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ABSTRACT

In this paper, a consensus framework for cooperative parame-
ter estimation within the vehicular network is presented. It is
assumed that each vehicle is equipped with a dedicated short
range communication (DSRC) device and connected to other
vehicles. The improvement achieved by the consensus for pa-
rameter estimation in presence of sensor’s noise is studied, and
the effects of network nodes and edges on the consensus per-
formance is discussed. Finally, the simulation results of the in-
troduced cooperative estimation algorithm for estimation of the
unknown parameter of road condition is presented. It is shown
that due to the faster dynamic of network communication, single
agents’ estimation converges to the least square approximation
of the unknown parameter properly.

INTRODUCTION

Vehicle to vehicle (V2V) and vehicle to infrastructure (V2I)
communication technologies are developed and standardized in
last decade to enable autonomous and semi-autonomous vehi-
cles to share their information within the vehicular network.
Autonomous vehicles are equipped with communication de-
vices such as dedicated short range communication (DSRC) to
have reliable communication with short latency [1].

Besides the ability to share ego vehicle states and characteris-
tics, such as position, heading, speed and size of the vehicle,
the agents may act as a sensor network and disseminate their
perception and estimation about the driving environment e.g.
road’s geometry, friction, traffic light’s state, et.

Single agent online parameter estimation may not be reliable
enough for critical problems of collision avoidance control, par-
ticularly in circumstances that measurement’s noise is unavoid-
able, and sensor malfunction is probable. Additionally, on-line
estimation requires persistently exited (PE) inputs to the sys-

tem [2], which may not be available in many instances. There-
fore, cooperative estimation can play important role to minimize
the estimation error and eliminate the effect of a faulty agent in
the network.

By establishment of a vehicular sensor network, a sensor fusion
scheme would be required to compute the maximum-likelihood
estimate of the unknown parameters. In network topologies
with a central data fusion, each agent sends its data to the center,
and the maximum-likelihood estimation would be computed in
the fusion center. In the presence of the road-side units (RSU),
the vehicular network topology can be considered as a central-
ized topology; but the availability of RSU is not guaranteed
always and the vehicular sensor network should be robust to
situation with no data center. Therefore, decentralized sensor
fusion schemes will have advantages against central ones. In
this type of data fusion, each agent only exchange data with its
neighbours and performs the local computing of the maximum
likelihood estimation without any global knowledge about the
network topology [3].

Consensus estimation algorithm is a decentralized multi-agent
estimation approach to reach an agreement regarding a certain
parameter that depends on the state of all agents. The consensus
algorithm also specifies how the information should exchange
between an agent and all of its neighbours on the network [4].
Cooperative or multi-agent estimation within the vehicular net-
work have been studied for applications such as traffic flow es-
timation [5] and vehicles positions [6–8].

In this paper, a consensus algorithm for cooperative parameter
estimation within a vehicular network is introduced and sim-
ulated to study the performance of the algorithm for different
number of network nodes and edges. In the Simulink simula-
tion environment, a DSRC device model plus sensor model with
noise are also considered inside the cooperative estimation loop
to achieve more realistic simulation results and show the ability
of consensus algorithm to compensate the measurement noises.



As a case study, the consensus algorithm is employed to im-
prove road condition estimation for an adaptive collision avoid-
ance controller. Road condition parameter, or maximum fric-
tion coefficient, is an time-varying and unknown parameter for
the vehicle dynamic which can effect the autonomous vehicle
control system dramatically in slippery road conations. There-
fore, it is necessary that the control system has an estimation
about this parameter [9]. A linear model for the vehicle motion
with time-varying constraints for states and input are formu-
lated for MPC scheme. Bounds of constraints are formulated as
the functions of the unknown parameter of road friction coef-
ficient. Therefore an indirect adaptive MPC problem with un-
known parameters in constraints is formulated to achieve more
robust collision avoidance decision set.

The paper is organized as follows: First, parameter estimation
by consensus is introduced. Second, distributed road condition
estimation by employing the consensus algorithm is explained.
Then the adaptive collision avoidance problem is formulated
which is including vehicle model, input, states and safety con-
straints and model predictive controller formulation. At the end,
the simulation results are demonstrated and conclusions are pro-
vided.

PARAMETER ESTIMATION BY CONSENSUS

Cooperative parameter estimation can increase the reliability
of the estimation and enables the vehicles to make predictions
of the parameter and use them in the model predictive control
structure. In this section we briefly discuss about decentralized
parameter estimating by consensus for a network of vehicle sys-
tems.

A sensor network can be represented with a communication
graph. The undirected communication graph is denoted by
G = {V, E}, where V = {v1, v2, . . . , vn} is a set of nodes
(or vertices) and E is the set of edges. The neighbours of node
vi ∈ V are given by the set Ni = {vj ∈ V | (vi, vj) ∈ E}. The
degree of node vi is denoted by di. As an example, a communi-
cation graph with 5 nodes and 5 edges is shown in Fig. 1, where
N1 = {2, 3} and N3 = {1, 2, 4}. d4 = 2 and d5 = 1.
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Figure 1: An example of a graph G = {V, E}.

For a network of n vehicles, it is assumed that each vehicle
estimates the unknown scalar parameter θ with some error due
to the measurement noise and incomplete estimation model:

yi = θ + vi, i = 1, ..., n (1)

where yi is the vehicle i parameter estimation and vi is the es-
timation error, which is a random variable with zero mean and
variance σi. In this method, each vehicle updates its own esti-
mation of the road condition with the following rule [3]:

θ̂i(k + 1) = Wiiθ̂i(k) +
∑
j∈Ni

Wij θ̂j , (2)

where Wij is the linear weight on θ̂j at node i. In the vector
case, (2) will turn into

θ̂(k + 1) = Wθ̂(k). (3)

The necessary conditions for convergence of above consensus
estimation law is discussed in [3, 10]. At the end, all agent esti-
mations will converge to:

θ̂c =
1

n

n∑
i=1

yi, (4)

which is the average of all measurements. While each agent es-
timation error variance is σ2, the consensus estimation θ̂c mean
square error is significantly less, σ2/n. Thus, we can say con-
sensus improve the quality of estimation and finds the maximum
likelihood estimation value based on all available estimation.

The weighting matrix of (3) should be chosen in way that it
guarantees the convergence of the all nodes estimation to θ̂c.
The necessary and sufficient conditions for convergence of dis-
tributed estimations to the average θ̂c for any initial set of
θ̂i(0) ∈ Rn are [11] :

1TW = 1T , (5)
W1 = 1, (6)

ρ(W − 11T /n) < 1, (7)

where 1 is a vector which all elements are equal to 1, and ρ
denoted the spectral radius of a matrix.

DISTRIBUTED CONSENSUS ROAD CONDITION ESTI-
MATION

The road friction has a significant role in vehicle motion dynam-
ics. Accordingly, collision avoidance control system requires a
reliable estimate of this parameter to generate safe and effec-
tive commands. For this in mind, in this section we present an
approach for cooperative road friction coefficient estimation by
consensus in the vehicular network. First, the parameter identi-
fication (PI) scheme for a single agent is introduced. Then, the
combination of PI and consensus algorithm for on-line cooper-
ative road condition estimation is presented.

TIRE FRICTION MODELING The tire friction model is a
connection between the kinematic properties of the tire (slip or
relative velocity) to the dynamic properties of the tire (friction
force). Various kinds of tire models exist in the literature which
are mainly categorized into two groups as static tire models and
dynamic tire models. In the static tire models, like Pacejka
model, there is an algebraic relationship between the slip and
the friction force on the tire [12]. However, in dynamic models,
this relationship is shown in the form of a differential equation.
Dahl [13] and LuGre [14] models are some of the well known
dynamic tire friction models. We use LuGre tire friction model
because of its capabilities in capturing various aspects of the
physical system more realistically.



The LuGre tire model is in the following form:

ż =vr − σ0θ
|vr|
g(vr)

z, (8)

µ =σ0z + σ1ż + σ2vr, (9)

where z is the internal state, vr = vx − Reffω is the relative
velocity, µ is the normalized longitudinal force on the tire µ =
Fx
Fz

. The effective radius of the tire is shown by Reff and θ is a
representative for the road condition coefficient. Function g(vr)
is formulated below for some α > 0:

g(vr) = µc + (µs − µc)e−|
vr
vs
|α . (10)

LEAST SQUARE PARAMETER IDENTIFICATION (LSPI)
Based on (8)-(9) we can write a standard parameter identifica-
tion equation as the following

f(t) = θ∗(t)φ(t), (11)

where

f(t) = σ0z(t) + (σ1 + σ2)vr − µ,

φ(t) = σ0σ1
z(t)vr
g(vr)

. (12)

where θ∗ is the parameter to estimate, and f(t) and φ(t) are
determined by measurement. An observer same as Ref. [15] is
used for estimation of z(t). Here we assume that θ(t) is a piece-
wise constant parameter, thus we have θ̇ = 0. We can make the
adaptive law by robust recursive least square estimation with
projection. The projection is due to the fact that θ1 ≤ θ ≤ θ2
and the robustness of the adaptive law is due to the fact that
there are some uncertainties in the measurements, specially in
vr which is obtained from subtraction of the integral of noisy
ax and the angular velocity ω. It is assumed that the constant
parameters σ0, σ1 and σ2 are known. The estimation model for
θ and the recursive least square algorithm with forgetting factor
are formulated as follow [2]:

f̂(t) = θ(t)φ(t), (13)

ε =
f(t)− f̂(t)

m2
s(t)

(14)

m2
s(t) = 1 + α(t)φT (t)φ(t) (15)

θ̇(t) = P (t)ε(t)φ(t), (16)

Ṗ (t) = βP (t)− P (t)
φ(t)φT (t)

m2
s(t)

P (t), (17)

where ε(t) is estimation error, m2
s(t) is the normalization sig-

nal, (16) is the adaptive law, θ(0) = θ0 and P (0) = P0 = Q−10 .
Based on Theorem 3.7.1 in Ref. [2], if φ/ms is persistently ex-
ited, then the recursive least-square algorithm with forgetting
factor guarantee that θ(t)→ θ∗ as t→∞. The convergence is
exponential if β ≥ 0.

COOPERATIVE ROAD CONDITION ESTIMATION BY
CONSENSUS A network of n vehicles are considered. Each
agent is connected to number of di surrounding agents, i, i =

1, ..., n. The cooperative road condition estimation algorithm
employed in this paper is as followed: First, by the LSPI tech-
nique introduced in this paper, each agent estimates the road
condition θ̂i,LSPI individually, and initialize θ̂i(0) = θ̂i,LSPI .
Secondly, each agent broadcasts and propagates θ̂i(k) within
the network recursively by consensus algorithm.

Since the process of LSPI takes some time to regulate the esti-
mation error, to capture the time varying nature of the road con-
dition parameter, reinitializing of θ̂i(0) repeats at fPI = 1/TPI
Hz, where roughly speaking, TPI is a settling time of LSPI esti-
mation dynamic. vehicular network communications performs
with larger frequency of fV N , fPI << fPI , therefore the con-
sensus algorithm would have enough time to iterate and con-
verge to θ̂c.

Moreover, the LSPI adaptive law (16) should be initialized by
some θ0,LSPI . At the beginning of estimation process, this pa-
rameter can be chosen as zero or the most probable value for
road condition. But after one iteration of consensus road condi-
tion estimation and computation of θ̂c, this value can be consid-
ered as the initial value of LSPI.

The simple weighting scheme of constant edge weight [16] is
selected for the consensus algorithm. All the edge weights set
equal to a constant α, then the self-weights of nodes are chosen
to satisfy convergence conditions:

Wij =


α i, j ∈ E ,
1− diα i = j,

0 otherwise.
(18)

As an example, constant edge weight scheme for network of
Fig. 1 is:

W =


1− 2

α α α 0 0
α 1− 2

α α 0 0
α α 1− 3

α α 0
0 0 α 1− 2

α 0
0 0 0 α 1− 1

α

 (19)

AUTONOMOUS COLLISION AVOIDANCE PROBLEM
WITH UNKNOWN ROAD CONDITION

In this section, we briefly introduced a simple vehicle model
and collision avoidance scheme to demonstrate the importance
of road condition estimation for autonomous driving safety.

VEHICLE MODELLING Discrete motion equations of the
autonomous vehicle obstacles are as follows:

vx(k + 1) = vx(k) + acx(k)∆t, (20)
x(k + 1) = x(k) + vx(k)∆t, (21)
vy(k + 1) = vy(k) + acy(k)∆t, (22)
y(k + 1) = y(k) + vy(k)∆t, (23)

where x and y are the vehicle’s position coordinates, ∆t is the
discretization time step, index and variable, vx and vy are ve-
hicle’s speed, and acx and acy are commanded acceleration in-
puts.



CONSTRAINTS The vehicle’s capability to produce acceler-
ation and deceleration in lateral and longitudinal directions are
limited:

a2x + a2y ≤ µ2
maxg

2, (24)

therefore a reliable estimation of µmax is vital for feasible con-
trol command generation. In a icy road (µmax = 0.2), if the
vehicle’s perception is being on a dry road (µmax = 0.8), then
the controller commands accelerations much larger than the fea-
sible ones. The vehicle’s longitudinal velocity is constrained as
follow

0 ≤ vx ≤ vxmax , (25)

where vxmax
is vehicle’s maximum speed. The vehicle’s lateral

velocity constraint is a constraint that we can use to represent
the vehicle dynamic as a non-holonomic system:

vymin
≤ vy ≤ vymax

, (26)

where vymin
and vymax

are functions of instantaneous vx [17]:

−vx tan(βmax) ≤ vy ≤ vx tan(βmax), (27)

where β is vehicle’s slip angle defined as atan vyvx . Vehicle lateral
position, y, is limited by the road limits:

ymin + LSy ≤ y ≤ ymax − LSy, (28)

where ymin and ymax are the road boundaries and LSy is the
lateral safety distance.

Safety constraint for surrounding vehicle Si for i = 1, ..., nS
is achieved by keeping the relative distances larger than a safe
threshold. One approach for defining the safety constants are
quadratic constraints:

1

L2
Sx

(xrSi(k))2 +
1

L2
Sy

, (yrSi(k))2 ≥ 1 (29)

where LSx and LSy are longitudinal and lateral safety dis-
tances. The minimum safety distance to avoid collision with
front obstacle can be achieved by utilizing the maximum decel-
eration axmin

to make the relative speed zero. It is formulated
as below [18]:

dxmin = (v2x − v2xSi)/(2axmin), (30)

Therefore the safety distance would be:

LSx = LSx0 + max{dxmin
, 0}. (31)

MODEL PREDICTIVE CONTROLLER The problem for-
mulation for MPC approach without final cost is [19]:

J∗t(x(t)) = min
Ut→t+N|t

Jt(x(t), Ut→t+N |t)

=

H−1∑
k=0

q(xt+k|t, ut+k|t) (32a)

subj.to

xt+k+1|t = Axt+k|t +But+k|t + wt+k|t (32b)
xt+k|t ∈ X , ut+k|t ∈ U , k = 0, ..., N − 1 (32c)
xt|t = x(t) (32d)

whereas, Eq. (32a) is cost function of states and inputs initiating
from time t, Eq. (32b) is the discrete linear system equation
and Eq. (32c) is the set of the constraints for states and inputs.
Ut→t+N |t is the set of inputs [ut|t, . . . , ut+H−1|t] and xt+k|t is
the state vector of time step t+k which predicted by simulating
the system (32b) from initial conditions at time t, (32d). The
cost function optimization problem is solved in each time step
and the resulting optimal vector, u∗t is applied to the system

u(t) = u(x(t), w(t)) = u∗t|t. (33)

We define the following quadratic cost function of states and
control inputs:

J =

H−1∑
k=0

α(ŷ(k)− yref(k))2 + u(k)TSu(k), (34)

where α is a weighting factor for lateral position y, and S de-
notes weighting matrix for control vectors. ŷ(k) denote pre-
dicted lateral position at kth time step. Lateral position y and
vx are the only state included in the cost function, to regulate
the desired centreline and longitudinal speed of the vehicle.

SIMULATION STUDIES

A small group of connected vehicles are considered of the sim-
ulation studies. Each vehicle equipped with acceleration sensor
and rotational speed encoder for one wheel, to estimate the road
condition parameter, µmax. Additionally, each vehicle is con-
nected to the constant number of neighbours, d.

Road condition identification updates at fPI = 2 Hz frequency,
and output is employed by the presented consensus algorithm
with constant edge weight scheme, to minimize the estimations’
variance of error. The vehicular network communication fre-
quency, fV N = 10 Hz, is larger than fPI , therefore the consen-
sus algorithm has enough time to perform the recursive process
of convergence.

To have persistently excited (PE) regression signal, a summa-
tion of two high frequency sinusoidal signals with small ampli-
tudes are added to the traction torque:

Te = 8sin(16πt) + 20sin(20πt), (35)

where Te is excitation signal (see Fig. 2a). Additionally, to cap-
ture the real-world measurement issues, a measurement noise is
added to the accelerometer sensors. The noise is assumed to be
Gaussian, zero mean with σn variance. A typical accelerome-
ter noise is depicted in Fig. 2b. From Fig. 3b, it is clear that
the effect of PE signal on the vehicle speed is negligible since
the amplitude of this signal is much smaller than the original
traction command and its frequency is much higher.

It is assumed that all vehicles are driving on road with µmax =
0.8 and employing same LSPI system to estimate the road con-
dition: initial condition µ0 = 0.7, forgetting factor β = 0.96,
P0 = 1e−9, filter time constant λ = 5. The result of each agent
LSPI estimation is depicted in Fig. 4. Each agents’ estimation is
deviated from the correct road condition value differently, due
to random nature of measurement noise, (see Fig. 4).



(a) Excitation signal (b) Measurement noise

Figure 2: Excitation and noise signals.
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Figure 3: Measured ax and computed vx for parameter estima-
tion application.
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Figure 4: The individual LSPI results of all five vehicles.

The consensus algorithm minimized the least square errors and
converges the estimation to the total average because of the
zero-mean characteristic of the measurement noise. The coop-
erative estimation result for one of the agents is depicted in Fig.
5a. The blue dashed line is the individual estimation, the red
line is the cooperative estimation with consensus algorithm, the
green line the average of all network agents, estimations and
the purple line the true value of the parameter. In Fig. 5b, the
accumulative absolute error values are demonstrated:

Je(t) =

∫ t

t=0

|θ̂(t)− θ∗(t)|dt. (36)

Figs. 5a-5b show clearly the advantage of using cooperative
estimation with consensus for road condition estimation. Al-
though the individual estimation is not very accurate, consensus
algorithm estimates the road condition very well. Since the road
condition is a time-varying parameter, in each 0.5 sec the con-
sensus algorithm update the ego vehicle estimation value from
the LSPI system. As a drawback, it cause a small fluctuation in
the consensus outcome.

The effect of increasing the number of network nodes is demon-
strate in Fig. 6. We can see that, in a network with 10 agents the
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(a) Cooperative estimation comparison.
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Figure 5: Second agent estimation comparisons.

average of all agents estimation is closer to the true parameter
value and each agent cooperative estimation is more accurate in
comparison to the network with 5 agent, but the improvement
is not significant, at least not for this set of simulation results.

Network topology can also change the quality of consensus co-
operative estimation. If the number of connected agents to the
ego vehicle increases, then the consensus will converge faster
to the network’s average. In Fig. 7 the comparison between the
consensus estimation of two network is presented. In one net-
work each agent is connected to two adjacent agents and in the
other one, each agent is connected to four surrounding vehicle.
We can see although the networks’ averages are the same, the
accumulative error of the cooperative estimation of the second
network is less than the first one.

0 5 10 15 20

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

e
rr

o
r 

in
t

Agent 2

LSPI est
coop est N=10
avg N=10
coop est N =5
avg N =5

Figure 6: Changing the number of nodes in the network.
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CONCLUSION

An on-line cooperative estimation technique for the vehicular
networks is presented and simulated in this paper, including a
pair of least square parameter identification and constant edge
weight consensus algorithm for each vehicle. The approach is
used for cooperative estimation of the road condition in a small
group of vehicles connected with DSRC devices.

The simulation results show significant improvement of coop-
erative estimation comparing to individual estimation in pres-
ence of measurement noises and network communication delay.
Also the simulation results verified benefits of network’s node
and edge increment to have better and faster convergence of the
consensus algorithm.
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