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Abstract

To date, quantum theory is the most successful physical theory that has been discov-
ered. However, there is still the possibility that an inconsistency between experimental
observations and the predictions of quantum theory may one day be found, thus prompt-
ing the replacement of quantum theory with a superior, post-quantum theory. To narrow
down the scope of possibilities for the true theory that describes nature, one can perform
experiments that falsify other physical theories, by demonstrating an incompatibility be-
tween experimental observations and the predictions of these theories. This thesis details
two such experiments. First we provide relevant background information, beginning with
a review of experimental quantum optics. Next, we review noncontextual ontological the-
ories and discuss requirements for experimental tests of such theories. Finally, we discuss
the framework of generalised probabilistic theories before introducing the two experiments.

The first experiment is a test of noncontextual ontological (or hidden-variable) models
of nature. An ontological model of a physical theory is one in which systems have preex-
isting properties, and a noncontextual ontological model is one in which systems that are
indistinguishable experimentally are represented identically in the model. Physical theories
that cannot be represented by a noncontextual ontological model are said to be nonclas-
sical; quantum theory is an example of such a physical theory that is nonclassical in this
sense. Prior to this thesis, experimental tests of the assumption of noncontextuality had
assumed that the experiments were free of both systematic and statistical errors, which is
not justifiable for any experiment. We introduce new analytical techniques that allow us
to avoid making these assumptions, and perform an experiment with single photons that,
with high confidence, rules out the possibility of describing nature with a noncontextual
ontological model.

The second experiment is a demonstration of self-consistent state and measurement
tomography in the framework of generalised probabilistic theories (GPTs). The GPT
framework is a very general, operationally-motivated framework for describing a physical
theory in terms of the observable events predicted by the theory. We develop a technique
for inferring the GPT description of a set of states and measurements directly from exper-
imental data. By analysing our data in this general framework, we are able to test various
candidate physical theories of nature. We perform an experiment with single photons,
and quantify the size of possible variations between quantum theory and the true physical
theory that describes nature.
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Chapter 1

Experimental quantum optics

Experimental quantum optics is the study of light at the single or few-photon level. The
experiments presented in Chapters 4 and 5 are performed using single photons that are
produced via a nonlinear process called spontaneous parametric downconversion. In this
chapter we present the background necessary to understand the experiments presented in
later chapters, within the framework of quantum theory.

We begin in Section 1.1 by introducing the definitions of quantum states, transforma-
tions, and measurements. The quantization of the electric field is reviewed in Section 1.2,
and creation of photon pairs via spontaneous parametric downconversion is reviewed in
Section 1.3. Section 1.4 describes how the polarization degree-of-freedom of a single pho-
ton can be used to encode quantum information, and also how this information can be
prepared, manipulated and measured in experiments. We end in Section 1.5 with descrip-
tions of quantum state, process, and measurement tomography; these are procedures for
inferring the quantum operators describing state preparation, transformation, and mea-
surement devices from experimental data.

1.1 Quantum states, transformations, and measure-

ments

The quantum description of an experiment can be broken down into three main compo-
nents: system preparation, transformation, and measurement. In this section we review
each of these components.
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1.1.1 Quantum states

A pure quantum state of a physical system is an element of a complex vector space on
which we can define an inner product [5]. We call such a vector space a Hilbert space. The
set of all possible states of the system is called the state space.

We denote a pure quantum state with |ψ〉, and for the purposes of this thesis |ψ〉 rep-
resents a d-dimensional column vector with complex coefficients, where d is the dimension
of the Hilbert space. The conjugate transpose of |ψ〉 is denoted with 〈ψ|. A pure state |ψ〉
is a unit vector in Hilbert space, which means the inner product of |ψ〉 with itself, 〈ψ | ψ〉,
is equal to 1. The dimension of the quantum system, d, is the maximum number of states
that can be perfectly distinguished from each other with a single-shot measurement. Some
examples of sets of distinguishable states for different physical systems are the discrete
atomic energy levels an electron can occupy, the +1/2 and −1/2 spin states of a neutron,
or the Hermite-Gauss spatial modes of a photon. We can denote a set of d distinguishable
states as {|0〉 , . . . , |d− 1〉}. Any two distinguishable states are orthogonal, meaning that
〈i | j〉 = δi,j, where δi,j is the Kronecker delta. Thus, a set of d distinguishable states forms
an orthonormal basis for the d-dimensional state space.

In order to represent a general quantum state (i.e., a state that is not necessarily pure),
one must use a density matrix. The density matrix, ρ, representing a pure state |ψ〉 is the
outer product of |ψ〉 with itself, that is, ρ = |ψ〉 〈ψ|. The state space is convex, and pure
states lie on the boundary of the space. A convex combination of two or more pure states
is a mixed state, and is represented by a convex combination of density operators. For
example, consider two preparation devices: one can prepare the pure state |ψ〉, and the
other can prepare |φ〉. Now consider a third preparation device that flips a weighted coin
that lands heads with probability w and tails with probability 1 − w. If the coin lands
heads, the state |ψ〉 is prepared, and if the coin lands tails then |φ〉 is prepared. The state
ρ prepared by this third preparation device is represented by the convex combination of
the states produced by the first two devices, that is ρ = w |ψ〉 〈ψ|+ (1− w) |φ〉 〈φ|.

Every density operator has to be positive semidefinite1 (i.e. its eigenvalues are all
greater than or equal to zero), denoted by ρ ≥ 0. If we are free to choose the definition
of the orthonormal basis {|0〉 , . . . , |d− 1〉}, then the most general density operator in d-
dimensional Hilbert space, is written as:

ρ =
d−1∑
i=0

wi |i〉 〈i| , (1.1)

1In this thesis, when referring to operators, we will use the terms “positive” and “positive semidefinite”
interchangeably.
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which must satisfy
∑

iwi = 1 and wi ≥ 0 since each wi represents a probability. From this
definition one can see that ρ is Hermitian (ρ = ρ†, where † denotes a conjugate transpose)
and has trace equal to one (Tr ρ = 1).

The decomposition of a density matrix (in the form of Eq. (1.1)) is not necessarily
unique. For example, consider the density operator ρmixed, which is an equal mixture of
two pure states, ρmixed = 1

2
|0〉 〈0| + 1

2
|1〉 〈1|. We can define the rotated basis {|+〉 , |−〉},

where |±〉 = |0〉±|1〉√
2

, and represent our state as ρmixed = 1
2
|+〉 〈+|+ 1

2
|−〉 〈−|.

1.1.2 Transformations of quantum states

A general state transformation Λ takes a state ρ to another valid state ρ′ = Λ(ρ). For
example, a pure state |ψ〉 can be transformed to another pure state |ψ′〉 via a unitary
operator U , |ψ′〉 = U |ψ〉 [5]. If ρ = |ψ〉 〈ψ| and ρ′ = |ψ′〉 〈ψ′|, then evolution from |ψ〉 to
|ψ′〉 in the density operator representation is ρ′ = UρU †.

It is also possible to take convex mixtures of unitary evolutions. For example, one could
consider, with probability w, transforming a state ρ with unitary U , and with probability
1 − w, transforming the state with unitary V . In this case the resulting state ρ′ is, in
general, mixed, and equal to:

ρ′ = wUρU † + (1− w)V ρV †. (1.2)

The most general form of a state transformation Λ is [5]:

Λ(ρ) =
∑
i

KiρK
†
i (1.3)

This is called the Kraus representation of Λ, and the set of operators {Ki}, are called the
Kraus operators. The Kraus operators are d × d, and they do not have to be unitary or
Hermitian. However, the full set must satisfy:∑

i

K†iKi = I, (1.4)

which, along with the fact that Tr ρ = 1 and ρ ≥ 0, ensures that Λ(ρ) is positive and trace
one [5] (I denotes the identity operator).
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1.1.3 Quantum measurements

A K-outcome quantum measurement, M , on a d-dimensional quantum system is repre-
sented with a set of d×d positive operators {E0, . . . , EK−1} with the outcomes {0, . . . , K−
1} assigned to each operator, respectively [5]. We call each Ek a measurement effect, and
we call the measurement M a positive operator-valued measure (POVM) (and sometimes
we will refer to the full set of effects {E0, . . . , EK−1} as a POVM as well). If a system in
state ρ is measured, the probability of getting outcome k is p(k|M,ρ) = Tr(ρEk).

Probabilities are positive, real numbers, (i.e. Tr(ρEk) ≥ 0 for any valid density operator
ρ), which implies that measurement effects must be positive operators: Ek ≥ 0. Also,
since the probability of the measurement returning any outcome is one, we must have
K−1∑
i=0

Tr(ρEk) = 1 which in turn implies
K−1∑
i=0

Ek = I.

A special type of quantum measurement is a projective valued measure (PVM). A PVM
in d-dimensional Hilbert space is represented with a set of k ≤ d effects, {Π0, . . . ,Πk−1},
satisfying Π2

i = Πi, for i ∈ {0, . . . , k−1}. A rank-1 PVM in d-dimensional Hilbert space is
represented with a set of d rank-1 effects, {Π0, . . . ,Πd−1}, with Pk = |k〉 〈k| for some choice
of orthogonal basis {|0〉 , . . . , |d− 1〉}. A rank-1 PVM can reliably distinguish between
states in this basis in a single-shot measurement, because Tr(Πk |l〉 〈l|) = δk,l.

For the sake of notational simplicity above, we labelled the outcomes of the measure-
ment M with {0, . . . , K − 1}, but of course we have the freedom to label the outcomes in
any way we want. Thus, we can label the outcomes of M as {m(k)}, where outcome m(k)
corresponds to effect Ek.

For an input state ρ the expectation value of a measurement, M , is calculated with

the formula
∑K−1

k=0 m(k) Tr(ρEk) = Tr
(
ρ
∑K−1

k=0 m(k)Ek

)
. We define the observable for

measurement M with OM =
∑K−1

k=0 m(k)Ek, which allows us to calculate the expected
value of measurement M as 〈OM〉 = Tr(ρOM).

1.1.4 The qubit

We will illustrate the above ideas using the d = 2 dimensional Hilbert space as an example.
A quantum system described by such a space is called a qubit. A pure qubit state is written
in the form α |0〉+β |1〉, where α and β are both complex numbers that satisfy |α|2+|β|2 = 1.

A general 2× 2 Hermitian operator can be written as a linear combination of the 2× 2
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identity operator, I, and the 2× 2 Pauli operators σx, σy, and σz [6], where

σx =

(
0 1
1 0

)
,

σy =

(
0 −i
i 0

)
,

σz =

(
1 0
0 −1

)
.

(1.5)

The Pauli operators are traceless, and they have eigenvalues +1 and −1. We define
the computational basis, {|0〉 , |1〉} as the eigenstates of σz. |0〉 is the eigenstate with
eigenvalue +1, and |1〉 is the eigenstate with eigenvalue −1. The +1 eigenstate of σx is
|+〉 = 1√

2
(|0〉+ |1〉) and the −1 eigenstate is |−〉 = 1√

2
(|0〉 − |1〉). The +1 eigenstate of σy

is |+i〉 = 1√
2

(|0〉+ i |1〉) and the −1 eigenstate is |−i〉 = 1√
2

(|0〉 − i |1〉).

Defining σ =
(
I σx σy σz

)
we can write a general trace-one Hermitian operator

as ρ = 1
2
r · σ, where r =

(
1 rx ry rz

)
is a real-valued vector termed the Bloch vec-

tor. The factor of 1
2

ensures that Tr(ρ) = 1, and the positivity constraint ρ ≥ 0 implies
that

√
r2
x + r2

y + r2
z ≤ 1. Thus a general qubit state is fully specified by the coordinates

(rx, ry, rz), which must lie within a sphere of radius 1. The state space for a qubit is termed
the Bloch sphere, displayed in Fig. 1.1(a). Pure states lie on the surface of the Bloch
sphere (

√
r2
x + r2

y + r2
z = 1), and mixed states are in the interior (

√
r2
x + r2

y + r2
z < 1). The

maximally-mixed state ρ = I/2 has a Bloch vector with magnitude zero and it lies at the
centre of the Bloch sphere.

Allowed unitary evolutions of a qubit have the form exp
{−in̂·σφ

2

}
, which describes a

rotation of the Bloch sphere by an angle φ about the axis defined by unit vector n̂ [6].
Note that such transformations cannot change the magnitude |r| of a Bloch vector, and
hence unitary transformations cannot change the mixedness of a state.

A general measurement effect E can also be represented2 as a linear combination of
the identity and the Pauli matrices, E = e ·σ, where e =

(
e0 ex ey ez

)
. The positivity

constraint Tr ρE ≥ 0 implies e0 ≥ 0 and
√
e2
x + e2

y + e2
z ≤ e0, which defines a 4-dimensional

cone with a spherical base that opens in the positive e0 direction and has its vertex at

2 Note that our definition of a qubit measurement effect E = e ·σ differs from the standard convention
used in quantum information theory, which is E = 1

2e · σ. Our choice of convention enables us to use the
identity Tr(ρE) = r · e, which will be useful in Chapters 3 and 5.

5



(a)

-1

1

-1
1 -1

1

rz

rx ry
0

1

-0.5
0.5 -0.5

0.5

e0

ex ey
-0.5

0.5

-0.5
0.5 -0.5

0.5

ez

ex ey

(b) (c)

Figure 1.1: Bloch representation of qubit states and measurements. (a) The Bloch sphere
represents the space of possible qubit states. (b), (c) Two three-dimensional projections
of the four-dimensional qubit measurement effect space, which we refer to as the Bloch
diamond.

e = (0, 0, 0, 0). The constraint Tr(ρE) ≤ 1 implies e0 ≤ 1 and
√
e2
x + e2

y + e2
z ≤ 1 − e0,

which is the 4-dimensional cone with spherical base that opens in the negative e0 direction
and has its vertex at e = (1, 0, 0, 0). The allowed values of e lie in the intersection of these
two cones, defining a 4-dimensional diamond with a spherical base, which we refer to as
the Bloch diamond and display in Fig. 1.1(b,c). Rank-1 projective measurement effects
(i.e. those which can be part of a rank-1 PVM), are found on the sphere defined by e0 = 1

2

and
√
e2
x + e2

y + e2
z = 1

2
.

1.2 Quantization of the electromagnetic field

In this section we will present the quantum description of electromagnetic fields, and we
follow the treatment presented in Refs. [7] and [8]. Classical electrodynamics is described
by Maxwell’s equations, which, in the absence of external fields or media (i.e. in vacuum),
are:

∇× E = −∂B

∂t
, (1.6)

∇×B = µ0ε0
∂E

∂t
, (1.7)

∇ ·B = 0, (1.8)

∇ · E = 0, (1.9)

where E is the electric field, B is the magnetic field, and µ0 and ε0 are the vacuum
permeability and permitivity, respectively.
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Consider a single-mode electromagnetic wave resonant in a cavity of length L, propa-
gating in the z-direction and polarized in the x-direction. The electric field of this wave,

Ex(r, t) = ex

√
2ω2

V ε0

q(t) sin(kz), (1.10)

and corresponding magnetic field,

By(r, t) = ey
µ0ε0

k

√
2ω2

V ε0

dq(t)

dt
cos(kz), (1.11)

is a solution to Maxwell’s equations. In the above, ex (ey) is the unit vector along the
x-axis (y-axis), and V is the effective volume of the cavity. ω is the frequency of the field,
c = 1√

µ0ε0
is the speed of light in vacuum, and k = ω/c is the wavenumber of the field. We

leave the quantity q(t) undefined for now, but note that it has units of length.

To quantize the field we begin with its classical Hamiltonian, given by:

H =
1

2

∫
dV

[
ε0E

2(r, t) +
1

µ0

B2(r, t)

]
(1.12)

For our single-mode field, the Hamiltonian simplifies to:

H =
1

2
(p2 + ω2q2), (1.13)

where we have made the substitution p(t) = dq(t)
dt

. The above Hamiltonian describes a
simple harmonic oscillator, and we interpret q(t) and p(t) as generalized position and
momentum, respectively. To quantize H, we make the replacement q(t)→ q̂(t) and p(t)→
p̂(t), which satisfy the canonical commutation relation [q̂, p̂] = i}. We now define the
operators

â =
1√
2}ω

(ωq̂ + ip̂), (1.14)

â† =
1√
2}ω

(ωq̂ − ip̂). (1.15)

These have commutation relation [â, â†] = 1 and can be used to rewrite Eq. (1.13) as

Ĥ = }ω
(
â†â+

1

2

)
. (1.16)
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We can find the time-evolution of â using the relation

dâ

dt
=
−1

i}
[Ĥ, â], (1.17)

which has the solution
â(t) = â(0)e−iωt. (1.18)

We can finally write the quantized form of the single-mode field (Eq. (1.10)) as:

Êx(r, t) = ex

√
}ω
V ε0

(âe−iωt + â†eiωt) sin(kz), (1.19)

where we have made the substitution q → q̂ and then the further substitution q̂ =
√

}
2ω

(â+

â†).

A full multi-mode treatment of the field quantization, (and dropping the arguments r
and t for notational simplicity), results in the following expression for the electric field [7]:

E = i
∑
k,s

√
}ωk

2ε0

ek,s

(
âk,se

i(k·r−ωt) + â†k,se
−i(k·r−ωt)

)
. (1.20)

Here, each modes is labelled by its wavevector k and polarization s. There are two values for
s, and they denote orthogonal polarizations. We will later find it convenient to write E as

a sum of two components, E = E(+) + E(−), where E(+) = i
∑

k,s

√
}ωk

2ε0
ek,sâk,se

i(k·r−ωt) and

E(−) = i
∑

k,s

√
}ωk

2ε0
ek,sâ

†
k,se

−i(k·r−ωt), are the positive and negative frequency components

of the electric field, respectively.

1.2.1 Number states

A number state (or Fock state) is an energy eigenstate of the quantized harmonic oscillator.
We write |n〉 as the eigenstate of the simple harmonic oscillator Hamiltonian (Eq. (1.16))
with energy En such that Ĥ |n〉 = En |n〉. Left-multiplying both sides of the eigenvalue
equation by â and applying the commutation relation [â, â†] = 1 gives:

Ĥâ |ψn〉 = (En − }ω)a |n〉 . (1.21)

A similar equation can be found by mutiplying by â† instead:

Ĥâ† |ψn〉 = (En + }ω)â† |n〉 . (1.22)
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Thus, â† adds an excitation of energy }ω to the field, and â removes an excitation of the
same energy. We interpret an excitation of energy }ω as a photon, and we call â and â†

the annihilation and creation operator, respectively.

We denote |n− 1〉 and |n+ 1〉 as the eigenstates with energies En − }ω and En + }ω,
respectively. The specific effect â and â† have on energy eigenstate |n〉 are [7]:

â |n〉 =
√
n |n− 1〉 (1.23)

â† |n〉 =
√
n+ 1 |n+ 1〉 . (1.24)

This implies that 〈n| â†â |n〉 = n, and we define the number operator n̂ = â†a. The
ground (or vacuum) state of the quantum harmonic oscillator, denoted |0〉, has energy }ω

2
.

Eigenstate |n〉 is a state of n photons, and it has energy }ω(n+ 1
2
).

1.2.2 Coherent states

Another interesting state of light is the coherent state, which is a good representation of
the light emitted by a laser [9]. A coherent state |α〉 is defined as an eigenstate of the
annihilation operator â, with eigenvalue α. That is, â |α〉 = α |α〉. We can write a coherent
state as a superposition of Fock states:

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 . (1.25)

Here, α is a complex number that represents the amplitude of the coherent state. The
mean number of photons in a coherent state is given by the expectation value of the
number operator, 〈α| n̂ |α〉 = 〈α| â†â |α〉 = |α|2. The variance in the photon number is
given by 〈α| n̂2 |α〉 − 〈α| n̂ |α〉2 = |α|2, which is equal to the mean photon number. In fact,
the photon number distribution of a coherent state is represented by a Poisson distribution
with mean |α|2.

Consider the operator ââ†. Its expectation value for coherent state |α〉 is 〈α| ââ† |α〉 =
〈α| â†â + 1 |α〉 = |α|2 + 1. In the strong coherent state limit |α|2 � 1, we can make the
approximation |α|2 + 1 ≈ |α|2, or equivalently, â† |α〉 ≈ α∗ |α〉. We will make use of this
approximation in Section 1.3.1.

1.2.3 Second-order coherence measurement

Consider the number state |1〉 and the coherent state |α〉 with |α|2 = 1. Their overlap
is | 〈1 | α〉 |2 = e−1 ≈ 0.368. However, a measurement of the average photon number
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cannot distinguish these states, since they both have mean photon number 〈n̂〉 = 1. Thus
some other measurement is required in order to tell these two states apart. One such
measurement [8, 10] is the second-order coherence, g(2)(0), which is defined as3:

g(2)(0) =

〈
â†â†ââ

〉
〈â†â〉 〈â†â〉

. (1.26)

A simple calculation shows that for the coherent state |α〉 we have g(2)(0) = 1, regardless

of the value of α, and for a number state |n〉 we have g(2)(0) = n(n−1)
n2 = 1− 1

n
. Hence our

coherent state with α = 1 has a second-order correlation of 1, and our single-photon state
|1〉 has a second-order correlation of 0. Measuring the second-order coherence function of
a photon source can be an effective way to characterize the single-photon nature of the
source.

Hanbury-Brown–Twiss interferometer

In order to measure the second-order coherence we use the Hanbury-Brown–Twiss inter-
ferometer [10] pictured in Fig. 1.2(a). The source emits light into the signal mode, s. The
signal mode enters one of two inputs to a beamsplitter, with vacuum in the other input
mode, v. After propagating through the beamsplitter, the input modes are transformed
into the output modes â1 and â2 according to:

âs →
1√
2

(â1 + â2) (1.27)

âv →
1√
2

(â1 − â2). (1.28)

We can also define the corresponding back-propagating transformations:

â1 →
1√
2

(âs + âv) (1.29)

â2 →
1√
2

(âs − âv). (1.30)

3One can also define a second-order coherence that depends on a time delay τ as g(2)(τ) =
〈â†(t)â†(t+τ)â(t)â(t+τ)〉
〈â†(t)â(t)〉〈â†(t+τ)â(t+τ)〉 [8, 10]. In this thesis we will only be concerned with time delays of τ = 0, and we

drop the t dependence on the right-hand side of the equation to simplify the notation. However, we write
g(2)(0) to be clear that we are considering the case with zero time delay.
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Figure 1.2: Hanbury-Brown–Twiss interferometer for measurement of the second-order
coherence function. (a) Setup for measurement of second-order coherence, g(2)(0). (b)

Setup for measurement of heralded second-order coherence, g
(2)
h (0).

The detectors used are bucket detectors, which “click” with some probability η when
one or more photons are incident upon them, and otherwise they “don’t click”4. Such a
detector can be modelled by the POVM {η(I− |0〉 〈0|), |0〉 〈0|+ (1− η)(I− |0〉 〈0|)}. Note

that back-propagation through the beamsplitter transforms the quantity 〈n̂12〉
〈n̂1〉〈n̂2〉 as:

〈n̂12〉
〈n̂1〉 〈n̂2〉

=

〈
â†1â

†
2â1â2

〉
〈
â†1â1

〉〈
â†2â2

〉 (1.31)

=
1
4

〈
(â†s + â†v)(â

†
s − â†v)(âs + âv)(âs − âv)

〉
1
2

〈
(â†s + â†v)(âs + âv)

〉
1
2

〈
(â†s − â†v)(âs − âv)

〉 (1.32)

=

〈
â†sâ
†
sâsâs

〉〈
â†sâs

〉〈
â†sâs

〉 , (1.33)

which has the same form as Eq. (1.26). To go from the second to third line above we
used the fact that input mode v is in the vacuum state. If we measure detector clicks
for a short period of time w (which we call a coincidence window), then we can interpret
〈n̂12〉
〈n̂1〉〈n̂2〉 as p(12)

p(1)p(2)
, where p(1) (p(2)) is the probability of detector d1 (d2) emitting a click

during the window, and p(12) is the probability of both detectors clicking during the

4In practice, all detectors also have dark counts, which are false “clicks” that can be produced even
when no light is incident upon the detectors. Here we will assume that these dark counts are negligible.
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window. These probabilities can be measured5 by recording the number of single (n1 and
n2) and coincident (n12) clicks for some set period of time t and dividing by the number
of coincidence windows that occurred during the measurement time (t/w), such that:

g(2)(0) =
p(12)

p(1)p(2)
=

n12/(
t
w

)

(n1/(
t
w

))(n2/(
t
w

))
=
n12( t

w
)

n1n2

. (1.34)

Some light sources are operated in a heralded manner. Such sources will emit light in
two modes, one labelled the signal mode, and the other the idler mode, and some event
in the idler mode will herald the presence of the desired state in the signal mode. The
second-order correlation of such sources must also be measured in a heralded manner, and
is defined as [11, 12]:

g
(2)
h (0) =

p(12|h)

p(1|h)p(2|h)
, (1.35)

where we have now conditioned the probabilities p(12), p(1), and p(2) on the occurence of
the heralding event. These probabilities can be expressed as p(12|h) = n12h/nh, p(1|h) =
n1h/nh, and p(2|h) = n2h/nh, where nh represents the number of heralding events, and
the n’s with multiple subscripts represent coincident detection and heralding events. This
leads us to the following expression for g

(2)
h (0), in terms of experimentally observed events:

g
(2)
h (0) =

n12hnh
n1hn2h

. (1.36)

The setup in Fig. 1.2(b) can be used to measure the heralded second-order coherence
function, if we define a “click” from detector dh as the heralding event.

1.3 Three-wave mixing

One method of creating photon number states is to impinge a coherent laser beam on a
nonlinear crystal where it will be probabilistically transformed into photon pairs via the
process called spontaneous parametric downconversion (SPDC). This process is described
by the three-wave mixing Hamiltonian. We will very briefly discuss the classical description
of three-wave mixing, and then discuss its quantum description.

When a classical electric field E(t) interacts with a nonlinear medium it can induce a
polarization P(t) in the medium that depends on the input field in a nonlinear way. We

5The described method for measuring p(12), p(1), and p(2) is valid for a weak source with p(1) and
p(2)� 1.
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can expand the i-th component of P(t), Pi(t), as a function of powers of the components
of E(t) [13] as follows:

Pi(t) = ε0(χ
(1)
ij Ej(t) + χ

(2)
ijkEj(t)Ek(t) + χ

(3)
ijklEj(t)Ek(t)El(t) + . . . ), (1.37)

where summation over repeated indices is implied, and the coefficients χ(i) are tensors that
determine the strength of each term of the expansion.

The classical energy density, U , of the electric field, is given by [13]:

U =
1

2
〈(ε0E + P) · E〉t , (1.38)

where 〈·〉t denotes a time average. If the input electric field has multiple frequency com-
ponents such that Ei(t) =

∑
nEi(ωn)e−iωt, then the expression for U becomes [13]:

U =
ε0

2

∑
n

χ
(1)
ij E

∗
i (ωn)Ej(ωn) +

ε0

3

∑
mn

χ
(2)
ijkE

∗
i (ωm + ωn)Ej(ωm)Ek(ωn) + · · · , (1.39)

where we again sum over repeated indices, and have assumed that the χ(i)’s have negligible
frequency dependence. The χ(1) term describes conventional linear optics. The next term
describes mixing between fields with frequencies ωm, ωn, and ωm + ωn, which is referred
to as three-wave mixing. The classical hamiltonian H is found by integrating the energy
density over the effective volume of the fields, H =

∫
V
dV U .

We will consider the case where a pump beam with frequency ωp interacts with beams
in two lower-frequency modes ωs and ωi, such that ωp = ωs + ωi. Furthermore, we will

assume that each field is polarized so we can replace the term χ
(2)
ijkE

∗
i (ωp)Ej(ωs)Ek(ωi) with

χ
(2)
effE

∗
pEsEi, where the subscripts p, s, and i now label the three different modes. If we

separate H into the linear term H0 and the nonlinear term H ′, such that H = H0 + H ′,
and truncate our expansion at the χ(2) term, then we have:

H ′ =
ε0

3
χ

(2)
eff

∫
V

dV χ
(2)
effE

∗
pEsEi. (1.40)

1.3.1 Spontaneous parametric downconversion

The quantized three-wave mixing Hamiltonian Ĥ is found by moving to the interaction
picture [8] and making the substitution E → Ê(+) + E(−) in Eq. (1.40), to arrive at:

Ĥ ′ =
ε0

3
χ

(2)
eff

∫
V

dV Ê(−)
s Ê

(−)
i Ê(+)

p + Ê(+)
s Ê

(+)
i Ê(−)

p , (1.41)
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where we have only kept the two terms which conserve energy.

We will assume that the signal and idler modes are initially in the vacuum state, and
that the pump mode contains a strong coherent laser beam |α〉p with |α|2 � 1. We
will assume the interaction is weak, and that α stays relatively constant throughout the
interaction (this is called the undepleted pump approximation). We use the strong coherent
state approximation to make the substitution âp |α〉p → α∗ |α〉p (see Section 1.2.2). Finally,

remembering that E(+) ∝ â and E(−) ∝ â†, we can rewrite Ĥ ′ as:

Ĥ ′ = gâ†sâ
†
i + g∗âsâi, (1.42)

where we have absorbed all constants above into the single complex number g. We note
that g ∝ α∗, and thus the strength of the interaction can be tuned with the strength of
the pump field.

Thus the initial state |ψ(0)〉 = |0〉s |0〉i evolves under Ĥ ′ as

|ψ(t)〉 = exp

{
− i
}
t(gâ†sâ

†
i + g∗âsâi)

}
|0〉s |0〉i . (1.43)

This evolution is identical to the two-mode squeezing unitary U(ξ) = exp
{
ξâ†sâ

†
i − ξ∗âsâi)

}
,

if we make the substitution − i
}tg = reiθ = ξ. The two-mode squeezing operator has the

following effect on the initial state: [7]

U(ξ) |0〉s |0〉i =
√

1− |γ|2
(
|0〉s |0〉i − γ |1〉s |1〉i + γ2 |2〉s |2〉i − . . .

)
, (1.44)

where γ = −eiθ tanh r. The interpretation of the χ(2) interaction is that, with some prob-
ability, a single photon in the pump beam is downconverted into a pair of signal and idler
photons. Since this process is probabilistic, the probability of downconverting two pairs
is the square of the probability of downconverting one pair. For a weak interaction, the
signal and idler modes after the crystal are mostly vacuum, and the next leading-order
term is a single photon pair.

1.3.2 Heralded SPDC source

If we place an ideal detector in the idler arm, wait for it to “click”, and then trace out the
idler mode, the state remaining in the signal mode will be:

ρs ∝ Tri[(I− |0〉 〈0|)U(ξ) |0〉s |0〉i] (1.45)

= (1− |γ|2)
(
|1〉s 〈1|s + |γ|2 |2〉s 〈2|s + . . .

)
, (1.46)
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which has a high overlap with the single photon state |1〉s when |γ|2 is not too large. Thus,
heralding an SPDC state is an effective way of producing a single photon state.6

We can estimate the relative frequency of single to double pairs in the SPDC state with
the heralded second-order coherence measurement (see Fig. 1.2(b)) and Eq. (1.36)). We
assume that |γ| � 1, and neglect the terms with three or more photon pairs. We also
assume that we use a continuous wave pump laser, which implies that the downconversion
probability is constant in time7. Finally, we choose a coincidence window length w that is
much greater than the coherence time of the signal and idler mode photons. Under this
condition, we can assume that if two pairs are created during one coincidence window they
will not interfere with each other. The efficiencies of detectors d1, d2, and dh are η1, η2, and
ηh, respectively. Let • denote the case when the source produces one pair, and •• the case
when two pairs are produced. These events have probabilities p(•) ∝ |γ|2 and p(••) ∝ |γ|4.
The expected numbers of measured counts are proportional to the following probabilities:

nh ∝ p(h|•)p(•) + p(h| • •)p(••) (1.47)

n1h ∝ p(1|•)p(h|•)p(•) + p(1| • •)p(h| • •)p(••) (1.48)

n2h ∝ p(2|•)p(h|•)p(•) + p(2| • •)p(h| • •)p(••) (1.49)

n12h ∝ p(12|•)p(h|•)p(•) + p(12| • •)p(h| • •)p(••). (1.50)

The probability of detector dh clicking when one pair is produced is p(h|•) = ηh. For
detectors d1 and d2 the corresponding probabilities are p(i|•) = ηi

2
(for i = 1, 2), where the

extra factor of 1
2

is due to the 50% transmission/reflection probability at the beamsplitter.
When two pairs are produced, the probability of detecting a coincidence between detectors
d1 and d2 is the probability that the signal photon from the first pair is transmitted at the
beamsplitter and detected by d1 multiplied by the probability that the photon from the
second pair is detected at d2, plus the probability that the first signal photon is detected by
d2 times the probability that the second is detected by d1. Thus, p(12| • •) = η1

2
η2
2

+ η2
2
η1
2

.
Finally, p(h| • •), is the probability that the idler photon from the first pair makes dh
click, plus the probability that the idler photon from the first pair doesn’t make dh click
multiplied by the probability that the idler photon from the second pair does [16]. Thus,
p(h| • •) = ηh + (1− ηh)ηh ≈ 2ηh, where we have made the additional approximation that
ηh � 1.

Substituting these probabilities into Eqs. (1.47)-(1.50), and only keeping terms of

6The specific heralded SPDC source used for the experiments in this thesis is detailed in Refs. [14]
and [15].

7If the pump laser is pulsed, then photon pairs are only produced during the lifetime of the pump
pulses, and not in between pulses.
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lowest-order in |γ|2 we find:

nh ∝ |γ|2ηh (1.51)

n1h ∝ |γ|2
η1

2
ηh (1.52)

n2h ∝ |γ|2
η2

2
ηh (1.53)

n12h ∝ |γ|4η1η2ηh, (1.54)

(1.55)

which implies that, for a heralded SPDC source:

g
(2)
h (0) ≈ 4|γ|2. (1.56)

Finally, we arrive at the ratio of single pairs to double pairs produced by the source, R1:2,
as a function of the heralded g(2) measurement:

R1:2 ≈
1

|γ|2
≈ 4

g
(2)
h (0)

. (1.57)

1.4 Photon polarization

A photon’s polarization state is the direction in which the electric field oscillates, and it
is possible to manipulate polarization to encode quantum information. If the electric field
oscillates horizontally (with respect to some reference, say for example the plane of the
optical table over which the photon is travelling) we can say the photon is in polarization
state |H〉. Conversely, if the field instead oscillates vertically, we say the photon has
polarization state |V 〉. A photon can also be in a superposition of polarization states. For
example, diagonally polarized light has state |D〉 = 1√

2
(|H〉 + |V 〉), and anti-diagonally

polarized light has state |A〉 = 1√
2
(|H〉 − |V 〉). We can also take superpositions with

complex coefficients: right-circular polarized light has state |R〉 = 1√
2
(|H〉 + i |V 〉), and

left-circular light has state |L〉 = 1√
2
(|H〉 − i |V 〉).

The states |H〉 and |V 〉 are orthogonal, and if we make the assignments |H〉 = |0〉 and
|V 〉 = |1〉, we see that |D〉 = |+〉, |A〉 = |−〉, |R〉 = |+i〉, and |L〉 = |−i〉. The full space
of allowed polarization states forms a sphere, called the Poincaré sphere [17]. There is a
one-to-one correspondance between the Bloch sphere and the Poincaré sphere, and thus a
polarization-encoded single photon is a qubit.
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1.4.1 Manipulating polarization with birefringent materials

Polarization states can be manipulated with birefringent materials, that is, materials for
which orthogonal polarizations travel at different speeds. A waveplate is a birefringent
material, which has fast and slow axes that are perpendicular to each other. Light polarized
parallel to the fast axis experiences one index of refraction nf while it is in the waveplate,
and light polarized parallel to the slow axis experiences index ns. If the waveplate is aligned
such that the fast axis is aligned horizontally, then the vertically-polarised component of
a photon passing through it is delayed relative to the horizontal component by a phase of
φ = nsω

c
L− nfω

c
L. This transformation is captured by the unitary,

Uφ =

(
ei

nfω

c
L 0

0 ei
nsω
c
L

)
, (1.58)

=

(
1 0
0 e−iφ

)
, (1.59)

where we have ignored an unimportant global phase to write the second line. If the
waveplate is rotated by an angle θ about the direction of light propagation then the unitary
becomes:

Uφ(θ) =

(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 e−iφ

)(
cos θ sin θ
− sin θ cos θ

)
(1.60)

=

(
cos2 θ + e−iφ sin2 θ cos θ sin θ(1− e−iφ)
cos θ sin θ(1− e−iφ) e−iφ cos2 θ + sin2 θ

)
(1.61)

A waveplate for which φ = π is called a half waveplate, with unitary:

UH(θ) =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
. (1.62)

Similary, a quarter waveplate (φ = π/2) has unitary:

UQ(θ) =

(
cos2 θ − i sin2 θ (1 + i) cos θ sin θ

(1 + i) cos θ sin θ −i cos2 θ + sin2 θ

)
, (1.63)

A general single-qubit unitary U can be decomposed as a product of three waveplate
unitaries, U = UQ(θ3)UH(θ2)UQ(θ1), and thus an arbitrary polarization rotation can be per-
fomed with one half and two quarter waveplates [18]. The related problem of transforming
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H Q PBSHQPBS

(a) (b)

Figure 1.3: Preparation and measurement of polarization states of light. (a) A polarizing
beamsplitter, quarter waveplate, and half waveplate can prepare any pure polarization
state. (b) A half waveplate, quarter waveplate, polarizing beamsplitter, and two detectors
can measure any polarization state. PBS: polarizing beamsplitter; Q: quarter waveplate;
H: half waveplate.

a known linear polarization state into an arbitrary pure target state can be solved using
only two waveplates [19, 17]. For example, if we start with horizontally polarized light and
pass it through a quarter waveplate and then a half waveplate, any pure polarization state
can be created by independently tuning the waveplate angles. This process also works
in reverse: an arbitrary pure polarization state can be rotated to horizontal polarization
with a half and then quarter waveplate. With the addition of a polarizing beamsplitter (a
device which transmits horizontally-polarized light and reflects vertically-polarized light),
we can prepare and measure any polarization state, with a setup as depicted in Fig. 1.3.

1.5 Maximum likelihood quantum tomography

The process of inferring, from data, a quantum description of an experimental procedure
is called quantum tomography. Quantum tomography can be divided into three main
categories: state [20, 21, 22, 23, 24], process [25, 26, 27, 28], and measurement [29, 30, 31, 32]
tomography.

In this section we present tomography methods that rely on the maximum likelihood
principle. This principle states that the best estimate of the set of operators describing a
set of data is the set of operators that has the highest likelihood of producing that data.
Thus, for maximum likelihood quantum tomography, the tomography procedure always
contains an optimization step for which one has to find an optimal set of quantum states,
transformations, and/or measurements among the state, transformation and measurement
spaces allowed by quantum theory.
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In this section we will describe the minimal sets of data that must be collected for the
different types of maximum likelihood quantum tomography, and then define the optimiza-
tion problem that must be solved.

1.5.1 Quantum state tomography

A d-level quantum system is described by a d × d density operator ρ. The constraint
Tr ρ = 1 implies that only d − 1 real numbers are necessary to uniquely determine the d
diagonal entries, and d(d−1) real numbers are needed for the d(d−1)/2 complex numbers
above the diagonal. Since ρ is Hermitian, the entries above the diagonal determine the
entries below the diagonal. Thus ρ is described by d2 − 1 real parameters.

A set of d2− 1 linearly-independent measurement effects is called tomographically com-
plete for a d-level quantum system, because the measurement-outcome probabilities for such
a set of effects uniquely determine ρ. (In practice, d2 effects are often required for normal-
ization). These measurement-outcome probabilities can only be approximately measured
in practice, due to statistical noise in the measurements.

Consider an experiment in which many copies of an unknown state ρ are created, and
each state is measured by one of m measurement devices Mi, for i ∈ {1, . . . ,m}. The i-th
measurement Mi has K outcomes, and it is described by the (known) set of POVM effects

{E(i)
1 , . . . , E

(i)
K }. The set of measurements Mi is tomographically complete if the set of all

effects describing all measurements Mi contains a set of d2 linearly independent effects.
Assume N copies of the state are measured by device Mi, and let n

(i)
k be the number of

times outcome k was returned. Then, if ~n is a string describing the measurement outcomes
for all measurements on all copies of the state, the probability of obtaining ~n is [21]:

p(~n|ρ) =
m∏
i=1

K∏
k=1

Tr(ρE
(i)
k )n

(i)
k , (1.64)

where ρ is the unknown quantum state of the system.

The maximum likelihood estimate ρ̂ of the true density matrix ρ, given the data ~n, is
the operator ρ̂ which maximizes the quantity p(~n|ρ̂). Thus, the procedure for maximum
likelihood quantum state tomography is to first gather measurement-outcome statistics
for d2 linearly independent measurement effects, then find the ρ̂ maximizing Eq. (1.64).
In practice, to ensure that ρ̂ is positive-definite, Hermitian, and has trace 1, it can be
parameterized using the Cholesky decomposition ρ̂ = T †T

Tr(T †T )
, where T is a d × d lower-

triangular complex matrix with real numbers on the diagonal [21].
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Single qubit maximum likelihood state tomography

If we assume an explicit error model for an experiment then Eq. (1.64) can be simplified.
Let’s consider the example of measuring the polarization of a single photon [24]. We
will assume that we have a single photon source that produces photons in the (unknown)
polarization state ρ with some constant average rate, and that we can send these photons
into a measurement device and count the number of photons for which a specific outcome
k is returned. The number of times, nk, that the k-th outcome is observed is an estimate
of the expected number of outcomes n̄k = N Tr(ρEi). N can be estimated by measuring
the source’s photon production rate, the overall system efficiency, and the measurement
time.

The number statistics of photons produced via SPDC in a nonlinear crystal pumped
by a strong coherent state are described by a Poissonian distribution. We will assume that
the expected number of outcomes n̄k is large enough to approximate the distribution of
observed outcomes nk by the Gaussian distribution with mean and variance n̄k:

p(nk|ρ) =
1

Nnorm

exp

{
−(nk − n̄k)2

2n̄k

}
(1.65)

where Nnorm is a normalization constant.

Now consider performing a series of independent measurements of the probabilities
Tr(ρEk) for a tomographically complete set of measurement effects {E1, . . . , En}. (Here,
the set {E1, . . . , En} doesn’t have to represent the set of effects for a single POVM, it can be
a set of effects from multiple POVMs.) If ~n is a string encoding the observed measurement
outcomes, the likelihood function is given by:

p(~n|ρ) =
1

Nnorm

n∏
k=1

exp

{
−(nk − n̄k)2

2n̄k

}
(1.66)

If the photon production rate and overall system efficiency stay constant throughout the
data-collection process, this function becomes:

p(~n|ρ) =
1

Nnorm

n∏
k=1

exp

{
−(nk −N Tr (ρEk))

2

2N Tr (ρEk)

}
. (1.67)

The operator ρ̂ that maximizes the above function is the maximum likelihood estimate
of the true state ρ. The problem of maximizing the above likelihood function is equivalent to
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maximizing its logarithm, or equivalently, solving the following minimization problem [24]:

minimize :
ρ̂

n∑
k=1

(nk −N Tr (ρ̂Ek))
2

N Tr (ρ̂Ek)
. (1.68)

In practice, the minimization is solved by numerical methods, and the parameterization
ρ̂ = T †T

Tr(T †T )
is used to ensure that the positivity and trace-one constraints on ρ are met.

1.5.2 Quantum measurement tomography

Measurement tomography is the dual problem to state tomography. The goal is to infer the
quantum description of an unknown measurement effect from data collected by measuring
a known set of states.

Consider the problem of characterizing an unknown measurement device in a d-dimensional
Hilbert space with K outcomes. This device is described by a POVM with K effects,
{E1, . . . , EK}. Each effect is a d × d, positive, Hermitian matrix, that is described by d2

real parameters, and hence a tomographically complete set of states contains d2 linearly
independent members. The set of measurement effects have the additional constraint that

they must sum to the identity (i.e.
K∑
k=1

Ek = I).

Let ρ(i) be a member of a tomographically complete set of states {ρ(1), . . . , ρ(m)}. As-
sume that many copies of a system prepared in state ρ(i) are sent into the uncharacterized
measurement device, and that each outcome is observed n

(i)
k times. If ~n is a string that

encodes the full set of observed outcomes, then the probability of obtaining a specific value
of ~n is [30]:

p(~n|{E1, . . . , EK}) =
m∏
i=1

K∏
k=1

Tr(ρ(i)Ek)
n
(i)
k . (1.69)

The maximum likelihood estimate of the true POVM is the set {Ê1, . . . , ÊK} that maxi-
mizes p(~n|{Ê1, . . . , ÊK}).

To ensure that each measurement effect is positive and Hermitian, we once again use
the parameterization Ek = T †kTk for the first K − 1 effects (where, again, Tk is a lower-
triangular complex matrix with real entries on the diagonal). The K-th effect is determined
by the first K − 1 effects, and is given by:

EK = I−
K−1∑
k=1

T †kTk. (1.70)
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This parameterization doesn’t guarantee that the effect EK will be positive, so the con-
straint EK ≥ 0 must be included when maximizing Eq. (1.69).

If we assume Poissonian counting statistics (as we did above for state tomography),
we can recast the maximum-likelihood quantum measurement tomography problem as the
following minimization problem:

minimize :
{Ê1,...,ÊK}

m∑
i=1

K∑
k=1

(n
(i)
k −N Tr (ρ(i)Êk))

2

N Tr (ρ(i)Êk)
, (1.71)

subject to :EK ≥ 0. (1.72)

1.5.3 Quantum process tomography

The final piece in the quantum tomography puzzle is quantum process tomography, which
is the process of characterizing an unknown quantum transformation from a set of experi-
mental data. As we saw earlier, a general quantum channel Λ that transforms a state ρ to
another state Λ(ρ) can be represented by a series of Kraus operators {Ki} such that:

Λ(ρ) =
∑
i

KiρK
†
i . (1.73)

In order to preserve the trace of the output state, the Kraus operators have to satisfy∑
i

K†iKi = I. (1.74)

It is convenient to write Λ in a different form, which we achieve by first representing
each Kraus operator as a linear combination of the Pauli operators8 which we denote by
{σ1, . . . , σd2}:

Ki =
d2∑
j=1

aijσj. (1.75)

This allows us to rewrite Λ as [25]:

Λ(ρ) =
d2∑
j=1

d2∑
k=1

χjkσjρσk, (1.76)

8We have switched to a slightly different notation than in Eq. (1.5). Here, the set of d-dimensional
Pauli’s {σ1, . . . , σd2} includes the identity matrix, and it forms a basis for d-dimensional Hermitian matri-
ces.

22



where χjk =
d2∑
i=1

aija
∗
ik. This defines the process matrix, χ, which is what we want to

reconstruct. The process matrix χ is a Hermitian, positive semi-definite matrix with size
d2 × d2 [5]. The constraint in Eq. (1.74) implies that

d2∑
j,k=1

χjkσkσj = I, (1.77)

which defines d2 constraints on χ. Thus, χ has a total of d4−d2 = d2(d2−1) free parameters,
and since it is Hermitian and positive semidefinite we can parameterize it with the Cholesky
decomposition χ = T †T .

To perform process tomography, one subjects each of a tomographically complete set
of states to the unknown transformation Λ, and then performs state tomography on the
output, which requires data to be collected for at least d2 measurement effects on each of
d2 states. Let ρa represent the a-th state, and Eb be the b-th measurement effect, and nab
be the number of counts recorded when effect Eb is applied to the transformed state Λ(ρa).

The expected number of counts n̄ab is given by N Tr

(
d2∑

j,k=1

χjkσjρaσkEb

)
. Again assuming

that the measured counts nab follow a Gaussian distribution with mean and variance n̄ab,
the probability of obtaining a string of measurement outcomes ~n is:

p(~n|χ) =
1

Nnorm

exp

{
−
∑
a,b

(nab − n̄ab)2

2n̄ab

}
. (1.78)

If we multiply both sides of equation (1.77) by σl and take the trace, we see that [33, 28]
d2∑

j,k=1

Tr(χjkσjσkσl) − Tr(σl) = 0, which defines one constraint for each of the d2 σk’s.

These constraints can be enforced by use of a Lagrange multiplier, λ [28], such that the
minimization problem we must solve for maximum likelihood quantum process tomography
is:

minimize :
χ̂

∑
a,b

[
nab −N Tr

(
d2∑

j,k=1

χ̂jkσjρaσkEb

)]2

N Tr

(
d2∑

j,k=1

χ̂jkσjρaσkEb

) +λ
d2∑
l=1

(
d2∑

j,k=1

Tr(χ̂jkσjσkσl)− Tr(σl)

)2

.

(1.79)
The process matrix χ̂ that solves the above problem is the maximum-likelihood estimate
of the unknown quantum process.
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1.5.4 Gate set tomography

The three tomography schemes presented above all require assumptions about some of the
components in the experimental setup: state tomography requires a set of well-characterized
measurements, and measurement tomography requires a set of well-characterized states.
Process tomography has the most assumptions, as it requires accurate quantum descrip-
tions of both states and measurements. If one has an experimental setup where neither the
states nor measurements are well-characterized, a different tomography scheme is needed.
One such scheme is known as gate set tomography [34, 35, 36, 37], which can simultane-
ously find maximum-likelihood estimates of a set of states, measurements, and quantum
processes (or gates).

The setup is as follows: one has a single state preparation device which prepares un-
known state ρ, and a single unknown measurement device with an unknown measurement
effect E. In addition, one has a set of uncharacterized quantum processes G which can
be individually applied to the system any number of times before it is measured. A
given member, Gi, of the set G can be represented with the process matrix χ(Gi), where

Gi(ρ) =
∑d2

j,k=1 χ
(Gi)
jk σjρσk.

We identify a set F ⊂ G whose elements allow us to transform our initial state ρ
into each of a tomographically complete set of states. Then, to perform gate set to-
mography we must measure the quantities nijk, which are the number of outcomes ob-
tained when the state ρ is subjected to transformation Fi, then Gj, and then Fk be-
fore being measured with the effect E. The expected number of outcomes is given by

n̄ijk = N Tr
(∑

mnstqr χ
(Fk)
st χ

(Gj)
qr χ

(Fi)
mn σsσqσmρσnσrσtE

)
. If the quantity ~n encodes the data

obtained after measuring nijk for all possible values of i, j, and k, then the probability of
obtaining ~n, given values for ρ, E, and G is:

p(~n|ρ, E, χ(G1), . . . , χ(Gg)) =
1

Nnorm

exp

{
−

f∑
i,k=1

g∑
j=1

(nijk − n̄ijk)2

2n̄ijk

}
, (1.80)

where we have assumed that F and G have f and g elements, respectively.

The maximum-likelihood estimates of the state, measurement, and transformations
in the experiment is {ρ̂, Ê, χ̂(G1), . . . , χ̂(Gg)}, and these are the solution to the following
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minimization problem [36]:

minimize :
{χ̂(Gj),ρ̂,Ê}

f∑
i,k=1

g∑
j=1

[
nijk −N Tr

(∑
mnqrst χ̂

(Fk)
st χ̂

(Gj)
qr χ̂

(Fi)
mn σsσqσmρ̂σnσrσtÊ

)]2

(∆nijk)2
, (1.81)

subject to :
d2∑

q,r=1

Tr(χ̂(Gi)
qr σqσrσl)− Tr(σl) = 0 ∀i ∈ {1, . . . , g} , l ∈ {1, . . . , d2} (1.82)

Tr ρ̂ = 1, (1.83)

I− Ê ≥ 0. (1.84)

We have assumed that ρ̂, Ê, and each χ̂(Gi) is parameterized with the Cholesky decompo-
sition, which ensures these matrices are all positive semidefinite and Hermitian. The first
set of constraints ensure that the constraint of Eq. (1.77) is satisfied for every χ̂(Gi), and
the second constraints ensures that ρ̂ is a valid density operator, and the third that Ê is a
valid measurement effect.

Note also that the denominator of Eq. (1.81) is (∆nijk)
2, instead of n̄ijk as in Eq. (1.80).

∆nijk is an estimate of the uncertainty in the measurement of nijk, and, if the maximum
likelihood estimate fits the data well, (∆nijk)

2 should be approximately equal to n̄ijk. The
minimization problem for gate set tomography is more complicated than the corresponding
ones in quantum state, measurement, or process tomography, and can be difficult to solve
numerically. Using (∆nijk)

2 instead of n̄ijk simplifies the optimization without sacrificing
too much accuracy [36].
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Chapter 2

Hidden variable models of quantum
theory

In Chapter 1 we saw that outcomes of projective quantum measurements are, in general,
probabilistic in nature. (In fact, a projective measurement only has a deterministic out-
come when the system being measured was prepared in an eigenstate of the measurement
operator.) Quantum theory’s explanation of this randomness is that upon encountering a
measurement device, the system under measurement is instantly and probabilistically pro-
jected into one of the eigenstates of the operator describing the measurement. The words
“instantly and probabilistically” make this explanation unsatisfactory. Classical intuition
dictates that natural processes happen smoothly and continuously, and at first glance, the
discontinuous jump from quantum state to measurement-operator-eigenstate is unsettling.
Quantum theory accurately predicts the values of measurement outcome probabilities, but
it offers no explanation of the underlying mechanism taking place.

Measurement-outcome statistics can only be gathered by repeating the same measure-
ment on an ensemble of particles, and thus the interpretation of any apparent randomness
should be restricted to such situations. One can easily imagine a situation in which each
individual particle in an ensemble contains some pre-existing property which determines
its measurement outcome, and that these properties are distributed among the members of
the ensemble in such a way as to reproduce the predictions of quantum theory. These hypo-
thetical pre-existing properties are sometimes called hidden variables. Models of this type
are called ontological, because they assume that systems have real predetermined proper-
ties that specify their ontic state. In this thesis we will use the terms “hidden-variable
model” and “ontological model” interchangeably.

26



We have just outlined two interpretations of what occurs when a quantum measure-
ment takes place. Interpretation A simply accepts quantum theory’s (lack of) explanation
of the measurement procedure, and the corresponding discontinuous jump from state to
measurement-eigenstate that goes along with it, and in interpretation B individual systems
contain pre-existing properties described by hidden variables that we do not know how to
measure. Neither interpretation is particularly appealing.

The possibility of an ontological model description of nature has been extensively inves-
tigated, and many theorems have been proven which show that any ontological model that
makes the same predictions as quantum theory must sacrifice some other intuitive princi-
ple, such as noncontextuality (defined in Sections 2.2 and 2.3) or local causality (defined in
Section 2.4). These are the theorems that will be presented and discussed in this chapter.
We begin in Section 2.1 by introducing the ontological models framework. In Section 2.2
we review the notion of Bell-Kochen-Specker noncontextuality and proofs that quantum
theory cannot be represented by ontological models that are Bell-Kochen-Specker non-
contextual. In Section 2.3 we review a generalized definition of noncontexuality [38], and
show that quantum theory cannot be represented by generalised noncontextual ontological
models either. We end in Section 2.4 with a review of Bell’s theorem [39], which proves
that locally causal hidden-variable models cannot reproduce the predictions of quantum
theory.

2.1 The ontological models framework

We will begin by introducing the ontological models framework.

An ontological model of an operational theory models a preparation device P as one
that prepares a system in an ontic state λ according to a probability distribution µ (λ|P )
(Fig. 2.1(a)). Because µ is a probability distribution, we have µ (λ|P ) ≥ 1 and

∫
dλµ (λ|P ) =

1.

A K-outcome measurement device, M , with outcomes m(k) for k ∈ {1, . . . , K}, is
represented in the ontological model by a set of response functions ξm(k)(λ|M). A mea-
surement samples the system’s ontic state λ and returns an outcome m(k) with prob-
ability ξm(k)(λ|M). Since a measurement has to return exactly one outcome, we have
K∑
k=1

ξm(k)(λ|M) = 1, and since the response functions represent probabilities, ξm(k)(λ|M) ≥

0 for all m(k), λ, and M . Figure 2.1(b,c) depicts possible response functions for two
different measurements.
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(a) (b) (c)

Figure 2.1: Representation of preparation and measurement procedures in an ontological
model. (a) The preparation procedure P prepares a system in the state λ according to
probability distribution µ(λ|P ). (b) Response functions for measurement, Ma, with two
outcomes {0, 1}. The response functions of Ma are deterministic. (c) A measurement, Mb,
with two outcomes {0, 1} and nondeterministic response functions.

The probability of obtaining outcome m(k) when measurement procedure M is per-
formed on a system that was prepared with procedure P is:

p (m(k)|P,M) =

∫
dλµ (λ|P ) ξm(k)(λ|M). (2.1)

2.1.1 Outcome-deterministic ontological models

Later we will be concerned with a special class of ontological models, namely ones for which
all measurements respond deterministically to the ontic state λ.

A deterministic measurement procedure is represented by a set of deterministic response
functions χk(λ|M) (Fig. 2.1(b)). These response functions can only take the values 0 or
1, and for a given λ, the set of response functions describing the measurement equal 1 for
exactly one value of k, and 0 for all others. The probability of obtaining outcome k when
performing measurement M on preparation P is:

p(m(k)|P,M) =

∫
dλp(λ|P )p(m(k)|λ,M), (2.2)

=

∫
dλµ(λ|P )χm(k)(λ|M). (2.3)
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An ontological model for which all measurements are deterministic is an outcome-deterministic
ontological model (ODOM).

An alternative way to understand the outcome-deterministic ontological model is to
think of every ontic state λ as having preassigned outcomes for each possible measurement
which might be performed on the system. Since measurements respond deterministically
to the ontic state, choosing a system to be in a specific state λ is equivalent to assigning
outcomes for any future measurements.

2.1.2 General features of ontological models

There are a couple of features of ontological models which will be useful later on. We will
list them here.

• Distinguishable preparation procedures cannot have overlapping distributions in the
ontological model.

Consider two preparation procedures P and P ′ which can be perfectly distinguished
by a single-shot measurement. That implies that P and P ′ cannot have overlapping
distributions in the ontological model, that is:

µ (λ|P )µ (λ|P ′) = 0. (2.4)

This must be true based on the ontological model description of measurements. A
measurement samples the ontic state λ, then returns an outcome based on the ontic
state. If P and P ′ had overlapping distributions in the ontological model, then there
would exist values of λ consistent with both P and P ′, and no measurement would be
able to perfectly distinguish between the two preparation procedures for these values
of λ.

• Convex combinations of experimental procedures are represented with convex mixtures
in the ontological model.

Consider a convex mixture of the preparation procedures P and P ′. Pmix is the
procedure that, with probability w, implements procedure P , and with probability
1 − w implements procedure P ′. The probability of finding the system in a specific
ontic state λ is thus the probability that P was implemented, multiplied by the
probability of finding the system in state λ given that P was implemented, plus the
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probability that P ′ was implemented, multiplied by the probability of finding the
system in state λ given that P ′ was implemented. Hence,

µ (λ|Pmix) = wµ (λ|P ) + (1− w)µ (λ|P ′) (2.5)

Convex mixtures of measurements are represented in a similar way. For example,
assume that one has two K-outcome measurement procedures M and M ′, with sets
of outcomes {m(k) = k} and {m′(k) = k}, respectively. Let Mmix be the measure-
ment procedure that, with probability w, implements measurement M , and outputs
outcome mmix(m(k)) = mmix(k), and, with probability (1 − w), implements proce-
dure M ′ and returns outcome mmix(m′(k)) = mmix(k). In the ontological model, the
response functions of Mmix are:

ξm(k)(λ|Mmix) = wξm(k)(λ|M) + (1− w)ξm′(k)(λ|M ′). (2.6)

2.2 The Bell-Kochen-Specker theorem

The Bell-Kochen-Specker (BKS) theorem (independently discovered by Kochen and Specker [40]
and Bell [41]) concerns outcome-deterministic ontological models. The BKS theorem states
that no noncontextual, outcome-deterministic ontological model can reproduce the predic-
tions of quantum theory. We will begin this section by motivating the attempt to represent
quantum theory with an ODOM, then define the BKS notion of noncontextuality, and fi-
nally give and discuss a proof of the BKS theorem.

2.2.1 PVMs and ODOMs

Consider a rank-1 projective quantum measurement (PVM) A defined by a set of K rank-

1 projective effects {E(A)
1 , . . . , E

(A)
K } with corresponding outcomes {1, . . . , K}. We define

each effect as E
(A)
k = |ψk〉 〈ψk|, satisfying 〈ψj | ψk〉 = δj,k. The PVM responds deterministi-

cally to the set of basis states {|ψ1〉 , . . . , |ψK〉}, i.e. p (k|ψj, A) = Tr(|ψj〉 〈ψj|E(A)
k ) = δj,k.

For an ensemble of systems all identically prepared in the state ρ, the probability of
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obtaining outcome k when performing measurement A is:

p (k|ρ,A) =
K∑
j=1

p (ψj|ρ) p (k|ψj, A) , (2.7)

=
K∑
j=1

Tr (ρ|ψj〉〈ψj|) δj,k. (2.8)

Here, p (ψj|ρ) = Tr (ρ|ψj〉〈ψj|) represents the probability that the measurement A will
project ρ into eigenstate |ψj〉, and p (k|ψj, A) = δj,k is the probability that outcome k will
be returned given that ρ was projected into state |ψ〉.

There is a clear analogy between a projective measurement in quantum theory and a
deterministic measurement in the ontological models framework, which can most easily be
seen by comparing equations (2.7) and (2.2). In both equations, the probability of finding
the system in a specific (quantum or ontic) state is calculated, then multiplied by the
probability of returning outcome k for that state. These probabilities are then integrated
over all possible states that the system could be found to be in. In the quantum description,
projective measurements respond deterministically to eigenstates of their measurement
operators, and in the ODOM measurements respond deterministically to the ontic state λ.
For now, we will assume that the ontological model representation of a projective quantum
measurement is deterministic. We will revisit this assumption (and provide additional
justification for it) in Section 2.3.3.

Compatible measurements

Consider two commuting PVMs, A and B. Quantum theory tells us that A and B share
a common set of K measurement effects, {Ek}, with Ek = |ψk〉 〈ψk| for some basis {|ψk〉}.
Since we don’t have to label the outcomes of our two measurements in the same way, we
will say that A has a set of outcomes {a(k)} and B has a set of outcomes {b(k)}, where
outcomes a(k) and b(k) correspond to effect Ek. We call the pair (a(k), b(k)) a set of
simultaneous outcomes, because in a measurement of A and B these outcomes will always
be returned in pairs. Hence, we must have:

p (a(j)|ψk, A) = p (b(j)|ψk, B) = δj,k. (2.9)

In other words, the results of a simultaneous measurement of commuting observables must
be a corresponding set of simultaneous outcomes [42]. This further restricts the assignable
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values in the ODOM. To ensure agreement with quantum theory, the response functions in
an ODOM are constrained in an identical way. Specifically, for two compatible measure-
ment procedures MA and MB (representing compatible PVMs with operators A and B),
the response functions in the ODOM must satisfy:

χa(k)(λ|MA) = χb(k)(λ|MB) ∈ {0, 1}. (2.10)

In other words, for each specific value of the ontic state λ, the preassigned outcomes for a
set of compatible observables must be a corresponding set of simultaneous outcomes.

2.2.2 Bell-Kochen-Specker noncontextuality

The discussion of compatible measurements above contained an implicit assumption which
is worth making explicit. This assumption can most easily be seen by considering three
projective measurements with observables A, B, and C. Suppose that observables A and B
commute, A and C also commute, but B and C do not. This means that A can be jointly
measured with either B, or with C, but not with both. These two joint measurements
(i.e. A measured with B and A measured with C) determines two different measurement
contexts for A.

The implicit assumption in our ODOM is also called the assumption of BKS noncontex-
tuality, and it is simply this: in an outcome-deterministic ontological model, the response
functions describing a measurement procedure do not depend on the context in which it is
measured.

The assumption of BKS noncontextuality seems very reasonable. After all, in quantum
theory we use the same set of measurement effects to represent observable A regardless of
if we measure A jointly with B or C. There is no a priori reason to expect the ontological
model description of A to depend on its measurement context. However, as we are about
to see, the BKS theorem proves that no noncontextual outcome-deterministic ontological
model can reproduce all the predictions of quantum mechanics.

2.2.3 Peres-Mermin square proof of the BKS theorem

The original proofs of the BKS theorem by Kochen and Specker [40] and Bell [41] are
similar in that both proofs work by first finding a specific set of projective measurement
operators, then showing that one always finds a contradiction if they try to describe the
measurement outcomes with a noncontextual outcome-deterministic ontological model.

32



σx ⊗ I I⊗ σx σx ⊗ σx I⊗ I
I⊗ σy σy ⊗ I σy ⊗ σy I⊗ I
σx ⊗ σy σy ⊗ σx σx ⊗ σz I⊗ I
I⊗ I I⊗ I −I⊗ I

Table 2.1: Set of projective measurements for the Peres–Mermin magic square proof of
the BKS theorem. The upper-left 3× 3 portion of the table represents the nine projective
measurements needed for Mermin’s proof. The rightmost column represents the products
of the observables in each row, and the bottom row is the products of the observables in
each column.

The original proofs are somewhat complicated and are outside the scope of this thesis. For
the sake of brevity and clarity we will present a simpler alternative proof due to Mermin
and Peres [43, 44, 45, 42].

Consider the set of projective measurement operators in Table 2.1. We will be consid-
ering measurements of the nine observables in the upper-left 3×3 corner of the table. The
measurements are performed on a four-level quantum system. The eigenvalues (and thus
possible outcomes) of each observable are ±1. One can check that the each of the three
observables in each row (column) commute with the others in the row (column). Thus,
each row and column is a set of three compatible measurements which can be measured
jointly. Each observable is a member of two possible measurement contexts, since it may be
jointly measured with the other two observables in its row, or it may be jointly measured
with the other two observables in its column.

A joint measurement of each of the observables in a row or column also implies a
measurement of a fourth observable equal to the product of the three being measured.
The observables in the fourth row (column) are the products of the three observables in
each column (row). The product of the three observables in each row and column is I⊗ I,
except for the rightmost column which has product −I ⊗ I. This implies that in a joint
measurement of each row and two of the columns the product of the outcomes must be +1,
and in a joint measurement of the rightmost column the product of the outcomes must be
−1.

Our task now is to try to find a noncontextual ODOM that can reproduce this set
of quantum correlations. We need to specify a set of response functions for each of the
nine observables in the upper-left 3 × 3 corner of Table 2.1, or equivalently, for each
value that λ can take, we need to specify an outcome for each observable. Each of these
measurements can return either +1 or −1 as an outcome, and thus these are the outcomes
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we can preassign. However, the products of the three outcomes in each row and the first
two columns are constrained to be 1, and the product of the three outcomes in the third
column must be −1. The row constraints require an even number of −1 outcomes in
each row (and thus in the table as a whole), while the column constraints require an odd
total number of −1 outcomes. These two constraints contradict each other, and thus we
conclude that no noncontextual outcome-deterministic ontological model can reproduce all
the predictions of theory.

In addition to the works due to Bell [41], Kochen and Specker [40], and Peres and
Mermin [43, 44, 45, 42], there are many other proofs of the BKS theorem; two notable
examples are due to Cabello [46] and Klyachko, Can, Binicioǧlu and Shumovsky [47]. For
brevity, we will omit a review of all approaches to proving the BKS theorem. However,
we note that these works all prove the same point: projective quantum measurements
cannot be represented by an ontological model that is both noncontextual and outcome-
deterministic.

2.2.4 Can the BKS theorem be confirmed experimentally?

The BKS theorem proves that no noncontextual outcome-deterministic ontological model
can reproduce all predictions of quantum theory. It is a remarkable theorem, and it raises
the obvious question of whether or not it can be confirmed experimentally. Or, more pre-
cisely, the question of whether or not one can perform an experiment proving that nature
(and not just quantum theory) cannot be represented by an outcome-deterministic onto-
logical model that is noncontextual in the Bell-Kochen-Specker sense. The answer, strictly
speaking, is that the BKS theorem (as presented) cannot be confirmed experimentally, and
we explain in this section why this is the case.

The BKS theorem is a mathematical statement about the interpretations of quantum
mechanics, and doesn’t say anything about the physical theory describing nature itself. It
is possible that quantum theory isn’t 100% correct, and that one day it will be surpassed
by a new physical theory which describes nature more accurately. Still, one can imagine
that whatever physical theory actually describes nature contains a set of measurements
that give the same measurement-outcome statistics as the observables in Table 2.1. If this
were the case, one could further imagine performing an experiment which confirms the
quantum predictions for the outcomes of these measurements. Surely such an experiment
would be sufficient evidence that the physical theory describing nature could not be inter-
preted as a noncontextual outcome-deterministic ontological model. However, even in this
hypothetical scenario we are immediately confronted with two experimental difficulties,
which can be understood by carefully considering what such an experiment would entail.
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The problem of inexact operational equivalence

To elucidate the first difficulty, we will use the Peres-Mermin square as an example.

In order to apply the conclusions of the Peres-Mermin proof to a set of experimental
data, an experimentalist would have to build or find a set of nine measurement devices and
confirm that their outcome statistics are consistent with the predictions made by quan-
tum theory. This would require one to gather measurement-outcome statistics on each of
the six joint measurements (three row measurements and three column measurements) in
Table 2.1. This requires performing each measurement in the table twice, once in each
measurement context it appears in (i.e. in its row and column contexts), requiring a rear-
rangement of the experimental set-up in some way, whether that be changing parameters
of some measurement device, or swapping different devices in and out of the experiment.
In our noncontextual ODOM, we restricted the outcome assigned to each observable to
be independent of which context it was measured in. However, if we have to change the
experimental set-up in order to measure an observable in two different contexts, how can
we be sure that we are measuring the same observable in each context? If we aren’t sure
that we are measuring the same observable in each context, we have no reason to assume
that it should respond in the same way to the ontic state of the system, thus making it
unreasonable to apply our assumption of BKS noncontextuality1.

An obvious solution is simply to check that a measurement device has the same per-
formance in both contexts. For example, consider two sets of compatible measurements
{A,B} and {A′, C}, and our goal is to verify that A and A′ truly are the same mea-
surement. We can imagine sending many copies of every possible state into measurement
devices A and A′ and collecting statistics on the measurement outcomes. If the outcome
statistics for A equal those for A′ for every input state, then we say that A and A′ are oper-
ationally equivalent (an exact definition of operational equivalence follows in Section 2.3.1),
and we are free to apply the assumption of noncontextuality and represent A and A′ in the
ontological model with the same deterministic measurement. However, systematic errors
(which are always present in experiments) will make it impossible to implement a joint
measurement of A and B and a joint measurement of A′ and C so precisely that A and
A′ are exactly operationally equivalent. While A and A′ might be operationally “close” to
one another, they will never be exactly equivalent, and thus we will have no warrant to
apply the assumption of BKS noncontextuality to these measurements. This is the first

1This was in fact one of Bell’s criticisms of his own proof of the BKS theorem [41], and his solution
was to consider multipartite systems in which compatible measurements could be separated in a space-like
way, thus replacing the assumption of noncontextuality with a perhaps more defensible assumption of local
causality. This idea will be expanded upon in Section 2.4.
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experimental difficulty we encounter, and we call this the problem of inexact operational
equivalence.

The problem of noisy measurements

The second experimental difficulty is also related to the unavoidable presence of noise in
realistic experiments. Our formulation of the ODOM was based on the quantum descrip-
tion of projective measurements. Projective measurements respond deterministically to
the eigenstates of the operator representing the measurement — this is why we restricted
ourselves to only consider ontological models which respond deterministically to a sys-
tem’s ontic state. However, in quantum theory, any measurement with a finite amount
of noise does not have a set of states to which it responds deterministically, and thus it
does not make sense to model noisy quantum measurements with an ODOM. All realistic
experiments will contain some amount of noise, and thus ontological models that include
indeterministic measurements should be considered as valid possible explanations of these
experiments as well. The BKS theorem only considers ODOMs, and therefore data ob-
tained with noisy measurements cannot be used to support it. This is the second difficulty
one encounters in experimental tests of noncontextuality, and we call it the problem of
noisy measurements.

2.3 Generalised noncontextuality for preparations and

measurements

To address the problem of noisy measurements, Spekkens [38] generalised the notion of
BKS noncontextuality so it can be applied to all ontological models, as opposed to only
outcome-deterministic ones. In this section we introduce generalised noncontextuality,
and show that quantum theory does not admit of a generalised noncontextual ontological
model.

2.3.1 Generalised preparation and measurement noncontextual-
ity

Generalised noncontextuality applies to pairs of experimental procedures which cannot
be distinguished from each other [38]. In words, the assumption of generalised noncon-
textuality is this: two experimental procedures that are operationally equivalent (a notion
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that will be precisely defined below) should be represented identically in the underlying
model. We say “experimental procedures” instead of “measurement procedures” because
generalised noncontextuality can be applied to state preparation procedures in addition to
measurement procedures2.

If one considers just measurements, it is clear how generalised noncontextuality is a
generalisation of BKS noncontextuality. As discussed in Section 2.2.4, the assumption of
BKS noncontextuality states that an observable’s response function in an ODOM cannot
depend on which context it is performed in. In other words, since it is the same observable
being measured in each context, it should be represented the same way in the ODOM
regardless of which context it is in. Experimentally, the only way to check if a measurement
device measures the same observable in two contexts is to measure its outcome statistics for
all preparations in both contexts: if the statistics are different we conclude that the device
behaves differently in each context, but if the statistics are the same we can conclude the
observables being measured in each context are identical. Thus, the assumption of BKS
noncontextuality can only be applied to measurement devices whose operation doesn’t
depend on context. Spekkens’ notion of noncontextuality simply generalises this definition
to include noisy measurement devices and preparation devices.

Before proceeding with a more formal definition of Spekkens noncontextuality, we first
formally review the notion of operational equivalence.

Operational equivalence

Consider two preparation procedures, P and P ′. We say that P and P ′ are operationally
equivalent (denoted by P ≈ P ′) if there is no measurement that we can perform which can
distinguish a system prepared with P from one prepared with P ′. If M is the set of all
possible measurements that can be performed, then mathematically, we say that P ≈ P ′ if

p (m(k)|P,M) = p (m(k)|P ′,M) , ∀M ∈M, ∀k ∈ {1, . . . , K} (2.11)

Similarly, two measurement procedures are operationally equivalent if there exists no prepa-
ration procedure for which the two measurements return differing outcome statistics. Math-
ematically, if M and M ′ are two K-outcome measurement procedures, and if P is the set
of all accessible preparation procedures, then we say that M and M ′ are operationally
equivalent (i.e. we say that M ≈M ′) if

p (m(k)|P,M) = p (m′(k)|P,M ′) , ∀P ∈ P , ∀k ∈ {1, . . . , K}. (2.12)
2In fact, when Spekkens introduced the assumption of generalised noncontextuality he also defined it

for state transformations [38], although we will not discuss this in this thesis.
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Generalised noncontextual ontological models

The assumption of generalised noncontextuality can be applied to both preparation and
measurement procedures.

In an ontological model, the assumption of generalised preparation noncontextuality
states that equivalence of preparations at the operational level implies equivalence of the
preparations at the ontological level:

P ≈ P ′ =⇒ µ (λ|P ) = µ (λ|P ′) . (2.13)

In an ontological model, the assumption of generalised measurement noncontextuality,
states that equivalence of measurement procedures at the operational level implies equiv-
alence of the measurements at the ontological level:

M ≈M ′ =⇒ ξ (k(M)|λ,M) = ξ (k(M ′)|λ,M ′) , ∀k ∈ {1, . . . , n}. (2.14)

Throughout the rest of this thesis, we will use the terms “preparation noncontextual-
ity” and “measurement noncontextuality” as shorthand for “the assumption of generalised
preparation noncontextuality” and “the assumption of generalised measurement noncon-
textuality”. When referring to both preparation and measurement noncontexuality we will
use the term “generalised noncontextuality”, or sometimes just “noncontextuality”.

It is immediately obvious that the notion of generalised noncontextuality has some
advantages over the notion of BKS noncontextuality. First, we can apply the assumption
of generalised noncontextuality to outcome-indeterministic ontological models, which solves
the problem of noisy measurements discussed in Section 2.2.4. Second, it is more general,
as it can be applied to preparations as well as measurements. Third, as we will see, one
can use qubit states and measurements to prove that quantum theory does not admit of
a generalised noncontextual model, whereas Hilbert spaces of dimension at least three are
required to show that quantum theory is inconsistent with a BKS-noncontextual ontological
model.

2.3.2 Qubits cannot be represented by a preparation noncontex-
tual ontological model

After introducing the notion of generalised noncontextuality, Spekkens proved that a qubit
cannot be represented by a preparation noncontexual ontological model [38]. We reproduce
his argument in this section.
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Consider the six preparation procedures P1,0, P1,1, P2,0, P2,1, P3,0 and, P3,1, which are
used to prepare the following quantum states:

|ψ1,0〉 = |0〉 (2.15)

|ψ1,1〉 = |1〉 (2.16)

|ψ2,0〉 =
1

2
|0〉+

√
3

2
|1〉 (2.17)

|ψ2,1〉 =

√
3

2
|0〉 − 1

2
|1〉 (2.18)

|ψ3,0〉 =
1

2
|0〉 −

√
3

2
|1〉 (2.19)

|ψ3,1〉 =

√
3

2
|0〉+

1

2
|1〉 . (2.20)

Each pair of preparations {Pi,0, Pi,1} corresponds to a pair of orthogonal quantum states,
i.e.

〈ψ1,0|ψ1,1〉 = 0 (2.21)

〈ψ2,0|ψ2,1〉 = 0 (2.22)

〈ψ3,0|ψ3,1〉 = 0 (2.23)

These six pure states lie around the circumference of the XZ plane of the Bloch sphere,
depicted in Fig. 2.2. Now consider the preparation Pi which is the procedure that im-
plements one of Pi,0 or Pi,1, the choice of which is made uniformly at random. Further
consider P4 which implements one of P1,0, P2,0, or P3,0 uniformly at random, and P5 which
implements one of P1,1, P2,2, or P3,3 uniformly at random. Each of these five convex mix-
tures of preparation procedures prepares the maximally mixed state, which is represented
with same density operator:

I
2

=
1

2
|ψ1,0〉 〈ψ1,0|+

1

2
|ψ1,1〉 〈ψ1,1| (2.24)

=
1

2
|ψ2,0〉 〈ψ2,0|+

1

2
|ψ2,1〉 〈ψ2,1| (2.25)

=
1

2
|ψ3,0〉 〈ψ3,0|+

1

2
|ψ3,1〉 〈ψ3,1| (2.26)

=
1

3
|ψ1,0〉 〈ψ1,0|+

1

3
|ψ2,0〉 〈ψ2,0|+

1

3
|ψ3,0〉 〈ψ3,0| (2.27)

=
1

3
|ψ1,1〉 〈ψ1,1|+

1

3
|ψ2,1〉 〈ψ2,1|+

1

3
|ψ3,1〉 〈ψ3,1| , (2.28)
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Figure 2.2: Six states required for proof that a qubit cannot be represented by a prepara-
tion noncontextual model. These states lie on the X-Z plane of the Bloch sphere. They are
defined by Eqs. (2.15)–(2.20), and they satisfy the operational equivalences of Eqs. (2.24)–
(2.28)

.

and thus quantum theory predicts that these five convex mixtures will give rise to the same
measurement-outcome statistics.

The preparation procedures Pi,0 and Pi,1 prepare orthogonal quantum states, and thus
their representations in the ontological model must be non-overlapping (Eq. (2.4)). This
implies:

µ (λ|P1,0)µ (λ|P1,1) = 0 (2.29)

µ (λ|P2,0)µ (λ|P2,1) = 0 (2.30)

µ (λ|P3,0)µ (λ|P3,1) = 0. (2.31)

The preparation procedures P1, . . . , P5 are convex mixtures, and thus their representa-
tions in the ontological model can be represented as convex mixtures as well (Eq. (2.5)).
Furthermore, since quantum theory predicts that P1, . . . , P5 are operationally equivalent
(Eqs. (2.24)-(2.28)), preparation noncontextuality dictates that µ (λ|P1) = · · · = µ (λ|P5).
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Thus, if we let ν(λ) = µ (λ|P1) = · · · = µ (λ|P5), we have:

ν(λ) =
1

2
µ (λ|P1,0) +

1

2
µ (λ|P1,1) (2.32)

=
1

2
µ (λ|P2,0) +

1

2
µ (λ|P2,1) (2.33)

=
1

2
µ (λ|P3,0) +

1

2
µ (λ|P3,1) (2.34)

=
1

3
µ (λ|P1,0) +

1

3
µ (λ|P2,0) +

1

3
µ (λ|P3,0) (2.35)

=
1

3
µ (λ|P1,1) +

1

3
µ (λ|P2,1) +

1

3
µ (λ|P3,1) (2.36)

We can now show that, aside from the trivial “all-zero” solution 0 = µ (λ|P1,0) =
· · · = µ (λ|P3,1), it is impossible to find distributions µ (λ|P1,0) . . . µ (λ|P3,1) which solve
Eqs. (2.29)-(2.36) simultaneously. First, note that Eq. (2.29) requires that, for each value
of λ one of µ (λ|P1,0) and µ (λ|P1,1) must be zero, and similarly, Eqs. (2.30) and (2.31)
require that one of {µ (λ|P2,0) , µ (λ|P2,1)} and one of {µ (λ|P3,0) , µ (λ|P3,1)}, must be zero.
There are eight possible arrangements of zeros which satisfy Eqs. (2.29)-(2.31).

If we choose µ (λ|P1,0) = µ (λ|P2,0) = µ (λ|P3,0) = 0, then Eqs. (2.35) and (2.36)
imply that µ (λ|P1,1), µ (λ|P2,1), and µ (λ|P3,1) are all zero as well. If instead we choose
µ (λ|P1,1) = µ (λ|P2,0) = µ (λ|P3,0) = 0, then Eqs. (2.32) and (2.35) imply that 1

2
µ (λ|P1,0) =

1
3
µ (λ|P1,0), which in turn implies that µ (λ|P1,0) = 0. But now we again have µ (λ|P1,0) =
µ (λ|P2,0) = µ (λ|P3,0) = 0, and so we conclude that all distributions are zero. Considering
each of the other six arrangements of zeros that satisfy Eqs. (2.29)-(2.31) will lead us
to the same conclusion. Hence, for every choice of λ, we are lead to the trivial solution
0 = µ (λ|P1,0) = · · · = µ (λ|P3,1). Since the trivial solution is not a normalized probability
distribution, we conclude that no preparation noncontextual ontological model can describe
this set of qubit states.

2.3.3 Measurements on qubits cannot be represented by a gen-
eralised noncontextual ontological model

Up until this point in the thesis, we have assumed that projective quantum measure-
ments should be represented with deterministic response functions in the ontological model.
Spekkens proves that [38], under this condition, no measurement noncontextual ontological
can describe the measurements that can be performed on a qubit.
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Spekkens has also shown that that [38], under the assumption of preparation non-
contextuality, projective quantum measurements must be deterministic in the ontological
model. In this section, we will first argue that preparation noncontextuality implies that an
ontological model of a PVM must have deterministic response functions, and then we will
proceed with the proof that qubit measurements cannot be represented by a generalised
noncontextual ontological model.

Preparation noncontextuality implies outcome determinism for projective-valued
measures

Here we sketch an argument supporting the claim that preparation noncontextuality im-
plies that an ontological model of a quantum PVM must be outcome deterministic. The
interested reader can find full details of this proof in Appendix A of Ref. [38].

Now we begin the sketch of the argument. In quantum mechanics, a projective-valued
measure M is defined by a set of rank-1 measurement effects {Ek}. The PVM effects
can be used to define a basis {|ψj〉} such that Tr(|ψj〉 〈ψj|Ek) = δj,k. Let state |ψk〉
be that prepared by procedure Pk. In the ontological model, the distributions µ(λ|Pk)
must be nonoverlapping (Eq. (2.4)), and therefore, their regions of support Ωk (defined
as Ωk = {λ : µ(λ|Pk) > 0}) must be disjoint. In order to agree with quantum theory,
the response functions must also satisfy

∫
dλµ(λ|Pj)ξk(λ|M) = δj,k, which implies that

ξk(λ|M) = 1 for all λ ∈ Ωk and ξk(λ|M) = 0 for all λ ∈ Ωj 6=k. Thus, for every λ ∈
⋃
k Ωk,

exactly one response function is equal to 1, and all the others are 0, and hence M ’s response
functions are deterministic for all λ in support of the full set of quantum states {|ψk〉}.

The next half of the argument demonstrates that the full ontic state space Ω is in fact
equal to the union of the supports of the set of quantum basis states, λ ∈ Ω =

⋃
k Ωk,

which implies that the response functions are deterministic everywhere. If PI/d is the
procedure that creates the maximally-mixed state I/d then we can define Ω as the set of
ontic states for which µ(λ|PI/d) > 0, since every possible quantum state is part of some
convex decomposition of the maximally-mixed state. Now, note that

∑
k |ψk〉 〈ψk| = I.

Applying the assumption of preparation noncontextuality implies that
∑

k
1
d
µ(λ|Pk) =

µ(λ|PI/d), which in turn implies that Ω =
⋃
k Ωk.

Proof that qubit measurements cannot be represented by a generalised non-
contextual ontological model

Now we are ready to show that a general quantum measurement cannot be described by a
noncontextual ontological model, which was first shown in Ref. [38].
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We will consider three measurements, M1, M2, and M3, represented by projective-
valued measures {E1,0, E1,1}, {E2,0, E2,1}, and {E3,0, E3,1}. For each Ei,j, the first index i
represents the measurement that the projector is part of, and the second index j is what
we label the outcome corresponding to that projector. Each measurement is defined to
respond deterministically to one of the pairs of orthogonal states in Eqs. (2.15)-(2.20).
Specifically, we have

Tr (|ψi,j〉 〈ψi,j|Ei,j) = 1 for all i ∈ {1, 2, 3} and j ∈ {0, 1}. (2.37)

The assumption of preparation noncontextuality implies that, in the ontological model,
Mi is represented by the pair of outcome-deterministic response functions {χ0(λ|Mi), χ1(λ|Mi)},
for i ∈ {1, 2, 3}. By definition of an outcome-deterministic measurement in an ontological
model, these response functions must satisfy:

χ0(λ|M1) + χ1(λ|M1) = 1 (2.38)

χ0(λ|M2) + χ1(λ|M2) = 1 (2.39)

χ0(λ|M3) + χ1(λ|M3) = 1, (2.40)

as well as

χ0(λ|M1)χ1(λ|M1) = 0 (2.41)

χ0(λ|M2)χ1(λ|M2) = 0 (2.42)

χ0(λ|M3)χ1(λ|M3) = 0. (2.43)

The above six equations imply that, for each value of λ, one of each pair {χ (0|λ,Mi) , χ (1|λ,Mi)}
must be equal to 0, and the other must be equal to 1.

Now consider the measurement procedure M∗ which randomly and with uniform prob-
ability chooses an i ∈ {1, 2, 3}, implements measurement Mi, and returns the outcome
given by that measurement. In quantum theory, M∗ is a POVM represented by{

1

3
E1,0 +

1

3
E2,0 +

1

3
E3,0,

1

3
E1,1 +

1

3
E2,1 +

1

3
E3,1

}
=

{
1

2
I,

1

2
I
}
. (2.44)

The outcomes of M∗ are independent of the state being measured, since Tr 1
2
ρI = 1

2
is

independent of ρ. Therefore, M∗ is operationally equivalent to a measurement which
completely ignores the state of the input system and chooses one of the two outputs
uniformly at random. Such a measurement is represented by the set of response functions
{1

2
, 1

2
}. By the assumption of measurement noncontextuality we must have:

{ξ (0|λ,M∗) , ξ (1|λ,M∗)} =

{
1

2
,
1

2

}
, (2.45)
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where we have used the outcome-indeterministic response functions {ξ (0|λ,M∗) , ξ (1|λ,M∗)}
to represent M∗ in the ontological model.

Since M∗ is a convex mixture of M1, M2, and M3, we can also represent the re-
sponse functions of M∗ as a convex mixture of the response functions of M1, M2, and
M3 (Eq. (2.6)). Thus the following two relations must hold:

1

3
χ0(λ|M1) +

1

3
χ0(λ|M2) +

1

3
χ0(λ|M3) =

1

2
(2.46)

1

3
χ1(λ|M1) +

1

3
χ1(λ|M2) +

1

3
χ1(λ|M3) =

1

2
. (2.47)

However, the constraints implied by Equations (2.38)-(2.40) (i.e. for every λ, the pair
of response functions {χ0(λ|Mi), χ1(λ|Mi)} is equal to either {0, 1} or {1, 0}) contradict
Eqs. (2.46) and (2.47). Any choice of assignment of 0 or 1 to each of the terms on the LHS of
Eq. (2.46) will give the LHS a sum of 0, 1

3
, 2

3
, or 1, but never 1

2
(and a similar argument can

be made with Eq. (2.47)). Thus we conclude that no generalised noncontextual ontological
model can represent the set of three projective-valued measures M1, M2, and M3.

2.4 Local causality as a justification of the assumption

of noncontextuality

The assumption of BKS noncontextuality forces the outcome-deterministic ontological
model to assign the same response functions to each measurement, regardless of the context
in which the observables are measured. A criticism of this assumption, as discussed above,
is that measurement of an observable in two different contexts requires two different con-
figurations of an experiment, and it is logically possible that the measurement is sensitive
to the change of contexts.

Bell’s solution to this problem [41, 39] was to restrict the experiment to a more spe-
cialised situation, in which the system being measured consists of multiple particles which
are simultaneously measured by multiple space-like separated parties. Information cannot
travel faster than the speed of light, and thus a change in one party’s measurement setting
cannot affect the other party’s measurement. We will call an ontological model subject
to the above constraints (i.e. one in which each party’s measurement outcomes only de-
pend on the ontic state of the system and the local choice of measurement settings) a local
ontological model, (LOM). Bell’s theorem [39] states that no LOM can reproduce all the
predictions of quantum theory.
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S

b ϵ {+1,-1}a ϵ {+1,-1}

x ϵ {0,1} y ϵ {0,1}

A B

Figure 2.3: The CHSH scenario. A source emits two particles, one travels to Alice, and
one travels to Bob. Alice and Bob each can perform one of two measurements on their
respective particles, chosen by the random variables x and y, respectively. The outputs of
their measurements are either +1 or −1. Alice and Bob are space-like separated to ensure
that (under the assumption of local causality) Alice’s choice of measurement cannot affect
Bob’s measurement outcome, and vice versa.

We will not reproduce Bell’s proof of his theorem here, and we will instead present an
alternative one found by Clauser, Horne, Shimony, and Holt (CHSH) [48].

2.4.1 The CHSH scenario

The CHSH scenario is illustrated in Figure 2.3. A source emits two particles, one is sent
to Alice (labelled with “A”) and the other is sent to Bob (labelled with “B”).

Alice can perform one of two measurement procedures, MA0 and MA1 , on her particle,
and a random variable x ∈ {0, 1} determines which measurement MAx she performs. After
performing her measurement, Alice receives an outcome a ∈ {+1,−1}. Similarly, Bob
can perform one of the measurements MB0 or MB1 on his particle. A random variable
y ∈ {0, 1} determines which measurementMBy Bob performs, and the measurement returns
an outcome b ∈ {+1,−1}.

Alice and Bob are space-like separated, and the time interval between Alice’s choice of
measurement and Bob’s implementation of his measurement is less than the time it would
take for a light speed signal to travel between Alice and Bob. This ensures that Alice’s
choice of measurement setting, x, cannot affect Bob’s outcome, b. Similarly, Bob’s choice
of measurement setting, y, is timed such that it cannot affect Alice’s outcome, a.
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Alice and Bob repeat the experiment on many copies of the system, (randomizing their
measurement choices for every copy), and after gathering enough data they share with
each other their measurement choices and outcomes for every trial, in order to calculate
the expectation values of joint measurements of MAx and MBy , defined as:

〈MAxMBy〉 =
∑
a,b

ab p
(
a, b
∣∣MAx ,MBy

)
, (2.48)

where p
(
a, b
∣∣MAx ,MBy

)
is the probability of obtaining outcomes a and b given measure-

ments procedures MAx and MBy were performed.

The CHSH parameter, SCHSH, is a linear combination of the four possible expectation
values, defined as:

SCHSH = 〈MA0MB0〉+ 〈MA0MB1〉+ 〈MA1MB0〉 − 〈MA1MB1〉. (2.49)

The CHSH inequality states that, for any local ontological model, the following inequality
holds

|SCHSH| ≤
LOM

2. (2.50)

However, quantum theory can violate this inequality, and specifically

|SCHSH| ≤
QT

2
√

2. (2.51)

2.4.2 Proof of the CHSH inequality

In a general (i.e. not necessarily local) ontological model of the CHSH scenario, the source
enacts some preparation procedure P which prepares the two-particle system in the state
λ with some probability µ(λ|P ). The expectation values 〈MAxMBy〉 are calculated with:

〈MAxMBy〉 =
∑
a,b

ab

∫
dλµ(λ|P )ξ (a, b|λ, x, y) . (2.52)

Since Alice and Bob are space-like separated, Alice’s outcome cannot depend on Bob’s
choice of measurement setting, nor should it depend on Bob’s measurement outcome. Sim-
ilarly, Bob’s outcome cannot depend on Alice’s measurement setting or outcome. Hence,
for a LOM, the measurement response function can be factored in the following way3.

ξ (a, b|λ, x, y) = ξ (a|λ, x) ξ (b|λ, y) . (2.53)

3We can interpret this factorization of the joint measurement response function as an application of the
assumption of measurement noncontextuality. The measurement MAx is measured in two contexts: one
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Restricting our attention to one specific ontic state λ, the expectation value of the joint
measurement of MAx and MBy is:

〈MAx|λMBy |λ〉 =
∑
a,b

ab ξ (a|λ, x) ξ (b|λ, y) , (2.54)

which is equal to: 〈
MAx|λMBy |λ

〉
=
∑
a

aξ(a|λ, x)
∑
b

bξ(b|λ, y) (2.55)

=
〈
MAx|λ

〉 〈
MBy |λ

〉
. (2.56)

The CHSH parameter for a specific value of λ is:

SCHSH|λ =
〈
MA0|λMB0|λ

〉
+
〈
MA0|λMB1|λ

〉
+
〈
MA1|λMB0|λ

〉
−
〈
MA1|λMB1|λ

〉
(2.57)

which, with (2.56), can be simplified to:

SCHSH|λ =
〈
MA0|λ

〉 〈
MB0|λ

〉
+
〈
MA0|λ

〉 〈
MB1|λ

〉
+
〈
MA1|λ

〉 〈
MB0|λ

〉
−
〈
MA1|λ

〉 〈
MB1|λ

〉
(2.58)

=
〈
MA0|λ

〉 (〈
MB0|λ

〉
+
〈
MB1|λ

〉)
+
〈
MA1|λ

〉 (〈
MB0|λ

〉
−
〈
MB1|λ

〉)
(2.59)

Taking the absolute value of both sides, and using the fact that the single-particle expec-
tation values

〈
MAx|λ

〉
and

〈
MBy |λ

〉
must both lie in the interval [−1, 1], we have:∣∣SCHSH|λ

∣∣ ≤ ∣∣〈MA0|λ
〉 (〈

MB0|λ
〉

+
〈
MB1|λ

〉)∣∣+
∣∣〈MA1|λ

〉 (〈
MB0|λ

〉
−
〈
MB1|λ

〉)∣∣ (2.60)

≤
∣∣〈MB0|λ

〉
+
〈
MB1|λ

〉∣∣+
∣∣〈MB0|λ

〉
−
〈
MB1|λ

〉∣∣ (2.61)

≤ 2. (2.62)

Finally, we average over all λ:

|SCHSH| =
∣∣∣∣∫ dλµ(λ|P )SCHSH|λ

∣∣∣∣ (2.63)

≤
∫
dλµ(λ|P )

∣∣SCHSH|λ
∣∣ , (2.64)

and we arrive at the result:
|SCHSH| ≤

LOM
2. (2.65)

context is as part of a joint measurement with MB0
, and the other context is as part of a joint measurement

with MB1
. Because of the space-like separation of Alice and Bob, the measurement that Bob chooses to

perform can not in any way affect Alice’s measurement outcomes. When the factorization in Eq. (2.53) is
performed, we are assuming that since Alice’s outcome statistics for measurement MAx are independent
of the measurement context we can represent MAx with the same response functions in each context; this
is precisely the assumption of measurement noncontextuality.
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2.4.3 Quantum violation of CHSH inequality

With the proper choice of both a two-particle quantum state and pairs of measurements for
both Alice and Bob, quantum theory predicts that the CHSH inequality can be violated.
Tsirelson showed that the maximum CHSH parameter achievable by quantum theory is
2
√

2 [49].

One way to achieve this maximum violation is with a source that emits the singlet
state |Ψ−〉 = 1√

2
(|0〉A |1〉B − |1〉A |0〉B), where the subscripts A and B label the particle

that is sent to Alice and Bob, respectively. Letting |θ〉 = cos θ/2 |0〉+sin θ/2 |1〉 and
∣∣θ⊥〉 =

|θ + π〉, we can define a projective measurement observable as Oθ = |θ〉 〈θ| −
∣∣θ⊥〉 〈θ⊥∣∣.

The expectation value of the joint measurement OθxOθy on the state |Ψ−〉 is
〈
OθxOθy

〉
=

− cos (θx − θy). If Alice chooses θ0 = 0 and θ1 = π/2 for her two measurements, and if
Bob chooses θ0 = π/4 and θ1 = −π/4 for his two measurements, then Alice and Bob will
measure SCHSH = −2

√
2, violating inequality (2.65).
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Chapter 3

The framework of generalised
probabilistic theories

Notes and acknowledgements

This chapter contains material from Section II of work that has appeared on the arXiv
as [1]:

M. D. Mazurek, M. F. Pusey, K. J. Resch and R. W. Spekkens, “Experimentally bound-
ing deviations from quantum theory in the landscape of generalized probabilistic theories,”
arXiv:1710.05948, (2017).

Author contributions

M. D. Mazurek and R. W. Spekkens wrote the first draft of this part of the work.

All authors contributed to the final draft.

3.1 Chapter introduction

So far in this thesis we have explored the framework of quantum theory as well as the
ontological model framework. In this chapter we will introduce the framework of generalised
probabilistic theories (GPTs). The GPT framework is operationally motivated, and it
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describes system preparation and measurement procedures exclusively in terms of possible
measurement-outcome probabilities. As we will see, the GPT framework is extremely
general, and it can be used to model a large class of theories including, for example,
classical theory, quantum theory, and even so-called “super”-quantum theories, which can
exhibit stronger-than-quantum correlations between pairs of space-like separated particles.

A recent application of the GPT framework in the field of quantum foundations has
been as a tool for deriving axiomatizations of quantum theory [50, 51, 52, 53], the method
of such axiomatizations being to begin with a list of desirable physical principles, then
derive the class of GPTs consistent with these principles, and finally compare this class to
quantum theory.

The GPT framework is also useful for analysing experimental data (as is done in the
experiments presented in Chapters 4 and 5). By analysing data within the GPT framework,
as opposed to within a specific physical theory such as quantum theory, the conclusions
drawn from the data can be very general, and can be used to compare the accuracies of
competing physical theories.

In this chapter we will introduce the GPT framework with the application of data
analysis in mind, which will provide the background necessary to understand the later
chapters of this thesis.

3.2 Basics

For any system, in any physical theory, there will in general be many possible ways for
it to be prepared, transformed, and measured. Here, each preparation procedure, trans-
formation procedure and measurement procedure is conceived as a list of instructions for
what to do in the laboratory. The different combinations of possibilities for each pro-
cedure defines a collection of possible experimental configurations. We will here restrict
our attention to experimental configurations of the prepare-and-measure variety: these
are the configurations where there is no transformation intervening between the prepara-
tion and the measurement and where the measurement is terminal (which is to say that
the system does not persist after the measurement). We further restrict our attention to
binary-outcome measurements.

A GPT aims to describe only the operational phenomenology of a given experiment.
In the case of a prepare-and-measure experiment, it aims to describe only the relative
probabilities of the different outcomes of each possible measurement procedure when it

50



is implemented following each possible preparation procedure. For binary-outcome mea-
surements, it suffices to specify the probability of one of the outcomes since the other is
determined by normalization. If we denote the outcome set by {0, 1}, then it suffices to
specify the probability of the event of obtaining outcome 0 in measurement M . This event
will be termed an effect and denoted [0|M ].

Thus a GPT specifies a probability p(0|P,M) for each preparation P and measurement
M . Denoting the cardinality of the set of all preparations (respectively all measurements)
by m (respectively n), the set of these probabilities can be organized into an m×n matrix,
denoted D, where the rows correspond to distinct preparations and the columns correspond
to distinct effects,

D ≡


p(0|P1,M1) p(0|P1,M2) · · · p(0|P1,Mn)
p(0|P2,M1) p(0|P2,M2) · · · p(0|P2,Mn)
· · · · · · · · ·

p(0|Pm,M1) p(0|Pm,M2) · · · p(0|Pm,Mn)

 (3.1)

We refer to D as the probability matrix associated to the physical theory. Because it
specifies the probabilities for all possibilities for the preparations and the measurements, it
contains all of the information about the putative physical theory for prepare-and-measure
experiments.1

Defining
k ≡ rank(D)

then one can factor D into a product of two rectangular matrices,

D = SE (3.2)

where S is an (m× k) matrix and E is a (k × n) matrix.

Denoting the ith row of S by the row vector sTPi
(where T denotes transpose) and the

jth column of E by the column vector e[0|Mj ], we can write

D =


sTP1

sTP2

· · ·
sTPm

( e[0|M1] e[0|M2] · · · e[0|Mn]

)
, (3.3)

1Note that although the presentation as a table suggests that the sets of preparations and measurements
are discrete, there could in fact be a continuum of possibilities for each set. If the continuous variable
labelling the preparations in the theory is x and that labelling the measurements in the theory is y, then
the complete information about the physical theory is given by the function f(x, y) := p(0|Px,My). The
GPT is a theoretical abstraction, so that it is acceptable if it is presumed to contain such continua.
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so that
p(0|Pi,Mj) = sPi

· e[0|Mj ]. (3.4)

Factoring D in this way allows us to associate with each preparation P a k-dimensional
vector sP and with each effect [0|M ] a k-dimensional vector e[0|M ] such that the probability
of obtaining the effect [0|M ] on the preparation P is recovered as their inner product,
p(0|P,M) = sP · e[0|M ]. The vectors sP and e[0|M ] will be termed GPT state vectors and
GPT effect vectors respectively. A particular GPT is specified by the sets of all allowed
GPT state and effect vectors, denoted by S and E , respectively.

Because the n GPT effect vectors associated to the set of all measurement effects lie
in a k-dimensional vector space, only k of them are linearly independent. Any set of k
measurement effects whose associated GPT effect vectors form a basis for the space will
be termed a tomographically complete set of measurement effects. The terminology stems
from the fact that if one seeks to deduce the GPT state vector of an unknown preparation
from the probabilities it assigns to a set of characterized measurement effects (the GPT
analogue of quantum state tomography) then this set of GPT effect vectors must form a
basis of the k-dimensional space. Similarly, any set of k preparations whose associated GPT
state vectors form a basis for the space will be termed tomographically complete because
to deduce the GPT effect vector of an unknown measurement effect from the probabilities
assigned to it by a set of known preparations, the GPT state vectors associated to the
latter must form a basis. For any GPT, we necessarily have that the rank of D satisfies
k ≤ min{m,n}, but in general, we expect k to be much smaller than m or n.

There is a freedom in the decomposition of Eq. (3.2). Specifically, for any invertible
(k× k) matrix R, we have D = SE = (SR−1)(RE). Thus, there are many decompositions
of D of the type described. The vectors {sPi

}i and {e[0|Mj ]}j depend on the specific decom-
position chosen. However, for any two choices of decompositions SE and S ′E ′, the vectors
{sPi
}i and {s′Pi

}i (and the vectors {e[0|Mj ]}j and {e′[0|Mj ]}j) are always related by a linear
transformation. Note that any basis of the k-dimensional vector space remains so under a
linear transformation, so the property of being tomographically complete is independent
of the choice of representation.

It is worth noting that for any physical theory, the GPT framework provides a complete
description of its operational predictions for prepare-and-measure experiments. In this
sense, the GPT framework is completely general. Furthermore, one can show that under a
very weak assumption it provides the most efficient description of the theory, in the sense
that it is a description with the smallest number of parameters. The weak assumption is
that it is possible to implement arbitrary convex mixtures of preparations without altering
the functioning of each preparation in the mixture, so that for any set of GPT state vectors
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that are admitted in the theory, all of the vectors in their convex hull are also admitted in
the theory. See Theorem 1 of Ref. [54] for the proof.

We will here make this weak assumption and restrict our attention to GPTs wherein
any convex mixture of preparation procedures is another valid preparation procedure, so
that the set of GPT state vectors is convex [50]. In this case, we can refer to the set S of
GPT states in a theory as its GPT state space. We also make the weak assumption that
any convex mixture of measurements and any classical post-processing of a measurement
is another valid measurement. This implies that the set of GPT effect vectors lie in
the intersection of two cones: the one defined by taking the convex hull of all positive
multiples of the GPT effect vectors, and the one defined by demanding positivity of the
set of complementary effects (for a given effect e, its complementary effect ē is the one for
which, the sum with e gives the unit effect, defined below), a shape that we will refer to
as a “diamond”. In this case, we can refer to the set E of GPT effects in a theory as its
GPT effect space.

It is worth noting that although GPTs which fail to be closed under convex mixtures and
classical post-processing are of theoretical interest — there are interesting foils to quantum
theory of this type [38, 55] — one does not expect them to be candidates for the true GPT
describing nature because there seems to be no obstacle in practice to mixing or post-
processing procedures in an arbitrary way. To put it another way, the evidence suggests
that the GPT describing nature must include classical probability theory as a subtheory,
thereby providing the resources for implementing arbitrary mixtures and post-processings.

Distinct physical theories (i.e., distinct GPTs) are distinguished by the shapes of the
GPT state space and the GPT effect space, where these shapes are defined up to a linear
transformation, as described earlier.

We end by highlighting some conventions we adopt in representing GPTs. Define the
“unit” measurement effect as the one which occurs with probability 1 for all preparations
(it is represented by a column of 1s in D), and denote it by u. Because each sP will have
an inner product of 1 with u (by normalization of probability), it follows that there are
only k− 1 free parameters in the GPT state vector. We make a conventional choice (i.e., a
particular choice within the freedom of linear transformations) to represent the unit effect
by the GPT effect vector (1, 0, 0, . . . )T . This choice forces the first component of all of
the GPT state vectors to be 1. In this case, one can restrict the search for factorizations
D = SE to those for which the first column of S is a column of 1s. It also follows that
the projection of all GPT state vectors along one of the axes of the k-dimensional vector
space has value 1, and consequently it is useful to only depict the projection of the GPT
state vectors into the complementary (k−1)-dimensional subspace.
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3.3 GPT representations of some example physical

theories

In this section we will illustrate and clarify the ideas presented above with a few helpful
examples.

Qubit

First, consider a 2-level quantum system (i.e., a qubit). As we saw in Section 1.1.4, a qubit
state ρ is defined as ρ = 1

2
s·σ (for s =

(
s0 s1 s2 s3

)
) a measurement effect operator Q is

defined as Q = e ·σ (for e =
(
e0 e1 e2 e3

)
), and Tr(ρE) = r ·e. Thus the allowed values

of s define the qubit GPT state space, and the allowed values of e define the qubit GPT
effect space. Hence, the Bloch representation of a qubit that we presented in Section 1.1.4
is a valid GPT representation!

As noted above, this geometric representation of the quantum state and effect spaces is
only one possibility among many. If we define a linear transformation of the state space by
any invertible 4×4 matrix and we take the corresponding inverse linear transformation on
the effect space, the new state and effect spaces will also provide an adequate representation
of all prepare-and-measure experiments on a single qubit. (Note that implementing a linear
transformation of this form is equivalent to representing quantum states and effects with
respect to a different basis of Hermitian operators.)

Classical bit

Classical probabilistic theories can also be formulated within the GPT framework. Consider
the simplest case of a classical system with two possible physical states, i.e., a classical bit,
for which k = 2. The set of possible preparations of this system is simply the set of
normalized probability distributions on a bit, ~µ = (µ0, µ1), where 0 ≤ µ0, µ1 ≤ 1 and
µ0 +µ1 = 1. The most general measurement effect is a pair of probabilities, specifying the
probability of that effect occuring for each value of the bit, that is, ~ξ = (ξ0, ξ1) where 0 ≤
ξ0, ξ1 ≤ 1. The probability of a particular measurement effect occuring when implemented
on a particular preparation is clearly just the inner product of these, ~µ · ~ξ. The positivity
and normalization constraints imply that the convex set of state vectors describes a line
segment from (1, 0) to (0, 1), and the set of effect vectors is the square region with vertices
(0, 0), (1, 0), (0, 1) and (1, 1).
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Figure 3.1: Some paradigm examples of GPTs. The solid shapes represent the true
state and effect spaces for that GPT, while the black wireframe shapes represent the duals
of these (for the duality relation described in Sec. 3.4). (i) The true state space (solid
blue) and its dual (wireframe). (ii)-(iii) The true effect space (solid green) and its dual
(wireframe). For the cases where k = 4, the effect spaces are 4d, and we depict them by
a pair of 3d projections. (a) A qubit (k = 4). (b) A classical bit (k = 2). (c) The k = 4
system in Boxworld. (c) The convex closure of the Spekkens toy theory for the simplest
system (k = 4). (e) A generic GPT with k = 4, obtained from a randomly generated
rank-4 matrix of probabilities.
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For ease of comparison with our other examples of GPTs, it is useful to consider a
linear transformation of this representation, corresponding geometrically to a rotation by
45 degrees. We represent each preparation by a state vector s = (1, s1), where −1 ≤ s1 ≤ 1,
and each measurement effect by an effect vector e = (e0, e1) where −1/2 ≤ e1 ≤ 1/2 and
e0 ≥ |e1| and e0 ≤ 1 − |e1| (with the experimental probabilities still given by their inner
product, s · e). The convex set of these state vectors can then be depicted as a horizontal
line segment, and the set of effect vectors by a diamond with a line segment at its base,
as in Fig. 3.1(b). This representation makes it clear that the state and effect spaces of a
classical bit are contained within those of a qubit (as the quantum states and effects whose
representation as operators are diagonal in some fixed basis of the Hilbert space).

Generalised no-signalling theory

One can also consider GPTs that are neither classical nor quantum. In the GPT known as
“Boxworld” [51, 56] (originally called “generalised no-signalling theory”), correlations can
be stronger than in quantum theory, violating Bell inequalities by an amount in excess of the
maximum quantum violation. The k = 3 system in Boxworld, known as the “generalized
no-signalling bit”, has received a great deal of attention. A pair of such systems can
generate the stronger-than-quantum correlations known as a Popescu-Rohrlich box [57]
from which the name Boxworld derives. These achieve a CHSH inequality violation equal
to the algebraic maximum. Such correlations are achievable in Boxworld because there
are some states that respond deterministically to multiple effects, and there are also some
effects that respond deterministically to multiple states. Boxworld also has a k = 4 system,
which shares features of the generalized no-signalling bit and is, in certain respects, more
straightforward to compare to a qubit. It is the latter that we depict in Fig. 3.1(c).

Spekkens toy theory

Another alternative to classical and quantum theories is the toy theory introduced by
Spekkens [58]. We here consider a variant of this theory, wherein one closes under convex
combinations. The simplest system has k = 4 and has the state and effect spaces depicted
in Figure 3.1(d). These state and effect spaces are strictly contained within those of the
classical theory for a system with four physical states (the k = 4 system in the classical
theory), which corresponds to the fact that the theory can be understood as the result of
imposing an additional restriction relative to what can be achieved classically.
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Randomly generated theory

Finally, Fig. 3.1(e) illustrates a generic example of a GPT with k = 4. We constructed this
GPT by generating a rank 4 matrix of random probability data. We defined the convex
closure of the set of GPT states and measurement effects represented by this data as the
full state and effect spaces of a physical theory, which gives us our randomly generated
theory.

3.4 Dual spaces

Finally, we review the notion of dual GPT state and effect spaces. We will call a vector
s ∈ Rk a logically possible state if it assigns a valid probability to every measurement effect
allowed by the GPT. Mathematically, the space of logically possible states, denoted Slogical,
contains all s ∈ Rk such that ∀e ∈ E : 0 ≤ s · e ≤ 1 and such that s · u = 1. From
this definition, it is clear that Slogical is the intersection of the geometric dual of E and the
hyperplane defined by s · u = 1; as a shorthand, we will refer to Slogical simply as “the
dual of E”, and denote the relation by Slogical ≡ dual(E). Analogously, the set of logically
possible effects, denoted Elogical, contains all e ∈ Rk such that ∀s ∈ S : 0 ≤ s · e ≤ 1.

Defining the set of subnormalized states by Ŝ ≡ {ws : s ∈ S, w ∈ [0, 1]}, Elogical is the

geometric dual of Ŝ. For simplicity, we will refer to Elogical simply as “the dual of S”, and
denote the relation by Elogical ≡ dual(S).

GPTs in which Slogical = S and Elogical = E (the two conditions are equivalent) are said
to satisfy the no-restriction hypothesis [52]. In a theory that satisfies the no-restriction
hypothesis, every logically allowed GPT effect vector corresponds to a physically allowed
measurement, and (equivalently) every logically allowed GPT state vector corresponds
to a physically allowed preparation. In theories wherein Slogical 6= S and Elogical 6= E ,
by contrast, there are vectors that do not correspond to physically allowed states but
nonetheless assign valid probabilities to all physically allowed effects, and there are vectors
that do not correspond to physically allowed effects but are nonetheless assigned valid
probabilities by all physically allowed states.

For each of the examples in Fig. 3.1, we have depicted the dual to the effect space
alongside the state space and the dual of the state space alongside the effect space, as
wireframes. Quantum theory, classical probability theory, and Boxworld provide examples
of GPTs that satisfy the no-restriction hypothesis, as illustrated in Fig. 3.1(a),(b),(c), while
the GPTs presented in Fig. 3.1(d),(e) are examples of GPTs that violate it.
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Chapter 4

An experimental test of
noncontextuality without unphysical
idealizations
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4.1 Overview

To make precise the sense in which nature fails to respect classical physics, one requires
a formal notion of classicality. Ideally, such a notion should be defined operationally, so
that it can be subject to direct experimental test, and it should be applicable in a wide
variety of experimental scenarios so that it can cover the breadth of phenomena thought
to defy classical understanding. Bell’s notion of local causality fulfills the first criterion
but not the second. The notion of noncontextuality fulfills the second criterion, but it is
a long-standing question whether it can be made to fulfill the first. Previous attempts to
test noncontextuality have all assumed idealizations that real experiments cannot achieve,
namely noiseless measurements and exact operational equivalences. Here we show how to
devise tests that are free of these idealizations. We perform a photonic implementation of
one such test, ruling out noncontextual models with high confidence.

4.2 Introduction

Making precise the manner in which a quantum world differs from a classical one is a
surprisingly difficult task. The most successful attempt, due to Bell [39], shows a conflict
between quantum theory and a feature of classical relativistic theories termed local causal-
ity, which asserts that no causal influences propagate faster than light. But the latter
assumption can only be tested for scenarios wherein there are two or more systems that
are space-like separated. And yet few believe that this highly specialized situation is the
only point where the quantum departs from the classical. A leading candidate for a notion
of nonclassicality with a broader scope is the failure of quantum theory to admit of a non-
contextual model, as proven by Kochen and Specker [40]. Recent work has highlighted how
this notion lies at the heart of many phenomena that are taken to be distinctly quantum:
the fact that quasi-probability representations go negative [59, 60], the existence of quan-
tum advantages for cryptography [61] and for computation [62, 63, 64], and the possibility
of anomalous weak values [65]. Consequently, the study of noncontextuality has not only
foundational significance but practical applications as well.

An experimental refutation of noncontextuality would demonstrate that the conflict
with noncontextual models is not only a feature of quantum theory, but of nature itself, and
hence also of any successor to quantum theory. The requirements for such an experimental
test, however, have been a subject of much controversy [66, 67, 68, 69, 70, 71, 72].

A fundamental problem with most proposals for testing noncontextuality [73, 74, 75,
76, 47, 77, 78, 79], and experiments performed to date [80, 81, 82, 83, 84, 85, 86, 87],
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is that they seek to test a notion of noncontextuality which posits that measurements
have a deterministic response in the noncontextual model. It has been shown that such
determinism is only justified under the idealization that measurements are noiseless [88],
which is never satisfied precisely by any real experiment. We refer to this issue as the
problem of noisy measurements.

Another critical problem with previous proposals is the fact that the assumption of
noncontextuality can only be brought to bear when two measurement events (an event is
a measurement and an outcome) are operationally equivalent, which occurs when the two
events are assigned exactly the same probability by all preparation procedures [38]; in this
case they are said to differ only by the measurement context. In a real experiment, however,
one never achieves the ideal of precise operational equivalence. Previous work on testing
noncontextuality—including the only experiment to have circumvented the problem of
noisy measurements (by focusing on preparations) [61]—has failed to provide a satisfactory
account of how the deviation from strict operational equivalence should be accounted for in
the interpretation of the results. We term this problem the problem of inexact operational
equivalence.

In this work, we solve both of the above problems. We contend with the problem of
noisy measurements by devising a test of a generalised notion of noncontextuality, proposed
in Reference [38], that allows general measurements to have an indeterministic response
while reducing to the traditional notion in the idealized case of projective quantum mea-
surements. For the problem of inexact operational equivalence, whereas some have been
led to consider modifying the definition of noncontextuality so that it applies to pairs of
procedures that are merely close to operationally equivalent [89, 90], we circumvent the
problem by demonstrating a general technique that appeals to equivalences not among
the procedures themselves, but certain convex mixtures thereof. Of course, any judgment
of operational equivalence of measurements (preparations) rests on an assumption about
which sets of preparations (measurements) are sufficient to establish such equivalence,
that is, which sets are tomographically complete. We here assume that the cardinality of
a tomographically-complete set of measurements (preparations) for a photon’s polariza-
tion is three (four), as it is in quantum theory. We collect some experimental evidence
for this assumption—another improvement over previous experiments—but the possibility
of its failure is the most significant remaining loophole for tests of noncontextuality. For
Bell’s notion of local causality, the theoretical work of Clauser et al. [48] was critical to
enabling an experimental test without unwarranted idealizations, e.g., without the perfect
anti-correlations presumed in Bell’s original proof [39]. Similarly, the theoretical innova-
tions we introduce here make it possible for the first time to subject noncontextuality to
an experimental test without the idealizations described above. We report on a quantum-
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optical experiment of this kind, the results of which rule out noncontextual models with
high confidence.

4.3 Results

4.3.1 A noncontexuality inequality

According to the operational approach proposed in Ref. [38], to assume noncontextuality
is to assume a constraint on model-construction, namely, that if procedures are statisti-
cally equivalent at the operational level then they ought to be statistically equivalent in the
underlying model.

Operationally, a system is associated with a set M (resp. P) of physically possible
measurement (resp. preparation) procedures. An operational theory specifies the possi-
bilities for the conditional probabilities {p(X|P,M) : P ∈ P ,M ∈ M} where X ranges
over the outcomes of measurement M . In an ontological model of such a theory, the causal
influence of the preparation on the measurement outcome is mediated by the ontic state of
the system, that is, a full specification of the system’s physical properties. We denote the
space of ontic states by Λ. It is presumed that when the preparation P is implemented,
the ontic state of the system, λ ∈ Λ, is sampled from a probability distribution µ(λ|P ),
and when the system is subjected to the measurement M , the outcome X is distributed
as ξ(X|M,λ). Finally, for the model to reproduce the experimental statistics, we require
that ∑

λ∈Λ

ξ(X|M,λ)µ(λ|P ) = p(X|M,P ). (4.1)

Suppose there is a measurement procedure, M∗, that is operationally indistinguish-
able from a fair coin flip: it always gives a uniformly random outcome regardless of the
preparation procedure,

p(X = 0, 1|M∗, P ) =
1

2
, ∀P ∈ P . (4.2)

In this case, noncontextuality (see Section 2.3.1) dictates that in the underlying model, the
measurement should also give a uniformly random outcome regardless of the ontic state of
the system,

ξ(X = 0, 1|M∗, λ) =
1

2
, ∀λ ∈ Λ. (4.3)
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In other words, because M∗ appears operationally to be just like a coin flip, noncontextu-
ality dictates that physically it must be just like a coin flip.

The second application of noncontextuality is essentially a time-reversed version of
the first. Suppose there is a triple of preparation procedures, P1, P2 and P3, that are
operationally indistinguishable from one another: no measurement reveals any information
about which of these preparations was implemented,

∀M ∈M : p(X|M,P1) = p(X|M,P2) = p(X|M,P3). (4.4)

In this case, noncontextuality dictates that in the underlying model, the ontic state of the
system does not contain any information about which of these preparation procedures was
implemented,

∀λ ∈ Λ : µ(λ|P1) = µ(λ|P2) = µ(λ|P3). (4.5)

In other words, because it is impossible, operationally, to extract such information, non-
contextuality dictates that physically, the information is not present in the system.

Suppose that M∗ can be realized as a uniform mixture of three other binary-outcome
measurements, denoted M1, M2 and M3. That is, one implements M∗ by uniformly sam-
pling t ∈ {1, 2, 3}, implementing Mt, then outputting its outcome as the outcome of M∗
(ignoring t thereafter). Finally, suppose that each preparation Pt can be realized as the
equal mixture of two other preparation procedures, denoted Pt,0 and Pt,1.

Consider implementing Mt on Pt,b, and consider the average degree of correlation be-
tween the measurement outcome X and the preparation variable b:

A ≡ 1

6

∑
t∈{1,2,3}

∑
b∈{0,1}

p(X = b|Mt, Pt,b). (4.6)

We now show that noncontextuality implies a nontrivial bound on A.

The proof is by contradiction. In order to have perfect correlation on average, we
require perfect correlation in each term, which implies that for all ontic states λ assigned
nonzero probability by Pt,b, the measurement Mt must respond deterministically with the
X = b outcome. Given that Pt is an equal mixture of Pt,0 and Pt,1, it follows that for
all ontic states λ assigned nonzero probability by Pt, the measurement Mt must have a
deterministic response, i.e., ξ(X = b|Mt, λ) ∈ {0, 1}.

But Equation (4.5) (which follows from the assumption of noncontextuality) asserts
that the preparations P1, P2 and P3 must assign nonzero probability to precisely the same
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set of ontic states. Therefore, to achieve perfect correlation on average, each measurement
must respond deterministically to all the ontic states in this set.

Now note that by the definition of M∗, the probability of its outcome X = b is ξ(X =
b|M∗, λ) = 1

3

∑
t∈{1,2,3} ξ(X = b|Mt, λ). But then Equation (4.3) (which follows from the

assumption of noncontextuality) says

1

3

∑
t∈{1,2,3}

ξ(X = b|Mt, λ) =
1

2
. (4.7)

For each deterministic assignment of values, (ξ(X = b|M1, λ), ξ(X = b|M2, λ), ξ(X =
b|M3, λ)) ∈ {(0, 0, 0), (0, 0, 1), . . . , (1, 1, 1)}, the constraint of Equation (4.7) is violated. It
follows, therefore, that for a given λ, one of M1, M2 or M3 must fail to have a deterministic
response, contradicting the requirement for perfect correlation on average. This concludes
the proof.

The precise (i.e. tight) bound is

A ≤ 5

6
. (4.8)

We provide the full proof in Appendix A.1. This is our noncontextuality inequality.

4.3.2 Quantum violation of the inequality

Quantum theory predicts there is a set of preparations and measurements on a qubit having
the supposed properties and achieving A = 1, the logical maximum. (These preparations
and measurements are precisely those considered in Section 2.3.3). Take the Mt to be
represented by the observables σ ·nt where σ is the vector of Pauli operators and the unit
vectors {n1,n2,n3} are separated by 120◦ in the x–z plane of the Bloch sphere of qubit
states [5]. The Pt,b are the eigenstates of these observables, where we associate the positive
eigenstate |+nt〉〈+nt| with b = 0. To see that the statistical equivalence of Equation (4.2)
is satisfied, it suffices to note that

1

3
|+n1〉〈+n1|+

1

3
|+n2〉〈+n2|+

1

3
|+n3〉〈+n3| =

1

2
I, (4.9)

and to recall that for any density operator ρ, tr(ρ1
2
I) = 1

2
. To see that the statistical

equivalence of Equation (4.4) is satisfied, it suffices to note that for all pairs t, t′ ∈ {1, 2, 3},
1
2
|+nt〉〈+nt|+ 1

2
|−nt〉〈−nt|

= 1
2
|+nt′〉〈+nt′|+ 1

2
|−nt′〉〈−nt′ |, (4.10)
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which asserts that the average density operator for each value of t is the same, and therefore
leads to precisely the same statistics for all measurements. Finally, it is clear that the
outcome of the measurement of σ · nt is necessarily perfectly correlated with whether the
state was |+nt〉〈+nt| or |−nt〉〈−nt|, so that A = 1.

These quantum measurements and preparations are what we seek to implement exper-
imentally, so we refer to them as ideal, and denote them by M i

t and P i
t,b.

Note that our noncontextuality inequality can accommodate noise in both the mea-
surements and the preparations, up to the point where the average of p(X = b|Mt, Pt,b)
drops below 5

6
. It is in this sense that our inequality does not presume the idealization of

noiseless measurements.

4.3.3 Contending with the lack of exact operational equivalence

The actual preparations and measurements in the experiment, which we call the primary
procedures and denote by P p

1,0, P p
1,1, P p

2,0, P p
2,1, P p

3,0, P p
3,1 and Mp

1 , Mp
2 , Mp

3 , almost certainly
deviate from the ideal versions and consequently their mixtures, that is, P p

1 , P p
2 , P p

3 and
Mp
∗ , fail to achieve strict equality in Equations (4.2) and (4.4).

We solve this problem as follows. From the outcome probabilities on the six primary
preparations, one can infer the outcome probabilities on the entire family of probabilistic
mixtures of these. It is possible to find within this family many sets of six preparations,
P s

1,0, P s
1,1, P s

2,0, P s
2,1, P s

3,0, P s
3,1, which define mixed preparations P s

1 , P s
2 , P s

3 that satisfy
the operational equivalences of Equation (4.4) exactly. We call the P s

t,b secondary prepa-
rations. We can define secondary measurements M s

1, M s
2, M s

3 and their uniform mixture
M s
∗ in a similar fashion. The essence of our approach, then, is to identify such secondary

sets of procedures and use these to calculate A. If quantum theory correctly models our
experiment, then we expect to get a value of A close to 1 if and only if we can find suitable
secondary procedures that are close to the ideal versions.

To test the hypothesis of noncontextuality, one must allow for the possibility that the
experimental procedures do not admit of a quantum model. Nonetheless, for pedagogical
purposes, we will first provide the details of how one would construct the secondary sets
under the assumption that all the experimental procedures do admit of a quantum model.

In Fig. 4.1, we describe the construction of secondary preparations in a simplified
example of six density operators that deviate from the ideal states only within the x–z
plane of the Bloch sphere.
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a b

c

Figure 4.1: Solution to the problem of inexact operational equivalences. Here, we illus-
trate our solution for the case of preparations under the simplifying assumption that these
are confined to the x–z plane of the Bloch sphere. For a given pair, Pt,0 and Pt,1, the mid-
point along the line connecting the corresponding points represents their equal mixture,
Pt. a, The target preparations P i

t,b, with the coincidence of the midpoints of the three
lines illustrating that they satisfy the operational equivalence (4.4) exactly. b, Illustration
of how errors in the experiment (exaggerated in magnitude) will imply that the realized
preparations P p

t,b (termed primary) will deviate from the ideal. The lines indicate that
not only do these preparations fail to satify the operational equivalence (4.4), but since
the lines do not meet, no mixtures of the P p

t,0 and P p
t,1 can be found at a single point

independent of t. The set of preparations corresponding to probabilistic mixtures of the
P p
t,b are depicted by the grey region. c, Secondary preparations P s

t,b have been chosen from
this grey region, with the coincidence of the midpoints of the three lines indicating that
the operational equivalence (4.4) has been restored. Note that we require only that the
mixtures of the three pairs of preparations be the same, not that they correspond to the
completely mixed state.
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In practice, the six density operators realized in the experiment will not quite lie in a
plane. We use the same idea to contend with this, but with one refinement: we supplement
our set of ideal preparations with two additional ones, denoted P i

4,0 and P i
4,1 corresponding

to the two eigenstates of σ · y. The two procedures that are actually realized in the
experiment are denoted P p

4,0 and P p
4,1 and are considered supplements to the primary set.

We then search for our six secondary preparations among the probabilistic mixtures of
this supplemented set of primaries rather than among the probabilistic mixtures of the
original set. Without this refinement, it can happen that one cannot find six secondary
preparations that are close to the ideal versions, as we explain in Appendix A.2.

The scheme for defining secondary measurement procedures is also described in Ap-
pendix A.2. Analogously to the case of preparations, one contends with deviations from
the plane by supplementing the ideal set with the observable σ · y.

Note that in order to identify which density operators have been realized in an experi-
ment, the set of measurements must be complete for state tomography [24]. Similarly, to
identify which sets of effects have been realized, the set of preparations must be complete for
measurement tomography [32]. However, the original ideal sets fail to be tomographically
complete because they are restricted to a plane of the Bloch sphere, and an effective way to
complete them is to add the observable σ ·y to the measurements and its eigenstates to the
preparations. Therefore, even if we did not already need to supplement these ideal sets for
the purpose of providing greater leeway in the construction of the secondary procedures,
we would be forced to do so in order to ensure that one can achieve full tomography.

The relevant procedure here is not quite state tomography in the usual sense, since we
want to allow for systematic errors in the measurements as well as the preparations. Hence
the task [91, 92] is to find a set of qubit density operators, ρt,b, and POVMs, {EX|t}, that
together make the measured data as likely as possible (we cannot expect tr(ρt,bEX|t) to
match the measured relative frequencies exactly due to the finite number of experimental
runs).

To analyze our data in a manner that does not prejudice which model—noncontextual,
quantum, or otherwise—does justice to it, we must search for representations of the
preparations and measurements not amongst density operators and sets of effects, but
rather their more abstract counterparts in the formalism of generalised probabilistic the-
ories [50, 51] (GPTs), called generalised states and effects. The assumption that the
system is a qubit is replaced by the strictly weaker assumption that three two-outcome
measurements are tomographically complete. (In GPTs, a set of measurements are called
tomographically complete if their statistics suffice to determine the state.) We take these
states and effects as estimates of our primary preparations and measurements, and we
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define our estimate of the secondary procedures in terms of these, which in turn are used
to calculate our estimate for A. We explain how the raw data is fit to a set of generalised
states and effects in Appendix A.3. We characterize the quality of this fit with a χ2 test.

4.3.4 Experiment

We use the polarization of single photons to test our noncontextuality inequality. The
set-up, shown in Figure 4.2, consists of a heralded single-photon source [93, 94, 95],
polarization-state preparation and polarization measurement. We generate photons us-
ing spontaneous parametric downconversion and prepare eight polarization states using a
polarizer followed by a quarter-wave plate (QWP) and half-wave plate (HWP). The four
polarization measurements are performed using a HWP, QWP and polarizing beamsplitter.
Photons are counted after the beamsplitter and the counts are taken to be fair samples
of the true probabilities for obtaining each outcome for every preparation-measurement
pair. Since the orientations of the preparation waveplates lead to small deflections of the
beam, some information about the preparation gets encoded spatially, and similarly the
measurement waveplates create sensitivity to spatial information; coupling the beam into
the single-mode fibre connecting the state-preparation and measurement stages of the ex-
periment removes sensitivity to these effects. For a single experimental run we implement
each preparation-measurement pair for 4s (approximately 105 counts). We performed 100
such runs.

Preparations are represented by vectors of raw data specifying the relative frequencies of
outcomes for each measurement, uncertainties on which are calculated assuming Poissonian
uncertainty in the photon counts. For each run, the raw data is fit to a set of states
and effects in a GPT in which three binary-outcome measurements are tomographically
complete. This is done using a total weighted least-squares method [96, 97]. The average
χ2 over the 100 runs is 3.9 ± 0.3, agreeing with the expected value of 4, and indicating
that the model fits the data well (see Appendix A.3). The fit returns a 4 × 8 matrix
that serves to define the 8 GPT states and 4 GPT effects, which are our estimates of the
primary preparations and measurements. The column of this matrix associated to the t, b
preparation, which we denote Pp

t,b, specifies our estimate of the probabilities assigned by
the primary preparation P p

t,b to outcome ‘0’ of each of the primary measurements. The
raw and primary data are compared in Figure 4.3. The probabilities are indistinguishable
on this scale. We plot the probabilities for P1, P2, and P3 in Figure 4.4a on a much finer
scale. We then see that the primary data are within error of the raw data, as expected
given the high quality of the fit to the GPT. However, the operational equivalences of
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Figure 4.2: The experimental setup. Polarization-separable photon pairs are created via
parametric downconversion, and detection of a photon at Dh heralds the presence of a single
photon. The polarization state of this photon is prepared with a polarizer and two wave-
plates (prep). A single-mode fibre is a spatial filter that decouples beam deflections caused
by the state-preparation and measurement waveplates from the coupling efficiency into the
detectors. Three waveplates (comp) are set to undo the polarization rotation caused by the
fibre. Two waveplates (meas), a polarizing beamsplitter, and detectors Dr and Dt perform
a two-outcome measurement on the state. PPKTP, periodically-poled potassium titanyl
phosphate; PBS, polarizing beamsplitter; GT-PBS, Glan-Taylor polarizing beamsplitter;
IF, interference filter; HWP, half-waveplate; QWP, quarter-waveplate.
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Figure 4.3: Outcome probabilities for each measurement-preparation pair. For each such
pair, we report the probability of obtaining outcome 0 in the measurement. Red bars
are relative frequencies calculated from the raw counts, blue bars are our estimates of the
outcome probabilities of the primary measurements on the primary preparations obtained
from a best-fit of the raw data, and green bars are our estimates of the outcome proba-
bilities of the secondary measurements on the secondary preparations. The shaded grey
background highlights the measurements and preparations for which secondary procedures
were found. Error bars are not visible on this scale, neither are discrepancies between the
obtained probabilities and the ideal values thereof, which are at most 0.013; statistical
error due to Poissonian count statistics is at most 0.002.
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Equations (4.2) and (4.4) are not satisfied by our estimates of the primary preparations
and measurements, illustrating the need for secondary procedures.

We define the six secondary preparations as probabilistic mixtures of the eight pri-
maries: Ps

t,b =
∑4

t′=1

∑1
b′=0 u

t,b
t′,b′P

p
t′,b′ , where the ut,bt′,b′ are the weights in the mixture. We

maximize CP = 1
6

∑3
t=1

∑1
b=0 u

t,b
t,b over valid ut,bt′,b′ subject to the constraint of Equation (4.4),

that is, 1
2

∑
b Ps

1,b = 1
2

∑
b Ps

2,b = 1
2

∑
b Ps

3,b (a linear program). A high value of CP ensures
each of the six secondary preparations is close to its corresponding primary. Averaging
over 100 runs, we find CP = 0.9969 ± 0.0001, close to the maximum of 1. An analogous
linear program to select secondary measurements yields similar results. In Appendix A.2,
Tables A.2 and A.3 display the weights that define each secondary preparation and mea-
surement, averaged over 100 runs. Figure 4.3 also displays the outcome probabilities for
the secondary procedures, confirming that they are close to ideal. Figure 4.4 demonstrates
how our construction enforces the operational equivalences.

We analyzed each experimental run separately and found the degree of correlation
p(X=b|M s

t , P
s
t,b) for each value of t and b. The averages over the 100 runs are shown in

Figure 4.5a and are all in excess of 0.995. Averaging over t and b yields an experimental
value A = 0.99709 ± 0.00007, which violates the noncontextual bound of 5/6 ≈ 0.833 by
2300σ (Figure 4.5b).

4.4 Discussion

Using the techniques described here, it is possible to convert proofs of the failure of non-
contextuality in quantum theory into experimental tests of noncontextuality that are ro-
bust to noise and experimental imprecisions [98, 99]. For any phenomenon, therefore,
one can determine which of its operational features are genuinely nonclassical. This is
likely to have applications for scientific fields wherein quantum effects are important and
for developing novel quantum technologies. The definition of operational equivalence of
preparations (measurements) required them to be statistically equivalent relative to a to-
mographically complete set of measurements (preparations). There are two examples of
how the assumption of tomographic completeness is expected not to hold exactly in our
experiment, even if one grants the correctness of quantum theory. First, our source pro-
duces a small multi-photon component. We measure the heralded g(2)(0) of our source [11]
to be 0.00105± 0.00001 and from this1 we estimate the ratio of heralded detection events
caused by multiple photons to those caused by single photons to be 1:4000. Regardless

1In Ref. [2] the heralded g(2)(0) was mistakenly reported as 0.0105± 0.0001.
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Figure 4.4: Verifying the requisite operational equivalences. Operational statistics for
raw, primary, and secondary preparations and measurements, averaged over 100 experi-
mental runs. a, The probabilities of the primary measurements (blue bars) differ depending
on which of the three mixed preparations P p

1 , P p
2 , and P p

3 are measured. These probabili-
ties are within error of the raw data (red bars), indicating that a generalised probabilistic
theory in which three two-outcome measurements are tomographically complete fits the
data well. Probabilities for primary measurements on the secondary preparations (green
bars) are independent of the preparation, hence the secondary preparations satisfy Equa-
tion (4.4). Note that one expects these probabilities to deviate from 0.5. In the example
of Figure 4.1c, this corresponds to the fact that the intersection of the lines is not the
completely mixed state. b, Outcome probabilities of measurement M∗ on the eight prepa-
rations. Red bars are raw data, blue bars are the measurement Mp

∗ on the primary prepa-
rations, and green bars are M s

∗ on the primary preparations. Regardless of the input state,
M s
∗ returns outcome 0 with probability 0.5, hence it is operationally indistinguishable from

a fair-coin flip (Equation (4.2)). Error bars in all plots are calculated assuming Poissonian
count statistics.
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Figure 4.5: Violation of the noncontextuality inequality. a, Values of the six de-
grees of correlation in Equation (4.8), averaged over 100 experimental runs. b, Aver-
age measured value for A contrasted with the noncontextual bound A = 5/6. We find
A = 0.99709 ± 0.00007, which violates the noncontextual bound by 2300σ. Error bars in
both plots represent the standard deviation in the average of the measured values over the
100 experimental runs.

of the value of A that one presumes for multi-photon events, one can infer that the value
of A we would have achieved had the source been purely single-photon could have been
less than the value given above by at most 10−6, a difference that does not affect our
conclusions. We also expect the assumption to not hold exactly because of the inevitable
coupling of the polarization into the spatial degree of freedom of the photon, which could
be caused, for example, by a wedge in a waveplate. Indeed, we found that if the spatial
filter was omitted from the experiment, our fitting routine returned large χ2 values, which
we attributed to the fact that different angles of the waveplates led to different deflections
of the beam. A more abstract worry is that nature might conflict with the assumption (and
prediction of quantum theory) that three independent binary-outcome measurements are
tomographically complete for the polarization of a photon. Our experiment has provided
evidence in favour of the assumption insofar as we have fit data from four measurements
to a theory where three are tomographically complete and found a good χ2 value for the
fit. One can imagine accumulating much more evidence of this sort, but it is difficult to
see how any experiment could conclusively vindicate the assumption, given that one can
never test all possible measurements. This, therefore, represents the most significant loop-
hole in experimental tests of noncontextuality, and new ideas for how one might seal it or
circumvent it represent the new frontier for improving such tests.
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4.5 Methods

4.5.1 Preparation procedure

A 20-mW diode laser with a wavelength of 404.7 nm produces photon pairs, one horizontally
polarized and the other vertically polarized, via spontaneous parametric down-conversion
in a 20-mm type-II PPKTP crystal. The downconversion crystal is inside a Sagnac loop and
the pump laser is polarized vertically to ensure it only travels counter-clockwise around the
loop. Photon pairs are separated at a polarizing beamsplitter and coupled into two single-
mode fibres (SMFs). Vertically-polarized photons are detected immediately at detector
Dh, heralding the presence of the horizontally-polarized signal photons which emerge from
the SMF and pass through a state-preparation stage before they are measured. Herald
photons were detected at a rate of 400 kHz. Signal photons emerge from the fibre and
pass through a Glan-Taylor polarizing beamsplitter (GT-PBS) which transmits vertically-
polarized light. Polarization controllers in the fibre maximize the number of photons which
pass through the beamsplitter. A quarter- and half-waveplate set the polarization of the
signal photons to one of eight states.

4.5.2 Spatial mode filter

An SMF acts as a spatial mode filter. This filter ensures that information about the angles
of the state-preparation waveplates cannot be encoded in the spatial mode of the photons,
and that our measurement procedures do not have a response that depends on the spatial
mode, but only on polarization as intended. The SMF induces a fixed polarization rotation,
so a set of three compensation waveplates are included after the SMF to undo this rotation.
It follows that the preparation-measurement pairs implemented in our experiment are in
fact a rotated version of the ideal preparation and a similarly-rotated version of the ideal
measurement. Such a fixed rotation, however, does not impact any of our analysis.

4.5.3 Measurement procedure

Measurements are performed in four bases, set by a half- and quarter-waveplate. A second
GT-PBS splits the light, and both output ports are detected. Due to differences in the
coupling and detection efficiencies in each path after the beamsplitter, each measurement
consists of two parts. First, the waveplates are aligned such that states corresponding to
outcome ‘0’ are transmitted by the GT-PBS, and the number of heralded photons detected
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in a two-second window is recorded for each port. Second, the waveplate angles are changed
in such a way as to invert the outcomes, so the detector in the reflected port corresponds
to outcome ‘0’ and heralded photons are detected for another two seconds. The counts are
added together and the probability for outcome ‘0’ is calculated by dividing the number
of detections corresponding to outcome ‘0’ by the total number of detection events in the
four-second window. The single-photon detection rate at detectors Dr and Dt depends
on the measurement settings. In the transmissive and reflective ports of the measurement
GT-PBS photons were detected at maximum rates of 330 kHz and 250 kHz, respectively.
Coincident detection events between herald photons and the transmissive and reflective
ports of the measurement GT-PBS were up to 22 kHz and 16 kHz, respectively.
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Chapter 5

Experimentally bounding deviations
from quantum theory within the
framework of generalised
probabilistic theories
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5.1 Overview

Many experiments in the field of quantum foundations seek to adjudicate between quantum
theory and speculative alternatives to it. To do so, one must analyse the experimental
data in a manner that does not presume the correctness of the quantum formalism. The
mathematical framework of generalized probabilistic theories (GPTs) provides a means of
doing so. We present a scheme for determining what GPTs are consistent with a given
set of experimental data. It proceeds by performing tomography on the preparations and
measurements in a self-consistent manner, i.e., without presuming a prior characterization
of either. We illustrate the scheme by analyzing experimental data for a large set of
preparations and measurements on the polarization degree of freedom of a single photon.
We find that the smallest and largest GPT state spaces consistent with our data are a pair
of polytopes, each approximating the shape of the Bloch Sphere and having a volume ratio
of 0.977 ± 0.001, which provides a quantitative bound on the scope for deviations from
quantum theory. We also demonstrate how our scheme can be used to bound the extent
to which nature might be more nonlocal than quantum theory predicts, as well as the
extent to which it might be more or less contextual. Specifically, we find that the maximal
violation of the CHSH inequality can be at most (1.3 ± 0.1)% greater than the quantum
prediction, and the maximal violation of a particular noncontextuality inequality can not
differ from the quantum prediction by more than this factor on either side.

5.2 Introduction

Despite the empirical successes of quantum theory, it may one day be supplanted by a
novel, post-quantum theory.1 Many researchers have sought to anticipate what such a
theory might look like based on theoretical considerations, in particular, by exploring how
various natural physical principles narrow down the scope of possibilities in the landscape
of all physical theories (see [100] and references therein). In this article, we consider
a complementary problem: how to narrow down the scope of possibilities directly from
experimental data.

1Indeed, the fact that it has not yet been unified with general relativity is often cited as evidence for
the need to go beyond quantum theory.
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Most experiments in the field of quantum foundations aim to adjudicate between quan-
tum theory and some speculative alternative to it. They seek to constrain (and perhaps
uncover) deviations from the quantum predictions. Although a few proposed alternatives
to quantum theory can be articulated within the quantum formalism itself, such as models
which posit intrinsic decoherence [101, 102, 103, 104], most are more radical. Examples
include Almost Quantum Theory [105, 106], theories with higher-order interference (or of
higher-order in the sense of Ref. [50])[107, 108, 109, 110, 111, 112], and modifications to
quantum theory involving the quaternions [113, 114, 115, 116].

In order to assess whether experimental data provides any evidence for a given proposal
(and against quantum theory), it is clearly critical that one not presume the correctness of
quantum theory in the analysis. Therefore it is inappropriate to use the quantum formalism
to model the experiment. A more general formalism is required. Furthermore, it would be
useful if rather than implementing dedicated experiments for each proposed alternative to
quantum theory, one had a technique for directly determining the experimentally viable
regions in the landscape of all possible physical theories. The framework of generalized
probabilistic theories (GPTs) provides the means to meet both of these challenges.

This framework adopts an operational approach to describing the content of a physical
theory. It has been developed over the past fifteen years in the field of quantum foundations
(see [50, 51, 52, 53] in particular, as well as [117, 54, 118, 119, 56, 120, 121, 122, 106]),
continuing a long tradition of such approaches [123, 124, 125, 126]. It is operational because
it takes the content of a physical theory to be merely what it predicts for the probabilities
of outcomes of measurements in an experiment.

The GPT framework makes only very weak assumptions (which are arguably unavoid-
able if an operationalist’s conception of an experiment is to be meaningful). One is that
experiments have a modular form, such that one part of an experiment can be varied
independently of another, such as preparations and measurements for instance; another
is that it is possible to repeat a given experimental configuration in such a way that it
constitutes an i.i.d. source of statistical data. Beyond this, however, it is completely
general. It has been used extensively to provide a common language for describing and
comparing abstract quantum theory, classical probability theory, and many foils to these,
such as quantum theory over the real or quaternionic fields[116], theories with higher-order
interference[127, 128, 129], Boxworld [51, 56], or Almost Quantum Theory [106].

Using this framework, we propose a technique for analyzing experimental data that
allows researchers to overcome their implicit quantum bias — the tendency of viewing all
experiments through the lens of quantum concepts and formalism — and take a theory-
neutral perspective on the data.
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Despite the fact that the GPT formalism is ideally suited to the task, to our knowledge,
it has not previously been applied to the analysis of experimental data, (with the exception
of Ref. [2], which applied it to an experimental test of universal noncontextuality and which
inspired the present work).

In this paper we answer the question: given a set of experimental data, how does one
find the set of GPTs that could have generated the data? We call this the “GPT inference
problem”. Solving the problem requires implementing the GPT analogue of quantum
tomography. Quantum tomography experiments that have sought to characterize unknown
states have typically presumed that the measurements are already well-characterized [130,
131, 132, 133, 24, 134, 135], and those have sought to characterize unknown measurements
have presumed that the states are known [30, 32]. If one has no prior knowledge of either the
states or the measurements, then one requires a tomography scheme that can characterize
them both based on their interplay. We call such a tomographic scheme self-consistent. To
solve the GPT inference problem, we introduce such a self-consistent tomography scheme
within the framework of GPTs.

We illustrate the use of our technique with an experiment on the polarization degree
of freedom of a single photon. For each of a large number of preparations, we perform
a large number of measurements, and from the data we use our tomography scheme to
infer a GPT characterization of both the preparations and the measurements. From this
characterization, we place bounds (at the 1% level) on how much the true theory describing
our experiment might deviate from quantum theory in various respects. In addition, we
draw explicit quantitative conclusions about three types of deviations from quantum theory.

A popular axiom in reconstructions of quantum theory, termed the no-restriction hy-
pothesis [52] asserts that if some measurement is logically possible (i.e., it gives positive
probabilities for all states in the theory) then it should be physically realizable. A failure
of the no restriction hypothesis, therefore, constitutes a departure from quantum theory.
We put quantitative bounds on the degree of this failure, that is, on the potential gap
between the set of measurements that are physically realizable and those that are logically
possible.

We also put an upper bound on the amount by which nature might violate Bell in-
equalities in excess of the amount predicted by quantum theory. Specifically, for the CHSH
inequality [48], we show that for photon polarization any greater-than-quantum degree of
violation is no more than 1.3% higher than the quantum bound. To our knowledge, this
is the first proposal for how to obtain an experimental upper bound on the degree of Bell
inequality violation in nature.

In a similar vein, we consider noncontextuality inequalities. These are akin to Bell
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inequalities, but test the hypothesis of universal noncontextuality [38] rather than local
causality. Here, our technique provides both an upper and a lower bound on the degree of
violation. For a particular noncontextuality inequality, described in Ref. [61], we find that
the true value of the violation cannot be greater than or less than the quantum value by
more than 1.3%.

5.3 The GPT inference problem

As we saw in Chapter 3, the true GPT state and effect spaces for a physical system,
S and E , are theoretical abstractions, describing the full set of GPT state and effect
vectors that could be in principle be realized experimentally if one could eliminate all noise.
However, the ideal of noiselessness is never achieved. Therefore, the GPT state and effect
vectors describing the preparation and measurement effects realized in any experiment are
necessarily bounded away from the extremal elements of S and E . Geometrically, the
realized GPT state and effect spaces will be contracted relative to their true counterparts.

There is another way in which the experiment necessarily differs from the theoretical
abstraction: it may be impossible for the set of experimental configurations in a real exper-
iment to probe all possible experimental configurations allowed by the GPT. For instance,
for quantum theory there are an infinite number of convexly extremal preparations and
measurements even for a single qubit, while a real experiment can only implement a finite
number of each.

Because we assume convex closure, the realized GPT state and effect spaces will be
polytopes. If the experiment probes a sufficiently dense sample of the preparations and
measurements allowed by the GPT, then the shapes of these polytopes ought to resemble
the shapes of their true counterparts.

We term the convex hull of the GPT states that are actually realized in an experiment
the realized GPT state space, and denote it by Srealized. Because every preparation is noisier
than the ideal version thereof, this will necessarily be strictly contained within the true
GPT state space S. Similarly, we term the diamond defined by the GPT measurement
effects that are actually realized in an experiment the realized GPT effect space, and de-
note it Erealized. Again, we expect it to be strictly contained within E . By dualization,
Srealized defines the set of GPT effect vectors that are logically consistent with the realized
preparations, which we denote by Econsistent, that is, Econsistent ≡ dual(Srealized). Similarly,
the set of GPT state vectors that are logically consistent with the realized measurement
effects is Sconsistent ≡ dual(Erealized).
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Figure 5.1: An illustration of the inclusion relations among the different spaces of states
and effects considered in this chapter. We use a generic k = 3 example for ease of depicting
set inclusions. (a) The different spaces of states. (b),(c) The 2-d projections of the different
spaces of effects. The GPT specifies a space of true states, S, and effects, E . From these,
one can find the sets of logically possible states, Slogical, and effects Elogical. Elogical is the dual
of S, and it represents all effects which return probabilities between 0 and 1 when applied
to every possible state in S. Similarly, Slogical is the dual of E . The logical state (effect)
space must always contain the true state (effect) space. The spaces Srealized and Erealized

are the GPT representations of the preparations and measurement effects actually realized
in the experiment. As any real experiment necessarily contains a finite amount of noise,
Srealized will always be contained within S, and Erealized will always be contained within
E . Econsistent is the dual of Srealized (and thus will always contain Elogical), and it represents
all effects that are logically consistent with the set of states realized in the experiment.
Similarly, Sconsistent will always contain Slogical as it is the dual of Erealized.

Suppose one has knowledge of the realized GPT state and effect spaces Srealized and
Erealized for some experiment. What can one then infer about S and E? The answer is that
S can be any convex set of GPT states that lies strictly between Srealized and Sconsistent.
For every such possibility for S, E could be any diamond of GPT effects that lies between
Erealized and dual(S) ⊂ Econsistent. These inclusion relations are depicted in Fig. 5.1.

The larger the gap between Srealized and Sconsistent, the more choices of S and E there
are that are consistent with the experimental data. An example helps illustrate the point.
Suppose that one found Srealized and Erealized to be the GPT state and effect spaces depicted
in Fig. 3.1(d). In this case Srealized is represented by the blue octahedron in Fig. 3.1(d)(i),
and Erealized is the green diamond with an octahedral base depicted in Fig. 3.1(d)(ii-iii).
The wireframe cube in Fig. 3.1(d)(i) is the space of states Sconsistent that is the dual of
Erealized, and the wireframe diamond with a cubic base in Fig. 3.1(d)(ii-iii) is the space
of effects Econsistent that is the dual of Srealized. Which GPTs are candidates for the true
GPT in this case? The answer is: those whose state space contains the blue octahedron
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and is contained by the wireframe cube in Fig. 3.1(d)(i) and whose effect space contains
the green diamond with the octohedral base in Fig. 3.1(d)(ii)-(iii) (the consistency of the
effect space with the state space is a given if one grants that the pair is a valid GPT).
By visual inspection of Fig. 3.1(a) and Fig. 3.1(c), it is clear that the GPTs representing
both quantum theory and Boxworld are consistent with this data. The GPT for a classical
4-level system (i.e. the k = 4 generalization of the classical bit in Fig. 3.1(b) [121]) is as
well.

When there is a large gap between Srealized and Sconsistent, it is important to consider
the possibility that this is due to a shortcoming in the experiment and that probing more
experimental configurations will reduce it. For instance, if an experiment on a 2-level sys-
tem was governed by quantum theory, but the experimenter only considered experimental
configurations involving eigenstates of Pauli operators, then Srealized and Erealized would be
precisely those of the example we have just described, implying many possibilities besides
quantum theory for the true GPT. However, further experimentation would reveal that
this seemingly large scope for deviations from quantum theory was merely an artifact of
probing a too-sparse set of configurations. Only if one continually fails to close the gap
between Srealized and Sconsistent, in spite of probing the greatest possible variety of exper-
imental configurations, should one consider the possibility that in fact S ' Srealized and
E ' Erealized and that the true GPT fails to satisfy the no-restriction hypothesis. By con-
trast, if the gap between Srealized and Sconsistent is very small, the experiment has found a
tightly constrained range of possibilities for the true GPT, and it successfully rules out a
large class of alternative theories.

5.4 Self-consistent tomography in the GPT frame-

work

We have just seen that any real experiment defines a set of realized GPT states, Srealized,
and a set of realized GPT effects, Erealized, and it is from these that one can infer the scope
of possibilities for the true spaces, S and E , and thus the scope of possibilities for deviations
from quantum theory.

But how can one estimate Srealized and Erealized from experimental data? In other words,
how can one implement tomography within the GPT framework? This is the problem
whose solution we now describe. The steps in our scheme are outlined in Fig. 5.2.
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Figure 5.2: Overview of the self-consistent GPT tomography procedure. We begin with
the experimental data, finite-run relative frequencies for each configuration realized in the
experiment, and arrange it into a matrix, F , which is a noisy version of the matrix of
true probabilities, Drealized. To estimate the dimension, k, of the data, we find the rank-
k matrix which best fits F for a set of values of k. We call this set of best-fit rank-k
matrices the candidate model set. A statistical analysis on the candidate model set (using
the χ2 goodness-of-fit test and the Akaike information criterion) determines the value
of k that gives us the best fit, and therefore which of the candidate models is the best
approximation to Drealized. We denote this best approximation by D̃realized. We find a
decomposition D̃realized = S̃realizedẼrealized, in order to estimate the spaces of states and
effects realized in the experiment. Each row of S̃realized is a GPT state vector representing
one of the preparation procedures in the experiment, and each column of Ẽrealized is a GPT
effect vector representing one of the measurement procedures. This completes the GPT
tomography procedure.
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5.4.1 Accumulating evidence for tomographic completeness

Our scheme only works if the data acquired contains sufficient information to fully charac-
terize any preparation or measurement in the GPT. It is imperative, therefore, to ensure
that the sets of preparations and measurements in one’s experiment are tomographically
complete. Because one cannot presume the correctness of quantum theory, however, one
does not have any theoretical grounds for deciding which sets of measurements (prepa-
rations) are tomographically complete for a given system. If one were to implement all
extremal measurements and all extremal preparations on the system, this would clearly be
sufficient, but in cases where there is a continuum of extremal elements (as in quantum
theory), this is impossible. Therefore, the best one can do is to implement a set of mea-
surements and preparations on the system that is as large and as diverse as possible. By
doing so, one can certainly build up evidence in favour of tomographic completeness. Every
novel preparation (measurement) whose statistics are well predicted by those in the puta-
tive tomographically complete set adds to the evidence. Nonetheless, one can never rule
out the possibility that tomorrow a novel type of preparation (measurement) procedure will
be identified whose statistics are not predicted by those in the putative tomographically
complete set, thereby demonstrating that the set was not tomographically complete after
all. As such, any conclusion of tomographic completeness is always tentative.

However, as Popper emphasized, all scientific claims are vulnerable to being falsified
and therefore have a tentative status [136]. We are therefore recommending to treat the
hypothesis that a given set of measurements and a given set of preparations are tomo-
graphically complete as Popper recommends treating any scientific hypothesis: one should
try one’s best to falsify it and as long as one fails to do so, the hypothesis stands.

Building evidence in favour of tomographic completeness is a critical step in our scheme
because the validity of all of the conclusions rests upon it.

5.4.2 Inferring best-fit probabilities from finite-run statistics

We suppose that, for a given system, the experimenter makes use of a finite number m
of preparation procedures (Pi, i ∈ {1, · · · ,m}) and a finite number, n, of binary-outcome
measurement procedures (Mj, j ∈ {1, · · · , n}). We denote the outcome of each measure-
ment by a ∈ {0, 1}. For each choice of preparation and measurement, (Pi,Mj), the exper-
imenter records the outcome of the measurement in a large number of runs and computes
the relative frequency with which a given outcome a occurs, denoted f(a|Pi,Mj). For the
binary-outcome measurements under consideration, it is sufficient to specify f(0|Pi,Mj)
for each pair (Pi,Mj), because f(1|Pi,Mj) is then fixed by normalization.
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The set of all experimental data, therefore, can be encoded in an m × n matrix F ,
whose (i, j)th component is f(0|Pi,Mj).

The relative frequency f(0|Pi,Mj) one measures will not coincide exactly with the
probability p(0|Pi,Mj) from which it is assumed that the outcome in each run is sam-
pled.2 Rather, f(0|Pi,Mj) is merely a noisy approximation to p(0|Pi,Mj). The statistical
variation in f(0|Pi,Mj) can, however, be estimated from the experiment.

It follows that the matrix F extracted from the experimental data is merely a noisy
approximation to the matrix Drealized that encodes the predictions of the GPT for the mn
experimental configurations of interest. Because of the noise, F will generically be full
rank, regardless of the rank of Drealized [137]. Therefore, the experimentalist is tasked with
estimating the m × n probability matrix Drealized given the m × n data matrix F , where
the rank of Drealized is a parameter in the fit.

We aim to describe our technique in a general manner, so that it can be applied to any
experiment. However, in order to provide a concrete example of its use, we will intersperse
our presentation of the technique with details about how it is applied to the particular
experiment we have conducted. We begin, therefore, by providing the details of the latter.

5.4.3 Description of the experiment

To illustrate the GPT tomography scheme, we perform an experiment on the polarization
degree of freedom of single photons. Pairs of photons are created via spontaneous paramet-
ric down-conversion, and the detection of one of these photons, called the herald, indicates
the presence of the other, called the signal. We manipulate the polarization of the signal
photons with a quarter- and half- waveplate before they are coupled into a single-mode
fibre; each preparation is labelled by the angles of these two waveplates.

Upon emerging from the fibre, photons encounter the measurement stage of the ex-
periment, which consists of a quarter- and half-waveplate followed by a polarizing beam
splitter with single-photon detectors at each of its output ports. Each measurement is
labelled by the angles of the two waveplates preceding the beam splitter.

The frequency of the a = 0 outcome is defined as the ratio of the number of signal
photon detections in the a = 0 output port to the total number of heralded detections.

2Note that it is presumed that the outcome variables for the different runs (on a given choice of
preparation and measurement) are identically and independently distributed. This assumption could fail,
for instance, due to a drift in the nature of the preparation or measurement over the timescale on which the
different runs take place, or due to a memory effect that makes the outcomes in different runs correlated.
In such cases, one would require a more sophisticated analysis than the one described here.
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Figure 5.3: The experimental setup. Pairs of polarization-separable single photons are
created via spontaneous parametric down-conversion. The herald photon is sent to a
detector. The signal photon’s polarization travels through a polarizer then a quarter and
half waveplate, which prepares its polarization state. The photon is then coupled into
single-mode fibre which removes any information which may be encoded in the photon’s
spatial degree-of-freedom. Three static waveplates undo the polarization rotation caused
by the fibre. Two waveplates and a polarizing beamsplitter with detectors in each output
port perform a measurement on the photon. One output port is labelled ‘0’, and the other is
labelled ‘1’. Coincident detections between the herald detector, Dh, and the detector in the
transmitted port, Dt, are counted, as well as coincidences betweenDh and the reflected-port
detector Dr. PPKTP: Periodically-poled potassium titanyl phosphate; PBS: Polarizing
beamsplitter; GT-PBS: Glan-Thompson polarizing beamsplitter; IF: Interference filter;
HWP: Half waveplate; QWP: Quarter waveplate.
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We ignore experimental trials in which either the herald or the signal photon is lost by
post-selecting on coincident detections, so that our measurements are only performed on
normalized states.

We choose m = 100 waveplate settings for the preparations, and n = 100 waveplate
settings for the settings, corresponding to mn = 104 experimental configurations in all, one
for each pairing.

We choose m = n so that the GPT state space and the GPT effect space are equally
well characterized. We detect coincidences at a rate of ∼ 2250 counts/second, and count
coincidences for each preparation-measurement pair for a total of eight seconds, allowing
us to achieve a standard deviation on each data point below the 1% level. Because of the
additional time it takes to mechanically rotate the preparation and measurement wave-
plates, it takes approximately 84 hours to acquire data for 104 preparation-measurement
pairs.

Our method of selecting which 100 waveplate settings to use is described in Ap-
pendix B.2. Note that although the choice of these settings is motivated by our knowledge
of the quantum formalism, our tomographic scheme does not assume the correctness of
quantum theory: our reconstruction scheme could have been applied equally well if the
waveplate settings had been chosen at random.3

The raw frequencies are arranged into the data matrix F . Entry Fij is the frequency
at which outcome a = 0 was obtained when setting Mj was used to measure a photon
prepared with setting Pi. As noted in Sec. 3.2, we adopt a convention wherein M1 is the
unit measurement, implying that the first column of F is a column of 1s. The data matrix
for our experiment is presented in Fig. 5.4. As expected, we find that F is full rank.

5.4.4 Estimating the probability matrix Drealized

We turn now to the problem of estimating from F the m× n probability matrix Drealized.
The first item of business is to estimate the rank of Drealized, which is equivalent to estimat-
ing the cardinality of the tomographically complete set of preparations (or measurements)
of the GPT model of the experiment.

The best estimate of the rank-k probability matrix Drealized is the rank-k matrix D̃realized

that best fits the data matrix F . In other words, D̃realized is the rank-k matrix that

3An interesting question for future research is how the quality of the GPT reconstruction varies with
the particular set of waveplate settings that are considered. In particular, one can ask about the quality of
the evidence for quantum theory in the situation wherein the waveplate settings correspond to sampling
highly nonuniformly over the points on the Bloch sphere.
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Figure 5.4: The raw frequencies at which outcome a = 0 was obtained for every pair of
preparation and measurement settings. The maximum standard deviations in the data are
∼ 4 × 10−3. Every entry in the left-most column is equal to 1—this represents the unit
measurement effect which returns a = 0 regardless of the state of the input. The striped
pattern of the data is simply an artefact of the order in which we chose to implement the
preparations and measurements (described in Appendix B.2).

minimizes the weighted χ2 statistic, defined as χ2 ≡
∑
i

∑
j

(D̃realized
ij −Fij)

2

(∆Fij)2
, where (∆Fij)

2

is the statistical variance in Fij. This minimization problem is known as the weighted
low-rank approximation problem, which is a non-convex optimization problem with no
analytical solution [138, 139]. Nonetheless, one can use a fitting algorithm based on an
alternating-least-squares method [139]. In the algorithm, it is important to constrain
the entries of D̃realized to lie within the interval [0, 1] so that they may be interpreted
as probabilities. Full details are provided in Appendix B.3.

To estimate the rank of the true model underlying the data, one must compare different
candidate model ranks. (For our experiment, we consider k ∈ {2, 3, . . . , 10}.) For each
candidate rank k, one first computes the χ2 of the best-fit model of that rank, denoted χ2

k,

87



in order to determine the extent to which each model might underfit the data. Second,
one computes for the best-fit model of each rank the Akaike information criterion (AIC)
score [140, 141] in order to determine the relative extent to which the various models overfit
the data.

We begin by describing the method by which one finds the rank-k probability matrix
D̃realized which minimizes χ2 and thus best fits the data matrix F . Note that an m × n
matrix with rank k is specified by a set of rk = k(m + n − k) real parameters [142], thus
if the true probability matrix Drealized is rank k, then we expect that χ2

k will be sampled
from a χ2 distribution with mn− k(m+ n− k) = (m− k)(n− k) degrees of freedom [97].

For our experiment, we calculate the variances (∆Fij)
2 in the expression for χ2 by

assuming that the number of detected coincident photons follows a Poissonian distribu-
tion. Fig. 5.5(a) displays the interval containing 99% of the probability density for a
χ2 distribution with (m − k)(n − k) degrees of freedom, as well as χ2

k, for each value of
k ∈ {2, 3, . . . , 10}. For k < 4, χ2

k lies far outside the expected 99% range, and we rule out
these models with high confidence.

The Kullback-Leibler (KL) divergence is a measure of the information lost when some
probability distribution f is used to represent some other distribution g [143], and the
AIC score of a candidate model is a measure of the Kullback-Leibler (KL) divergence
between the candidate model and the true model underlying the data. Since the true
model isn’t known, the KL divergence can’t be calculated exactly. What each candidate
model’s AIC score represents is its KL divergence from the true model, relative to all
models in the candidate set. The candidate model with the lowest AIC score is closest
to the true model (in the KL sense), and thus it is the most likely representation of the
data among the set of candidates. These scores can be used to determine which model
among a set of candidate models is the most likely to describe the data. Specifically, the
likelihood can be quantified by first defining the AIC difference, ∆k, for the rank k model as

∆k = AICk −mink′AICk′ , then calculating the AIC weights wk = e−
1
2

∆k/
10∑
k=2

e−
1
2

∆k [143].

The AIC weight wk represents the likelihood that the rank k model is the model that best
describes the data, relative to the other models in the set of candidate models.

The AIC value for a rank-k candidate model is defined as AICk = χ2
k + 2rk [143].

The first term rewards models in proportion to how well they fit the data, and the second
term penalizes models in proportion to their complexity, as measured by the number of
parameters. For our experiment, the set of candidate models is the set of best-fit rank-k
models for k ∈ {2, . . . , 10}. We plot the AIC values for each candidate model in Fig. 5.5(b).
AICk is minimized for k = 4, and we conclude that the true model underlying our dataset is
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most likely rank 4. The relative likelihood of each candidate model is shown in Fig. 5.5(c).
We find w4 = 0.9998, w5 = 1.99× 10−4, and wk < 10−12 for other values of k.

The χ2 goodness-of-fit test indicates that the best-fit rank-4 model fits the data well,
and the AIC test indicates that the best-fit rank-4 model is the most likely of all nine
candidate models to have generated the data, with relative probability 0.9998. We conclude
with high confidence that the GPT that best describes our experiment has rank 4. The
rank-4 matrix D̃realized that best fits the data provides our best estimate of the GPT state
and effect vectors realized in the experiment.

5.4.5 Estimating the realized GPT state and effect spaces

The realized GPT state space, Srealized and the realized GPT state space, Erealized define
the probability matrix Drealized from which the measurement outcomes in the experiment
are sampled.

As we have described above, D̃realized denotes our best estimate of the true probability
matrix Drealized. To obtain an estimate of the realized GPT state and effect spaces from
D̃realized, we must decompose it in the manner described in Sec. 3.2, that is, as D̃realized =
S̃realizedẼrealized.

Recall that this decomposition is not unique. A convenient choice is a modified form of
the singular-value decomposition, where one constrains the first column of S̃realized to be a
column of ones, and one constrains the other three columns of S̃realized to be orthogonal to
the first (a detailed description of this decomposition is given in Appendix B.4).

If quantum theory is the correct theory of nature, then the experimental data should be
consistent with the GPT state space being the Bloch Sphere and the GPT effect space being
the Bloch Diamond (depicted in Fig. 3.1(a)), up to a linear invertible transformation. Our
estimate of the realized GPT state space, S̃realized, is simply the convex hull of the rows of
the matrix S̃realized. Since we have the freedom to post-process measurement outcomes, our
estimate of the realized GPT effect space is slightly more complicated. There are two classes
of classical post-processings that can be performed on a binary-outcome measurement. We
call the first class of post-processings the outcome-swapped class. In this post-processing
procedure, the outcome returned by a measurement device is deterministically swapped
to the other outcome. The outcome-swapped outcome-0 effect for a specific measurement
procedure is represented by the measurement’s outcome-1 effect. We call the second class
of post-processing the trivial class. A trivial post-processing is one in which the outcome
returned by a measurement device is ignored, and deterministically replaced by an outcome
a ∈ {0, 1}. The trivial post-processing with a = 0 represents the unit measurement
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Figure 5.5: Determining the true rank of the model underlying the datasets for our
two experiments. (a-c) is data for the first experiment, in which we characterized 100
preparation and measurement procedures. (d-f) is for the second experiment, in which
we characterized 1006 preparation and measurement procedures. (a),(d) Comparison of
the fitted χ2 value to the expected value for a good fit, for various model ranks. Black
circles are χ2 values returned by our fitting routine. Light red bars indicate the interval
in which we expect (with 99% confidence) the χ2-value to lie, under the assumption that
the true model underlying the data is rank-k. Models with k < 4 do not fit either dataset
well. (b),(e) AIC scores for each candidate model of best fit. For both datasets the rank-4
model has the lowest AIC score, and therefore is most likely the best model among the
set of candidate models. (c),(f) Relative likelihood of each model in the set of candidate
models (each model without a bar has a relative likelihood less than 10−25). For both
datasets, the rank-4 model is most likely to describe the data.
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effect, and the trivial post-processing with a = 1 is the outcome-swapped unit effect.
Of course, one can take convex mixtures of post-processings as well, by, for example,
accepting the outcome from a measurement device with probability p, and implementing a
post-processing with probability 1−p. Hence Ẽ realized is the closure under convex mixtures
and classical post-processing of the vectors defined by the columns of the matrix Ẽrealized.

As we have already included the unit measurement effect in D̃realized, it is represented
in Ẽrealized as well. The outcome-1 effect vector e[1,M ] for a measurement procedure M is

equal to u− e[0,M ], the complement of e[0,M ]. Thus Ẽrealized is the convex hull of the union

of the set of column vectors in the matrix Ẽrealized and the set of their complements.

Our estimate of the realized GPT state space, S̃realized, and our estimate of the realized
GPT effect space, Ẽrealized, are displayed in Fig. 5.6(a)-(c). Omitting the first column of
S̃realized (because it contains no information), we visualize the realized GPT state space by
plotting the last three entries of each row of S̃realized in a 3-dimensional space (the solid
light blue polytope in Fig. 5.6(a)). As all four rows of Ẽrealized contain information, the
realized GPT effect space is 4-dimensional, and we visualize it by plotting two 3-dimensional
projections of it (the solid light green polytopes in Fig. 5.6(b),(c)). Qualitatively, Srealized

is a ball-shaped polytope, and Ẽrealized is a four-dimensional diamond with a ball-shaped
polytope as its base. Note that they are qualitatively what one would expect if quantum
theory is the correct description of nature.

Next, we compute the duals of these spaces. How this is done is described in detail in
Appendix B.5. Our estimate of the set of GPT state vectors that are consistent with the
realized GPT effects, S̃consistent = dual(Ẽrealized), is plotted alongside S̃realized in Fig. 5.6(a)
as a wireframe polytope. Similarly, our estimate of the set of GPT effect vectors consistent
with the realized GPT states, Ẽconsistent = dual(S̃realized), is plotted as a wireframe alongside
Ẽrealized in Fig. 5.6(b),(c).

The smallness of the gap between S̃realized and S̃consistent implies that the possibilities for
the true GPT are quite limited. Obviously, our results easily exclude all of the nonquantum
examples of GPTs presented in Fig. 3.1.

Our results can be used to infer limits on the extent to which the true GPT might fail
to satisfy the no-restriction hypothesis. One way of doing so is by bounding the volume
ratio of S to Slogical. From the discussion in Sec. 5.3, it is clear that this is upper bounded
by the volume ratio of Srealized to Sconsistent. Given our estimates of the latter two spaces,
we can compute an estimate of this ratio. We find it to be 0.9229 ± 0.0001. The error
bar is the standard deviation in the volume ratio from 100 Monte Carlo simulations. We
begin each simulation by simulating a set of coincidence counts. Each set of counts is
found by sampling each count from a Poisson distribution with mean and variance equal
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Figure 5.6: The GPT states and effects for the preparations and measurements realized in
our two experiments and their duals. (a),(b),(c) First experiment, in which we characterize
100 preparation and 100 measurement procedures. (d),(e),(f) Second experiment, in which
we characterize 1006 preparation and 1006 measurement procedures. (a),(d) For each
experiment, the estimated space of realized GPT states, S̃realized is the convex polytope
depicted in blue, while the wireframe convex polytope which surrounds it is the estimated
space of logically possible GPT states, S̃consistent, calculated from the realized GPT effects.
The true state space of the GPT describing nature must lie somewhere in between S̃realized

and S̃consistent, modulo experimental uncertainty. The gap between these two spaces is
smaller for the second set of data, and hence this dataset does a better job at narrowing
down the possibilities for the state space. (b),(e),(c),(f) Solid green shapes are each a
different 3-d projection of our estimates of the 4-d realized effect spaces, Ẽrealized. The
wireframe convex polytopes are 3-d projections of the estimated effect space consistent
with the realized preparations, Ẽconsistent.
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to the number of photons counted in the true experiment. To our knowledge, this is the
first quantitative limit on the extent to which the GPT governing nature might violate the
no-restriction hypothesis.

5.4.6 Increasing the number of experimental configurations

Because the vertices of the polytopes describing S̃realized in Figs. 5.6(a)-(c) coincide with
the preparations and measurement effects that were implemented, one can safely conclude
that the lack of smoothness of these polytopes is an artifact of an insufficiently dense set
of experimental configurations, and not evidence for any lack of smoothness of the true
GPT state and effect spaces. In order to have any chance of detecting small deviations
from the smoothness predicted by quantum theory, therefore, one requires a much denser
set of experimental configurations.

The lack of smoothness of the polytopes in Figs. 5.6(a)-(c) also means that the volume
ratio of S̃realized to S̃consistent is unlikely to provide a very tight upper bound on the volume
ratio of S to Slogical. As such, having a much denser set of experimental configurations
would allow one to put a stronger bound on possible deviations from the no-restriction
hypothesis.

There is therefore a strong motivation to increase the numberm of different preparations
and the number n of different measurement effects that are probed in the experiment. It
might seem at first glance that doing so is infeasible, on the grounds that it implies a
significant increase in the number, mn, of preparation-measurement pairs that need to be
implemented and thus an overwhelmingly long data-acquisition time.

However, this is not the case; one can probe more preparations and measurements by
not implementing every measurement on every preparation. The key insight is that in
order to characterize the GPT state vector associated to a given preparation, one needn’t
find its statistics on every measurement effect in the set being considered: it suffices to
find its statistics on a subset thereof, namely, any tomographically complete subset of mea-
surement effects. Similarly, in order to characterize the GPT effect vector associated to a
given measurement effect, one need not implement it on the full set of preparations being
considered, but just a tomographically complete subset thereof. The first experiment pro-
vided evidence for the conclusion that the tomographically complete sets have cardinality
4. It follows that one should be able to characterize m preparations and n measurements
with just 4(m+ n− 4) experimental configurations, rather than mn.

Despite the good evidence about the cardinality from the first experiment, we deemed
it worthwhile to perform the second experiment in such a manner that the analysis of the
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data did not rely on any evidence drawn from the first experiment. Furthermore, we were
motivated to have the second experiment provide an independent test of the hypothesis that
the cardinality of the tomographically complete sets is indeed four. Given that the closest
competitors to the rank-4 model on either side were those of ranks 3 and 5, we decided to
restrict our set of candidate models to those having ranks in the set k ∈ {3, 4, 5}. In order
for the experimental data to be able to reject the hypothesis of rank k as a bad fit, it is
necessary that one have at least k + 1 measurements implemented on each preparation,
and at least k+1 preparations on which each measurement is implemented; otherwise, one
can trivially find a perfect fit. To be able to assess the quality of fit for a rank-5 model,
therefore, we needed to choose at least 6 measurements that are jointly tomographically
complete to implement on each of the m preparations and at least 6 preparations that are
jointly tomographically complete on which each of the n measurements is implemented.
We chose to use precisely 6 in each case, yielding a total of 6(m + n − 6) experimental
configurations. Without exceeding the bound of ∼ 104 experimental configurations being
probed, we were able to take m = n = 1000 and thereby probe a factor of 10 more
preparations and measurements than in the first experiment.

We refer to the set of six measurement effects (preparations) in this second experiment
as the fiducial set. Our choice of which six waveplate settings to use in each of the fiducial
sets is described in Appendix B.2. Our choice of which 1000 waveplate settings to use
in order to try to densely sample the set of all preparations and measurements is also
described there. (Note that although our knowledge of the quantum formalism informed
both choices, our analysis of the experimental data does not presume the correctness of
quantum theory.) In the end, we also implemented each of our six fiducial measurement
effects on each of our six fiducial preparations, so that we had m = n = 1006.

We also add the unit measurement effect to our set of effects, and represent it in the first
column of our data matrix. The six fiducial measurements make up the next six columns,
and the six fiducial preparations make up the first six rows. We thereby arrange our data
into a 1006×1007 probability matrix F , with the big difference to the first experiment
being that F now has a 1000×1000 submatrix of unfilled entries.

We perform an identical analysis procedure to the one described in Sec. 5.4.4: for each
k in the candidate set of ranks, we seek to find the rank-k matrix D̃realized of best-fit to
F . For the entries in the 1000×1000 submatrix of D̃realized corresponding to the unfilled
entries in F , the only constraint in the fit is that each entry be in the range [0, 1], so that
it corresponds to a probability. The results of this analysis are presented in Fig. 5.5.

The χ2 goodness-of-fit test (Fig. 5.5(d)) rules out the rank three model, and therefore
all models with rank less than 3 as well. Calculating the AIC values for the maximum-
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likelihood rank 3, 4 and 5 models shows that the rank-4 model is the most likely among
these to describe the data (Fig. 5.5(e),(f)). Indeed the relative probability of the rank 5
model is on the order of 10−414.

The reason that the likelihood of the rank 5 model is so low is because the number of
parameters required to specify a rank-k m × n matrix is rk = k(m + n − k), and since
m = n ∼ 1000, the rank 5 model requires ∼ 2000 more parameters than the rank 4 model.
The number of model parameters is multiplied by a factor of two in the formula for the
AIC score, and the difference in χ2

5 and χ2
4 is only ∼ 2000. This means that if the AIC score

is used to calculate the likelihood of each model, the rank 5 model is ∼ e−2000/2 ∼ 10−414

as likely as the rank 4 model.

The AIC formula we use was derived in the limit where the number of datapoints is
much greater than the number of parameters in the model. In our second experiment the
number of datapoints is roughly equal to the number of parameters in each model, and
thus any conclusions which derive from use of the AIC formula must be taken with a grain
of salt. We should instead use a corrected form of the AIC, called AICC [143]. However,
the formula for AICC depends on the specific model being used, and to the best of our
knowledge a formula has not been found for the weighted low rank approximation problem.
However, every AICC formula that we found for different types of models increased the
amount by which models were penalized for complexity [143]. Hence we hypothesize that
the proper AICC formula would lead to an even smaller relative likelihood for the rank
5 model, and thus that we have strong evidence that a rank 4 model should be used to
represent the second experiment. Finding the correct AICC formula for the weighted low
rank approximation problem is an interesting problem for future consideration.

The second experiment, therefore, corroborates one of the conclusions of the first ex-
periment, namely, that for the GPT governing single-photon polarization, the cardinality
of the tomographically complete sets is four.

We decompose the rank-4 matrix of best fit and plot our estimates of the realized state
space, S̃realized, and the realized effect space, Ẽrealized, in Fig. 5.6(d)-(f). The realized GPT
state and effect spaces reconstructed from the second experiment are smoother than those
from the first, and the gap between S̃realized and S̃consistent is smaller as well. Quantitatively,
the volume ratio of S̃realized to S̃consistent is found to be 0.977 ± 0.001, where the error bar
is calculated from 100 Monte Carlo simulations. Compared to the first experiment, this
provides a tighter bound on any failure of the no-restriction hypothesis.
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5.5 Bounding deviations from quantum theory in the

landscape of GPTs

5.5.1 Consistency with quantum theory

We now check to see if the possibilities for the true GPT state and effect spaces implied
by our analysis of the experiment include quantum theory.

As noted in Sec. 5.3, because it is in practice impossible to eliminate all noise in the
experimental procedures, we expect that under the assumption that all of our realized
preparations are indeed represented by quantum states, they will all be slightly impure
(that is, their eigenvalues will be bounded away from 0 and 1). Their GPT state vectors
should therefore be strictly in the interior of the Bloch Sphere. Similarly, we expect such
noise on all of the realized measurement effects, implying that their GPT effect vectors will
be strictly in the interior of the 4-dimensional Bloch Diamond. This, in turn, implies that
the extremal GPT state vectors in Sconsistent will be strictly in the exterior of the Bloch
Sphere. The size of the gap between Srealized and Sconsistent, therefore, will be determined
by the amount of noise in the preparations and measurements.

Näıvely, one might expect that for the quantum state and effect spaces for a qubit
to be consistent with our experimental results, Squbit must fit geometrically between our
estimates of Srealized and Sconsistent, up to a linear transformation. That is, one might expect
the condition to be that there exists a linear transformation of Squbit that fits geometrically
between S̃realized and S̃consistent.

However, noise in the experiment also leads to statistical discrepencies between the
vertices of S̃realized and those of Srealized, and between the vertices of Ẽrealized and those of
Erealized. This noise could lead to estimates of the realized GPT state and effect vectors
being longer than the actual realized GPT state and effect vectors. If the estimates of
any of these lie outside the qubit state and effect spaces, then one could find that it is
impossible to find a linear transformation of Squbit that fits between S̃realized and S̃consistent,
even if quantum theory is correct!

We test the above intuition by simulating the first experiment under the assumption
that quantum theory is the correct theory of nature. We assume that the states we ac-
tually prepare in the lab are slightly depolarized versions of the set of 100 pure quantum
states that we are targeting, and that the measurements we actually perform are slightly
depolarized versions of the set of 100 projective measurements we are targeting. We esti-
mate the amount of depolarization noise from the raw data, and use the estimated amount
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of noise to calculate the outcome probabilities for each depolarized measurement on each
depolarized state. We arrange these probabilities into a 100 × 100 table and use them to
simulate 1000 sets of photon counts, then analyse each of the 1000 simulated datasets with
the GPT tomography procedure.

We find that, for every set of simulated data, we are unable to find a linear transforma-
tion of Squbit that fits between the simulated S̃realized and S̃consistent, confirming the intuition
articulated above.

Nonetheless, we can quantify the closeness of the fit as follows. We find that if, for each
simulation, we artificially reduce the length of the GPT vectors in the simulated S̃realized

and Ẽrealized by multiplying them by a factor slightly less than one, then we can fit a linearly
transformed Squbit between the smaller S̃realized and larger S̃consistent. On average, we find
we have to shrink the vectors making up S̃realized and Ẽrealized by 0.11% ± 0.02%, where
the error bar is the standard deviation over the set of simulations. To perform the above
simulations we used CVX, a software package for solving convex problems [144, 145].

We quantify the real data’s agreement with the simulations by performing the same
calculation as on the simulated datasets. We first notice that there is no linear transforma-
tion of Squbit that fits between S̃realized and S̃consistent, as in the simulations. Furthermore,
we find that we can achieve a fit if we shrink the vectors making up S̃realized and Ẽrealized

by 0.14%, which is consistent with the simulations. Thus the spaces S̃realized and Ẽrealized

reconstructed from the first experiment are consistent with what we expect to find given
the correctness of quantum theory.

When analysing data from the second experiment it takes ∼ 4 hours to run the code
that solves the weighted low rank approximation problem. It is therefore impractical to
perform 1000 simulations of this experiment. Instead, we extrapolate from the simulation
of the first experiment.

We note two significant ways in which the second experiment differs from the first. First,
we perform approximately 10 times as many preparation and measurement procedures in
the second experiment than in the first, yet accumulate roughly the same amount of data.
Hence, each GPT state and effect vector in the second experiment is characterized with
approximately 10 times fewer detected photons than in the first experiment, and so we
expect the uncertainties on the second experiment’s reconstructed GPT vectors to be
∼
√

10 times larger than the same uncertainties in the first experiment. We expect this√
10 increase in uncertainty to translate to a

√
10 increase in the amount we need to

shrink S̃realized and Ẽrealized before we can fit a linearly transformed Squbit between S̃realized

and S̃consistent. Second, S̃realized and Ẽrealized each contain 1006 GPT vectors, a factor of 10
more than in the first experiment. Since there are a greater number of GPT vectors in the
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second experiment it is likely that the outliers (i.e., the cases for which our estimate differs
most from the true vectors) in the second experiment will be more extreme than those in
the first experiment. This should also lead to an increase in the amount we need to shrink
the vectors in S̃realized and Ẽrealizedbefore we can fit a linearly transformed Squbit between
S̃realized and S̃consistent.

We find that, for the data from the second experiment, we need to shrink S̃realized and
Ẽrealized by 0.65%, a factor only 4 times greater than the 0.14% of the first experiment,
which seems reasonable given the estimates above. We therefore conclude that the second
experiment gives us no compelling reason to doubt the correctness of quantum theory.

The arguments presented above also support the notion that our experimental data is
consistent with quantum theory according to the usual standards by which one judges this
claim: if we had considered fitting the data with quantum states and effects rather their
GPT counterparts (which one could accomplish by doing a GPT fit while constraining the
vertices of the realized and consistent GPT state spaces to contain a sphere between them,
up to linear transformations), we would have found that the quality of the fit was good.

5.5.2 Upper and lower bounds on violation of noncontextuality
inequalities

One method we use to bound possible deviations from quantum theory is to consider the
maximal violation of a particular noncontextuality inequality [61]. From our data we infer a
range in which the maximal violation can lie, and compare this to the quantum prediction.
We will briefly introduce the notion of noncontextuality, then discuss the inferences we
make. The notion of noncontextuality was introduced by Kochen and Specker [40]. We here
consider a generalization of the Kochen-Specker notion, termed universal noncontextuality,
defined in Ref. [38].

Noncontextuality is a notion that applies to an ontological model of an operational
theory. Such a model is an attempt to understand the predictions of the operational
theory in terms of a system that acts as a causally mediary between the preparation device
and the measurement device. It postulates a space of ontic states Λ, where the ontic state
λ ∈ Λ specifies all the physical properties of the physical system according to the model.
For each preparation procedure P of a system, it is presumed that the system’s ontic state
λ is sampled at random from a probability distribution p(λ|P ), For each measurement
M on a system, it is presumed that its outcome O is sampled at random in a manner
that depends on the ontic state λ, based on the conditional probability p(O|λ,M), It is
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presumed that the empirical predictions of the operational theory are reproduced by the
ontological model,

p(O|M,P ) =
∑
λ∈Λ

p(O|λ,M)p(λ|P ). (5.1)

We can now articulate the assumption of noncontextuality for both the preparations
and the measurements.

Preparation noncontextuality. If two preparation procedures, P and P ′, are op-
erationally equivalent, which in the GPT framework corresponds to being represented by
the same GPT state vector, then they are represented by the same distribution over ontic
states:

sP = sP ′ =⇒ p(λ|P ) = p(λ|P ′). (5.2)

Measurement noncontextuality. If two measurement effects, [O|M ] and [O′|M ′],
are operationally equivalent, which in the GPT framework corresponds to being represented
by the same GPT effect vector, then they are represented by the same distribution over
ontic states:

e[O|M ] = e[O′|M ′] =⇒ p(O|λ,M) = p(O′|λ,M ′). (5.3)

To assume universal noncontextuality is to assume noncontextuality for all procedures,
including preparations and measurements4.

There are now many operational inequalities for testing universal noncontextuality.
Techniques for deriving such inequalities from proofs of the Kochen-Specker theorem are
presented in [98, 146, 147]. In addition, there exist other proofs of the failure of universal
noncontextuality that cannot be derived from the Kochen-Specker theorem. The proofs in
Ref. [38] based on prepare-and-measure experiments on a single qubit are an example, and
these too can be turned into inequalities testing for universal noncontextuality (as shown
in Refs. [2] and [148]).

We here consider the simplest example of a noncontextuality inequality that can be vio-
lated by a qubit, namely the one associated to the task of 2-bit parity-oblivious multiplexing
(POM), described in Ref. [61]. Bob receives as input from a referee an integer y chosen
uniformly at random from {0, 1} and Alice receives a two-bit input string (z0, z1) ∈ {0, 1}2,

4There is also a notion of noncontextuality for transformations [38], but we will not make use of it
here. In fact, the noncontextuality inequality we consider is one that only makes use of the assumption of
noncontextuality for preparations.
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chosen uniformly at random. Success in the task corresponds to Bob outputing the bit
b = zy, that is, the yth bit of Alice’s input. Alice can send a system to Bob encoding
information about her input, but no information about the parity of her string, z0 ⊕ z1,
can be transmitted to Bob. Thus, if the referee performs any measurement on the system
transmitted, he should not be able to infer anything about the parity. The latter constraint
is termed parity-obliviousness. 5

An operational theory describes every protocol for parity-oblivious multiplexing as fol-
lows. Based on the input string (z0, z1) ∈ {0, 1}2 that she receives from the referee, Alice
implements a preparation procedure Pz0z1 , and based on the integer y ∈ {0, 1} that he
receives from the referee, Bob implements a binary-outcome measurement My, and re-
ports the outcome b of his measurement as his output. Given that each of the 8 values of
(y, z0, z1) are equally likely, the probability of winning, denoted C, is

C ≡ 1

8

∑
b,y,z0,z1

δb,zyp(b|Pz0z1 ,My). (5.4)

where δb,zy is the Kronecker delta function. The parity obliviousness condition can be
expressed as a constraint on the GPT states, as

1

2
sP00 +

1

2
sP11 =

1

2
sP01 +

1

2
sP10 . (5.5)

This asserts the operational equivalence of the parity-0 preparation (the uniform mixture
of P00 and P11) and the parity-1 preparation (the uniform mixture of P01 and P10), and
therefore it implies a nontrivial constraint on the ontological model by the assumption of
preparation noncontextuality (Eq. (5.2)), namely,

1

2
p(λ|P00) +

1

2
p(λ|P11) =

1

2
p(λ|P01) +

1

2
p(λ|P10). (5.6)

It was shown in Ref. [61] that if an operational theory admits of a universally non-
contextual ontological model, then the maximal value of the probability of success in
parity-oblivious multiplexing is

CNC ≡
3

4
. (5.7)

5Parity-oblivious multiplexing is akin to a 2-to-1 quantum random access code. It was not introduced
as a type of random access code in Ref. [61] because the latter are generally defined as having a constraint
on the potential information-carrying capacity of the system transmitted, whereas in parity-oblivious
multiplexing, the system can have arbitrary information-carrying capacity—the only constraint is that of
parity-obliviousness.
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We refer to the inequality
C ≤ CNC (5.8)

as the POM noncontextuality inequality. 6

It was also shown in Ref. [61] that in operational quantum theory, the maximal value
of the probability of success is

CQ ≡
1

2
+

1

2
√

2
' 0.8536, (5.9)

which violates the POM noncontextuality inequality, thereby providing a proof of the
impossibility of a noncontextual model of quantum theory and demonstrating a quantum-
over-noncontextual advantage for the task of parity-oblivious multiplexing. A set of four
quantum states and two binary-outcome quantum measurements that satisfy the parity-
obliviousness condition of Eq. (5.5) and that lead to success probability CQ are illustrated
in Fig. 5.8.

For a given GPT state space S and effect space E , we define

C(S,E) ≡ max
{sPz0z1

}∈S,{eb|My}∈E

1

8

∑
b,y,z0,z1

δb,zysPz0z1
· eb|My (5.10)

where the optimization must be done over choices of {sPz0z1
} ∈ S that satisfy the parity-

obliviousness constraint of Eq. (5.5). If S and E are the state and effect spaces of a GPT,
then sPz0z1

· eb|My is the probability p(b|Pz0z1 ,My) and C(S,E) has the form of Eq. (5.4)
and defines the maximum probability of success achievable in the task of parity-oblivious
multiplexing for that GPT. (We will see below that it is also useful to consider C(S,E) when
the pair S and E do not define the state and effect spaces of a GPT.)

As discussed in Section 5.3, no experiment can specify S and E exactly. Instead, what
we find is a set of possibilities for (S, E) that are consistent with the data, and thus are
candidates for the true GPT state and effect spaces. We denote this set of candidates
by GPTcandidates. To determine the range of possible values of the POM noncontextuality
inequality violation in this set, we need to determine

Cmin ≡ min
(S,E)∈GPTcandidates

C(S,E), (5.11)

6Note that an experiment test of this inequality was also reported in Ref. [61]. However, as noted
in Ref. [2], the experiment of Ref. [61] did not solve the problem of inexact operational inequivalences.
Although the measured deviation from exact operatonal equivalence was found to be small, there was at
the time no theoretical account of how a given value of deviation should impact the degree of violation
of the POM inequality. As such, it was unclear what conclusions could be drawn for the possibility of
noncontextuality from the violation of the POM inequality in that experiment.
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and
Cmax ≡ max

(S,E)∈GPTcandidates
C(S,E). (5.12)

See Fig. 5.7(a) for a schematic of the relation between the various C quantities we
consider.

Cmin and Cmax are each defined as a solution to an optimization problem. As noted in
Sec. 5.3, there is a large freedom in the choice of S given Srealized and Sconsistent, and there is
a large freedom in the choice of E for each choice of S. Finally, for each pair (S, E) in this
set, one still needs to optimize over the choice of four preparations and two measurements
defining the probability of success.

It turns out that the choice of (S, E) that determines Cmin is easily identified. First,
note that the definition in Eq. (5.10) implies the following inference

S ′ ⊆ S, E ′ ⊆ E =⇒ C(S′,E ′) ≤ C(S,E). (5.13)

Given that Srealized ⊆ S and Erealized ⊆ E for all (S, E) ∈ GPTcandidates, it follows that

C(Srealized,Erealized) ≤ Cmin. (5.14)

And given that (Srealized, Erealized) is among the GPT candidates consistent with the data,
we conclude that

Cmin = C(Srealized,Erealized). (5.15)

However, calculating C(Srealized,Erealized) still requires solving the optimization problem de-
fined in Eq. (5.10), which is computationaly difficult.

Much more tractable is the problem of determining a lower bound on Cmin, using a
simple inner approximation to Srealized and Erealized. This is the approach we pursue here.
We will denote this lower bound by LB(Cmin).

Let Swqubit denote the image of the qubit state space Squbit under the partially depolar-
izing map Dw, defined by

Dw(ρ) ≡ wρ+ (1− w)
1

2
I, (5.16)

with w ∈ [0, 1]. Similarly, let Ew′

qubit denote the image of Equbit under Dw′ .

Consider the 2-parameter family of GPTs defined by {(Swqubit, Ew
′

qubit) : w,w′ ∈ (0, 1)}.
These correspond to quantum theory for a qubit but with noise added to the states and to
the effects. Letting w1 be the largest value of the parameter w such that Swqubit ⊆ Srealized
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Figure 5.7: Bounding maximal inequality violations with GPT tomography. (a) Rela-
tion between the true value of the maximal violation of the POM inequality for the true
GPT describing our experiment, C(S,E), and the bounds that we place on it. The interval
[Cmin, Cmax] is the range of possible values for C(S,E) that one can in principle infer from an
experiment, and the interval [LB(Cmin), UB(Cmax)] is a conservative estimate of [Cmin, Cmax].
(b) The interval [LB(Cmin), UB(Cmax)] inferred from our data (area labelled “consistent with
experiment”). The true value C(S,E) differs from the quantum prediction, CQ by at most
±1.3± 0.1%. Our data violates the POM inequality. (c) The interval [LB(Bmin), UB(Bmax)]
inferred from our data (area labelled “consistent with experiment”). The true value B(S,E)

is at most 1.3± 0.1% greater than the maximal quantum violation, CQ. Error bars are too
small to be visible on the plots.
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Figure 5.8: Depictions of the rescaled qubit state and effect spaces which provide our
inner and outer approximations to the estimated realized GPT state and effect spaces.
We also depict the states and effects that achieve the maximum probability of success in
parity-oblivious multiplexing in quantum theory (orange squares), and those that achieve
our lower (magenta circles) and upper (yellow triangles) bounds. The left figure depicts the
GPT state vectors of the four preparations, labelled by the possible values of the pair of
bits Alice must encode, and the right figure depicts the GPT effect vectors of each outcome
of each of the pair of measurements.

and letting w′1 be the largest value of the parameter w′ such that Ewqubit ⊆ Erealized, then

Sw1
qubit and Ew

′
1

qubit provide inner approximations to Srealized and Erealized respectively, depicted
in Fig. 5.8. From these, we get the lower bound

LB(Cmin) = C
(Sw1

qubit,E
w′
1

qubit)
. (5.17)

A subtlety that we have avoided mentioning thus far is that the depolarized qubit state
and effect spaces are only defined up to a linear transformation, so that in seeking an inner
approximation, one could optimize over not only w but this linear transformation as well.
To simplify the analysis, however, we took Swqubit to be a sphere of radius w and Ew′

qubit to
be a diamond with a base that is a sphere of radius w′, and we optimized over w and w′.
(Optimizing over all linear transformations would simply give us a tighter lower bound.)

For the GPT (Swqubit, Ew
′

qubit), a set of four preparations and two binary-outcome mea-
surements that satisfy the parity-obliviousness condition of Eq. (5.5) and that yield the
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maximum probability of success are the images, under the partially depolarizing maps
Dw and Dw′ respectively, of the optimal quantum choices. These images are depicted in
Fig. 5.8.

One finds that with probability ww′, the probability of success is the quantum value,
and the rest of the time, it is just 1/2,

C
(Swqubit,E

w′
qubit)

= ww′(
1

2
+

1

2
√

2
) + (1− ww′)1

2
,

=
1

2
+ ww′

1

2
√

2
. (5.18)

From our estimates of the realized GPT state and effect spaces, S̃realized and Ẽrealized, we
obtain an estimate of w1 by identifying the largest value of w such that Swqubit ⊆ S̃realized and

we obtain an estimate of w′1 by identifying the largest value of w′ such that Ew′

qubit ⊆ Ẽrealized.

Determining these estimates from the data of the first experiment and substituting
into Eqs. (5.17) and (5.18), we infer the lower bound LB(Cmin) = 0.8303±0.0002. A similar
analysis for the second experiment yields an even tighter bound,

LB(Cmin) = 0.8427± 0.0005. (5.19)

This provides a lower bound on the interval of C values in which the true value could be
found, as depicted in Fig. 5.7(b).7

We now turn to Cmax. Given that for all (S, E) ∈ GPTcandidates, S ⊆ Sconsistent and
E ⊆ Econsistent, it follows from Eq. (5.13) that Cmax ≤ C(Sconsistent,Econsistent).

8 We can therefore
compute an upper bound on Cmax using outer approximations to Sconsistent and Econsistent.
We choose outer approximations consisting of rescaled qubit state and effect spaces, defined
as before, but where the parameter w can now fall outside the interval [0, 1].

Letting w2 be the smallest value of the parameter w such that Sconsistent ⊆ Swqubit and

letting w′2 be the smallest value of the parameter w′ such that Econsistent ⊆ Ew
′

qubit, then Sw2
qubit

7Note that it is likely that this lower bound could be improved if one supplemented the preparations and
measurements that were implemented in the experiment with a set that were targeted towards achieving
the largest value of C (according to quantum expectations).

8 At this point, the analogy to the case of Cmin might lead one to expect that Cmax = C(Sconsistent,Econsistent)
.

However, this is incorrect because the pair (Sconsistent, Econsistent) is not among the GPT candidates con-
sistent with the experimental data. In fact, it does not even correspond to a valid GPT, as one can find a
GPT state vector in Sconsistent and a GPT effect vector in Econsistent with inner product outside the interval
[0, 1], hence not defining a probability. Unfortunately, if one wants to calculate Cmax, it seems that one
must perform the difficult optimization in Eq. (5.12).
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and Ew
′
2

qubit provide outer approximations to Sconsistent and Econsistent respectively, and so we
get an upper bound

UB(Cmax) = C
(Sw2

qubit,E
w′
2

qubit)
(5.20)

Even though we are now allowing supernormalized state and effect vectors, via w and
w′ values outside of [0, 1], a simple calculation shows that C(Swqubit,E

w′
qubit)

is still given by

Eq. (5.18).

Our estimates S̃consistent and Ẽconsistent for the state and effect spaces of the first experi-
ment imply estimates for w2 and w′2

9 and substituting these into Eqs. (5.20) and (5.18),
we infer UB(Cmax) = 0.8784± 0.0002. The same analysis on the second experiment yields

UB(Cmax) = 0.8647± 0.0005. (5.21)

This provides an upper bound on the interval of C values in which the true value could be
found, as depicted in Fig. 5.7(b).

Recalling that the quantum value is CQ ' 0.8536, it follows from Eqs. (5.19) and
(5.21) that the scope for the true GPT to differ from quantum theory in the amount of
contextuality it predicts (relative to the POM inequality) is quite limited: for the true
GPT, the maximum violation of the POM noncontextuality inequality can be at most
1.3± 0.1% less than and at most 1.3± 0.1% more than the quantum value.

5.5.3 Upper bound on violation of Bell inequalities

Bell’s theorem famously shows that a certain set of assumptions, which includes local
causality, is in contradiction with the predictions of operational quantum theory [39]. It
is also possible to derive inequalities from these assumptions that refer only to operational
quantities and thus can be tested directly experimentally.

The Clauser, Horne, Shimony and Holt (CHSH) inequality [48] is the standard example.
A pair of systems are prepared together according to a preparation procedure PAB, then
one is sent to Alice and the other is sent to Bob. At each wing of the experiment, the
system is subjected to one of two binary-outcome measurements, MA

0 or MA
1 on Alice’s side

and MB
0 and MB

1 on Bob’s side, with the choice of measurement being made uniformly at

9We note that the duality relation Econsistent = dual(Srealized) implies that Ew
′
2

qubit = dual(Sw1

qubit) and

similarly, the relation Sconsistent = dual(Erealized) implies Sw2

qubit = dual(Ew
′
1

qubit). This in turn implies that

w′
2 = 1

w1
and w2 = 1

w′
1
, so that Cmin = 1

2 + w1w
′
1

1
2
√
2

and Cmax = 1
2 + 1

w1w′
1

1
2
√
2
.
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random, and where the choice at one wing is space-like separated from the registration of
the outcome at the other wing. Denoting the binary variable determining the measurement
choice at Alice’s (Bob’s) wing by x (y), and the outcome of Alice’s (Bob’s) measurement
by a (b), the operational quantity of interest, the “Bell quantity” for CHSH, is defined as
follows (where a, b, x, y ∈ {0, 1}, and ⊕ is addition modulo 2)

B ≡ 1

4

∑
a,b,x,y

δa⊕b,xyp(a, b|MA
x ,M

B
y , P

AB). (5.22)

The maximum value that this quantity can take in a model satisfying local causality and
the other assumptions of Bell’s theorem is

Bloc ≡
3

4
, (5.23)

so that such models satisfy the CHSH inequality

B ≤ Bloc. (5.24)

Meanwhile, the maximum quantum value is

BQ ≡
1

2
+

1

2
√

2
' 0.8536. (5.25)

Experimental tests have exhibited a violation of the CHSH inequality [149] and various
loopholes for escaping the conclusions have been sealed experimentally [150, 151, 152, 153,
154, 155]. These experiments provide a lower bound on the value of the Bell quantity,
which violates the local bound. It has not been previously clear, however, how to derive
an upper bound on the Bell quantity. Doing so is necessary if one hopes to experimentally
rule out post-quantum correlations such as the Popescu-Rohrlich box [49, 57]. We here
demonstrate how to do so.

The first fact to note is that in the context of a GPT, just like in quantum theory, if
Alice and Bob share a correlated bipartite state, then by implementing a measurement on
her system, Alice can steer Bob’s system to an ensemble of GPT states. (The bipartite
state may even be entangled; in a GPT, an entangled state on a composite system is one
that cannot be written as a convex mixture of states that factorize on the vector spaces
of the components [122]). The state that Bob’s system is steered to depends on the
measurement Alice chooses to perform and the outcome she receives. If Alice performs
measurement MA

x and receives outcome a, we denote the GPT state that Bob’s system is
steered to by sBa|x.

107



The assumption of space-like separation implies that there is no signalling between Alice
and Bob, and this constrains how Bob’s system can be steered. If p(a|x) ≡ p(a|MA

x , P
AB)

is the probability that Alice obtains outcome a given that she performs measurement MA
x

on the preparation PAB, then the average marginal GPT state of Bob’s subsystem is given
by
∑
a

p(a|x)sBa|x. The no-signalling assumption forces this marginal state to be indepen-

dent of Alice’s measurement choice. In the CHSH scenario the no-signalling constraint is
summarized with the following equation:

p(0|0)sB0|0 + p(1|0)sB1|0 = p(0|1)sB0|1 + p(1|1)sB1|1. (5.26)

Our experiment shows that it is logically possible for there to be bipartite states together
with measurements on Alice’s system which steer Bob’s system to an ensemble of states
as long as the states in this ensemble are within the GPT state space Srealized. It cannot,
however, attest to the physical existence of such bipartite states and measurements on the
remote system. Because we are assuming that the true GPT includes classical probability
theory as a subtheory (see Sec. 3.2), it follows that the local value is a lower limit on the
range of possible values of the Bell quantity among experimentally viable candidates for
the true GPT. In order to obtain a nontrivial lower limit on this range, however, one needs
to perform an experiment involving two physical systems such that one can learn which
GPT states for the bipartite system are physically realizable, in particular, whether there
are any entangled states that are realized.

On the other hand, in spite of probing only a single system rather than a pair, our
experiment can attest to the nonexistence of any bipartite state and measurement on
Alice’s system which would steer Bob’s system to ensembles of states outside of Sconsistent.
The reason is that if such a bipartite state and such a measurement were to exist, they
could be used to prepare GPT states on Bob’s system which assign values outside [0, 1]
(which cannot be interpreted as probabilities) to some GPT effects in Erealized on Bob’s
system. Therefore, we can use our experimental results to determine an upper limit on the
range of values of the Bell quantity among experimentally viable candidates for the true
GPT.

The maximum violation of the CHSH inequality achievable if Bob’s system is described
by a state space S and an effect space E , is

B(S,E) ≡ max
{s

PB
a|x
}∈S,{e

b|MB
y
}∈E

1

4

∑
a,b,x,y

δa⊕b,xypa|xsPB
a|x
· eb|MB

y
, (5.27)

where one varies over {sPB
a|x
} that satisfy the no-signalling constraint, Eq. (5.26). If the
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pair S and E together form a valid GPT, then sPB
a|x
· eb|MB

y
is a probability and we recover

Eq. (5.22).

The upper limit on the range of possible values of the CHSH inequality violation among
the theories in GPTcandidates, which we denote by Bmax, is defined analogously to Cmax in
Eq. (5.12).

Calculating Bmax is a difficult optimization problem that involves varying over every
pair (S, E) consistent with the experiment, and for each pair implementing the optimization
in Eq. (5.27).

Instead of performing this difficult optimization, we will derive an upper bound on
Bmax, denoted UB(Bmax). This is achieved in the same manner that the upper bound on
Cmax was obtained in the previous section, namely, using a qubit-like outer approximation.

For qubit-like state and effect spaces, it turns out that any upper bound on violations of
the POM noncontextuality inequality implies a corresponding upper bound on violations
of the CHSH inequality. This follows from the well-known fact that the optimal violation
of the CHSH inequality is achieved when the marginal on Alice’s outcomes is uniform. The
proof is provided in Appendix B.6.

Thus, we infer from Eq. (5.21) that

UB(Bmax) = 0.8647± 0.0005. (5.28)

This provides an upper bound on the interval of B values in which the true value of the
maximal CHSH inequality violation lies, as depicted in Fig. 5.7(c). As noted earlier, our
experiment only provides the trivial lower bound LB(Bmin) = Bloc. Nontrivial lower bounds
have, of course, been provided in previous Bell experiments using photon polarization, such
as Ref. [156].

5.6 Discussion

As we have emphasized, conclusions regarding the tomographic completeness of a given
set of preparations or measurements are always tentative: they can be falsified but not
confirmed. Nontheless, our first experiment provides good evidence for the conclusion that
the cardinality of the tomographically complete set of preparations for photon polarization
is four: of the 100 preparations we implemented, just four of these are sufficient to predict
the statistics of the other 96 (for the 100 measurements considered). The same can be said
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of the tomographically complete set of measurements. Our second experiment adds to this
evidence.

The rank of the GPT describing our experiment can be determined with very high
confidence by our method. Because the models we consider have k(m+n−k) parameters,
increasing the rank k of the model beyond the rank suggested by quantum theory increases
the parameter count by hundreds in the first experiment and by thousands in the second.
For this reason, the Akaike information criterion can deliver a decisive vote against higher-
rank models on the grounds that they grossly overfit the data.

Our experimental results are consistent with the conclusion that in prepare-and-measure
experiments, photon polarization acts like a 2-level quantum system. More importantly,
the technique we have described provides a means of obtaining experimental bounds on
possible deviations from quantum theory. We focussed in this article on two examples of
such deviations, namely, the failure of the no-restriction hypothesis, and supra-quantum
violations of noncontextuality and Bell inequalities.

Modifications of quantum theory that posit intrinsic decoherence imply unavoidable
noise and thereby a failure of the no-restriction hypothesis. We focused on the volume
ratio of Slogical to S as a generic measure of the failure of no restriction hypothesis, and we
obtained an upper bound on that measure via the volume ratio of Sconsistent to Srealized. This
provides an upper bound on the degree of noise in any intrinsic decoherence mechanism.

If one makes more explicit assumptions about the decoherence mechanism, one can be
a bit more explicit about the bound. Suppose that the noise that arises from intrinsic
decoherence in a prepare-and-measure experiment corresponds to a partially depolarizing
map D1−ε (Eq. (5.16)) where ε is a small parameter describing the strength of the noise,
then GPT tomography would find Srealized ⊆ Svqubit and Erealized ⊆ Sv

′

qubit where vv′ = 1− ε.
The best qubit-like inner approximations to Srealized and Erealized, denoted by Sw1

qubit and

Sw
′
1

qubit in our article, define a lower bound on vv′, namely, w1w
′
1 ≤ vv′, and thereby an

upper bound on ε, namely, ε ≤ 1 − w1w
′
1. From our second experiment, we obtained the

estimate w1w
′
1 = 0.969± 0.001, which implies that ε ≤ 0.031± 0.001.

We have also provided experimental bounds on the amount by which the system we
studied could yield Bell and noncontextuality inequality violations in excess of their max-
imum quantum value.

Because violation of each of the inequalities we have considered is related to an advan-
tage for some information-processing task—specifically, parity-oblivious multiplexing and
the CHSH game—it follows that our experimental upper bounds on these violations imply
an upper bound on the possible advantage for these tasks. More generally, our techniques
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can be used to derive limits on advantages for any task that is powered by nonlocality or
contextuality.

Our results also exclude deviations from quantum theory that have some theoretical
motivation. For instance, Brassard et al. [157] have shown that communication complexity
becomes trivial if one has CHSH inequality violations of 1

2
+ 1√

6
' 0.908 or higher. If one

assumes that this is the actual threshold at which communication complexitybecomes non-
trivial (as opposed to being a nonstrict upper bound) and if one endorses the nontriviality
of communication complexity as a principle that the true theory of the world ought to
satisfy, then one has reason to speculate that the true theory of the world might achieve
a CHSH inequality violation somewhere between the quantum bound of 0.8536 and 0.908.
Our experimental bound, however, rules out most of this range of values.

As a test (and exclusion) of the hypothesis of universal noncontextuality, our exper-
iment represents a significant improvement over the best previous experiment [2]. The
reason is that it addresses what was identified in Ref. [2] to be the greatest weakness of
that experiment, namely, the extent of the evidence for the claim that a given set of mea-
surements or preparations should be considered tomographically complete. Recall that
every assessment of operational equivalence among two preparations (measurements) rests
upon the assumption that one has compared their statistics for a tomographically complete
set of measurements (preparations).

The experiment reported in Ref. [2] implemented eight distinct effects and eight distinct
states and proceeded to demonstrate that four effects and four states were sufficient to pre-
dict the statistics for all of the others, hence providing some evidence for the cardinalities
of the tomographically complete sets of effects and states being four, in agreement with
the quantum prediction. Such experimental evidence is, however, quite weak. As noted
in Ref. [2], one can and should provide stronger evidence for any claim of tomographic
completeness, because every claim of operational equivalence rests on correctly identify-
ing the tomographically complete sets. The experiment reported herein overcomes this
deficiency of the previous experiment by providing much stronger evidence in support of
the claim that the set of measurements (preparations) that were implemented are in fact
tomographically complete.

It is important to recall that our experiment probed only a single type of system: the
polarization degree of freedom of a photon. A question that naturally arises at this point
is: to what extent can our conclusions be ported to other types of systems?

Consider first the question of portability to other types of two-level systems (by which
we mean systems which are described quantumly by a two-dimensional Hilbert space), in
particular, two-level systems which we know have nontrivial interactions (for instance, by
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virtue of the fact that information encoded in one can be reliably transferred to another).
If it were the case that such two-level systems could be governed by different GPTs, this
would immediately lead to a thorny problem of how to ensure that the different restrictions
on their behaviours were respected even in the presense of interactions between them.
Indeed, the principle that every n-level system has the same GPT state and effect spaces
as every other has featured in many reconstructions of quantum theory within the GPT
framework (see, e.g., the subspace axiom in Ref. [50], and its derivation from other axioms
in Ref. [158]) and is taken to be a very natural assumption. This suggests that there
are good theoretical grounds for thinking that our experimental constraints on possible
deviations from quantum theory are applicable to all types of two-level systems.

It is less clear what conclusions one might draw for n-level systems when n 6= 2. For
instance, although quantumly the maximum violation of a CHSH inequality is the same
regardless of whether Bob’s system is a qubit or a qutrit, this might not be the case for
some nonquantum GPT. Therefore, although there are theoretical reasons for believing
that our upper bound on the degree of CHSH inequality violation applies to all two-level
systems we cannot apply those reasons to argue that violations will be bounded in this
way for n-level systems. Nonetheless, if one does assume that all two-level systems are
described by the same GPT, then we have constraints on the state and effect spaces of
every two-level system embedded within the n-level system. This presumably restricts the
possibilities for the state and effect spaces of the n-level system itself. How to infer such
restrictions—for instance, how to infer an upper bound on the maximal CHSH inequality
violation for a three-level system from an upper bound on the maximal CHSH inequality
violation on a two-level system—is an interesting problem for future research.

There is evidently a great deal of scope for further experiments of the type described
here. An obvious direction for future work is to apply our techniques to the characteriza-
tion of higher dimensional systems and composites. Another interesting extension would
be to generalize the technique to include GPT tomography of transformations, in addi-
tion to preparations and measurements. This is the GPT analogue of quantum process
tomography, on which there has been a great deal of work due to its application in bench-
marking experimental implementations of gates for quantum computation. It is likely that
many ideas in this sphere can be ported to the GPT context. A particularly interesting
case to consider is the scheme known as gate set tomography [35, 34, 36], which achieves a
high-precision characterization of a set of quantum gates in a self-consistent manner.
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Chapter 6

Conclusions and outlook

We presented two experimental tests of the physical theory describing nature, whatever
it may be. The first experiment showed that any ontological model of nature cannot
be noncontextual, and the second experiment placed bounds on the maximum amount
that quantum theory can differ from the true physical theory of nature. The data from
both experiments was analysed within the GPT framework, and the conclusions we made
from each experiment rest on the assumption that we successfully implemented sets of
preparation and measurement procedures that are tomographically complete for the GPT
describing that experiment. We gathered evidence in favour of this assumption by collecting
data for a large numbers of preparations and measurements and showed that a small
number of measurements was sufficient to characterize each preparation, and vice versa.
An interesting avenue for future work is to investigate whether or not there are other
types of experiments that could provide evidence either for or against the assumption of
tomographic completeness.

One difficulty that was encountered when collecting data for both experiments was
that the alignment of some optical components in the setup would sometimes slowly drift
over time, which introduced additional degrees of freedom to the data. As mentioned
above, some obvious extensions to the experiment in Chapter 5 include applying the GPT
tomography scheme to higher-dimensional systems, or to extend the scheme such that it
can also characterize state transformations in the GPT framework. All of these ideas will
benefit from a different experimental design with greater stability; one possibility could be
to perform future experiments on a chip with integrated waveguides.

The method of GPT tomography introduced in this thesis has exciting potential for
future use. When analysing data in the GPT framework, one can draw conclusions that
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do not rely on any specific physical theory. Experiments of this type could then be used to
gather evidence for or against competing physical theories. For example, if a specific axiom
or principle of a physical theory could be defined operationally (examples might be the
principles of local causality or noncontextuality, or the existance of a no-cloning theorem),
then data analysed within the GPT framework could be used to confirm or rule out that
principle. An interesting avenue for future research could be to identify the candidate
post-quantum theories, and directly test their axioms using the GPT framework.
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[70] C. Simon, Č. Brukner, and A. Zeilinger, “Hidden-variable theorems for real experi-
ments,” Phys. Rev. Lett., vol. 86, pp. 4427–4430, May 2001.
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[106] A. B. Sainz, Y. Guryanova, A. Aćın, and M. Navascués, “Almost quantum correla-
tions violate the no-restriction hypothesis.” 2017.

[107] R. D. Sorkin, “Quantum mechanics as quantum measure theory,” Modern Physics
Letters A, vol. 09, no. 33, pp. 3119–3127, 1994.

123



[108] U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, and G. Weihs, “Ruling out multi-
order interference in quantum mechanics,” Science, vol. 329, no. 5990, pp. 418–421,
2010.

[109] J. M. Hickmann, E. J. S. Fonseca, and A. J. Jesus-Silva, “Born’s rule and the in-
terference of photons with orbital angular momentum by a triangular slit,” EPL
(Europhysics Letters), vol. 96, no. 6, p. 64006, 2011.
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Appendix A

Appendices for Chapter 4

Notes and acknowledgements

This chapter contains the supplementary information of work that has been published
as [2]:

M. D. Mazurek, M. F. Pusey, R. Kunjwal, K. J. Resch and R. W. Spekkens, “An experi-
mental test of noncontextuality without unphysical idealizations” Nature Communications,
7:11780 (2016).

Author contributions

All authors contributed to writing the supplementary information of this work.

A.1 Derivation and tightness of the bound in our non-

contextuality inequality

A.1.1 Derivation of bound

In Chapter 4, we only provided an argument for why our two applications of the assumption
of noncontextuality, Eqs. (4.3) and (4.5), implied that the quantity A must be bounded
away from 1. Here we show that the explicit value of this bound is 5

6
.
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By definition,

A ≡ 1

6

∑
t∈{1,2,3}

∑
b∈{0,1}

p(X = b|Mt, Pt,b). (A.1)

Substituting for p(X=b|Mt, Pt,b) the expression in terms of the distribution µ(λ|Pt,b) and
the response function ξ(X = b|Mt, λ) given in Eq. (4.1), we have

A =
1

6

∑
t∈{1,2,3}

∑
b∈{0,1}

∑
λ∈Λ

ξ(X = b|Mt, λ)µ(λ|Pt,b). (A.2)

We now simply note that there is an upper bound on each response function that is
independent of the value of b, namely,

ξ(X = b|Mt, λ) ≤ η(Mt, λ), (A.3)

where
η(Mt, λ) ≡ max

b′∈{0,1}
ξ(X = b′|Mt, λ). (A.4)

We therefore have

A ≤ 1

3

∑
t∈{1,2,3}

∑
λ∈Λ

η(Mt, λ)

1

2

∑
b∈{0,1}

µ(λ|Pt,b)

 , (A.5)

Recalling that Pt is an equal mixture of Pt,0 and Pt,1, so that

µ(λ|Pt) =
1

2
µ(λ|Pt,0) +

1

2
µ(λ|Pt,1), (A.6)

we can rewrite the bound as simply

A ≤ 1

3

∑
t∈{1,2,3}

∑
λ∈Λ

η(Mt, λ)µ(λ|Pt). (A.7)

But recalling Eq. (4.5),

∀λ ∈ Λ : µ(λ|P1) = µ(λ|P2) = µ(λ|P3), (A.8)

132



we see that the distribution µ(λ|Pt) is independent of t, so we denote it by ν(λ) and rewrite
the bound as

A ≤
∑
λ∈Λ

1

3

∑
t∈{1,2,3}

η(Mt, λ)

 ν(λ). (A.9)

This last step is the first use of noncontextuality in the proof because Eq. (A.8) is derived
from preparation noncontextuality and the operational equivalence of Eq. (4.4). It then
follows that

A ≤ max
λ∈Λ

1

3

∑
t∈{1,2,3}

η(Mt, λ)

 . (A.10)

Therefore, if we can provide a nontrivial upper bound on 1
3

∑
t η(Mt, λ) for an arbitrary

ontic state λ, we obtain a nontrivial upper bound on A. We infer constraints on the
possibilities for the triple (η(M1, λ), η(M2, λ), η(M3, λ)) from constraints on the possibilities
for the triple (ξ(X=0|M1, λ), ξ(X=0|M2, λ), ξ(X=0|M3, λ)).

The latter triple is constrained by Eq. (4.7), which in the case of X = 0 reads

1

3

∑
t∈{1,2,3}

ξ(X=0|Mt, λ) =
1

2
. (A.11)

This is the second use of noncontextuality in our proof, because Eq. (A.11) is derived from
the operational equivalence of Eq. (4.7) and the assumption of measurement noncontextu-
ality.

The fact that the range of each response function is [0, 1] implies that the vector
(ξ(X=0|M1, λ), ξ(X=0|M2, λ), ξ(X=0|M3, λ)) is constrained to the unit cube. The lin-
ear constraint of Eq. (A.11) implies that these vectors are confined to a two-dimensional
plane. The intersection of the plane and the cube defines the polygon depicted in Fig. A.1.
The six vertices of this polygon have coordinates that are a permutation of (1, 1

2
, 0). For

every λ, the vector (ξ(X=0|M1, λ), ξ(X=0|M2, λ), ξ(X=0|M3, λ)) corresponds to a point
in the convex hull of these extreme points and given that 1

3

∑
t η(Mt, λ) is a convex function

of this vector, it suffices to find a bound on the value of this function at the extreme points.
If λ is the extreme point (1, 1

2
, 0), then we have (η(M1, λ), η(M2, λ), η(M3, λ)) = (1, 1

2
, 1),

and the other extreme points are simply permutations thereof. It follows that

1

3

∑
t

η(Mt, λ) ≤ 5

6
. (A.12)

Substituting this bound into Eq. (A.10), we have our result.
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Figure A.1: Possible values of noncontextual measurement response functions. Possible
values of the vector of response functions (ξ(X=0|M1, λ), ξ(X=0|M2, λ), ξ(X=0|M3, λ)).
The range of each response function is [0, 1], constraining the vectors to lie inside the unit
cube. This fact, along with the linear constraint in Eq. (A.11), constrains the vectors to
the shaded polygon.

A.1.2 Tightness of bound: an ontological model

In this section, we provide an explicit example of a noncontextual ontological model that
saturates our noncontextuality inequality, thus proving that the noncontextuality inequal-
ity is tight, i.e., the upper bound of the inequality cannot be reduced any further for a
noncontextual model.

For the ontological models we present, we begin by specifying the ontic state space Λ,
as depicted in Fig. A.2 as a pie chart with each slice corresponding to a different element
of Λ. We specify the six preparations Pt,b by the distributions over Λ that they corre-
spond to, denoted µ(λ|Pt,b) (middle left of Fig. A.2). We specify the three measurements
Mt by the response functions for the X = 0 outcome, denoted ξ(0|Mt, λ) (top right of
Fig. A.2). Finally, we compute the operational probabilities for the various preparation-
measurement pairs, using Eq. (4.1), and display the results in the 6 × 4 upper-left-hand
corner of Table A.1.

In the remainder of the table, we display the operational probabilities for the effective
preparations, Pt, which are computed from the operational probabilities for the Pt,b and
the fact that Pt is the uniform mixture of Pt,0 and Pt,1. We also display the operational
probabilities for the effective measurement M∗, which is computed from the operational
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[0|M1] [0|M2] [0|M3] [0|M∗]
P1,0 5/6 1/3 1/3 1/2
P1,1 1/6 2/3 2/3 1/2
P2,0 1/3 5/6 1/3 1/2
P2,1 2/3 1/6 2/3 1/2
P3,0 1/3 1/3 5/6 1/2
P3,1 2/3 2/3 1/6 1/2

P1 1/2 1/2 1/2 1/2
P2 1/2 1/2 1/2 1/2
P3 1/2 1/2 1/2 1/2

Table A.1: Operational statistics of a noncontextual ontological model that saturates our
inequality. Operational statistics from the noncontextual ontological model of Fig. A.2,
achieving A = 5/6. The shaded cells correspond to the ones relevant for calculating A.

probabilities for the Mt and the fact that M∗ is a uniform mixture of M1, M2 and M3.

From Table A.1, we can verify that our ontological model implies the operational equiv-
alences that we use in the derivation of our noncontextuality inequality. Specifically, the
three preparations P1, P2 and P3 yield exactly the same statistics for all of the mea-
surements, and the measurement M∗ is indistinguishable from a fair coin flip for all the
preparations.

Figure A.2 also depicts µ(λ|Pt) for t ∈ {1, 2, 3} (bottom left). These are determined
from the µ(λ|Pt,b) via Eq. (A.6). Similarly, the response function ξ(0|M∗, λ), which is
determined from ξ(X = b|M∗, λ) = 1

3

∑
t∈{1,2,3} ξ(X = b|Mt, λ), is displayed in the bottom

right.

Given the operational equivalence of P1, P2 and P3, an ontological model is preparation
noncontextual if and only if µ(λ|P1) = µ(λ|P2) = µ(λ|P3) for all λ ∈ Λ. We see, therefore,
that the model is preparation noncontextual.

Similarly given the operational equivalence of M∗ and a fair coin flip, an ontological
model is measurement noncontextual if and only if ξ(0|M∗, λ) = 1

2
for all λ ∈ Λ. We see,

therefore, that the model is measurement noncontextual.

Finally, using the operational probabilities in the Table A.1, one can compute the value
of A for the model. It is determined entirely by the operational probabilities in the shaded
cells. One thereby confirms that A = 5

6
in the noncontextual ontological model.
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Figure A.2: Demonstration that the bound of our noncontextuality inequality is tight.
The figure displays a noncontextual ontological model that saturates the noncontextual
bound of our inequality.

A.2 Constructing the secondary procedures from the

primary ones

A.2.1 Secondary preparations in quantum theory

As noted in Section 4.3.3, it is easiest to describe the details of our procedure for defining
secondary preparations if we make the assumption that quantum theory correctly describes
the experiment. Further on, we will describe the procedure for a generalised probabilistic
theory (GPT).

Figure 4.1 described how to define the secondary preparations if the primary prepa-
rations deviate from the ideal only within the x − z plane of the Bloch sphere. Here,
we consider the case where the six primary preparations deviate from the ideals within
the bulk of the Bloch sphere. The fact that our proof only requires that the secondary
preparations satisfy Eq. (4.10) means that the different pairs, P s

t,0 and P s
t,1 for t ∈ {1, 2, 3},

need not all mix to the center of the Bloch sphere, but only to the same state. It follows
that the three pairs need not be coplanar in the Bloch sphere. Note, however, for any two
values, t and t′, the four preparations P s

t,0, P
s
t,1, P

s
t′,0, P

s
t′,1 do need to be coplanar.
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Any mixing procedure defines a map from each of the primary preparations P p
t,b to

the corresponding secondary preparation P s
t,b, which can be visualized as a motion of the

corresponding point within the Bloch sphere. To ensure that the six secondary preparations
approximate well the ideal preparations while also defining mixed preparations P s

1 , P s
2 and

P s
3 that satisfy the appropriate operational equivalences, the mixing procedure must allow

for motion in the ±y direction. Consider what happens if one tries to achieve such motion
without supplementing the primary set with the eigenstates of σ · y. A given point that is
biased towards −y can be moved in the +y direction by mixing it with another point that
has less bias in the −y direction. However, because the primary preparations are widely
separated within the x− z plane, achieving a small motion in +y direction in this fashion
comes at the price of a large motion within the x− z plane, implying a significant motion
away from the ideal. This problem is particularly pronounced if the primary points are
very close to coplanar.

The best way to move a given point in the ±y direction is to mix it with a point
that is at roughly the same location within the x − z plane, but displaced in the ±y
direction. This scheme, however, would require supplementing the primary set with one
or two additional preparations for every one of its elements. Supplementing the original
set with just the two eigenstates of σ · y constitutes a good compromise between keeping
the number of preparations low and ensuring that the secondary preparations are close to
the ideal. Because the σ · y eigenstates have the greatest possible distance from the x− z
plane, they can be used to move any point close to that plane in the ±y direction while
generating only a modest motion within the x− z plane.

A.2.2 Secondary measurements in quantum theory

Just as with the case of preparations, we solve the problem of no strict statistical equiv-
alences for measurements by noting that from the primary set of measurements, Mp

1 , Mp
2

and Mp
3 , one can infer the statistics of a large family of measurements, and one can find

three measurements within this family, called the secondary measurements and denoted
M s

1, M s
2 and M s

3, such that their mixture, M s
∗, satisfies the operational equivalence of

Eq. (4.2) exactly. To give the details of our approach, it is again useful to begin with the
quantum description.

A geometric visualization of the construction is also possible in this case. Just as a
density operator can be written ρ = 1

2
(I+r ·σ) to define a three-dimensional Bloch vector

r, an effect can be written E = 1
2
(e0I + e · σ) to define a four-dimensional Bloch-like

vector (e0, e), whose four components we will call the I, x, y and z components. Note
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that e0 = tr(E), while ex = tr(σ · xE) and so forth. The eigenvalues of E are expressed
in terms of these components as 1

2
(eo ± |e|). Consequently, the constraint that 0 ≤ E ≤ I

takes the form of three inequalities 0 ≤ eo ≤ 2, |e| ≤ e0 and |e| ≤ 2− e0. This corresponds
to the intersection of two cones. For the case ey = 0, the Bloch representation of the effect
space is three-dimensional and is displayed in Fig. A.3. When portraying binary-outcome
measurements associated to a POVM {E, I − E} in this representation, it is sufficient to
portray the Bloch-like vector (e0, e) for outcome E alone, given that the vector for I−E is
simply (2− e0,−e). Similarly, to describe any mixture of two such POVMs, it is sufficient
to describe the mixture of the effects corresponding to the first outcome.

The family of measurements that is defined in terms of the primary set is slightly differ-
ent than what we had for preparations. The reason is that each primary measurement on
its own generates a family of measurements by probabilistic post-processing of its outcome.
If we denote the outcome of the original measurement by X and that of the processed mea-
surement by X ′, then the probabilistic processing is a conditional probability p(X ′|X). It
is sufficient to determine the convexly-extremal post-processings, since all others can be
obtained from these by mixing. For the case of binary outcome measurements considered
here, there are just four extremal post-processings: the identity process, p(X ′|X) = δX′,X ;
the process that flips the outcome, p(X ′|X) = δX′,X⊕1; the process that always generates
the outcome X ′ = 0, p(X ′|X) = δX′,0; and the process that always generates the outcome
X ′ = 1, p(X ′|X) = δX′,1. Applying these to our three primary measurements, we obtain
eight measurements in all: the two that generate a fixed outcome, the three originals, and
the three originals with the outcome flipped. If the set of primary measurements corre-
sponded to the ideal set, then the eight extremal post-processings would correspond to the
observables 0, I,σ · n1,−σ · n1,σ · n2,−σ · n2,σ · n3,−σ · n3. In practice, the last six
measurements will be unsharp. These eight measurements can then be mixed probabilisti-
cally to define the family of measurements from which the secondary measurements must
be chosen. We refer to this family as the convex hull of the post-processings of the primary
set.

We will again start with a simplified example, wherein the primary measurements have
Bloch-like vectors with vanishing component along y, ey = 0, and unit component along
I, e0 = 1, so that E = 1

2
(I + exσ · x + ezσ · z). In this case, the constraint 0 ≤ E ≤ I

reduces to |e| ≤ 1, which is the same constraint that applies to density operators confined
to the x − z plane of the Bloch sphere. Here, the only deviation from the ideal is within
this plane, and the construction is precisely analogous to what is depicted in Fig. 4.1.

Unlike the case of preparations, however, the primary measurements can deviate from
the ideal in the I direction, that is, E may have a component along I that deviates from
1, which corresponds to introducing a state-independent bias on the outcome of the mea-
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a b

c

Figure A.3: Enforcing operational equivalence for measurements. A depiction of the con-
struction of secondary measurements from primary ones in the simplified case where the
component along y is zero. For each measurement, we specify the point corresponding to
the Bloch representation of its first outcome. These are labelled [0|M1], [0|M2] and [0|M3].
The equal mixture of these three, labelled [0|M∗], is the centroid of these three points, i.e.
the point equidistant from all three. a, The ideal measurements [0|M i

t ] with centroid at
I/2, illustrating that the operational equivalence of Eq. (4.2) is satisfied exactly. b, Errors
in the experiment (exaggerated) will imply that the realized measurements [0|Mp

t ] (termed
primary) will deviate from the ideal, and their centroid deviates from I/2. The family of
points corresponding to probabilistic mixtures of the [0|Mp

t ] and the observables 0 and I
are depicted by the grey region. (For clarity, we have not depicted the outcome-flipped ver-
sions of the three primary measurements, and have not included them in the probabilistic
mixtures. As we note in the text, such a restriction still allows for a good construction.) c,
The secondary measurements M s

t that have been chosen from this grey region. They are
chosen such that their centroid is at I/2, restoring the operational equivalence of Eq. (4.2).
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surement. This is where the extremal post-processings yielding the constant-outcome mea-
surements corresponding to the observables 0 and I come in. They allow one to move in
the ±I direction.

Figure A.3 presents an example wherein the primary measurements have Bloch-like
vectors that deviate from the ideal not only within the x− z plane, but in the I direction
as well (it is still presumed, however, that all components in the y direction are vanishing).

In practice, of course, the y component of our measurements never vanishes precisely
either. We therefore apply the same trick as we did for the preparations. We supplement the
set of primary measurements with an additional measurement, denoted Mp

4 , that ideally
corresponds to the observable σ · y. The post-processing which flips the outcome then
corresponds to the observable −σ · y. Mixing the primary measurements with Mp

4 and its
outcome-flipped counterpart allows motion in the ±y direction within the Bloch cone.

Note that the capacity to move in both the +y and the −y direction is critical for
achieving the operational equivalence of Eq. (4.2), because if the secondary measurements
had a common bias in the y direction, they could not mix to the POVM {I/2, I/2} as
Eq. (4.9) requires. For the preparations, by contrast, supplementing the primary set by
just one of the eigenstates of σ · y would still work, given that the mixed preparations P s

t

do not need to coincide with the completely mixed state I/2.

The secondary measurements M s
1, M s

2 and M s
3 are then chosen from the convex hull

of the post-processings of the Mp
1 ,M

p
2 ,M

p
3 ,M

p
4 . Without this supplementation, it may be

impossible to find secondary measurements that define an M s
∗ that satisfies the operational

equivalences while providing a good approximation to the ideal measurements.

In all, under the extremal post-processings of the supplemented set of primary measure-
ments, we obtain ten points which ideally correspond to the observables 0, I,σ · n1,−σ ·
n1,σ · n2,−σ · n2,σ · n3,−σ · n3,σ · y, and −σ · y.

Note that the outcome-flipped versions of the three primary measurements are not
critical for defining a good set of secondary measurements, and indeed we find that we
can dispense with them and still obtain good results. This is illustrated in the example of
Fig. A.3.

A.2.3 Secondary preparations and measurements in generalised
probabilistic theories

We do not want to presuppose that our experiment is well fit by a quantum description.
Therefore instead of working with density operators and POVMs, we work with GPT states
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and effects, which are inferred from the matrix Dp

Dp =


p1

1,0 p1
1,1 · · · p1

4,0 p1
4,1

p2
1,0 p2

1,1 · · · p2
4,0 p2

4,1

p3
1,0 p3

1,1 · · · p3
4,0 p3

4,1

p4
1,0 p4

1,1 · · · p4
4,0 p4

4,1

 . (A.13)

where
pt

′

t,b ≡ p(0|Mp
t′ , P

p
t,b) (A.14)

is the probability of obtaining outcome 0 in the t′th measurement that was actually realized
in the experiment (recall that we term this measurement primary and denote it by Mp

t′),
when it follows the (t, b)th preparation that was actually realized in the experiment (recall
that we term this preparation primary and denote it by P p

t,b). These probabilities are
estimated by fitting the raw experimental data (which are merely finite samples of the true
probabilities) to a GPT; we postpone the description of this procedure to Section A.3.

The rows of the Dp matrix define the GPT effects. We denote the vector defined by the
tth row, which is associated to the measurement event [0|Mp

t ] (obtaining the 0 outcome in
the primary measurement Mp

t ), by Mp
t . Similarly, the columns of this matrix define the

GPT states. We denote the vector associated to the (t, b)th column, which is associated
to the primary preparation P p

t,b, by Pp
t,b.

As described in Section 4.3.3, we define the secondary preparation P s
t,b by a probabilistic

mixture of the primary preparations. Thus, the GPT state of the secondary preparation
is a vector Ps

t,b that is a probabilistic mixture of the Pp
t,b,

Ps
t,b =

4∑
t′=1

1∑
b′=0

ut,bt′,b′P
p
t′,b′ , (A.15)

where the ut,bt′,b′ are the weights in the mixture.

A secondary measurement M s
t′ is obtained from the primary measurements in a similar

fashion, but in addition to probabilistic mixtures, one must allow certain post-processings
of the measurements, in analogy to the quantum case described above.

The set of all post-processings of the primary outcome-0 measurement events has ex-
tremal elements consisting of the outcome-0 measurement events themselves together with:
the measurement event that always occurs, which is represented by the vector of proba-
bilities where every entry is 1, denoted 1; the measurement event that never occurs (so
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that outcome 1 is certain instead), which is represented by the vector of probabilities
where every entry is 0, denoted 0; and the outcome-flipped measurement events, which are
represented by the vector 1−Mp

t .

We can therefore define our three secondary outcome-0 measurement events as proba-
bilistic mixtures of the four primary ones as well as the extremal post-processings mentioned
above, that is

Ms
t =

4∑
t′=1

vtt′M
p
t′ + vt00 + vt11 +

4∑
t′′=1

vt¬t′′(1−Mp
t′′), (A.16)

where for each t, the vector of weights in the mixture is (vt1, v
t
2, v

t
3, v

t
4, v

t
0, v

t
1, v

t
¬1, v

t
¬2, v

t
¬3, v

t
¬4).

We see that this is a particular type of linear transformation on the rows.

Again, as mentioned in the discussion of the quantum case, we can in fact limit the
post-processing to exclude the outcome-flipped measurement events for M1, M2 and M3,
keeping only the outcome-flipped event for M4, and still obtain good results. Thus we
found it sufficient to search for secondary outcome-0 measurement events among those of
the form

Ms
t =

4∑
t′=1

vtt′M
p
t′ + vt00 + vt11 + vt¬4(1−Mp

4), (A.17)

where for each t, the vector of weights in the mixture is (vt1, v
t
2, v

t
3, v

t
4, v

t
0, v

t
1, v

t
¬4).

Returning to the preparations, we choose the weights ut,bt′,b′ to maximize the function

CP ≡
1

6

3∑
t=1

1∑
b=0

ut,bt,b (A.18)

subject to the linear constraint

1

2

∑
b

Ps
1,b =

1

2

∑
b

Ps
2,b =

1

2

∑
b

Ps
3,b, (A.19)

as noted in Section 4.3.4. This optimization ensures that the secondary preparations are
as close as possible to the primary ones while ensuring that they satisfy the relevant
operational equivalence exactly. Table A.2 reports the weights ut,bt′,b′ that were obtained
from this optimization procedure, averaged over the 100 runs of the experiment. These
weights yield CP = 0.9969± 0.0001, indicating that the secondary preparations are indeed
very close to the primary ones.
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P p
1,0 P p

1,1 P p
2,0 P p

2,1 P p
3,0 P p

3,1 P p
4,0 P p

4,1

P s
1,0 0.99483 0.00023 0.00029 0.00092 0.00016 0.00031 0.00324 0.00003
P s

1,1 0.00002 0.99791 0.00014 0.00026 0.00006 0.00005 0.00154 0.00002
P s

2,0 0.00065 0.00008 0.99684 0.00003 0.00001 0.00029 0.00002 0.00208
P s

2,1 0.00134 0.00015 0.00009 0.99482 0.00008 0.00028 0.00000 0.00323
P s

3,0 0.00008 0.00023 0.00011 0.00000 0.99883 0.00004 0.00044 0.00027
P s

3,1 0.00011 0.00023 0.00022 0.00016 0.00016 0.99803 0.00050 0.00061

Table A.2: Values of the weights used to define each secondary preparation procedure.
Each of the six secondary preparation procedures, denoted P s

t,b where t ∈ {1, 2, 3}, b ∈
{0, 1} (the rows), is a probabilistic mixture of the eight primary preparation procedures,
denoted P p

t′,b′ where t′ ∈ {1, 2, 3, 4}, b′ ∈ {0, 1} (the columns). The table presents the

weights appearing in each such mixture, denoted ut,bt′,b′ in Section 4.3.4. These are deter-

mined numerically by maximizing the function CP = 1
6

∑3
t=1

∑1
b=0 u

t,b
t,b (the average of the

weights appearing in the shaded cells), which quantifies the closeness of the secondary
procedures to the primary ones, subject to the constraint of operational equivalence of the
uniform mixtures of P s

t,0 and P s
t,1 for t ∈ {1, 2, 3}. The values presented are averages over

100 runs.

The scheme for finding the weights (vt1, v
t
2, v

t
3, v

t
4, v

t
0, v

t
1, v

t
¬4) that define the secondary

measurements is analogous. Using a linear program, we find the vector of such weights
that maximizes the function

CM ≡
1

3

3∑
t=1

vtt, (A.20)

subject to the constraint that

Ms
∗ =

1

2
1, (A.21)

where Ms
∗ ≡ 1

3

∑3
t=1 Ms

t. A high value of CM signals that each of the three secondary
measurements is close to the corresponding primary one. Table A.3 reports the weights
we obtain from this optimization procedure, averaged over the 100 runs of the experiment.
These weights yield CM = 0.9976± 0.0001, again indicating the closeness of the secondary
measurements to the primary ones.

This optimization defines the precise linear transformation of the rows of Dp and the
linear transformation of the columns of Dp that serve to define the secondary preparations
and measurements. By combining the operations on the rows and on the columns, we
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[0|Mp
1 ] [0|Mp

2 ] [0|Mp
3 ] [0|Mp

4 ] [1|Mp
4] 1 0

[0|M s
1] 0.99707 0.00004 0.00015 0.00010 0.00208 0.00031 0.00025

[0|M s
2] 0.00007 0.99727 0.00012 0.00004 0.00199 0.00028 0.00023

[0|M s
3] 0.00004 0.00002 0.99845 0.00001 0.00117 0.00019 0.00012

Table A.3: Values of the weights used to define each secondary measurement proce-
dure. Each of the three secondary outcome-0 measurement events, denoted [0|M s

t ] where
t ∈ {1, 2, 3} (the rows), is a probabilistic mixture of the four primary outcome-0 measure-
ment events, denoted [0|Mp

t′ ] where t′ ∈ {1, 2, 3, 4}, and three processings thereof, denoted
[1|Mp

4 ], 1, and 0 (the seven columns). The table presents the weights appearing in each such
mixture. These are determined numerically by maximizing the function CM = 1

3

∑3
t=1 v

t
t

(the average of the weights appearing in the shaded cells), which quantifies the closeness
of the secondary procedures to the primary ones, subject to the constraint of operational
equivalence between the uniform mixture of M s

1, M s
2 and M s

3 and a fair coin flip. The
values presented are averages over 100 runs.

obtain from Dp a 3× 6 matrix, denoted Ds, whose entries st
′

t,b are

4∑
τ=1

1∑
β=0

ut,bτ,β

[
4∑

τ ′=1

vt
′

τ ′p
τ ′

τ,β + vt
′

0 0 + vt
′

1 1 + vt
′

¬4(1− p4
τ,β)

]
(A.22)

where t′, t ∈ {1, 2, 3}, b ∈ {0, 1}. This matrix describes the secondary preparations P s
t,b

and measurements M s
t′ . The component st

′

t,b of this matrix describes the probability of
obtaining outcome 0 in measurement M s

t′ on preparation P s
t,b, that is,

st
′

t,b ≡ p(0|M s
t′ , P

s
t,b). (A.23)

These probabilities are the ones that are used to calculate the value of A via Eq. (4.6).

A.3 Data analysis

A.3.1 Fitting the raw data to a generalised probabilistic theory

Note: The fitting procedure that we describe in this section could be replaced with the GPT
tomography scheme detailed in Chapter 5 and Appendix B (and in fact, both methods return
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the same results). However, the experiment in Chapter 4 was performed before the work in
Chapter 5, and thus we used an alternate method for finding the GPT description of our
that experiment. We include the description of this alternate method here for completeness.

In our experiment we perform four measurements on each of eight input states. If we
define rt

′

t,b as the fraction of ‘0’ outcomes returned by measurement Mt′ on preparation Pt,b,
the results can be summarized in a 4× 8 matrix of raw data, Dr, defined as:

Dr =


r1

1,0 r1
1,1 · · · r1

4,0 r1
4,1

r2
1,0 r2

1,1 · · · r2
4,0 r2

4,1

r3
1,0 r3

1,1 · · · r3
4,0 r3

4,1

r4
1,0 r4

1,1 · · · r4
4,0 r4

4,1

 . (A.24)

Each row of Dr corresponds to a measurement, ordered from top to bottom as M1, M2,
M3, and M4. Similary, the columns are labelled from left to right as P1,0, P1,1, P2,0, P2,1,
P3,0, P3,1,P4,0, and P4,1.

In order to test the assumption that three independent binary-outcome measurements
are tomographically complete for our system, we fit the raw data to a matrix, Dp, of
primary data defined in Eq. (A.13). Dp contains the outcome probabilities of four mea-
surements on eight states in the GPT-of-best-fit to the raw data. We fit to a GPT in which
three 2-outcome measurements are tomographically complete, which we characterize with
the following result.

Proposition 1 A matrix Dp can arise from a GPT in which three two-outcome measure-
ments are tomographically complete if and (with a measure zero set of exceptions) only if
ap1

t,b + bp2
t,b + cp3

t,b + dp4
t,b − 1 = 0 for some real constants {a, b, c, d}.

Proof. We begin with the “only if” part. Following [50, 51], if a set of two-outcome
measurements MA,MB,MC (called fiducial measurements) are tomographically complete
for a system, then the state of the system given a preparation P can be specified by the
vector

p =


1

p(0|MA, P )
p(0|MB, P )
p(0|MC , P )

 (A.25)

(where the first entry indicates that the state is normalized). In [50, 51] it is shown that
convexity then requires that the probability of outcome ‘0’ for any measurement M is given
by r · p for some vector r. Let r1, r2, r3, r4 correspond to outcome ‘0’ of the measurements
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M1,M2,M3,M4, and note that the measurement event that always occurs, regardless of
the preparation (e.g. the event of obtaining either outcome ‘0’ or ‘1’ in any binary-outcome
measurement), must be represented by rI = (1, 0, 0, 0). Since the r1, r2, r3, r4, rI are a set
of five four-dimensional vectors, they must be linearly dependent:

a′r1 + b′r2 + c′r3 + d′r4 + e′rI = 0 (A.26)

with (a′, b′, c′, d′, e′) 6= (0, 0, 0, 0, 0). The set of r for which e′ must be zero are those where
rI is not in the span of r1, r2, r3, r4, which is a set of measure zero. Hence we can generically
ensure e′ 6= 0 and divide Eq. (A.26) through by −e′ to obtain

ar1 + br2 + cr3 + dr4 − rI = 0 (A.27)

where a = −a′/e′, b = −b′/e′ and so on.

Finally, letting pt,b denote the column vector of the form of Eq. (A.25) that is associated
to the preparation Pt,b, and noting that by definition

pt
′

t,b = rt′ · pt,b, (A.28)

we see that by taking the dot product of Eq. (A.27) with each pt,b, we obtain the desired
constraint on Dp.

For the “if” part, we assume the constraint and demonstrate that there exists a triple
of binary-outcome measurements, MA, MB, and MC , that are tomographically complete
for the GPT. To establish this, it is sufficient to take the fiducial set, MA, MB and MC , to
be M1, M2, and M3, so that preparation Pt,b corresponds to the vector

pt,b =


1
p1
t,b

p2
t,b

p3
t,b

 . (A.29)

In this case, we can recover Dp if M1, M2, and M3 are represented by r1 = (0, 1, 0, 0),
r2 = (0, 0, 1, 0) and r3 = (0, 0, 0, 1), whilst the assumed constraint implies that r4 =
−(−1, a, b, c)/d.

Geometrically, the proposition dictates that the eight columns of Dp lie on the 3-
dimensional hyperplane defined by the constants {a, b, c, d}.

To find the GPT-of-best-fit we fit a 3-d hyperplane to the eight 4-dimensional points
that make up the columns of Dr. We then map each column of Dr to its closest point on the
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hyperplane, and these eight points will make up the columns of Dp. We use a weighted total
least-squares procedure [96, 97] to perform this fit. Each element of Dr has an uncertainty,
∆rt

′

t,b, which is estimated assuming the dominant source of error is the statistical error
arising from Poissonian counting statistics. We define the weighted distance, χt,b, between

the (t, b) column of Dr and Dp as χt,b =
√∑4

t′=1

(
rt

′
t,b − pt

′
t,b

)2
/
(
∆rt

′
t,b

)2
. Finding the best-

fitting hyperplane can be summarized as the following minimization problem:

minimize
{pit,b,a,b,c,d}

χ2 =
4∑
t=1

1∑
b=0

χ2
t,b,

subject to ap1
t,b + bp2

t,b + cp3
t,b + dp4

t,b − 1 = 0

∀ t = 1, . . . , 4, b = 0, 1.

(A.30)

The optimization problem as currently phrased is a problem in 36 variables—the 32
elements of Dp together with the hyperplane parameters {a, b, c, d}. We can simplify this
by first solving the simpler problem of finding the weighted distance χt,b between the (t, b)
column ofDr and the hyperplane {a, b, c, d}. This can be phrased as the following 8-variable
optimization problem:

minimize
{p1t,b,p

2
t,b,p

3
t,b,p

4
t,b}

χ2
t,b =

4∑
t′=1

(rt
′

t,b − pt
′

t,b)
2(

∆rt
′
t,b

)2 ,

subject to ap1
t,b + bp2

t,b + cp3
t,b + dp4

t,b − 1 = 0.

(A.31)

Using the method of Lagrange multipliers [96], we define the Lagrange function Γ = χ2
t,b +

γ(ap1
t,b+bp

2
t,b+cp

3
t,b+dp

4
t,b−1), where γ denotes the Lagrange multiplier, then simultaneously

solve
∂Γ

∂γ
= 0 (A.32)

and
∂Γ

∂pt
′
t,b

= 0, t′ = 1, . . . , 4 (A.33)

for the variables γ, p1
t,b, p

2
t,b, p

3
t,b, and p4

t,b. Substituting the solutions for p1
t,b, p

2
t,b, p

3
t,b and

p4
t,b into Eq. (A.31) we find

χ2
t,b =

(ar1
t,b + br2

t,b + cr3
t,b + dr4

t,b − 1)2(
a∆r1

t,b

)2
+
(
b∆r2

t,b

)2
+
(
c∆r3

t,b

)2
+
(
d∆r4

t,b

)2 , (A.34)
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which now only contains the variables a, b, c, and d.

The hyperplane-finding problem can now be stated as the following four-variable opti-
mization problem:

minimize
{a,b,c,d}

χ2 =
4∑
t=1

1∑
b=0

χ2
t,b (A.35)

which we solve numerically.

The χ2 parameter returned by the fitting procedure is a measure of the goodness-of-fit
of the hyperplane to the data. Since we are fitting eight data points to a hyperplane de-
fined by four fitting parameters {a, b, c, d}, we expect the χ2 parameter to be drawn from
a χ2 distribution with four degrees of freedom [97], which has a mean of 4. As stated in
Chapter 4, we ran our experiment 100 times and obtained 100 independent χ2 parameters;
these have a mean of 3.9± 0.3. In addition we performed a more stringent test of the fit of
the model to the data by summing the counts from all 100 experimental runs before per-
forming a single fit. This fit returns a χ2 of 4.33, which has a p-value of 36%. The outcomes
of these tests are consistent with our assumption that the raw data can be explained by
a GPT in which three 2-outcome measurements are tomographically complete and which
also exhibits Poissonian counting statistics. Had the fitting procedure returned χ2 values
that were much higher, this would have indicated that the theoretical description of the
preparation and measurement procedures required more than three degrees of freedom.
On the other hand, had the fitting returned an average χ2 much lower than 4, this would
have indicated that we had overestimated the amount of uncertainty in our data.

After finding the hyperplane-of-best-fit {a, b, c, d}, we find the points on the hyperplane
that are closest to each column of Dr. This is done by numerically solving for p1

t,b, p
2
t,b,

p3
t,b, and p4

t,b in (A.31) for each value of (t, b). The point on the hyperplane closest to the
(t, b) column of Dr becomes the (t, b) column of Dp. The matrix Dp is then used to find
the secondary preparations and measurements.

A.3.2 Why is fitting to a GPT necessary?

It is clear that one needs to assume that the measurements one has performed form a
tomographically complete set, otherwise statistical equivalence relative to those measure-
ments does not imply statistical equivalence relative to all measurements. (Recall that the
assumption of preparation noncontextuality only has nontrivial consequences when two
preparations are statistically equivalent for all measurements.)
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The minimal assumption for our experiment would therefore be that the four measure-
ments we perform are tomographically complete. But our physical understanding of the
experiment leads us to a stronger assumption, that three measurements are tomographi-
cally complete. Here we clarify why, given this latter assumption, it is necessary to carry
out the step of fitting to an appropriate GPT.

It is again easier to begin by considering the case that our experiment is described
by quantum theory. Let (q1

t,b, q
2
t,b, q

3
t,b, q

4
t,b) denote the probability of obtaining outcome

‘0’ in measurements M1, M2, M3, M4 on preparation Pt,b, according to quantum theory,
namely qit,b = Tr(Eiρt,b), where Ei is the POVM element corresponding the the 0 outcome
of measurement Mi and ρt,b is the density operator for Pt,b.

Let us represent ρt,b = 1
2
(I + σ · ut,b) by a Bloch vector ut,b and the elements Ei =

v0
i I + σ · vi by a “Bloch four-vector” (v0

i ,vi). Then qit,b = v0
i + ut,b · vi. Since the vi

lie in a unit sphere, the (q1
t,b, q

2
t,b, q

3
t,b, q

4
t,b) lie in the image of the sphere under the affine

transformation u 7→ (v0
1, v

0
2, v

0
3, v

0
4) + (v1 · u,v2 · u,v3 · u,v4 · u), i.e. some ellipsoid, a

three-dimensional shape in a four-dimensional space.

However, the relative frequencies we observe will fluctuate from qit,b in all four dimen-
sions. Fluctuations in the three dimensions spanned by the “Bloch ellipsoid” can be ac-
commodated by using secondary preparations as described above. But fluctuations in the
fourth direction are, according to quantum theory, always statistical and never systematic,
and by the same token we cannot deliberately produce supplementary preparations that
have any bias in this fourth direction. Therefore, we need to deal with these fluctuations
in a different way. If one was assuming quantum theory, one would simply fit relative
frequencies to the closest points qt

′

t,b in the Bloch ellipsoid, just as one usually fits to the
closest valid density operator.

Since we do not assume quantum theory, we do not assume that the states lie in an
ellipsoid. However, we still make the assumption that three two-outcome measurements
are tomographically complete. Hence, by Proposition 1, the long-run probabilities lie in a
three-dimensional subspace of a four-dimensional space, and so there are no supplementary
preparations that can deal with fluctuations of relative frequencies in the fourth dimension.
Instead of fitting to the “Bloch ellipsoid”, we fit to a suitable GPT.

A.3.3 Analysis of statistical errors

Because the relative frequencies derived from the raw data constitute a finite sample of
the true probabilities (i.e. the long-run relative frequencies), the GPT states and effects
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that yield the best fit to the raw data are estimates of the GPT states and effects that
characterize the primary preparations and measurements.

It is these estimates that we input into the linear program that identifies the weights
with which the primary procedures must be mixed to yield secondary procedures. As such,
our linear program outputs estimates of the true weights, and therefore when we use these
weights in mixtures of our estimates of the primary GPT states and effects, we obtain
estimates of the secondary GPT states and effects. In turn, these estimates are input into
the expression for A and yield an estimate of the value of A for the secondary preparations
and measurements.

To determine the statistical error on our estimate of A, we must quantify the statistical
error on our estimates of the GPT states for the primary preparations and on our estimates
of the GPT effects for the primary measurements. We do so by taking our experimental
data in 100 distinct runs, each of which yields one such estimate. For each of these, we
follow the algorithm for computing the value of A. In this way, we obtain 100 samples of
the value of A for the secondary procedures, and these are used to determine the statistical
error on our estimate for A.

Note that a different approach would be to presume some statistical noise model for
our experiment, then input the observed relative frequencies (averaged over the entire ex-
periment) into a program that adds noise using standard Monte Carlo techniques. Though
one could generate a greater number of samples of A in this way, such an approach would
be worse than the one we have adopted because the error analysis would be only as reliable
as one’s assumptions regarding the nature of the noise.

Given that the quantity A we obtain is 2300 σ above the noncontextual bound, we can
conclude that there is a very low likelihood that a noncontextual model would provide a
better fit to the true probabilities than the GPT that best fit our finite sample would. This
is the sense in which our experiment rules out a noncontextual model with high confidence.

It should be noted that this sort of analysis of statistical errors is no different from
that which has historically been used for experimental tests of Bell inequalities. The Bell
quantity (the expression that is bounded in a Bell inequality) is defined in terms of the
true probabilities. Any Bell experiment, however, only gathers a finite sample of these true
probabilities. From this sample, one estimates the true probabilities and in turn the value
of the Bell quantity. We treat the quantity A appearing in our noncontextuality inequality
in a precisely analogous manner. The definition of A in terms of the true probabilities
is admittedly more complicated than for a Bell quantity: we define secondary procedures
based on an optimization problem that takes as input the true probabilities for the primary
procedures, and use the true probabilites for the secondary procedures to define A. But
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this complication does not change the fact that A is ultimately just a function of the
true probabilities for the primary preparations and measurements, albeit a function that
incorporates a particular linear optimization problem in its definition.

Recently, more sophisticated statistical techniques have been applied to the analysis of
tests of Bell inequalities [159, 160, 161, 162, 163, 164]. Specifically, one computes an upper
bound on the probability that a locally causal model could reproduce the Bell quantity
observed in the experiment. This techniques has been applied to the analysis of the recent
loophole-free violations of Bell inequalities [153, 155, 154]. It would be worthwhile to make
a similar analysis of our experiment, by computing an upper bound on the probability
that a noncontextual model could reproduce the value of A we observe. Such an analysis
is outside the scope of the present work, but an interesting problem for future work in this
area.
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Appendix B

Appendices for Chapter 5

Notes and acknowledgements

This chapter contains the appendices of work that has appeared on the arXiv as [1]:

M. D. Mazurek, M. F. Pusey, K. J. Resch and R. W. Spekkens, “Experimentally bound-
ing deviations from quantum theory in the landscape of generalized probabilistic theories,”
arXiv:1710.05948, 2017.

Author contributions

M. D. Mazurek and R. W. Spekkens wrote the first draft of the appendices.

All authors contributed to the final draft.

B.1 Methods

B.1.1 Photon source

The 20 mm long PPKTP crystal is pumped with 0.29 mW of continuous wave laser light at
404.7 nm, producing pairs of 809.4 nm photons with orthogonal polarizations. We detect
approximately 22% of the herald photons produced, and approximately 9% of the signal
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photons produced. In order to characterize the single-photon nature of the source we
performed a g2(0) measurement [11] and found g2(0) = 0.00184± 0.00003. This low g2(0)
measurement implies that the ratio of double pairs to single pairs produced by the source
is ∼ 1 : 2000. We found that if we increased the pump power then a rank 4 model no
longer fit the data well. This is because the two-photon state space has a higher dimension
than the one-photon state space. The avalanche photodiode single photon detectors we use
respond nonlinearly to the number of incoming photons [16]; this makes our measurements
sensitive to the multi-pair component of the downconverted light and ultimately limits the
maximum power we can set for the pump laser.

B.1.2 Measurements

After a photon exits the measurement PBS, the probability that it will be detected depends
on which port it exited the PBS from. This is because the efficiencies of the two paths
from the measurement PBS to the detector are not exactly equal, and also because the
detectors themselves do not have the same efficiency. To average out the two different
efficiencies we perform each measurement in two stages. First, we rotate the measurement
quarter and half waveplates to the angles for which photons with some polarization |ψ〉
will be transmitted by the measurement PBS, and in each output port record the number
of photons detected in coincidence with the herald, for four seconds. We label detections
in the transmitted port with ‘0’ and detections in the reflected port with ‘1’. Second, we
rotate the measurement waveplates so |ψ〉 will be reflected at the measurement PBS, and
swap the labels on the measurement outcomes such that the reflected port corresponds to
outcome ‘0’ and the transmitted port to ‘1’. We record the number of coincidences with
the herald in each output port for another four seconds, and then sum the total number of
‘0’ detections, and also the number ‘1’ detections over the total eight-second measurement
time.

B.2 Choice of preparation and measurement settings

We choose the preparation and measurement settings in our experiment with the aim of
characterizing the largest volume of the state and measurement effect spaces as possible.
The state and effect spaces in any GPT are convex, and thus fully characterizing the bound-
aries of these spaces fully determines the full spaces. Thus our aim is to find preparation
and measurement settings that map out the boundaries of the state and effect spaces as
best we can, given the finite number of settings we are able to perform.
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We use quantum theory to inform our choice of settings. We expect the GPT describing
our experiment to be equal to (or very closely approximated by) the GPT for a qubit. The
surface of the Bloch sphere (i.e. the space of pure qubit states) determines the qubit state
space, and preparing a set states of states that are evenly distributed around the surface of
the Bloch sphere should do a good job at characterizing the GPT state space describing our
experiment. The qubit effect space is characterized by the surface of the sphere representing
projective measurement effects, plus the unit effect, I, and its complement, the zero effect.
Thus, we aim to perform a set of measurements whose effects are evenly distributed on the
outside of the sphere of projective effects.

To choose the preparation settings we first find a set of pure quantum states labelled
with |ψi〉 that are approximately evenly distributed around the surface of the Bloch sphere.
We then find the quarter and half waveplate angles necessary to create each of those
states, and each pair of quarter and half waveplate angles is one preparation setting. The
space of projective effects is also determined by the Bloch sphere, since every projective
effect |ψi〉〈ψi| can be associated with the state to which it responds deterministically,
|ψi〉. The measurement settings are the waveplate angles that implement the projective
measurements {|ψi〉〈ψi|, I− |ψi〉〈ψi|}.

We use a method due to Rakhmanov, Saff, and Zhou [165] to find the set of approxi-
mately uniformly distributed points on the surface of the Bloch sphere. The points lie on
a spiral that begins at the south pole of the sphere, and winds up around the sphere and
ends at the north pole. The quantum states corresponding to each of the 100 preparation
settings in the first experiment are shown in Fig. B.1(a), and the 1000 states corresponding
to each preparation setting in the second experiment are displayed in Fig. B.1(b).

In the second experiment, we also implement a set of six fiducial preparations which
we use to characterize each of the 1000 effects in Fig. B.1(b), and a set of six fiducial
measurements which we use to characterize each of the 1000 states in Fig. B.1(b). The
fiducial preparation and measurement sets are shown in Fig. B.2.

B.3 Finding the rank-k matrix D̃ that best fits the

frequency matrix F

In this section we explain the algorithm we use to find a low-rank matrix that best fits the
matrix of raw frequency data.

For an m× n matrix of frequency data, F , we define the rank-k matrix of best fit, D̃,
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Figure B.1: Quantum description of the target states created and measurements per-
formed in our experiment. An evenly distributed set of points lying on a spiral was used
to choose the settings for (a) the 100 preparations and measurements characterized in the
first experiment and measurements and (b) the 1000 nonfiducial preparations and mea-
surements characterized in the second experiment. Each red dot corresponds to a quantum
state |ψi〉, and the waveplate angles (i.e. preparation settings) were chosen in order to pre-
pare those states. Each red dot also defines an effect |ψi〉〈ψi| which is part of the projective
measurement {|ψi〉〈ψi|, I− |ψi〉〈ψi|}.
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Figure B.2: Quantum description of the fiducial states and measurement effects per-
formed in the second experiment. (a) Red dots represent the six fiducial states used to
characterize the 1000 measurements in Fig. B.1(b). These correspond to the +1 and -1
eigenstates of the three Pauli operators σx, σy, and σz. (b) Red dots represent the six fidu-
cial measurement effects used to characterize each of the states in Fig. B.1(b). These effects
lie on six of the twelve vertices of an icosahedron, and they correspond to the outcome-‘0’
effect of a projective measurement. Each outcome-‘0’ effect has a corresponding outcome-
‘1’ effect; each outcome-‘1’ effect is represented by one of the other six vertices on the
icosahedron.
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as the one that minimizes the weighted χ2 value:

χ2 =
m∑
i=1

n∑
j=1

(
Fij − D̃ij

∆Fij

)2

, (B.1)

where the weights ∆Fij are the uncertainties in the measured frequencies, which are cal-
culated assuming Poissonian error in the counts (in cases where we did not collect data for
the preparation-measurement pair corresponding to entry Fij, we set ∆Fij = ∞). Since
D̃ represents an estimate of the true probabilities underlying the noisy frequency data, we
need to ensure that D̃ only contains entries between 0 and 1. Hence the matrix of best fit
is the one which solves the following minimization problem:

minimize
D̃∈Mmn

χ2,

subject to rank(D̃) ≤ k

0 ≤ D̃ij ≤ 1 ∀ i, j,

(B.2)

where Mmn is the space of all m × n real matrices. The entries in the column of ones
(representing the unit measurement effect) that we include in F are exact, meaning that
they have an uncertainty of 0. As D̃ is defined as the matrix that minimizes χ2, this
enforces that the entries in the same column of D̃ will also remain exactly 1. Otherwise,
χ2 would be undefined.

To enforce the rank constraint, we use the parameterization D̃ = S̃Ẽ, where S̃ has size
m×k and Ẽ is k×n. This minimization problem as stated is NP-hard [138], and cannot be
solved analytically. However, if either S̃ or Ẽ remains fixed, optimizing the other variable
is a convex problem which can be solved with a quadratic program. We minimize χ2 by
performing a series of alternating optimizations over S̃ and Ẽ [139].

Each iteration begins with an estimate for Ẽ, and we find the S̃ = S̃ ′ which minimizes
the χ2. Next, we fix S̃ = S̃ ′ and find the optimal Ẽ = Ẽ ′. This is the end of one iteration,
and Ẽ ′ becomes the fixed value of Ẽ for the beginning of the next iteration. The algorithm
runs until a specific convergence threshold is met (i.e. if ∆χ2 < 10−6 between successive
iterations), or until a maximum number of iterations (we choose 5000) is reached.

We will now show that optimization over S̃ or Ẽ is convex (given that the other variable
is fixed). For what follows, we will make use of the vec(·) operator, which takes a matrix
and reorganises its entries into a column vector with the same number of entries as the
original matrix. For example, given an m× n matrix A, vec(A) is a vector of length mn,
and the first m entries of vec(A) are equal to the first column of A, entries m+ 1 through
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2m are equal to the second column of A, and so on. We also define a diagonal mn ×mn
matrix of weights, W , to encode the uncertainties (1/∆Fij)

2. These values appear along
the diagonal of W , and they are appropriately ordered such that we can rewrite χ2 in the
more convenient form:

χ2 = vec(F − S̃Ẽ)TW vec(F − S̃Ẽ) (B.3)

= vec(S̃Ẽ)TW vec(S̃Ẽ)− 2 vec(S̃Ẽ)TW vec(F )

+ vec(F )TW vec(F ), (B.4)

where we have also made the substitution D̃ = S̃Ẽ.

Defining Im as the m × m identity matrix, we can use the identity vec(S̃Ẽ) = (Ẽ ⊗
Im) vec(S̃) to write:

χ2 = vec (S̃)
T

(Ẽ ⊗ Im)TW (Ẽ ⊗ Im) vec (S̃)

− 2 vec (S̃)
T

(Ẽ ⊗ Im)TW vec(F )

+ vec(F )TW vec(F ), (B.5)

and we now see that the minimization over P can be written as:

minimize
S̃∈Mmk

vec (S̃)
T

(Ẽ ⊗ Im)TW (Ẽ ⊗ Im) vec (S̃)

− 2 vec (S̃)
T

(Ẽ ⊗ Im)TW vec(F )

subject to 0 ≤ (S̃Ẽ)ij ≤ 1 ∀ i, j.

(B.6)

We have ignored the third term of Eq. (B.4) as it is a constant, and depends neither on S̃ nor
Ẽ. Since W is a diagonal matrix consisting of only positive elements, (Ẽ⊗Im)TW (Ẽ⊗Im)
is positive-definite. This means that (B.6) is a convex quadratic program [166] which can
be solved in polynomial time.

The optimization over Ẽ takes a similar form, which can be found by applying the
identity vec(S̃Ẽ) = (In ⊗ S̃) vec(Ẽ) to Eq. (B.4):

minimize
Ẽ∈Mkn

vec(Ẽ)T (In ⊗ S)TW (In ⊗ S̃) vec(Ẽ)

− 2 vec(Ẽ)T (In ⊗ S̃)TW vec(F )

subject to 0 ≤ (S̃Ẽ)ij ≤ 1 ∀ i, j.

(B.7)
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B.4 Decomposition of the fitted matrix of probabili-

ties

As discussed in Section 5.4.5 in the main paper, we find a decomposition D̃realized =
S̃realizedẼrealized in order to characterize the estimates of the spaces realized by the ex-
periment, S̃realized and Ẽrealized. Here, D̃realized has size m× n, S̃realized is m× k and Ẽrealized

is k × n. In this appendix we describe the method we use to perform the above decompo-
sition.

We choose the decomposition to ensure that the first column of S̃realized is a column
of ones, which allows us to represent S̃realized in k − 1 dimensions. (In our experiment we
found k = 4, but we will use the symbol k in this appendix for generality.) We achieve
this by ensuring that the leftmost column in D̃realized is a column of ones representing the
unit measurement, such that D̃realized takes the form:

D̃realized =

 1 p(0|P1,M2) · · · p(0|P1,Mn)
...

...
. . .

...
1 p(0|Pm,M2) · · · p(0|Pm,Mn)

 . (B.8)

We then proceed to perform the QR decomposition [167] D̃realized = QR, where R is an
m×n upper-right triangular matrix and Q an m×m unitary matrix. Because D̃realized has
the form of Eq. (B.8), each entry in the first column of Q will be equal to some constant
c. We define Q′ = Q/c and R′ = cR, which ensures that the first column of Q′ is a column
of ones.

Next, we partition Q′ and R′ as Q′ =
(
Q0 Q1

)
and R′ =

(
R0

R1

)
, where Q0 is the first

column of Q′, Q1 is all remaining columns of Q′, R0 is the first row of R′, and R1 is all
remaining rows of R′. We take the singular value decomposition Q1R1 = UΣV T . Q1R1 is
rank-(k − 1), and thus only has (k − 1) nonzero singular values. Hence we can partition

U , Σ, and V as U =
(
Uk−1 U(k−1)⊥

)
, Σ =

(
Σk−1 0

0 0

)
, and V =

(
Vk−1 V(k−1)⊥

)
. Here

Σk−1 is the upper-left (k − 1) × (k − 1) corner of Σ, and Uk−1 and Vk−1 are the leftmost
(k − 1) columns of U and V , respectively. Finally, we define S̃realized and Ẽrealized as

S̃realized =
(
Q0 Uk−1

√
Σk−1

)
and Ẽrealized =

(
R0√

Σk−1V
T
k−1

)
.
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The procedure described above ensures that S̃realized and Ẽrealized take the forms:

S̃realized =


1 s

(1)
1 · · · s

(1)
k−1

1 s
(2)
1 · · · s

(2)
k−1

...
...

. . .
...

1 s
(m)
1 · · · s

(m)
k−1

 , (B.9)

and

Ẽrealized =


1 e

(2,0)
0 · · · e

(n,0)
0

0 e
(2,0)
1 · · · e

(n,0)
1

...
...

. . .
...

0 e
(2,0)
k−1 · · · e

(n,0)
k−1

 , (B.10)

where s
(u)
t is the t-th element of the GPT state vector representing the u-th preparation,

and e
(t,v)
t is the t-th element of the GPT effect vector representing the v-th outcome of the

u-th measurement.

B.4.1 Convex closure under convex mixtures and classical post-
processing of Ẽrealized

As discussed in Section 5.4.5, Ẽrealized is obtained by considering the convex closure under
convex mixtures and classical post-processing of Ẽrealized. We only perform two-outcome
measurements in our experiment, and thus the full set of effects in Ẽrealized is the convex hull
of the outcome-0 effects of all measurement procedures implemented in the experiment (i.e.
the matrix Ẽrealized) and of all the outcome-1 effects of all the implemented measurements
(i.e the matrix 1-Ẽrealized).

If we chose to, we could simply take the Ẽrealized returned by the decomposition of
D̃realized that we described above, and define the larger matrix

(
Ẽrealized 1− Ẽrealized

)
, and

the convex hull of the vectors in this larger matrix would define our estimate, Ẽrealized, of
the space of GPT effects realized in the experiment.

However, in an attempt to treat the outcome-0 and outcome-1 effect vectors on equal
footing, we instead define the larger matrix D̃R =

(
D̃realized 1− D̃realized

)
. We then find a

decomposition D̃R = S̃realizedẼR using the method described above. This ensures that ẼR
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has the form:

ẼR =


1 e

(2,0)
0 · · · e

(n,0)
0 0 e

(2,1)
0 · · · e

(n,1)
0

0 e
(2,0)
1 · · · e

(n,0)
1 0 e

(2,1)
1 · · · e

(n,1)
1

...
...

. . .
...

...
...

. . . · · ·
0 e

(2,0)
k−1 · · · e

(n,0)
k−1 0 e

(2,1)
k−1 · · · e

(n,1)
k−1

 . (B.11)

B.5 Calculation of dual spaces

The spaces S̃consistent and Ẽconsistent are the duals of the realized spaces Ẽrealized and S̃realized,
respectively. Here we will discuss how we calculate the consistent spaces from the realized
ones.

We start with the calculation of S̃consistent. By definition, S̃consistent is the intersection of
the geometric dual of Ẽ set of all s ∈ Rk such that ∀e ∈ Ẽrealized : 0 ≤ s ·e ≤ 1 and s ·u = 1.
(In our experiment, we determined that k = 4, but we will use the symbol k here for gen-
erality.) This definition (called an inequality representation) completely specifies S̃consistent.
However, in order to perform transformations on the space or calculate its volume it can
be useful to have its vertex description as well, which is a list of vertices that completely
specify the space’s convex hull. Finding a convex polytope’s vertex representation given
its inequality representation is called the vertex enumeration problem [168].

To find the vertex representation of S̃consistent we first simplify its inequality representa-
tion. Since Ẽrealized is a convex polytope, we don’t need to consider every e in Ẽrealized, but

only the vertices of Ẽrealized. If we define the vertices of Ẽrealized as vertices
(
Ẽrealized

)
, then

we can replace the ∀e ∈ Ẽrealized in the definition of S̃consistent with ∀e ∈ vertices
(
Ẽrealized

)
.

Calculation of vertices
(
Ẽrealized

)
is performed with the pyparma [169] package in Python

2.7.6. The calculation of the vertex description of S̃consistent is performed with an algorithm
provided by Avis and Fukuda [168]. We use functions in pyparma [169] which call the cdd
library [170] to find the vertex description of S̃consistent.

Finding the vertex description of Ẽconsistent from S̃realized is done in an analogous way.
Ẽconsistent is defined as the geometric dual of the space that is the subnormalization of
S̃realized, {ws : s ∈ S̃realized, w ∈ [0, 1]}. The subnormalization of S̃realized is also the convex
hull of the union of the GPT state vectors that make up the rows of S̃realized and the GPT
state vector with s0 = · · · = sk−1 = 0 that represents the state with normalization zero.
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B.6 Relating CHSH inequality violations to POM non-

contextuality inequality violations

We here provide a rigorous proof of the fact that the optimal violation of the CHSH
inequality when Bob’s system is described by a qubit-like state and effect space, is simply
the optimal violation of the POM noncontextuality inequality.

The preparation PAB followed by a measurement procedure MA
x on Alice’s system that

yields outcome a defines an effective preparation procedure on Bob’s system, which we
denote by PB

a|x. By this definition, the probability of observing outcome b for a measurement

of MB
y on Bob’s system given a preparation PB

a|x is precisely equal to the probability of

observing an outcome b for a measurement of MB
y on Bob’s system given an outcome a for

a measurement MA
x on Alice’s system and a preparation PAB. Concretely,

p(b|MB
y , P

B
a|x) = p(b|a,MA

x ,M
B
y , P

AB) (B.12)

where by the definition of conditionals,

p(b|a,MA
x ,M

B
y , P

AB) =
p(a, b|MA

x ,M
B
y , P

AB)

p(a|MA
x ,M

B
y , P

AB)
. (B.13)

Given the absence of superluminal signalling from Bob to Alice, p(a|MA
x ,M

B
y , P

AB) =
p(a|MA

x , P
AB), and we infer that

p(b|a,MA
x ,M

B
y , P

AB) =
p(a, b|MA

x ,M
B
y , P

AB)

p(a|MA
x , P

AB)
. (B.14)

We now make use of the fact that to obtain the quantum maximum in qubit-like state
and effect spaces, the marginal p(a|MA

x , P
AB) must be uniform [171].

In the case where the marginal p(a|MA
x , P

AB) is uniform, we have

1

2
p(b|MB

y , P
B
a|x) = p(a, b|MA

x ,M
B
y , P

AB), (B.15)

so that

B ≡ 1

8

∑
a,b,x,y

δa⊕b,xyp(b|MB
y , P

B
a|x). (B.16)
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Finally, if we define

z0 = a, z1 = a⊕ x, (B.17)

so that the condition a⊕ b = xy becomes b = zy, and if we write PB
a|x as PB

z0z1
, then we find

B ≡ 1

8

∑
b,y,z0,z1

δb,zyp(b|MB
y , P

B
z0z1

), (B.18)

which is precisely the form of the left-hand side of the POM noncontextuality inequality,
that is, the quantity C, defined in Eq. (5.4).

The no-signalling condition also has a natural expression in terms of the effective prepa-
rations on Bob’s side that are steered to, namely, that the weighted average over a of
the GPT states associated to the PB

a|x is independent of x (see Eq. (5.26)). Given that

p(a|MA
x , P

AB) = 1
2
, the constraint on the GPT states is

1

2
sPB

0|0
+

1

2
sPB

1|0
=

1

2
sPB

0|1
+

1

2
sPB

1|1
. (B.19)

If we write PB
a|x as PB

z0z1
under the mapping of (B.17), we recover precisely the parity-

obliviousness condition of Eq. (5.5).

Therefore, the existence in a theory of a CHSH experiment implemented at space-like
separation that achieves B = α for some α implies the existence in the theory of a prepare-
and-measure experiment where the preparations satisfy the the parity-obliviousness con-
dition of Eq. (5.5) and that achieves C = α.
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Appendix C

Sources of error in
prepare-and-measure experiments
that use polarization-encoded single
photons

When running the polarization-encoded single photon prepare-and-measure experiments,
I ran into some different sources of error that added additional “false” degrees of freedom
to the data. It was important that the data was without these extra degrees of freedom,
otherwise the GPT tomography procedure would have inferred the “wrong” dimension of
GPT required to explain the data. Here I’ve listed a few sources of errors that gave me
problems, and the steps I suggest one takes to correct them.

C.1 Waveplate-angle spatial mode coupling

I found that the preparation waveplates deflected the beam enough to affect the coupling
efficiencies into the fibres leading to the detectors. This can be solved by coupling the light
into a single mode fibre between the preparation and measurement stage of the experiment.
This will prevent preparation-waveplate-angle-dependent deflections of the beam from af-
fecting the spatial mode of the light that enters the measurement stage of the experiment.
The fibre should be securely fixed to the table (using tape is fine) to ensure it stays in
place over the course of the experiment (otherwise it will introduce additional polarization
rotations to the light as it moves).
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Paddle polarization controllers (bat ears) have a tendency to “fall over” during the
course of the data acquisition, which introduces a time-dependent polarization rotation
between the preparation and measurement stage of the experiment. It is much better
to tape all fibres directly to the optical table, and use three fixed waveplates to correct
fibre-induced polarization rotations.

C.2 Source drift

The photon source will drift over the course of the experiment, and thus so will the photon-
pair production rate. This drift can be accounted for by counting photons in both output
ports of the polarizing beamsplitter in the measurement stage.

The two detectors most likely have different efficiencies, and thus each measurement
should be performed in two stages a and b. For example, if the measurement waveplates
for stage a are aligned to take polarization state |ψ〉 to |H〉, then the waveplates for stage
b should be aligned to take state |ψ〉 to |V 〉. Then, the measured probability of obtaining
outcome ‘0’ can be calculated as

p(0) =
nar + nbt

nar + nat + nbr + nbt
, (C.1)

where nar is the number of photons counted in the reflected port for measurement state a,
and the other numbers of counts are defined similarly.

It is possible that the meaurement waveplates slightly deflect the beam, and thus the
coupling efficiencies into the two fibres leading to the detectors might change between
measurement stage a and b. I found that when coupling into multimode (instead of single
mode) fibre in the output ports of this beamsplitter, there was no measurable change in
coupling efficiency.

Finally, measurement stages a and b should be performed back-to-back to minimize the
chance of the source power drifting significantly over the time of the measurement.

C.3 Double pairs

SPDC sources sometimes produce two photon pairs, instead of one. If the ratio of double
pairs to single pairs is too high this will add additional degrees of freedom to the data. The
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cause of this can be explained by a bucket detector’s nonlinear response to the number of
incident photons [16].

A detector with efficiency η will click with probability p(click|•) = η when a single
photon is incident on it. If two photons (••) are incident on the bucket detector, the
leading photon will make the detector click with probability η, and, in the event that the
first photon doesn’t make the detector click (which happens with probability 1 − η), the
second photon has a chance η to make the detector click. This leads to a total clicking
probability of [16] p(click| • •) = η + (1− η)η = 2η − η2. The expected number of counts
recorded by the detector, n, is a function of these probabilities:

nclicks ∝ p(click|•)p(•) + p(click| • •)p(••). (C.2)

For a heralded SPDC source, p(••) = |γ|2p(•), and the expected number of counts reduces
to:

n ∝ η + |γ|2(2η − η2). (C.3)

For light that travels through a polarizing beamsplitter, the number of counts recorded
in each output arm of the beamsplitter are:

nt ∝ ηt + |γ|2(2ηt − η2
t ), (C.4)

nr ∝ ηr + |γ|2(2ηr − η2
r), (C.5)

(C.6)

where I defined ηt = Tη as the probability, T , that a photon is transmitted at the beam-
splitter multiplied by the the detector efficiency η, and I defined ηr = (1−T )η in a similar
way. (I’ll assume for now that the both detectors have the same efficiency η and that there
is no need to perform the measurement in two stages). Thus the probability of obtaining
outcome ‘0’ is:

p(0) =
nt

nt + nr
=

Tη + |γ|2(2Tη − T 2η2)

Tη + |γ|2(2Tη − T 2η2) + (1− T )η + |γ|2(2(1− T )η − (1− T )2η2)
,

(C.7)
which is a function of T , η, and |γ|2. Note that if the detectors responded linearly to
photon number (i.e. if p(click| • •) = 2η), then Eq. (C.7) would reduce to p(0) = T , which
is what we desire. However, because of the detector nonlinearity, double pairs of photons
produce different statistics than single pairs.

I ran my experiments at low power, with a measured heralded g
(2)
h (0) . 0.002, which

implies a double-to-single pair ratio of ≈ 1 : 2000.

165



When setting up the experiment in Chapter 5, I noticed that timing settings on the
coincidence electronics was important. For example, increasing the coincidence window
from 2 ns to 3 ns increased the apparent number of degrees of freedom in my data. The
data was also sensitive to the timing delay between the herald detector and the two other
detectors. For example, when using a coincidence window of 1 ns, I was able to find a
rank-4 GPT that fit the data “well”, for one timing delay setting. I then changed the delay
of the herald detector by ≈ 250 ps (while changing nothing else about the experiment),
and the rank-4 GPT fit to the resulting data was very poor.

I am not completely sure why the dimension of the data was so sensitive to the settings
of the coincidence electronics, but my hypothesis is that both increasing the coincidence
window and using an imperfect timing delay increases the number of double pairs detected
relative to the number of single pairs.

C.4 XPS-controlled rotation mounts

The XPS-controlled waveplate mounts from Newport have a shiny side and a dull side.
The shiny side has four really shiny screws in the rotating part of the mount, the heads of
which reflect background light into your detectors. These should be covered up with black
tape.
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