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Abstract

Environmental effects on the evolution of a spin system in the context of the central

spin problem, have been studied for more than 60 years. With the growing complexity of

quantum information processors there is a new need to better understand and control the

interactions of qubits with their environment. Decoherence is an apparent loss of quantum

coherence of the central spin, which is the result of the coherent evolution of the central spin

and its spin environment. This evolution may be understood as the consequence of local

field fluctuations induced by heteronuclear dipolar interaction between the central spin and

the environment spins and homonuclear dipolar interaction of spins in the environment.

A complete theoretical description for the evolution of the central spin does not exist and

numerical solutions are restricted to small spin environments.

Another way of looking at the central spin problem is to study the correlations between

the central spin and the environment spins. In this method the evolution of the central

spin is described with the dynamics of multi-spin correlations resulting from interactions

of the central spin and the environment spins. Using Multiple Quantum Nuclear Magnetic

Resonance (MQ NMR) techniques, we have designed experiments for the direct detection of

multi-spin correlations between the central spin and environment spins. These experiments

are used to observe the progress in production of correlations between the central spin and

the environment. They reveal the multi-spin dynamics that underlies the decoherence

process.

The central spin is initially uncorrelated with the environment and quantum informa-

tion resides exclusively on it. After the interaction with the environment spins quantum

information is shared in the form of correlated operators between the central spin and the

environment. Using our experiments this flow of quantum information from the central

spin to the environment and the quantum information content of the environment, can

be quantified. Further, these experiments are used to gauge the sensitivity of correlation

to perturbation in the environment, by observing the mixing dynamics of the multi-spin

correlations. The Out-of-Time Correlation metric is used for the sensitivity measurements.

We find that the dynamics of correlations in our system is better explained by the extent

of information flow to the environment rather than the evolution time.
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Chapter 1

Introduction

As the field of quantum information advances and a variety of physical implementations

of qubits are realized, there is a need to better understand and control the interactions of

qubits with their environment. Such interactions may have two undesired outcomes: they

may cause decoherence or a loss of quantum information on the qubit subsystem which

limits the fidelity of quantum information processes. In addition, if we consider a larger

Hilbert space, which includes the environment spins, these interactions may allow a flow of

quantum information from the qubit to the environment spins and then back to the qubit.

This flow of quantum information back to the qubit will interfere and corrupt the quantum

information stored on the qubit.

Environmental effects on the evolution of a spin system in the context of the central spin

problem, has been studied for more than 60 years [3, 4, 5]. In its simplest form, the central

spin structure consists of a single spin that contains the desired quantum information and

interacts with a spin environment. The spin environment may also be self-interacting.

Today’s relevance of the central spin problem to quantum information devices is that

the fidelity of quantum processes and the integrity of quantum information on a qubit

is influenced by the qubit’s interaction with the environment. Useful quantum processing

demands extraordinary control of the qubits and decoherence (loss of quantum coherence of

the central spin [6, 7, 8, 9]) is a limiting factor for quantum information processing [10]. To

achieve fault tolerant quantum information processing, Quantum Error Correction (QEC)

algorithms are used. QEC codes can be successful when the fidelity of quantum gates

1



are high, the environment noise have Markovian characteristics and it is local (there is a

length scale beyond which no additional error occurs), and there is no memory in the bath.

Existence of a long-range quantum memory in the environment can remarkably change the

structure of quantum noise and interfere with the quantum information processing. These

questions on the dynamics of quantum information and quantum noise in the environment,

can be addressed in the context of the central spin problem by examining the correlations

between the system and the environment.

Decoherence phenomenon has been studied in many physical setups including spin sys-

tems, superconductive qubits, nitrogen-vacancy, quantum dots and ion traps [2, 11, 12,

13, 14, 15, 16, 17]. Spin systems are a particularly convenient experimental platform since

we have good control over both the central spin and the environment. Solid state NMR

offers many techniques to control the Hamiltonian terms in a multi-spin system. The

system-environment Hamiltonian and environment self-interaction terms can be individu-

ally turned on or off, be scaled or be inverted [18, 19, 20, 21, 22, 23, 24, 25]. This flexibility

makes solid state NMR a good test bed for investigating the central spin problem.

A common and useful description of the central spin problem is to recast it in terms

of the effective local field that the central spin experiences due to the states of all of the

environmental spins [26]. The dipolar coupling describes the interaction between two spins

depending on their relative positions and their magnetic moment vector µ = 1
2
γ~σ :

HDij =
γiγj~2

4r3
ij

{σi · σj − 3
(σi · rij)(σj · rij)

r2
ij

} (1.1)

where rij is the vector connecting the two spin i and j, γ is the gyromagnetic ratio and σi
are the Pauli operators. This can be written as :

HDij = µi ·Hij = −γi~
1

2
σi ·Hij (1.2)

here Hij indicates the magnetic field induced by the spin j at the location of the spin i.

The local field produced by a nuclear spin in a solid with distance of the order of Angstroms

between spins, can be up to a few Gauss [27]. In a large external magnetic field the Hij

has a static component along the field direction and a rotating part perpendicular to the

static field, resulting from the Larmor precession of spin j. Since in this case the central

spin and environment spins have different Larmor frequencies the effect of the rotating

2



component of the local field is negligible and the collective effect of the environment spins

on the central spin can be evaluated by adding the static component of local field induced

by each spin in the environment. Consequently, variations of the static component of the

local field induced by the environment spins for different elements of spin ensemble cause

a spread in the Larmor frequencies of the central spin and broaden its spectral line shape.

Changes in the local field induced by fluctuations of neighboring spins have been used to

explain the spectral line shape of the central spin [28, 29, 30].

One way of analyzing the central spin problem is to investigate the correlations between

the central spin and the environment spins which results from their interaction. As an

example consider a qubit initialized in the ρqubit(0) = σX

2
state with the system-environment

interaction described by Hzz =
∑

i ωiσ
qubit
Z ⊗σenviZ , where σX, σY and σZ are Pauli operators

and σenviZ := 1⊗i−1⊗σiZ⊗1
⊗N−i is an operator acting on only the ith spin in the environment.

Assuming that the environment consists of N spins initially in the identity state, evolution

under this interaction Hamiltonian will produce correlations between the qubit and the

spin environment, which are contained in the following expansion for the total density

matrix ρ(t) of the system and environment:

ρ(t) = C0(t)σqubitX
⊗1N (1.3)

+ C1(t)σqubitY
⊗σiZ⊗1

N−1

+ C2(t)σqubitX
⊗σiZ⊗σ

j
Z
⊗1N−2

+ · · · .

Above, C0(t) is a product of oscillating functions in time that determines the overlap

between the initial state of the qubit and its evolved state, and determines the amplitude

of the observable signal if the spin system is allowed to evolve with no interruption. It is

also known as the Free Induction Decay (FID) of the central spin. The amplitude of multi-

spin correlated operators between the qubit and environment spins, Cn(t) n = 1, 2, 3 · · · ,
are not directly observable via NMR. In this thesis we develop an experimental approach

to measuring the amplitudes of these terms based on their response to collective rotations.

The FID of the central spin may be interpreted as the flow of quantum information

from the qubit to the spin environment. In this setup initially the central spin and the

environment spins are uncorrelated and the central spin contains all of the quantum infor-

mation while the environment is in the maximally mixed state with no information content
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and at its maximum entropy. After the evolution of the central spin and the environment,

quantum information is shared with the environment spins in the form of correlations be-

tween the central spin and the environment spins, equation 1.3. These correlations can be

measured by looking at the composite system-environment state. Since by correlating to

the environment spins the von Neumann entropy of the central spin increases, the growth

of correlations between the central spin and the environment is associated with the flow

of quantum information to the environment. Quantum information left in the environ-

ment allows an unspecified observer to learn about the qubit and the results of quantum

information processes. On the other hand, because the evolution of the central spin and

the environment is a unitary dynamics, the shared quantum information with environment

spins can flow back to the qubit. This means that the history of quantum information on

the qubit is stored in the environment and can affect its evolution and change the outcome

of future quantum processes. Therefore, a complete understanding of the dynamics of the

correlations between the central spin and the environment is useful for implementation of

quantum information processing.

An important factor in determining the effect of multi-spin correlations on the dy-

namics of the central spin is their lifetime. If the lifetime of correlated operators is short

relative to the time scale of the evolution of the central spin, their influence on the ef-

fective dynamics of the central spin will be limited. For example exchanging the spin of

environment changes the multi-spin correlated operators and effectively mixes the shared

portion of quantum information. With evolution under mixing action the amplitude of

an echo experiment decays since the flow of information from the central spin can not be

reversed completely. Therefore, the time scale for mixing of quantum information in the

environment, relative to the strength of the qubit-environment interaction, determines the

effectiveness of mixing in limiting the flow of information from the environment back to

the central spin. Characterizing mixing behavior has been a subject of interest in high

energy physics and condensed matter physics recently [31, 32].

The central spin problem has been concerned with finding an effective map for the

decoherence of the central spin after truncating the environment spins. Ideally a theoretical

description for the multi-body dynamics of the central spin would contain the details of

correlations between the central spin and the environment. The exact diagonalization

solution for the composite Hilbert space of the central spin and the environment is limited
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by the size of spin environment. Our solution for understanding the effective dynamics

of the central spin is to design experiments for direct observation of correlations between

the central spin and the environment spins, using Multiple Quantum Nuclear Magnetic

Resonance (MQNMR) techniques. These experiments are used to observe the flow of

quantum information from the central spin to the environment and to study the sensitivity

of the spin environment to fluctuations in the environment spin state. Results of these

experiments lead us to a practical model for multi-spin dynamics of the central spin which

is successful in explaining the quantum evolution of the central spin, and provides a picture

for understanding the dynamics of the correlation in the environment.

The rest of this chapter gives a review of prior solutions for the decoherence problem,

a description of decoherence with the open quantum system formalism and a discussion

of recent proposals for making dynamical maps for the central spin problem. Next we

provide a short description of Multiple Quantum Nuclear Magnetic Resonance (MQ NMR)

techniques and discuss experiments for the detection of correlated spins in solid states

samples. Afterwards a pictorial description for the evolution of quantum information in

the central spin system is discussed. Chapter two focuses on the experimental techniques,

instrumentation, and sample.

In chapter three the experimental design for the main experiment, Multi-spin Correla-

tion Detection (MCD), is discussed. There are simulations of the MCD experiment on a

smaller spin system, showing the functionality of the MCD experiment. In addition, a set

of operators are defined along with a recipe that can be used to evaluate the amplitude of

different sub-spaces of the density matrix. Using these operators, we make a connection

between the results of MCD experiment and the evolution of the density matrix. The

final part of chapter three presents the results of the MCD experiment and a discussion on

quantifying the growth of environment information content. Chapter four introduces the

experiment for the detection of quantum information mixing in the system, Multi-spin Cor-

relation Scrambling Detection (MCSD). The results of this experiment paint a full picture

of the central spin-environment correlations, which include the detection of information

flow from the central spin to the spin environment and also the effect of mixing on the

memory state of the environment. The relevance of multi-spin correlation dynamics in

giving a complete picture for the evolution of quantum information is revisited by making

predictions on the mixing time of the environment. In chapter five we use the Out-of-Time-
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Order-Correlation function to analyze the mixing dynamics of multi-spin correlations. In

the last chapter we summarize our findings and introduce possible directions for future

works.

1.1 Formal interpretation of the central spin problem

The evolution of a central spin may be understood as an evolution under a fluctuating local

field caused by dipolar interaction between the central spin and environment spins. Spin

flips in the environment from T1 relaxation and the flip-flop interaction contribute to the

fluctuations of the local field. Bloembergen et al [33] used the concept of local field and its

perturbations to explain T2 and T1 relaxation processes. In particular, they used the local

field fluctuations induced by the motion of the spins to explain the changes in the relaxation

time and the spectral line-width of nuclear spins versus temperature. The concept of a

local field was also used to describe paramagnetic relaxation at low temperature and for

different concentrations of paramagnetic salt. Anderson argued that frequency distribution

of absorbed and emitted phonons is determined by width of energy levels of lattice spins

driven by spin-spin interactions [3]. He showed that for a central spin, variations of the

local field are directly induced by dipolar interaction between the spins adjacent to it.

In this section the evolution of a central spin coupled to a spin environment is discussed.

Where our interest is to focus on only the dynamics of the central spin we may use the

formalism of open quantum system to reduce the system environment unitary dynamics

to an open system picture of the central spin. The resultant map of the central spin will

only make sense if it reflects the effects of the environmental interactions in the apparent

dynamics of the central spin. As a result, correlated spin operators in the environment are

incorporated in the construction of a dynamical map for the evolution of the central spin.

In this thesis decoherence refers to a map of Markovian processes for the evolution of

the central spin caused by the environment spins. A decoherence map can be described by

a quantum dynamics semigroup which accepts the time independent Lindblad generator.

In contrast, the interaction between the central spin and the environment spins may lead

to a non-Markovian dynamics that produce a memory in the environment. This evolution

is reversible and we refer to it as dephasing. Dephasing process can not be described by a
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quantum dynamical semigroup and does not have a time independent map.

1.1.1 Non-Interacting Environment

First we consider the simplest form of the central spin problem where a single spin interacts

with a spin environment consisting of N non-interacting spins. In this case, there is an

analytical solution for the evolution of the system. The Hilbert space of the system-

environment composite system is given by the tensor product of the Hilbert spaces of the

two subsystems:

Hcs-env = Hcs⊗Henv (1.4)

and the dimension of the composite Hilbert space is equal to the product of subsystems’

dimensions. The central spin and the environment spins are spin 1
2

nuclei. The initial state

of the system is separable in the system-environment composite Hilbert space. The central

spin is quantized along the z axis with HS =
ωcs

0 σZ

2
. Since we are interested in studying

the dephasing process, the central spin is initialized in an equal superposition of Zeeman

eigenstates, or in σX. The environment spins are initially in the fully mixed state (1
2
)⊗N .

The initial density matrix of the composite system is written as

ρ0 =
1 + σX

2︸ ︷︷ ︸
cs

⊗ (
1

2
)⊗N︸ ︷︷ ︸

env

(1.5)

We will keep this order of spin operators for the composite system throughout this thesis.

The identity part of the central spin density matrix does not evolve. To simplify our

notation we drop the identity operator in the central spin term and only show the deviation

part, although we recall that the density matrix has trace 1.

ρ0 =
1

2N+1
σX⊗1

⊗N . (1.6)
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The central spin-environment density matrix evolves under the the system-environment

Hamiltonian:

H = HS +HE +HSE (1.7)

HS =
1

2
ωcsσZ (1.8)

HE =
1

2

N∑
j=1

ωjσ
j
Z (1.9)

HSE =
1

2

N∑
j=1

djσZ⊗σ
j
Z (1.10)

σjZ := 1⊗j−1⊗σjZ⊗1
⊗N−j. (1.11)

HS and HE represent the system Hamiltonian and the environment Hamiltonian terms

for the spin’s interaction in the main magnetic field or the Zeeman interaction, with the

respective Larmor frequencies of ωcs and ωj. For the moment there are no internal dy-

namics for environment spins. The system-environment interaction term HSE represents

the coupling between the central spin and the environment spins, with dj representing the

coupling constant for each of the environment spins, which is determined by the nature of

the HSE interaction and the geometry of spins. σiZ is a spin operator acting only on the ith

spin in the environment.

First we go to the interaction frame defined by the Zeeman interactions of the central

spin and environment. Using the interaction Hamiltonian H0 = HS⊗1
⊗N + 1cs⊗HE, HSE

is transformed to the interaction frame with:

HI
SE(t) ≡ e(iH0t)HSEe

(−iH0t) (1.12)

In this case HSE and H0 commute and HI
SE(t) = HSE. As a result the system-environment

density matrix evolution in the interaction frame is given by a unitary propagator:

ρ(t) = USE(t) · ρ(0) · U †SE(t) (1.13)

USE(t) = T exp(−i
∫ t

0

HI
SE(t)dt)

= exp(−iHSEt) (1.14)
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where T is Dyson time-ordering operator and we have set ~ = 1. The result of this

evolution is a correlation between the central spin and each environment spin with an

oscillatory behavior. If d1 was the only non-zero coupling constant in HSE, then ρ(t)

would be:

ρ(t) =
1

2N+1
{σX⊗1

⊗N cos(d1t) + σY⊗σZ⊗1
⊗N−1 sin(d1t)} (1.15)

Note that the central spin and environment spins are uncorrelated at t=0. At short times,

the amplitude of this uncorrelated spin term declines while σY⊗σZ which is a correlated two-

spin operator, is produced. The amplitude of the correlated spin term and the uncorrelated

term oscillates and there is a complete revival of the uncorrelated spin term is reached at

t = nπ
d1

.

The general solution for the evolution of a central spin interacting withN non-interacting

spins in the environment is:

ρ(t) =
1

2N+1
{ σX⊗1

⊗N
N∏
i=1

cos(dit) (1.16)

+
N∑
j=1

σY⊗σ
j
Z sin(djt)

N∏
i 6=j

cos(dit)

−
N∑
j,k

σX⊗(σjZ.σ
k
Z) sin(djt) sin(dkt)

N∏
i 6=j,k

cos(dit)

−
N∑
j,k,l

σY⊗(σjZ.σ
k
Z .σ

l
Z) sin(djt) sin(dkt) sin(dlt)

N∏
i 6=j,k,l

cos(dit)

+ . . . }.

This equation shows the progress of correlations between the central spin and the envi-

ronment as a result of the evolution with HSE. A drop in the amplitude of the initial

uncorrelated spin operator corresponds to the production of correlated spin terms. The

fastest growing correlated spin operators are one spin correlations, σY⊗σ
i
Z. The two-spin

correlated operators, σY⊗(σiZ · σ
j
Z), show up when the evolution time is long enough for two

spins in the environment to be correlated with the central spin simultaneously, and higher

correlation orders follow suit.

The expectation value of an arbitrary observable A, acting only on the central spin

can be evaluated with 〈A ⊗ 1env〉 = Tr[(A ⊗ 1env)ρ(t)]. In a composite Hilbert space the
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results of measurements on a subsystem can be evaluated by using the reduced density

matrix of that subsystem. Thus, the expectation value of operators A can also be written

as 〈A〉 = Tr[ATrenv[ρ(t)]], where Trenv[ρ(t)] represents the reduced density matrix of the

central spin after tracing over the environment spins.

Starting from the initial density matrix ρ0 = 1
2N+1σX⊗1

⊗N with the system-environment

interaction in the equation 1.10

HSE =
1

2

N∑
j=1

djσZ⊗σ
j
Z

the evolution of the central spin and the environment is described by equation 1.16. Tracing

over environment spins will lead to the reduced density matrix of the central spin:

ρcs(t) = Trenv[ρ(t)] =
1

2

(
1

∏N
i=1 cos(dit)∏N

i=1 cos(dit) 1

)
(1.17)

Considering this reduced density matrix we explore the result of measurements on the

central spin. For example the expectation value of the magnetization along x is

〈M cs
X 〉 = Tr[σXρ

cs(t)] =
N∏
i=1

cos(dit) (1.18)

The expectation value of M cs
X is a product of the dipolar oscillations of the central spin to

each environment spin.

Another interesting observation is that the outcome of measurements on the environ-

ment spins do not evolve, since the reduced state of the environment spins stay unchanged

in time, Trcs[ρ(t)] = (1
2
)⊗N . This means that, the result of independent measurements on

the environment give zero information about the state of the central spin or the correla-

tions in the environment, since the reduced state of environment is a fully mixed state at

all times.

To visualize the correlation between the central spin and the environment spins, and

to make a connection to the concept of local field it is useful to rewrite the density matrix

in terms of spin projectors on the environment. E+ =

(
1 0

0 0

)
and E− =

(
0 0

0 1

)
are
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idempotent operators and they can be used to indicate spins in pure states along the +z

and −z, respectively. Using 1 = E+ + E− we can rewrite the initial density matrix in

equation 1.6 as:

ρ(0) =
1

2N+1
σX⊗(E+ + E−)⊗N (1.19)

=
1

2N+1
{ σX⊗E+⊗E+⊗E+ · · ·E+︸ ︷︷ ︸

Hw=N

(1.20)

+ σX⊗E−⊗E+⊗E+ · · ·E+︸ ︷︷ ︸
Hw=N-2

...

+ σX⊗E−⊗E−⊗E+ · · ·E+︸ ︷︷ ︸
Hw=N-4

...

+ σX⊗E−⊗E−⊗E− · · ·E−︸ ︷︷ ︸
Hw=-N

}

This is equivalent to picturing an ensemble of central spins as isiochromats labeled by

the spin state of the environment. The Hamming weight (Hw) is defined here as the

number of E+ minus the number of E− operators in a multi-spin term. There are N + 1

different Hamming weights possible for the N environment spins. While Hw = N has only

one possible combination, there are N different combinations of environment spins with

HW = N − 2. The multiplicity of a particular Hamming weight is
(
N
n

)
for Hw = n. In

total there are 2N different possible combinations for the N spins in the environment. Each

central spin in the ensemble sees a local field corresponding to one of these combinations.

Considering that an environmental spin in E+/E− state increase/decrease the local field

by a value proportional to its dipolar coupling constant to the central spin di, equation

1.20 can be used to describe the local field observed by the ensemble of the central spins
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from the following 2N isochromats:

H(0) ∝ { d1 + d2 + d3 + · · ·+ dN (1.21)

, −d1 + d2 + d3 + · · ·+ dN

, d1 − d2 + d3 + · · ·+ dN
...

, −d1 − d2 + d3 + · · ·+ dN

, −d1 + d2 − d3 + · · ·+ dN
...

, −d1 − d2 − d3 − · · · − dN
} .

The line shape of the central spin is the sum over all of these isochromats, figure 1.1.

Since for now there are no interactions between the environment spins, there is a static

distribution for the local field which is very populated around zero and small values and

has low population for large values. In the case of a constant coupling strength where

di = d, equation 1.21 results in a binomial distribution for the local field, which can

be approximated by a Gaussian distribution in the limit of large N , using the central

limit theorem. Zurek et al. [30] showed that the Gaussian distribution can be used in

the general case if the dipolar coupling constants have a finite variance. The line shapes

resulting from various distributions of di coefficients, have been discussed in more details

[27, 34, 30, 35, 36, 37, 38, 39].

This line shape is a simple example of an inhomogeneous line, which is made up of a

large number of time-independent isochromatics. It has the important characteristic that

evolution under the corresponding spin Hamiltonian can be simply refocused, either by

inverting all of the environment spins or the central spin, which lead to an echo. In this

work we are interested in exploring the case where the information in the environment is

mixed and a complete refocusing is not possible.
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1.1.2 Self-Interacting Environment

The evolution of the central spin in a static environment can always be inverted and

refocused by evolving under −HSE in a closed environment. With no interaction between

the environment spins, all the correlation terms evolve back to the initial uncorrelated state,

making a perfect echo experiment. So if during the evolution there is information flow from

the central spin to the environment, during the inverted evolution this information flows

back to the central spin and since there is no internal interaction in the environment, the

information revival is complete. Contrary to this, in an environment with self interacting

spins, the state of information in the environment changes and a perfect echo can no longer

be achieved.

In order to observe how self interacting environment spins change the dynamics of an

echo experiment, let us follow an example. Consider a case in which all the Hamiltonian

terms are the same as equation 1.7 to 1.10 except the Hamiltonian term for environment

spins, which is:

HE =
1

2

N∑
j=1

ωjσ
j
Z +

1

2

∑
i<j

Dij(σ
i
+⊗σ

j
− + σi−⊗σ

j
+) (1.22)

with σ± = σX±iσY

2
. The second term on the right-hand side is known as the flip-flop

Hamiltonian term which swaps spins in the environment according to their dipolar coupling

constants and leads to mixing of the quantum information in the environment. To show

its effect, consider a case in which the spin system has evolved under the HSE in equation

1.10, for time T and its density matrix has the form indicated in equation 1.16:
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ρ(t) =
1

2N+1
{ σX⊗1

⊗N
N∏
i=1

cos(dit)

+
N∑
j=1

σY⊗σ
j
Z sin(djt)

N∏
i 6=j

cos(dit)

−
N∑
j,k

σX⊗(σjZ.σ
k
Z) sin(djt) sin(dkt)

N∏
i 6=j,k

cos(dit)

−
N∑
j,k,l

σY⊗(σjZ.σ
k
Z .σ

l
Z) sin(djt) sin(dkt) sin(dlt)

N∏
i 6=j,k,l

cos(dit)

+ . . . }.

Assume that the dipolar coupling constant to the central spin is large for the ith spin

and is small for the jth spin. Therefore, the spin operators for these two spins may be

approximated with σiZ⊗1
j. At time T the environment interaction HE is turned on and

the evolution of these two spins under the flip-flop Hamiltonian is:

U ijflip-flop = exp(−iDijt

2
(σi+⊗σ

j
− + σi−⊗σ

j
+)) (1.23)

Uflip-flop(σ
i
Z
⊗1j)U †flip-flop =

1

2
{σiZ⊗1j + 1i⊗σjZ (1.24)

+ (σiZ⊗1
j − 1i⊗σjZ) cos(D12t) + (σiX⊗σ

j
Y − σiY⊗σjX) sin(D12t)}.

So this evolution under the environment Hamiltonian has two effects: first, is the exchange

of the state of spin i and j and the second is, introduction of new correlated spin terms

which are not produced in a static environment. This is an indication of richer dynamics

in a self-interacting spin environment.The coupling constant for the flip-flop interaction is

determined by the geometry of the spin environment and is different from the coupling

constants to the central spin. This adds to the complexity of the environment, while a

few spins are strongly correlated to the central spin and directly affect its evolution, a

larger group of environment spins, coupled with the flip-flop interaction, have an indirect

influence on the evolution of the central spin.

The concept of a local field is useful for analyzing central spin dynamics. The flip-

flop term in the homonuclear dipolar interaction, leads to the exchange of spin states
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in the environment between isochromats with the same Hamming weight, equation 1.23.

The exchange between two isochromats in the fast exchange regime results in a weighted

average of the two isochromats. If the rate of spin exchange is slow, it broadens the two line

shapes and moves them toward each other. In both of these cases the exchange between

environment spins result in complexities in the effective local field that can profoundly

change the line shape of the central spin, figure 1.1. The exchange rate for two isochromats

is determined by the homonuclear dipolar coupling constant of the interacting spins.

Because the Markovian approximation oversimplifies the central spin problem and fails

to capture quantum dynamics of the central spin, it does not lead to a reasonable quantum

many body theory for this problem. It has been shown that finding a quantum dynamical

map for the central spin can only be achieved by taking into account the correlated spin

operators and the collection of individual spin fluctuations can not describe the dynam-

ics of the central spin [40, 41, 42, 43, 44]. The pair correlation approximation considers

individual pairs of nuclear flip-flop actions as an excitation mode to construct a map for

decoherence of the central spin [45]. The linked-cluster approximation goes beyond the

correlated spin pairs and uses the Feynman diagram method to calculate the effects of

higher order correlated spin terms in the evolution of the central spin [46]. The Clus-

ter Correlation Expansion (CCE) systematically includes higher orders of correlated spin

terms in the evolution. This leads to an exact calculation in the case that all possible

correlations are included. The effective dynamics of the central spin in the CCE method

gives convergent results by truncating the CCE by keeping the multi-spin correlations up

to a certain maximum order M . [47, 48].

Ma et al [49] showed that the correlated spin terms calculated using the CCE method

produce identifiable signatures in the evolution of the central spin which can be isolated and

observed by the application of different control sequences. They discovered that control

sequences for refocusing of the dynamics of the environment spins, target different orders

of correlations in the environment based on the number of their pulses. As a result, for

odd or even number of control pulses the most effective terms in the central spin dephasing

are caused by second-order or fourth-order of multi-spin correlations in the environment,

respectively. They analyzed the evolution of the central spin induced by various orders of

correlated spin clusters and showed that as the CCE method predicts, the changes in the

dephasing time of the central spin is determined by the order of the correlations between
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Figure 1.1: For N spins in the environment, there are 2N possible combinations of E+

and E− each inducing a different local field, or 2N isochromats. In a spin ensemble, the

distribution of these isochromats determines the line shape. The extremes of the local

field distribution are caused by combinations such as all spins up Hw = N and all spins

down Hw = −N , terms with small multiplicity, in contrast the center corresponds to

combinations with small Hamming weights and large multiplicity. This results in a nearly

Gaussian distribution for the local field which is presented here by adding the local field of

215 isochromats. 128 isochromats are also plotted here. The effect of exchange between two

isochromats and resulting change in the effective local field is shown in the fast exchange

regime.

16



central spin and the environment. Consequently, they were able to observe and identify

the influence of different orders of correlation on the evolution of the central spin.

In this section we emphasized the importance of incorporating multi-spin correlations

between the central spin and the environment in evaluation of the evolution of the central

spin. A quantum dynamical map for the evolution of the central spin can only be con-

structed by considering the dynamics of these correlations. The CCE method suggests that

effects of multi-spin correlations should be evaluated in the dynamical map. Motivated by

this we have designed experiments, using Multiple Quantum NMR (MQNMR) techniques,

to directly observe the production and growth of multi-spin correlation between the central

spin and the environment. Results of these experiments can be used to make an effective

map for evolution of the central spin.

1.2 Underlying structure of the Central Spin problem

The central spin is initially in a separable state from the environment spins and it holds

all of the quantum information. The evolution under the system-environment Hamiltonian

produces multi-spin correlations between the central spin and environment spins at the

expense of the uncorrelated spin term. In a multi-spin correlated operator the quantum

information is shared between the central spin and the environment spins. This evolution

from uncorrelated spin term to multi-spin correlation is interpreted as a flow of quantum

information from the central spin to the environment. Notice that the quantum information

is not lost but it is simply being stored in the form of multi-spin correlations between the

central spin and the environment spins, and performing an echo experiment will refocus

the initial state of the central spin. Examples of echo experiments include Hahn echo

for refocusing the heteronuclear dipolar interaction [18], solid echo and magic echo for

refocusing the homonuclear dipolar interaction [21, 25]. The revival of the initial state

of the central spin in an echo experiment is the result of flow of quantum information

from the environment spins back to the central spin. The success of an echo experiment

depends on the structure and dynamics of the quantum information in the environment.

The goal of our experiments is to provide us with the production and growth rate of

multi-spin correlations between the central spin and the environment that are essential for

understanding the dynamics of the quantum information flow. In this section we introduce
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a pictorial model for the flow of quantum information in the central spin setup based on

detection of the multi-spin correlations.

1.2.1 Pictorial representation:

Suppose that we have a central spin surrounded by N non-interacting spins that form a

closed spin environment. Initially the central spin and the environment spins are uncorre-

lated and their composite spin system is described with equation 1.6:

ρ(0) =
1

2N+1
σX⊗1

⊗N .

The system-environment Hamiltonian is the same as equation 1.10:

HSE =
1

2

N∑
j=1

djσZσ
j
Z.

The evolution of the initial density matrix under the interaction Hamiltonian is described

by the unitary operator USE = exp[−iHSEt]. Solving the Liouville-Von Neumann equation

gives the time evolution of this system-environment density matrix, equation 1.13:

ρ(t) = USE · ρ(0) · U †SE.

As discussed above, the time evolution of the spin system results in the oscillation of the

amplitudes of the initial uncorrelated state and the correlated spin operators, according to

equation 1.16:

ρ(t) =
1

2N+1
{ σX⊗1

⊗N
N∏
i=1

cos(dit)

+
N∑
j=1

σY⊗σ
j
Z sin(djt)

N∏
i 6=j

cos(dit)

−
N∑
j,k

σX⊗(σjZ.σ
k
Z) sin(djt) sin(dkt)

N∏
i 6=j,k

cos(dit)

−
N∑
j,k,l

σY⊗(σjZ.σ
k
Z .σ

l
Z) sin(djt) sin(dkt) sin(dlt)

N∏
i 6=j,k,l

cos(dit)

+ . . . }.
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This equation gives us the framework for the flow of quantum information from the cen-

tral spin to the environment and production of multi-spin correlation between them. We

observe that at short evolution times the uncorrelated spin term is dominant. The spins

with the strongest coupling to the central spin will establish their correlations with it in

the form of first order correlation operators. As a consequence the quantum information

is no longer exclusively contained in the state of the central spin and is shared in the

form of correlated operators of the central spin and the environment spins. Production of

multi-spin correlations between the central spin and the environment is equivalent to the

flow of quantum information from the central spin to the environment. Increasing the evo-

lution time results in production of additional correlations with larger orders of correlated

operators. Our pictorial model for this situation is shown in figure 1.2.

For a short evolution time T , the density matrix does not greatly deviate from its

initial form and the uncorrelated spin term has a large weight while all the correlated spin

terms are small and unobservable. This situation is depicted in figure 1.2a. Notice that

all the environment spins are uncorrelated with the central spin and their state has not

changed from the maximally mixed. In the intermediate evolution time, figure 1.2b, there

are visible differences between the states of environment spins. This state has achieved

correlations of third order with the central spin. The initial information of the central spin

is now shared with three spins in the environment, in the form of a correlated spin operator.

Consequently, there is a distribution of quantum information over the environment spins,

although a measurement performed only on the environment spins will not reveal that

information. Figure 1.2c shows a more complicated correlated state with 7 spins involved

in the correlation to the central spin, for the case of the longest evolution time T .

This pictorial representation may be used to explain the echo experiment as well. Figure

1.3a represents the result of an echo experiment for an environment with three correlated

spins at an intermediate evolution time. Application of a π pulse results in a sign change

for the heteronuclear dipolar interaction, in the interaction frame of the pulse. Because

there is no self-interaction between the environment spins, after evolution for time T , if

the second evolution period is sandwiched between two π pulses, a complete revival of

the initial state of the central spin is observed at time 2T . In other words, there will

be a Loschmidt echo in which all the information returns to the central spin. The same

applies for any evolution time T , figure 1.3b. Although the quantum information may be
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(a) Short evolution time T (b) Intermediate evolution time T (c) Long evolution time T

Figure 1.2: The large blue dot represents the central spin and the smaller dots indicate

the environment spins for a closed environment with N = 15. Arrows are indicative of the

strength of couplings between the central spin and environment spins with a bolder arrow

indicating a larger absolute value for the dipolar coupling constant. The distance between

the central spin and the environment spins changes according to the evolution time T . Spins

in the environment are presented in 4 different shades of blue, depicting the amplitude

of their correlated spin operator with the central spin. Lighter shades are used when

the correlated states have a smaller weight, which are not observable. If the correlation

between an environment spin and the central spin is observable in the experiment, that

spin is presented with a solid border line. This picture indicates that the environment spins

become correlated with the central spin as the evolution time increases which corresponds

to the flow of quantum information from the central spin to the environment.
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(a) Intermediate evolution time T (b) Long evolution time T

Figure 1.3: Diagram of an echo in the case of a static environment. Increasing the evolution

time results in larger multi-spin correlations between the central spin and environment. As

long as the environment spins only interact with the central spin, an echo experiment will

perfectly refocus the initial state of the central spin, a Loschmidt echo.

distributed over a more complicated correlated state, because of the static nature of the

environment, it can be perfectly refocused to the initial uncorrelated state of the central

spin.

Here the message is that for an environment with no self-interaction, the quantum

information flow to the environment becomes encoded in the multi-spin correlated states,

which can be refocused back to the central spin. In other words the environment keeps a

perfect record of the initial quantum information of the central spin. In this picture we

have neglected the T1 effects which can randomly flip the environment spins and decrease

the amplitude of revival signal in the spin ensemble.

Let us relax one of these two conditions and allow the environment spins to interact

with each other for a time interval that we call the mixing window. The interaction of

the environment spins during this window is described by the homonuclear dipolar inter-
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action that contains the flip-flop term, equation 1.22. The evolution under the flip-flop

term exchanges the state of interacting spins, equation 1.23, and cause a mixing in the

multi-spin correlated terms that mixes the quantum information in the environment. The

mixing window is positioned after the evolution time T , when the production of multi-

spin correlated operators between the central spin and the environment has completed,

and immediately before the refocusing step. If the mixing window is short, distribution

of correlations between the central spin and the environment doesn’t change significantly

and refocusing step will be successful in reviving the central spin initial state, figure 1.4a.

By increasing the length of mixing window, the exchange interaction between environment

spins will effectively mix the multi-spin correlations in the environment, figure 1.4b. Notice

that each spin may go through multiple exchanges of state and end up with a completely

different correlation state with the central spin at the end of the mixing window. Because

the strength of heteronuclear dipolar coupling to the central spin is different for the en-

vironment spins, mixing them will result in correlated states that can only be partially

refocused. As an example consider the case that a spin which is strongly correlated with

the central spin, depicted with a dark blue circle and a solid border, undergoes an exchange

interaction with a spin with weak coupling to the central spin, represented in light blue

and dashed border. After the exchange we have a spin in dark blue with dashed border

and weak coupling to the central spin, and also a light blue spin with solid border and

strong coupling to the central spin. None of these two spins will contribute effectively in

revival of the initial state of the central spin, which results in a partial echo signal.

This pictorial representation is useful for understanding the significance of the envi-

ronment information content on the effectiveness of the mixing process. For very short

evolution times when the environment has only a small number of correlations to the cen-

tral spin, the environment has a low information content and exchanging the state of its

spins cannot effectively change the distribution of information. As a result the amplitude of

an echo experiment remains unchanged after introduction of a mixing window. In contrast,

an environment with many correlations to the central spin has a large information content

and is more sensitive to the mixing process. Consequently, we expect that the sensitivity

of the environment to the mixing Hamiltonian depend on its information content, and this

impacts the amplitude of the echo signal.

This pictorial model is a simple representation of the complex dynamics of multi-spin
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(a) Very short mixing window

(b) Longer mixing window

Figure 1.4: Introducing a mixing window will result in partial refocusing of the central

spin initial state.
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correlations between the central spin and environment for explaining the flow of quantum

information in the central spin problem. In chapter four we present the results of experi-

ments which were designed to record the dynamics of multi-spin correlations in the central

spin system, and connect to this picture of quantum information flow.

1.3 Multi-spin dynamics of solid state NMR

To construct a model for the evolution of a central spin enclosed by a spin environment,

we need to go beyond the static picture of spin correlations and induced local field, and

construct a dynamic model of evolution for the multi-spin physics of the central spin.

Multiple Quantum (MQ) NMR has the right toolbox to enable discovery of the multi-spin

dynamics as a spin system evolves in time. In this section we introduce the MQ NMR

technique and describe previously performed experiments with this method.

1.3.1 Spin counting experiment

The early works in MQ NMR were developed for observation of the quantum coherence

transitions in a multi-spin systems, including the so called spin counting experiment [50,

51, 52, 53, 54, 55, 56, 57, 58]. In that experiment a pulse sequence is applied to convert the

dipolar Hamiltonian to a grade raising Hamiltonian , ((σ+⊗σ+) + (σ−⊗σ−)), and growth

of multi-coherence spin operators in a network of dipolar connected spins is observed.

Investigation of MQ coherences with spin counting experiment has been valuable in giving

insight into the spatial state of spins in polymers and crystalline samples.

The idea behind discovering the multi-spin correlated operators, or the MQ coherences,

is to utilize the rotational symmetry of different parts of the density matrix, since operators

with the same coherence order follow the same transformation under a collective rotation.

As an example, consider N spin 1
2

nuclei in a strong magnetic field along the z axis.

The total magnetization is determined by difference between the number of spins pointing

towards z and the number of spins pointing to −z:

Mz =
∑
i

mzi =
1

2
(P|+1/2〉 − P|−1/2〉) (1.25)
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where mzi = ±1/2 is the eigenvalue of ith spin in the magnetic field and Pi shows population

of each state. The off-diagonal components of the density matrix for this spin system

〈Zi|ρ|Zj〉 for i 6= j, with {|Zi〉} being a set of eigenbases for the Z quantization axis, are

called Multiple Quantum Coherences. The order of MQC is defined as n = Mz(Zi) −
Mz(Zj). If we express the density matrix as a sum over multi-spin operators, having a

component with the coherence order n means that the difference between the number of

σ+ operators and σ− operators in that particular multi-spin operator is n. All parts of the

density matrix with the coherence order n have the same response to collective rotation

along the quantization axis RZ(φ) = exp(−iφ1
2

∑
i σ

i
Z):

〈Zi|RZ(φ)ρnRZ(φ)†|Zj〉 = einφ〈Zi|ρn|Zj〉 (1.26)

where ρn represents a part of density matrix with the coherence order n operators.

This is the basis for distinguishing different coherence orders or different correlated spin

terms. All the spins belonging to the same coherence order n, have the same symmetry

with respect to RZ(φ) collective rotations and they gain the same phase factor einφ. The

density matrix of the spin system may be expanded based on this symmetry in the Liouville

space:

ρ =
∑
k,n,p

CknpTknp (1.27)

Where Tknp represents a basis operator made by a product of k single spin operators. In

this expression n represents the coherence order, k indicates the number of spins involved

in the multi-spin correlated operator and p accounts for number of different permutations

in individual spin operators which will have the same k and n.

Figure 1.5 shows the pulse sequence for the spin counting experiment. Consider a

sample with an ensemble of protons placed in a strong magnetic field and they evolve

under the secular part of homonuclear dipolar interaction:

HD =
∑
j<k

Djk(σ
j
Zσ

k
Z −

1

4
(σj+σ

k
− + σj−σ

k
+)) (1.28)

Djk =
γ2~2

r3
jk

(1− 3 cos θ2
jk)

25



Δ
2

X

Detection

Δ Δ
2

X

Δ
2

ʹΔ Δ
2

!Hφ = σ +σ + −σ −σ −( )
φ − !H = −σ +σ + +σ −σ −( )

ʹΔʹΔʹΔʹΔʹΔ ʹΔʹΔ Δ Δ ΔΔΔ

X X XX X X Y Y Y YY Y Y Y

×m ×m

X

Figure 1.5: Pulse sequence for the spin counting experiment. Black lines present the π
2

pulses with the noted phase. The first dashed box shows the pulses for the evolution step

in which the MQ coherence orders grow, equation 1.29. With the application of pulses

in the second dashed box, this evolution is inverted to make the resulting density matrix

observable. By repeating 8 pulses in each box, with the loop counter m, the evolution step

can be extended to increase the production of MQ coherence orders. The φ phase shift

between these two boxes implements the collective rotation along the z axis necessary for

encoding the MQ coherence orders, equation 1.26.

where γ is the gyromagnetic ratio, rjk is the vector connecting the two spins j and k which

makes an angle θjk to the direction of Zeeman field B0. Average Hamiltonian Theory

may be used to describe an effective Hamiltonian on average of a periodic modulation

scheme [59, 60]. The zeroth order average Hamiltonian term for the homonuclear dipolar

interaction, in the toggling frame of 8-pulse cycle in figure 1.5 is:

H̃D = −1

2

∑
j<k

Djk(σ
j
+σ

k
+ − σ

j
−σ

k
−). (1.29)

This effective Hamiltonian increases the order of coherence in the density matrix by ±2.

Collective rotations along the z axis is implemented by shifting the phase of all pulses for φ,

and results in encoding the coherence order of correlated spin terms with einφ phase factor,

equation 1.26. After the encoding step, application of a phase shifted 8-pulses sequence,

refocuses the evolution of the density matrix and results in single-spin terms which are

observable. This signal at the end of experiment carries the encoded phase factor and may

be Fourier transformed to show the weight of MQ coherence orders.

The result of spin counting experiment on the protons in Triphenylphosphine molecule

is presented in figure 1.6.
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Figure 1.6: Experimental results for the spin counting experiment. Weight of multi-

coherence correlated terms in Triphenylphosphine P(C6H5)3. Sample at room temperature,

∆ = 3.5µs, m = 7, π
2

pulse length: 1.99µs and 64 increments for φ.
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1.3.2 MQ NMR technique for homonuclear dipolar network

The idea of encoding coherence orders with the use of collective rotations, has been gener-

alized to the other quantization axes, such as x, to uncover different rotational symmetries.

x quantization axis has previously used for exploring the growth of coherence orders in a

network of spins with homonuclear dipolar interaction [61, 2, 62]. When a collective ro-

tation is used to encode the multi-spin correlations, the preferred basis for representation

of the density matrix is also set by the symmetry of that rotation. This is equivalent

to the representation of a spin system in a different effective quantization axis which is

determined by the rotation axis. This representation can be obtained with a similarity

transform from the original basis. In this case the density matrix in the x quantization

axis, ρx, is described as:

ρx = U−1ρzU (1.30)

where U indicates the unitary for the similarity transform from the z basis to the x basis.

The density matrix elements in each representation are defined as:

{ρz}ij = 〈zi|ρ|zj〉 (1.31)

{ρx}ij = 〈xi|ρ|xj〉 (1.32)

where {zi} represents a set of basis operators in the z basis, e.g. the set of four Pauli

operators, and {xi} represents a set of basis operators for x basis. We choose the following

set operators: σX, the ladder operators in the x basis defined as σX± = σY ± iσZ and

the identity operator. The following commutation relation describes the evolution of the

density matrix in this basis:

[σX, σX±] = ±2σX±

[σX+, σX−] = 4σX ·

Consequently, the result of a collective rotation along the x axis can be represented as:

RX(θ).ρ.RX(θ)† = RX(θ).ρx.RX(θ)† (1.33)

= 〈xi| exp(−iθ
2

∑
i

σiX).ρ. exp(i
θ

2

∑
i

σiX)|xj〉 (1.34)

=
∑
n

einθ〈xi|ρnX|xj〉 (1.35)
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where n represents the coherence order along x axis. This shows that a rotation along x

axis introduces einθ phase factor with n coherence order in the x quantization axis defined

as n = N(σX+) − N(σX−). As a result in this representation, there is a clear relation

between the coherence order and the phase factor introduced by the rotation.

Munowitz et al. used vectors in the Liouville space to represent the density matrix in

the z quantization axis [52]. Similar expansion may be done using the set of {xi} operators

in the x quantization axis for the density matrix:

ρX(t) =
N∑
k=0

k∑
n=−k

∑
p

gknp(t)P̂knp (1.36)

where N is the number of spins, P̂knp is a basis operator constructed by product of k single

spin operators in x basis, n indicates the coherence order in the x basis and p identifies

the different permutations of k spins with the coherence order n. Although rotations along

the x axis can reveal the coherence order n, they cannot give direct information about the

number of spins k involved in a correlated multi-spin term, nor they distinguish the specific

order of the multi-spin terms, p. This means that in order to define the operators to reflect

the time evolution of the density matrix as they are distinguished by the x rotations, we

should sum over k and p degrees of freedom:

ρX(t) =
k∑

n=−k

Cn(t)P̂n (1.37)

Cn(t) =
N∑
k=0

∑
p

gknp(t) (1.38)

P̂n =
N∑
k=0

∑
p

P̂knp (1.39)

Encoding the coherence order in the x quantization axis, has proven to be a powerful

tool for investigation of the multi-spin dynamics in the solid-state spin systems. Cho et al.

[2] used this technique to study the mechanism of Free Induction Decay (FID) in a solid

state sample with a network of spin 1
2

particles interacting with the homonuclear dipolar

interaction. For a system of homonuclear dipolar connected spins in a large magnetic field
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B0 along the z axis the initial density matrix in thermal equilibrium, is:

ρinitial =
1 + εσZ

2
(1.40)

which is a diagonal matrix containing only population terms and no coherence components.

ε is the nuclear spin polarization which is proportional to γB0

KBT
and is of order 10−6. The

Identity part of this density matrix will not evolve and we focus our attention on the

deviation part ρ(0) =
∑

i σ
i
Z. At t = 0 a π

2
)Ȳ pulse rotates ρ(0) to ρ(0+) =

∑
i σ

i
X. This

density matrix then evolves under the homonuclear dipole interaction. The formal equation

of motion for this time independent Hamiltonian is given by the Liouville-von Neumann

equation:

ρ(t) = e−iHDtρ(0+)e
iHDt (1.41)

which does not have an exact solution, as discussed in the previous section. Expanding

this equation using power series gives an insight for understanding the multi-spin dynamics

in this system at short times:

ρ(t) = ρ(0) +
i

~
t[ρ(0), HD]− t2

2~2
[[ρ(0), HD], HD] + · · · (1.42)

=
1

2

∑
j

(σj+ + σj−) +
3

2
it
∑
jk

Djk(σ
j
Zσ

k
+ − σjZσk−)

+
3

4
t2
∑
jkl

DlkDjk(σ
j
Zσ

l
Zσ

k
+ + σjZσ

l
Zσ
−
k ) + · · · .

Note that in NMR inductive detection is used and the observable operator is σ+ and the

NMR signal is evaluated as S(t) ∝
∑

i Tr[σi+ρ(t)]. Only the single-spin and single-coherence

terms have non-zero trace and contribute to NMR signal. Evolution of the spin system

produces the multi-spin correlated operators in the density matrix, indicated in equation

1.42. For longer evolution times the correlated spin terms gain more weight relative to the

weight of the initial single spin term, this results in loss of the observable signal in FID [2].

Using the MQ techniques we can have a detailed understanding of the decay of ob-

servable signal, corresponding to the growth of the MQ terms. The homonuclear dipo-

lar Hamiltonian in the basis vectors of the x quantization axis or x basis with defining
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σX± = σY ± iσZ, is written as:

HX

D = −1

2

∑
j<k

Djk(σ
j
Xσ

k
X −

1

4
(σjX+σ

k
X− + σjX−σ

k
X+)) (1.43)

− 3

8

∑
j<k

Djk(σ
j
X+σ

k
X+ + σjX−σ

k
X−).

The density matrix may also be evaluated by transforming equation 1.42 to the x basis:

ρX(t) =
∑
j

σjX +
3

4
it
∑
jk

Djk(σ
j
X+σ

k
X+ − σ

j
X−σ

k
X−) (1.44)

− 3

8
t2
∑
jkl

DlkDjk(σ
j
X+σ

k
Xσ

l
X+ − σ

j
X+σ

k
Xσ

l
X− − σ

j
X−σ

k
Xσ

l
X+ + σjX−σ

k
Xσ

l
X−) + · · · .

Considering equation 1.27 which describes the density matrix of a spin system as a sum

over terms with the spin number k and the coherence order n, one can define a selection

rule for evolution under the homonuclear Hamiltonian in the z basis, equation 1.28, and

in the x basis, equation 1.43. Projection of the Liouville space into the k and n axes

[52] for both of these two Hamiltonian representations, reveals a set of available paths in

the Liouville space that may be taken by the density matrix, figure 1.7. A selection rule

can be associated with the available paths in the Liouville space for homonuclear dipolar

Hamiltonian in the Zeeman basis representation:

∆k = ±1, ∆n = 0. (1.45)

This is depicted in figure 1.7a which indicates that in the Zeeman basis, the time evolution

under the homonuclear dipolar interaction produces correlated spin terms and increases

the number of correlated spins k which results in a decrease in the weight of observable

operators. The coherence order n on the other hand, does not show any changes when

the density matrix is expressed in the Zeeman basis. The selection rules for the evolution

under the same Hamiltonian transformed to the x basis is:

∆k = ±1, ∆n = 0,±2. (1.46)

Figure 1.7b shows the available multi-spin operators in the Liouville space in the x basis.

In this representation both spin number k and coherence number n change as a result of
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Figure 1.7: The Liouville space is projected on to the multi-spin operators with the number

of spins k and the coherence order n. The space spanned by the homonuclear dipolar

interaction in the Zeeman basis and in the x basis is presented.

evolution under homonuclear dipolar interaction. Note that the increase in the coherence

order n happens in the steps of two units, so the evolution under the homonuclear dipolar

interaction will not change the parity coherence orders in the density matrix.

This progress in the population of multi-spin correlated terms during the FID may be

detected with an NMR experiment presented in figure 1.8. After the initial evolution of

spins under the homonuclear dipolar interaction, a collective rotation about the x axis

encodes the coherence orders of correlated operators as a phase factor, as discussed in

equation 1.35. Next, the spin system evolves under the inverted dipolar interaction to its

initial single spin state which is observable, while the encoded phase factor is preserved

and will be detected.

Equation 1.35 indicates that a Fourier relation exist between the coherence order n and

the angle of the encoding pulse, which suggests that with the detection of data along the

φ axis one can find the weight of correlated spin terms along the n or number of coherence

axis. The standard way to perform this experiment is to implement the encoding rotations
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Figure 1.8: Pulse sequence for detection of the growth of MQ coherence orders with evolu-

tion under homonuclear dipolar interaction. During the first τ period, the dipolar evolution

creates multi-spin correlated terms. The two pulses with a C-48 sequence between them

represent a robust way of applying the collective φ encoding pulse along the x axis. C-48

is a 48-pulse sequence for evolution suspension [1]. With the application of RF radiation

for 2τ the dipolar evolution is inverted and the observable signal can be detected at the

end of the sequence.

with incremental values for φ, going from 0 to 2π in 2nmax steps. nmax indicates the

maximum coherence number that the experiment can detect. This is to comply with the

Nyquist-Shannon sampling theorem which states that: the sampling frequency should be

at least twice the highest frequency contained in the signal. Integrating over the frequency

domain signal for each of these encoding steps yields one data point along the φ axis. The

Fourier transform of these points with respect to n reveals the weight of each coherence

order. Figure 1.9 indicates the result of such an experiment carried out on a crystal of

CaF2, taken from [2]. Performing this experiment for different values of τ reveals the

progress of multi-spin coherence spin term production as the system evolves under the

homonuclear dipolar interaction during FID [2].

Cho et al went one step further and followed the dynamics of individual multi-spin

correlated terms as they changed the time of evolution τ . Their results are presented in

figure 1.10 which shows the decay of the zeroth coherence term while the higher coherence

order terms are being produced. There is an onset time for each of these coherence terms

to become observable, which is determined by the geometry of the spin system. The initial

growth of multi coherence terms is fitted with a sigmoidal function:

Sn(t) =
Cn

1 + exp[−αn(t− tonsetn )]
(1.47)
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Figure 1.9: Experimental results from [2] indicating the overlay of the Free Induction Decay

curve and the growth of multiple quantum coherence terms in CaF2. The FID is a result

of the evolution under homonuclear dipolar interaction.

34



Figure 1.10: Growth of the multi-spin correlated terms in CaF2 . The inset shows the

evolution of zero and double quantum terms [2].

where αn represents the rate of transformation of the different coherence orders which

should be mostly determined by the strength of the dipolar coupling constants. The

dynamics of Multiple Quantum Coherence terms are in agreement with the theory proposed

by Gleason et al [63].

To summarize, using the symmetry of the density matrix with respect to collective

rotations along the quantization axis, an experiment has been designed to uncover the

multi-spin dynamics of Free Induction Decay in a solid state spin system with homonuclear

dipolar interaction. Direct experimental results indicate that the decay of single-coherence

single-spin terms in the density matrix are accompanied by the growth of multi-spin cor-
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related operators. As was discussed in the previous sections, understanding multi-spin

dynamics requires a clear picture of the production, growth and decay of the correlated

spin terms. We show that the same ideas may be utilized in the central spin problem where

the evolution of quantum information is determined by the dynamics of the environment

spins.

1.4 Quantum dynamical map for the central spin prob-

lem

The evolution of the central spin may be described as a quantum dynamical map. Quan-

tum dynamical maps are a general form of physical transformation for a quantum state.

They are Completely Positive and Trace Preserving (CPTP) maps. Map Λ acting on A

subsystem is completely positive if:

ρAB(t) = Λ⊗1B(ρAB(0))is positive ifρAB(0)is positive (1.48)

and trace preserving maps preserve normalization Tr(ρ(t)) = Tr(ρ(0)). The Kraus rep-

resentation theorem and Stinespring’s Dilation theorem may be used to construct such a

map for the evolution of the central spin [64, 65].

Kraus Representation Theorem: [66] A superoperator Λ is a CPTP map iff it admits

an operator-sum decomposition.

Stinespring’s Dilation Theorem [67]: Any map Λ : L(HA)→ L(HA) can be expressed as

the reduced action of a unitary operator acting on an extended Hilbert space U : HA⊗HB →
HA⊗HB, i.e.

Λ(ρ) = TrB[Uρ⊗σU †] (1.49)

where the initial state for an ancilla Hilbert space σ ∈ L(HB) is uncorrelated with the initial

system state ρ ∈ L(HA)

This means that the reduced action of a unitary evolution in a system-environment

composite Hilbert space can be expressed as the application of a CPTP map on the reduced

Hilbert space of the central spin. To construct such a transformation map we use the
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“operator-sum decomposition ”a.k.a. “Kraus decomposition ”:

Λ(ρ) =
∑
k

Ak(t)ρ(0)A
†
k(t)∑

k

A†k(t)Ak(t) = 1

where {Ak} is a set of linear bounded operators known as Kraus operators.

In an environment without memory or without long-lasting correlations between the

central spin and the environment spins, finding an evolution map independent of envi-

ronment degrees of freedom may be possible. In our case, if the multi-spin correlations

between the central spin and the environment get mixed such that the refocusing of the

central spin becomes impossible, the evolution of the central spin can be explained with a

map independent of the size of the environment.

In general, if a linear map Λt satisfies the following three conditions it is a quantum

dynamical semigroup.

• Λt is a CPTP map

• Tr[Λt(ρ)A] is a continuous function of t for any ρ and A

• Λt+s = Λt ◦ Λs for every s, t > 0 and Λ0 = 1

The third condition states that a map should be divisible in time, or its dynamics should

be time local with no memory, to be a semigroup. A Markovian process is defined as a

stochastic process with a short memory that is independent of its history and the third

condition suggests that the semigroup structure can only be used for Markovian processes

[65]. A quantum dynamical semigroup admits a generator such that

Λt = exp(Lt) (1.50)

and ρ(t) = Λtρ(0). These dynamics can be presented with a master equation:

d

dt
ρ(t) = Lρ(t). (1.51)
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The assumption of Markovian dynamics is an oversimplification for the central spin

problem and the long term dynamics of the central spin cannot be explained using the

quantum dynamical semigroups. To quantify the non-Markovian characteristic of the cen-

tral spin problem Breuer et al. [68] suggested using the trace distance as a metric. The

trace distance is defined as:

D[ρ1, ρ2] =
1

2
Tr |ρ1 − ρ2| (1.52)

If Alice prepares the central spin in one of the two initial density matrices ρ1 or ρ2 with

the probability of 1
2
, Bob can identify them with the probability of 1

2
(1 +D[ρ1, ρ2]) which

shows that the trace distance is a measure of the distinguishability of two density matrices.

ρ1 and ρ2 become continuously less distinguishable under Markovian processes, whereas

the evolution under a non-Markovian dynamics may have time intervals with increased

distinguishability. For the central spin problem they realized that the trace distance oscil-

lates between a maximum and minimum value which can be interpreted as an oscillation

of distinguishability. Assuming that the desired quantum information is encoded in the

central spin, the loss of distinguishability is associated with the flow of information from

the central spin to the environment, and its increase is a result of quantum information

flow from environment back to the central spin, a signature of non-Markovian dynam-

ics. As a consequence, the description of the central spin problem in the open quantum

system formalism, should be carried out using non-divisible dynamical maps suitable for

non-Markovian dynamics. Such a description have terms that depend on the history of the

central spin evolution, known as memory kernels.

1.5 Conclusion

There is a renewed interest in understanding the evolution of the central spin due to its

relevance in the quantum information processing. In particular our current understanding

of the Quantum Error Correction is built upon the assumption that the quantum noise

have Markovian characteristics and at acts locally, and in addition there is no long-range

memory in the environment. We can experimentally test these by investigating the multi-

spin correlations between the central spin and the environment.

The remainder of the thesis will describe how we develop experiments to explore the
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flow of quantum information between the central spin and the environment and the effects

of perturbing the environment on the dynamics of quantum information.
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Chapter 2

Experimental

2.1 Instrument

All the solid state measurements presented in this thesis were performed on a Bruker

Avance AV 300 MHz spectrometer. We used a two channel, static, solid-state probe tuned

to protons at 300 MHz and 31P at 121 MHz. Variable temperature capabilities in the probe

were extended to record 140 K by the addition of a vacuum jacket glass chamber.

The NMR coil is wound from rhodium flashed copper wire to match the magnetic

susceptibility of air [69, 70]. Our coil consists of 5 turns with a length of 5.7 mm and inner

diameter of 5 mm, which leads to an inductance of 97 nH [71]. To wind the coil we used

the recipe from [72] to have high B1 field homogeneity.

In our probe the pulse length for a π
2

pulse in proton channel is 1.99 µs with 150 Watts

of power. The same pulse length can be achieved in 31P channel as well. The efficiency

of multi-pulse control sequences increase by reducing their cycle length. By over-coupling

we can reduce the quality factor of the NMR circuit and its ring down time, and with the

help of a duplexer circuit for fast switching between the transmission and receiver mode,

the cycle time for the WAHUHA pulse sequence [23, 73, 74, 75] is measured to be 18.80

µs for our probe [76, 77, 78, 79, 80, 81, 82, 83, 84, 85].
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2.2 Sample

Our goal is to investigate the quantum evolution of a central spin using the methods based

on the MQ NMR technique, in a solid state NMR setup. To achieve this we need a sample

which resembles the structure of the central spin problem, i.e. a spin system in the center of

a molecular structure, enclosed by a different species of magnetic nuclei preferably located

in a symmetric orientation, acting as the spin environment. It is an advantage to find

molecules with similar structures but different number of spins, to have the possibility of

performing experiments varying the size of the spin environment. A natural choice for

the environment spins is Hydrogen nuclei. The 1H nucleus is 99.99 % abundant with the

spin quantum number of 1
2
. The central spin should also be a magnetic nucleus with high

abundance and preferably high gyro-magnetic ratio and 31P is the most promising nuclei

with an 100 % abundance of spin 1
2

nuclei.

Triphenylphosphine (PPh3) with the molecular formula P(C6H5)3 meets all of these con-

ditions. There are three phenyl groups surrounding a central 31P nuclei in this molecule,

which gives us a central spin system with the bath size of 15, figure 2.1. Triphenylphos-

phine is a common organophosphorous compound, our sample was obtained from SIGMA-

ALDRICH with 99% purity. (PPh3) is a white powder soluble in organic solvents and

its melting point is 80 ℃. To prepare the NMR sample tube solid particles of PPh3 were

compressed into a NMR-sphere sample tube which was flame sealed to best preserve the

contents.

To continue this work we plan to run experiments with samples containing higher

number of the Hydrogen nuclei and also the molecular structures with more than one

spin in the center. Tri-tert-butylphosphine C12H27P and 1,2-Bis(diphenylphosphino)ethane

(dppe) C26H24P2 are our candidate samples for the larger spin environment and the larger

central spin system, respectively.
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31P 
12C 

1H 

295.35pm 
497.52pm 

573.1pm 

Figure 2.1: Triphenylphosphine structure with the 31P positioned as the central spin and

the Hydrogen nuclei in three phenyl groups acting as the spin environment. The largest

heteronuclear dipolar interaction coupling constant is 11.8 kHz and the strongest homonu-

clear dipolar coupling between environment spins is 49.8 kHz.
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2.2.1 Spin environment characterization

Our spin environment consists of a network of Hydrogen nuclei with a strong homonuclear

dipolar interaction which homogeneously broadens the Hydrogen’s NMR resonance line,

resulting in a line-width of 32.5 ±0.2 kHz, figure 2.3. This is by far the fastest interaction

in our spin system and to have a high fidelity experiment we need to be able to control

this interaction.

The MREV-8 consists of eight π
2

pulses in the form of four solid echo pulse pairs.

It refocuses the zeroth order of average Hamiltonian terms of the homonuclear dipolar

interaction and all of the odd orders are also get canceled due to its symmetry, figure 2.2a.

It also compensates for effects of RF inhomogeneity and finite pulse width [86, 80, 73].

Under the MREV8 cycle the zeroth order average of σZ operator for the environment spins

is a vector pointing at the (1, 0, 1) direction with te scaling factor α for its magnitude:

α =

√
2(1 + 23tp

τc
( 4
π
− 1))

3
(2.1)

where tp is the pulse length and τc is the length of MREV-8 sequence. In our experiment

the scaling factor is α = 51.00%. All interactions linear in σZ will be transformed with the

same scaling factor. Therefore, the zeroth order of average Hamiltonian for heteronuclear

dipolar interaction in the toggling frame of the MREV-8 pulse sequence is:

HSE =
∑
i

diσ
cs
Z
⊗σiZ ⇒ H̃SE =

1.17

3

∑
i

di(σ
cs
Z
⊗σiX + σcsZ

⊗σiZ). (2.2)

Figure 2.2b shows the decay of proton NMR signal during application of the MREV-8

pulse sequence.

For the PPh3 sample we measure a proton T1 relaxation time of 630 ±30 seconds.

This is inconveniently long for these studies so we prepared a sample with Chromium(III)

acetylacetonate as a relaxation agent. With the relaxation agent the T1 is reduced to 2.5

s.
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Figure 2.2: (a) The MREV8 pulse sequence cancels the homonuclear dipolar interaction up

to the first order of average Hamiltonian. All the pulses are π
2

rotations along indicated axis.

(b) Experimental data recorded during the application of an MREV-8 pulse sequence on

protons in PPH3 sample. The continuous lines are exponential decays with characteristic

decay time of 8 ms.
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PPh3

PPh3 + Cr(III)acac
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Figure 2.3: Comparison between PPh3 proton spectra before (dashed line) and after adding

Cr(acac)3 relaxation agent(solid line). Solid state line shape for proton shows the expected

susceptibility broadening.
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Figure 2.4: Exponential fit to the inversion recovery experimental data with the charac-

teristic time of 2.5 ±0.2 s.
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2.2.2 Central spin characterization

The most important interactions for the evolution of phosphorous nuclei in our sample are

the heteronuclear dipolar interaction with the environment spins and the chemical shift

anisotropy (CSA). The homonuclear dipolar interaction between the phosphorous nuclei

causes a line broadening of less than 200 Hertz.

The Chemical Shift Anisotropy (CSA) tensor components for PPh3 measured by Dun-

can [87] are δX = δY = 17 ppm and δZ = −34 ppm. Figure 2.5 presents the phosphorous

line-shape observed with decoupling the proton environment. Addition of the relaxation

agent broadens the line as expected. Note that the CSA is static and thus always refocus-

able.

PPh3

PPh3+Cr(III)acac
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Figure 2.5: The black-dashed line shows the 31P line shape caused by the CSA with

decoupling the heteronuclear dipolar interaction, before addition of the relaxation agent.

The blue line shows the CSA line shape after adding the relaxation agent.

The heteronuclear dipolar interaction in the sample may be as strong as 11 kHz depend-

ing on the orientation of the protons with respect to static magnetic field, figure 2.6, but
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Figure 2.6: Coupling constants for the heteronuclear dipolar interaction between the central

spin and 15 protons in the environment, 32 different azimuthal angle relative to the external

field are examined.

results in an approximate 1 kHz line-broadening in the 31P resonances. Figure 2.7 shows a

comparison of the 31P line shape when its coupled to protons and when its decoupled from

them with application of a 50 kHz Continuous Wave (CW) decoupling.

In order to explore the quantum evolution of the central spin it is necessary to have

control over the dynamics of environment spins as well as the central spin [88, 89]. The CSA

and the heteronuclear dipolar interaction with the environment spins are the two important

interactions for the central spin and both can be refocused with the application of the Carr-

Purcell-Meiboom-Gill or CPMG sequence, which is a train of π pulses. Each π pulse inverts

the sign of these Hamiltonian and results in an echo signal. The problem is that spins in

the environment evolve under the homonuclear dipolar interaction and this prevents a

complete reversal of the evolution under the heteronuclear interaction resulting in partial

revival of the central spin signal. Alternatively, if the dynamics of the environment can

be frozen, the amplitude of echo signal will decay slower. To verify this we compare three
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proton decoupling off

proton decoupling on
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Figure 2.7: Phosphorous line shape with and without decoupling of the heteronuclear

dipolar interaction with the protons. The major line-width is due to the CSA.

experiments in which the central spin is completely decoupled from the environment, the

internal interaction in the environment is turned off, and a case with no modification of the

environment. To implement the first experiment, the Continuous Wave (CW) decoupling

is used to completely remove effects of the environment on the evolution of the central spin,

figure 2.8. The result is a decaying echo signal with decay characteristic time of 13.2 ±0.3

milliseconds, which corresponds to a Lorentzian line with the linewidth of around 24 Hz at

half height. To freeze the dynamics of environment spins under the homonuclear dipolar

interaction the MREV-8 sequence is used. The result is a decay with characteristic time

of 11.6 ±0.4 milliseconds corresponding to a linewidth about 27 Hz. Consequently, the

effects of environment on the evolution of the central spin can be refocused very efficiently

for a static environment. In comparison, if the environment evolves with no manipulation,

the result of CPMG is a decaying curve with characteristic time of 1.10 ±0.02 milliseconds

corresponding to a linewidth of around 312 Hz.
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Figure 2.8: 31P signal while the CSA effect has been refocused by the CPMG sequence.

Blue circles indicate the decay in amplitude while the interaction with the environment

is not modified. Red squares are the result of refocusing the homonuclear interaction

in the environment using the MREV-8 sequence. Black diamonds present the result of

the experiment with decoupled environment using the continuous wave decoupling. The

characteristic decay times for these experiments are indicated in the legends.

The results of characterization experiments are summarized in table 2.1.
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Table 2.1: Characteristic parameters for PPh3 sample

Parameter Value

Proton T1 2.5 ±0.2 s

Proton Dipolar Broadening 32.54 ±0.02 kHz

Proton T2 with MREV-8 8.0 ±0.5 ms
31P T1 61 ±4 s

31P line-width 1 kHz
31P CS [87] δiso = −10 ppm

31P CSA [87] δ11 = δ22 = 9 ppm , δ33 = −42 ppm
31P T2 CPMG 1.10 ±0.02 ms

31P T2 CPMG MREV-8 dec 11.6 ±0.4 ms
31P T2 CPMG CW dec 13.2 ±0.4 ms
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2.2.3 Cross Polarization

We use cross-polarization to increase the Signal to Noise Ratio or SNR of the 31P detec-

tion [27, 90, 91, 92]. The gain comes from two factors, a thermal polarization which is

proportional to the gyromagnetic ratios of proton and phosphorous nuclei:

Pin(1H)

Pin(31P )
=
γ1H

γ31P

= 2.47· (2.3)

In addition, a decrease in T1 will help in increasing the SNR by T1(31P )
T1(1H)

= 42.15. Overall

using cross polarization provides a signal increase of 104 times.

Cross polarization requires application of a long locking pulse allowing the thermal

equilibrium between the two spin species. Any initial correlation between the central spin

and the environment will have the form of (σZ⊗σZ) which does not commute with the

locking pulse (σX⊗1 + 1⊗σX). Consequently, even if correlation terms between the central

spin and the environment exist, the application of long locking pulse ensures that the initial

state of the central spin and the environment is uncorrelated:

ρ(0) =
1

2N+1
σX⊗1⊗1 (2.4)
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Chapter 3

Direct detection of

system-environment correlations

In this chapter an experimental design for the detection of multi-spin dynamics in the

central spin model is introduced. The results of such an experiment are presented and

analyzed to characterize the extent of quantum information flow to the environment and

the information content of the environment. Furthermore, a set of projective operators is

introduced to facilitate the study of multi-spin dynamics in the central spin model.

3.1 Central spin: A probe for correlation detection

The simplest form of the correlation detection is performed on a static environment (no

self-interaction). Assuming that there are N non-interacting spins in the environment, the

evolution of central spin is determined with the system-environment Hamiltonian:

HSE =
1

2

N∑
j=1

djσZ⊗σ
j
Z (3.1)

σjZ := 1⊗j−1⊗σjZ⊗1
⊗N−j. (3.2)
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As a result the initially uncorrelated state of the central spin and environment, ρ0 =
1

2N+1σX⊗1
⊗N , evolves in a correlated state with different correlation orders:

ρ(t) = C0(t)σqubitX
⊗1N (3.3)

+ C1(t)σqubitY
⊗σiZ⊗1

N−1

+ C2(t)σqubitX
⊗σiZ⊗σ

j
Z
⊗1N−2

+ · · · .

Here, the order of correlation in each multi-spin operator is determined by the number

of environment spin operators. Measurement of correlation order weights, Cn(t), leads to

evaluation of the state of the environment. There are two important points in the design of

an experiment for detecting these correlations. First, collective rotations along the x axis

can be used to encode the order of correlation in the environment. Second, the experiment

is designed to use the central spin as a probe for correlations between the system and

environment spins. By refocusing the system-environment interaction the central spin

state revives, carrying the encoding factors.

3.1.1 Multi-spin Correlation Detection experiment (MCD)

Figure 3.1 presents the necessary steps for the Multi-spin Correlation Detection or MCD

experiment in the central spin model and Figure 3.2 shows the pulse sequence for the

implementation of this experiment.

Application of the cross polarization technique in preparation of the initial state in-

creases the initial polarization of the central spin by a factor of 104. The spin locking field

for cross polarization is applied with spin temperature alteration phase shifts to remove

Bloch decay components and phase glitches [91].

After the preparation step, evolution under the system-environment interaction for time

T results in multi-spin correlations. Environment spins are coupled with the homonuclear

dipolar interaction that should be refocused in order to provide a static environment. This

is done by application of an MREV-8 sequence which removes the zeroth and first order

terms in the average Hamiltonian of the homonuclear dipolar interaction. As a consequence,

the magnitude of Hamiltonian terms linear in σZ scale down to 51.00% while they rotate to
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Heteronuclear 

Detection 

T 

Figure 3.1: Multi-spin Correlation Detection or MCD experiment is designed to probe the

correlations between the central spin and environment spins.

the [1,0,1] axis [86, 73]. This means that during the evolution time T , while the interaction

between environment spins averages to zero for a full cycle of MREV-8, the heteronuclear

dipolar incineration between the central spin and the environment spins is transformed to

H̃SE = 1.17
3

∑
i(σ

cs
Z
⊗σiX + σcsZ

⊗σiZ).

The encoding step consists of a collective rotation of the environment spins along the

x axis RX(θ) to encode the number of correlated spins into a phase factor:

〈Xi|RX(θ)ρxnRX(θ)†|Xj〉 = einθ〈Xi|ρxn|Xj〉 (3.4)

The encoding rotation is implemented with a composite pulse (π
2
)θ − (π

2
)Y which provides

a robust rotation with a fixed length [93]. The sign of heteronuclear dipolar interaction

can be virtually changed by sandwiching the evolution period with π rotations on the

central spin, which results in an echo signal after the second evolution period at time 2T .

During the encoding step, the density matrix terms gain phase factors proportional to the

number of their correlated spins einθ. These phase factors are observed at the end of the

experiment. A decoupling sequence is applied to remove environment interactions during

the detection to achieve the maximum signal-to-noise ratio.
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(φ2 )
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(φ31)

(π 2)θ

Figure 3.2: Pulse program for implementing the MCD experiment.

Table 3.1: Phase table shows phase cycling implementation of cyclops and spin temperature

alteration. 31P phase indicates the phase of central spin after cross polarization step.

φ1 φ10 φ2
31P phase φ3 φ31

Y X X X X X

Ȳ X X X̄ X X̄

Y X Y Y X Ȳ

Ȳ X Y Ȳ X Y

Y X X X Y X̄

Ȳ X X X̄ Y X

Y X Y Y Y Y

Ȳ X Y Ȳ Y Ȳ

Y X X X X̄ X

Ȳ X X X̄ X̄ X̄

Y X Y Y X̄ Ȳ

Ȳ X Y Ȳ X̄ Y

Y X X X Ȳ X̄

Ȳ X X X̄ Ȳ X

Y X Y Y Ȳ Y

Ȳ X Y Ȳ Ȳ Ȳ
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Table 3.1 indicates the phase cycling for cyclops, exorcycle and spin temperature alter-

ation phase shifts. These phase cycles help with suppression of the imbalances in quadra-

ture detection, eliminate π pulse refocusing imperfections and remove the spurious signal

from direct polarization, respectively.

3.1.2 Analysis of the MCD experiment

To understand the spin physics of the MCD experiment we can look at an example of a

central spin model with two spins in the environment N = 2. After the cross polarization

step the density matrix for the central spin and the environment can be written as

ρ(0) =
1

23
σX⊗1⊗1. (3.5)

The initial state of system-environment is uncorrelated because pre-existing correlations

between the central spin and the environment spins disappear during the spin locking pulse.

Assuming that during the evolution step the homonuclear dipolar interaction in the

environment is completely turned off and the central spin evolves under the heteronuclear

dipolar interaction:

HSE =
1

2
d1{σZ⊗σZ⊗1}+

1

2
d2{σZ⊗1⊗σZ} (3.6)

After the evolution time T the density matrix is:

ρ(T ) =
1

8
{σX⊗1⊗1 cos(d1T ) cos(d2T ) (3.7)

+ σY⊗σZ⊗1 sin(d1T ) cos(d2T ) + σY⊗1⊗σZ cos(d1T ) sin(d2T )

− σX⊗σZ⊗σZ sin(d1T ) sin(d2T )}.

Collective rotation of environment spins by θ about the x axis will add powers of factors
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of cos(θ) according to the number of σZ operators:

RX(θ) = exp(i
θ

2

∑
i

σiX) (3.8)

ρθ = RX(θ).ρ(T ).R
†
X(θ) (3.9)

=
1

8

{
σX⊗1⊗1 cos(d1T ) cos(d2T ) (3.10)

+ σY⊗{σZ cos(θ) + σY sin(θ)}⊗1 sin(d1T ) cos(d2T )

+ σY⊗1⊗{σZ cos(θ) + σY sin(θ)} cos(d1T ) sin(d2T )

− σX⊗{σZ cos(θ) + σY sin(θ)}⊗{σZ cos(θ) + σY sin(θ)} sin(d1T ) sin(d2T )
}

=
1

8

{
σX⊗1⊗1 cos(d1T ) cos(d2T ) (3.11)

+ cos(θ){σY⊗σZ⊗1 sin(d1T ) cos(d2T ) + σY⊗1⊗σZ cos(d1T ) sin(d2T )}
+ sin(θ){σY⊗σY⊗1 sin(d1T ) cos(d2T ) + σY⊗1⊗σY cos(d1T ) sin(d2T )}
− {cos(θ)2σX⊗σZ⊗σZ + sin(θ)2σX⊗σY⊗σY} sin(d1T ) sin(d2T )

− cos(θ) sin(θ){σX⊗σZ⊗σY + σX⊗σY⊗σZ} sin(d1T ) sin(d2T )
}
.

Notice that the density matrix terms have gained a cos(θ)n factor where n shows the
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number of their σZ operators. At 2T this density matrix evolves to:

ρ(2T ) =
1

8

{
σX⊗1⊗1 cos(d1T )2 cos(d2T )2 (3.12)

+ cos(d1T ) cos(d2T )
(
σX⊗σY⊗1 sin(d1T ) cos(d2T ) + σX⊗1⊗σY cos(d1T ) sin(d2T )

)
+ σX⊗σY⊗σY cos(d1T ) cos(d2T ) sin(d1T ) sin(d2T )

+ cos(θ){σX⊗1⊗1 sin(d1T )2 cos(d2T )2 + σX⊗1⊗1 cos(d1T )2 sin(d2T )2}
+ cos(θ){σY⊗σZ⊗1 sin(d1T ) cos(d1T ) cos(2d2T )

+ σY⊗1⊗σZ cos(2d1T ) sin(d2T ) cos(d2T )}
+ 2 cos(θ) sin(d1T ) cos(d1T ) sin(d2T ) cos(d2T ){σX⊗σZ⊗σZ}

− sin(θ) sin(d1T ) cos(d2T )
(
σY⊗σY⊗1 cos(d1T ) cos(d2T ) + σX⊗σX⊗1 sin(d1T ) cos(d2T )

− σX⊗σY⊗σZ cos(d1T ) sin(d2T ) + σY⊗σX⊗σZ sin(d1T ) sin(d2T )
)

− sin(θ) cos(d1T ) sin(d2T )
(
σY⊗1⊗σY cos(d1T ) cos(d2T )− σX⊗σZ⊗σY sin(d1T ) cos(d2T )

+ σX⊗1⊗σX cos(d1T ) sin(d2T ) + σY⊗σZ⊗σX sin(d1T ) sin(d2T )
)

+ cos(θ)2 sin(d1T ) sin(d2T )
(
− σX⊗σZ⊗σZ cos(d1T ) cos(d2T )

+ σY⊗1⊗σX sin(d1T ) cos(d2T )− σY⊗σZ⊗1 cos(d1T ) sin(d2T )

+ σX⊗1⊗1 sin(d1T ) sin(d2T )
)

+ sin(θ)2 sin(d1T ) sin(d2T )
(
− σX⊗σY⊗σY cos(d1T ) cos(d2T )

+ σY⊗σX⊗σY sin(d1T ) cos(d2T ) + σY⊗σY⊗σX cos(d1T ) sin(d2T )

+ σX⊗σX⊗σX sin(d1T ) sin(d2T )
)

− sin(θ) cos(θ) sin(d1T ) sin(d2T )
(
σX⊗σZ⊗σY cos(d1T ) cos(d2T )

+ σY⊗1⊗σY sin(d1T ) cos(d2T )− σY⊗σZ⊗σX cos(d1T ) sin(d2T )

+ σX⊗1⊗σX sin(d1T ) sin(d2T )
)

− sin(θ) cos(θ) sin(d1T ) sin(d2T )
(
σX⊗σY⊗σZ cos(d1T ) cos(d2T )

− σY⊗σX⊗σZ sin(d1T ) cos(d2T ) + σY⊗σY⊗1 cos(d1T ) sin(d2T )

− σX⊗σX⊗1 sin(d1T ) sin(d2T )
)}
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Out of all these terms only uncorrelated spin terms, indicated in the first and fourth line,

will contribute to an observable signal. These terms are:

σX⊗1⊗1 cos(d1T )2 cos(d2T )2

cos(θ){σX⊗1⊗1 sin(d1T )2 cos(d2T )2 + σX⊗1⊗1 cos(d1T )2 sin(d2T )2}

The signal amplitude is evaluated by the inner product with the observable operator Ô at

time 2T .

S(2T ) = Tr[ρ(2T )Ô]

=
1

8
Tr
[
{σX⊗1⊗1}.{σX⊗1⊗1}

(
cos(d1T )2 cos(d2T )2 (3.13)

+ cos(θ){cos(d1T )2 sin(d2T )2 + sin(d1T )2 cos(d2T )2}+ cos(θ)2 sin(d1T )2 sin(d2T )2
)]

= cos(d1T )2 cos(d2T )2 (3.14)

+ cos(θ){cos(d1T )2 sin(d2T )2 + sin(d1T )2 cos(d2T )2}
+ cos(θ)2 sin(d1T )2 sin(d2T )2

Consequently, the correlations between the central spin and environment spins are

encoded in the final signal with the encoding factor cos(θ)n, where n = 0, 1, 2 represents

order of multi-spin correlated operators.

The data set containing amplitudes of each of these experiments may be Fourier trans-

formed to evaluate the weight of each coherence order term:

F[S2T ] = cos(d1T )2 cos(d2T )2δ(n) (3.15)

+ {cos(d1T )2 sin(d2T )2 + sin(d1T )2 cos(d2T )2}[1
2
δ(n− 1) +

1

2
δ(n+ 1)]

+ sin(d1T )2 sin(d2T )2[
1

4
δ(n− 2) +

1

2
δ(n) +

1

4
δ(n+ 2)].

This indicates that the amplitude of each coherence order is equal to the square of the

density matrix coefficients, equation 3.7.

Note that all even/odd powers of cos(θ) produce Fourier components at lower even/odd
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orders since we can expand powers of cos(θ)n as cos(nθ):

cos(θ)n =
2

2n

n−1
2∑

k=0

(
n

k

)
cos((n− 2k)θ) n odd (3.16)

cos(θ)n =
1

n

(
n
n
2

)
+

2

2n

n
2
−1∑

k=0

(
n

k

)
cos((n− 2k)θ) n even (3.17)

One can construct a map to transfer the amplitudes of Fourier transformed signal to weights

of correlated spin terms. While this is a valuable calculation, we have developed a more

general interpretation of correlation orders that is not limited to counting the number of

σZ operators and will be discussed in detail in next section.

3.1.3 Simulation

PPh3 has three phenyl rings with 5 hydrogen atoms on each ring. For this simulation we

consider the protons on one ring as the environment. Using the ChemicalData package

in Mathematica we can find the relative positions of the nuclei. PPh3 is a molecule with

cylindrical symmetry and we use rotations with varying azimuthal angle relative to the

external field to access different orientations of the molecule in the powder and calculate

the dipolar coupling constants, figure 2.6. For these simulations the central spin interaction

with protons from one phenyl ring has been averaged over 128 randomly picked azimuthal

angles.

For the purpose of this simulation we assume that the MREV-8 pulse sequence com-

pletely removes the homonuclear dipolar interaction and the environment spins have no

interaction with each other. The average heteronuclear dipolar interaction in the interac-

tion frame of MREV-8 pulse sequence is:

σZ⊗σZ ⇒
1.17

3
(σZ⊗σX + σZ⊗σZ). (3.18)

Since in this simulation of 6 spins the maximum number of achievable correlations in the

system is 5, the encoding pulse θ is incremented in 12 steps from 0 to 2π. The observed

signal at time 2T is Fourier transformed with respect to the encoding angle to extract

the amplitude of multi-correlation spin terms, figure 3.3. As expected initially we start

60



�=� μ�

-4 -2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

Coherence orders

A
m
pl
itu
de

�=��μ�

-4 -2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

Coherence orders

�=��μ�

-4 -2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

Coherence orders

�=���μ�

-4 -2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

Coherence orders

A
m
pl
itu
de

�=���μ�

-4 -2 0 2 4 6

0.0

0.1

0.2

0.3

0.4

0.5

Coherence orders

�=���μ�

-4 -2 0 2 4 6

0.0

0.1

0.2

0.3

0.4

0.5

Coherence orders

Figure 3.3: Simulation of the MCD experiment for one phosphorous nuclei connected to a

ring of 5 protons, averaged over 128 values of azimuthal angle θ. Amplitudes of multi-spin

correlations are presented for 6 evolution times T .

with all the weight in the uncorrelated spin term and multi-spin correlations are created

as evolution time T increases.

A0−A5 amplitudes are associated with the multi-spin correlated terms with correlation

order 0-5, respectively. Figure 3.4 shows the growth curves for these amplitudes as the

evolution time increases. Note that these amplitudes are the square of the weight of

their corresponding multi-spin terms in the ρ(T ) and they provide a picture of the rate of

production and the evolution of multi-spin correlations in the spin system. As expected,

the reduction in the amplitude of the zero correlation spin terms leads to a rise in multi-

spin correlation orders. Notice that this simulation is done on a closed spin system and

its dynamics can be described by a set of unitary operations. As a result the purity of

the composite spin system, Tr[ρ2(t)] , remains constant and the integral of An amplitudes

doesn’t change. This will be helpful in normalizing the experimental data for the MCD
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Figure 3.4: Simulation of the MCD experiment on one phosphorous nuclei connected to

one ring of Hydrogen nuclei in an arbitrary orientation. A0-A5 are amplitudes of multi-spin

correlated spin terms for correlation orders 0-5 between the central spin and environment

spins. The growth of multi-spin correlated terms with the evolution time T , is indicated.

Since this is a simulation of a closed spin system,
∑5

n=0An = cons.. The oscillations

between the An amplitudes at larger evolution times also result from simulating a closed

spin system.

experiment.

3.2 MCD experiment: analysis in the X quantization

axis

In the last section we showed that by using the MCD experiment, the number of σZ

operators in multi-spin correlations can be encoded with a phase factor containing powers of

cos(θ). Because Fourier transformation of cosn(θ) results in Dirac delta functions positioned
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at integer values lower than n, (for odd n see equation 3.16 and for even n see equation

3.17) analyzing such spectra is not straight forward. In this section we look at the concept

of coherence order in a more general form and use an alternative quantization axis to

represent our experimental data more clearly.

In section 1.3.2 we discussed the potential of encoding multi-spin correlations in the x

quantization axis and showed that a density matrix can be transformed to the x basis:

ρX(t) =
k∑

n=−k

Cn(t)P̂n (3.19)

Cn(t) =
N∑
k=0

∑
p

gknp(t) (3.20)

P̂n =
N∑
k=0

∑
p

P̂knp. (3.21)

The observed amplitudes in the MCD experiment are related to the weight of different

multi-spin correlation operators An = |Cn|2. We can introduce a set of basis vectors P̂n
that can be used to project the density matrix to obtain the Cn(t) coefficients.

Consider the central spin setup used for the simulation of the MCD experiment in the

previous section, which contains a 31P spin and five 1H spins in the environment. In this

case the P̂n operators are used to represent correlated spin terms in the environment part

of density matrix with N = 5. This means that the number of spin operators k can be

an integer from zero to five with k = 0 representing the uncorrelated spin term (i.e. the

central spin is correlated with 0 spins in the environment). The correlation order n can go

from −k to k and p depends on the number of possible permutations for specific k and n.

For example for the cases with n = 5,−5 the projective operators are:

P̂n=5 = σX+⊗σX+⊗σX+⊗σX+⊗σX+ (3.22)

P̂n=−5 = σX−⊗σX−⊗σX−⊗σX−⊗σX− (3.23)

or k = 5 and p = 1 since there is only one permutation for the spin operators in this case.

Also notice that the number of operators are the same for n,−n.

Next consider the multi-spin correlation order n = 4, which accepts operators with
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k = 4, 5. The projective operators in this case are:

n = 4, k = 4, p = 5 ⇒ P̂4,1:5 : Permutations{σX+⊗σX+⊗σX+⊗σX+⊗1} (3.24)

n = 4, k = 4, p = 5 ⇒ P̂4,6:10 : Permutations{σX+⊗σX+⊗σX+⊗σX+⊗σX} (3.25)

Each of these multi-spin operators can have 5 different orders which means that p = 5 and

as a result the set of P̂5 operators has 10 members. The number of operators increases for

n = 3:

n = 3, k = 3, p = 10⇒ P̂3,1:10 : Permutations{σX+⊗σX+⊗σX+⊗1⊗1} (3.26)

n = 3, k = 4, p = 20⇒ P̂3,11:30 : Permutations{σX+⊗σX+⊗σX+⊗σX⊗1} (3.27)

n = 3, k = 5, p = 10⇒ P̂3,31:40 : Permutations{σX+⊗σX+⊗σX+⊗σX⊗σX} (3.28)

n = 3, k = 5, p = 5⇒ P̂3,41:45 : Permutations{σX+⊗σX+⊗σX+⊗σX+⊗σX−} (3.29)

So for the n = 3 basis operator set in the case of N = 5 contains 45 members in total. The

number of basis operators grow as n becomes smaller. For the n = 2 case there are 120

operators and for the n = 1 case there are 210 operators in the basis set. Zero correlation

terms n = 0 have a total of 252 multi-spin operators in their basis set.

To find the P̂n operators for negative values of n we just need to exchange the σX+

operators with the σX− and vice versa, and in general Cn(t) is symmetric; Cn(t) = C−n(t).

To build a set for all of these multi-spin operators we use the Permutation function in

Mathematica. The code for generating P̂n operators with N = 5 is attached in Appendix

A.2. These operators are constructed to act as a projector on the composite spin system

with dimension 25+1. Projection of the density matrix ρ(t) with these operators can be

used to determine the weights of different multi-spin correlated terms, Cn(t):

Cn(t) :=
P̂nDimension∑

i

√
Pu[Trenv[(ρ(t)− 1⊗6

26
).P̂n,i]] (3.30)

The purity of a density matrix is defined as Pu[ρ(t)] = Tr[ρ(t)2] and is used as the re-

sult of the MCD experiment is the absolute value of multi-spin amplitudes. A detailed

Mathematica code for evaluation the Cn(t) is included in appendix A.2. Evaluated Cn(t)

coefficients for the simulated density matrix can be compared with the An(t) values from

the simulation of the MCD experiment, figure 3.5. The two simulated values follow each
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Figure 3.5: An(t) obtained by Fourier transforming the MCD experiment signal. Cn(t)

are evaluated by projection of ρ(t) to basis operators of the effective x quantization axis.

That An(t) = |Cn(t)|2 reassures us that the MCD experiment correctly encodes multi-spin

correlated terms.

other very closely, and this confirms the utility of MCD experiment in the detection of

multi-spin correlations between a central spin and its environment.
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As the last example in this section we can investigate the dephasing of the central spin.

We are interested in understanding the results of the Free Induction Decay (FID) of the

central spin. The FID is a decaying signal that results from the loss of the magnetization

vector of the central spin due to fluctuations of the local field induced by the environment

spins. It can be determined by looking at the polarization of the uncorrelated central spin

terms along the x axis. Any correlation between the central spin and the environment

spins results in the loss of observable signal.

FID(t) = Tr[σ+⊗1
5.ρ(t)] (3.31)

The MCD experiment measures the amplitude of zero correlation order terms that consist

of both uncorrelated spin terms n = 0, k = 0 and correlated spin terms with n = 0, k 6= 0,

such as σX+⊗σX-⊗1
3. Only the uncorrelated spin terms, k = 0, contribute to the FID signal

and as a result, the decay of uncorrelated spin terms and the FID signal diverge from each

other when the contribution of the k 6= 0 terms in A0 become significant, see figure 3.6.
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Figure 3.6: Simulation of the MCD experiment on one phosphorous nuclei connected to

one ring of protons averaged over 128 orientations. The FID signal corresponds to the

decay of uncorrelated terms. A0 amplitude on the other hand consists of the contributions

from the uncorrelated spin terms n = 0, k = 0 as well as the terms with n = 0, k 6= 0.
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3.3 MCD Experimental results

The MCD experiment was performed using 32 steps to increment encoding rotations θ

which, according to Nyquist theorem, allows for detection of multi-spin correlations up to

order 16. The experiment was carried out with 12 different evolution times T , covering

the production of multi-spin correlated terms up to 532 µs. The step size in evolution

time is set by the length of MREV-8 sequence, which is 38µs in our experiment; using

RF pulses π
2

: 1.99µs and 3.2µs delays, figure 2.2a. A fast Analogue to Digital Converter

(FADC) provide us with a sampling rate of 10MHz. The scans are accumulated with a

10 s relaxation delay, which is almost four times longer than the proton T1. Data recorded

after each θ step were Fourier transformed and integrated to find the signal amplitude

S(2T ), plotted in figure 3.7.
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Figure 3.7: Four sets of the MCD experimental results are presented. Data points indicate

the amplitude of signal S2T , accumulated in 16 scans for a designated θ and T value. θ is

changed from 0 to 8π in 128 steps. Errors bars are determined with the inverse of SNR.
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Fourier transforming this data set with respect to the encoding pulse θ returns the

amplitudes for different correlated spin terms An, figure 3.8. In these plots the amplitude

of the integer values of n are the weights of the correlation orders and all non-integer values

are noise. Note that correlation orders are symmetric, An = A−n, as expected.

Consequently, the evolution of the central spin and the spin environment is captured

in these plots. The MCD results provide a snapshot of the correlations of the central spin

and the environment at various points during the evolution. Using the MCD experiment,

one can directly observe the the progress in production of correlations between the central

spin and the environment and map the complexity of the environment in time. At a short

evolution times, where correlations are not yet developed, the MCD results indicate that

a large number of spins in the environment are not correlated to the central spin, n = 0,

and only clusters of one correlated spin n = 1 exist. As the evolution goes on, larger

correlations are produced while the amplitude of smaller correlations increase, resulting in

a broadening of the An distribution.

There are some imperfections in the MCD experiment. The PPh3 molecules are not

isolated and a weak homonuclear dipolar interaction between 31P nuclei exists. In addi-

tion, the MREV-8 sequence does not remove the second order and higher order terms of

homonuclear dipolar interaction in the environment. Random spin flips, i.e. T1 relaxation,

can also reduce the amplitude of the final signal. All of these factors make the detection of

correlation amplitudes An noisy, with increasing noise levels for longer evolution times. As

a consequence, in the experiments with short evolution times T , the maximum observed

correlation order nmax corresponds to the maximum number of correlated spins in the en-

vironment, while in the experiments with long evolution times, the observed nmax sets a

lower limit for existing multi-spin correlations between the central spin and environment.
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Figure 3.8: Multi-spin correlation detection (MCD) experimental results show the growth

of correlation between the central spin and the environment.
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3.3.1 MCD growth curves

These MCD results may be plotted to show the dynamics of each correlated spin term as

a function of the evolution time T . Figure 3.9 shows the decay of n = 0 or uncorrelated

spin terms along with the growth of multi-spin correlations n = 1, 2, 3, · · · , as the evolution

time T is increased. The maximum number of correlated spins observed in this experiment

is n = 9.

Notice that all of the correlation orders show a decaying trend at large evolution times.

This decay results from imperfections in the implementation of the MCD experiment. The

extent of this unwanted decay of observable signal can be characterized by looking at

the decay of the correlation amplitudes
∑
An(T ). Recall that for a perfectly closed spin

system with the unitary dynamics the purity of the density matrix, which is evaluated by

a sum over all An amplitudes, stays constant. Figure 3.10 shows the decay of this sum

as a function of the evolution time which has Gaussian characteristics. A Gaussian decay

function is fitted to the
∑
An(T ) data points with characteristic decay time of 470± 8µs,

which corresponds to a characteristic decay time of T2 = 940 ± 20µs for the Carr-Purcell

echo experiment and a Gaussian spectrum with a line-width of 339 Hz.

Assuming that all of the multi-spin correlation terms are affected equally by imper-

fections in the experiment and decay with the same rate, one can use the
∑
An(T ) data

to normalize the growth curves. These normalized growth curves show the progress in

correlation of the environment spins to the central spin, figure 3.11.

These growth curves reveal interesting features of the multi-spin correlation dynamics.

First of all, notice that the larger correlations are produced from the smaller ones. In the

initial density matrix ρ(T=0) the central spin is uncorrelated to the environment and all

of the multi-spin correlations except n = 0, have zero weight. The evolution under the

system-environment Hamiltonian results in a loss of weight for uncorrelated central spins

while the number of central spin correlated with one environmental spin, A1, increases

rapidly. At the same time there is an increase in the weight of n = 2 correlations although

with a smaller slope. Correlation orders n = 3 and 4 seem to have no activity initially but

gain weight at larger evolution times. The existence of an onset time for larger correlation

orders has been observed before in a network of spins connected by homonuclear dipolar

interactions [2]. The onset time indicates the time needed to reach correlation orders
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Figure 3.9: MCD experimental results, showing the growth of multi-spin correlations be-

tween the system and the environment. Higher correlation orders become observable at

longer evolution times. Error bars are determined using the SNR.
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Figure 3.10: In the MCD experiment, the total observed correlation amplitude
∑
An(T )

decay due to imperfections in the experiment. A Gaussian decay curve is fitted to the data

with a characteristic decay time of 470 µs. This corresponds to a characteristic decay time

of T2 = 940µs for the Carr-Purcell echo experiment and a line-width of 339 Hz for the

Gaussian spectrum.

in the system and depends on the coupling strength between the central spin and the

environment.

Another interesting feature of correlation growth curves in figure 3.11 is their long time

behavior. The correlation amplitudes A0 and A2 have similar values at long evolution times.

The long time amplitude of A0 and A2 are both around 20% while about 35% of spins have

one correlation and about 10% are in n = 3 clusters. Initially all of the central spins in the

ensemble are uncorrelated with the environment, i.e. A0 = 1. The density matrix of the

central spin goes from uncorrelated towards having first order correlations, n = 1 terms,

due to interaction with the most strongly coupled spin in the environment. This cause

a decay in A0 amplitude and an increase in A1. Although the majority of uncorrelated

central spins vanish due to their interaction with the environment, the amplitude of A0

does not go to zero. This can be understood by following the dynamics of spins in n = 1

clusters. Assume that the correlation between the central spin and the environment is
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Figure 3.11: Growth of multi-spin correlations in the MCD experiment. Data is normalized

to
∑
An(T ) = 1.
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σcsX σX+. Adding another spin will produce four terms:

σcsX σX+σX+

σcsX σX−σX−

σcsX σX+σX−

σcsX σX−σX+

where the first two terms belong to n = 2 correlations and the last two terms are from n = 0

clusters. Adding one spin to n = 1 operator will result in equal production of n = 0 and

n = 2, and this translates into similar values for these correlation orders. Consequently, we

observe that the decay of uncorrelated terms causes the growth of A1, which in turn gives

its weight to n = 0 and n = 2 terms while A1 slightly drops. On the other hand, although

all the uncorrelated spins become correlated to the environment, the decay of A0 slows

down due to production of n = 0 alongside n = 2 correlations. Next, n = 3 correlations

arise from n = 2 terms in a process that also produce n = 1 terms.

The MCD experiment reveals the multi-spin dynamics of the central spin evolution by

detection of multi-spin correlation amplitudes. When the central spin becomes correlated

with a spin in the environment, their correlated state contains the initial quantum infor-

mation encoded on the central spin. Consequently, the rate of production for different

orders of correlated states between the central spin and the environment can map the flow

of quantum information from the central spin to the environment.
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3.4 Quantifying the information content of the envi-

ronment

An important step in understanding the flow of quantum information to the environment

is to have a metric for the information content of the environment. Initially at the fully

mixed state, the environment has no correlation to the central spin and it is at maximum

entropy. The interaction of the central spin with the environment produces clusters of

multi-spin correlations with growing orders and amplitudes. A good metric for quantifying

the information content of the environment is the number of environment spins in the

largest observable cluster in the environment.

One of the advantages of encoding the correlation order in the x quantization axis is that

in this frame the maximum number of correlated spins is equal to the largest correlation

order, nmax. Since the encoding of quantum correlations is done with rotations along the

x axis, the number of spins is detectable as long as the correlated operator contains only

σZ and σY operators. In our experiment the evolution Hamiltonian is:

H̃SE =
1.17

3

∑
i

di(σ
cs
Z
⊗σiX + σcsZ

⊗σiZ) (3.32)

This Hamiltonian is symmetric and always produce the same number of σZ and σX op-

erators in the environment. To demonstrate how rotation along x axis can reveal the

maximum number of correlated spins, lets follow encoding of a density matrix term with

nmax correlated spins.

σcsX
⊗σZ⊗σZ · · ·σZ︸ ︷︷ ︸

nmax

(3.33)

Application of the encoding pulse θx on the environment spins results in the following

terms:

σcsX
⊗σZ⊗σZ · · ·σZ cos(θ)nmax

σcsX
⊗σY⊗σZ · · ·σZ cos(θ)(nmax−1) sin(θ)

...

σcsX
⊗σY⊗σY · · ·σY sin(θ)nmax
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After the evolution under the inverted Hamiltonian all of the spin terms refocus to the

initial density matrix while they carry their θ dependent coefficients. Assuming that nmax
is an even number, Fourier transforming cos(θ)nmax leads to:

F[cos(θ)nmax ] =

√
π

2
2(1−nmax){

(
nmax

0

)
(δ[n− nmax] + δ[n+ nmax])

+
(
nmax

2

)
(δ[n− nmax + 2] + δ[n+ nmax − 2])

...

+
(
nmax

nmax

)
δ[n]}.

(3.34)

Therefore, the result of Fourier transforming the encoded signal has a peak at n = nmax.

A similar result is reached for odd correlation orders as well.

Figure 3.12 indicates the progress of nmax with the evolution time. The linear increase

in the environment size is a result of limited resolution due to the fact that the cluster size is

an integer value. In addition, as the correlation order increases the correlation amplitudes

become smaller in general, and it becomes more challenging to distinguish them from the

noise. As a result, the size of the maximum observable correlation stays constant for large

evolution times.

In order to improve the metric for information content of the environment we may look

at the distribution of the correlation orders. Note that in figure 3.12 while the size of

the largest spin cluster stays the same after 350µs, the distribution of correlation orders

in these experiments are still changing in figure 3.8. Previously, the full-width at half

height (FWHH) of the distribution of coherence orders was proposed as a measure for

the average size of the correlated spin clusters or k, where FWHH= 2
√

(ln 2)k for large

numbers of correlated spins [51, 94]. In other words, the variance, or the second moment of

the distribution of the multi-spin correlation orders, is linearly proportional to the number

of correlated spins k. We are going to refer to this quantity as the “average cluster size”

or “Average Hamming weight” of the environment. Figure 3.12 is a comparison between

the average cluster size of the environment and the maximum observed correlation order

for the MCD data.

There are two interesting features in this plot. First consider the initial growth of

the average cluster size which shows a parabolic behavior. The rate of growth for a spin
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Figure 3.12: Measuring correlated spin cluster size in the MCD experiment. The red dots

represent the maximum correlation order observed for each evolution time of the MCD

experiment. The blue dots indicate the second moment of the correlation order distribution

evaluated up to the maximum cluster size. The second moment of the correlation order

distribution, is linearly proportional to the number of correlated spins.

cluster is a function of its dimension. A one-dimensional spin system shows a linear rate

while the two and three-dimensional systems grow with increasing growth rates [63, 2,

95]. Comparing the growth rate in this case with the growth rate of a three-dimensional

network of homonuclear-coupled spins may lead to a characterization of the dimension of

the environment for a given central spin system. In contrast to a very large environment,

in our experiment the growth of correlation orders slows down due to the limited numbers

of spins in the environment.
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3.5 Conclusion

Detection of the correlations between the central spin and the environment helps in under-

standing the evolution of quantum information in the central spin model. Here we have

directly measured this via the Multi-spin Correlation Detection or MCD experiment. By

running a set of MCD experiments with increasing evolution time we demonstrate the

growth of correlations between the central spin and the environment. The shape of this

growth for multi-spin correlations may be used to map the flow of quantum information

from the central spin to the environment. The extent of the growth may also be used as a

measure of the information content of the environment.
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Chapter 4

Quantum information dynamics in

the environment

In the last chapter we established an experimental method to directly detect multi-spin

correlations between the central spin and its environment. When the central spin is corre-

lated with environment spins its quantum information is shared with them in the form of

multi-spin operators. Evolution of the central spin system from a separable state to a cor-

related state with the environment spins may be considered as flow of quantum information

from the central spin to the environment.

In this chapter, we focus on the sensitivity of the environment, particularly the multi-

spin correlations between the central spin and the environment, to a perturbation. Here the

perturbation is caused by the homonuclear dipolar interaction between the environment

spins. We wish to learn how this perturbation influences the different orders of multi-

spin operators and if the effect of the perturbation changes depending on the state of the

environment. Particularly we would like to know if the higher orders of correlated spins

are more sensitive to perturbation. To address these questions we probe the evolution of

multi-spin correlations between the central spin and the environment under the internal

dynamics of the environment.

Understanding the sensitivity of multi-spin correlated operators to a perturbation will

also help in explaining the role of internal interactions of the environment in the decoher-

ence process.
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Interference between the memory of environment and the central spin is another impor-

tant problem that can be studied here. If the multi-spin correlated terms, which contain

the shared information of the central spin and the environment, are long-lasting under the

internal interactions of the environment, they can interfere with the evolution of the quan-

tum information on the central spin. On the other hand if during the mixing processes the

correlations between the central spin and the environment get mixed in short times relative

to the central spin-environment interaction, the interference with the quantum information

on the central spin is expected to be very small.

4.1 The Multi-spin Correlation Scrambling Detection

(MCSD) Experiment

The Multi-spin Correlation Scrambling Detection or MCSD experiment is designed to

observe the mixing of quantum information in the environment. The MCSD is an extension

of the MCD experiment which enables us to directly detect the dynamics of individual

correlated operators in the environment.

Figure 4.1 shows the various steps of the experiment. The general idea is to have an

echo signal which is encoded by the order of correlations between the central spin and the

environment similar to the MCD experiment, while we perturb the environment at some

point. To do this a mixing window is introduced after the first evolution step and before

the encoding pulses are applied, in which the central spin is decoupled and the homonuclear

dipolar interaction between environment spins is turned on.

HD =
∑
j<k

Djk(σ
j
Zσ

k
Z −

1

4
(σj+σ

k
− + σj−σ

k
+)) (4.1)

Djk =
γ2~2

r3
jk

(1− 3 cos θ2
jk).

Notice that the coupling constants for homonuclear dipolar interaction Djk are completely

different from the heteronuclear coupling constants to the central spin, and that there are

spins strongly coupled to the other spins in the environment which have a weak coupling

to the central spin. Evolution under the flip-flop term of the homonuclear dipolar coupling
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Figure 4.1: Multi-spin Correlation Scrambling Detection or MCSD experiment is designed

to probe the decay of correlation orders caused by mixing in the environment.

exchanges the state of these spins in the environment:

Uflip-flop = exp(−iDjkt

4
(σj+σ

k
− + σj−σ

k
+)) (4.2)

Uflip-flop(σ
j
Z
⊗1k)U †flip-flop =

1

2
(1 + cos(Djkt))σ

j
Z
⊗1k +

1

2
(1− cos(Djkt))1

j⊗σkZ (4.3)

+ sin(Djkt)(σ
j
X
⊗σkY − σjY⊗σkX).

As a result the revival of the initial density matrix after the second evolution period

becomes incomplete. The decay of correlation amplitudes in the MCSD experiment are

used to probe the sensitivity of the environment to the mixing.

Figure 4.2 presents the pulse program for implementating of the MCSD experiment.

The mixing of quantum information in the environment happens in a window after the

evolution step, during which the homonuclear dipolar interaction is turned on by a break

in the application of the MREV-8 sequence. The heteronuclear dipolar interaction, on the

other hand, is refocused with the use of the Hahn echo sequence, (π
2
)X − (π)X − (π

2
)X̄ on

the central spin. This pulse sequence cancels the zeroth order average Hamiltonian term of
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Figure 4.2: Pulse sequence designed for the detection of Multi-spin Correlation after mixing

of quantum information, the MCSD experiment

1H

31P

(π 2)Y

Cross Polarization T

MREV-8 MREV-8 

T

(π 2)θ

Decoupling 

Detection 

CP contact 

CP contact 

Scrambling 

(π 2)φ1

(φ10 )

(φ2 ) (φ31)

(π 2)φ4
(π 2)φ5

(π )φ3

Table 4.1: Phase table shows phase cycling implementation of Cyclopes, Exorcycle and

spin temperature alteration phase shifts.

φ1 φ10 φ2
31P phase φ4 φ3 φ5 Receiver

Y X X X X X X̄ X

Ȳ X X X̄ X̄ X X X̄

Y X Y Y Y X Y Ȳ

Ȳ X Y Ȳ Ȳ X Ȳ Y

Y X X X X Y X X̄

Ȳ X X X̄ X̄ Y X̄ X

Y X Y Y Y Y Ȳ Y

Ȳ X Y Ȳ Ȳ Y Y Ȳ

Y X X X X X̄ X̄ X

Ȳ X X X̄ X̄ X̄ X X̄

Y X Y Y Y X̄ Y Ȳ

Ȳ X Y Ȳ Ȳ X̄ Ȳ Y

Y X X X X Ȳ X X̄

Ȳ X X X̄ X̄ Ȳ X̄ X

Y X Y Y Y Ȳ Y Y

Ȳ X Y Ȳ Ȳ Ȳ Ȳ Ȳ
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HSE during the mixing window and overall plays the role of a (π)X pulse to invert the sign

of the HSE for the second evolution interval. The Exorcycle phase cycle is used to remove

the errors caused by imperfections in the application of the RF pulses in the Hahn echo

sequence. The duration of the mixing window is increased in steps of 2µs to capture the

dynamics of correlations in the environment. The encoding pulse is applied at the end of

this window. During the second evolution interval, the spin operators that were produced

during the first evolution step will refocus and will contribute to the observable signal.

All the other spin terms, caused by the mixing between the environment spins can not be

refocused and as a result the echo amplitude will decay.

4.2 MCSD results:

The MCSD experiments were performed with seven different evolution times:

T = 76, 152, 228, 304, 380, 456, 532µs

corresponding to l = 2, 4, 6, 8, 10, 12, 14 cycles of MREV-8 sequences in the evolution in-

terval. For each evolution time the duration of mixing windows were varied from 0 to 30

µs in steps of 2µs. The step size and maximum length of the window were chosen to cover

the complete dynamics of multi-spin correlations in the environment with an appropriate

resolution, figure 4.3 and 4.4. These plots present the decay of correlation amplitudes for

fixed evolution times. The horizontal axis indicates the length of the mixing window τ and

a longer mixing (or equivalently a stronger perturbation in the environment) results in a

greater loss of echo amplitude.

At τ = 0 the amplitude of correlation orders reflects the results of the MCD experiment

and they show a decay same as the MCD data set.

The MCSD experimental results demonstrate that as the size of correlations between the

central spin and the environment increase with the evolution time, the decay of correlation

amplitudes happens faster as well. These decay rates and the influence of environment

size on them are different for various correlation orders. To get more insight in the decay

dynamics we fit the decay of each correlation amplitude to a Gaussian function, figure 4.5.
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Figure 4.3: MCSD experimental results indicate the decay of amplitude of multi-spin

correlation terms An(T ) for 2,4,6,8 MREV-8 cycles. The error bars are evaluated from the

signal-to-noise ratio of correlation amplitudes.
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Figure 4.4: MCSD experimental results indicate the decay of amplitude of multi-spin

correlation terms An(T ) for 10,12,14 MREV-8 cycles.
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Figure 4.5: The changes in the decay characteristic times for correlation amplitudes for

fixed evolution times, fitted to Gaussian functions. Continuous line indicates the mean of

all decay characteristic times.
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Notice that in the first two plots, T = 152µs and 228µs, the decay rate increases with

correlation order. This is expected as there are more spins involved in larger correlations

and therefore the probability of swap increases with the number of spins involved. Now the

question is why the difference between decay rates of various correlation orders becomes

smaller as the evolution time increases? This is due to the fact that the decay rate strongly

depends on the number of spins involved in a correlation operator. When the average size

of the correlations between the central spin and the environment is small, the number

of spins in correlation terms are close to the order of correlation. As an example for

T = 152µs the majority of n = 1 correlation terms are produced by (σcsX
⊗σZ) operators

since the amplitude of n = 3 and larger correlation orders are very small. By comparison

for long evolution times where the average size of correlation is large, operators with a

higher number of spins such as (σcsX
⊗σZ⊗σZ⊗σZ) and (σcsX

⊗σZ⊗σZ⊗σZ⊗σZ⊗σZ) also contribute

to the n = 1 term. Since the number of spins in these operator is large, they are susceptible

to higher probability of spin swaps. As a result decay rate of correlation orders does not

greatly change when the average correlation size of the environment is large.

4.3 Coin game

In the MCD and MCSD experiments we study the dynamics of multi-spin correlations

between the central spin and the spin environment. We can measure the distribution of

multi-spin correlations for different evolution times and look at the effect of the size of

correlations between the central spin and the environment on the decay of correlation

amplitudes. In this section we are going to use a classical simulation to motivate the

concept of information content effect on the mixing dynamics.

We have designed a classical game to imitate the dynamics of spin swap in the central

spin problem. Suppose that there are N coins all set to heads, representing N spins in the

environment. In the spin environment, complete revival of the echo signal happens when

all the interactions between the central spin and the environment are refocused. After

the evolution under the HSE for time T spins in the environment become correlated to

the central spin and the average number of spins involved in these correlations can be

measured with the MCD experiment. Let us assume that for a particular evolution time

Tk, on average k spins are correlated with the central spin. After the evolution interval,
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if there is no mixing window, evolution under the inverse of HSE will evolve the k spins

back to the initial uncorrelated state and we get a complete revival of observable signal at

time 2Tk. In our coin game this correlation to the central spin is simulated with flipping k

random coins from heads to tails, where each coin may be flipped only once. The evolution

under the inverse Hamiltonian is simulated with flipping the same coins again, which brings

the final state of all the coins to heads and results in a complete revival of the initial state

of the coins. The flip-flop interaction in the spin system results in the swaps between

correlated spins and results in the decay of the observable signal amplitude. Random swap

actions between coins can be used to simulate this interaction in the environment, with

the restriction that each swap action can only happen once. In this section k random coins

are flipped at first round of coin flipping, then we swap two random coins. If they are both

Heads or Tails no change in the order of coins is made and after the second round of coin

flips the coin state will be all Heads. Now consider a swap between two opposite coins (the

first coin is Heads and the second one is Tails or vise versa). In this case after the second

round of coin flips, 2
N

of the initial order is lost. For k < N/2 increasing k will increase

the probability of swapping opposite coins, which we will call a successful coin swap. For

N total coins, with k random coin flips, if we swap two coins the probability of having a

successful swap is:

Psswap = PTH + PHT

=
k

N

N − k
N − 1

+
N − k
N

k

N − 1

= 2
kN − k2

N2 −N
· (4.4)

2
N
Psswap gives the distance of the final state of the coins from their initial state. In this

classical way of thinking about the central spin we are relating the state of coins to the

local field observed by the central spin and the changes caused by fluctuating spins in the

environment. If all the coins are on heads after the second round of coin flips, the initial

local field is revived. Any changes in the state of coins causes a disturbance in the local

field observed by the central spin which leads to imperfections in the revival, or a loss of

signal. Consequently, the changes in the local field caused by each swap action may be

written as 2
N
Psswap. For this simple example we are ignoring cases in which the same two

spins are swapped twice and that means that after each swap the probability of having a
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successful swap, remains unchanged. Therefore the probability of success for m coin swaps

is considered to be m times the probability of success for one coin swap.

To test the capability of our classical game we can evaluate the changes in the local

field arising from spin flips in accordance with equation 4.4 and compare the results with

the decay of echo amplitudes from last section. Recall that the echo signal amplitudes are

the square of weights of density matrix terms, equation 3.14, and any change in the local

field will show up as a squared quantity in the final signal amplitude. Let us introduce an

echo amplitude based on the probability of doing successful coin swaps. We call this Coin

Echo Amplitude (CEA):

CEA(m,k,N) := (1− 2m

N
Psswap)

2

= (1− 4m

N

kN − k2

N2 −N
)2 (4.5)

with m representing the number of swap actions, k describing the number of flipped coins

for a group of N total coins. Figure 4.6 presents a comparison between the CEA prediction

and the experimental data from the scrambling decay of the echo amplitude for different

average cluster sizes in the environment. For the evaluation of the CEA we used the number

of spins in the environment N = 15, k was set according to the average size of correlations

in corresponding evolution time T while m is varied from 1 to 15.

Although this classical game falls short in accounting for the details of interactions

between spins and is not designed to show complexities in the dynamics of multi-spin

correlations, it can motivate our model for the spin environment and its mixing dynamics.

Most importantly it shows the effect of average correlation size in the environment on

the rate of decay due to spin swaps. This result once again points at the importance of

understanding the distribution of multi-spin correlations between the central spin and the

environment for describing the evolution of the central spin and making predictions about

signal decay rates.
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Figure 4.6: CEA for seven different k values compared with decay of the total signal of

seven evolution times.
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Chapter 5

The sensitivity of quantum

information to environment

perturbations

Sensitivity to small perturbation is a key property when describing either classical or

quantum dynamics. For the central spin problem the perturbation is normally taken to be

the dipolar coupling in the environment which results in a mixing of the environment spins

through the flip-flop term. The correlations that the perturbation is effecting are those

established via the heteronuclear coupling of the central spin with the environment spins.

We are interested in characterizing the expected increase in sensitivity to perturbations

as the extent of correlations between the central spin and the environment increases.

5.1 Environment sensitivity to perturbation

In order to have a clear picture of the central spin dynamics, we have separated in time

the processes that normally occur simultaneously: the growth of correlations between

the central spin and the environment, and the mixing of the environment spins. This

separation makes it straight forward to quantify the extent of each process and connects

well to out-of-time-order correlation functions.
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Before exploring the experimental design, it is important to look more carefully at the

connectivity of the central spin to the environment. The 31P central spin is coupled to the
1H environment spins via a through space heteronuclear dipolar interaction. During the

build up of the correlations between the central spin and the environment, the homonuclear

dipolar interaction, 1H to 1H, is suppressed. Therefore, the effective Hamiltonian for the

interaction between the central spin and the N spins in the environment is:

N∑
k=1

ωk(3 cos2 θk − 1)σcsZ
⊗(σkX + σkZ). (5.1)

The (σkX + σkZ) environment dependence arises from the average Hamiltonian of the envi-

ronment spins under the MREV-8 multiple pulse sequence. This is described completely in

chapter 2. Here we are interested in the angular dependence of the heteronuclear dipolar

coupling. The radial dependence is captured in ωk.

The dipolar Hamiltonian is a second rank spherical tensor with the spatial dependency

of (3 cos θ − 1)2 to the angle between the vector connecting two spins and the static field.

Therefore, there is a cone defined by the magic angle θm = arctan
√

2 = 54.7 degrees,

along which spins have no interaction with each other. Figure 5.1 presents an orientation

of the PPh3 molecule in which two of the spins in the environment are on the magic

angle cone and have no heteronuclear dipolar interaction to the central spin despite having

homonuclear dipolar interaction with other spins in the environment. These spins will not

participate in any correlations to the central spin during the evolution but they may swap

with other environmental spins during the mixing window, and become correlated to the

central spin indirectly. This correlation can not be revived back to the initial state during

the second evolution interval and ultimately results in the loss of quantum information in

the environment. As a result, spins in the environment can be divided in two groups of

“connected” and “not-connected” spin baths.

Considering the distribution of the heteronuclear dipolar coupling we can look at the

average number of strongly correlated spins to estimate the size of each bath.Figure 5.1 also

shows that for each frequency, how many spins have larger heteronuclear dipolar frequencies

on average, in a simulation of 2500 random orientations of the PPh3 molecule. In the time

scale of our longest experiment with T = 532µs on average 5.9 spins in the environment

have a dipolar coupling stronger than 940 Hz to the central spin, and can strongly couple

to it. The rest of spins in the environment are part of not-coupled spin bath.
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Figure 5.1: The angular dependence of the central spin coupling to the environment spins

results in the environment having two distinct pools of coupled and not-coupled spins.

The not-coupled bath consists of those environmental spins that are only weakly coupled

to the central spin. They sit near two cones oriented at the magic angle to the external

magnetic field. Top right: The coupled(Red) and not-coupled(Blue) spin baths. Eight

spins with heteronuclear dipolar interactions smaller than 1000 Hz belong to not-coupled

bath. Top left: Distribution of heteronuclear dipolar coupling between the central spin and

environment spins. The vertical axis depicts the average number of spins with frequencies

larger than heteronuclear dipolar frequencies in the horizontal axis. This simulation is

done by averaging over 2500 random orientation of PPh3.
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There are two consequences:

• The correlations that are developed to the central spin never include all of the envi-

ronment spins

• Since the environment is fully coupled by the perturbation, we will never observe a

fully correlated state that is insensitive to the perturbation

Consider a simplified version of the MCSD experiment in which no encoding pulse is

applied and the amplitude of the echo signal is observed at the end of experiment. The

experiment starts with the initial state ρ0 = ρCS⊗1
2

⊗N
and after evolution time T and a

mixing window of length τ the resulting signal is determined by the overlap between the

initial and the final density matrix.

S(2T,τ) = Tr[ρ(2T+τ)ρ0]. (5.2)

First let’s take a look at this experiment when no mixing is applied τ = 0. The

evolution under the heteronuclear dipolar interaction between the central spin and spins

in the environment is described by a unitary Uevo:

Uevo(T ) = e−iHevoT (5.3)

Hevo = α
N∑
j=1

dj(σ
cs
Z
⊗σjZ + σcsZ

⊗σjX) (5.4)

dj =
γHγP~2

r3
j

(1− 3 cos θ2
j ) (5.5)

First notice that if no mixing is applied, the evolution of the density matrix in this exper-

iment results in the complete revival of the initial state:

ρ0
Hevo,T−−−−−→

evolution
Uevo(T ).ρ0.U

†
evo(T )

ρ(T )
−Hevo,T−−−−−→
evolution

U †evo(T ).Uevo(T ).ρ0.U
†
evo(T )(τ).Uevo(T )

ρ(2T ) = ρ0 (5.6)

⇒ S(2T ) = Tr[ρ(2T )ρ0] = 1. (5.7)
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Now when the mixing window is introduced, spins in the environment evolve under the

homonuclear dipolar interaction:

Umix(τ) = e−iHmixτ (5.8)

Hmix = 1cs⊗

env∑
j<k

Djk(σ
j
Zσ

k
Z −

1

4
(σj+σ

k
− + σj−σ

k
+)) (5.9)

Djk =
γ2
H~2

r3
jk

(1− 3 cos θ2
jk).

Evolution of the density matrix and the observable signal can then be described as:

ρ0
Hevo,T−−−−−→

evolution
Uevo(T ).ρ0.U

†
evo(T )

ρ(T )
Hmix,τ−−−−→
mixing

Umix(τ).Uevo(T ).ρ0.U
†
evo(T ).U †mix(τ)

ρ(T+τ)
−Hevo,T−−−−−→
evolution

U †evo(T ).Umix(τ).Uevo(T ).ρ0.U
†
evo(T ).U †mix(τ).Uevo(T ) (5.10)

⇒ S(2T+τ) = Tr[ρ(2T+τ)ρ0]

= Tr[U †evo(T ).Umix(τ).Uevo(T ).ρ0.U
†
evo(T ).U †mix(τ).Uevo(T ).ρ0] (5.11)

The echo signal amplitude is reduced by the perturbation when it interferes with the refo-

cusing of the heteronuclear dipolar coupling. The sensitivity of the central spin/environment

correlations to the mixing is determined by the commutation relation between the mixing

Hamiltonian and the unitary evolution and the extent of environmental correlations affect

this. In section 5.2, the data set for this experiment is presented and discussed. In the next

section a correlation function is introduced which has the same form as this experiment.

5.1.1 Out of Time Order Correlations

Out of Time Order Correlations (OTOC) are useful for describing the mixing of quantum

information in a strongly interacting quantum system. They are measured via an echo

experiment generally by time-reversing a multi-body Hamiltonian. In the MCSD experi-

ment, correlations of the central spin to environment spins become partially mixed by the

homonuclear interaction between the environment spins. As a result, they are perfectly

suited for analysis with OTOC correlation functions.
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Previous studies of mixing of quantum information in black holes and condensed matter

systems use OTOC functions to provide a measure for loss of quantum information in them

[96, 32, 31, 97]. As a measure for the time scale of quantum information mixing, OTOC

may be used to characterize the thermalization of the density matrix in a closed system

[32, 31, 98, 99, 100, 101]. The mixing time in thermalization context is defined as the time

needed for the evolution of the spin system to reach a state were spins are indistinguishable

from each other i.e. the entropy of spin system reaches to a significant ratio of the fully

mixed state.

The OTOC metric is defined as

F(T ) =
〈
W †
TV
†WTV

〉
(5.12)

where V and W are two initially commuting unitary operators and WT = U(−T ) ·W · U(T )

in the Heisenberg picture. U(T ) = exp[−iHT ] is the unitary for the evolution of the spins

under the interaction Hamiltonian for time T . In a many-body system with non-trivial

interactions, this metric quantifies the spread of quantum information or the rate in which

two initially commuting operators V and W lose their commutivity [31].〈
|[WT , V ]|2

〉
= 2(1− Re[F(T )]) (5.13)

To connect the signal from our echo experiment in equation 5.10 with the OTOC metric

we define:

Wτ = Umix(τ). (5.14)

The OTOC experiment is normally proposed as an echo measurement with a fixed mixing

window used as the perturbation. The results lead to a map of reduced refocusing under

the evolution. It is necessary that the mixing Hamiltonian commute with the initial state.

The normal arguments are in the Heisenberg frame, so the mixing operator evolved in

time is used.

Wτ (T ) = U †evo(T ).Wτ .Uevo(T ). (5.15)

So the evolved state can be written as

ρ(2T,τ) = W †
τ (T ).ρ0.Wτ (T ) (5.16)
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and the overlap with the initial state is

S(2T,τ) = Tr[W †
τ (T ).ρ0.Wτ (T ).ρ0] (5.17)

= Fτ (T ). (5.18)

In the last equation we have assumed that V = ρcs0 = 1
2
σX.

The observable signal of the MCSD experiment for fixed mixing window lengths is an

example of an OTOC metric. These results are presented in the next section. The decay

of the OTOC metric is predicted to be exponential for multi-body systems.

5.2 Sensitivity to fixed perturbations

We implement the experiment as an OTOC measure. Figure 5.2 shows the echo amplitude

decaying as a function of evolution time for five different mixing windows (perturbations).

An increase in the evolution time results in more correlations between the central spin

and the environment. These data indicate that with the same perturbation, the amplitude

of the echo becomes smaller for longer evolution times. In other words, the correlations

between the central spin and the environment become more sensitive to the perturbation

at longer evolution times.

The decay of the echo signal for τ = 0, arises from the decoherence in our system and not

the mixing inside the environment and it was studied in the context of the MCD experiment

in chapter 3. We normalized these plots with respect to the τ = 0 data and the data is

shown in figure 5.3. This gives a clearer picture of the dynamics of correlations between

the central spin and the environment, due to the mixing of spins in the environment.
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Figure 5.2: The decay of echo signal (no encoding) as a function of evolution time T , for

five fixed mixing windows, τ . During the evolution time the MREV-8 sequence is used to

refocus the homonuclear dipolar interaction in the environment. The length of our MREV-

8 cycle is 38 µs and we chose to add two MREV-8 sequences in each step of the evolution

time. Consequently, data points are recorded every 76 µs.
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Figure 5.3: Sensitivity of the central spin/environment correlations to fixed perturbations.

Data is normalized with respect to τ = 0 data set. The error bars are evaluated via the

signal to noise ratio of each data set in combination with τ = 0 errors. The dashed lines are

Lorentzian fits with characteristic decay times of 2200± 300, 338± 7, 280± 10, 240± 10µs

for τ = 6, 14, 16, 18µs respectively.
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The sample is a powder and the homonuclear dipolar coupling varies with molecular

orientation. Figure 5.4 shows a plot of distribution of the largest dipolar frequencies over

a powder average. The largest frequency of 19,750 Hz corresponds to two nearest neighbor

spins on a single phenyl ring being oriented along the external magnetic field direction.
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Figure 5.4: Absolute value of the largest dipolar frequency for proton spins in a phenyl

ring. Probabilities are reported on average over all molecular orientations.

The sensitivity to perturbation plots in Figure 5.3 show two distinct behaviors. When

the perturbation is very short (the 6µs curve ) then most of the sample does not see this.

So regardless of the evolution time, the central spin for most molecules is refocused and

the decay should have a form

S(t) = α + β exp[−at] (5.19)

α + β = 1

For the longer perturbation times the data shows that all of the sample participates

and the expected exponential decays are observed.

An important limitation of Fig 5.3 is that the effect of the perturbation is not actually a

function of the evolution time, it is a function of the number and strengths of correlations
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between the central spin and the environment spins. Recall that in the coin game the

probability of going back to the initial order, was heavily influenced by the number of

initial coin flips. Fortunately, we already demonstrated that we can measure the extent

of correlation through the MCD experiment, discussed in chapter 3. The relevant data is

reproduced in figure 5.5.
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Figure 5.5: The growth of the second moment of the Hamming Weight for the central

spin/environment correlations, as a function of evolution time.

Notice that the correlations build slowly at first and then with longer evolution times

grow quickly before saturating. As expected the saturation happens at much less than the

15 spins in the environment since the angular dependence of the dipolar coupling means

that some environment spins are only very weakly coupled to the central spin.

In figure 5.6 we show the data plotted versus the growth of central spin-to-environment

correlations. Now the data have an easily recognizable form. The τ = 6µs data decays

only slowly since most spins do not contribute. As the extent of the perturbation in the

environment grows the decays become faster. The horizontal axis reports on the second

moment of Hamming weight for central spin/environment correlations. Notice that both

the early and late time points are compressed due to the slow initial growth and the late

saturation of the central spin/environment correlations.
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Figure 5.6: The decay of echo amplitude as a function of the second moment of Hamming

weight for the central spin/environment correlations. The dashed lines are Lorentzian fits

with characteristic decay size of 41± 7, 5.9± 0.3, 4.6± 0.2, 3.8± 0.2 for τ = 6, 14, 16, 18µs

respectively.
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The characteristic correlation size extracted from the fits describes the extent of cen-

tral spin/environment correlations necessary for the given perturbation to be effective at

destroying them. For the τ = 6µs perturbation there is no such size since the perturbation

leaves the environment for most molecules unchanged. We see this also from the fit which

returns an unreasonably large value. The three larger perturbations can lead to a full

mixing of the environment. The characteristic correlation sizes decrease with increasing

perturbation.

This work suggests a necessary rethinking of the way the Out-of-Time-Ordered-Correlation

function is used to characterize sensitivity to perturbations. Instead of thinking of the evo-

lution step as just a unitary process, mapping it based on the information flow to the

environment, gives a more clear picture of the spin dynamics. In this case the second

moment of the Hamming weight is the natural measure for the quantum information flow,

in other cases it may be a shared entropy.
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Chapter 6

Conclusion and Outlook

6.1 Conclusion

The idea behind this work was to design NMR experiments for the study of quantum infor-

mation evolution in the central spin problem. The study of dephasing in the central spin

setup indicates that, in order to describe the quantum evolution of the central spin, multi-

spin correlations between the central spin and environment spins should be understood

and analyzed. This analysis of multi-spin correlations reveals the extent of correlations

between the central spin and the environment, and the rate of information flow from the

central spin to the environment.

In order to experimentally access multi-spin correlations between the central spin and

the environment, NMR spectrometer was modified with fast electronics. A set of tuning

algorithms were used to minimize the effects of non-ideal RF pulses in our experiment.

The NMR sample is chosen to resemble the central spin structure and it is characterized

precisely. A para-magnetic relaxation agent were added to the sample to decrease the T1

relaxation time.

The multi-spin Correlation Detection or MCD experiment utilizes rotational symmetry

of multi-spin correlations, as a distinguishing property for different orders of correlated

spins. Multi-spin correlations between the central spin and the environment are directly

observed using the MCD experiment. A set of experimental results with different evolu-
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tion times, reveal the flow dynamics of quantum information from the central spin to the

environment. The average cluster size of correlated spins in the environment is used as a

measure for information content of the environment, which grows with the evolution time

of the MCD experiment.

We have introduced a set of operators P̂n that can project different parts of the density

matrix on the multi-spin operators. The results of these projections give the weights of each

multi-spin correlated operator Cn(T ), which are identical to the square root of amplitudes

of multi-spin correlated operators evaluated by the MCD method. This confirms that the

MCD experiment is correctly probing the evolution of multi-spin correlations.

Multi-spin Correlation Scrambling Detection (MCSD) experiment quantifies the sensi-

tivity of the central spin/environment correlations to the mixing interaction in environment.

The results of MCSD experiment plotted for fixed evolution times show that the decay of

correlation amplitudes during the mixing window, depends on their correlation order as

well as the average cluster size of the central spin/environment correlations.

A classical coin game is used to motivate our proposed model for dynamics of quantum

information scrambling. If we extract the average size of correlations from the MCD

experiment and use it as an input, the classical coin model predicts the scrambling rates

with the same trend as the experimental data for the decay of echo amplitudes.

The results of the MCSD experiment plotted for fixed mixing windows, indicate the sen-

sitivity of the central spin/environment correlations to perturbations in the environment.

These results can be described in the form of an Out-of-Time-Order Correlation metric.

We find that mapping the OTOC metric to the second moment of the Hamming weight

instead of the evolution time, gives a superior picture for the dynamics of information in

our system.
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6.2 Future direction

• There is a need for more data points at short evolution times specially at T = 0.

We have an improved design for performing experiments with a constant length for

mixing interval( using magic echo pulse sequence), that can be used to collect T = 0

data points

• In order to grow the size of correlations between the central spin and the environment,

we are designing an experiment with Magic Angle Spinning (MAS) to remove the

spatial dependency of the heteronuclear coupling. This experiment can bring the

environment close to the saturation limit

• We are designing bench marking experiments in order to characterize the environ-

mental noise. These experiments can be used to distinguish between Markovian and

non-Markovian dynamics in the environment

• We are planning to study central spin systems with more than one spin in them.

The idea is to investigate effects of initial entanglement on the flow of quantum

information from the central spin to the environment

• We are designing experiments to observe the quantum information transfer between

two uncoupled qubits when they share the same spin environment. The difference

in the selection rules for growth of correlations via homonuclear and heteronuclear

dipolar interactions is going to be used in this experiment

• Although we have access to dynamics of various correlation orders, only results of

the MCSD experiment for the echo amplitudes were used in evaluation of the OTOC

metric. We are interested in expanding the theory to use the rest of our results

• A new experiment is being designed to directly observe the flow of quantum infor-

mation from the environment to the central spin.

• With utilizing a spectrometer with a larger magnetic field, we are planning to run

the MCSD experiment for a sample with environment size of 27.
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Appendix A

Codes and Pulse Programs

A.1 Pulse program: the MCD experiment

In the following the pulse program for detection of multi-spin correlations in the spin

environment is presented. This is a 2D NMR experiment on proton and 31P channels . F1

is set to pulse and to receive the spin signal at the phosphorous frequency and F2 is set

to pulse and to decouple the environment spins, 1H. This Pulse program is executable in

Bruker TopSpin.

define delay small ;small window in MREV_8, about 3us with duplexer

"small=d3-p2"

define delay large ;large window in MREV_8

"large=d3+d3-p2"

1 ze ;acquire into a cleared memory

10u reset:f1 reset:f2 ;synchronise RF pulse and detection F1:31P F2:1H

10u pl2:f2 pl1:f1 ;set power level for each channel
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2 d11 do:f2 ;turn OFF the decoupling

d11 pl2:f2 ;cross polarization power for 1H

d1 pl1:f1 ;Relaxation delay, cross polarization power 1H

p2:f2 ph1 ;Initialization pulse for cross polarization

0.3u

(p15 ph2):f1 (p15:spf0 pl22 ph10):f2 ;Cross Polarization contact

0.5u pl2:f2 ;31P power level set to High power

4 p2:f2 ph20^ ;Evolution starts, MREV-8 on 1H

small

p2:f2 ph20^

large

p2:f2 ph20^

small

p2:f2 ph20^

large

p2:f2 ph20^

small

p2:f2 ph20^

large

p2:f2 ph20^

small

p2:f2 ph20^

large pl3:f1

lo to 4 times l1 ;Evolution ends after l1 loops

(center ;sync.
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(p2 ph4 2u p2 ph5):f2 ;Rx)\phi on 1H

(p1*2 ph3):f1 ;central \pi pulse on 31P

)

5 p2:f2 ph20^ ;inverted evolution starts, MREV-8 on 1H

small

p2:f2 ph20^

large

p2:f2 ph20^

small

p2:f2 ph20^

large

p2:f2 ph20^

small

p2:f2 ph20^

large

p2:f2 ph20^

small

p2:f2 ph20^

large

lo to 5 times l1 ;Inverted evolution ends after l1 loops

go=2 ph31 cpds2:f2 ;Detection on 31P channel, CW on 1H channel

d11 do:f2 wr #0 if #0 ;data record on memory

1m ip1 ;phase incrementation for Rx)\phi

1m ip10

1m ip4

lo to 2 times td1 ;Loop over for various phases
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HaltAcqu, 1m

7 exit

;phase program:

ph1= (32)8 24

ph2= 0 0 1 1

ph3= 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

ph4= (32) 8 24

ph5= 3 1

ph10= (32)0

ph20=0 1 3 2 2 1 3 0

ph30=(360)115

ph31= 0 2 3 1 2 0 1 3

;parameters:

;small : small delay in MREV_8 sequence, typically 2.5-4.5 usec

;large : large delay in MREV_8 sequence

;L1 ; loop counter for evolution period, number of MREV_8 cycles

;TD1 : number of steps in \phi

;d11 : 30ms

;d1 : T1 relaxation delay

;d3 : delay to set small and large window

;PL1 : power level for 1H, High power

;PL2 : power level for 31P contact

;PL3 : power level for 31P, High power

;PL22 : Power level for Hartman_Hahn condition 31P

;P1 : 31P Hard 90 pulse

;P2 : 1H Hard 90 pulse

;P15 : 31P contact pulse in Cross Polarization
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;SPF0 : 1H contact shaped pulse in Cross Polarization

;CPDS2 : 1H CW decoupling during data acquisition

;PH1 : Initialization pulse phase, spin temperature alteration phase cycling

;PH2 : 31P pulse phase during the contact

;PH3 : 31P \pi pulse phase, Exorcycle

;PH4 : 1H phase, encoding

;PH5 : 1H phase, encoding

;PH10 : 1H pulse phase during contact

;PH20 : 1H MREV_8 Phase

;PH31 : Receiver phase

A.2 Construction of Pn multi-spin operators for one

ring:

Definitions:

X := σX

Y := σY

Z := σZ

PXp := σY + iσZ

PXm := σY − iσZ

nH1 = 5

Pn5 = N[Sqrt[2/2^5]] KroneckerProduct[Subscript[\[DoubleStruckOne],

2], PXp, PXp, PXp, PXp, PXp];
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Pn4[[1]] =

N[Sqrt[2/2^4]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, a, a, id}][[i, 1]],

Permutations[{a, a, a, a, id}][[i, 2]],

Permutations[{a, a, a, a, id}][[i, 3]],

Permutations[{a, a, a, a, id}][[i, 4]],

Permutations[{a, a, a, a, id}][[i, 5]]], {i,

Length[Permutations[{a, a, a, a, id}]]}] /. {a -> PXp,

id -> Subscript[\[DoubleStruckOne], 2]};

Pn4[[2]] =

N[Sqrt[2/2^4]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, a, a, id}][[i, 1]],

Permutations[{a, a, a, a, id}][[i, 2]],

Permutations[{a, a, a, a, id}][[i, 3]],

Permutations[{a, a, a, a, id}][[i, 4]],

Permutations[{a, a, a, a, id}][[i, 5]]], {i,

Length[Permutations[{a, a, a, a, id}]]}] /. {a -> PXp, id -> X};

Pn3[[1]] =

N[Sqrt[2/2^3]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, a, id, id}][[i, 1]],

Permutations[{a, a, a, id, id}][[i, 2]],

Permutations[{a, a, a, id, id}][[i, 3]],

Permutations[{a, a, a, id, id}][[i, 4]],

Permutations[{a, a, a, id, id}][[i, 5]]], {i,

Length[Permutations[{a, a, a, id, id}]]}] /. {a -> PXp,

id -> Subscript[\[DoubleStruckOne], 2]};
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Pn3[[2]] =

N[Sqrt[2/2^3]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, a, id, id}][[i, 1]],

Permutations[{a, a, a, id, id}][[i, 2]],

Permutations[{a, a, a, id, id}][[i, 3]],

Permutations[{a, a, a, id, id}][[i, 4]],

Permutations[{a, a, a, id, id}][[i, 5]]], {i,

Length[Permutations[{a, a, a, id, id}]]}] /. {a -> PXp, id -> X};

Pn3[[3]] =

N[Sqrt[2/2^3]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, a, b, id}][[i, 1]],

Permutations[{a, a, a, b, id}][[i, 2]],

Permutations[{a, a, a, b, id}][[i, 3]],

Permutations[{a, a, a, b, id}][[i, 4]],

Permutations[{a, a, a, b, id}][[i, 5]]], {i,

Length[Permutations[{a, a, a, b, id}]]}] /. {a -> PXp, b -> X,

id -> Subscript[\[DoubleStruckOne], 2]};

Pn3[[4]] =

N[Sqrt[2/2^5]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, a, a, b}][[i, 1]],

Permutations[{a, a, a, a, b}][[i, 2]],

Permutations[{a, a, a, a, b}][[i, 3]],

Permutations[{a, a, a, a, b}][[i, 4]],

Permutations[{a, a, a, a, b}][[i, 5]]], {i,

Length[Permutations[{a, a, a, a, b}]]}] /. {a -> PXp, b -> PXm};

Pn2[[1]] =
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N[Sqrt[2/2^2]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, id, id, id}][[i, 1]],

Permutations[{a, a, id, id, id}][[i, 2]],

Permutations[{a, a, id, id, id}][[i, 3]],

Permutations[{a, a, id, id, id}][[i, 4]],

Permutations[{a, a, id, id, id}][[i, 5]]], {i,

Length[Permutations[{a, a, id, id, id}]]}] /. {a -> PXp,

id -> Subscript[\[DoubleStruckOne], 2]};

Pn2[[2]] =

N[Sqrt[2/2^2]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, id, id, id}][[i, 1]],

Permutations[{a, a, id, id, id}][[i, 2]],

Permutations[{a, a, id, id, id}][[i, 3]],

Permutations[{a, a, id, id, id}][[i, 4]],

Permutations[{a, a, id, id, id}][[i, 5]]], {i,

Length[Permutations[{a, a, id, id, id}]]}] /. {a -> PXp,

id -> X};

Pn2[[3]] =

N[Sqrt[2/2^2]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, b, b, id}][[i, 1]],

Permutations[{a, a, b, b, id}][[i, 2]],

Permutations[{a, a, b, b, id}][[i, 3]],

Permutations[{a, a, b, b, id}][[i, 4]],

Permutations[{a, a, b, b, id}][[i, 5]]], {i,

Length[Permutations[{a, a, b, b, id}]]}] /. {a -> PXp, b -> X,

id -> Subscript[\[DoubleStruckOne], 2]};

Pn2[[4]] =

126



N[Sqrt[2/2^2]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, b, id, id}][[i, 1]],

Permutations[{a, a, b, id, id}][[i, 2]],

Permutations[{a, a, b, id, id}][[i, 3]],

Permutations[{a, a, b, id, id}][[i, 4]],

Permutations[{a, a, b, id, id}][[i, 5]]], {i,

Length[Permutations[{a, a, b, id, id}]]}] /. {a -> PXp, b -> X,

id -> Subscript[\[DoubleStruckOne], 2]};

Pn2[[5]] =

N[Sqrt[2/2^4]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, a, b, id}][[i, 1]],

Permutations[{a, a, a, b, id}][[i, 2]],

Permutations[{a, a, a, b, id}][[i, 3]],

Permutations[{a, a, a, b, id}][[i, 4]],

Permutations[{a, a, a, b, id}][[i, 5]]], {i,

Length[Permutations[{a, a, a, b, id}]]}] /. {a -> PXp, b -> PXm,

id -> Subscript[\[DoubleStruckOne], 2]};

Pn2[[6]] =

N[Sqrt[2/2^4]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, a, b, id}][[i, 1]],

Permutations[{a, a, a, b, id}][[i, 2]],

Permutations[{a, a, a, b, id}][[i, 3]],

Permutations[{a, a, a, b, id}][[i, 4]],

Permutations[{a, a, a, b, id}][[i, 5]]], {i,

Length[Permutations[{a, a, a, b, id}]]}] /. {a -> PXp, b -> PXm,

id -> X};
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Pn1[[1]] =

N[Sqrt[2/2^1]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, id, id, id, id}][[i, 1]],

Permutations[{a, id, id, id, id}][[i, 2]],

Permutations[{a, id, id, id, id}][[i, 3]],

Permutations[{a, id, id, id, id}][[i, 4]],

Permutations[{a, id, id, id, id}][[i, 5]]], {i,

Length[Permutations[{a, id, id, id, id}]]}] /. {a -> PXp,

id -> Subscript[\[DoubleStruckOne], 2]};

Pn1[[2]] =

N[Sqrt[2/2^1]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, id, id, id, id}][[i, 1]],

Permutations[{a, id, id, id, id}][[i, 2]],

Permutations[{a, id, id, id, id}][[i, 3]],

Permutations[{a, id, id, id, id}][[i, 4]],

Permutations[{a, id, id, id, id}][[i, 5]]], {i,

Length[Permutations[{a, id, id, id, id}]]}] /. {a -> PXp,

id -> X};

Pn1[[3]] =

N[Sqrt[2/2^1]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, b, b, b, id}][[i, 1]],

Permutations[{a, b, b, b, id}][[i, 2]],

Permutations[{a, b, b, b, id}][[i, 3]],

Permutations[{a, b, b, b, id}][[i, 4]],

Permutations[{a, b, b, b, id}][[i, 5]]], {i,

Length[Permutations[{a, b, b, b, id}]]}] /. {a -> PXp, b -> X,
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id -> Subscript[\[DoubleStruckOne], 2]};

Pn1[[4]] =

N[Sqrt[2/2^1]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, b, b, b, id}][[i, 1]],

Permutations[{a, b, b, b, id}][[i, 2]],

Permutations[{a, b, b, b, id}][[i, 3]],

Permutations[{a, b, b, b, id}][[i, 4]],

Permutations[{a, b, b, b, id}][[i, 5]]], {i,

Length[Permutations[{a, b, b, b, id}]]}] /. {a -> PXp,

b -> Subscript[\[DoubleStruckOne], 2], id -> X};

Pn1[[5]] =

N[Sqrt[2/2^1]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, b, b, id, id}][[i, 1]],

Permutations[{a, b, b, id, id}][[i, 2]],

Permutations[{a, b, b, id, id}][[i, 3]],

Permutations[{a, b, b, id, id}][[i, 4]],

Permutations[{a, b, b, id, id}][[i, 5]]], {i,

Length[Permutations[{a, b, b, id, id}]]}] /. {a -> PXp, b -> X,

id -> Subscript[\[DoubleStruckOne], 2]};

Pn1[[6]] =

N[Sqrt[2/2^3]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, b, b, id, id}][[i, 1]],

Permutations[{a, b, b, id, id}][[i, 2]],

Permutations[{a, b, b, id, id}][[i, 3]],

Permutations[{a, b, b, id, id}][[i, 4]],

Permutations[{a, b, b, id, id}][[i, 5]]], {i,

Length[Permutations[{a, b, b, id, id}]]}] /. {a -> PXm,
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b -> PXp, id -> Subscript[\[DoubleStruckOne], 2]};

Pn1[[7]] =

N[Sqrt[2/2^3]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, b, b, id, id}][[i, 1]],

Permutations[{a, b, b, id, id}][[i, 2]],

Permutations[{a, b, b, id, id}][[i, 3]],

Permutations[{a, b, b, id, id}][[i, 4]],

Permutations[{a, b, b, id, id}][[i, 5]]], {i,

Length[Permutations[{a, b, b, id, id}]]}] /. {a -> PXm,

b -> PXp, id -> X};

Pn1[[8]] =

N[Sqrt[2/2^3]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, b, b, c, id}][[i, 1]],

Permutations[{a, b, b, c, id}][[i, 2]],

Permutations[{a, b, b, c, id}][[i, 3]],

Permutations[{a, b, b, c, id}][[i, 4]],

Permutations[{a, b, b, c, id}][[i, 5]]], {i,

Length[Permutations[{a, b, b, c, id}]]}] /. {a -> PXm, b -> PXp,

c -> X, id -> Subscript[\[DoubleStruckOne], 2]};

Pn1[[9]] =

N[Sqrt[2/2^5]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, a, b, b}][[i, 1]],

Permutations[{a, a, a, b, b}][[i, 2]],

Permutations[{a, a, a, b, b}][[i, 3]],

Permutations[{a, a, a, b, b}][[i, 4]],

Permutations[{a, a, a, b, b}][[i, 5]]], {i,

Length[Permutations[{a, a, a, b, b}]]}] /. {a -> PXp, b -> PXm};
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Pn0[[1]] =

N[Sqrt[2]] {KroneckerProduct[Subscript[\[DoubleStruckOne], 2],

Subscript[\[DoubleStruckOne], 2], Subscript[\[DoubleStruckOne],

2], Subscript[\[DoubleStruckOne], 2],

Subscript[\[DoubleStruckOne], 2], Subscript[\[DoubleStruckOne],

2]], KroneckerProduct[Subscript[\[DoubleStruckOne], 2], X, X, X,

X, X]};

Pn0[[2]] =

N[Sqrt[2]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, id, id, id, id}][[i, 1]],

Permutations[{a, id, id, id, id}][[i, 2]],

Permutations[{a, id, id, id, id}][[i, 3]],

Permutations[{a, id, id, id, id}][[i, 4]],

Permutations[{a, id, id, id, id}][[i, 5]]], {i,

Length[Permutations[{a, id, id, id, id}]]}] /. {a -> X,

id -> Subscript[\[DoubleStruckOne], 2]};

Pn0[[3]] =

N[Sqrt[2]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, a, a, id}][[i, 1]],

Permutations[{a, a, a, a, id}][[i, 2]],

Permutations[{a, a, a, a, id}][[i, 3]],

Permutations[{a, a, a, a, id}][[i, 4]],

Permutations[{a, a, a, a, id}][[i, 5]]], {i,

Length[Permutations[{a, a, a, a, id}]]}] /. {a -> X,

id -> Subscript[\[DoubleStruckOne], 2]};

Pn0[[4]] =

N[Sqrt[2]] Table[
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Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, id, id, id}][[i, 1]],

Permutations[{a, a, id, id, id}][[i, 2]],

Permutations[{a, a, id, id, id}][[i, 3]],

Permutations[{a, a, id, id, id}][[i, 4]],

Permutations[{a, a, id, id, id}][[i, 5]]], {i,

Length[Permutations[{a, a, id, id, id}]]}] /. {a -> X,

id -> Subscript[\[DoubleStruckOne], 2]};

Pn0[[5]] =

N[Sqrt[2]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, a, id, id}][[i, 1]],

Permutations[{a, a, a, id, id}][[i, 2]],

Permutations[{a, a, a, id, id}][[i, 3]],

Permutations[{a, a, a, id, id}][[i, 4]],

Permutations[{a, a, a, id, id}][[i, 5]]], {i,

Length[Permutations[{a, a, a, id, id}]]}] /. {a -> X,

id -> Subscript[\[DoubleStruckOne], 2]};

Pn0[[6]] =

N[Sqrt[2/2^2]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, b, id, id, id}][[i, 1]],

Permutations[{a, b, id, id, id}][[i, 2]],

Permutations[{a, b, id, id, id}][[i, 3]],

Permutations[{a, b, id, id, id}][[i, 4]],

Permutations[{a, b, id, id, id}][[i, 5]]], {i,

Length[Permutations[{a, b, id, id, id}]]}] /. {a -> PXp,

b -> PXm, id -> Subscript[\[DoubleStruckOne], 2]};

Pn0[[7]] =

N[Sqrt[2/2^2]] Table[
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Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, b, id, id, id}][[i, 1]],

Permutations[{a, b, id, id, id}][[i, 2]],

Permutations[{a, b, id, id, id}][[i, 3]],

Permutations[{a, b, id, id, id}][[i, 4]],

Permutations[{a, b, id, id, id}][[i, 5]]], {i,

Length[Permutations[{a, b, id, id, id}]]}] /. {a -> PXp,

b -> PXm, id -> X};

Pn0[[8]] =

N[Sqrt[2/2^4]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, b, b, id}][[i, 1]],

Permutations[{a, a, b, b, id}][[i, 2]],

Permutations[{a, a, b, b, id}][[i, 3]],

Permutations[{a, a, b, b, id}][[i, 4]],

Permutations[{a, a, b, b, id}][[i, 5]]], {i,

Length[Permutations[{a, a, b, b, id}]]}] /. {a -> PXp, b -> PXm,

id -> Subscript[\[DoubleStruckOne], 2]};

Pn0[[9]] =

N[Sqrt[2/2^4]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, a, b, b, id}][[i, 1]],

Permutations[{a, a, b, b, id}][[i, 2]],

Permutations[{a, a, b, b, id}][[i, 3]],

Permutations[{a, a, b, b, id}][[i, 4]],

Permutations[{a, a, b, b, id}][[i, 5]]], {i,

Length[Permutations[{a, a, b, b, id}]]}] /. {a -> PXp, b -> PXm,

id -> X};

Pn0[[10]] =

N[Sqrt[2/2^2]] Table[
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Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, b, c, id, id}][[i, 1]],

Permutations[{a, b, c, id, id}][[i, 2]],

Permutations[{a, b, c, id, id}][[i, 3]],

Permutations[{a, b, c, id, id}][[i, 4]],

Permutations[{a, b, c, id, id}][[i, 5]]], {i,

Length[Permutations[{a, b, c, id, id}]]}] /. {a -> PXp,

b -> PXm, c -> X, id -> Subscript[\[DoubleStruckOne], 2]};

Pn0[[11]] =

N[Sqrt[2/2^2]] Table[

Subscript[\[DoubleStruckOne],

2]\[CircleTimes]KroneckerProduct[

Permutations[{a, b, c, c, id}][[i, 1]],

Permutations[{a, b, c, c, id}][[i, 2]],

Permutations[{a, b, c, c, id}][[i, 3]],

Permutations[{a, b, c, c, id}][[i, 4]],

Permutations[{a, b, c, c, id}][[i, 5]]], {i,

Length[Permutations[{a, b, c, c, id}]]}] /. {a -> PXp, b -> PXm,

c -> X, id -> Subscript[\[DoubleStruckOne], 2]};

With u being the unitary for evolution of spin system for 1µs, we evolve density matrix

for 250µs:

rho0 = SparseArray[

1/2^(nH1 + 1)

KroneckerProduct[Subscript[\[DoubleStruckOne], 2] + X,

Subscript[\[DoubleStruckOne], 2^nH1]]];

ut = Table[N[MatrixPower[u, i]], {i, 250}];

rhot = N[NestList[ut .#.ut\[ConjugateTranspose] &, rho0, 250]];

134



We use P̂n operators to calculate the weights for correlation orders |Cn| in the ρ(t):

A[[5]] =

Table[Abs[Purity[PartialTr[rhot[[i]].Pn5, {2, 2^nH1}, {2}]]], {i,

250}];

A[[4]] =

Table[Sum[

Abs[Sum[Purity[

PartialTr[rhot[[i]][[i]].Pn4[[k, j]], {2, 2^nH1}, {2}]], {j,

Length[Pn4[[k]]]}]], {k, Length[Pn4]}], {i, 250}];

A[[3]] =

Table[Sum[

Abs[Sum[Purity[

PartialTr[rhot[[i]]Pn3[[k, j]], {2, 2^nH1}, {2}]], {j,

Length[Pn3[[k]]]}]], {k, Length[Pn3]}], {i, 250}];

A[[2]] =

Table[Sum[

Abs[Sum[Purity[

PartialTr[rhot[[i]].Pn2[[k, j]], {2, 2^nH1}, {2}]], {j,

Length[Pn2[[k]]]}]], {k, Length[Pn2]}], {i, 250}];

A[[1]] =

Table[Sum[

Abs[Sum[Purity[

PartialTr[rhot[[i]].Pn1[[k, j]], {2, 2^nH1}, {2}]], {j,

Length[Pn1[[k]]]}]], {k, Length[Pn1]}], {i, 250}];

A[[0]] =

Table[Sum[
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Abs[Sum[Purity[

PartialTr[rhot[[i]].Pn0[[k, j]], {2, 2^nH1}, {2}]], {j,

Length[Pn0[[k]]]}]], {k, Length[Pn0]}] - 1, {i, 250}];

A.3 Pulse program: the MCSD experiment

Following is the pulse program designed for detection of multi-spin correlations in the spin

environment after information scrambling.

define delay small ;small window in MREV_8, about 3us with duplexer

"small=d3-p2"

define delay large ;large window in MREV_8

"large=d3+d3-p2"

1 ze ;acquire into a cleared memory

10u reset:f1 reset:f2 ;synchronise RF pulse and detection F1:31P F2:1H

10u pl2:f2 pl1:f1 ;set power level for each channel

2 d11 do:f2 ;turn OFF the decoupling

d11 pl2:f2 ;cross polarization power for 1H

d1 pl1:f1 ;Relaxation delay, cross polarization power 1H

p2:f2 ph1 ;Initialization pulse for cross polarization

0.3u
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(p15 ph2):f1 (p15:spf0 pl22 ph10):f2 ;Cross Polarization contact

0.5u pl2:f2 ;31P power level set to High power

4 p2:f2 ph20^ ;Evolution starts, MREV-8 on 1H

small

p2:f2 ph20^

large

p2:f2 ph20^

small

p2:f2 ph20^

large

p2:f2 ph20^

small

p2:f2 ph20^

large

p2:f2 ph20^

small

p2:f2 ph20^

large pl3:f1

lo to 4 times l1 ;Evolution ends after l1 loops

(ralign ;sync. encoding after delay

(p2 ph4 2u p2 ph5):f2 ;Rx)\phi on 1H

(p1 ph3 d2 p1*2 ph6 d2 p1 ph7):f1 ;central \pi during delay on 31P

)

5 p2:f2 ph20^ ;inverted evolution starts, MREV-8 on 1H

small

p2:f2 ph20^
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large

p2:f2 ph20^

small

p2:f2 ph20^

large

p2:f2 ph20^

small

p2:f2 ph20^

large

p2:f2 ph20^

small

p2:f2 ph20^

large

lo to 5 times l1 ;Inverted evolution ends after l1 loops

go=2 ph31 cpds2:f2 ;Detection on 31P channel, CW on 1H channel

d11 do:f2 wr #0 if #0 ;data record on memory

1m ip1 ;phase incrementation for Rx)\phi

1m ip10

1m ip4

lo to 2 times td1 ;Loop over for various phases

HaltAcqu, 1m

7 exit

;phase program:

ph1= (32)8 24

ph2= 0 0 1 1
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ph3= 0 2 1 3

ph4= (32) 8 24

ph5= 3 1

ph6= 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

ph7= 2 0 1 3 0 2 3 1

ph10= (32)0

ph20=0 1 3 2 2 1 3 0

ph30=(360)115

ph31= 0 2 3 1 2 0 1 3

;parameters:

;small : small delay in MREV_8 sequence, typically 2.5-4.5 usec

;large : large delay in MREV_8 sequence

;L1 ; loop counter for evolution period, number of MREV_8 cycles

;TD1 : number of steps in \phi

;d11 : 30ms

;d1 : T1 relaxation delay

;d2 : 1/2 scrambling delay

;d3 : delay to set small and large window

;PL1 : power level for 1H, High power

;PL2 : power level for 31P contact

;PL3 : power level for 31P, High power

;PL22 : Power level for Hartman_Hahn condition 31P

;P1 : 31P Hard 90 pulse

;P2 : 1H Hard 90 pulse

;P15 : 31P contact pulse in Cross Polarization

;SPF0 : 1H contact shaped pulse in Cross Polarization

;CPDS2 : 1H CW decoupling during data acquisition

;PH1 : Initialization pulse phase, spin temperature alteration phase cycling

;PH2 : 31P pulse phase during the contact

;PH3 : 31P 90 pulse phase, Exorcycle
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;PH4 : 1H phase, encoding

;PH5 : 1H phase, encoding

;PH6 : 31P \pi pulse phase, Exorcycle

;PH7 : 31P 90 pulse phase, Exorcycle

;PH10 : 1H pulse phase during contact

;PH20 : 1H MREV_8 Phase

;PH31 : Receiver phase
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