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Abstract

C

A

is a modern, non-object-oriented extension of the C programming language. This thesis
serves as a definition and an implementation for the concurrency and parallelism C

A

offers. These
features are created from scratch due to the lack of concurrency in ISO C. Lightweight threads
are introduced into the language. In addition, monitors are introduced as a high-level tool for
control-flow based synchronization and mutual-exclusion. The main contributions of this thesis
are two-fold: it extends the existing semantics of monitors introduce by [37] to handle monitors in
groups and also details the engineering effort needed to introduce these features as core language
features. Indeed, these features are added with respect to expectations of C programmers, and
integrate with the C

A

type-system and other language features.
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Chapter 1

Introduction

This thesis provides a minimal concurrency API that is simple, efficient and can be reused to build
higher-level features. The simplest possible concurrency system is a thread and a lock but this low-
level approach is hard to master. An easier approach for users is to support higher-level constructs
as the basis of concurrency. Indeed, for highly productive concurrent programming, high-level
approaches are much more popular [39]. Examples are task based, message passing and implicit
threading. The high-level approach and its minimal API are tested in a dialect of C, called C

A

.
Furthermore, the proposed API doubles as an early definition of the C

A

language and library. This
thesis also provides an implementation of the concurrency library for C

A

as well as all the required
language features added to the source-to-source translator.

There are actually two problems that need to be solved in the design of concurrency for
a programming language: which concurrency and which parallelism tools are available to the
programmer. While these two concepts are often combined, they are in fact distinct, requiring
different tools [18]. Concurrency tools need to handle mutual exclusion and synchronization, while
parallelism tools are about performance, cost and resource utilization.

In the context of this thesis, a thread is a fundamental unit of execution that runs a sequence
of code, generally on a program stack. Having multiple simultaneous threads gives rise to concur-
rency and generally requires some kind of locking mechanism to ensure proper execution. Corre-
spondingly, concurrency is defined as the concepts and challenges that occur when multiple inde-
pendent (sharing memory, timing dependencies, etc.) concurrent threads are introduced. Accord-
ingly, locking (and by extension locks) are defined as a mechanism that prevents the progress of
certain threads in order to avoid problems due to concurrency. Finally, in this thesis parallelism

is distinct from concurrency and is defined as running multiple threads simultaneously. More
precisely, parallelism implies actual simultaneous execution as opposed to concurrency which
only requires apparent simultaneous execution. As such, parallelism is only observable in the
differences in performance or, more generally, differences in timing.
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Chapter 2

C

A

Overview

The following is a quick introduction to the C

A

language, specifically tailored to the features
needed to support concurrency.

C

A

is an extension of ISO-C and therefore supports all of the same paradigms as C. It is a non-
object-oriented system-language, meaning most of the major abstractions have either no runtime
overhead or can be opted out easily. Like C, the basics of C

A

revolve around structures and
routines, which are thin abstractions over machine code. The vast majority of the code produced
by the C

A

translator respects memory layouts and calling conventions laid out by C. Interestingly,
while C

A

is not an object-oriented language, lacking the concept of a receiver (e.g., this), it does
have some notion of objects1, most importantly construction and destruction of objects. Most of
the following code examples can be found on the C

A

website [22].

2.1 References

Like C++, C

A

introduces rebind-able references providing multiple dereferencing as an alternative
to pointers. In regards to concurrency, the semantic difference between pointers and references are
not particularly relevant, but since this document uses mostly references, here is a quick overview
of the semantics:

int x, *p1 = &x, **p2 = &p1, ***p3 = &p2 ,

&r1 = x, &&r2 = r1 , &&&r3 = r2;

*** p3 = 3; / / change x
r3 = 3; / / change x , * * * r 3

**p3 = ...; / / change p1

*p3 = ...; / / change p2
int y, z, & ar[3] = {x, y, z}; / / i n i t i a l i z e a r r a y o f r e f e r e n c e s

typeof( ar[1]) p; / / i s i n t , r e f e r e n c e d o b j e c t t y p e

typeof(&ar[1]) q; / / i s i n t & , r e f e r e n c e t y p e
sizeof( ar[1]) == sizeof(int); / / i s t r u e , r e f e r e n c e d o b j e c t s i z e

sizeof(&ar[1]) == sizeof(int *); / / i s t r u e , r e f e r e n c e s i z e

The important take away from this code example is that a reference offers a handle to an object,
much like a pointer, but which is automatically dereferenced for convenience.

1C defines the term objects as : “region of data storage in the execution environment, the contents of which can represent
values” [20, 3.15]

2



2.2 Overloading

Another important feature of C

A

is function overloading as in Java and C++, where routines with
the same name are selected based on the number and type of the arguments. As well, C

A

uses the
return type as part of the selection criteria, as in Ada [56]. For routines with multiple parameters
and returns, the selection is complex.

/ / s e l e c t i o n based on t y p e and number o f p a r a m e t e r s

void f(void); / / ( 1 )

void f(char); / / ( 2 )
void f(int , double); / / ( 3 )

f(); / / s e l e c t ( 1 )

f( ' a ' ); / / s e l e c t ( 2 )
f(3, 5.2); / / s e l e c t ( 3 )

/ / s e l e c t i o n based on t y p e and number o f r e t u r n s
char f(int); / / ( 1 )

double f(int); / / ( 2 )

char c = f(3); / / s e l e c t ( 1 )
double d = f(4); / / s e l e c t ( 2 )

This feature is particularly important for concurrency since the runtime system relies on creating
different types to represent concurrency objects. Therefore, overloading is necessary to prevent the
need for long prefixes and other naming conventions that prevent name clashes. As seen in chapter
3, routine main is an example that benefits from overloading.

2.3 Operators

Overloading also extends to operators. The syntax for denoting operator-overloading is to name a
routine with the symbol of the operator and question marks where the arguments of the operation
appear, e.g.:

int ++? (int op); / / u n a ry p r e f i x i n c r e m e n t
int ?++ (int op); / / u n a ry p o s t f i x i n c r e m e n t

int ?+? (int op1 , int op2 ); / / b i n a r y p l u s

int ? <=?(int op1 , int op2 ); / / b i n a r y l e s s t h a n
int ?=? (int & op1 , int op2); / / b i n a r y a s s i g n m e n t

int ?+=?(int & op1 , int op2); / / b i n a r y p l u s−a s s i g n m e n t

struct S {int i, j;};

S ?+?(S op1 , S op2) { / / add two s t r u c t u r e s

return (S){op1.i + op2.i, op1.j + op2.j};

}

S s1 = {1, 2}, s2 = {2, 3}, s3;

s3 = s1 + s2; / / compute sum : s3 == { 2 , 5 }

While concurrency does not use operator overloading directly, this feature is more important as an
introduction for the syntax of constructors.

2.4 Constructors/Destructors

Object lifetime is often a challenge in concurrency. C

A

uses the approach of giving concurrent
meaning to object lifetime as a means of synchronization and/or mutual exclusion. Since C

A

3



relies heavily on the lifetime of objects, constructors and destructors is a core feature required for
concurrency and parallelism. C

A

uses the following syntax for constructors and destructors:
struct S {

size_t size;

int * ia;

};

void ?{}(S & s, int asize) { / / c o n s t r u c t o r o p e r a t o r
s.size = asize; / / i n i t i a l i z e f i e l d s

s.ia = calloc(size, sizeof(S));

}

void ^?{}(S & s) { / / d e s t r u c t o r o p e r a t o r

free(ia); / / de− i n i t i a l i z a t i o n f i e l d s

}

int main() {

S x = {10} , y = {100}; / / i m p l i c i t c a l l s : ? { } ( x , 1 0 ) , ? { } ( y , 1 0 0 )

... / / use x and y
^x{}; ^y{}; / / e x p l i c i t c a l l s t o de− i n i t i a l i z e

x{20}; y{200}; / / e x p l i c i t c a l l s t o r e i n i t i a l i z e
... / / r e u se x and y

} / / i m p l i c i t c a l l s : ^ ? { } ( y ) , ^ ? { } ( x )

The language guarantees that every object and all their fields are constructed. Like C++, construc-
tion of an object is automatically done on allocation and destruction of the object is done on
deallocation. Allocation and deallocation can occur on the stack or on the heap.

{

struct S s = {10}; / / a l l o c a t i o n , c a l l c o n s t r u c t o r
...

} / / d e a l l o c a t i o n , c a l l d e s t r u c t o r

struct S * s = new(); / / a l l o c a t i o n , c a l l c o n s t r u c t o r
...

delete(s); / / d e a l l o c a t i o n , c a l l d e s t r u c t o r

Note that like C++, C

A

introduces new and delete, which behave like malloc and free in addition
to constructing and destructing objects, after calling malloc and before calling free, respectively.

2.5 Parametric Polymorphism

Routines in C

A

can also be reused for multiple types. This capability is done using the forall

clauses, which allow separately compiled routines to support generic usage over multiple types.
For example, the following sum function works for any type that supports construction from 0 and
addition:

/ / c o n s t r a i n t t yp e , 0 and +

forall(otype T | { void ?{}(T *, zero_t); T ?+?(T, T); })

T sum(T a[ ], size_t size) {

T total = 0; / / c o n s t r u c t T f ro m 0

for(size_t i = 0; i < size; i++)

total = total + a[i]; / / s e l e c t a p p r o p r i a t e +

return total;

}

S sa[5];

int i = sum(sa , 5); / / use S ' s 0 c o n s t r u c t i o n and +

Since writing constraints on types can become cumbersome for more constrained functions,
C

A

also has the concept of traits. Traits are named collection of constraints that can be used both

4



instead and in addition to regular constraints:
trait summable( otype T ) {

void ?{}(T *, zero_t); / / c o n s t r u c t o r f r o m 0 l i t e r a l

T ?+?(T, T); / / a s s o r t m e n t o f a d d i t i o n s
T ?+=?(T *, T);

T ++?(T *);

T ?++(T *);

};

forall( otype T | summable(T) ) / / use t r a i t

T sum(T a[], size_t size);

Note that the type use for assertions can be either an otype or a dtype. Types declared as otype

refer to “complete” objects, i.e., objects with a size, a default constructor, a copy constructor,
a destructor and an assignment operator. Using dtype , on the other hand, has none of these
assumptions but is extremely restrictive, it only guarantees the object is addressable.

2.6 with Clause/Statement

Since C

A

lacks the concept of a receiver, certain functions end up needing to repeat variable names
often. To remove this inconvenience, C

A

provides the with statement, which opens an aggregate
scope making its fields directly accessible (like Pascal).

struct S { int i, j; };

int mem(S & this) with (this) / / w i t h c l a u s e
i = 1; / / t h i s −> i

j = 2; / / t h i s −> j

}

int foo() {

struct S1 { ... } s1;

struct S2 { ... } s2;

with (s1) / / w i t h s t a t e m e n t

{

/ / access f i e l d s o f s1 w i t h o u t q u a l i f i c a t i o n
with (s2) / / n e s t i n g

{

/ / access f i e l d s o f s1 and s2 w i t h o u t q u a l i f i c a t i o n
}

}

with (s1 , s2) / / scopes open i n p a r a l l e l
{

/ / access f i e l d s o f s1 and s2 w i t h o u t q u a l i f i c a t i o n

}

}

For more information on C

A

see [17, 51, 22].
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Chapter 3

Concurrency Basics

Before any detailed discussion of the concurrency and parallelism in C

A

, it is important to describe
the basics of concurrency and how they are expressed in C

A

user code.

3.1 Basics of concurrency

At its core, concurrency is based on having multiple call-stacks and scheduling among threads
of execution executing on these stacks. Concurrency without parallelism only requires having
multiple call stacks (or contexts) for a single thread of execution.

Execution with a single thread and multiple stacks where the thread is self-scheduling deter-
ministically across the stacks is called coroutining. Execution with a single and multiple stacks but
where the thread is scheduled by an oracle (non-deterministic from the thread’s perspective) across
the stacks is called concurrency.

Therefore, a minimal concurrency system can be achieved by creating coroutines (see Section
3.3), which instead of context-switching among each other, always ask an oracle where to context-
switch next. While coroutines can execute on the caller’s stack-frame, stack-full coroutines allow
full generality and are sufficient as the basis for concurrency. The aforementioned oracle is a sched-
uler and the whole system now follows a cooperative threading-model (a.k.a., non-preemptive
scheduling). The oracle/scheduler can either be a stack-less or stack-full entity and correspond-
ingly require one or two context-switches to run a different coroutine. In any case, a subset of
concurrency related challenges start to appear. For the complete set of concurrency challenges to
occur, the only feature missing is preemption.

A scheduler introduces order of execution uncertainty, while preemption introduces uncertainty
about where context switches occur. Mutual exclusion and synchronization are ways of limiting
non-determinism in a concurrent system. Now it is important to understand that uncertainty is
desirable; uncertainty can be used by runtime systems to significantly increase performance and is
often the basis of giving a user the illusion that tasks are running in parallel. Optimal performance
in concurrent applications is often obtained by having as much non-determinism as correctness
allows.
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3.2 C

A

’s Thread Building Blocks

One of the important features that are missing in C is threading1. On modern architectures, a lack
of threading is unacceptable [52, 53], and therefore modern programming languages must have the
proper tools to allow users to write efficient concurrent programs to take advantage of parallelism.
As an extension of C, C

A

needs to express these concepts in a way that is as natural as possible
to programmers familiar with imperative languages. And being a system-level language means
programmers expect to choose precisely which features they need and which cost they are willing
to pay.

3.3 Coroutines: A Stepping Stone

While the main focus of this proposal is concurrency and parallelism, it is important to address
coroutines, which are actually a significant building block of a concurrency system. Coroutines
are generalized routines which have predefined points where execution is suspended and can be
resumed at a later time. Therefore, they need to deal with context switches and other context-
management operations. This proposal includes coroutines both as an intermediate step for the
implementation of threads, and a first-class feature of C

A

. Furthermore, many design challenges
of threads are at least partially present in designing coroutines, which makes the design effort
that much more relevant. The core API of coroutines revolves around two features: independent
call-stacks and suspend/resume.

A good example of a problem made easier with coroutines is generators, e.g., generating the
Fibonacci sequence. This problem comes with the challenge of decoupling how a sequence is
generated and how it is used. Listing 3.1 shows conventional approaches to writing generators in
C. All three of these approach suffer from strong coupling. The left and centre approaches require
that the generator have knowledge of how the sequence is used, while the rightmost approach
requires holding internal state between calls on behalf of the generator and makes it much harder
to handle corner cases like the Fibonacci seed.

Listing 3.1 is an example of a solution to the Fibonacci problem using C

A

coroutines, where
the coroutine stack holds sufficient state for the next generation. This solution has the advantage of
having very strong decoupling between how the sequence is generated and how it is used. Indeed,
this version is as easy to use as the fibonacci_state solution, while the implementation is very
similar to the fibonacci_func example.

Listing 3.2 shows the Format coroutine for restructuring text into groups of character blocks
of fixed size. The example takes advantage of resuming coroutines in the constructor to simplify
the code and highlights the idea that interesting control flow can occur in the constructor.

3.3.1 Construction

One important design challenge for implementing coroutines and threads (shown in section 3.4)
is that the runtime system needs to run code after the user-constructor runs to connect the fully
constructed object into the system. In the case of coroutines, this challenge is simpler since there

1While the C11 standard defines a “threads.h” header, it is minimal and defined as optional. As such, library support
for threading is far from widespread. At the time of writing the thesis, neither gcc nor clang support “threads.h” in
their respective standard libraries.
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//Using callbacks

void fibonacci_func(

int n,

void (*callback )(int)

) {

int first = 0;

int second = 1;

int next, i;

for(i = 0; i < n; i++)

{

if(i <= 1)

next = i;

else {

next = f1 + f2;

f1 = f2;

f2 = next;

}

callback(next);

}

}

int main() {

void print_fib (int n) {

printf( "%d \ n " , n);

}

fibonacci_func(

10, print_fib

);

}

//Using output array

void fibonacci_array(

int n,

int* array

) {

int f1 = 0; int f2 = 1;

int next, i;

for(i = 0; i < n; i++)

{

if(i <= 1)

next = i;

else {

next = f1 + f2;

f1 = f2;

f2 = next;

}

array[i] = next;

}

}

int main() {

int a[10];

fibonacci_func(

10, a

);

for(int i=0;i <10;i++){

printf( "%d \ n " , a[i]);

}

}

//Using external state

typedef struct {

int f1 , f2;

} Iterator_t;

int fibonacci_state(

Iterator_t* it

) {

int f;

f = it ->f1 + it->f2;

it ->f2 = it->f1;

it ->f1 = max(f ,1);

return f;

}

int main() {

Iterator_t it={0 ,0};

for(int i=0;i <10;i++){

printf( "%d \ n " ,
fibonacci_state(

&it

);

);

}

}

Table 3.1: Different implementations of a Fibonacci sequence generator in C.

is no non-determinism from preemption or scheduling. However, the underlying challenge remains
the same for coroutines and threads.

The runtime system needs to create the coroutine’s stack and, more importantly, prepare it for
the first resumption. The timing of the creation is non-trivial since users expect both to have fully
constructed objects once execution enters the coroutine main and to be able to resume the coroutine
from the constructor. There are several solutions to this problem but the chosen option effectively
forces the design of the coroutine.

Furthermore, C

A

faces an extra challenge as polymorphic routines create invisible thunks when
cast to non-polymorphic routines and these thunks have function scope. For example, the following
code, while looking benign, can run into undefined behaviour because of thunks:

/ / async : Runs f u n c t i o n a s y n c h r o n o u s l y on a n o t h e r t h r e a d

forall(otype T)

extern void async(void (*func)(T*), T* obj );

forall(otype T)

void noop(T*) {}

8



coroutine Fibonacci {

int fn; / / used f o r co mmu n i ca t i o n
};

void ?{}(Fibonacci& this) { / / c o n s t r u c t o r
this.fn = 0;

}

/ / main a u t o m a t i c a l l y c a l l e d on f i r s t resume

void main(Fibonacci & this) with (this) {

int fn1 , fn2; / / r e t a i n e d between resumes
fn = 0;

fn1 = fn;

suspend(this); / / r e t u r n t o l a s t resume

fn = 1;

fn2 = fn1;

fn1 = fn;

suspend(this); / / r e t u r n t o l a s t resume

for ( ;; ) {

fn = fn1 + fn2;

fn2 = fn1;

fn1 = fn;

suspend(this); / / r e t u r n t o l a s t resume

}

}

int next(Fibonacci& this) {

resume(this); / / t r a n s f e r t o l a s t suspend

return this.fn;

}

void main() { / / r e g u l a r p rogram main

Fibonacci f1, f2;

for ( int i = 1; i <= 10; i += 1 ) {

sout | next( f1 ) | next( f2 ) | endl;

}

}

Listing 3.1: Implementation of Fibonacci using coroutines

void bar () {

int a;

async(noop , &a); / / s t a r t t h r e a d r u n n i n g noop w i t h a rgument a
}

The generated C code2 creates a local thunk to hold type information:
extern void async(/* omitted */, void (*func)(void*), void* obj );

void noop(/* omitted */, void* obj){}

void bar (){

int a;

void _thunk0(int* _p0 ){

/* omitted */

2Code trimmed down for brevity
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/ / f o r m a t c h a r a c t e r s i n t o b l o c k s o f 4 and g ro u p s o f 5 b l o c k s p e r l i n e

coroutine Format {

char ch; / / used f o r co mmu n i ca t i o n

int g, b; / / g l o b a l because used i n d e s t r u c t o r

};

void ?{}(Format& fmt) {

resume( fmt ); / / p r i me ( s t a r t ) c o r o u t i n e
}

void ^?{}(Format& fmt) with fmt {

if ( fmt.g != 0 || fmt.b != 0 )

sout | endl;

}

void main(Format& fmt) with fmt {

for ( ;; ) { / / f o r as many c h a r a c t e r s
for(g = 0; g < 5; g++) { / / g ro u p s o f 5 b l o c k s

for(b = 0; b < 4; fb++) { / / b l o c k s o f 4 c h a r a c t e r s

suspend ();
sout | ch; / / p r i n t c h a r a c t e r

}

sout | " " ; / / p r i n t b l o c k s e p a r a t o r
}

sout | endl; / / p r i n t g ro u p s e p a r a t o r

}

}

void prt(Format & fmt , char ch) {

fmt.ch = ch;

resume(fmt );

}

int main() {

Format fmt;

char ch;

Eof: for ( ;; ) { / / r e a d u n t i l end o f f i l e

sin | ch; / / r e a d one c h a r a c t e r
if(eof(sin)) break Eof; / / e o f ?

prt(fmt , ch); / / push c h a r a c t e r f o r f o r m a t t i n g

}

}

Listing 3.2: Formatting text into lines of 5 blocks of 4 characters.

noop(/* omitted */, _p0 );

}

/* omitted */

async(/* omitted */, ((void (*)(void*))(&_thunk0)), (&a));

}

The problem in this example is a storage management issue, the function pointer _thunk0 is only
valid until the end of the block, which limits the viable solutions because storing the function
pointer for too long causes undefined behaviour; i.e., the stack-based thunk being destroyed before
it can be used. This challenge is an extension of challenges that come with second-class routines.
Indeed, GCC nested routines also have the limitation that nested routine cannot be passed outside
of the declaration scope. The case of coroutines and threads is simply an extension of this problem
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to multiple call stacks.

3.3.2 Alternative: Composition

One solution to this challenge is to use composition/containment, where coroutine fields are added
to manage the coroutine.

struct Fibonacci {

int fn; / / used f o r co mmu n i ca t i o n

coroutine c; / / c o m p o s i t i o n
};

void FibMain(void*) {

/ / . . .

}

void ?{}(Fibonacci& this) {

this.fn = 0;

/ / C a l l c o n s t r u c t o r t o i n i t i a l i z e c o r o u t i n e

(this.c){myMain};

}

The downside of this approach is that users need to correctly construct the coroutine handle before
using it. Like any other objects, the user must carefully choose construction order to prevent usage
of objects not yet constructed. However, in the case of coroutines, users must also pass to the
coroutine information about the coroutine main, like in the previous example. This opens the door
for user errors and requires extra runtime storage to pass at runtime information that can be known
statically.

3.3.3 Alternative: Reserved keyword

The next alternative is to use language support to annotate coroutines as follows:
coroutine Fibonacci {

int fn; / / used f o r co mmu n i ca t i o n
};

The coroutine keyword means the compiler can find and inject code where needed. The downside
of this approach is that it makes coroutine a special case in the language. Users wanting to extend
coroutines or build their own for various reasons can only do so in ways offered by the language.
Furthermore, implementing coroutines without language supports also displays the power of the
programming language used. While this is ultimately the option used for idiomatic C

A

code,
coroutines and threads can still be constructed by users without using the language support. The
reserved keywords are only present to improve ease of use for the common cases.

3.3.4 Alternative: Lambda Objects

For coroutines as for threads, many implementations are based on routine pointers or function
objects [19, 42, 48, 44]. For example, Boost implements coroutines in terms of four functor object
types:

asymmetric_coroutine <>::pull_type

asymmetric_coroutine <>::push_type

symmetric_coroutine <>::call_type

symmetric_coroutine <>::yield_type
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Often, the canonical threading paradigm in languages is based on function pointers, pthread being
one of the most well-known examples. The main problem of this approach is that the thread usage
is limited to a generic handle that must otherwise be wrapped in a custom type. Since the custom
type is simple to write in C

A

and solves several issues, added support for routine/lambda based
coroutines adds very little.

A variation of this would be to use a simple function pointer in the same way pthread does for
threads:

void foo( coroutine_t cid , void* arg ) {

int* value = (int*)arg;

/ / C o r o u t i n e body

}

int main() {

int value = 0;

coroutine_t cid = coroutine_create( &foo , (void*)& value );

coroutine_resume( &cid );

}

This semantics is more common for thread interfaces but coroutines work equally well. As discussed
in section 3.4, this approach is superseded by static approaches in terms of expressivity.

3.3.5 Alternative: Trait-Based Coroutines

Finally, the underlying approach, which is the one closest to C

A

idioms, is to use trait-based lazy
coroutines. This approach defines a coroutine as anything that satisfies the trait is_coroutine (as
defined below) and is used as a coroutine.

trait is_coroutine(dtype T) {

void main(T& this);

coroutine_desc* get_coroutine(T& this);

};

forall( dtype T | is_coroutine(T) ) void suspend(T&);

forall( dtype T | is_coroutine(T) ) void resume (T&);

This ensures that an object is not a coroutine until resume is called on the object. Correspondingly,
any object that is passed to resume is a coroutine since it must satisfy the is_coroutine trait to
compile. The advantage of this approach is that users can easily create different types of corou-
tines, for example, changing the memory layout of a coroutine is trivial when implementing the
get_coroutine routine. The C

A

keyword coroutine simply has the effect of implementing the
getter and forward declarations required for users to implement the main routine.

coroutine MyCoroutine {

int someValue ;

};

==

struct MyCoroutine {

int someValue;

coroutine_desc __cor;

};

static inline

coroutine_desc* get_coroutine(

struct MyCoroutine& this

) {

return &this.__cor;

}

void main(struct MyCoroutine* this);
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The combination of these two approaches allows users new to coroutining and concurrency to
have an easy and concise specification, while more advanced users have tighter control on memory
layout and initialization.

3.4 Thread Interface

The basic building blocks of multithreading in C

A

are threads. Both user and kernel threads are
supported, where user threads are the concurrency mechanism and kernel threads are the parallel
mechanism. User threads offer a flexible and lightweight interface. A thread can be declared using
a struct declaration thread as follows:

thread foo {};

As for coroutines, the keyword is a thin wrapper around a C

A

trait:
trait is_thread (dtype T) {

void ^?{}(T & mutex this);

void main(T & this);

thread_desc* get_thread(T & this);

};

Obviously, for this thread implementation to be useful it must run some user code. Several other
threading interfaces use a function-pointer representation as the interface of threads (for example
C♯ [27] and Scala [28]). However, this proposal considers that statically tying a main routine to a
thread supersedes this approach. Since the main routine is already a special routine in C

A

(where
the program begins), it is a natural extension of the semantics to use overloading to declare mains
for different threads (the normal main being the main of the initial thread). As such the main

routine of a thread can be defined as
thread foo {};

void main(foo & this) {

sout | " H e l l o Wor ld ! " | endl;

}

In this example, threads of type foo start execution in the void main(foo &) routine, which
prints " H e l l o Wor ld ! " . While this thesis encourages this approach to enforce strongly typed
programming, users may prefer to use the routine-based thread semantics for the sake of simplicity.
With the static semantics it is trivial to write a thread type that takes a function pointer as a param-
eter and executes it on its stack asynchronously.

typedef void (* voidFunc )(int);

thread FuncRunner {

voidFunc func;

int arg;

};

void ?{}( FuncRunner & this, voidFunc inFunc , int arg) {

this.func = inFunc;

this.arg = arg;

}

void main(FuncRunner & this) {

/ / t h r e a d s t a r t s h e re and r u n s t h e f u n c t i o n
this.func( this.arg );

}
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void hello( / * unused * / int) {

sout | " H e l l o Wor ld ! " | endl;

}

int main() {

FuncRunner f = {hello , 42};

return 0?

}

A consequence of the strongly typed approach to main is that memory layout of parameters
and return values to/from a thread are now explicitly specified in the API.

Of course, for threads to be useful, it must be possible to start and stop threads and wait for
them to complete execution. While using an API such as fork and join is relatively common in the
literature, such an interface is unnecessary. Indeed, the simplest approach is to use RAII principles
and have threads fork after the constructor has completed and join before the destructor runs.

thread World;

void main(World & this) {

sout | " Wor ld ! " | endl;

}

void main() {

World w;

/ / Th read f o r k s h e re

/ / P r i n t i n g " H e l l o " and " Wor ld ! " a re ru n c o n c u r r e n t l y
sout | " H e l l o " | endl;

/ / I m p l i c i t j o i n a t end o f scope
}

This semantic has several advantages over explicit semantics: a thread is always started and
stopped exactly once, users cannot make any programming errors, and it naturally scales to multiple
threads meaning basic synchronization is very simple.

thread MyThread {

/ / . . .

};

/ / main

void main(MyThread& this) {

/ / . . .

}

void foo () {

MyThread thrds[10];

/ / S t a r t 10 t h r e a d s a t t h e b e g i n n i n g o f t h e scope

DoStuff();

/ / W a i t f o r t h e 10 t h r e a d s t o f i n i s h

}

However, one of the drawbacks of this approach is that threads always form a tree where
nodes must always outlive their children, i.e., they are always destroyed in the opposite order of
construction because of C scoping rules. This restriction is relaxed by using dynamic allocation, so
threads can outlive the scope in which they are created, much like dynamically allocating memory
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lets objects outlive the scope in which they are created.
thread MyThread {

/ / . . .

};

void main(MyThread& this) {

/ / . . .
}

void foo () {

MyThread* long_lived;

{

/ / S t a r t a t h r e a d a t t h e b e g i n n i n g o f t h e scope
MyThread short_lived;

/ / c r e a t e a n o t h e r t h r e a d t h a t w i l l o u t l i v e t h e t h r e a d i n t h i s scope
long_lived = new MyThread;

DoStuff ();

/ / W a i t f o r t h e t h r e a d s h o r t _ l i v e d t o f i n i s h

}

DoMoreStuff();

/ / Now w a i t f o r t h e l o n g _ l i v e d t o f i n i s h
delete long_lived;

}
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Chapter 4

Concurrency

Several tools can be used to solve concurrency challenges. Since many of these challenges appear
with the use of mutable shared state, some languages and libraries simply disallow mutable shared
state (Erlang [29], Haskell [41], Akka (Scala) [45]). In these paradigms, interaction among concur-
rent objects relies on message passing [23, 31, 24] or other paradigms closely relate to networking
concepts (channels [38, 34] for example). However, in languages that use routine calls as their
core abstraction mechanism, these approaches force a clear distinction between concurrent and
non-concurrent paradigms (i.e., message passing versus routine calls). This distinction in turn
means that, in order to be effective, programmers need to learn two sets of design patterns. While
this distinction can be hidden away in library code, effective use of the library still has to take both
paradigms into account.

Approaches based on shared memory are more closely related to non-concurrent paradigms
since they often rely on basic constructs like routine calls and shared objects. At the lowest level,
concurrent paradigms are implemented as atomic operations and locks. Many such mechanisms
have been proposed, including semaphores [26] and path expressions [21]. However, for produc-
tivity reasons it is desirable to have a higher-level construct be the core concurrency paradigm [39].

An approach that is worth mentioning because it is gaining in popularity is transactional
memory [36]. While this approach is even pursued by system languages like C++ [43], the perfor-
mance and feature set is currently too restrictive to be the main concurrency paradigm for system
languages, which is why it was rejected as the core paradigm for concurrency in C

A

.
One of the most natural, elegant, and efficient mechanisms for synchronization and commu-

nication, especially for shared-memory systems, is the monitor. Monitors were first proposed
by Brinch Hansen [13] and later described and extended by C.A.R. Hoare [37]. Many program-
ming languages—e.g., Concurrent Pascal [14], Mesa [49], Modula [57], Turing [40], Modula-
3 [12], NeWS [33], Emerald [50], µC++ [15] and Java [32]—provide monitors as explicit language
constructs. In addition, operating-system kernels and device drivers have a monitor-like structure,
although they often use lower-level primitives such as semaphores or locks to simulate monitors.
For these reasons, this project proposes monitors as the core concurrency construct.

4.1 Basics

Non-determinism requires concurrent systems to offer support for mutual-exclusion and synchro-
nization. Mutual-exclusion is the concept that only a fixed number of threads can access a critical
section at any given time, where a critical section is a group of instructions on an associated portion
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of data that requires the restricted access. On the other hand, synchronization enforces relative
ordering of execution and synchronization tools provide numerous mechanisms to establish timing
relationships among threads.

4.1.1 Mutual-Exclusion

As mentioned above, mutual-exclusion is the guarantee that only a fix number of threads can enter
a critical section at once. However, many solutions exist for mutual exclusion, which vary in
terms of performance, flexibility and ease of use. Methods range from low-level locks, which are
fast and flexible but require significant attention to be correct, to higher-level concurrency tech-
niques, which sacrifice some performance in order to improve ease of use. Ease of use comes
by either guaranteeing some problems cannot occur (e.g., being deadlock free) or by offering a
more explicit coupling between data and corresponding critical section. For example, the C++
std::atomic <T> offers an easy way to express mutual-exclusion on a restricted set of opera-
tions (e.g., reading/writing large types atomically). Another challenge with low-level locks is
composability. Locks have restricted composability because it takes careful organizing for multiple
locks to be used while preventing deadlocks. Easing composability is another feature higher-level
mutual-exclusion mechanisms often offer.

4.1.2 Synchronization

As with mutual-exclusion, low-level synchronization primitives often offer good performance and
good flexibility at the cost of ease of use. Again, higher-level mechanisms often simplify usage by
adding either better coupling between synchronization and data (e.g., message passing) or offering
a simpler solution to otherwise involved challenges. As mentioned above, synchronization can be
expressed as guaranteeing that event X always happens before Y. Most of the time, synchronization
happens within a critical section, where threads must acquire mutual-exclusion in a certain order.
However, it may also be desirable to guarantee that event Z does not occur between X and Y. Not
satisfying this property is called barging. For example, where event X tries to effect event Y but
another thread acquires the critical section and emits Z before Y. The classic example is the thread
that finishes using a resource and unblocks a thread waiting to use the resource, but the unblocked
thread must compete to acquire the resource. Preventing or detecting barging is an involved chal-
lenge with low-level locks, which can be made much easier by higher-level constructs. This chal-
lenge is often split into two different methods, barging avoidance and barging prevention. Algo-
rithms that use flag variables to detect barging threads are said to be using barging avoidance, while
algorithms that baton-pass locks [10] between threads instead of releasing the locks are said to be
using barging prevention.

4.2 Monitors

A monitor is a set of routines that ensure mutual-exclusion when accessing shared state. More
precisely, a monitor is a programming technique that associates mutual-exclusion to routine scopes,
as opposed to mutex locks, where mutual-exclusion is defined by lock/release calls independently
of any scoping of the calling routine. This strong association eases readability and maintainability,
at the cost of flexibility. Note that both monitors and mutex locks, require an abstract handle to
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identify them. This concept is generally associated with object-oriented languages like Java [32]
or µC++ [16] but does not strictly require OO semantics. The only requirement is the ability to
declare a handle to a shared object and a set of routines that act on it:

typedef / * some m o n i t o r t y p e * / monitor;

int f(monitor & m);

int main() {

monitor m; / / Hand le m

f(m); / / R o u t i n e u s i n g h a n d l e
}

4.2.1 Call Semantics

The above monitor example displays some of the intrinsic characteristics. First, it is necessary
to use pass-by-reference over pass-by-value for monitor routines. This semantics is important,
because at their core, monitors are implicit mutual-exclusion objects (locks), and these objects
cannot be copied. Therefore, monitors are non-copy-able objects (dtype).

Another aspect to consider is when a monitor acquires its mutual exclusion. For example, a
monitor may need to be passed through multiple helper routines that do not acquire the monitor
mutual-exclusion on entry. Passthrough can occur for generic helper routines (swap, sort, etc.) or
specific helper routines like the following to implement an atomic counter:

monitor counter_t { / * . . . see s e c t i o n 4.2.3 . . . * / };

void ?{}(counter_t & nomutex this); / / c o n s t r u c t o r

size_t ++?(counter_t & mutex this); / / i n c r e m e n t

/ / need f o r mutex i s p l a t f o r m d e p e n d en t

void ?{}(size_t * this, counter_t & mutex cnt); / / c o n v e r s i o n

This counter is used as follows:

/ / sh a re d c o u n t e r

counter_t cnt1, cnt2;

/ / m u l t i p l e t h r e a d s access c o u n t e r

thread 1 : cnt1++; cnt2++;

thread 2 : cnt1++; cnt2++;

thread 3 : cnt1++; cnt2++;

...

thread N : cnt1++; cnt2++;

Notice how the counter is used without any explicit synchronization and yet supports thread-safe
semantics for both reading and writing, which is similar in usage to the C++ template std ::atomic.

Here, the constructor (?{}) uses the nomutex keyword to signify that it does not acquire the
monitor mutual-exclusion when constructing. This semantics is because an object not yet con-
structed should never be shared and therefore does not require mutual exclusion. Furthermore,
it allows the implementation greater freedom when it initializes the monitor locking. The prefix
increment operator uses mutex to protect the incrementing process from race conditions. Finally,
there is a conversion operator from counter_t to size_t. This conversion may or may not require
the mutex keyword depending on whether or not reading a size_t is an atomic operation.

For maximum usability, monitors use multiple-acquisition semantics, which means a single
thread can acquire the same monitor multiple times without deadlock. For example, listing 4.1
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monitor printer { ... };

struct tree {

tree * left , right;

char * value;

};

void print(printer & mutex p, char * v);

void print(printer & mutex p, tree * t) {

print(p, t->value);

print(p, t->left );

print(p, t->right);

}

Listing 4.1: Recursive printing algorithm using multiple-acquisition.

uses recursion and multiple-acquisition to print values inside a binary tree.
Having both mutex and nomutex keywords can be redundant, depending on the meaning of a

routine having neither of these keywords. For example, it is reasonable that it should default to
the safest option (mutex) when given a routine without qualifiers void foo(counter_t & this),
whereas assuming nomutex is unsafe and may cause subtle errors. On the other hand, nomutex is
the “normal” parameter behaviour, it effectively states explicitly that “this routine is not special”.
Another alternative is making exactly one of these keywords mandatory, which provides the same
semantics but without the ambiguity of supporting routines with neither keyword. Mandatory
keywords would also have the added benefit of being self-documented but at the cost of extra
typing. While there are several benefits to mandatory keywords, they do bring a few challenges.
Mandatory keywords in C

A

would imply that the compiler must know without doubt whether or
not a parameter is a monitor or not. Since C

A
relies heavily on traits as an abstraction mechanism,

the distinction between a type that is a monitor and a type that looks like a monitor can become
blurred. For this reason, C

A

only has the mutex keyword and uses no keyword to mean nomutex.
The next semantic decision is to establish when mutex may be used as a type qualifier. Consider

the following declarations:
int f1(monitor & mutex m);

int f2(const monitor & mutex m);

int f3(monitor ** mutex m);

int f4(monitor * mutex m []);

int f5(graph(monitor *) & mutex m);

The problem is to identify which object(s) should be acquired. Furthermore, each object needs
to be acquired only once. In the case of simple routines like f1 and f2 it is easy to identify an
exhaustive list of objects to acquire on entry. Adding indirections (f3) still allows the compiler and
programmer to identify which object is acquired. However, adding in arrays (f4) makes it much
harder. Array lengths are not necessarily known in C, and even then, making sure objects are only
acquired once becomes none-trivial. This problem can be extended to absurd limits like f5, which
uses a graph of monitors. To make the issue tractable, this project imposes the requirement that
a routine may only acquire one monitor per parameter and it must be the type of the parameter
with at most one level of indirection (ignoring potential qualifiers). Also note that while routine
f3 can be supported, meaning that monitor **m is acquired, passing an array to this routine would
be type-safe and yet result in undefined behaviour because only the first element of the array is
acquired. However, this ambiguity is part of the C type-system with respects to arrays. For this
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reason, mutex is disallowed in the context where arrays may be passed:
int f1(monitor & mutex m); / / Okay : recommended case
int f2(monitor * mutex m); / / Not Okay : Cou ld be an a r r a y

int f3(monitor mutex m []); / / Not Okay : A r r a y o f unknown l e n g t h
int f4(monitor ** mutex m); / / Not Okay : Cou ld be an a r r a y

int f5(monitor * mutex m []); / / Not Okay : A r r a y o f unknown l e n g t h

Note that not all array functions are actually distinct in the type system. However, even if the
code generation could tell the difference, the extra information is still not sufficient to extend
meaningfully the monitor call semantic.

Unlike object-oriented monitors, where calling a mutex member implicitly acquires mutual-
exclusion of the receiver object, C

A

uses an explicit mechanism to specify the object that acquires
mutual-exclusion. A consequence of this approach is that it extends naturally to multi-monitor
calls.

int f(MonitorA & mutex a, MonitorB & mutex b);

MonitorA a;

MonitorB b;

f(a,b);

While OO monitors could be extended with a mutex qualifier for multiple-monitor calls, no example
of this feature could be found. The capability to acquire multiple locks before entering a critical
section is called bulk-acquiring. In practice, writing multi-locking routines that do not lead to
deadlocks is tricky. Having language support for such a feature is therefore a significant asset for
C

A

. In the case presented above, C

A

guarantees that the order of acquisition is consistent across
calls to different routines using the same monitors as arguments. This consistent ordering means
acquiring multiple monitors is safe from deadlock when using bulk-acquiring. However, users can
still force the acquiring order. For example, notice which routines use mutex/nomutex and how
this affects acquiring order:

void foo(A& mutex a, B& mutex b) { / / a c q u i r e a & b

...

}

void bar(A& mutex a, B& / * nomutex * / b) { / / a c q u i r e a

... foo(a, b); ... / / a c q u i r e b
}

void baz(A& / * nomutex * / a, B& mutex b) { / / a c q u i r e b
... foo(a, b); ... / / a c q u i r e a

}

The multiple-acquisition monitor lock allows a monitor lock to be acquired by both bar or baz and
acquired again in foo. In the calls to bar and baz the monitors are acquired in opposite order.

However, such use leads to lock acquiring order problems. In the example above, the user
uses implicit ordering in the case of function foo but explicit ordering in the case of bar and baz.
This subtle difference means that calling these routines concurrently may lead to deadlock and is
therefore undefined behaviour. As shown [47], solving this problem requires:

1. Dynamically tracking the monitor-call order.

2. Implement rollback semantics.

While the first requirement is already a significant constraint on the system, implementing a general
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function call mutex statement
monitor M {};

void foo( M & mutex m1 , M & mutex m2 ) {

/ / c r i t i c a l s e c t i o n
}

void bar( M & m1 , M & m2 ) {

foo( m1 , m2 );

}

monitor M {};

void bar( M & m1, M & m2 ) {

mutex(m1 , m2) {

/ / c r i t i c a l s e c t i o n

}

}

Table 4.1: Regular call semantics vs. mutex statement

rollback semantics in a C-like language is still prohibitively complex [25]. In C

A

, users simply
need to be careful when acquiring multiple monitors at the same time or only use bulk-acquiring
of all the monitors. While C

A

provides only a partial solution, most systems provide no solution
and the C

A

partial solution handles many useful cases.
For example, multiple-acquisition and bulk-acquiring can be used together in interesting ways:

monitor bank { ... };

void deposit( bank & mutex b, int deposit );

void transfer( bank & mutex mybank , bank & mutex yourbank, int me2you) {

deposit( mybank , -me2you );

deposit( yourbank, me2you );

}

This example shows a trivial solution to the bank-account transfer problem [11]. Without multiple-
acquisition and bulk-acquiring, the solution to this problem is much more involved and requires
careful engineering.

4.2.2 mutex statement

The call semantics discussed above have one software engineering issue: only a routine can acquire
the mutual-exclusion of a set of monitor. C

A

offers the mutex statement to work around the need
for unnecessary names, avoiding a major software engineering problem [30]. Table 4.1 shows an
example of the mutex statement, which introduces a new scope in which the mutual-exclusion of a
set of monitor is acquired. Beyond naming, the mutex statement has no semantic difference from
a routine call with mutex parameters.

4.2.3 Data semantics

Once the call semantics are established, the next step is to establish data semantics. Indeed, until
now a monitor is used simply as a generic handle but in most cases monitors contain shared data.
This data should be intrinsic to the monitor declaration to prevent any accidental use of data without
its appropriate protection. For example, here is a complete version of the counter shown in section
4.2.1:

monitor counter_t {

int value;
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};

void ?{}(counter_t & this) {

this.cnt = 0;

}

int ?++(counter_t & mutex this) {

return ++this.value;

}

/ / need f o r mutex i s p l a t f o r m d e p e n d en t h e re

void ?{}(int * this, counter_t & mutex cnt) {

*this = (int)cnt;
}

Like threads and coroutines, monitors are defined in terms of traits with some additional
language support in the form of the monitor keyword. The monitor trait is:

trait is_monitor(dtype T) {

monitor_desc * get_monitor( T & );

void ^?{}( T & mutex );

};

Note that the destructor of a monitor must be a mutex routine to prevent deallocation while a
thread is accessing the monitor. As with any object, calls to a monitor, using mutex or otherwise,
is undefined behaviour after the destructor has run.

4.3 Internal Scheduling

In addition to mutual exclusion, the monitors at the core of C
A

’s concurrency can also be used
to achieve synchronization. With monitors, this capability is generally achieved with internal or
external scheduling as in [37]. With scheduling loosely defined as deciding which thread acquires
the critical section next, internal scheduling means making the decision from inside the critical
section (i.e., with access to the shared state), while external scheduling means making the decision
when entering the critical section (i.e., without access to the shared state). Since internal scheduling
within a single monitor is mostly a solved problem, this thesis concentrates on extending internal
scheduling to multiple monitors. Indeed, like the bulk-acquiring semantics, internal scheduling
extends to multiple monitors in a way that is natural to the user but requires additional complexity
on the implementation side.

First, here is a simple example of internal scheduling:
monitor A {

condition e;

}

void foo(A& mutex a1 , A& mutex a2) {

...

/ / W a i t f o r c o o p e r a t i o n f ro m b a r ( )
wait(a1.e);

...

}

void bar(A& mutex a1 , A& mutex a2) {

/ / P r o v i d e c o o p e r a t i o n f o r f o o ( )
...

/ / Un b l o ck f o o
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signal(a1.e);
}

There are two details to note here. First, signal is a delayed operation; it only unblocks the waiting
thread when it reaches the end of the critical section. This semantics is needed to respect mutual-
exclusion, i.e., the signaller and signalled thread cannot be in the monitor simultaneously. The
alternative is to return immediately after the call to signal, which is significantly more restrictive.
Second, in C

A

, while it is common to store a condition as a field of the monitor, a condition

variable can be stored/created independently of a monitor. Here routine foo waits for the signal

from bar before making further progress, ensuring a basic ordering.
An important aspect of the implementation is that C

A

does not allow barging, which means
that once function bar releases the monitor, foo is guaranteed to be the next thread to acquire
the monitor (unless some other thread waited on the same condition). This guarantee offers the
benefit of not having to loop around waits to recheck that a condition is met. The main reason C

A

offers this guarantee is that users can easily introduce barging if it becomes a necessity but adding
barging prevention or barging avoidance is more involved without language support. Supporting
barging prevention as well as extending internal scheduling to multiple monitors is the main source
of complexity in the design and implementation of C

A

concurrency.

4.3.1 Internal Scheduling - Multi-Monitor

It is easy to understand the problem of multi-monitor scheduling using a series of pseudo-code
examples. Note that for simplicity in the following snippets of pseudo-code, waiting and signalling
is done using an implicit condition variable, like Java built-in monitors. Indeed, wait statements
always use the implicit condition variable as parameters and explicitly name the monitors (A and B)
associated with the condition. Note that in C

A

, condition variables are tied to a group of monitors
on first use (called branding), which means that using internal scheduling with distinct sets of
monitors requires one condition variable per set of monitors. The example below shows the simple
case of having two threads (one for each column) and a single monitor A.

thread 1
acqu i re A

wa i t A

re lease A

thread 2
acqu i re A

s i g n a l A

re lease A

One thread acquires before waiting (atomically blocking and releasing A) and the other acquires
before signalling. It is important to note here that both wait and signal must be called with the
proper monitor(s) already acquired. This semantic is a logical requirement for barging prevention.

A direct extension of the previous example is a bulk-acquiring version:

acqu i re A & B

wa i t A & B

re lease A & B

acqu i re A & B

s i g n a l A & B

re lease A & B

This version uses bulk-acquiring (denoted using the & symbol), but the presence of multiple moni-
tors does not add a particularly new meaning. Synchronization happens between the two threads
in exactly the same way and order. The only difference is that mutual exclusion covers a group of
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monitors. On the implementation side, handling multiple monitors does add a degree of complexity
as the next few examples demonstrate.

While deadlock issues can occur when nesting monitors, these issues are only a symptom of
the fact that locks, and by extension monitors, are not perfectly composable. For monitors, a well-
known deadlock problem is the Nested Monitor Problem [47], which occurs when a wait is made
by a thread that holds more than one monitor. For example, the following pseudo-code runs into
the nested-monitor problem:

acqu i re A

acqu i re B
wa i t B

re lease B

re lease A

acqu i re A

acqu i re B
s i g n a l B

re lease B

re lease A

The wait only releases monitor B so the signalling thread cannot acquire monitor A to get to the
signal. Attempting release of all acquired monitors at the wait introduces a different set of
problems, such as releasing monitor C, which has nothing to do with the signal.

However, for monitors as for locks, it is possible to write a program using nesting without
encountering any problems if nesting is done correctly. For example, the next pseudo-code snippet
acquires monitors A then B before waiting, while only acquiring B when signalling, effectively
avoiding the Nested Monitor Problem [47].

acqu i re A
acqu i re B

wa i t B

re lease B
re lease A

acqu i re B

s i g n a l B

re lease B

However, this simple refactoring may not be possible, forcing more complex restructuring.

4.3.2 Internal Scheduling - In Depth

A larger example is presented to show complex issues for bulk-acquiring and its implementation
options are analyzed. Listing 4.2 shows an example where bulk-acquiring adds a significant layer
of complexity to the internal signalling semantics, and listing 4.3 shows the corresponding C

A

code
to implement the pseudo-code in listing 4.2. For the purpose of translating the given pseudo-code
into C

A

-code, any method of introducing a monitor is acceptable, e.g., mutex parameters, global
variables, pointer parameters, or using locals with the mutex statement.

The complexity begins at code sections 4 and 8 in listing 4.2, which are where the existing
semantics of internal scheduling needs to be extended for multiple monitors. The root of the
problem is that bulk-acquiring is used in a context where one of the monitors is already acquired,
which is why it is important to define the behaviour of the previous pseudo-code. When the
signaller thread reaches the location where it should “release A & B” (listing 4.2 line 16), it must
actually transfer ownership of monitor B to the waiting thread. This ownership transfer is required
in order to prevent barging into B by another thread, since both the signalling and signalled threads
still need monitor A. There are three options:
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Waiting thread
1 acqu i re A
2 / / Code Sect ion 1

3 acqu i re A & B
4 / / Code Sect ion 2

5 wai t A & B

6 / / Code Sect ion 3
7 re lease A & B

8 / / Code Sect ion 4

9 re lease A

Signalling thread
10 acqu i re A
11 / / Code Sect ion 5

12 acqu i re A & B
13 / / Code Sect ion 6

14 s i g n a l A & B

15 / / Code Sect ion 7
16 re lease A & B

17 / / Code Sect ion 8

18 re lease A

Listing 4.2: Internal scheduling with bulk-acquiring

monitor A a;

monitor B b;

condition c;

Waiting thread
mutex(a) {

/ / Code S e c t i o n 1

mutex(a, b) {

/ / Code S e c t i o n 2
wait(c);

/ / Code S e c t i o n 3

}

/ / Code S e c t i o n 4

}

Signalling thread
mutex(a) {

/ / Code S e c t i o n 5

mutex(a, b) {

/ / Code S e c t i o n 6
signal(c);

/ / Code S e c t i o n 7

}

/ / Code S e c t i o n 8

}

Listing 4.3: Equivalent C

A

code for listing 4.2

Waiter
1 acqu i re A
2 acqu i re A & B

3 wai t A & B

4 re lease A & B
5 re lease A

Signaller
6 acqu i re A
7 acqu i re A & B

8 s i g n a l A & B

9 re lease A & B
10 / / Se c re t l y keep B here

11 re lease A
12 / / Wakeup wa i t e r and t r a n s f e r A & B

Listing 4.4: Listing 4.2, with delayed signalling comments

Delaying Signals

The obvious solution to the problem of multi-monitor scheduling is to keep ownership of all
locks until the last lock is ready to be transferred. It can be argued that that moment is when
the last lock is no longer needed, because this semantics fits most closely to the behaviour of
single-monitor scheduling. This solution has the main benefit of transferring ownership of groups
of monitors, which simplifies the semantics from multiple objects to a single group of objects,
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effectively making the existing single-monitor semantic viable by simply changing monitors to
monitor groups. This solution releases the monitors once every monitor in a group can be released.
However, since some monitors are never released (e.g., the monitor of a thread), this interpretation
means a group might never be released. A more interesting interpretation is to transfer the group
until all its monitors are released, which means the group is not passed further and a thread can
retain its locks.

However, listing 4.4 shows this solution can become much more complicated depending on
what is executed while secretly holding B at line 10, while avoiding the need to transfer ownership
of a subset of the condition monitors. Listing 4.5 shows a slightly different example where a
third thread is waiting on monitor A, using a different condition variable. Because the third thread
is signalled when secretly holding B, the goal becomes unreachable. Depending on the order of
signals (listing 4.5 line 8 and 10) two cases can happen:

Case 1: thread α goes first. In this case, the problem is that monitor A needs to be passed to
thread β when thread α is done with it.

Case 2: thread β goes first. In this case, the problem is that monitor B needs to be retained and
passed to thread α along with monitor A, which can be done directly or possibly using thread β as
an intermediate.

Note that ordering is not determined by a race condition but by whether signalled threads are
enqueued in FIFO or FILO order. However, regardless of the answer, users can move line 10 before
line 8 and get the reverse effect for listing 4.5.

In both cases, the threads need to be able to distinguish, on a per monitor basis, which ones
need to be released and which ones need to be transferred, which means knowing when to release
a group becomes complex and inefficient (see next section) and therefore effectively precludes this
approach.

Dependency graphs

In listing 4.2, there is a solution that satisfies both barging prevention and mutual exclusion. If
ownership of both monitors is transferred to the waiter when the signaller releases A & B and then
the waiter transfers back ownership of A back to the signaller when it releases it, then the problem
is solved (B is no longer in use at this point). Dynamically finding the correct order is therefore the
second possible solution. The problem is effectively resolving a dependency graph of ownership
requirements. Here even the simplest of code snippets requires two transfers and has a super-linear
complexity. This complexity can be seen in listing 4.6, which is just a direct extension to three
monitors, requires at least three ownership transfer and has multiple solutions. Furthermore, the
presence of multiple solutions for ownership transfer can cause deadlock problems if a specific
solution is not consistently picked; In the same way that multiple lock acquiring order can cause
deadlocks.

Given the three threads example in listing 4.5, figure 4.1 shows the corresponding dependency
graph that results, where every node is a statement of one of the three threads, and the arrows the
dependency of that statement (e.g., α1 must happen before α2). The extra challenge is that this
dependency graph is effectively post-mortem, but the runtime system needs to be able to build and
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Thread α

1 acqu i re A

2 acqu i re A & B
3 wai t A & B

4 re lease A & B

5 re lease A

Thread γ

6 acqu i re A

7 acqu i re A & B
8 s i g n a l A & B

9 re lease A & B

10 s i g n a l A
11 re lease A

Thread β

12 acqu i re A

13 wai t A
14 re lease A

Listing 4.5: Pseudo-code for the three thread example.

α3

α2

α1

α4

α5

γ2

γ1

γ3

γ4

γ5

γ6

β1

β2

β3

Figure 4.1: Dependency graph of the statements in listing 4.5

acqu i re A

acqu i re B
acqu i re C

wa i t A & B & C

re lease C
re lease B

re lease A

acqu i re A

acqu i re B
acqu i re C

s i g n a l A & B & C

re lease C
re lease B

re lease A

Listing 4.6: Extension to three monitors of listing 4.2
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solve these graphs as the dependencies unfold. Resolving dependency graphs being a complex and
expensive endeavour, this solution is not the preferred one.

Partial Signalling

Finally, the solution that is chosen for C

A

is to use partial signalling. Again using listing 4.2, the
partial signalling solution transfers ownership of monitor B at lines 14 to the waiter but does not
wake the waiting thread since it is still using monitor A. Only when it reaches line 18 does it actu-
ally wake up the waiting thread. This solution has the benefit that complexity is encapsulated into
only two actions: passing monitors to the next owner when they should be released and condition-
ally waking threads if all conditions are met. This solution has a much simpler implementation
than a dependency graph solving algorithms, which is why it was chosen. Furthermore, after being
fully implemented, this solution does not appear to have any significant downsides.

Using partial signalling, listing 4.5 can be solved easily:

• When thread γ reaches line 9 it transfers monitor B to thread α and continues to hold monitor
A.

• When thread γ reaches line 11 it transfers monitor A to thread β and wakes it up.

• When thread β reaches line 14 it transfers monitor A to thread α and wakes it up.

4.3.3 Signalling: Now or Later

An important note is that, until now, signalling a monitor was a delayed operation. The ownership
of the monitor is transferred only when the monitor would have otherwise been released, not at
the point of the signal statement. However, in some cases, it may be more convenient for users
to immediately transfer ownership to the thread that is waiting for cooperation, which is achieved
using the signal_block routine.

The example in table 4.2 highlights the difference in behaviour. As mentioned, signal only
transfers ownership once the current critical section exits; this behaviour requires additional synchro-
nization when a two-way handshake is needed. To avoid this explicit synchronization, the condition

type offers the signal_block routine, which handles the two-way handshake as shown in the
example. This feature removes the need for a second condition variables and simplifies program-
ming. Like every other monitor semantic, signal_block uses barging prevention, which means
mutual-exclusion is baton-passed both on the front end and the back end of the call to signal_block,
meaning no other thread can acquire the monitor either before or after the call.

4.4 External scheduling

An alternative to internal scheduling is external scheduling (see Table 4.3). This method is more
constrained and explicit, which helps users reduce the non-deterministic nature of concurrency.
Indeed, as the following examples demonstrate, external scheduling allows users to wait for events
from other threads without the concern of unrelated events occurring. External scheduling can
generally be done either in terms of control flow (e.g., Ada with accept, µC++ with _Accept)
or in terms of data (e.g., Go with channels). Of course, both of these paradigms have their
own strengths and weaknesses, but for this project, control-flow semantics was chosen to stay
consistent with the rest of the languages semantics. Two challenges specific to C

A

arise when
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signal signal_block

monitor DatingService

{

/ / c o m p a t i b i l i t y codes

enum{ CCodes = 20 };

int girlPhoneNo

int boyPhoneNo;

};

condition girls[CCodes];

condition boys [CCodes];

condition exchange;

int girl(int phoneNo , int ccode)

{

/ / no c o m p a t i b l e boy ?

if(empty(boys[ccode]))
{

/ / w a i t f o r boy

wait(girls[ccode]);

/ / make phone number a v a i l a b l e

girlPhoneNo = phoneNo;

/ / wake boy f ro m c h a i r

signal(exchange );
}

else

{

/ / make phone number a v a i l a b l e

girlPhoneNo = phoneNo;

/ / wake boy

signal(boys[ccode]);

/ / s i t i n c h a i r

wait(exchange );

}

return boyPhoneNo;

}

int boy(int phoneNo , int ccode)

{

/ / same as above
/ / w i t h boy / g i r l i n t e r c h a n g e d

}

monitor DatingService

{

/ / c o m p a t i b i l i t y codes

enum{ CCodes = 20 };

int girlPhoneNo;

int boyPhoneNo;

};

condition girls[CCodes];

condition boys [CCodes];

/ / exchange i s n o t needed

int girl(int phoneNo , int ccode)

{

/ / no c o m p a t i b l e boy ?

if(empty(boys[ccode]))
{

/ / w a i t f o r boy

wait(girls[ccode]);

/ / make phone number a v a i l a b l e

girlPhoneNo = phoneNo;

/ / wake boy f ro m c h a i r

signal(exchange );
}

else

{

/ / make phone number a v a i l a b l e

girlPhoneNo = phoneNo;

/ / wake boy

signal_block(boys[ccode]);

/ / second handshake u n n e ce ssa ry

}

return boyPhoneNo;

}

int boy(int phoneNo , int ccode)

{

/ / same as above
/ / w i t h boy / g i r l i n t e r c h a n g e d

}

Table 4.2: Dating service example using signal and signal_block.
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Internal Scheduling External Scheduling Go

_Monitor Semaphore {

condition c;

bool inUse;

public:

void P() {

if(inUse)

wait(c);

inUse = true;

}

void V() {

inUse = false;

signal(c);

}

}

_Monitor Semaphore {

bool inUse;

public:

void P() {

if(inUse)

_Accept(V);

inUse = true;

}

void V() {

inUse = false;

}

}

type MySem struct {

inUse bool

c chan bool
}

// acquire

func (s MySem) P() {

if s.inUse {

select {

case <-s.c:

}

}

s.inUse = true

}

// release

func (s MySem) V() {

s.inUse = false

//This actually deadlocks

//when single thread

s.c <- false

}

Table 4.3: Different forms of scheduling.

trying to add external scheduling with loose object definitions and multiple-monitor routines. The
previous example shows a simple use _Accept versus wait/signal and its advantages. Note that
while other languages often use accept/select as the core external scheduling keyword, C

A

uses
waitfor to prevent name collisions with existing socket APIs.

For the P member above using internal scheduling, the call to wait only guarantees that V is the
last routine to access the monitor, allowing a third routine, say isInUse(), acquire mutual exclu-
sion several times while routine P is waiting. On the other hand, external scheduling guarantees
that while routine P is waiting, no other routine than V can acquire the monitor.

4.4.1 Loose Object Definitions

In µC++, a monitor class declaration includes an exhaustive list of monitor operations. Since C

A

is
not object oriented, monitors become both more difficult to implement and less clear for a user:

monitor A {};

void f(A & mutex a);

void g(A & mutex a) {

waitfor(f); / / Obv ious wh i ch f ( ) t o w a i t f o r

}

void f(A & mutex a, int); / / New d i f f e r e n t F added i n scope

void h(A & mutex a) {

waitfor(f); / / Less o b v i o u s wh i ch f ( ) t o w a i t f o r
}

Furthermore, external scheduling is an example where implementation constraints become
visible from the interface. Here is the pseudo-code for the entering phase of a monitor:
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e l i f a l ready own the moni tor

cont inue

e l i f moni tor accepts me
ente r

e lse

b lock

For the first two conditions, it is easy to implement a check that can evaluate the condition in
a few instructions. However, a fast check for moni tor accepts me is much harder to implement
depending on the constraints put on the monitors. Indeed, monitors are often expressed as an entry
queue and some acceptor queue as in Figure 4.2(a).

There are other alternatives to these pictures, but in the case of the left picture, implementing a
fast accept check is relatively easy. Restricted to a fixed number of mutex members, N, the accept
check reduces to updating a bitmask when the acceptor queue changes, a check that executes in
a single instruction even with a fairly large number (e.g., 128) of mutex members. This approach
requires a unique dense ordering of routines with an upper-bound and that ordering must be consis-
tent across translation units. For OO languages these constraints are common, since objects only
offer adding member routines consistently across translation units via inheritance. However, in C

A

users can extend objects with mutex routines that are only visible in certain translation unit. This
means that establishing a program-wide dense-ordering among mutex routines can only be done in
the program linking phase, and still could have issues when using dynamically shared objects.

The alternative is to alter the implementation as in Figure 4.2(b). Here, the mutex routine
called is associated with a thread on the entry queue while a list of acceptable routines is kept
separate. Generating a mask dynamically means that the storage for the mask information can
vary between calls to waitfor, allowing for more flexibility and extensions. Storing an array of
accepted function pointers replaces the single instruction bitmask comparison with dereferencing
a pointer followed by a linear search. Furthermore, supporting nested external scheduling (e.g.,
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monitor M {};

void foo( M & mutex a ) {}

void bar( M & mutex b ) {

/ / Nested i n t h e w a i t f o r ( bar , c ) c a l l

waitfor(foo , b);

}

void baz( M & mutex c ) {

waitfor(bar , c);

}

Listing 4.7: Example of nested external scheduling

listing 4.7) may now require additional searches for the waitfor statement to check if a routine is
already queued.

Note that in the right picture, tasks need to always keep track of the monitors associated with
mutex routines, and the routine mask needs to have both a function pointer and a set of monitors,
as is discussed in the next section. These details are omitted from the picture for the sake of
simplicity.

At this point, a decision must be made between flexibility and performance. Many design
decisions in C

A

achieve both flexibility and performance, for example polymorphic routines add
significant flexibility but inlining them means the optimizer can easily remove any runtime cost.
Here, however, the cost of flexibility cannot be trivially removed. In the end, the most flexible
approach has been chosen since it allows users to write programs that would otherwise be hard to
write. This decision is based on the assumption that writing fast but inflexible locks is closer to a
solved problem than writing locks that are as flexible as external scheduling in C

A
.

4.4.2 Multi-Monitor Scheduling

External scheduling, like internal scheduling, becomes significantly more complex when intro-
ducing multi-monitor syntax. Even in the simplest possible case, some new semantics needs to be
established:

monitor M {};

void f(M & mutex a);

void g(M & mutex b, M & mutex c) {

waitfor(f); / / two m o n i t o r s M => unknown wh i ch t o pass t o f (M & mutex )

}

The obvious solution is to specify the correct monitor as follows:
monitor M {};

void f(M & mutex a);

void g(M & mutex a, M & mutex b) {

/ / w a i t f o r c a l l t o f w i t h a rgument b
waitfor(f, b);

}

This syntax is unambiguous. Both locks are acquired and kept by g. When routine f is called, the
lock for monitor b is temporarily transferred from g to f (while g still holds lock a). This behaviour
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can be extended to the multi-monitor waitfor statement as follows.
monitor M {};

void f(M & mutex a, M & mutex b);

void g(M & mutex a, M & mutex b) {

/ / w a i t f o r c a l l t o f w i t h a rg u me n ts a and b
waitfor(f, a, b);

}

Note that the set of monitors passed to the waitfor statement must be entirely contained in the
set of monitors already acquired in the routine. waitfor used in any other context is undefined
behaviour.

An important behaviour to note is when a set of monitors only match partially:
mutex struct A {};

mutex struct B {};

void g(A & mutex a, B & mutex b) {

waitfor(f, a, b);

}

A a1 , a2;

B b;

void foo () {

g(a1 , b); / / b l o c k on a c c e p t

}

void bar () {

f(a2 , b); / / f u l f i l l c o o p e r a t i o n

}

While the equivalent can happen when using internal scheduling, the fact that conditions are
specific to a set of monitors means that users have to use two different condition variables. In both
cases, partially matching monitor sets does not wakeup the waiting thread. It is also important to
note that in the case of external scheduling the order of parameters is irrelevant; waitfor(f,a,b)

and waitfor(f,b,a) are indistinguishable waiting condition.

4.4.3 waitfor Semantics

Syntactically, the waitfor statement takes a function identifier and a set of monitors. While the
set of monitors can be any list of expressions, the function name is more restricted because the
compiler validates at compile time the validity of the function type and the parameters used with
the waitfor statement. It checks that the set of monitors passed in matches the requirements for a
function call. Listing 4.8 shows various usages of the waitfor statement and which are acceptable.
The choice of the function type is made ignoring any non-mutex parameter. One limitation of the
current implementation is that it does not handle overloading, but overloading is possible.

Finally, for added flexibility, C

A

supports constructing a complex waitfor statement using
the or, timeout and else. Indeed, multiple waitfor clauses can be chained together using or;
this chain forms a single statement that uses baton pass to any function that fits one of the func-
tion+monitor set passed in. To enable users to tell which accepted function executed, waitfors
are followed by a statement (including the null statement ;) or a compound statement, which is
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monitor A{};

monitor B{};

void f1( A & mutex );

void f2( A & mutex , B & mutex );

void f3( A & mutex , int );

void f4( A & mutex , int );

void f4( A & mutex , double );

void foo( A & mutex a1, A & mutex a2 , B & mutex b1 , B & b2 ) {

A * ap = & a1;

void (*fp)( A & mutex ) = f1;

waitfor(f1 , a1); / / C o r r e c t : 1 m o n i t o r case
waitfor(f2 , a1 , b1); / / C o r r e c t : 2 m o n i t o r case

waitfor(f3 , a1); / / C o r r e c t : non−mutex a rg u me n ts a re i g n o r e d

waitfor(f1 , *ap); / / C o r r e c t : e x p r e s s i o n as argument

waitfor(f1 , a1 , b1); / / I n c o r r e c t : Too many mutex a rg u me n ts

waitfor(f2 , a1); / / I n c o r r e c t : Too few mutex a rg u me n ts
waitfor(f2 , a1 , a2); / / I n c o r r e c t : Mutex a rg u me n ts don ' t match

waitfor(f1 , 1); / / I n c o r r e c t : 1 n o t a mutex argument

waitfor(f9 , a1); / / I n c o r r e c t : f 9 f u n c t i o n does n o t e x i s t
waitfor(*fp , a1 ); / / I n c o r r e c t : f p n o t an i d e n t i f i e r

waitfor(f4 , a1); / / I n c o r r e c t : f 4 ambiguous

waitfor(f2 , a1 , b2); / / U n d e f i n e d b e h a v i o u r : b2 n o t mutex

}

Listing 4.8: Various correct and incorrect uses of the waitfor statement

executed after the clause is triggered. A waitfor chain can also be followed by a timeout, to
signify an upper bound on the wait, or an else, to signify that the call should be non-blocking,
which checks for a matching function call already arrived and otherwise continues. Any and all
of these clauses can be preceded by a when condition to dynamically toggle the accept clauses on
or off based on some current state. Listing 4.9 demonstrates several complex masks and some
incorrect ones.

4.4.4 Waiting For The Destructor

An interesting use for the waitfor statement is destructor semantics. Indeed, the waitfor state-
ment can accept any mutex routine, which includes the destructor (see section 4.2.3). However,
with the semantics discussed until now, waiting for the destructor does not make any sense, since
using an object after its destructor is called is undefined behaviour. The simplest approach is
to disallow waitfor on a destructor. However, a more expressive approach is to flip ordering
of execution when waiting for the destructor, meaning that waiting for the destructor allows the
destructor to run after the current mutex routine, similarly to how a condition is signalled. For
example, listing 4.10 shows an example of an executor with an infinite loop, which waits for the
destructor to break out of this loop. Switching the semantic meaning introduces an idiomatic way
to terminate a task and/or wait for its termination via destruction.
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monitor A{};

void f1( A & mutex );

void f2( A & mutex );

void foo( A & mutex a, bool b, int t ) {

/ / C o r r e c t : b l o c k i n g case

waitfor(f1 , a);

/ / C o r r e c t : b l o c k w i t h s t a t e m e n t

waitfor(f1 , a) {

sout | " f 1 " | endl;

}

/ / C o r r e c t : b l o c k w a i t i n g f o r f 1 o r f 2

waitfor(f1 , a) {

sout | " f 1 " | endl;

} or waitfor(f2 , a) {

sout | " f 2 " | endl;

}

/ / C o r r e c t : non−b l o c k i n g case

waitfor(f1 , a); or else;

/ / C o r r e c t : non−b l o c k i n g case

waitfor(f1 , a) {

sout | " b l o c k e d " | endl;

} or else {

sout | " d i d n ' t b l o c k " | endl;

}

/ / C o r r e c t : b l o c k a t most 10 seconds
waitfor(f1 , a) {

sout | " b l o c k e d " | endl;

} or timeout( 10`s) {

sout | " d i d n ' t b l o c k " | endl;

}

/ / C o r r e c t : b l o c k o n l y i f b == t r u e

/ / i f b == f a l s e , don ' t even make t h e c a l l
when(b) waitfor(f1, a);

/ / C o r r e c t : b l o c k o n l y i f b == t r u e
/ / i f b == f a l s e , make non−b l o c k i n g c a l l

waitfor(f1 , a); or when(!b) else;

/ / C o r r e c t : b l o c k o n l y o f t > 1

waitfor(f1 , a); or when(t > 1) timeout(t); or else;

/ / I n c o r r e c t : t i m e o u t c l a u s e i s dead code

waitfor(f1 , a); or timeout(t); or else;

/ / I n c o r r e c t : o r d e r must be

/ / w a i t f o r [ o r w a i t f o r . . . [ o r t i m e o u t ] [ o r e l s e ] ]

timeout(t); or waitfor(f1 , a); or else;
}

Listing 4.9: Various correct and incorrect uses of the or, else, and timeout clause around a
waitfor statement
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monitor Executer {};

struct Action;

void ^?{} (Executer & mutex this);

void execute(Executer & mutex this, const Action & );

void run (Executer & mutex this) {

while(true) {

waitfor(execute , this);

or waitfor (^?{} , this) {

break;
}

}

}

Listing 4.10: Example of an executor which executes action in series until the destructor is
called.
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Chapter 5

Parallelism

Historically, computer performance was about processor speeds and instruction counts. However,
with heat dissipation being a direct consequence of speed increase, parallelism has become the new
source for increased performance [52, 53]. In this decade, it is no longer reasonable to create a
high-performance application without caring about parallelism. Indeed, parallelism is an important
aspect of performance and more specifically throughput and hardware utilization. The lowest-level
approach of parallelism is to use kernel-level threads in combination with semantics like fork,
join, etc. However, since these have significant costs and limitations, kernel-level threads are now
mostly used as an implementation tool rather than a user oriented one. There are several alterna-
tives to solve these issues that all have strengths and weaknesses. While there are many variations
of the presented paradigms, most of these variations do not actually change the guarantees or the
semantics, they simply move costs in order to achieve better performance for certain workloads.

5.1 Paradigms

5.1.1 User-Level Threads

A direct improvement on the kernel-level thread approach is to use user-level threads. These
threads offer most of the same features that the operating system already provides but can be
used on a much larger scale. This approach is the most powerful solution as it allows all the
features of multithreading, while removing several of the more expensive costs of kernel threads.
The downside is that almost none of the low-level threading problems are hidden; users still have
to think about data races, deadlocks and synchronization issues. These issues can be somewhat
alleviated by a concurrency toolkit with strong guarantees, but the parallelism toolkit offers very
little to reduce complexity in itself.

Examples of languages that support user-level threads are Erlang [29] and µC++ [16].

5.1.2 Fibers : User-Level Threads Without Preemption

A popular variant of user-level threads is what is often referred to as fibers. However, fibers do
not present meaningful semantic differences with user-level threads. The significant difference
between user-level threads and fibers is the lack of preemption in the latter. Advocates of fibers
list their high performance and ease of implementation as major strengths, but the performance
difference between user-level threads and fibers is controversial, and the ease of implementation,
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while true, is a weak argument in the context of language design. Therefore this proposal largely
ignores fibers.

An example of a language that uses fibers is Go [34]

5.1.3 Jobs and Thread Pools

An approach on the opposite end of the spectrum is to base parallelism on thread-pools. Indeed,
thread-pools offer limited flexibility but at the benefit of a simpler user interface. In thread-pool
based systems, users express parallelism as units of work, called jobs, and a dependency graph
(either explicit or implicit) that ties them together. This approach means users need not worry
about concurrency but significantly limit the interaction that can occur among jobs. Indeed, any
job that blocks also block the underlying worker, which effectively means the CPU utilization, and
therefore throughput, suffers noticeably. It can be argued that a solution to this problem is to use
more workers than available cores. However, unless the number of jobs and the number of workers
are comparable, having a significant number of blocked jobs always results in idles cores.

The gold standard of this implementation is Intel’s TBB library [54].

5.1.4 Paradigm Performance

While the choice between the three paradigms listed above may have significant performance
implications, it is difficult to pin down the performance implications of choosing a model at the
language level. Indeed, in many situations one of these paradigms may show better performance
but it all strongly depends on the workload. Having a large amount of mostly independent units of
work to execute almost guarantees equivalent performance across paradigms and that the thread-
pool-based system has the best efficiency thanks to the lower memory overhead (i.e., no thread
stack per job). However, interactions among jobs can easily exacerbate contention. User-level
threads allow fine-grain context switching, which results in better resource utilization, but a context
switch is more expensive and the extra control means users need to tweak more variables to get
the desired performance. Finally, if the units of uninterrupted work are large, enough the paradigm
choice is largely amortized by the actual work done.

5.2 The C

A

Kernel : Processors, Clusters and Threads

A cluster is a group of kernel-level threads executed in isolation. User-level threads are scheduled
on the kernel-level threads of a given cluster, allowing organization between user-level threads and
kernel-level threads. It is important that kernel-level threads belonging to a same clusters have
homogeneous settings, otherwise migrating a user-level thread from one kernel-level thread to the
other can cause issues. A cluster also offers a pluggable scheduler that can optimize the workload
generated by the user-level threads.

Clusters have not been fully implemented in the context of this thesis. Currently C

A

only
supports one cluster, the initial one.

38



5.2.1 Future Work: Machine Setup

While this was not done in the context of this thesis, another important aspect of clusters is affinity.
While many common desktop and laptop PCs have homogeneous CPUs, other devices often have
more heterogeneous setups. For example, a system using NUMA configurations may benefit from
users being able to tie clusters and/or kernel threads to certain CPU cores. OS support for CPU
affinity is now common [55, 7, 3, 4, 1], which means it is both possible and desirable for C

A

to
offer an abstraction mechanism for portable CPU affinity.

5.2.2 Paradigms

Given these building blocks, it is possible to reproduce all three of the popular paradigms. Indeed,
user-level threads is the default paradigm in C

A

. However, disabling preemption on the cluster
means threads effectively become fibers. Since several clusters with different scheduling policy can
coexist in the same application, this allows fibers and user-level threads to coexist in the runtime
of an application. Finally, it is possible to build executors for thread pools from user-level threads
or fibers, which includes specialized jobs like actors [9].
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Chapter 6

Behind the Scenes

There are several challenges specific to C

A

when implementing concurrency. These challenges
are a direct result of bulk-acquiring and loose object definitions. These two constraints are the
root cause of most design decisions in the implementation. Furthermore, to avoid contention from
dynamically allocating memory in a concurrent environment, the internal-scheduling design is
(almost) entirely free of mallocs. This approach avoids the chicken and egg problem [58] of having
a memory allocator that relies on the threading system and a threading system that relies on the
runtime. This extra goal means that memory management is a constant concern in the design of
the system.

The main memory concern for concurrency is queues. All blocking operations are made by
parking threads onto queues and all queues are designed with intrusive nodes, where each node
has pre-allocated link fields for chaining, to avoid the need for memory allocation. Since several
concurrency operations can use an unbound amount of memory (depending on bulk-acquiring),
statically defining information in the intrusive fields of threads is insufficient.The only way to use
a variable amount of memory without requiring memory allocation is to pre-allocate large buffers
of memory eagerly and store the information in these buffers. Conveniently, the call stack fits that
description and is easy to use, which is why it is used heavily in the implementation of internal
scheduling, particularly variable-length arrays. Since stack allocation is based on scopes, the first
step of the implementation is to identify the scopes that are available to store the information, and
which of these can have a variable-length array. The threads and the condition both have a fixed
amount of memory, while mutex routines and blocking calls allow for an unbound amount, within
the stack size.

Note that since the major contributions of this thesis are extending monitor semantics to bulk-
acquiring and loose object definitions, any challenges that are not resulting of these characteristics
of C

A

are considered as solved problems and therefore not discussed.

6.1 Mutex Routines

The first step towards the monitor implementation is simple mutex routines. In the single monitor
case, mutual-exclusion is done using the entry/exit procedure in listing 6.1. The entry/exit proce-
dures do not have to be extended to support multiple monitors. Indeed it is sufficient to enter/leave
monitors one-by-one as long as the order is correct to prevent deadlock [35]. In C

A

, ordering of
monitor acquisition relies on memory ordering. This approach is sufficient because all objects are
guaranteed to have distinct non-overlapping memory layouts and mutual-exclusion for a monitor
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Entry
i f moni tor i s f r e e

en te r

e l i f a l ready own the moni tor
cont inue

else

b lock
increment recurs ions

Exit
decrement re cu rs i o n
i f r e cu rs i o n == 0

i f e n t r y queue not empty
wake−up thread

Listing 6.1: Initial entry and exit routine for monitors

is only defined for its lifetime, meaning that destroying a monitor while it is acquired is undefined
behaviour. When a mutex call is made, the concerned monitors are aggregated into a variable-
length pointer array and sorted based on pointer values. This array persists for the entire duration
of the mutual-exclusion and its ordering reused extensively.

6.1.1 Details: Interaction with polymorphism

Depending on the choice of semantics for when monitor locks are acquired, interaction between
monitors and C

A

’s concept of polymorphism can be more complex to support. However, it is
shown that entry-point locking solves most of the issues.

First of all, interaction between otype polymorphism (see Section 2.5) and monitors is impos-
sible since monitors do not support copying. Therefore, the main question is how to support dtype
polymorphism. It is important to present the difference between the two acquiring options: callsite-
lockings and entry-point locking, i.e., acquiring the monitors before making a mutex routine-call
or as the first operation of the mutex routine-call. For example:

Mutex callsite-locking entry-point-locking
call pseudo-code pseudo-code

void foo(monitor& mutex a){

/ / Do Work

/ / . . .

}

void main() {

monitor a;

foo(a);

}

foo (& a ) {

/ / Do Work

/ / . . .

}

main ( ) {
moni tor a ;

acqu i re ( a ) ;

foo ( a ) ;
re lease ( a ) ;

}

foo (& a ) {

acqu i re ( a ) ;
/ / Do Work

/ / . . .

re lease ( a ) ;
}

main ( ) {
moni tor a ;

foo ( a ) ;

}

Table 6.1: Call-site vs entry-point locking for mutex calls

Note the mutex keyword relies on the type system, which means that in cases where a generic
monitor-routine is desired, writing the mutex routine is possible with the proper trait, e.g.:
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/ / I n c o r r e c t : T may n o t be m o n i t o r
forall(dtype T)

void foo(T * mutex t);

/ / C o r r e c t : t h i s f u n c t i o n o n l y works on m o n i t o r s ( any m o n i t o r )

forall(dtype T | is_monitor(T))

void bar(T * mutex t));

Both entry point and callsite-locking are feasible implementations. The current C

A

implemen-
tation uses entry-point locking because it requires less work when using Resource Acquisition
Is Initialization (RAII), effectively transferring the burden of implementation to object construc-
tion/destruction. It is harder to use RAII for call-site locking, as it does not necessarily have an
existing scope that matches exactly the scope of the mutual exclusion, i.e., the function body. For
example, the monitor call can appear in the middle of an expression. Furthermore, entry-point
locking requires less code generation since any useful routine is called multiple times but there is
only one entry point for many call sites.

6.2 Threading

Figure 6.1 shows a high-level picture if the C

A

runtime system in regards to concurrency. Each
component of the picture is explained in detail in the flowing sections.

6.2.1 Processors

Parallelism in C

A

is built around using processors to specify how much parallelism is desired. C

A

processors are object wrappers around kernel threads, specifically pthreads in the current imple-
mentation of C

A

. Indeed, any parallelism must go through operating-system libraries. However,
user-level threads are still the main source of concurrency, processors are simply the underlying
source of parallelism. Indeed, processor kernel-level threads simply fetch a user-level thread from
the scheduler and run it; they are effectively executers for user-threads. The main benefit of this
approach is that it offers a well-defined boundary between kernel code and user code, for example,
kernel thread quiescing, scheduling and interrupt handling. Processors internally use coroutines to
take advantage of the existing context-switching semantics.

6.2.2 Stack Management

One of the challenges of this system is to reduce the footprint as much as possible. Specifically, all
pthreads created also have a stack created with them, which should be used as much as possible.
Normally, coroutines also create their own stack to run on, however, in the case of the corou-
tines used for processors, these coroutines run directly on the kernel-level thread stack, effectively
stealing the processor stack. The exception to this rule is the Main Processor, i.e., the initial kernel-
level thread that is given to any program. In order to respect C user expectations, the stack of the
initial kernel thread, the main stack of the program, is used by the main user thread rather than the
main processor, which can grow very large.
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Figure 6.1: Overview of the entire system

6.2.3 Context Switching

As mentioned in section 3.3, coroutines are a stepping stone for implementing threading, because
they share the same mechanism for context-switching between different stacks. To improve perfor-
mance and simplicity, context-switching is implemented using the following assumption: all context-
switches happen inside a specific function call. This assumption means that the context-switch only
has to copy the callee-saved registers onto the stack and then switch the stack registers with the
ones of the target coroutine/thread. Note that the instruction pointer can be left untouched since
the context-switch is always inside the same function. Threads, however, do not context-switch
between each other directly. They context-switch to the scheduler. This method is called a 2-step
context-switch and has the advantage of having a clear distinction between user code and the kernel
where scheduling and other system operations happen. Obviously, this doubles the context-switch
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cost because threads must context-switch to an intermediate stack. The alternative 1-step context-
switch uses the stack of the “from” thread to schedule and then context-switches directly to the “to”
thread. However, the performance of the 2-step context-switch is still superior to a pthread_yield

(see section 8). Additionally, for users in need for optimal performance, it is important to note that
having a 2-step context-switch as the default does not prevent C

A

from offering a 1-step context-
switch (akin to the Microsoft SwitchToFiber [8] routine). This option is not currently present in
C

A

, but the changes required to add it are strictly additive.

6.2.4 Preemption

Finally, an important aspect for any complete threading system is preemption. As mentioned
in chapter 3, preemption introduces an extra degree of uncertainty, which enables users to have
multiple threads interleave transparently, rather than having to cooperate among threads for proper
scheduling and CPU distribution. Indeed, preemption is desirable because it adds a degree of isola-
tion among threads. In a fully cooperative system, any thread that runs a long loop can starve other
threads, while in a preemptive system, starvation can still occur but it does not rely on every thread
having to yield or block on a regular basis, which reduces significantly a programmer burden.
Obviously, preemption is not optimal for every workload. However any preemptive system can
become a cooperative system by making the time slices extremely large. Therefore, C

A

uses a
preemptive threading system.

Preemption in C

A1 is based on kernel timers, which are used to run a discrete-event simulation.
Every processor keeps track of the current time and registers an expiration time with the preemption
system. When the preemption system receives a change in preemption, it inserts the time in a sorted
order and sets a kernel timer for the closest one, effectively stepping through preemption events on
each signal sent by the timer. These timers use the Linux signal SIGALRM, which is delivered to the
process rather than the kernel-thread. This results in an implementation problem, because when
delivering signals to a process, the kernel can deliver the signal to any kernel thread for which the
signal is not blocked, i.e.:

A process-directed signal may be delivered to any one of the threads that does not
currently have the signal blocked. If more than one of the threads has the signal
unblocked, then the kernel chooses an arbitrary thread to which to deliver the signal.
SIGNAL(7) - Linux Programmer’s Manual

For the sake of simplicity, and in order to prevent the case of having two threads receiving alarms
simultaneously, C

A

programs block the SIGALRM signal on every kernel thread except one.
Now because of how involuntary context-switches are handled, the kernel thread handling

SIGALRM cannot also be a processor thread. Hence, involuntary context-switching is done by
sending signal SIGUSR1 to the corresponding processor and having the thread yield from inside
the signal handler. This approach effectively context-switches away from the signal handler back
to the kernel and the signal handler frame is eventually unwound when the thread is scheduled
again. As a result, a signal handler can start on one kernel thread and terminate on a second kernel
thread (but the same user thread). It is important to note that signal handlers save and restore signal

1Note that the implementation of preemption is strongly tied with the underlying threading system. For this reason,
only the Linux implementation is cover, C

A

does not run on Windows at the time of writting
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masks because user-thread migration can cause a signal mask to migrate from one kernel thread
to another. This behaviour is only a problem if all kernel threads, among which a user thread can
migrate, differ in terms of signal masks2. However, since the kernel thread handling preemption
requires a different signal mask, executing user threads on the kernel-alarm thread can cause dead-
locks. For this reason, the alarm thread is in a tight loop around a system call to sigwaitinfo,
requiring very little CPU time for preemption. One final detail about the alarm thread is how to
wake it when additional communication is required (e.g., on thread termination). This unblocking
is also done using SIGALRM, but sent through the pthread_sigqueue. Indeed, sigwait can differ-
entiate signals sent from pthread_sigqueue from signals sent from alarms or the kernel.

6.2.5 Scheduler

Finally, an aspect that was not mentioned yet is the scheduling algorithm. Currently, the C

A

sched-
uler uses a single ready queue for all processors, which is the simplest approach to scheduling.
Further discussion on scheduling is present in section 9.1.2.

6.3 Internal Scheduling

The following figure is the traditional illustration of a monitor (repeated from page 31 for conve-
nience):

d

b

b

a

d

duplicateblocked taskactive task

a

c

exit

A

condition
B

stack

acceptor/
signalled

condition

X Y

entry
queue

arrival
order of

shared

variables

mutex

c

queues

Figure 6.2: Traditional illustration of a monitor

This picture has several components, the two most important being the entry queue and the
AS-stack. The entry queue is an (almost) FIFO list where threads waiting to enter are parked,
while the acceptor/signaller (AS) stack is a FILO list used for threads that have been signalled or
otherwise marked as running next.

For C

A

, this picture does not have support for blocking multiple monitors on a single condition.
To support bulk-acquiring two changes to this picture are required. First, it is no longer helpful to

2Sadly, official POSIX documentation is silent on what distinguishes “async-signal-safe” functions from other func-
tions.
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attach the condition to a single monitor. Secondly, the thread waiting on the condition has to be
separated across multiple monitors, seen in figure 6.3.

Condition

exit exit

acceptor/
signalled
stackshared

variables

queue
entry

order of
arrival

acceptor/
signalled
stackshared

variables

arrival
order of

queue
entry

blocked threadactive thread

Figure 6.3: Illustration of C

A

Monitor

This picture and the proper entry and leave algorithms (see listing 6.2) is the fundamental
implementation of internal scheduling. Note that when a thread is moved from the condition to the
AS-stack, it is conceptually split into N pieces, where N is the number of monitors specified in the
parameter list. The thread is woken up when all the pieces have popped from the AS-stacks and
made active. In this picture, the threads are split into halves but this is only because there are two
monitors. For a specific signalling operation every monitor needs a piece of thread on its AS-stack.

The solution discussed in 4.3 can be seen in the exit routine of listing 6.2. Basically, the
solution boils down to having a separate data structure for the condition queue and the AS-stack,
and unconditionally transferring ownership of the monitors but only unblocking the thread when
the last monitor has transferred ownership. This solution is deadlock safe as well as preventing
any potential barging. The data structures used for the AS-stack are reused extensively for external
scheduling, but in the case of internal scheduling, the data is allocated using variable-length arrays
on the call stack of the wait and signal_block routines.

Entry
i f moni tor i s f r e e

en te r

e l i f a l ready own the moni tor

cont inue
else

b lock

increment re cu rs i o n

Exit
decrement re cu rs i o n
i f r e cu rs i o n == 0

i f s i g n a l _ s ta ck not empty

set_owner to thread
i f a l l moni tors ready

wake−up thread

i f e n t r y queue not empty

wake−up thread

Listing 6.2: Entry and exit routine for monitors with internal scheduling
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Condition
Criterion

Condition
Node

MonitorsWaiting
Thread

Figure 6.4: Data structures involved in internal/external scheduling

Figure 6.4 shows a high-level representation of these data structures. The main idea behind
them is that, a thread cannot contain an arbitrary number of intrusive “next” pointers for linking
onto monitors. The condition node is the data structure that is queued onto a condition variable
and, when signalled, the condition queue is popped and each condition criterion is moved to
the AS-stack. Once all the criteria have been popped from their respective AS-stacks, the thread is
woken up, which is what is shown in listing 6.2.

6.4 External Scheduling

Similarly to internal scheduling, external scheduling for multiple monitors relies on the idea that
waiting-thread queues are no longer specific to a single monitor, as mentioned in section 4.4. For
internal scheduling, these queues are part of condition variables, which are still unique for a given
scheduling operation (i.e., no signal statement uses multiple conditions). However, in the case of
external scheduling, there is no equivalent object which is associated with waitfor statements.
This absence means the queues holding the waiting threads must be stored inside at least one of
the monitors that is acquired. These monitors being the only objects that have sufficient lifetime
and are available on both sides of the waitfor statement. This requires an algorithm to choose
which monitor holds the relevant queue. It is also important that said algorithm be independent of
the order in which users list parameters. The proposed algorithm is to fall back on monitor lock
ordering (sorting by address) and specify that the monitor that is acquired first is the one with the
relevant waiting queue. This assumes that the lock acquiring order is static for the lifetime of all
concerned objects but that is a reasonable constraint.

This algorithm choice has two consequences:

• The queue of the monitor with the lowest address is no longer a true FIFO queue because
threads can be moved to the front of the queue. These queues need to contain a set of monitors
for each of the waiting threads. Therefore, another thread whose set contains the same lowest
address monitor but different lower priority monitors may arrive first but enter the critical
section after a thread with the correct pairing.

• The queue of the lowest priority monitor is both required and potentially unused. Indeed, since
it is not known at compile time which monitor is the monitor which has the lowest address,
every monitor needs to have the correct queues even though it is possible that some queues go
unused for the entire duration of the program, for example if a monitor is only used in a specific
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Entry
i f moni tor i s f r e e

en te r

e l i f a l ready own the moni tor
cont inue

e l i f matches w a i t f o r mask

push c r i t e r i a to AS−stack
cont inue

else

b lock
increment re cu rs i o n

Exit
decrement re cu rs i o n
i f r e cu rs i o n == 0

i f s i g n a l _ s ta ck not empty
set_owner to thread

i f a l l moni tors ready

wake−up thread
e n d i f

e n d i f

i f e n t r y queue not empty

wake−up thread

e n d i f

Listing 6.3: Entry and exit routine for monitors with internal scheduling and external
scheduling

pair.

Therefore, the following modifications need to be made to support external scheduling:

• The threads waiting on the entry queue need to keep track of which routine they are trying
to enter, and using which set of monitors. The mutex routine already has all the required
information on its stack, so the thread only needs to keep a pointer to that information.

• The monitors need to keep a mask of acceptable routines. This mask contains for each accept-
able routine, a routine pointer and an array of monitors to go with it. It also needs storage to
keep track of which routine was accepted. Since this information is not specific to any monitor,
the monitors actually contain a pointer to an integer on the stack of the waiting thread. Note
that if a thread has acquired two monitors but executes a waitfor with only one monitor as a
parameter, setting the mask of acceptable routines to both monitors will not cause any prob-
lems since the extra monitor will not change ownership regardless. This becomes relevant
when when clauses affect the number of monitors passed to a waitfor statement.

• The entry/exit routines need to be updated as shown in listing 6.3.

6.4.1 External Scheduling - Destructors

Finally, to support the ordering inversion of destructors, the code generation needs to be modified
to use a special entry routine. This routine is needed because of the storage requirements of the
call order inversion. Indeed, when waiting for the destructors, storage is needed for the waiting
context and the lifetime of said storage needs to outlive the waiting operation it is needed for. For
regular waitfor statements, the call stack of the routine itself matches this requirement but it is no
longer the case when waiting for the destructor since it is pushed on to the AS-stack for later. The
waitfor semantics can then be adjusted correspondingly, as seen in listing 6.4
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Destructor Entry
i f moni tor i s f r e e

en te r

e l i f a l ready own the moni tor
increment re cu rs i o n

r e t u r n

crea te wa i t con tex t
i f matches w a i t f o r mask

re se t mask

push s e l f to AS−stack
baton pass

else

wa i t
increment re cu rs i o n

Waitfor
i f matching thread i s a l ready there

i f found d e s t r u c t o r

push d e s t r u c t o r to AS−stack
unlock a l l moni tors

e lse

push s e l f to AS−stack
baton pass

e n d i f

r e t u r n
e n d i f

i f non−b lock ing

Unlock a l l moni tors
Return

e n d i f

push s e l f to AS−stack

se t w a i t f o r mask

block
r e t u r n

Listing 6.4: Pseudo code for the waitfor routine and the mutex entry routine for destructors
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Chapter 7

Putting It All Together

7.1 Threads As Monitors

As it was subtly alluded in section 3.4, threads in C

A

are in fact monitors, which means that all
monitor features are available when using threads. For example, here is a very simple two thread
pipeline that could be used for a simulator of a game engine:

/ / V i s u a l i z a t i o n d e c l a r a t i o n
thread Renderer {} renderer;

Frame * simulate( Simulator & this );

/ / S i m u l a t i o n d e c l a r a t i o n

thread Simulator {} simulator;

void render( Renderer & this );

/ / B l o c k i n g c a l l used as co mmu n i ca t i o n

void draw( Renderer & mutex this, Frame * frame );

/ / S i m u l a t i o n l o o p

void main( Simulator & this ) {

while( true ) {

Frame * frame = simulate( this );

draw( renderer, frame );

}

}

/ / Re n d e r i n g l o o p

void main( Renderer & this ) {

while( true ) {

waitfor( draw, this );

render( this );

}

}

Listing 7.1: Toy simulator using threads and monitors.

One of the obvious complaints of the previous code snippet (other than its toy-like simplicity)
is that it does not handle exit conditions and just goes on forever. Luckily, the monitor semantics
can also be used to clearly enforce a shutdown order in a concise manner:
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/ / V i s u a l i z a t i o n d e c l a r a t i o n

thread Renderer {} renderer;

Frame * simulate( Simulator & this );

/ / S i m u l a t i o n d e c l a r a t i o n
thread Simulator {} simulator;

void render( Renderer & this );

/ / B l o c k i n g c a l l used as co mmu n i ca t i o n

void draw( Renderer & mutex this, Frame * frame );

/ / S i m u l a t i o n l o o p

void main( Simulator & this ) {

while( true ) {

Frame * frame = simulate( this );

draw( renderer, frame );

/ / E x i t main l o o p a f t e r t h e l a s t f r a me

if( frame ->is_last ) break;

}

}

/ / Re n d e r i n g l o o p
void main( Renderer & this ) {

while( true ) {

waitfor( draw, this );

or waitfor( ^?{} , this ) {

/ / Add an e x i t c o n d i t i o n

break;
}

render( this );

}

}

/ / C a l l d e s t r u c t o r f o r s i m u l a t o r once s i m u l a t o r f i n i s h e s

/ / C a l l d e s t r u c t o r f o r r e n d e r e r t o s i g n i f y shu tdown

Listing 7.2: Same toy simulator with proper termination condition.

7.2 Fibers & Threads

As mentioned in section 6.2.4, C

A

uses preemptive threads by default but can use fibers on demand.
Currently, using fibers is done by adding the following line of code to the program :

unsigned int default_preemption() {

return 0;

}

This function is called by the kernel to fetch the default preemption rate, where 0 signifies an
infinite time-slice, i.e., no preemption. However, once clusters are fully implemented, it will be
possible to create fibers and user-level threads in the same system, as in listing 7.3
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/ / C l u s t e r f o r w a r d d e c l a r a t i o n
struct cluster;

/ / P r o c e s s o r f o r w a r d d e c l a r a t i o n
struct processor;

/ / C o n s t r u c t c l u s t e r s w i t h a p r e e m p t i o n r a t e
void ?{}(cluster& this, unsigned int rate);

/ / C o n s t r u c t p r o c e s s o r and add i t t o c l u s t e r

void ?{}(processor& this, cluster& cluster );

/ / C o n s t r u c t t h r e a d and s c h e d u l e i t on c l u s t e r

void ?{}(thread& this, cluster& cluster );

/ / D e c l a r e two c l u s t e r s

cluster thread_cluster = { 10`ms }; / / Preempt e v e r y 10 ms

cluster fibers_cluster = { 0 }; / / Never p reempt

/ / C o n s t r u c t 4 p r o c e s s o r s

processor processors[4] = {

/ / 2 f o r t h e t h r e a d c l u s t e r

thread_cluster;

thread_cluster;

/ / 2 f o r t h e f i b e r s c l u s t e r

fibers_cluster;

fibers_cluster;

};

/ / D e c l a r e s t h r e a d
thread UThread {};

void ?{}(UThread& this) {

/ / C o n s t r u c t u n d e r l y i n g t h r e a d t o a u t o m a t i c a l l y
/ / be s c h e d u l e d on t h e t h r e a d c l u s t e r

(this){ thread_cluster }

}

void main(UThread & this);

/ / D e c l a r e s f i b e r s

thread Fiber {};

void ?{}(Fiber& this) {

/ / C o n s t r u c t u n d e r l y i n g t h r e a d t o a u t o m a t i c a l l y

/ / be s c h e d u l e d on t h e f i b e r c l u s t e r

(this.__thread ){ fibers_cluster }

}

void main(Fiber & this);

Listing 7.3: Using fibers and user-level threads side-by-side in C

A
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Chapter 8

Performance Results

8.1 Machine Setup

Table 8.1 shows the characteristics of the machine used to run the benchmarks. All tests were made
on this machine.

Architecture x86_64 NUMA node(s) 8
CPU op-mode(s) 32-bit, 64-bit Model name AMD Opteron™Processor 6380
Byte Order Little Endian CPU Freq 2.5GHz
CPU(s) 64 L1d cache 16 KiB
Thread(s) per core 2 L1i cache 64 KiB
Core(s) per socket 8 L2 cache 2048 KiB
Socket(s) 4 L3 cache 6144 KiB

Operating system Ubuntu 16.04.3 LTS Kernel Linux 4.4-97-generic
Compiler GCC 6.3 Translator CFA 1
Java version OpenJDK-9 Go version 1.9.2

Table 8.1: Machine setup used for the tests

8.2 Micro Benchmarks

All benchmarks are run using the same harness to produce the results, seen as the BENCH() macro
in the following examples. This macro uses the following logic to benchmark the code:

# de f ine BENCH( run , r e s u l t ) \
before = ge t t ime ( ) ; \

run ; \

a f t e r = ge t t ime ( ) ; \
r e s u l t = ( a f t e r − before ) / N;

The method used to get time is clock_gettime( CLOCK_THREAD_CPUTIME_ID);. Each benchmark
is using many iterations of a simple call to measure the cost of the call. The specific number of
iterations depends on the specific benchmark.
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C

A

Coroutines
coroutine GreatSuspender {};

void main(GreatSuspender& this) {

while(true) { suspend (); }

}

int main() {

GreatSuspender s;

resume(s);

BENCH(

for(size_t i=0; i<n; i++) {

resume(s);

},

result

)

printf( "% l l u \ n " , result);

}

C

A

Threads

int main() {

BENCH(

for(size_t i=0; i<n; i++) {

yield();

},

result

)

printf( "% l l u \ n " , result);

}

Listing 8.1: C

A

benchmark code used to measure context-switches for coroutines and threads.

Median Average Standard Deviation
Kernel Thread 241.5 243.86 5.08
C

A

Coroutine 38 38 0
C

A

Thread 103 102.96 2.96
µC++ Coroutine 46 45.86 0.35
µC++ Thread 98 99.11 1.42
Goroutine 150 149.96 3.16
Java Thread 289 290.68 8.72

Table 8.2: Context Switch comparison. All numbers are in nanoseconds(ns)

8.2.1 Context-Switching

The first interesting benchmark is to measure how long context-switches take. The simplest
approach to do this is to yield on a thread, which executes a 2-step context switch. Yielding causes
the thread to context-switch to the scheduler and back, more precisely: from the user-level thread
to the kernel-level thread then from the kernel-level thread back to the same user-level thread (or a
different one in the general case). In order to make the comparison fair, coroutines also execute a
2-step context-switch by resuming another coroutine which does nothing but suspending in a tight
loop, which is a resume/suspend cycle instead of a yield. Listing 8.1 shows the code for coroutines
and threads with the results in table 8.2. All omitted tests are functionally identical to one of these
tests. The difference between coroutines and threads can be attributed to the cost of scheduling.

8.2.2 Mutual-Exclusion

The next interesting benchmark is to measure the overhead to enter/leave a critical-section. For
monitors, the simplest approach is to measure how long it takes to enter and leave a monitor
routine. Listing 8.2 shows the code for C

A

. To put the results in context, the cost of entering a non-
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monitor M {};

void __attribute__((noinline )) call( M & mutex m / * , m2 , m3 , m4 * / ) {}

int main() {

M m / * , m2 , m3 , m4 * / ;
BENCH(

for(size_t i=0; i<n; i++) {

call(m / * , m2 , m3 , m4 * / );
},

result

)

printf( "% l l u \ n " , result);

}

Listing 8.2: C

A

benchmark code used to measure mutex routines.

Median Average Standard Deviation
C routine 2 2 0
FetchAdd + FetchSub 26 26 0
Pthreads Mutex Lock 31 31.86 0.99
µC++ monitor member routine 30 30 0
C

A

mutex routine, 1 argument 41 41.57 0.9
C

A

mutex routine, 2 argument 76 76.96 1.57
C

A

mutex routine, 4 argument 145 146.68 3.85
Java synchronized routine 27 28.57 2.6

Table 8.3: Mutex routine comparison. All numbers are in nanoseconds(ns)

inline function and the cost of acquiring and releasing a pthread_mutex lock is also measured.
The results can be shown in table 8.3.

8.2.3 Internal Scheduling

The internal-scheduling benchmark measures the cost of waiting on and signalling a condition
variable. Listing 8.3 shows the code for C

A

, with results table 8.4. As with all other benchmarks,
all omitted tests are functionally identical to one of these tests.

Median Average Standard Deviation
Pthreads Condition Variable 5902.5 6093.29 714.78
µC++ signal 322 323 3.36
C

A

signal, 1 monitor 352.5 353.11 3.66
C

A

signal, 2 monitor 430 430.29 8.97
C

A

signal, 4 monitor 594.5 606.57 18.33
Java notify 13831.5 15698.21 4782.3

Table 8.4: Internal scheduling comparison. All numbers are in nanoseconds(ns)
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volatile int go = 0;

condition c;

monitor M {};

M m1;

void __attribute__((noinline )) do_call( M & mutex a1 ) { signal(c); }

thread T {};

void ^?{}( T & mutex this ) {}

void main( T & this ) {

while(go == 0) { yield(); }

while(go == 1) { do_call(m1); }

}

int __attribute__((noinline )) do_wait( M & mutex a1 ) {

go = 1;

BENCH(

for(size_t i=0; i<n; i++) {

wait(c);

},

result

)

printf( "% l l u \ n " , result);

go = 0;

return 0;

}

int main() {

T t;

return do_wait(m1);

}

Listing 8.3: Benchmark code for internal scheduling

Median Average Standard Deviation
µC++ Accept 350 350.61 3.11
C

A

waitfor, 1 monitor 358.5 358.36 3.82
C

A

waitfor, 2 monitor 422 426.79 7.95
C

A

waitfor, 4 monitor 579.5 585.46 11.25

Table 8.5: External scheduling comparison. All numbers are in nanoseconds(ns)

8.2.4 External Scheduling

The Internal scheduling benchmark measures the cost of the waitfor statement (_Accept in µC++).
Listing 8.4 shows the code for C

A

, with results in table 8.5. As with all other benchmarks, all
omitted tests are functionally identical to one of these tests.

8.2.5 Object Creation

Finally, the last benchmark measures the cost of creation for concurrent objects. Listing 8.5 shows
the code for pthreads and C

A

threads, with results shown in table 8.6. As with all other bench-
marks, all omitted tests are functionally identical to one of these tests. The only note here is that
the call stacks of C

A

coroutines are lazily created, therefore without priming the coroutine, the
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volatile int go = 0;

monitor M {};

M m1;

thread T {};

void __attribute__((noinline )) do_call( M & mutex a1 ) {}

void ^?{}( T & mutex this ) {}

void main( T & this ) {

while(go == 0) { yield(); }

while(go == 1) { do_call(m1); }

}

int __attribute__((noinline )) do_wait( M & mutex a1 ) {

go = 1;

BENCH(

for(size_t i=0; i<n; i++) {

waitfor(call, a1);

},

result

)

printf( "% l l u \ n " , result);

go = 0;

return 0;

}

int main() {

T t;

return do_wait(m1);

}

Listing 8.4: Benchmark code for external scheduling

Median Average Standard Deviation
Pthreads 26996 26984.71 156.6
C

A

Coroutine Lazy 6 5.71 0.45
C

A

Coroutine Eager 708 706.68 4.82
C

A

Thread 1173.5 1176.18 15.18
µC++ Coroutine 109 107.46 1.74
µC++ Thread 526 530.89 9.73
Goroutine 2520.5 2530.93 61.56
Java Thread 91114.5 92272.79 961.58

Table 8.6: Creation comparison. All numbers are in nanoseconds(ns).

creation cost is very low.
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pthread

int main() {

BENCH(

for(size_t i=0; i<n; i++) {

pthread_t thread;

if( pthread_create(&thread ,NULL ,foo ,NULL)<0) {

perror( " f a i l u r e " );

return 1;

}

if( pthread_join(thread , NULL)<0) {

perror( " f a i l u r e " );

return 1;

}

},

result

)

printf( "% l l u \ n " , result);

}

C

A

Threads
int main() {

BENCH(

for(size_t i=0; i<n; i++) {

MyThread m;

},

result

)

printf( "% l l u \ n " , result);

}

Listing 8.5: Benchmark code for pthreads and C

A

to measure object creation
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Chapter 9

Conclusion

This thesis has achieved a minimal concurrency API that is simple, efficient and usable as the
basis for higher-level features. The approach presented is based on a lightweight thread-system for
parallelism, which sits on top of clusters of processors. This M:N model is judged to be both more
efficient and allow more flexibility for users. Furthermore, this document introduces monitors as
the main concurrency tool for users. This thesis also offers a novel approach allowing multiple
monitors to be accessed simultaneously without running into the Nested Monitor Problem [47]. It
also offers a full implementation of the concurrency runtime written entirely in C

A

, effectively the
largest C

A

code base to date.

9.1 Future Work

9.1.1 Performance

This thesis presents a first implementation of the C

A

concurrency runtime. Therefore, there is
still significant work to improve performance. Many of the data structures and algorithms may
change in the future to more efficient versions. For example, the number of monitors in a single
bulk-acquiring is only bound by the stack size, this is probably unnecessarily generous. It may be
possible that limiting the number helps increase performance. However, it is not obvious that the
benefit would be significant.

9.1.2 Flexible Scheduling

An important part of concurrency is scheduling. Different scheduling algorithms can affect perfor-
mance (both in terms of average and variation). However, no single scheduler is optimal for all
workloads and therefore there is value in being able to change the scheduler for given programs.
One solution is to offer various tweaking options to users, allowing the scheduler to be adjusted to
the requirements of the workload. However, in order to be truly flexible, it would be interesting to
allow users to add arbitrary data and arbitrary scheduling algorithms. For example, a web server
could attach Type-of-Service information to threads and have a “ToS aware” scheduling algorithm
tailored to this specific web server. This path of flexible schedulers will be explored for C

A

.
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9.1.3 Non-Blocking I/O

While most of the parallelism tools are aimed at data parallelism and control-flow parallelism,
many modern workloads are not bound on computation but on IO operations, a common case being
web servers and XaaS (anything as a service). These types of workloads often require significant
engineering around amortizing costs of blocking IO operations. At its core, non-blocking I/O is
an operating system level feature that allows queuing IO operations (e.g., network operations) and
registering for notifications instead of waiting for requests to complete. In this context, the role of
the language makes Non-Blocking IO easily available and with low overhead. The current trend is
to use asynchronous programming using tools like callbacks and/or futures and promises, which
can be seen in frameworks like Node.js [5] for JavaScript, Spring MVC [6] for Java and Django [2]
for Python. However, while these are valid solutions, they lead to code that is harder to read and
maintain because it is much less linear.

9.1.4 Other Concurrency Tools

While monitors offer a flexible and powerful concurrent core for C

A

, other concurrency tools are
also necessary for a complete multi-paradigm concurrency package. Examples of such tools can
include simple locks and condition variables, futures and promises [46], executors and actors.
These additional features are useful when monitors offer a level of abstraction that is inadequate
for certain tasks.

9.1.5 Implicit Threading

Simpler applications can benefit greatly from having implicit parallelism. That is, parallelism that
does not rely on the user to write concurrency. This type of parallelism can be achieved both at the
language level and at the library level. The canonical example of implicit parallelism is parallel for
loops, which are the simplest example of a divide and conquer algorithms [16]. Table 9.1 shows
three different code examples that accomplish point-wise sums of large arrays. Note that none of
these examples explicitly declare any concurrency or parallelism objects.

Implicit parallelism is a restrictive solution and therefore has its limitations. However, it is a
quick and simple approach to parallelism, which may very well be sufficient for smaller applica-
tions and reduces the amount of boilerplate needed to start benefiting from parallelism in modern
CPUs.
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Sequential Library Parallel Language Parallel
void big_sum(

int* a, int* b,

int* o,

size_t len)

{

for(
int i = 0;

i < len;

++i )

{

o[i]=a[i]+b[i];

}

}

int* a[10000];

int* b[10000];

int* c[10000];

/ / . . . f i l l i n a & b

big_sum(a,b,c ,10000);

void big_sum(

int* a, int* b,

int* o,

size_t len)

{

range ar(a, a+len);

range br(b, b+len);

range or(o, o+len);

parfor( ai , bi , oi ,

[]( int* ai ,

int* bi ,

int* oi)

{

oi=ai+bi;

});

}

int* a[10000];

int* b[10000];

int* c[10000];

/ / . . . f i l l i n a & b

big_sum(a,b,c ,10000);

void big_sum(

int* a, int* b,

int* o,

size_t len)

{

parfor (ai,bi ,oi)

in (a, b, o )

{

oi = ai + bi;

}

}

int* a[10000];

int* b[10000];

int* c[10000];

/ / . . . f i l l i n a & b

big_sum(a,b,c ,10000);

Table 9.1: For loop to sum numbers: Sequential, using library parallelism and language paral-
lelism.

61



Bibliography

[1] Affinity API Release Notes for OS X v10.5. 39

[2] Django. https://www.djangoproject.com/. 60

[3] FreeBSD General Commands Manual - CPUSET(1). 39

[4] NetBSD Library Functions Manual - AFFINITY(3). 39

[5] Node.js. https://nodejs.org/en/. 60

[6] Spring Web MVC. https://docs.spring.io/spring/docs/current/spring-framework-reference/
web.html. 60

[7] Windows (vs.85) - SetThreadAffinityMask function. 39

[8] Windows (vs.85) - SwitchToFiber function. 44

[9] Gul A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, 1986. 39

[10] Gregory R. Andrews. A method for solving synronization problems. Science of Computer

Programming, 13(4):1–21, December 1989. 17

[11] Bank account transfer problem. 2010. 21

[12] Andrew Birrell, Mark R. Brown, Luca Cardelli, Jim Donahue, Lucille Glassman, John Gutag,
Jim Harning, Bill Kalsow, Roy Levin, and Greg Nelson. Systems Programming with Modula-

3. Prentice-Hall Series in Innovative Technology. Prentice-Hall, Englewood Cliffs, 1991. 16

[13] Per Brinch Hansen. Operating System Principles. Prentice-Hall, Englewood Cliffs, 1973. 16

[14] Per Brinch Hansen. The programming language concurrent pascal. IEEE Trans. Softw. Eng.,
2:199–206, June 1975. 16

[15] P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R. Zarnke.
µC++: Concurrency in the object-oriented language C++. Softw. Pract. Exp., 22(2):137–172,
February 1992. 16

[16] Peter A. Buhr. Understanding Control Flow: Concurrent Programming using µC++. Springer,
Switzerland, 2016. 18, 37, 60

[17] Peter A. Buhr, Glen Ditchfield, David Till, and Charles R. Zarnke. C∀ users guide, version
0.1. Technical report, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, N2L 3G1, October 2001. http://plg.uwaterloo.ca/~cforall/cfa.ps. 5

62

https://www.djangoproject.com/
https://nodejs.org/en/
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
http://plg.uwaterloo.ca/~cforall/cfa.ps


[18] Peter A. Buhr and Ashif S. Harji. Concurrent urban legends. Concurrency Comput. Pract.

Exp., 17(9):1133–1172, August 2005. 1

[19] David R. Butenhof. Programming with POSIX Threads. Professional Computing. Addison-
Wesley, Boston, 1997. 11

[20] C11. American National Standard Information technology – Programming Languages – C.
International Standard ISO/IEC 9899-2011[2012], http://www.iso.org, 2012. 2

[21] R. H. Campbell and A. N. Habermann. The Specification of Process Synchronization by Path

Expressions, volume 16 of Lecture Notes in Computer Science. Springer, 1974. 16

[22] C∀. C∀ Programmming Language. https://plg.uwaterloo.ca/~cforall. 2, 5

[23] D. R. Cheriton. The Thoth System: Multi-Process Structuring and Portability. American
Elsevier, 1982. 16

[24] David R. Cheriton. The V distributed system. Communications of the ACM, 31(3):314–333,
March 1988. 16

[25] Dave Dice, Yossi Lev, Virendra J. Marathe, Mark Moir, Dan Nussbaum, and Marek
Olszewski. Simplifying concurrent algorithms by exploiting hardware transactional memory.
In Proceedings of the Twenty-second Annual ACM Symposium on Parallelism in Algorithms

and Architectures, SPAA’10, pages 325–334, New York, NY, USA, 2010. ACM. 21

[26] E. W. Dijkstra. The structure of the “THE”–multiprogramming system. Communications of

the ACM, 11(5):341–346, May 1968. 16

[27] ECMA International Standardizing Information and Communication Systems. C# Language

Specification, Standard ECMA-334, 4th edition, June 2006. 13

[28] École Polytechnique Fédérale de Lausanne. Scala Language Specification, Version 2.11,
2016. http://www.scala-lang.org/files/archive/spec/2.11. 13

[29] Erlang AB. Erlang/OTP System Documentation 8.1, September 2016. http://erlang.org/doc/-
pdf/otp-system-documentation.pdf. 16, 37

[30] Martin Fowler. Twohardthings. https://martinfowler.com/bliki/TwoHardThings.html, 2009.
21

[31] W. Morven Gentleman. Using the harmony operating system. Technical Report 24685,
National Research Council of Canada, Ottawa, Canada, May 1985. 16

[32] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.
Addison-Wesley, Reading, 2nd edition, 2000. 16, 18

[33] James Gosling, David S. H. Rosenthal, and Richelle J. Arden. The NeWS Book. Springer-
Verlag, 1989. 16

[34] Robert Griesemer, Rob Pike, and Ken Thompson. Go Programming Language. Google,
2009. http://golang.org/ref/spec. 16, 38

[35] J. W. Havender. Avoiding deadlock in multitasking systems. IBM Systems Journal, 7(2):74–
84, 1968. 40

63

https://plg.uwaterloo.ca/~cforall
http://www.scala-lang.org/files/archive/spec/2.11
http://erlang.org/doc/pdf/otp-system-documentation.pdf
https://martinfowler.com/bliki/TwoHardThings.html
http://golang.org/ref/spec


[36] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for lock-
free data structures. SIGARCH Comput. Archit. News, 21(2):289–300, May 1993. 16

[37] C. A. R. Hoare. Monitors: An operating system structuring concept. Communications of the

ACM, 17(10):549–557, October 1974. iii, 16, 22

[38] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, August 1978. 16

[39] Lorin Hochstein, Jeff Carver, Forrest Shull, Sima Asgari, Victor Basili, Jeffrey K.
Hollingsworth, and Marvin V. Zelkowitz. Parallel programmer productivity: A case study
of novice parallel programmers. 1, 16

[40] R. C. Holt and J. R. Cordy. The turing programming language. Communications of the ACM,
31(12):1410–1423, December 1988. 16

[41] Paul Hudak and Joseph H. Fasel. A gentle introduction to haskell. SIGPLAN Not., 27(5):T1–
53, May 1992. 16

[42] International Standard ISO/IEC 14882:2014 (E), http://www.iso.org. Programming

Languages – C++, 4th edition, 2014. 11

[43] International Standard ISO/IEC TS 19841:2015, http://www.iso.org. Technical Specification

for C++ Extensions for Transactional Memory, 2015. 16

[44] Oliver Kowalke. Boost coroutine library, 2015. http://www.boost.org/doc/libs/1_61_0/libs/-
coroutine/doc/html/index.html [Accessed September 2016]. 11

[45] Lightbend Inc. Akka Scala Documentation, Release 2.4.11, September 2016. http://-
doc.akka.io/docs/akka/2.4/AkkaScala.pdf. 16

[46] Barbara Liskov and Liuba Shrira. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. SIGPLAN Not., 23(7):260–267, July 1988. Proceed-
ings of the SIGPLAN ’88 Conference on Programming Language Design and Implementa-
tion. 60

[47] Andrew Lister. The problem of nested monitor calls. Operating Systems Review, 11(3):5–7,
July 1977. 20, 24, 59

[48] Microsoft Corporation. Microsoft Visual C++ .NET Language Reference, 2002. Microsoft
Press, Redmond, Washington, U.S.A. 11

[49] James G. Mitchell, William Maybury, and Richard Sweet. Mesa language manual. Technical
Report CSL–79–3, Xerox Palo Alto Research Center, April 1979. 16

[50] Rajendra K. Raj, Ewan Tempero, Henry M. Levy, Andrew P. Black, Norman C. Hutchinson,
and Eric Jul. Emerald: A general-purpose programming language. Softw. Pract. Exp.,
21(1):91–118, January 1991. 16

[51] Rob Schluntz. Resource management and tuples in cforall. Master’s thesis, University of
Waterloo, 2017. https://uwspace.uwaterloo.ca/handle/10012/11830. 5

[52] Herb Sutter. A fundamental turn toward concurrency in software. Dr. Dobb’s Journal :

Software Tools for the Professional Programmer, 30(3):16–22, March 2005. 7, 37

64

http://www.boost.org/doc/libs/1_61_0/libs/coroutine/doc/html/index.html
http://doc.akka.io/docs/akka/2.4/AkkaScala.pdf
https://uwspace.uwaterloo.ca/handle/10012/11830


[53] Herb Sutter and James Larus. Software and the concurrency revolution. Queue, 3(7):54–62,
September 2005. 7, 37

[54] Intel thread building blocks. https://www.threadingbuildingblocks.org/. 38

[55] Linux man page - sched_setaffinity(2). 39

[56] United States Department of Defense. The Programming Language Ada: Reference Manual,
ANSI/MIL-STD-1815A-1983 edition, February 1983. Springer, New York. 3

[57] Niklaus Wirth. Programming in Modula-2. Texts and Monographs in Computer Science.
Springer, New York, 4th edition, 1988. 16

[58] Doug Zongker. Chicken chicken chicken: Chicken chicken. 2006. 40

65

https://www.threadingbuildingblocks.org/


Glossary

bulk-acquiring Implicitly acquiring several monitors when entering a monitor. x, 20–25, 31, 40,
45, 59

callsite-locking Locking done by the calling routine. With this technique, a routine calling a
monitor routine aquires the monitor before making the call to the actuall routine. 41, 42

cluster A group of kernel-level thread executed in isolation.

Synonyms : None. 38, 39

entry-point-locking Locking done by the called routine. With this technique, a monitor routine
called by another routine aquires the monitor after entering the routine body but prior to any
other code. 41

fiber Fibers are non-preemptive user-level threads. They share most of the caracteristics of user-
level threads except that they cannot be preempted by another fiber.

Synonyms : Tasks. 37, 39

job Unit of work, often sent to a thread pool or worker pool to be executed. Has neither its own
stack nor its own thread of execution.

Synonyms : Tasks. 38

kernel-level thread Threads created and managed inside kernel-space. Each thread has its own
stack and its own thread of execution. Kernel-level threads are owned, managed and scheduled
by the underlying operating system.

Synonyms : OS threads, Hardware threads, Physical threads. 37, 38, 42, 54, 66

multiple-acquisition Any locking technique that allows a single thread to acquire the same lock
multiple times. x, 18–21

preemption Involuntary context switch imposed on threads at a specified rate.

Synonyms : None. 37, 39

thread User level threads that are the default in C

A

. Generally declared using the thread keyword.

Synonyms : None. 13, 39
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thread-pool Group of homogeneuous threads that loop executing units of works after another.

Synonyms : 38

user-level thread Threads created and managed inside user-space. Each thread has its own stack
and its own thread of execution. User-level threads are invisible to the underlying operating
system.

Synonyms : User threads, Lightweight threads, Green threads, Virtual threads, Tasks. x,
37–39, 42, 51, 52, 54
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