levels in all 

cases, respectively. One of the greatest strength of RPSE lies in the computational 

efficiency; it demonstrated almost 100 times faster computation speed than TSE and DSE 

in strain estimation. Although PSE can perform the computation almost the same as or even 

faster than RPSE, its accuracy is much lower than RPSE. The results suggest that the RPSE 

be a suitable algorithm to perform real-time elastography processing for portable 

ultrasound. However, RPSE has the limited displacement range between the frames, 

corresponding to a half ultrasound wavelength; thus, it may not be an optimum strain 

estimator for fast-moving tissues.  
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Figure captions 

Fig. 1. Principles of conventional strain estimation methods: (a) time-delay strain 

estimation (TSE) and (b) displacement-gradient strain estimation (DSE). 

Fig. 2. Principle of RPSE: ultrasonic transducer transmits waves toward a segment (left). 

The lower (farthest away from the transducer) and upper endpoints of the segment are 

moving with an instantaneous velocity 𝑉𝑉2  and 𝑉𝑉1 , respectively (right). As a result, the 

segment length L0 at 𝑡𝑡 = 𝑇𝑇0 is changed to L at 𝑡𝑡 = 𝑇𝑇0 + 𝑇𝑇𝑃𝑃𝑃𝑃. 

Fig. 3. Numerical phantom modeled by FEA and Field II code. 

Fig. 4. Schematic of phantom fabrication procedure: (a) 5% gelatin solution is poured into 

the mold with the pipe insert; (b) After gelatin is set, one side plate of mold and the insert 

are taken out; and (c) 20% gelatin solution is poured into the empty hole to form the 

inclusion. 

Fig. 5. Experiment setup for the elastographic phantom test using portable ultrasound. 

Fig. 6. Flow chart of strain estimators: (a) time-based strain estimator (TSE), (b) phase-

based strain estimator (PSE) (c) robust phase-based strain estimator (RPSE), and (d) 

displacement-based strain estimator (DSE). 

 Fig. 7. Displacement fields of NP-64 numerical phantom estimated by: (a) RPSE, (b) TSE, 

(c) DSE, and (d) PSE; displacement fields of NP-24 estimated by (e) RPSE, (f) TSE, (g) 

DSE and (h) PSE; displacement plots along the vertical centerline of (i) NP-64 and (j) NP-

24 estimated by FEA, RPSE, TSE, DSE and PSE, respectively.  

Fig. 8. Displacement field of the gelatin phantom estimated by: (a) RPSE, (b) TSE, (c) DSE 

and (d) PSE, and (e) the displacement plots along the vertical centerline from RPSE, TSE, 

DSE and PSE. 
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Fig. 9. Elastograms of NP-64 numerical phantom generated by: (a) RPSE, (b) TSE, (c) 

DSE and (d) PSE; elastograms of NP-24 generated by: (e) RPSE, (f) TSE, (g) DSE and (h) 

PSE; the strain plots along the vertical centerline of (i) NP-64 and (j) NP-24, estimated by 

FEA, RPSE, TSE, DSE and PSE, respectively. 

Fig. 10. Elastograms of the gelatin phantom generated by: (a) RPSE, (b) TSE, (c) DSE and 

(d) PSE; (e) the strain plots along the vertical centerline estimated by RPSE, TSE, DSE 

and PSE. 

Fig. 11. SNRe and CNRe for the elastograms of: (a) NP-64, (b) NP-24, and (c) the gelatin 

phantoms.  

Fig. 12. Computational times spent by RPSE, TSE, DSE and PSE methods for generating 

the elastogram(s) of: (a) NP-64 numerical phantom, (b) NP-24 numerical phantom, and (c) 

the gelatin phantom. 
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Fig. 1. Principles of conventional strain estimation methods: (a) time-delay strain 
estimation (TSE) and (b) displacement-gradient strain estimation (DSE). 
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Fig. 2. Principle of RPSE: ultrasonic transducer transmits waves toward a segment (left). 
The lower (farthest away from the transducer) and upper endpoints of the segment are 
moving with an instantaneous velocity 𝑉𝑉2 and 𝑉𝑉1, respectively (right). As a result, the 
segment length L0 at 𝑡𝑡 = 𝑇𝑇0 is changed to L at 𝑡𝑡 = 𝑇𝑇0 + 𝑇𝑇𝑃𝑃𝑃𝑃. 
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Fig. 3. Numerical phantom modeled by FEA and Field II code. 
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Fig. 4. Schematic of phantom fabrication procedure: (a) 5% gelatin solution is poured 
into the mold with the pipe insert; (b) After gelatin is set, one side plate of mold and the 
insert are taken out; and (c) 20% gelatin solution is poured into the empty hole to form 
the inclusion.  
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Fig. 5. Experiment setup for the elastographic phantom test using portable ultrasound. 
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Fig. 6. Flow chart of strain estimators: (a) time-based strain estimator (TSE), (b) phase-
based strain estimator (PSE) (c) robust phase-based strain estimator (RPSE), and (d) 
displacement-based strain estimator (DSE). 
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 Fig. 7. Displacement fields of NP-64 numerical phantom estimated by: (a) RPSE, (b) 
TSE, (c) DSE, and (d) PSE; displacement fields of NP-24 estimated by (e) RPSE, (f) 
TSE, (g) DSE and (h) PSE; displacement plots along the vertical centerline of (i) NP-64 
and (j) NP-24 estimated by FEA, RPSE, TSE, DSE and PSE,  respectively.   
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Fig. 8. Displacement field of the gelatin phantom estimated by: (a) RPSE, (b) TSE, (c) 
DSE and (d) PSE, and (e) the displacement plots along the vertical centerline from RPSE, 
TSE, DSE and PSE. 
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Fig. 9. Elastograms of NP-64 numerical phantom generated by: (a) RPSE, (b) TSE, (c) 
DSE and (d) PSE; elastograms of NP-24 generated by: (e) RPSE, (f) TSE, (g) DSE and 
(h) PSE; the strain plots along the vertical centerline of (i) NP-64 and (j) NP-24, 
estimated by FEA, RPSE, TSE, DSE and PSE, respectively. 
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Fig. 10. Elastograms of the gelatin phantom generated by: (a) RPSE, (b) TSE, (c) DSE 
and (d) PSE; (e) the strain plots along the vertical centerline estimated by RPSE, TSE, 
DSE and PSE. 
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Fig. 11. SNRe and CNRe for the elastograms of: (a) NP-64, (b) NP-24, and (c) the gelatin 
phantoms.  
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Fig. 12. Computational times spent by RPSE, TSE, DSE and PSE methods for generating 
the elastogram(s) of: (a) NP-64 numerical phantom, (b) NP-24 numerical phantom, and 
(c) the gelatin phantom. 
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Table 1. Weight of portable ultrasound devices 
 
Model Manufacturer Weight (kg) 
SononSite 180 FUJIFILM (Bothell, WA, USA) 2.4  
Philips Optigo Philips (Andover, MA, USA) 3.4 
GE V Scan GE Healthcare (Little Chalfont, UK) 0.39 
Micro Q.V. Advanced Medical System (Banbury, UK) 0.9 
Primedic Handscan Metrax GmbH (Rottweil, Germany) 2.2 
Tringa Linear VET Esocate (Genova, Italy) 0.8 
Sonon 300C Healcerion (Seoul, South Korea) 0.39 
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Table 2. Acoustic parameters for numerical phantoms 

 NP-64 NP-24 
Phantom size 40×50×10 mm3 40×50×10 mm3 
Center frequency 3.5 MHz 3.5 MHz 
Sampling frequency 28 MHz 28 MHz 
Width 0.44 mm 0.44 mm 
Height 5 mm 5 mm 
Kerf 0.022 mm 0.022 mm 
Number of elements 192 152 
Tx elements 64 24 
Rx signals considered 128 128 
Tx/Rx focus 50 mm 50 mm 
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