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Abstract

Authorship attribution has piqued the interest of scholars for centuries, but had historically
remained a matter of subjective opinion, based upon examination of handwriting and the physical
document. Midway through the 20th Century, a technique known as stylometry was developed,
in which the content of a document is analyzed to extract the author’s grammar use, preferred
vocabulary, and other elements of compositional style. In parallel to this, programmers, and
particularly those involved in education, were writing and testing systems designed to automate
the analysis of good coding style and best practice, in order to assist with grading assignments.
In the aftermath of the Morris Worm incident in 1988, researchers began to consider whether this
automated analysis of program style could be combined with stylometry techniques and applied
to source code, to identify the author of a program.

The results of recent experiments have suggested this code stylometry can successfully iden-
tify the author of short programs from among hundreds of candidates with up to 98% precision.
This potential ability to discern the programmer of a sample of code from a large group of
possible authors could have concerning consequences for the open-source community at large,
particularly those contributors that may wish to remain anonymous. Recent international events
have suggested the developers of certain anti-censorship and anti-surveillance tools are being
targeted by their governments and forced to delete their repositories or face prosecution.

In light of this threat to the freedom and privacy of individual programmers around the world,
and due to a dearth of published research into practical code stylometry at scale and its feasibility,
we carried out a number of investigations looking into the difficulties of applying this technique
in the real world, and how one might effect a robust defence against it. To this end, we devised
a system to aid programmers in obfuscating their inherent style and imitating another, overt,
author’s style in order to protect their anonymity from this forensic technique. Our system utilizes
the implicit rules encoded in the decision points of a random forest ensemble in order to derive
a set of recommendations to present to the user detailing how to achieve this obfuscation and
mimicry attack. In order to best test this system, and simultaneously assess the difficulties of
performing practical stylometry at scale, we also gathered a large corpus of real open-source
software and devised our own feature set including both novel attributes and those inspired or
borrowed from other sources.

Our results indicate that attempting a mass analysis of publicly available source code is
fraught with difficulties in ensuring the integrity of the data. Furthermore, we found ours and
most other published feature sets do not sufficiently capture an author’s style independently of the
content to be very effective at scale, although its accuracy is significantly greater than a random
guess. Evaluations of our tool indicate it can successfully extract a set of changes that would
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result in a misclassification as another user if implemented. More importantly, this extraction
was independent of the specifics of the feature set, and therefore would still work even with a
more accurate model of style. We ran a limited user study to assess the usability of the tool,
and found overall it was beneficial to our participants, and could be even more beneficial if the
valuable feedback we received were implemented in future work.
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Chapter 1

Introduction

Authorship attribution is a topic that has been of interest to researchers and society in general for a
considerable time. For example, in 1568, Mary, Queen of Scots, was believed guilty of murdering
her second husband, Lord Darnley, largely due to evidence contained in the “Casket Letters”,
which naturally she claimed were forgeries [Bla34]. Despite considerable interest in the episode
and attempts to analyze the content of the letters, there is no clear consensus and the destruction
of the originals has left the true authorship of the letters an unanswered question. Furthermore,
the authorship of twelve of the Federalist Papers [Ada74] previously claimed by Hamilton in
1810 were disputed by Madison in 1818, a claim which most researchers investigating the matter
concur with [MW63, TSH96, HF95, BS98]. Finally, claims that Shakespeare did not really write
his plays date back to the mid-19th century [EW13], although most experts do not subscribe to
this idea and it is not generally taken seriously. Whether for the purposes of plagiarism detection,
disputes over intellectual property rights, proving forgery of wills or other legal documents,
criminal cases involving threatening letters or ransom notes or identifying cases of ghost writing
or pen names, the use cases for authorship attribution are varied and diverse.

The dawn of electronic communications and the Internet precipitated a revolution in writing
and self-publishing, greatly simplifying and vastly scaling the process of communicating be-
tween groups of people, allowing for the first time asynchronous communications on a massive
scale almost instantaneously and at considerably lower cost. Whether sending email, blogging,
participating in forums, IRC/chatrooms, instant messaging or social media, the possibilities for
self-expression have been growing exponentially for the past 30–40 years. This explosion of data
in the public domain, particularly written text, has resulted in even greater demand and interest
in the identification of certain authors. The use cases for authorship attribution have grown to
encompass new areas, such as cyber bullying [PH06, VVC08], fake news [CRC15, RCCC16]
and more sinister purposes, such as the identification and subsequent persecution of political
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bloggers [Boy05], among others. Additionally, new techniques have also been developed for
analyzing this data with the assistance of computers, which is both a convenience and a necessity
given the quantity of data involved.

Along with increasing the instances and quantity of written documents being published, the
digital revolution has also changed what information can be inferred from writing samples. For
example, there are no longer physical documents to examine, eliminating many of the cues used
by forensic document examiners, such as handwriting analysis, type of paper, covert printer
coding [Fou17], etc. That is not to say that less information can be inferred, however; on the
contrary, in many cases more information is available for those with an advantageous position
on the software platform, cloud, network, or physical computer to observe. Even those without
privileged access can infer information that would not have been available before, such as dates
and times of publication, document metadata, date of creation of the user account, as well as
domain registration or possibly contact details for the author, such as email address or twitter
handle. Moreover, there are many known techniques for the identification of users on a network
that do not rely on the content of communications, even those taking measures to protect their
identity, most of which are far beyond the scope of this work, however. One technique that is
applicable to both traditional physical document analysis and modern, digital document analysis,
is stylometry, a branch of which is the topic of this thesis.

Stylometry is defined as “the statistical analysis of literary style” [Hol98], and as such is
concerned solely with the content of the document, rather than the method of delivery or the
media containing it. Stylometry techniques tend to focus on syntactical features, such as choice
of words, spelling, preference for certain grammatical structures and even layout. Stylometry
has been the subject of a number of research studies looking at both closed- and open-class
cases, real-world and fabricated data sets and use cases ranging from the canonical Federalist
Papers disputed authorship [MW64] to more modern scenarios such as identifying the authors
of tweets [BMA13]. While much research has been conducted on establishing stylometry as a
viable method for the identification of authors, very little has been conducted into its resistance to
conscious attempts at subverting it. Of the few studies that have been conducted, the results seem
to suggest it is rather easy for an informed individual to thwart the analysis [KG06, BAG12],
which may largely be a result of the underlying machine learning algorithms employed, that are
known to be susceptible to evasion attacks [BNJT10], rather than a by-product of this particular
problem domain.

Just as stylometry attempts to carry out authorship attribution through an analysis of the
style in which a sample of writing has been composed, its equivalent in terms of software, code
stylometry [CIHL+15], attempts to identify the programmer that wrote some sample of computer
code through an analysis of their programming style. It achieves this by examining their source
code or executable artifacts in order to discover common features that together may reveal a
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“fingerprint” of the author’s style, such as their preference for certain logical structures, data
types, use of comments and naming conventions to name but a few. The origins of this idea
date back to the early 80s when researchers and educators were interested in the analysis of
coding style for the purposes of grading students’ assignments or just assessing whether some
program adheres to an agreed-upon standard of “good style” [Mee83, TC84]. Following the
Internet/Morris Worm incident in 1988 [Orm03], a report was published that attempted to profile
the author of the worm based on an examination of the reverse-engineered code [Spa88], casting
style analysis as a forensic technique in addition to a code quality metric. This triggered a
number of additional studies throughout the 1990s into using stylistic analysis as a forensic or
deanonymization technique, even being dubbed “software forensics” at one point [Spa92].

Despite a substantial body of prior work on program authorship attribution, only one paper
we are aware of [SZK18] (independent and concurrent work to ours) has yet investigated how
robust the techniques are to adversarial modifications aimed at obfuscation of style or imitation
of someone else’s style, and how difficult or realistic this is. Our thesis statement is as follows:

Source code authorship attribution is fragile and prone to misclassification of files that
have been deliberately altered to disguise one’s identity. Furthermore, it is possible to
deterministically derive a set of changes to elicit such a misclassification, but following this
advice in a realistic setting can be difficult for users.

To that end, this thesis offers as contributions an examination of code stylometry techniques,
along with the results of applying such techniques in a real-world setting. We developed a sys-
tem named Style Counsel to assist programmers in obscuring their coding style and mimicking
someone else’s, achieved through an analysis of the decision trees contained in a random forest
classifier. The name “Style Counsel” is derived from the intended behaviour of the system, to
“counsel” users on their style.1 We evaluate the effectiveness of our random forest analysis algo-
rithm against a corpus of real-world data. Finally, we present the results from a pilot user study
conducted to determine the ease with which a programmer can imitate someone else’s coding
style with and without the assistance of Style Counsel.

1The Style Council is also the name of a new wave pop band formed by Paul Weller in 1983 shortly after The
Jam had split.
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Chapter 2

Motivation

The threat to individuals’ freedom and privacy online from both state and industry actors is grow-
ing year-on-year, resulting in an increasingly censored Internet and World-Wide Web. According
to the Web Index 2014 report [JFF+14], 90% of the countries they surveyed became less free with
regards to political journalism between 2007 and 2013. They stated:

“the overall environment for freedom of expression has deteriorated in the overwhelming
majority of Web Index countries.” [JFF+14]

They also highlighted the trend of declining press freedom in countries that had previously
scored highly in this measure:

“in 14 countries, including the US, UK, Finland, New Zealand, and Denmark, scores fell by
20% or more.”

While it should be pointed out that there is a limit to how low a country can score, which
the worst scoring countries in previous years are probably approaching, it is still a concerning
development that, rather than setting a positive example for others, the affluent West with its
supposed ideals of democracy, liberty and egalitarianism seems to be in a race to the bottom with
regards to freedom online with countries governed by oppressive regimes. Further evidence of a
growing global censorship problem can be seen in Google’s 2017 transparency report [Goo17],
where the number of content removal requests received by Google from governments spiked to
22,515 in 2016 from 8,398 in 2015 and 6,845 in 2014, and over the same period user information
requests from governments rose from 61,838 in 2014, to 76,042 in 2015 and 90,493 in 2016.

Looking in more detail at two specific countries, the US and UK, there have been some
high-profile policy changes towards more surveillance, less corporate regulation and aggressive
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denouncing of the use of strong encryption in certain applications. In December 2016, the UK In-
vestigatory Powers Act 2016 came into effect [UK16a], which allows, among other provisions,
for the warrantless seizure of Internet connection records from Connection Service Providers
(CSPs) by a wide range of government departments, which includes the NHS, Ambulance Ser-
vice and Food Standards Agency as well as various law enforcement and security/intelligence
agencies among the roughly 50 departments listed. It is unclear to what ends these three agen-
cies would need to access members of the public’s browsing history and other metadata, nor why
their needs would be so imperative and/or covert that they should bypass due process and judicial
scrutiny. The act also compels CSPs to keep Internet connection records of their customers for
one year and places a legal obligation on them, once served with a “targeted equipment inter-
ference warrant”, to “take all steps for giving effect to the warrant”[UK16b]. In March 2017,
the US congress voted to repeal the Federal Communication Commission’s (FCC) Broadband
Consumer Privacy Proposal that prevented ISPs from storing their customers’ metadata for the
purposes of targeted advertising [Fun17]. This means that, as well as receiving a monthly sub-
scription for Internet connectivity, ISPs will also be able to profit from harvesting and maintain-
ing customer profiles containing personal and sensitive information, in order to target them with
advertising. Furthermore, as there is a limited degree of competition amongst ISPs, consumers
may have no alternative in their area but to use an ISP that monitors their activity. Following
the Charlie Hebdo Paris attacks, in January 2015 then UK Prime Minister (PM) David Cameron
called for “the legal power to break into the encrypted communications of suspected terror-
ists” [WMT15], then, in 2017, the Home Secretary Amber Rudd directly criticized WhatsApp
for the use of strong encryption in its messaging app, saying:

“It is completely unacceptable. There should be no place for terrorists to hide. We need
to make sure that organizations like WhatsApp, and there are plenty of others like that, don’t
provide a secret place for terrorists to communicate with each other.” [Spa17]

Both these stances, along with the FBI’s legal battle with Apple in 2015/16 [Gro16], failed to
address either the privacy concerns of millions of innocent people, the technical and administra-
tive infeasibility of implementing such a system and the security implications regarding criminals
reverse-engineering and exploiting backdoors or gaining access to systems and databases con-
taining private keys, certificates or other cryptographic artifacts used for access. Furthermore,
the terms “criminal” and “terrorist” are subjective and dependent on whose laws and which per-
spective you hold, as well as changing over time. If one country is able to coerce companies
into providing backdoor access or using deliberately weak encryption, regardless of how well
intentioned their motives may be, it will set a precedent that other countries will follow, where
being a human rights advocate or political opponent may be enough to be labelled a criminal or
terrorist [GP16].

With these, and other, threats to individual freedom and privacy on the rise, it is no surprise
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that interest in protecting their identity and circumventing censorship among both technical and
non-technical users has risen markedly in recent years [Cam15]. A Pew Research Center report
from 2013 found that “86% of internet users have tried to use the internet in ways to minimize the
visibility of their digital footprints” and use of personal VPNs is at an all-time high [NI17], al-
though it pays to carry out due diligence checks on the VPN provider before trusting it with your
privacy and security [Rob17]. Depending on the threat model and with a responsible provider,
VPNs are useful for preserving privacy against local adversaries, however. Anonymizing overlay
networks such as Tor and I2P can provide for greater protections against more powerful adver-
saries. In addition to these well-known examples, a number of tools have been developed to
meet the increased demand and changing threat landscape, in many cases published as open-
source software by individuals who took little if any precautions to protect their identity. The
proliferation and efficacy of such tools have prompted some authorities to clamp down on their
usage and target the developers, who play a crucial role, often represent a single point of failure
in the development and dissemination of the tool and, with few resources or legal backing, are
easily intimidated.

A leaked Chinese police report, posted in a news article on the site globalvoices.org [Lam16]
references the classification of certain circumvention tools by authorities in Xinjiang province as
“second class violent and terrorist software”, in connection with the arrest of a citizen whose
only crime was to download the software in question, believed to be a VPN. Compare the lan-
guage used by the former Xinjiang Communist party chief Zhang Chunxian: “90 percent of
terrorism in Xinjiang comes from jumping the wall. Violence and terrorism keep happening due
to the videos on the internet.” [Lam16], with the UK Home Secretary Amber Rudd’s comments
on WhatsApp, above. In the case of Chunxian a link is being made between the wider, uncen-
sored Internet and radicalization, while Rudd links end-to-end encryption with helping terrorists
to operate. In both cases, a clear link is being made between the use of anti-censorship and
privacy-enhancing technologies and terrorism. This rhetoric helps to provide justification for
legislation that targets the use of such technology and could position its developers as being
part of a terrorist supply network, or even worse of collaborating or “arming” terrorists, which
considering encryption used to be subject to arms export controls in the US [Cen92] is not as
unlikely as it may seem.

There are several cases of developers being treated as individuals of suspicion, intimi-
dated by authorities and/or coerced into removing their software from the Internet. In the US,
Nadim Kobeissi, the Canadian creator of Cryptocat (an online secure messaging application) was
stopped, searched and questioned by Department of Homeland Security officials on four separate
occasions in 2012 about Cryptocat and the algorithms it employs [SOS12]. In November 2014,
Chinese developer Xu Dong was arrested, primarily for political tweets supporting the occupy
and umbrella movement in Hong Kong, but also because he allegedly “committed crimes of de-
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veloping software to help Chinese Internet users scale the Great Fire Wall of China” [Cha14] in
relation to software produced by his “Maple Leaf and Banana” brand, which includes a proxy
for bypassing the Great Firewall. In August 2015, the Electronic Frontier Foundation (EFF) re-
ported that Phus Lu, the developer of a popular proxy service hosted on Google’s App Engine,
called GoAgent, had been forced to remove all their code from GitHub and delete all their tweets
on Twitter [O’B15]. This followed a similar incident reported on greatfire.org a few days ear-
lier involving the creator of ShadowSocks, another popular proxy used in China to “scale the
wall”, known pseudonymously as clowwindy. According to the article reporting this incident,
clowwindy posted a note afterwards that said: “the police contacted him and asked him to stop
working on the tool and to remove all of the code from GitHub” [Per15], which was subse-
quently removed. The README file for the project now simply says “Removed according to
regulations”. Earlier in March 2015, GitHub was subjected to “the largest DDoS that they have
ever dealt with” [Bud15], which has been linked to the Chinese government [BLL+15] and has
been suggested was in an attempt to bully the site into removing repositories that contravened
their censorship regulations. As GitHub uses HTTPS, which encrypts the payload of the HTTP
request, including the actual resources being requested, it is hard to discern which repositories are
being requested and possibly easier to try to persuade GitHub to remove the offending material.

As the environment turns hostile towards the developers, many of them may opt to disguise
their identity and authorship attribution techniques such as code stylometry could be deployed in
order to identify them from other code they may have published using their real identity. Even
the threat of such techniques could be enough to instill a chilling effect in open-source contribu-
tors who otherwise may have been willing to contribute their time and effort into assisting with
censorship resistance tools and privacy-enhancing technologies.
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Chapter 3

Background

Of the applications of authorship attribution, none has been as influential, yet so wildly different
in nature, as the disputed Federalist Papers and the Internet worm incident. The disputed Feder-
alist Papers have become something of a benchmark dataset in text-based authorship attribution,
consisting of a large corpus of mostly single-author writing where most of the papers are known
to have been written by one of three authors, with the authorship of twelve papers being disputed
between two of the three authors. The Internet worm incident was a major computer security
event in 1988 that brought the Internet to its knees and sparked a manhunt for the author(s) of the
software responsible, prompting a forensic analysis of the program binary in which the behaviour
of the worm was documented and characteristics of the author(s) were guessed at, giving rise to
the practice of malware analysis and software authorship analysis.

3.1 The Federalist Papers

The Federalist Papers were written and published in 1787 and 1788 by three authors, Alexan-
der Hamilton, James Madison and John Jay. Initially they went by the collective pseudonym
of “Publius” (although, it should be pointed out, most of the papers were written singularly,
not collectively, by each author) and the group’s real identity was not revealed until a French
language version named them in 1792 and subsequently an American edition named them in
1802 [Ada74]. The aim of the papers was to convince the American public to support the ratifi-
cation of the US constitution. It is not clear whether the use of a pseudonym was due to security
concerns by the authors or so as not to unduly influence the reader with familiar names that may
impart either a positive or negative bias in their interpretation of the arguments set forth; i.e., to
make the writing seem more “pure”.

8



Of the 85 papers, 51 are now credited to Hamilton, 29 to Madison and five to Jay, although
the authors themselves originally maintained that they were written collectively, until 1810 when
a list compiled by Hamilton before his death in 1802 was used as the basis for crediting each
paper with a (single) author. Originally, this list asserted that Hamilton was the sole author of 63
papers, however Madison disputed these assignations in 1818 with his own list that put him as the
sole author of 29 and Hamilton 51 papers, respectively. Madison diplomatically suggested that
Hamilton had made a mistake “owing doubtless to the hurry in which [Hamilton’s] memorandum
was made out.” [Ada74].

While there were historical studies of these events in the following years that claimed either
Hamilton or Madison as the authors of the disputed papers, it was not until 1963 that Mosteller
and Wallace took a scientific approach to the problem [MW63]. This is perhaps the best-known
and highly cited paper examining the Federalist Papers from an authorship attribution perspec-
tive, and since then the Federalist Papers have been used many times as the dataset for various
authorship analysis studies using statistical methods.

There are several good reasons why this case has become the de facto dataset for authorship
attribution research. First, the data is easily accessible, being publicly available online. Second,
the writing is of historical and cultural significance in the US, where much of the research is
conducted. Third, it involves a genuine case of disputed authorship, which has never been con-
clusively resolved, for while statistical studies such as these certainly lend weight to one side or
the other they do not provide incontrovertible proof. Fourthly, there is a large corpus of ground
truth data based on the undisputed papers and presumably other works these authors wrote dur-
ing their lives. Finally, there are only three (or two if you assume Jay wrote none of the disputed
papers based on his silence over the matter) authors to consider, greatly simplifying the task at
hand.

One reason why this dataset may not be a good choice for testing new techniques of at-
tribution is precisely because the authorship of the disputed papers is not known conclusively.
Graham et al. [GHM05] claim that: “Juola (1997) demonstrated a technique that, using samples
as small as 500 characters, can correctly classify all the disputed Federalist Papers”; however,
without the original authors and no further evidence to settle the dispute, this is not a claim that
should be made, especially when one considers that the authorship labels that have been assigned
to the disputed papers in modern times are themselves based on statistical analyses of style. All
that could be claimed is that this technique concurred with the other statistical studies for the
disputed papers. An additional issue with basing a research study and statistical style analysis
on the Federalist Papers alone is they were written during a specific period by three authors with
similar educational backgrounds who were trying to write in a certain style, the spectator style,
described by Mosteller and Wallace as “complicated and oratorical” [MW64]. In order to ex-
tract an essence or measure of writing style that is universal and applicable in practice, it would
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be desirable to include samples of writing from many authors, on a variety of topics, over a pe-
riod spanning decades, if not centuries. Many of the features discovered as being significant for
discriminating between Hamilton, Madison and Jay, may not apply to more modern writing, or
may not scale with the number of authors. For example, Mosteller and Wallace included variance
between uses of the words while and whilst, but in modern usage while massively outnumbers
whilst.

3.2 The Morris/Internet Worm

The Internet, or Morris, Worm as it is alternatively known, was a computer worm1 launched in
November 1988 by Robert T. Morris that shut down a large proportion of the Internet as it propa-
gated, consuming bandwidth on the network and CPU time on any host it infected (often multiple
times), preventing them from running any other processes. After systems were patched and the
worm was purged from the Internet, the hunt for the author(s) of the worm began in earnest. One
of the most prominent figures in the coordination effort, Eugene Spafford, published a report
within weeks that carried out a technical analysis of the worm and a profile of its author(s) based
on how they had written the code [Spa88]. The analysis was conducted on two decompiled and
one disassembled version of the worm binary and is primarily concerned with the vulnerabilities
the worm exploited as well as its structure and behaviour, however there is also a section towards
the end that critiques the programming style the worm was written in and makes inferences about
the author’s level of expertise, their intentions, programming experience and even mental state. It
should be pointed out that Morris was already a suspect by this time, having revealed one of the
vulnerabilities (a buffer overflow2 in the fingerd process) to staff at Carnegie Mellon University
the previous year, and was eventually arrested, tried, convicted under the 1986 Computer Fraud
and Abuse Act and sentenced to three years’ probation in 1990 [Mar90].

The analysis and subsequent report about the Internet Worm was significant in two respects:
First, it represents one of the first published malware analyses. At the time, antivirus software
as a concept was still in its infancy, only just emerging from being a purely research topic to
commercial endeavours [Coh87, Coh88] and the Common Vulnerabilities and Exposures (CVE)

1A worm is a type of malware that is able to spread from computer to computer, typically over a network, without
requiring any action on the part of the user, making them far more virulent than other types of malware.

2A buffer overflow is caused when input data that is written to memory is too large for the data structure that has
been allocated to contain it. In this case, without proper bounds checking, an attacker can overwrite other memory
locations immediately following the buffer on the stack, including the return address pointer, effectively allowing
them to control execution flow and redirect the instruction pointer to their own carefully constructed code contained
in the input data.
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database,3 which systematized the dissemination of information on software vulnerabilities, was
over ten years away from being realized. Second, it precipitated an interest in authorship attribu-
tion of software amongst the research community. Clearly, there was an appetite amongst policy
makers and law enforcement to apprehend and punish computer criminals, including malware
authors, to act as a deterrent to others, and academia, reliant as it is on sharing data and use of
the Internet for collaboration, also had a vested interest in curbing behaviour such as this.

3https://cve.mitre.org
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Chapter 4

Literature Review

As a research topic, authorship attribution has been, and continues to be, popular, with dozens
of papers published each year since 2007. Indeed, rather than becoming exhausted, interest has
in fact been growing year-on-year to 99 papers published in 2016.1 As might be expected, most
of the research has been from the field of Computer Science (40%), with Linguistics (17%) and
Literature (15%) also featuring prominently.

In the sections that follow, we first look at relevant papers in the realm of authorship attribu-
tion of natural language texts, its applications and techniques. Following this, we will discuss
papers in the area of plagiarism detection and the closely related problem of authorship validation
that are relevant to authorship attribution. Next, we will review research conducted into software
authorship attribution on both source code and binaries, before progressing to a discussion of
defences, including adversarial approaches to defeating authorship attribution.

4.1 Authorship Attribution of Natural Language

4.1.1 Early Work

Before computers were available to researchers as a tool for processing large quantities of data
and performing rapid calculations, studies in authorship attribution were characterized by their
consideration of only a single metric/feature at a time. This is because the size of the datasets
involved means a great deal of time has to be invested just to catalogue and categorize the data,

1Data obtained from Web of Science (https://webofknowledge.com)
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leaving little appetite to calculate more than one measure. One of the earliest known scholarly
works looking at statistical features for author identification was published in 1887 by Menden-
hall [Men87]. The paper seeks to position average word length distributions as a distinguishing
characteristic, crediting the mathematician Augustus De Morgan for inspiration, and analyzes the
works of a number of authors to produce example distributions. The intuition behind this idea
is that the distribution carries information as to the preferred vocabulary of the author. There
are hundreds of thousands of words in the English language, but only 28 categories by word
length2, with the majority being between four and eight characters in length. It is hard to imag-
ine a measure that compresses this much information into such a simple representation, even
when presented as a distribution rather than just the raw mean value, could be very effective as
a discriminator when taken over all but the most trivial of samples. The paper presents some
example distributions (termed characteristic curves of composition) from the selected authors,
however there are significant similarities between the distributions. Brinegar [Bri63] applies this
same technique to the “Quintus Curtius Snodgrass” letters that are believed to have been writ-
ten by Mark Twain under a pen name. The results of this study suggested that Twain was not
the author of the ten letters in question. This result is cast into doubt by more recent research,
however, as Holmes [Hol94] writes that Smith3 [Smi83] found the average word length varied
greatly depending on the genre and era in which it was written (and presumably the intended
audience and topic also influenced the measure), by a far greater degree than it varied by author,
rendering the approach ineffective for attribution.

A contemporaneous study to Brinegar’s by Mosteller and Wallace [MW63] looked at other
statistical measures that may capture consistent differences between authors, applied to the Fed-
eralist Papers case. The authors used Bayesian inference based on the usage of certain high-
frequency function words, such as articles, prepositions and conjunctions, which they selected
based on their non-contextuality and common usage, meaning that they would appear in all
works by the authors and not be dependent on the subject of the paper. They also documented
their efforts with using other sets of words, including those sourced from frequency lists of large,
unrelated corpora and the federalist papers themselves. They found that the function words pro-
vided the best discriminatory power. As previously noted in Section 3.1, this work was seminal
in the field of authorship attribution and represented a herculean effort by the researchers who,
not having access to computers, had to perform their analysis by hand.

Holmes [Hol94] cites Bailey4 [Bai79] as attempting to formalize the attribution process as
a forensic discipline with conditions given for the candidate author set, size of samples and the

2The longest non-technical, uncoined word found in dictionaries is antidisestablishmentarianism at 28 charac-
ters.

3Paper could not be sourced
4Paper could not be sourced
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type of features that should be considered. Holmes [Hol94] also conducts an exhaustive overview
of the many metrics that were proposed in the early literature, including word lengths, number
of syllables, sentence length, type of speech, function words, information entropy and so on.
The general consensus with several of these features, such as word length (discussed above) and
sentence length, is they are not representative of authorial style and should be discarded. But
in many cases, there are conflicting results, depending on the text in question and the corpus
being analyzed, its age, genre, etc. This disparity and lack of a clear consensus of features that
produce consistent results is concerning for the discipline as a whole and suggests writing style
may be too complex to be summarized in one or just a few features. Smith [Smi90] exposes some
inconsistencies in four papers and offers the following cautious advice on the use of authorship
attribution outside of a purely academic context:

1. The onus of proof lies entirely with the person making the ascription.

2. The argument for adding something to an author’s canon has to be vastly more stringent
than for keeping it there.

3. If doubt persists, an anonymous work must remain anonymous.

4. Avoidance of a false attribution is far more important than failing to recognize a correct
one.

5. Only works of known authorship are suitable as a basis for attributing a disputed work.

6. There are no short-cuts in attribution studies.

4.1.2 Computer-Assisted Studies

With computers becoming more widely accessible to researchers, statistical analyses of large
texts could more easily be accomplished, with a higher dimensionality in the features ex-
tracted, leading to the use of multivariate techniques, machine learning and AI. Holmes and
Forsyth [HF95] revisited the Federalist Papers with three new stylistic measures combined with
three modern analysis methods to compare their effectiveness with the original Mosteller and
Wallace paper. The first technique looked at a six-variable system where each variable was a
measure of vocabulary richness. This system was proposed in a previous paper [Hol92]. The six
variables were:

1. Honoré’s R-function [Hon79], calculated from the total number of words in a sample, how
many words appeared just once (hapax legomena) and how many unique words a sample
of text contains.
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2. Hapax Dislegomena (the number of words appearing twice in a sample), divided by the
total number of words, as suggested by Sichel’s work [Sic86].

3. Yule’s Characteristic K [Yul14], which assumes word selection in any given text sample
are events that can be modelled with a Poisson distribution. Holmes points out that the
efficacy of this measure for authorship attribution had previously been questioned by Tal-
lentire [Tal72] and not recommended for univariate studies, but as this was a multivariate
approach, decided to include it.

4. Brunet’s W index [Bru78], which is simply NV−α, where N is the size of the sample, V
is the number of unique words in the sample and α is a constant term α = 0.17 (Brunet
suggested 0.165 ≤ α ≤ 0.172).

5. & 6. The α and θ parameters of the Sichel Distribution [Sic75], a distribution based on
observed word frequencies that estimates the probability that a word was observed exactly
r times (in this case, where r is the actual observation) given the size of the sample, N.
Pollatschek and Radday [PR81] showed that these parameters control the head and tail of
the distribution, respectively.

These scale well with the size of the sample as the terms in the formulae are dependent on
the total number of words N, and due to Zipf’s law [Pow98] the proportion of hapax legom-
ena/dislegomena remains approximately consistent with changing N. To confirm that this was
the case, however, the authors calculated correlation coefficients for each variable with respect
to the length of the corresponding text samples and found only one variable had a significant
correlation, the Hapax Dislegomena, which they subsequently removed from the study. To these
vocabulary richness variables they applied a principal component analysis, the results of which
showed a clear divide between Hamilton and Madison, with Hamilton demonstrating a richer vo-
cabulary in his papers and the jointly authored documents demonstrating the richest vocabulary
of all, leading Holmes and Forsyth to wonder whether collaboratively written documents always
demonstrated a richer vocabulary.

The second technique they evaluated used principal component analysis applied to word
frequency lists of function words (a similar set of words as used by Mosteller and Wallace), a
technique previously proposed by Burrows [Bur92]. The final technique used a genetic algorithm
approach to automatically detect patterns, using the BEAGLE system [For81]. Holmes and
Forsyth described this system as an early precursor to genetic programming [Koz92], as it is able
to automatically derive rule sets, each rule of which may be equated to a Boolean expression in
a larger program.
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In all three approaches to the problem, Madison was indicated as being the most likely author
of the disputed papers. They found the first two techniques produced clear clustering, that, being
constructed from a principal component analysis, were easily discernible to the human eye. They
found the second technique, the word frequency analysis, worked best with larger lists of the
common function words, and gave worse results with the original 30 function words used by
Mosteller and Wallace. In contrast, they concluded that the genetic algorithm approach worked
better with the original 30 words. They also noted that evolutionary computing approaches to
authorship attribution had been underutilized.

It does not appear that this comment regarding the underutilization of evolutionary comput-
ing in authorship attribution studies was heeded by the research community as no other papers
appear to have investigated this approach, while machine learning techniques have come to dom-
inate. Tweedie et al. [TSH96] evaluated the use of neural networks (NN) applied to the federalist
papers. The inputs to their NN were word frequencies of a subset of eleven function words from
the original 30 used by Mosteller and Wallace, chosen for having the most discriminatory power.
They left considering other features as future work, choosing instead to carry out this initial
study with the function words that were already proven to be effective, which also enables a bet-
ter comparison to be drawn between the results of the two studies. Their results were consistent
with other studies on the federalist papers with regards to attribution of the disputed papers.

Diederich et al. [DKLP03] investigated using Support Vector Machines (SVM) applied to a
corpus of articles from the German newspaper Berliner Zeitung covering a three-month period
from December 1998–February 1999 of politics, economics and local affairs categories with
lengths exceeding 300 words. This gave them a corpus of 2,652 documents containing 1.9 million
words, approximately 120,000 of which were unique. With this corpus, they then trialled two
different feature extraction methods. The main difference between the first method they tried
and any others hitherto used was the authors did not attempt to condense or summarize the
information contained in the word frequencies to only a small subset of chosen words, word
types, hapax (dis-)legomena, etc., but rather they used the frequencies for all the words found
in the texts. This is an advantage of SVM and other classifiers that use kernel methods. Kernel
methods allow for the use of raw feature values, without requiring them to first be converted to
feature vectors, providing some form of similarity measure has been defined for evaluating the
relative differences between values. This means feature vectors of very large dimensionality
can be processed efficiently, eliminating the need for feature reduction. They experimented
with several different frequency calculation methods, including relative frequency (the standard
measure one associates with frequency) and term frequency-inverse document frequency (tf-idf)
a measure used in information retrieval to rank documents relative to some search terms by their
importance or relevance. This is achieved by first calculating the frequency of the term in the
document (term frequency) and scaling it by the total number of documents divided by how many

16



documents contain that term, expressed logarithmically. The net result of this is that common
words that appear in every document; e.g., “the”, will have a tf-idf of 0 (because it appears in
every document, hence the idf value will be log(1) = 0), and terms that are rare overall but
appear often in the current document will have high tf-idf values. Their second feature extraction
methodology took over 800 function words appearing more than nine times in the corpus and
tagged them according to their syntactical role and calculated the relative frequency of the tagged
words and bigrams of the tagged words. Their conclusions were that SVMs were:

“especially suited for this task as the feature spaces have very high dimensions, most features
carry important information and the data for specific instances is sparse.” [DKLP03]

They highlighted the fact that when the feature space does not need to be compacted, as with
SVMs, choosing a subset of words, such as function words, to focus on during feature extraction
results in worse performance. This makes intuitive sense, as there will be a loss of information
when considering only part of the content versus the entire document; however this is not true
for non-kernel method classifiers where there is a trade-off between improvement in performance
from the information gained with additional features and degradation in performance from high-
dimensionality. As SVM does not suffer from the curse of dimensionality [RNI10] this trade-off
does not need to be made, although caution should still be exercised here to avoid the classifi-
cation being based too much on the topic rather than the author. Certain words are going to be
more correlated with topic than others, particularly nouns and to a lesser extent verbs. As this
study was focused specifically on articles about the same three topics, and journalists typically
write articles about only one topic, this effect may not have been apparent with this particular
dataset, but could become problematic with other datasets.

Luyckz and Daelemans [LD05] also investigated applying machine learning to a corpus of
newspaper articles; this time the source was De Standaard, a Dutch-language Belgian newspaper,
and two authors in particular. Their study differed from Diederich et al. in the method of fea-
ture extraction and classifiers used. For feature extraction they used shallow text parsing with the
Memory-Based Shallow Parser [DVdB05], which involves chunking [Abn91] sentences into lex-
ical units and labelling the tokens within each chunk according to their word type and syntactical
purpose. With this parsed data, they created nine different feature sets based on frequency distri-
butions of parts-of-speech, basic verb forms, verb forms, noun phrase patterns, function words
and the 20 most informative5 words, as well as a readability score, a combination of all the feature
sets and a combination of the syntax-based features and readability score. Regarding the machine
learning models they used Weka’s6 Neural Network classifier and TiMBL [DZVDSVDB04], a
type of memory-based learning algorithm, similar to k-NN. Based on a three-class problem (au-

5Informative in this respect refers to a measure of mutual information. [Seb02]
6https://www.cs.waikato.ac.nz/ml/weka/
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thors A, B and O for “other”), their results indicated that the combined feature set performed best
with an average F1 score of 71.3%, with the combination of syntax-based features and readability
scoring 61.7%. Of the single syntax-based feature sets, the parts-of-speech frequency distribu-
tion scored best with 50.6%, and the function words performed best of the lexical features with
63.9%, which was also the second best overall.

With much of the work performed in isolation against disparate data, it is not easy to de-
termine which features and which analysis technique is best suited to authorship attribution.
Grieve [Gri07] attempted to resolve this question with regards to the best features by testing 39
different feature sets independently with the same dataset using the same classification algorithm.
The 39 feature sets fall under the following categories:

• Average word length (2 sets)

• Average sentence length (4 sets)

• Vocabulary richness (11 sets)

• Character frequency (4 sets)

• Word frequency (3 sets)

• Punctuation frequency (5 sets)

• Word 2- and 3-grams (2 sets)

• Character n-grams (8 sets)

For the corpus, opinion columns in the British newspaper The Telegraph between 2000 and
2005 were used. This was to satisfy the requirement that the intended audience the author was
writing for remain stable and the time frame is narrow enough that the author’s style is unlikely to
evolve much during the period. The researchers also attempted to control for the demographics of
the authors by selecting columnists with similar age, political opinion, ethnicity, class, education
and nationality. They noted that some of the authors had different social backgrounds even if
overall the demographics of the group were consistent. In total, then, the corpus of newspaper
columns represented the writings of 40 authors. For evaluation, a succession of leave-one-out
tests were conducted where an author and one of their texts were selected at random, before
carrying out a chi-squared analysis to determine the confidence that the text in question was
drawn from each author’s corpus. Then, the output values from the chi-squared test were ordered
in ascending order and the lowest value was taken to be the most likely author according to the
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feature being evaluated. The precision of this test (total successful predictions divided by total
predictions) is then reported as the success rate of that particular feature. The evaluation is carried
out on all forty authors, then on permutations of twenty, ten, five, four, three and two authors,
the results of which are averaged for presentation. The results of the study suggest features
based on punctuation have the most discriminatory power, with character n-grams also producing
favourable results. Average word and sentence lengths performed poorly, which is consistent
with other studies, but vocabulary richness measures also produced poor results, which contrasts
with Holmes and Forsyth’s earlier work [HF95] that had positive results, albeit when using the
vocabulary richness measures in a multivariate, rather than a univariate system. It should be
noted that all of the features tested produced better results than random guessing, and combining
measures that represent different aspects of the content, such as punctuation with character n-
grams, would almost certainly improve the predictive power. The authors of this study go on to
perform a combination test where the best 16 features were selected and two voting mechanisms
were implemented, the first where each feature had an equal vote and the second where features’
votes were weighted depending on their performance in the individual evaluations. The results
of these combination tests demonstrated that considering multiple features does indeed improve
the precision overall, especially when weighting the votes of each individual feature by its own
predictive power.

Jockers and Witten [JW10] also conducted a comparative study, this time however, they
were interested in determining which machine learning algorithm was best suited for authorship
attribution. For their tests, the feature sets and author data were kept consistent so a controlled
comparison could be made between the classification algorithms. The corpus used in this paper
was the federalist papers and two feature sets were evaluated, one containing all words and word
bigrams common to all three authors (dimensionality 2,907) and the second containing words
and word bigrams that were found with a minimum frequency in the texts (dimensionality 298).
Five classification methods were tested: Delta [Bur02], k-NN, SVM, Nearest Shrunken Centroids
(NSC) [THNC03] and Regularized Discriminant Analysis (RDA) [Fri89]. Delta is an algorithm
that was designed expressly for the purpose of authorship attribution, while the other methods
are general classifiers. The procedure for using Delta involves a feature selection step, therefore
it was not run on the full 2,907- and 298-dimension feature matrix, but rather on a subset of
lower dimensionality. NSC and RDA also perform dimension-reduction, but k-NN and SVM are
run on the entire feature set. Their evaluation was carried out using 10-fold cross validation and
came to the conclusion that nearest shrunken centroids gave the best overall performance as there
were no classification errors in the cross validation for either the full or reduced dataset, whereas
all the other classifiers experienced at least one misclassification. SVM performed particularly
badly and gave the worst performance overall, which is in contrast to the conventional wisdom
on authorship attribution (and other Natural language Processing—NLP—applications) where
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SVM is considered to be a useful algorithm due to its kernel-method nature as discussed earlier
in this section. This result should merit further investigation, possibly using a different evaluation
method rather than cross validation or a different feature set, which could have a big impact on
overall performance.

Overall, we can see that the use of computers enabled researchers to conduct studies involv-
ing far more complex statistical models, with multivariate systems and machine learning over
sometimes thousands of variables, whereas before the advent of computers in this line of re-
search, studies typically focused on just one or two features at a time. It is interesting to note,
however, that the size of the datasets typically were no bigger than the earlier studies, despite
the relative ease with which a computer would be able to process larger corpora compared with
a human. Indeed, often the classic federalist papers corpus was used, cementing its position as
the standard by which new features and algorithms would be benchmarked against. We will see
in the next section, however, that more recent papers have begun exploring datasets of varying
sizes, both in the quantity of samples, the number of authors and length of each sample.

4.1.3 Internet-Scale Authorship Attribution

In this Internet age, we see a trend in authorship attribution research for papers focusing on two
factors that underline the challenges of the modern era: large quantities of data, particularly
with respect to the number of authors, and smaller sizes of individual samples. There is also a
shift in the applications, both implied and explicit, from authorship disputes; e.g., for copyright
purposes, to criminal investigations; e.g., spam/phishing emails or cyberstalking/trolling.

Koppel et al. [KSAM06] first looked at this problem, using a corpus consisting of blogs
(where each blog refers to all the posts in that blog, rather than a single blog entry) from 18,000
authors. In their first experiment, they took 10,000 blogs and their last n posts that together
constitute at least 500 words (they referred to these as “snippets”) were used as the test set and
the remaining posts used for training. With these training/test sets, they applied several metrics
from the information retrieval arena, which were:

• tf-idf over content words

• “binary” idf over content words7

7It is not clear what is meant by binary idf; no reference was provided and the term was not found in any other
paper. It could be referencing a system where each term is either present (1) or not present (0) in the corpus, although
in this case it would not be an inverse frequency.
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• tf-idf on “stylistic features (function words and strings of non-alphabetic, non-numeric
characters)”8

They evaluated these metrics by ranking the authors by how highly they scored for each snippet.
The number one ranked author was taken to be that metric’s classification. They reported their
results as a type of cumulative distribution frequency where the x-axis represented the rank r and
the y-axis the percentage of snippets for which the correct author was ranked in the top r ranks.
They found “binary” idf performed best, with 42% of snippets placing the correct author as the
number one rank, increasing to approximately 50% when r = 10. In their second experiment,
they used a meta-learning approach [VD02] to enable an estimation of the degree of confidence
in a particular classification. They achieved this through training an SVM classifier on various
metadata about each snippet and the ranked authors, such as the absolute similarity between the
snippet and the top ranked author, the degree of similarity between each of the top k authors
and a comparison with the rankings produced by the other metrics (tf-idf on content and stylistic
features). The output of this meta-learner was used by the main classifier to decide whether to
attempt a classification or to return “Don’t Know” [KSAM06]. They tested this meta-learning
approach on the remaining 8,000 blogs that were not part of the first experiment and were able
to report, for a limited subset of 31.3% of cases that it attempted a classification it correctly
predicted the true author (number one rank) in 88.2% of cases.

Luyckx and Daelemans [LD08] conducted a study with 145 authors and (relatively) short
passages of around 1,400 words sourced from student essays on a particular topic (a documen-
tary on artificial life), which were subsequently split into ten equal parts. Their aim was to
investigate the effect of increasing the number of authors being considered on the classification
accuracy, to determine which classifiers perform well with limited sample sizes, experiment with
different feature sets and compare authorship verification, which is the binary-class version of
authorship attribution, with the standard multi-class scenario. They used a chi-squared analysis
to perform feature selection/reduction (to 50 features) on word and part-of-speech n-grams that
had been elicited by the Memory-Based Shallow Parser (see Section 4.1.2) [DVdB05], function
word frequencies and two vocabulary richness measures in the Flesch-Kincaid readability score
and type-token ratio. To evaluate the effect of increasing numbers of authors they randomly
generated 100 permutation subsets of two, five and ten authors, then one random subset of 50
and 100 authors, before finally testing with all 145 authors using the TiMBL [DZVDSVDB04]
memory-based learning algorithm. To evaluate which classifiers are best suited to limited sample
sizes, they incrementally increased the size of the corpus, performing 5-fold cross validation at
each increment with the following classifiers: TiMBL, Maxent [Le04] and SVO, a variant of

8Again, no further explanation is offered for which function words or how many they used, nor for how the
strings of non-alphabetic and non-numeric characters were derived.
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SVM implemented in Weka. All results were reported with respect to different feature sets, one
containing the word and part-of-speech n-grams, one containing the function word frequencies
and one containing the vocabulary richness measures, as well as combinations of these. For
the authorship validation evaluation, they simply took each author in turn and labelled all other
authors with the negative class, again performing 5-fold cross validation. Their results for the
increasing number of authors experiment found that there was a sharp drop in the F1 score once
the number of authors being considered was greater than 20. They also found that as the number
of authors increases, there is a greater performance improvement from including more features
than with fewer authors, which would be expected, as the more classes there are to differentiate,
the more information is required to differentiate between them. When experimenting with limit-
ing data to different degrees, they did not find a clear difference between using the three different
classifiers; they had theorized that the lazy memory-based learner TiMBL would outperform the
eager Maxent and SVO classifiers with less training data. For the author verification problem,
where the task is to determine if a sample being assessed was written by a single target author or
by someone (anyone) else among the 144 other authors, i.e. not the author, they found memory-
based learning gave the best precision, but a poor recall. Overall, this paper gives a thorough
treatment to more realistic applied problems with authorship attribution and helps to highlight
its limitations and possible overestimation of its accuracy in previous results. This study was
followed up with another by the same authors in 2011 [LD11] with two larger corpora, the first
in English taken from the Ad-Hoc Authorship Attribution competition [Juo04] and the second
in Dutch taken from the Dutch Authorship Benchmark corpus [Hal07] and the same corpus as
above [LD08]. Their results were much the same and served to reinforce the earlier conclusions.

Sanderson and Guenter [SG06] chose to focus on the relative performance of long and short
samples, with a dataset of 50 authors consisting of newspaper journalists that had written articles
on more than one topic and had at least 10,000 words to their name. They were interested in
the two-class problem, where a text is classified as either being written by the target author or
not. To this end, they chose ten authors to constitute the background dataset (the negative, or
general, class) and used the remaining 40 authors as their evaluation set. This meant that each
iteration of the experiment involved the writing of eleven authors in total: ten “background” au-
thors representing the general class and one under evaluation), which is fairly limited. In terms
of training data size they started with 28,000 characters (approximately 5,000 words) per author
and then reduced this incrementally to 1,750 characters while simultaneously reducing the test
size in line with this to determine the effect on accuracy of having smaller samples to work with.
They also tested the effect of reducing the test size but maintaining the training size. For their
first classification algorithm they utilized a Markov Chain approach that calculated the sum of
the probabilities of seeing each token (character or word) given the previous sequence of m to-
kens, the product of these various sequence probabilities is then taken for the entire document,
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smoothed to prevent divide by zero errors according to interpolated Moffat smoothing [CG96]
then normalized by the size of the sample and finally taken as a log likelihood ratio. Their
second classification algorithm was SVM customized with a kernel function that had been devel-
oped specifically to be used as a similarity measure between word and text sequences of varying
lengths (a parameter, τ , is used to determine the maximum sequence length and all sequences
of length l ≤ τ are evaluated), weighted so longer sequences are more significant [CGGR03].
For the experiments with the Markov chain approach, they found that chains of order two gave
the best results (meaning the current and previous two states were considered when determining
the probability of the next transition) and decreasing both the training/test data together gave
worse performance than just reducing the test data alone. In their experiments with SVM and
the custom kernel function, they tried training/test data sizes of 7000, 14000, and 28000 and also
varying sample sizes (“chunks”), with samples of 500 characters being most effective across
all training/test data sizes. They also obtained the best results with τ = 4 over the character-
based kernel, which they found to be comparable to the Markov chain with order two. In a
final experiment, they investigated a technique known as unmasking, first proposed by Koppel
and Schler [KS04]. With unmasking, features are iteratively removed from a one-class learning
model to assess the speed at which the classification degrades for a particular instance. The intu-
ition is that the greater the accuracy drop with each feature removed, the more reliant the model
is on just a few features for its classification. This lack of depth indicates that the instance may
be a borderline case and the classification superficial. Note that this technique only works for the
one-class problem, where “degrade” means that classification switches from positive to negative,
or vice versa. For example, a text may be classified as not being written by the suspected author,
but after excluding a relatively few features may classify positively. Their conclusions were that
unmasking was significantly less effective for shorter texts and should not be used.

Iqbal et al. [IHFD08], Layton et al. [LWD10], Koppel et al. [KSA11], Bhargava et
al. [BMA13] and Afroz et al. [ACIS+14] have all looked at authorship attribution from a re-
alistic, applied perspective (“in the wild”), mostly focusing on the forensic use case, citing cy-
bercrime as the main motivation. The common themes of these papers are short text samples
and large numbers of potential authors. Iqbal et al. [IHFD08] were interested in identifying the
authors of emails, and coined the term “write-print” to be the authorial version of a fingerprint.
Just as a fingerprint contains features that are highly distinguishing (not truly unique, but close
to), so the write-print would contain the features that were unique, or highly distinguishing, to
an author out of the set of authors in the corpus. The write-print features for an author would
be derived from a much larger set of potential features (the “universe” U) that were scanned for
in the author’s emails, with only those present being retained. Then, features (or patterns of fea-
tures) that were found to be common amongst all authors were also removed, leaving only the
pattern of features that are singular to that author. In this way, the algorithm is searching for the
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idiosyncratic aspects of an individual’s writing. This is a very different approach to other works
where variations in feature values that are common to all authors are preferred. This, they argued,
would make the results more admissible in court as “forensic” evidence, due to its distinctive na-
ture. Their features were represented as simple bit strings, where each bit encoded a Boolean
indicating if that feature was present or not. The resulting sparse vector could then be translated
into a set of nominal values using the feature names. It should be pointed out that the features
themselves were not binary by nature, however, but were standard continuous values, such as rel-
ative frequencies, whose values had been discretized into partitions of configurable width. This
discretized feature space is an advantage with training data consisting of smaller samples, as it
requires less precision and so is less susceptible to noise. They used as their dataset the publicly
available Enron emails,9 which is almost certainly characterized by a great deal of similarity in
terms of topic and content, making this approach even more desirable over statistical methods,
which would no doubt be influenced by the use of common signatures or other boilerplate footer
text. In their experiments, they were able to achieve a maximum “accuracy” (precision) of 90%
when distinguishing between six authors and using 20 emails per author as training data.

Layton et al. [LWD10] and Bhargava et al. [BMA13] were interested in an even more ex-
treme example of a corpus of short texts, tweets, again motivated by cybercrime investigations.
Tweets are the messages users of the micro blogging platform Twitter post, and were at the time
restricted to no more than 140 characters. In their case, Layton et al. wanted to determine
whether a technique previously used for source code attribution, known as SCAP [FSG+07],
would work in this domain. SCAP employs character n-grams, but taken at the byte level to
also extract control characters and whitespace. Character n-grams is a metric often found in au-
thorship attribution research, but instead of an exhaustive feature vector containing all possible
combinations, resulting in a sparse matrix, SCAP takes just the top L occurring n-grams found
in each author’s training set as its model. To perform classification, it finds the author whose set
of n-grams are closest to the set extracted from the document(s) being evaluated. The distance
metric employed is simply the number of elements found in the intersection between the au-
thor’s top L n-grams and the document(s) being evaluated. To reduce similarity between author
models, the silhouette coefficient [Rou87] is used to determine the degree of overlap between
authors’ models. A model demonstrating a high degree of overlap with its neighbouring models
may need to be reduced to one or more sub-models, by calculating the silhouette coefficient be-
tween subsets of its feature space and eliminating the sub-models with a high degree of internal
overlap. Bhargava et al. [BMA13] used an SVM classifier and 22 features, combining lexical,
syntactical, tweet-specific features (such as relative frequency of hashtags) and others, including
use of emojis. They also combined up to ten tweets together to increase the amount of text per
sample.

9https://www.cs.cmu.edu/˜enron/
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For their experiments, Layton et al. [LWD10] used 50 Twitter users and 200 tweets per
author, randomly selected from a corpus of some 14,000 users that had been selected by searching
Twitter for certain keywords over a four-day period, then reducing the resulting 56,000 users to
14,000 through a random selection. It is not clear what the keywords were, nor why these were
chosen. Bhargava et al. [BMA13] used 10–20 authors and 200–300 tweets per author in their
experiments, sourced by using the twitter-corpus tool10 to collect 5,000 tweets, then randomly
selecting users from this list and gathering additional tweets from their individual streams.

For the 50-author, 200-tweet dataset, Layton et al. [LWD10] used 10-fold cross validation
for testing, and their best results were a 72.9% precision. They also experimented with removing
“mention” (@handle) and “hashtag” (#hashtag) content from the tweets to see if this information
improved or reduced the performance of classification. They found that including mentions
improved performance but hashtags made little difference and attributed this to users interacting
frequently with the same other users. The fatal flaw in these experiments and their conclusions,
especially with regards to the mentions, is that the training and test data is drawn from the same
corpus of accounts whose class labels are based on Twitter handle, rather than the account owner.
Bhargava et al. [BMA13] reported results whose success depended on the number of users and
tweets. They found for 10 users, the best results were with 200 samples, giving an accuracy of
81.42%, while for 20 users, 300 samples gave the best results with an accuracy of 64.54%.

Clearly, in practice law enforcement would face the scenario of attempting to link different
accounts belonging to the same person (or bot). There is no way to tweet anonymously without
using a separate account, so training and testing on the same data, even with cross validation, is
meaningless. This also highlights the issue with Layton et al. [LWD10] concluding that including
mentions increases performance because of frequent interactions with the same other users. A
person with two different accounts, one of which is being used covertly, is highly unlikely to
exhibit the same social graph in their covert account as their overt account. The only way to
meaningfully conduct this study would be to take sets of multiple accounts that are known to
belong to single individuals, if this is possible, and then to attempt authorship attribution where
the training set contains their overt accounts and the test set their convert accounts.

Koppel et al. [KSA11] looked at blog posts from 10,000 authors on blogger.com during a
single month. They once again used character n-grams (4-grams), first taking a “naı̈ve” approach
using a feature vector with all possible 4-grams, giving a dimensionality of just over 250,000 and
calculating the cosine similarity [SB88] between the document being evaluated and each author’s
model to perform classification. Even this simple method achieved a precision accuracy of 46%
for the 10,000 class problem, which is somewhat impressive, although the authors are quick to
point out that this is insufficient for most applications.

10https://github.com/bwbaugh/twitter-corpus
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Afroz et al. [ACIS+14] investigated the case of finding duplicate accounts in online forums,
particularly criminal forums specializing in stolen credit card data. This study differs from pre-
vious studies in that it uses real data from multiple accounts, as opposed to simulated multiple
account data created by artificially splitting up a single account’s samples across training and test
sets as with cross-validation, which we highlighted our concerns with above. They also describe
additional practical considerations with users’ extensive use of slang and “leetspeak” posing
difficulties when using traditional language analysis, such as part-of-speech taggers. They ap-
proached this problem as an unsupervised learning task, obtaining the ground truth from data
dumps that were leaked from four forums: AntiChat, BlackhatWorld, Carders, and L33tCrew.
User accounts were linked between the forums by cross-referencing their registered email ad-
dresses. Within the Carders forum they were also able to link accounts by analyzing warning
messages sent to users that logged in to a different account than that indicated by a persistent
cookie on their machine (all these forums ban users with multiple accounts).

The feature set they used made use of part-of-speech taggers and function words in English,
Russian and German. They also used frequencies of character n-grams, punctuation, special
characters and leetspeak “words”. The JStylo system [MAC+12] was used for feature extraction.
To evaluate their corpus and feature set (single account attribution with ground truth within a
single forum), they used an SVM classifier and ten-fold cross-validation, achieving up to 72%
accuracy with 82 users on BlackhatWorld, and 44.4% accuracy over 1459 users on AntiChat.

For the multiple account detection, they start with a hold-one-out methodology, training with
all other users than the one being evaluated, then test with the held out user’s data to see which
other user label the classifier assigns to them. This is repeated for every user and pairs of users
whose combined pairwise probabilities were above some threshold are considered to belong to
the same person. Because their forum corpus does not provide complete ground truth, they first
evaluated using an independent dataset of blog authors that maintained multiple blogs, taken from
Narayanan et al. [NPG+12], filtered by single-author blogs with a minimum of 4,500 words and
finally restricted to 100 authors that wrote 200 blogs. On this dataset, they were able to achieve a
precision of 90% and recall of 92%. Applying this method to verified multiple identities across
different forums (Carders and L33tCrew), using the cross-referenced dataset outlined above,
they were able to achieve 85% precision and 82% recall with 179 users. Next, they attempted
to identify multiple accounts within the Carders forum only, using the private messages of 221
users that had written at least 4,500 words as their corpus. Verification was a manual step,
involving comparing ICQ numbers, signatures, products traded, payment details, and contents of
messages, as well as information derived from the data dumps, such as user creation date. This
manual verification was carried out for 21 pairs that were assigned the highest probability by the
classifier as being duplicate accounts. The categories assigned as a result of the analysis were:
true, probably true, unclear, probably false, and false. Of the 21, ten were true, three were
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probably true, two were unclear, three were probably false and six were false.

4.2 Plagiarism Detection

Detecting cases of plagiarism is of considerable importance in teaching, and due to the links
between academic research and university teaching, it is no surprise that papers on plagiarism
detection are common. Clough [Clo03] provides a good overview of plagiarism detection tech-
niques, looking at both the software and natural language cases. Authorship attribution is dis-
cussed, but only insofar as it not being considered plagiarism detection. Later in the same paper,
however, authorship attribution is given as an example of the approach taken by some authors
towards plagiarism detection, but no papers are referenced in relation to this.

Plagiarism detection and authorship attribution are closely related, but distinct activities.
With authorship attribution the aim is to take an artifact of unknown authorship and identify
if it appears to have been written by an author from among a known set of authors. With plagia-
rism detection, the artifact being analyzed already has a named author and the aim is to decide
if they actually wrote it or its content or ideas were copied from some other artifact that the
purported author did not write. There are two main divisions in plagiarism detection: external
plagiarism detection [Sta09] and intrinsic plagiarism detection [ZES06]. The external method
attempts to identify a source document that was plagiarized, whereas intrinsic methods look for
indicators of plagiarism without identifying the source. External plagiarism detection is a some-
what simpler problem because it typically involves searching for similar, or identical, content
among some database of existing content and determining if the degree of similarity is above
some threshold. The content may be broken down into chunks (by a sliding window [Sta09],
paragraph, sentence [WC98], word [WC98, LMD01] or character n-grams [GHM05, Sta09]), or
preprocessed in other ways but essentially most automated external plagiarism detection systems
use some form of similarity measure between the content of different documents. This can be a
weakness, as an astute individual simply has to change their plagiarized content sufficiently to
fall below the threshold in order to avoid detection. One could argue that the effort required to
modify the content sufficiently could act as a deterrent, as could simply making students aware
of the existence of such automated tools; however, following this line of reasoning one could
simply pretend to have such a capability. Intrinsic plagiarism detection has the advantage that
no database or other source of content is required, as it focuses only on the document being
analyzed. This drastically reduces performance and storage overheads, and does not require the
corpus to be digitized, as well as resulting in a more flexible system that can also detect unau-
thorized collaborative efforts [Clo03]. The downside is the task is somewhat more complex and
less tangible; it is no longer as clear what to search for and in some respects the task is the polar
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opposite of external plagiarism detection as this time it is dissimilarities that are sought, rather
than similarities.

In contrast to plagiarism detection, authorship attribution has to consider aspects that tran-
scend the content of individual artifacts and are common or peculiar to the author themselves
and therefore must be present in multiple unrelated documents. Two artifacts by the same au-
thor may vary considerably in content, and it is the task of authorship attribution to discover
the common features inherent to authors that distinguish them from one another. Despite these
differences, there are enough similarities in aims and methods to merit a discussion of plagiarism
detection in the context of authorship attribution. Indeed, there are papers on intrinsic plagiarism
detection that bridge the gap between it and authorship attribution by examining aspects of style
rather than content, so simplistic rewriting or synonym replacement strategies that aim to defeat
content matching would still be detected. These papers will be the focus of this section.

4.2.1 Intrinsic Plagiarism Detection

Eissen and Stein [ZES06] were the first to investigate intrinsic plagiarism detection, which they
defined as looking for sections of a written document that may have been plagiarized, without
necessarily identifying the source document. Their approach was to look for passages in the
document that are written in a different style. This represents a stronger form of plagiarism
detection than external plagiarism detection strategies as it would still work when the source
document is unknown, as well as when it is known and the content has been copied verbatim.
Such instances are fairly trivial for a human to detect, as the difference between a professionally
edited, proof-read, published work and an assignment that has been through none of these quality
assurance steps is usually glaringly obvious; however, automating a process that is trivial for a
human, particularly one involving natural language, is far from simple.

Their paper outlines that the method they used was to calculate the “average word frequency
class” in different passages of the text and look for divergences from the average. This average
word frequency class for a corpus of text C and a word w ∈ C, is defined as log2((frequency
of most common word)/(frequency of w)) rounded down to the nearest integer (floor function).
Therefore the more common a word is, the lower its frequency class. They claim that the average
word frequency class “tells us something about style complexity and the size of an author’s
vocabulary—both of which are highly individual characteristics” [ZES06]. Furthermore, this
method produces just a single metric as it is based on the average frequency class and does not
code the specific words themselves. Such features as these would be insufficient for authorship
analysis as the metric would probably vary too much between documents by the same author and
may be dependent on the topic of the writing as well as style, but these are of no concern when
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detecting differences within a single document.

A number of other papers have looked at intrinsic plagiarism detection. Stamatatos [Sta09]
applied a distance metric based on the profile of character n-grams (3-grams were used) in pas-
sages of the text derived from a “sliding window” over the document and the profile of the entire
document. Using a sliding window creates a continuous function and ensures there are no prob-
lems associated with boundary placing, as is the case when using discrete chunks. This was an
adapted technique from an authorship attribution paper by the same author [Sta06]. The passages
for which the distance metric peaked are the passages most likely to represent someone else’s
writing. Oberreuter et al. [OLRV11] also took the approach of a sliding window, this time using
word frequency as the metric. Their idea was to count the occurrences of each word in the entire
document and in the current window, then look for cases where there is a lower than average
difference between the two. This identifies passages of text containing words that do not appear
or are uncommon in any other passages, which they postulate is indicative of a change in style
and hence author, as two authors will have different vocabularies they draw on when writing.

4.2.2 Authorship Verification

Stein et al. [SLP11] highlight the link between intrinsic plagiarism detection and authorship
“verification”, which is a one-class form of authorship attribution where a specific author is
believed to have authored a document and the classifier must decide whether the document was
indeed authored by that person or not. They present a table of stylometric techniques shown
to have “discriminatory power” for these problems and use a number of lexical and syntactic
features for their study, which applies Bayes’ theorem and the unmasking approach proposed by
Koppel and Schler [KS04], and described in Section 4.1.3.

4.3 Authorship Attribution of Software11

Donald Knuth and Edsger Dijkstra were well known for considering computer programming an
aesthetic discipline, with Knuth’s book series titled The Art of Computer Programming [Knu73]
and Dijkstra’s A Short Introduction to the Art of Programming [Dij71]. As a human endeav-
our, there will always be considerable variation in how the task of writing a program to solve a
problem is undertaken, and programming languages, indeed even the very architecture of com-
puters, enables and even encourages this variation. With this variation comes choice, then, both

11Some of the text in this section has been partially adapted from a paper written for a class project (CS858), by
Iyer and McKnight.
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conscious and unconscious, and preference in how to write code, influenced by education, expe-
rience and personality. As creatures of habit, we tend to follow familiar paths rather than striking
off into the unknown, even if the familiar path is not the best or shortest route to our destination;
changing these habits is a relatively slow process. Considering this, it is likely, inevitable even,
that programmers will be identifiable to some degree by the way their code is written, presented,
and the methods they employ to solve the problem at hand.

Hayes and Offutt [HO10] examined the consistent programmer hypothesis, which states that
a programmer’s coding style (or voice—a term drawn from natural language writing style) is
consistent over time. The truth of this statement is important for any research examining author
attribution. If it is false, and programmers are inconsistent and continually changing their style,
then identifying them from their source code would be impossible. They based their initial asser-
tion on anecdotal evidence from colleagues and acquaintances that they were able to recognize
first notes, then typed notes and finally code written by a colleague that they had worked with for
some years. The goals of their study were to show that, due to consistency of style, individual
programmers would be susceptible to introducing the same bugs into their code so testing of a
component could be more directed depending on the contributor(s). They focused primarily on
frequency analysis of operators, operands, syntactical features and, uniquely, warnings raised by
the lint static analysis tool. They found that the number of lint warnings was a distinguishing
factor, but the testability of code was not correlated to the individual. Testability was defined
through three measures that were designed to represent the probability that defects would be
detected during testing. For our purposes, the lack of an observed correlation between program-
mer and the testability of their code is not significant, however the correlation between syntactic
feature frequency and author is.

4.3.1 Source Code Attribution

As mentioned in Chapter 1, the earliest work attempting to analyze the style of programmers did
so with the intention of assessing, or grading, a program based on whether it followed accepted
style guidelines and best practice [Mee83, BM85]. It was assumed the likely users of such tools
would be academics grading students’ assignments, with the automated analysis serving as an
objective marking aid for that portion of the marks, to relieve the instructor (or teaching assis-
tant) from this tedious task so they could focus on the behaviour and functionality of the program
instead. Oman and Cook [OC89] were the first to link program style with programmer identity,
with the intended application being plagiarism detection and copyright infringement. They dis-
regarded metrics such as complexity analysis, based on Berghel and Sallach’s work [BS84] that
had concluded these were not useful in detecting cases of plagiarism. Instead, they chose to
use style “markers” in Pascal, aspects that were most under the control of the author and less
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rigorously defined in the language, allowing for greater freedom of expression. Such markers
were the layout of the code and use of indentation and whitespace, comments (frequency, type,
length) and naming conventions for variables, procedures/functions, constants. They also took
the novel approach of first conducting a user study in which they evaluated the ability of humans
to distinguish between a small set of programs with the same functionality, written by three dif-
ferent authors, taken from a corpus of computer science programming text books. Each text book
contained implementations of several common algorithms, such as bubble sort, quick sort and
tree traversal. They showed these samples to eleven experienced programmers and tasked them
with grouping the implementations by author. In all but one case, the example code was correctly
grouped by the humans, lending credence to their hypothesis that style is consistent and individ-
ualistic. Their automated style analysis was carried out on the same set of example algorithms
from the text books and consisted of a vector of Boolean values, which they then used to calculate
the inconsistency of each book with respect to its feature vector and performed cluster analysis
to try and determine which features were connected to author and which to behaviour. After this,
they applied the style checker to industrial code, carrying out a similar cluster analysis, finding a
consistent level of similarity between code written by the same organization.

This work predated that of Spafford [Spa88], discussed in Section 3.2, which was primarily
an analysis of the behaviour of the Morris worm, with the authorship analysis being a result of
manual review, rather than the output from an automated tool. Spafford and Weeber followed this
earlier report up, however, with a position paper that discussed potential automated authorship
attribution methods [SW93], coining the term “software forensics” to describe this approach.
Unlike Oman and Cook [OC89], Spafford and Weeber also considered the analysis of binary
executables as well as source code as part of software forensics, enabling the technique to be
applied in situations where the source code was not available, such as for malware samples seen
“in the wild”. This was the first occurrence in the literature of discussing authorship attribution
with respect to executable code, which, given the author’s earlier experiences in dealing with the
aftermath of the Morris Worm, is not surprising. The authors go on to describe what they term as
“code clichés”, idiosyncratic snippets that are used habitually by a programmer and can be used
to build a profile of and identify them. They compared this to handwriting analysis (“graphol-
ogy”) where features of handwriting are sought that vary significantly over the population as
a whole, but tend to be consistent or vary little for a particular writer. In addition to these id-
iosyncratic “clichés”, statistical features were also mentioned, whose identifying characteristics
would become apparent only after examining a large corpus of the author’s source code. Such
metrics as code complexity, program size, function size and comment frequency were given as
examples. With executable code, the researchers pointed out that compilers often destroy many
potentially identifying features, particularly whitespace and comments, which are never retained,
and identifier names, if debug symbols are not included with the executable file. In addition, the
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paper mentions some alternative methods of achieving the same end result are mapped to the
same structure during compiler optimization, such as different looping constructs, the choice of
which may say much about the programmer’s style. The degree to which this mapping occurs
and the aggression with which the compiler carries it out will depend in large part on the level of
optimization it is invoked with. They did offer some suggestions of features that would survive
the compilation process, however. These were:

• Choice of data structure: It should be possible to derive from the executable whether the
programmer chose to use a linked list or hash table, for example.

• Compiler and system information: The executable file produced by the compiler should
contain indications of which compiler, toolchain and operating system was used by the
programmer, and the original source language it was written in.

• Choice of system and library calls: Programmers may prefer certain libraries or particu-
lar system functions.

• Bugs and vulnerabilities

In terms of source code analysis, the suggested features that could be extracted were:

• Choice of language

• Formatting: Whitespace, indentation, placing of braces, etc.

• Special features: Use of compiler-specific directives.

• Comment styles: Different ways of presenting comments, frequency, verbosity, etc.

• Variable names: A variety of preferences and best practices for naming schemes exist.

• Spelling and grammar: Particularly mistakes.

• Language features: Most languages provide a plethora of ways to achieve the same end
result.

• Scoping: Preference for global vs. local for instance.

• Execution path: Particularly unreachable code, such as debugging statements remaining
after the development phase.

• Bugs
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• Metrics: Cyclomatic complexity and other metrics that can be seen as equivalent to such
measures as vocabulary richness or readability scores in natural language.

• Clichés: Referring to idioms; i.e., small, but reusable patterns for solving simple problems
of the sort one encounters commonly (so a more elementary level than a design pattern).

The problems they foresaw with attribution were the amount of code available to analyze, whe-
ther the programmer had copied blocks of their code from elsewhere, possibly written by some-
one else, and collaborative coding, where different parts of their program had been written by
different authors, especially if contained in the same file. Nowadays it is very common for pro-
grammers to copy large amounts of code from online forums, such as StackOverflow,12 with a
minimum of editing. Additionally, much code is written, revised and edited at multiple times by
multiple authors. Over time there is naturally going to be a decline in coherent style exhibited
by a program that is the work of a team of contributors. Modern version control systems, such
as Git, in conjunction with the web enable easy and seamless team coding, encouraging greater
collaboration.

Sallis, Aakjaer and MacDonell [SAM96] also wrote a position paper on this topic, touching
on many of the same points as Spafford and Weeber, but with the following additional sugges-
tions for features: control flow graph, data dependency, nesting depth, and complexity measures.
Their conclusions were that a combination of different features would be necessary for robust
identification and the challenge would be to obtain sufficient source material to perform an ad-
equate analysis. A later paper by Gray, MacDonell and Sallis [GMS97] presents these same
ideas, along with stating their intention to write a system for performing authorship attribution of
software and summarizing the analyses carried out by Spafford on the Morris Worm [Spa88] and
Longstaff and Schultz [LS93] on the WANK and OILZ worms, which like Spafford’s analysis,
also included manual authorship profiling.

Krsul and Spafford were the first to attempt attribution experimentally [KS97], taking 88
programs written by a total of 29 participants. They dismissed using spelling errors as a fea-
ture as there were too many non-dictionary words that were flagged as spelling errors by the
spellchecker they used and it was too difficult to differentiate genuine spelling mistakes from
the intentional use of non-existent words. The features they used were largely statistical in na-
ture and spanned categories including whitespace, indentation, program and function structure,
naming conventions, comments, scope, function signature, branching and code complexity. For
classification methods, they tried discriminant analysis, neural network and the likelihood (Gaus-
sian) classifier provided by software that had been developed at MIT’s Lincoln Laboratory. For
discriminant analysis, they were able to achieve a precision of 73%, the results for the neural

12https://www.stackoverflow.com
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network (a multi-layer perceptron) were given in terms of error rate, and the best result had an
error rate of 2% when using 4-fold cross validation, after linear discriminant analysis normal-
ization of the feature vector and reducing the dimensionality of the feature vectors to 15 (using
a forward and backward search to find the optimal features to include). The Gaussian classifier
was able to classify with 100% precision using just six features. They concluded that aspects
of programming style are consistent, however they acknowledged their sample size was limited
and more experiments would be required with a larger number of classes. They were also of
the opinion that style changes over time therefore the training data would need to be chosen to
correlate temporally with the data being evaluated.

Kilgour et al. [KGSM98] argued that features based on qualitative values that were assigned
through manual examination by a human judge could complement more quantitative features
calculated through automated means. Their reasoning for this line of argument was that some
aspects of style are difficult to quantify and extract through mechanical means, but require some
degree of intuition by a subjective judge. If the same judge examines all the artifacts used in the
training and evaluation phases these judgments should be consistent. The obvious issue with this
sort of approach is scalability.

MacDonell, Gray and Sallis [MGS99] investigate using case-based reasoning (CBR), neu-
ral networks and multiple discriminant analysis along with a framework they had written called
IDENTIFIED, for the extraction of features and classification with the ability to configure which
learning algorithm is used. Their study was rather small, involving just seven authors, but gave
promising results for CBR. Case-based reasoning is a form of memory-based learning, where
some form of distance metric is used to find past examples from the training set that are most
similar to the example to be classified, and extrapolating the answer based on these past exam-
ples. Formulated in this way, it can be seen as very similar to k-NN, however with CBR there is
an attempt to perform extrapolation based on the current example’s position in the feature space
relative to its nearest neighbours.

While most studies investigating this problem had focused on the C or C++ languages, Ding
and Samadzadeh [DS04] decided to determine if there were any notable differences between
languages, by looking at Java instead. As Java is compiled to intermediate bytecode, rather than
machine code, it is far easier to decompile Java and extract meaningful source code. In gen-
eral, they did not find any major differences in the approach or performance of their classifier
with Java, other than some features being necessarily different due to using different keywords
and syntax. This result mirrors the findings of natural language authorship analysis where the
technique and approach is broadly applicable not only to English but also other languages, and
there is no reason to believe one language would be far easier or more difficult to analyze sty-
lometrically or perform attribution with than another. In theory, however, if we view style as a
manifestation of choice between two or more equally valid options, then it follows that the more
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options there are, i.e. the more choices one has in order to produce some desired effect, the more
style should be apparent. In natural language, there are far more ways to express oneself and
deliver the meaning of a sentence than in computer programming languages, which are more
restricted. It follows, therefore, that authorship attribution should be easier for natural language
than computer code. The differences between computer languages is far closer and in general
they all follow strict syntactical rules, but there is some definite variance. JavaScript, for exam-
ple has a more relaxed syntax than Python, so it should be the case that it is easier to identify
JavaScript programmers from samples of their code than Python programmers. C++ is known
for supporting many programming paradigms, either natively or through library support, whereas
C is a procedural language only.

Kothari, Shevertalov and Stehle [KSSM07] took a novel approach to feature selection by
utilizing entropy both at the population level and the individual programmer level. Most feature
selection criteria only take into account the population level discriminatory value of a feature,
but by also considering its information entropy at the individual level, they were able to tailor the
feature set programmer-by-programmer. This worked by selecting features that had low entropy
individually, meaning it was hard to distinguish between files that developer had written based
on the metric, indicating the feature’s value was predictable among their files, and high entropy
collectively, meaning the values the feature assumed had high variance and low predictability
(without the class label being taken into account). Based on this evaluation, each programmer
is assigned a profile containing the best k out of n features. When performing classification,
all potential n feature values are extracted and matched to the programmers’ profiles, with the
best match being the assigned class. This approach is very similar to that taken by Iqbal et
al. [IHFD08] for natural language authorship attribution with their “write-prints” analysis of
emails, although this paper was published first. Kothari et al. also proposed using character n-
grams, a long-held strongly identifying feature used in authorship attribution of natural language.
They used n = 4, which interestingly also tends to produce the best results in natural language
applications. In their experiments, despite using a relatively small set of authors, they took a
novel approach by only considering developers that had written code across multiple projects
and performing holdout evaluation where an entire project was held out. In previous studies,
typically code was gathered without considering projects, repositories or software products, and
for evaluation purposes either k-fold cross validation was used or the data was split without taking
different projects into account. As mentioned in Section 4.1.3, Frantzeskou et al. [FMSG08]
also utilized n-grams in their SCAP tool, with the exception being theirs were byte-level rather
than strictly character-level, but otherwise it is the same technique. Frantzeskou et al. followed
up their study with an investigation into what high-level features their SCAP tool was picking
out in two languages, Java and Common Lisp, and which of these high-level features were most
important in assigning authorship. In order to determine the most important features, they applied
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an unmasking approach similar to Koppel and Schler [KS04], described in Section 4.2.2, in
which they iteratively removed the high-level features to compare the effect on classification
performance. They discovered that comments, layout and naming were the most relevant, which
is perhaps not surprising given that these aspects are most under the programmer’s control.

Caliskan-Islam et al. [CIHL+15] investigated a vast battery of features in their 2015 paper,
referring to the practice as “code stylometry” rather than software forensics. In what could be
regarded as a watershed moment in source code authorship attribution, they were able to achieve
very high levels of accuracy (over 90%) even when considering a huge dataset containing code
from 1,600 authors and limited file size. Their unique approach to the problem involved parsing
an Abstract Syntax Tree (AST) representation of the code, in addition to the typical flat file anal-
ysis. Their initial feature set contained some 120,000 dimensions, the majority of which were the
result of dynamic features that included combinations of elements. The features considered fell
into lexical, layout and syntactic categories, with the lexical and syntactic categories account-
ing for the majority. The size of the lexical category was in large part due to a bag-of-words
feature which calculated the tf-idf for every single word seen in the corpus, including in com-
ments, names of variables, functions, structs, etc. and string literals; this feature alone accounted
for 55,000 dimensions. The remainder of the lexical features consisted of standard statistical
measures at the comment, line, function and file level. Layout features represented the smallest
category, with standard measures of such aspects as indentation and whitespace. Finally, the
syntactic category consisted of the AST-based features, representing over 58,000 dimensions.
45,000 dimensions in this category were made up of the tf-idf calculated for all possible AST
node bigrams, which the authors reported were the most identifying features. All their experi-
ments were run with 10-fold cross validation, using the random forest classifier [Bre01]. The
random forest algorithm is an ensemble classifier, meaning it is made up of multiple simpler
classifiers, who each provide their prediction and “vote” on the class. In this case, the ensemble
is made up of random decision trees. The class that received the most votes is taken to be the
overall prediction. Random Forests are discussed in more detail in Section 5.2.4. Due to the ex-
treme dimensionality of their feature vectors, they performed feature reduction using information
gain, to prevent the decision trees from becoming too large and reducing the effect of overfitting.
Information gain is a univariate measure of a variable’s influence by taking the information en-
tropy of the distribution of classes in the dataset, then deducting the entropy of the classes given
the values of the feature, providing the extent with which the feature reduces entropy, or how
much information is gained about the class by considering the feature. Using information gain,
they were able to reduce the dimensions to a “few hundred” (the exact amount was not given)
without a loss in classification accuracy, but with a far shorter response time. To test the general-
ity of the information gain feature selection, they tried it on two distinct subsets of their training
data and reported that the features selected and their ordering were more or less consistent. The
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data were obtained from the Google Code Jam13 (GCJ) programming competition stats site,14

between 2008 and 2014. Their main experiment was conducted with 250 authors from the 2014
competition that had submitted solutions in C/C++, that had all submitted solutions to the same
nine problems. This experiment, using the smaller feature set, had a precision of 95.08%. The
experiment was repeated with different combinations of years and problems, producing compa-
rable results. In addition, increasing numbers of authors were considered by including previous
years’ competitors and solutions, up to 1,600 in total. This largest class category was still able to
predict the true class with 92.83% accuracy. They also discussed the open-world situation where
the true author may not be known, the two-class problem and the binary classification problem
(author verification), which often arises in cases of plagiarism detection. For possible defences,
they discussed using obfuscation and ran experiments with two off-the-shelf obfuscators against
a 20-programmer subset of their main dataset. They found one obfuscator, Stunnix,15 which
performs basic obfuscation, barely reduced the accuracy at all, while the other, Tigress,16 which
performs a more fundamental obfuscation at the cost of readability and performance, reduced
the accuracy significantly, from 95.91% to 67.22%. Overall, this paper offers a comprehensive
treatment of source code authorship attribution, virtually exhausting all possible features rather
than focusing on just one category and experimenting with a huge corpus of code. We conclude
from their results that n-gram based features once again produce strong classification accuracies
(in this case the items were AST nodes). It is possible that higher-order n-grams may produce
even stronger results, however in this case as the number of distinct node types is far greater than
the number of alphabetic characters, the dimensionality would grow at an unfeasible rate.

One potential pitfall with this study is the bias introduced by examining only code submitted
for programming competitions, which bears little similarity with code that is written for real
software, the likely target for actual authorship attribution. While it may seem superficially
that this task is harder, as much of the behaviour-specific content is the same, the reality of
competitive coding involves a significant proportion of boilerplate code that is typically copied
from one submission to another. For example, each online competition will have a standard for
how the input data is presented and how the output should be formatted and returned. This leads
competitors to reuse the same lines of code to both read and process input data and construct and
return output data, giving them more time to focus on the actual problem. For programs averaging
just 70 lines, this reproduced code could represent a significant fraction of those lines. Still, the
results are a great deal more impressive than any previous study on source code stylometry, due in
large part to the use of the AST-based features. It would be informative to experiment with such

13https://code.google.com/codejam/
14https://www.go-hero.net/jam/
15http://stunnix.com/prod/cxxo/
16http://tigress.cs.arizona.edu
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features on real code, sourced from publicly available repositories, to evaluate the performance
“in the wild”.

In a recent paper, Dauber et al. [DCHG17] looked at attribution of incomplete code snip-
pets taken from GitHub. The samples were derived by using the git blame command on the
files contained within the repositories in their corpus. They gathered their corpus by taking 14
seed authors and enumerating the collaborators’ data associated with those user accounts, which
is returned by the GitHub API, before taking the C++ repositories those one-hop collaborators
had contributed to. This initial corpus consisted of 1,649 repositories and 1,178 programmers,
but was eventually reduced to 106 programmers after the following filters had been applied:
repositories of insufficient size, user accounts representing more than one individual and at least
150 samples of C++ code per author (with a minimum of one line of actual code per sample,
discounting whitespace and comments). The samples were grouped by author and line num-
ber (rather than by author and commit), so consecutive lines blamed to the same author were
grouped into one sample, regardless of the commits. In their experiments, they worked with
variously sized subsets, including a smaller set of 15 programmers with a greater than average
number of samples (385) and a larger set of 96 programmers with fewer samples (90) and a set
of 90 programmers with variable numbers of samples. The feature set they applied was that used
by Caliskan-Islam et al. [CIHL+15], described above. They pointed out that feature reduction
using information gain was not possible, however. This was because the feature vectors on the
whole were far more sparse when extracted from these samples than from entire files, rendering
the information gain calculation unreliable. Therefore, their feature set had a very high dimen-
sionality (62,561 for the 15-programmer set and 451,368 for the 106-programmer set). When
combined with a forest consisting of 500 trees, each experiment with the 106-programmer set
took 20 hours on a 32-core 240 GB RAM machine, which is considerably slower than Caliskan-
Islam et al. experienced with their reduced feature set and 300-tree forest, where an experiment
involving 1,600 programmers and 32 GB RAM took less than one hour. The authors investigated
two main use cases, and several additional use cases. Their main use cases were single sample
attribution and multiple sample attribution. Single sample attribution was, as its name implies,
classifying a single sample consisting of an average of 4.9 lines of code per sample (for training,
there were of course still multiple samples). With multiple sample attribution, they took an ag-
gregation approach to the problem, taking all the samples known to be authored by the same (as
yet, unlabelled) user and aggregating the confidences returned by the classifier for each sample
to reach an overall classification for the entire sample set. This approach was also proposed by
Overdorf and Greenstadt [OG16] for application to cross-domain authorship attribution of short
texts. They compared the results of using this technique with another that combines the resulting
feature vectors, and noted that the results were better overall when applying this form of stacked
ensemble, than combining the feature vectors.
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For the single sample attribution case, with 106 programmers they were able to achieve an
accuracy of 73% using a 500-tree forest. For the multiple sample case, they began with a 15-
programmer set and experimented with combinations of using aggregated, averaged and indi-
vidual samples during training and evaluation. The results of these experiments suggested that
limited merging of training samples by averaging their feature vectors and aggregating the eval-
uation of individual samples gave the best results, therefore this approach was taken with later
experiments using larger numbers of programmers. With the 106-programmer set, when aggre-
gating results across 15 samples and using 500-tree forests, they were able to achieve an accuracy
of 99%. One final experiment they ran which has significance for our research is the effect cor-
ruption in the dataset has on the performance of the classifier. This was carried out by taking
the GCJ dataset as used by Caliskan-Islam et al. [CIHL+15, CYD+15], which is known to be of
high purity with respect to its ground truth, and swapping individual files’ labels in the training
set. The results of this experiment showed that increasing proportions of corrupt data caused
decreasing accuracies, but without a strong drop-off. This led the researchers to conclude:

“It would take serious systemic ground truth problems to cause extreme classification prob-
lems.”

4.3.2 Executable Code Attribution

Rosenblum et al. [RZM11] were able to demonstrate that aspects of programmer style are pre-
served through the compilation process. In fact, they were able to identify authors with a high
degree of accuracy (81% from 10 classes, falling to 51% from 191). The technique they em-
ployed made use of ParseAPI [Pro11], which is able to produce instructions and control flow
graph (CFG) representations of an executable. They then extracted a large feature set from the
code at varying levels of abstraction, which they hypothesized would contain the stylistic rem-
nants of the source code. This feature set consisted of n-grams, idioms, graphlets, supergraphlets
and call graphlets. Their n-grams are based on 3- and 4-gram bytes found in the binary file. Id-
ioms are essentially n-grams of assembly instructions, with an n of 1, 2 or 3. Graphlets are
trigrams of CFG nodes, while supergraphlets are trigrams of nodes in a collapsed CFG, where
the collapsing algorithm merges each node with a random neighbour. Call graphlets are likewise
trigrams of nodes, taken from a reduced representation of the CFG, where only nodes consist-
ing of a call instruction are retained. The edges in this reduced CFG represent an entire path of
vertices and edges in the original CFG. The combination of these feature types gave them a total
of over 609,000 features. For their corpora, they chose to use Google Code Jam competition en-
trants17 from 2009 and 2010 who used C/C++ and submitted at least eight solutions and student

17This appears to have been the first time GCJ data were used in authorship attribution research.
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assignments from an operating systems course. The GCJ corpus consisted of 284 authors from
2009 and 2010 (93 and 191, respectively) with a total of 2,581 files while the student corpus con-
sisted of 32 authors and 203 files. Using a measure of mutual information to rank their features,
they then tested various combinations of the highly ranked features with ten-fold cross-validation
to select the top 1,900 features for the GCJ corpus and the top 1,700 for the student corpus. For
classification, they used SVM, again with ten-fold cross-validation achieving an average accu-
racy of 81% over 20 separate experiments with 10 randomly chosen programmers. This accuracy
fell to 51% from the full set of 191 programmers from the GCJ 2010 data. They were also able
to place the correct author in the top five predictions 95% of the time for 20 authors, and 81%
for 100 authors.18 Their work was able to answer in the positive the question of whether stylistic
features are preserved and if they exist in large enough quantities to identify authors. The study
was unable to specify what exactly those features represented, however, and how they relate to
high-level source code; it answered the if and how, but not the why.

Alrabaee et al. [ASP+14] improved on the work of Rosenblum et al., taking an “onion”
model approach to the problem, with different layers of filters and feature set extractors. Their
filtering layer, referred to as the stuttering layer first removes those parts of the binaries that
may be unique to a given compiled program but are not indicative of programmer style, such
as unique IDs or names that a compiler may generate internally during the compilation process.
Then it identifies the parts that represent library code using a feature of IDA Pro19, a powerful
commercial debugging platform, hex editor and decompiler. Once the binary has been filtered
in this way, they perform pattern matching in their code analysis layer, which attempts to match
low-level instruction patterns to high-level programming constructs using a set of templates and
a form of fuzzy matching. This layer shares many of the challenges a decompiler faces when
reversing a binary program and the relevance of taking this approach as opposed to using a
purposeful decompiler is not clear. The final layer in their onion model performs register flow
analysis. This novel approach to binary program analysis creates a register flow graph to chart
the use of registers in the program as a way of fingerprinting the data flow. Using these techniques
they were able to reduce the number of false positives seen over two, four and six authors from
approximately 13–65% to 3–12% in comparison with Rosenblum et al. [RZM11].

Caliskan-Islam et al. [CYD+15] took a hybrid approach to the problem of identifying the
authors of program binaries, combining the feature set used by Rosenblum et al. [RZM11] with
a subset of the features used in their previous paper on source code stylometry [CIHL+15]. More
specifically, they made use of assembly code n-grams, and control flow graph block unigrams
and bigrams, as well as word unigrams, library and internal function names and AST-based fea-
tures, such as node type unigrams. The assembly code and control flow graph features were

18Note this “top-n” test is often used in identification and attribution research, where false positives are common.
19https://www.hex-rays.com/products/ida/

40

https://www.hex-rays.com/products/ida/


extracted from disassembled representations of the executable files produced by the Netwide20

and Radare221 disassemblers. The word unigram and function name features were extracted from
decompiled versions of the binaries, using IDA Pro and the Hex-Rays Decompiler plugin.22 The
AST-based features were extracted after the decompiled source code had been parsed by Jo-
ern23 [YGAR14]. For their main dataset, they once again used the Google Code Jam entries, this
time selecting 100 programmers that each submitted C++ solutions to the same nine problems,
providing a very controlled, consistent dataset, in order to reduce the influence that functionality
had on the outcome and try to isolate style. Their unrefined feature set had very large dimen-
sionality with 750,000 features and was also mostly sparse. As they had chosen to use random
forest classifiers, the sparseness of the feature vectors were a concern, as only a random subset
of the features are compared at each node, and with such a sparse set of feature values it was
probable that a large proportion of the selected features would have 0 values. To address this
concern, they used information gain for feature selection, much as with their earlier paper on
source code stylometry [CIHL+15], to reduce the dimensionality to less than 2,000. In addition
to speed and memory gains with this feature reduction, they also saw a significant increase in suc-
cessful classifications, from 30% with the unrefined feature set to 90% after reduction. As with
their earlier work [CIHL+15], they trained a 500-tree forest with log(M) + 1 attributes selected
at each node (where M refers to the total number of attributes), and evaluated with nine-fold
cross-validation. This was instead of the more typical

√
M + 1 attributes selected at each node.

The cross-validation was stratified in such a way that the training set contained the same eight
problems for each author, and each author was present, effectively becoming a hold-one-out test.
The accuracy of this cross-validation was 89.8% for the 100-programmer set with the reduced
feature set. When this same feature set was used with a different, non-overlapping, set of 100
programmers, the accuracy was 92.8%, which demonstrates the feature set is applicable beyond
the original sample and may be representative of style in general. When increasing the number
of authors from 100 to 600, a modest decrease in accuracy was observed, to 78.1%. Experiments
were also performed with compiler optimizations at levels 1, 2 and 3 and 100 programmers, re-
sulting in a decrease in accuracy to 85.7% with level 3 optimization, while fully stripping symbol
information reduced accuracy “by 23%” (so presumably from 89.8% to approximately 66.8%).
Using Obfuscator-LLVM [JRWM15] reduced the accuracy by only 3.6%. In addition to their ex-
periments with the GCJ dataset, the authors also wanted to approach the problem of attribution
“in the wild”, using repositories found on GitHub. To this end, they selected C/C++ repositories
that only a single user had committed to, with at least five stars, a minimum of 200 lines of
code and had not been forked from another repository. Furthermore, they filtered repositories

20http://www.nasm.us/doc/nasmdoca.html
21http://www.radare.org/
22https://www.hex-rays.com/index.shtml
23http://mlsec.org/joern/
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with some common names (“linux”, “kernel”, “osx”, “gcc”, “llvm” or “next”) or the comment
“signed-off” (as this was taken as an indicator of someone else’s work). As a final step, they
manually checked each remaining repository to ensure it appeared to be the work of the owner,
reducing the dataset to 161 authors and 439 repositories. Despite all these steps to clean the data,
they still had concerns about noise, noting:

“This data presents difficulties, particularly noise in ground truth because of library and
code reuse.”

In their experiments, they selected 50 programmers that had 6–15 files, to ensure a more even
class distribution, and reported an accuracy of 60.1%.

4.4 Defences Against Authorship Attribution

As can be seen from the previous sections’ discussions, there have been a great deal of papers
published on performing authorship attribution, plagiarism detection and authorship verification.
In contrast, very little research has been dedicated to critically evaluating the techniques pre-
sented to establish their feasibility in realistic settings, nor to how robust they are in the face of
an informed adversary. While performing identification is possibly a more natural and intuitive
action to take, it is still important to consider alternative perspectives and test assumptions made,
as this will lead to a greater understanding of the field and its limitations, and may help to iden-
tify flaws. Natural language authorship attribution has been used in legal cases, so it is crucial
to subject it to tests where the desired outcome is negative, rather than positive, to avoid a bias
in the literature. Furthermore, as discussed in Chapter 2, there is a real risk that these techniques
could be used for nefarious purposes and so offering a defence for those that might be the targets
of such operations is also important.

Kacmarcik and Gamon [KG06] were the first to consider how robust known stylometry tech-
niques were to adversarial modifications. Using the federalist papers as their corpus, they decided
to select the features to modify independently of selecting the features to use for classification.
The features for both modifying and classifying with were all restricted to be frequency-based,
however. For the modification list, they first calculated the relative frequencies of all 8,674 words
found in the papers. Then a novel feature selection process using decision trees was applied to
establish which words to focus on. This process began by generating a decision tree from all the
features (note that this does not mean the decision tree with have a depth equal to the size of the
feature set; decision tree generation will halt once classification accuracy cannot be improved any
further, or all instances have been classified, whichever comes first), then extracting the word at
the root node along with its threshold value, taking this to be the most influential word. Decision
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trees are normally generated with a greedy algorithm that chooses as the root node the feature
and threshold value that produces subsets with the highest information gain, or purity measure
relative to the parent set. This process was then repeated iteratively, removing the root node word
each time to force the decision tree to select a new feature for the root node. This iteration contin-
ued until the classification accuracy dropped below the level of a random guess, producing a list
of 2,477 ranked words. SVM classifiers were trained on feature sets of varying dimensions (from
three to 70), taken from various other federalist papers studies [MW63, TSH96, HF95, BS98],
assigning all but paper 55 to Madison (in agreement with the original studies and others on this
problem). Then, taking the top ten ranked words according to their feature selection process and
the related threshold values, the researchers modified the feature vectors of the disputed papers
to change the values for these words to favour Hamilton, rather than Madison. It was a partial
success, with half of the papers being assigned to Hamilton and half still to Madison. When the
top ten ranked features were limited to only those words appearing at least once per thousand
words, however, the ability to successfully attribute the disputed papers to Hamilton rose so that
all the documents were assigned to him and the average reduction in the confidence that Madison
wrote each paper was 84.42%. Limiting the words whose values were perturbed to only the more
frequent words increased the chances that that word formed part of the feature set used in each
SVM classifier. One might ask why not simply choose the frequencies of the words known to
be used by the classifiers to modify, but this would not demonstrate that the technique is gen-
eralizable. The classifiers with higher dimensionality were found to be more resistant to these
modifications, because they are able to base their classification on a wider selection of features;
it is less likely that all the features used would be modified by any general approach such as this.
Thus, classifiers that are less fine tuned to the particulars of their training data are likely to contain
more redundancy than feature sets that have been reduced to only key features. This is an argu-
ment for not over-optimizing feature sets, particularly when features are excluded that are seen
to be similar to another feature that has a higher impact/influence. In total, only 14.2 changes on
average per 1000 words were required to invert the classification from Madison to Hamilton, al-
though applying the unmasking approach proposed by Koppel and Schler [KS04] demonstrated
that the change in classification may be somewhat superficial. This is to be expected, however,
when only the minimal set of modifications are sought, and either including more features or
perturbing the chosen features by more than the minimum imposed by the threshold value would
serve to deepen the effect, at the cost of more effort.

Brennan, Afroz and Greenstadt [BAG12] sought to build on this simulation of adversarial
modifications with empirical results, by running a user study to ascertain the feasibility of such
modifications on real documents by human participants. During the user study, three techniques
were tried with the participants:

• Manual obfuscation.
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• Manual imitation.

• Automated obfuscation (using a translation service).

Participants were asked to submit samples of their formal writing (assignments, essays, theses,
professional correspondence, etc.) totalling at least 6,500 words, then asked to write a new
passage on a given topic with the intent of obfuscating their writing style and a second passage
imitating the style of a “target” author, chosen in advance to be Cormac McCarthy, in particular
the style in which his book The Road [McC09] was written. This author was chosen because
he has a distinctive writing style and The Road is well known, having won a Pulitzer prize
and a Hollywood movie adaptation. The reason why a distinctive writer was chosen is because
the researchers reasoned that the participants would not be skilled or experienced in writing in
different styles and therefore selecting an author that may be easier to imitate would compensate
for this inexperience and simulate the abilities of a writer who was skilled in switching their
style, imitating a less distinguishable author. For the final technique, the participants’ sample
documents and excerpts from The Road were subjected to automated translation by the services
provided by Bing24 and Google25 between the following languages:

• English→ German→ English

• English→ Japanese→ English

• English→ German→ Japanese→ English

For background training data, two corpora were derived, one from student submissions and the
other from Amazon Mechanical Turk26 comprising twelve and 45 authors, respectively. In total,
three classification systems were tested:

1. A Neural Network trained with the “basic-9” feature set—this feature set consisted of nine
simple statistical and readability features.

2. A synonym-based approach [CH07], where shared words between texts are counted and
weighted by the number of synonyms that word has—in other words it is a tf-idf with
synonym weighting. The rationale is that the selection of a particular word from among
many synonyms is more telling than a word that has few alternatives, therefore it measures
the degree of choice exhibited by each word present in both texts.

24https://www.bing.com/translator
25https://translate.google.com/
26https://www.mturk.com/mturk/welcome
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3. SVM with the write-prints [IHFD08] feature set.

In their experiments, the authors were split into 1000 sets containing unique combinations of 5,
10, 15, 20, 25, 30, 35, and 40 authors before 10-fold cross validation was used and the mean
precision was taken as the overall accuracy. Initially, a baseline test was run to assess the per-
formance of the classifiers on the unmodified documents. The synonym-based approach and
write-prints had precisions over 90% on average for five authors, falling to approximately 75%
when considering 40 authors. The NN using basic-9 feature set had a relatively poor perfor-
mance, but the authors wanted to show that even this simple system was still far better than a
random guess. When evaluating the success of the participants at obfuscating their style, all
three classifier systems were reduced to no better than a random guess, except for write-prints,
although even this was barely any better than that. The imitation attack successfully fooled the
basic-9 and synonym-based systems, returning 43–68% confidence that the passage had been
written by Cormac McCarthy, while write-prints proved to be somewhat more resistant at 18–
44%. The machine translation obfuscation experiment demonstrated that this approach would
not be effective, for two reasons. First and foremost, it reduced the accuracy, but not by enough
to misclassify as another author. Secondly, some sentences of the obfuscated text were often dif-
ficult to read or had their meanings altered, while others were completely unchanged. This was
not the desired effect, which was that most, if not all, sentences would be altered in subtle ways
that did not change the meaning, however the purpose of a translation service is not to paraphrase
the original text, but to recreate its meaning as closely as possible in another language. A para-
phrasing tool, such as Barreiro’s SPIDER [Bar11] would clearly be a better option for automated
obfuscation of text; an abundance of these tools are available online [RM17].

In a follow-up paper, McDonald et al. [MAC+12] described a system they had written to
assist authors in anonymizing their documents, called Anonymouth. This consisted of two sub-
systems, the first, JStylo, performed feature extraction and could be configured with a choice of
feature sets and classifier. The second subsystem, Anonymouth, produced recommendations for
the user by leveraging a clustering algorithm and information gain to select features and then
advised the users to either move toward or away from the centroid of a cluster depending on
whether they should increase or decrease a particular feature. These were shown as markers in
an editor window. They carried out a user study involving ten participants, in which they were
asked to write a new document, following the recommendations given by the tool. Eight of the
ten users were able to do so successfully; i.e., obfuscate their style. The authors noted that at-
tempting to carry out this task on an existing document was very hard and so did not attempt this,
focusing instead on the likely use case where a user would be guided by the tool in creating new
documents.

Since the culmination of our own research, another paper has been published that investi-
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gates adversarial source code stylometry, by Simko et al. [SZK18]. This work carries out two
significant user studies looking into the robustness of a state-of-the-art source code stylometry
system [CIHL+15] to human adversaries attempting to perform targeted mimicry attacks and
non-targeted obfuscation of style. The first user study had 28 participants who were asked to
modify someone else’s code with the express intent of imitating a third person’s style. The sec-
ond study, involving 21 participants (none of whom had taken part in the first study), examined
their ability to attribute forged samples to their true author, initially without knowledge of forgery
and then again after being informed of the potential forgeries.

In both studies, GCJ competition data is once again used as the corpus, taken from the dataset
used by Caliskan-Islam et al. [CIHL+15]. The five programmers with the most files (42.8 aver-
age) from this dataset were selected as the main subjects of the studies, while variable numbers
of authors were chosen as background data to augment the training data from these targets: 0,
15, and 45 (making the total number of classes including the subjects in these training sets 5, 20,
and 50, respectively). The additional authors used for background data were chosen randomly
from the set of programmers that had submitted at least five files in the main dataset. The base-
line precision/recall achieved by the classifier on these datasets was 100/100%, 87.6/88.2% and
82.3/84.5%, respectively.

In terms of setup, the learning algorithm used and its implementation were identical, as was
the feature set and data; the only differences were the whitespace and indentation of the files
being normalized by Simko et al. (see below) and the training set containing variable numbers
of instances, whereas Caliskan-Islam et al. ensured their training sets had uniform numbers of
instances.

The first study, investigating mimicry, was comprised of the following steps, once participants
had been briefed on the objective:

1. Train: participants were shown files written by two out of the five subjects (labelled X and
Y) that had been submitted to solve the same problems, in order to learn their respective
styles.

2. Attribute: given ten unseen samples, classify them as either X or Y.

3. Forge: participants were given the choice of forging either X or Y’s style, and were then
presented with a file written by the other author to modify. Participants were not given
feedback on their level of success, but rather were asked to continue until they believed
they had done enough.

4. Forge with oracle: taking the forgeries from the previous task, and providing feedback on
classification confidences, to encourage them to keep trying to achieve higher confidences.

46



It is important to note that all code was formatted prior to both studies, using an open-source
tool.27 By normalizing the formatting of all files, Simko et al. wanted to focus the minds of
participants on the syntactic aspects of style present in the files, rather than the minutiae is-
sues associated with indentation and whitespace, saving them from the tedium of making such
changes. The second study comprised the following steps:

1. Train: participants were shown files written by one author (labelled X) and the four other
subject authors (labelled “notX”) in order to learn X’s style.

2. Simple attribution: given 12 unseen samples, classify them as “X” or “notX”. Four of
these samples were forgeries, taken from the first study.

3. Attribution with knowledge of forgery: after being informed that some samples may be
forgeries, reclassify the 12 samples from the previous task.

4. Find the forgery: participants were shown pairs of files where one was genuine and the
other a forgery and had to decide which was the forgery.

The main finding from the first study was that the classifier they used was not robust against
the adversarial attacks. This is significant for our thesis, because one of our goals, as well as
forming part of our thesis statement, was to ascertain the ability of current code stylometry
techniques to resist adversarial modifications. With feedback on their success (forge with oracle
task), participants were able to successfully forge the target’s style 66.6, 70, and 73.3% of the
time for the 5-, 20- and 50-class datasets. Without feedback, the average success rate was 61.1%.
These results do not indicate the level of confidence achieved by the participants; an attack was
considered successful if the most numerous class returned by the random forest was the target,
which could be as low as 3% for the 50-programmer test set. This in part explains the greater
success achieved by the participants against the larger datasets, as the bar is set comparatively
lower. Additionally, because machine learning tasks with larger numbers of classes typically
result in lower success rates, so it follows that the harder the task of classification, the easier
the task of subversion. Unfortunately, the average length of time spent by each participant on
the task is not given, as this would indicate first, how difficult the task was for participants and
second, the level of tolerance and patience we can expect users of our own proposed system
to have for making such changes to their own code. The obfuscation success rate (which they
term as “masking”) was comparatively higher, at 76.6, 76.6 and 80% for the 5-, 20- and 50-class
datasets. Note that masking was not given as an explicit task by the researchers, but rather is

27http://astyle.sourceforge.net
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what an attempt at forgery that was unsuccessful at being classified as Y was termed, if it was
also not classified as X.

Simko et al. reported the following as their main finding from the second study:

“While our participants do not spot forgeries when given no information at all, they can de-
velop successful forgery detection strategies without examples of forgeries or instructions about
forgery creation.” [SZK18]

When performing the simple attribution task; i.e., classification without knowledge of forg-
eries, the average attack success rate was 56.6%. This means 56.6% of the time, the participants
labelled a sample that had been modified to imitate programmer X’s style, say, as X. It is not clear
whether only the successful forgeries (in terms of fooling the machine classifier) were shown to
the participants, or both successful and unsuccessful attempts were shown, nor is it clear whether
in the other 43.4% of cases the forged sample was labelled as the true author, or some other au-
thor from the five subjects (which would be a successful masking attack). After being informed
of the potential forgeries in the dataset, participants were only fooled 23.7% of the time, although
Simko et al. noted this coincided with an increase in the number of false positives; i.e., where an
unmodified sample was mistakenly believed to be a forgery. This translated to a success rate in
identifying non-forged samples of 76.2%, versus 92.7% when the participants were not aware of
the presence of forgeries.

In terms of the types of changes made, the researchers found these were “overwhelmingly lo-
cal control flow, local information structure changes, and typographical changes.” Local control
flow changes refer to such aspects as the type of loop employed, or nested conditionals instead
of guard clauses. Local information structure refers to variable naming, declaration location or
use of macros. Typographical changes are modifying whitespace or placement of braces, etc. It
is not clear whether participants were informed the code had been formatted prior to the study.
Simko et al. commented that the typographical changes may have been due to using an IDE
that automatically applied its own formatter upon saving, for example. If these changes were
deliberate, rather than automated IDE operations, it would have been pertinent to ask the partic-
ipants what typographical styles they were identifying within the formatted code. It is possible
the automated formatter was not fully normalizing all layout styles due to default settings, etc.
This is an important consideration, because even if the machine classifiers do not include whites-
pace and indentation in their feature sets, the human analysts in the second study may have been
including these factors in their decision making process. Indeed, some of the participants did
report this as being a factor for them in detecting possible forgeries. It may also be the case that
simple attribution without knowledge of potential forgeries was influenced by this too, although
participants may not have been aware of the influence it had on their decisions. Local changes
such as described above are in contrast to algorithmic changes, which are defined as a change in
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the method of solving the problem, such as using dynamic programming instead of recursion, or
more subtly, refactoring a block of code into a helper function.

Regarding specific changes, 25 out of 28 participants changed variable names, 23 copied
entire lines of code from the target, 22 changed the libraries that were imported (and often the
specific API calls were swapped for alternative, functionally equivalent calls), 19 changed the
indentation scheme and 19 moved variable declarations. The relative ease with which partici-
pants were able to successfully fool the machine classifier by making these superficial modifica-
tions appears to contradict the findings of Caliskan-Islam et al. [CIHL+15], who found running
code through the commercial obfuscator Stunnix had little impact on the classification accuracy
(dropping from 100% to 98.89% for a 20-programmer dataset, just 1.11%); however, the changes
Stunnix makes to perform its obfuscation include variable renaming and removal of whitespace,
indentation, and comments. For an explanation of the participants’ success, Simko et al. offer
the following:

“By making small, local changes to only variable names, macros, literals, or API calls,
forgers had access to over half of the features”

This suggests the feature set devised by Caliskan-Islam et al. may be overly reliant on such
content-specific attributes, rather than structural features; however, in their paper, Caliskan-Islam
et al. stressed the importance of the AST-based features, which are more structural in nature, in
producing their high accuracies. Note that to achieve a classification as a particular class in a
decision tree, all decision points on paths leading to that class must be satisfied. This implies
there were sufficient numbers of trees contained within the random forest inducted by Simko et
al. that were classifying instances based solely on these local features, such as variable names,
without including any AST-based features.

For recommendations in relation to local, content-specific features, Simko et al. suggested:

“future classifiers should consider fewer of these features, or that these features could be
contextualized with their usage in the program.”

They also suggested including more features in future classifiers that are harder to forge, such
as more complex AST features, or higher-level algorithmic characteristics, as well as including
adversarial examples in training sets.

Overall, this paper offers some deep insights into the vulnerabilities of even state-of-the-art
classifiers, and highlights the problems that can arise by only evaluating classification systems
(of any sort, not merely authorship attribution systems) in terms of their accuracy under ordinary
conditions, assuming honest actors. It is complementary to our own research, as we are interested
in establishing a method for automated extraction of adversarial modifications, with a developer
tool that assists users and counsels them on their use of style, whereas this work explores instead
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non-automated means of both forgery and detection with human adversaries. In terms of our
thesis statement, it also supports our claim that attribution systems are brittle and prone to mis-
classifications, providing further justification for our own research. Just as with software, testing
machine learning models under only favourable conditions will result in brittle systems that are
vulnerable to being exploited by carefully crafted inputs. An effective model would maximize
both accuracy and resistance to adversarial inputs, and moreover these may not necessarily be
orthogonal to one another.
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Chapter 5

Implementation and Methodology

In this chapter, we will discuss the main contributions of the thesis, along with associated imple-
mentation details and user study methodology. We will begin in Section 5.1 with a discussion of
the contributions this thesis offers to the field. Section 5.2 covers requisite background informa-
tion necessary for an understanding of the rest of the chapter, including the source of our data,
the tools we used and the classification algorithm that forms the core of our recommendation
system. Obtaining the data was a necessary task with its own unique challenges, not the least of
which was ensuring its integrity and independence—these aspects are discussed in Section 5.3.
Following this, in Section 5.4 we discuss the feature extraction phase, including details of the
various features we used in our experiments. In Section 5.5, we describe the methods we em-
ployed to evaluate the feature set and learning algorithm in their ability to predict the author of
the files and repositories in our corpus. Section 5.6 introduces the algorithm developed to pro-
duce a set of changes to present to the user in order to change the assigned class of the file under
evaluation to some predetermined other class. We provide an overview of how the plugin is used
in Section 5.7 and finally, in Section 5.8 we discuss details of the pilot user study, including its
aims and objectives and research ethics clearance we received.

5.1 Contributions

It is clear from reviewing the literature that more work needs to be done evaluating the robustness
of existing authorship attribution techniques and casting a critical eye over the claims that have
been made with regards to its accuracy and scalability. In particular, before being used in any
kind of legal setting, whether criminal or civil proceedings, it should be demonstrated beyond
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any reasonable doubt that it can truly classify the authors of documents based on their style,
independently of content, and that this style is at least resistant to conscious attempts at obfusca-
tion or imitation. Furthermore, there must be a “smoking gun”—some specific and meaningful
characteristics that can clearly be linked to one’s style. While n-grams appear to offer superior
accuracy, they are inextricably intertwined with content and the division between style and con-
tent at this level of granularity is very hard to discern. The write-prints [IHFD08] work is a step
in the right direction in this regard, but it appears to be incredibly brittle at even trivial attempts
to defeat it by non-expert adversaries [BAG12]. This is a far cry from its namesake forensic
discipline of fingerprint analysis, which, while being far from infallible, certainly provides much
stronger evidence and resistance to forgery. Stylometry and other identification techniques often
hide behind the term “forensic science” in order to appear to offer undeniable, objective truth,
cashing in on the brand equity provided by such methods as DNA fingerprinting, but the reality is
often less rigourous than we should demand of any technique claiming to be a science or proving
the innocence or guilt of an individual.

While there are, at least, some papers investigating natural language stylometry from an
adversarial perspective, there are none that look at the source code equivalent. Moreover, no
research has yet been conducted in to applying this technique on a large scale in a realistic
setting. Finally, if this technique is truly feasible en masse against real world data, it represents
a threat to the safety of individuals online and therefore defences ought to be developed to assist
programmers in protecting their identity against such a threat. To this end, this thesis offers the
following contributions:

1. A study into the feasibility of conducting source code authorship attribution at the Internet
scale, along with a discussion of the challenges inherent in such a feat.

2. A new set of features for capturing elements of programming style.

3. A tool to assist developers in protecting their anonymity that integrates with a popular IDE
and is able to perform feature extraction on their source code and recommend changes to
both obfuscate their style and imitate the style of another, specific individual.

4. A novel, practical, algorithm for extracting a change set from a Random Forest classifier in
order to produce a misclassification of a particular feature vector as an alternative, known
class.

5. A pilot user study evaluating the usability of the tool, the feasibility of manually imitating
another’s style, and the feasibility of using the tool for this task.
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5.2 Background

This section introduces several tools, technologies and algorithms that are key to this thesis, but
have so far not been covered in any of the previous chapters. We start with a short summary of
the reasoning behind our choice of programming language for our research. We then provide
a brief overview of the Eclipse IDE, the development environment that hosted our plugin, and
the API we integrated with in order to achieve this. Next, we move on to summarize the Weka
machine learning environment, which was used to run our experiments and forms the machine
learning core of the plugin. Following this, the random forest classifier is discussed, which our
recommendation module utilizes in order to derive its change set. Finally, GitHub and its data
API are summarized.

5.2.1 Choice of Programming Language

While there are many similarities between programming languages in terms of style, there are
enough differences that trying to extract common features from multiple languages and iden-
tifying programmers based on them would be counterproductive. Each language has its own
idiomatic usage (e.g., the “Pythonic” way) and the same programmer would probably evince dif-
ferent styles when working with different languages. Furthermore, due to differences in syntax,
by attempting to use a common feature set we would lose much potential identifying informa-
tion. Therefore, it made sense to focus on just one language for our research, which we chose to
be C.1 C is a venerable language and has influenced the syntax of many other languages created
since. It is also a subset of the C++ programming language, and therefore many features and
style markers that can be used in C would be applicable to other languages. Additionally, C
is ubiquitous, found in embedded systems, computer operating systems and mobile devices, as
well as application software, particularly when performance is a primary concern, such as for
web servers and databases. Lastly, due to is longevity, several generations of computer program-
mers have learned and worked with C, which should manifest itself in a rich style variance, as
good style, best practices and teaching methods tend to change over time. Considering all the
above, selecting C as our primary language was a natural choice.

1The latest standard of the C programming language can be found at https://www.iso.org/standard/
57853.html.
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5.2.2 Eclipse IDE

The Eclipse IDE2 is a very popular open-source Integrated Development Environment (IDE) for
developing software in multiple languages. Written in Java, it is also currently the most popular
IDE for Java development [Reb14] and enjoys regular stable releases, the current of which, 4.7,
was in June 2017 under its bespoke Eclipse Public License (EPL). Support for multiple languages
is provided through the Eclipse platform and associated runtime, which consists of a container
providing basic services and a flexible plugin architecture to build application-specific services.
This container and plugin architecture allows the Eclipse platform to be extended in multiple
ways, even beyond software development, as a general editor and GUI with the Rich Client Plat-
form (RCP).3 Given Eclipse’s position as market leader, combined with its open-source license
and extensible architecture, it is the natural choice to develop our privacy-enhancing programmer
tool.

Plugin Development Environment

The Plugin Development Environment (PDE) provides the plugins and tools required to develop
other plugins, with an API and associated documentation. There are wizards for creating new
plugins and support services to allow other plugins to be accessed. A workbench UI is provided
and a set of editors for a variety of file types. A set of fundamental plugins are available for
interacting with the filesystem, editor, workbench, preferences and other basic features of the
platform. A manifest editor allows for additional plugins to be defined as dependencies and their
associated JAR files added to the classpath. The dependent plugins are loaded at runtime and
made available via the platform container. There are a wealth of additional plugins to make
available functionality such as preferences, dialog boxes and wizards, asynchronous task execu-
tion, progress bars, compilation, code preprocessing and more.

C/C++ Development Tools

The C/C++ Development Tools (CDT) project provides an integrated IDE for C/C++ develop-
ment. Built on top of the Eclipse platform, it retains its look and feel, but internally defines its
own API and extends much of the core Eclipse functionality with features specific to C/C++
development. CDT provides two interfaces for interacting with the internal representation of the
code in a compilation unit. One interface represents the semantic, or logical, view of the code,

2http://eclipse.org
3https://wiki.eclipse.org/Rich_Client_Platform
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mapping tokens in the code with their high-level meaning, whereas the other interface represents
the syntactic, or physical, view, mapping the code to an Abstract Syntax Tree (AST) represen-
tation after preprocessing, so comments and directives are not included by default nor macros
expanded in this representation; a separate method call must be made to access these elements.

5.2.3 Weka Machine Learning

Developed at the University of Waikato and released as open-source software under the GNU
General Public License (GPL), Weka4 is a very popular, general purpose machine learning re-
search tool, including data exploration and experimentation features accessible from both a GUI
and CLI. Weka supports a wide variety of algorithms for filtering, classification, feature selection
and visualization of data [EHW16], all accessible from a single application with a common file
type called the Attribute-Relation File Format (ARFF) and several converters that can read XML
or CSV structured data, for example, and output ARFF for internal processing. Its broad scope
naturally leads to a lack of depth in specific learning algorithms, but this is compensated for by
its flexibility, making it ideal for exploratory research and proof-of-concept work. Like Eclipse,
it is also written in Java making it easily runnable on a variety of host systems and simple to
integrate into an Eclipse plugin, which is the primary reason for its inclusion in our research tool.

5.2.4 Random Forest

The random forest (RF) learning algorithm, first proposed by Breiman [Bre01], is an ensem-
ble classifier (meaning an aggregate of other classifiers) that is constructed from decision trees
(DT). Decision trees can grow to be very deep during induction and can suffer from over-
fitting to the training data, but RFs compensate for this through a process known as bag-
ging [Bre96], explained in the next section. RF is known to perform very well on classification
tasks, bettering most other algorithms on benchmark tests, according to Caruana and Niculescu-
Mizil5 [CNM06], and once trained is fast at evaluating new instances.

Ensemble Learning

Ensemble learning classifiers work by aggregating the outputs of multiple other classifiers that
(should) have been trained on their own subsamples of the training data, possibly with their own

4https://www.cs.waikato.ac.nz/ml/weka/
5The tests performed by Caruana and Niculescu-Mizil used an unusually large forest of 1024 trees.
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subset of the feature set, so each individual classifier is created and trained with its own unique
combination of training data and features, while maintaining a statistical correlation with the full
dataset and features. The idea is that variance in how each classifier is built, the inferences it
makes and noise in the training set are smoothed out across the population of subclassifiers, so
that the “wisdom of the crowd” effect is observed and the consensus opinion is likely to be more
statistically accurate than any one individual.

Bagging

Bagging is a technique used in ensemble learning, also developed by Breiman [Bre96], and
stands for “Bootstrap AGGregatING”, as coined by its creator. These two constituent terms refer
to the way in which data is split among subclassifiers in the ensemble for training and how the
consensus opinion is derived:

• Boostrapping refers to how each of the constituent classifiers is presented with its own in-
dividual training data, that is still statistically correlated with the overall data set. It makes
use of sampling with replacement, meaning a training instance is sampled (drawn) at ran-
dom from the data set, then replaced, before another is sampled and so on until the desired
number of training instances has been reached (typically the same size as the original data
set). In this way, each of the aggregate classifiers receives the same amount of training
data with a distribution of classes that is still representative of the original class distribu-
tion. Furthermore, each of the sampled training sets is almost certain to contain duplicate
instances, which will result in its classifier potentially reaching an alternative learning out-
come than another identical classifier training with different duplicated instances and class
distribution.

• Aggregating refers to the manner in which classification consensus is reached by the en-
semble. Typically (and in the case of RF) this is achieved with a voting mechanism, where
each of the aggregate classifiers is given an equal vote and the overall consensus is simply
the class that received the most “votes”, with a confidence that is proportional to the num-
ber of aggregate classifiers that voted for it. For the regression case, typically the mean of
the aggregated classifiers’ outputs is taken as the output of the ensemble.

Breiman demonstrated that this technique can improve the performance of unstable learning
algorithms, due to the smoothing effect of aggregating the outputs. In this way, we can view the
output of any single classifier as a random variable drawn from some distribution whose centre
is the optimal output given the training data; therefore the more variables sampled, the closer the
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overall output is to the optimum. With bootstrapping, there are instances that were not selected
and so did not form part of that tree’s training data. These “out of bag” instances can then
be used to evaluate the accuracy of the tree by classifying them and recording how many were
incorrectly labelled. This “out of bag error” estimate eliminates the need to run cross validation.

Decision Trees

A decision tree is a simple and intuitive type of classification procedure, based on the binary
tree data structure. They are closely related to the classification keys typical to, for example,
botany where plant species can be identified based on characteristic features of their anatomy.
To perform classification, at each node the input data is tested and depending on the result, either
the left or right branch is taken. The leaf nodes contain the class (or numerical value in the
regression case) that the input vector has been assigned. The exact structure a decision tree
will assume in terms of its depth and the number of branch and leaf nodes it contains primarily
depends on the structure of the data—how many classes there are, the clustering of data points,
the number of training instances seen and dimensionality of the features.

Training Decision Trees

In the case of machine learning, DTs are inducted, i.e. “grown”, automatically using an algorithm
that decides, at each node, which feature to test and which value to split on, based on the training
data [Qui86]. Most DTs are inducted using a greedy algorithm that selects the best feature/value
to split on at each node based on a measure of how well that combination of feature/value divides
the training data into subsets. The measures typically used are either information gain (discussed
in Section 4.3) or Gini impurity. Using Gini impurity can be thought of as measuring the degree
to which instances of the training data are in the “wrong” split according to the distribution of
classes in that split, while using information gain can be thought of as measuring the degree with
which a feature/value split decreases the “element of surprise” by making an informed guess as
to a random training instance’s class based only on the class distribution in that split more likely
to succeed. This induction process continues until either the measure used cannot be improved
any further, or all instances are contained in their own leaf node. A random decision tree is
inducted in the same manner, except at each node instead of considering all possible features, the
induction algorithm is restricted to choosing from a random subset of the features, typically the
number of which is fixed at

√
|X|, where X is the set of features.
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Putting it all Together

Using a random forest can be summarized as follows:

1. For each tree in the forest, create a training set by bootstrapping the original training data.

2. Induct each tree from its training set using the method outlined above, where each tree is a
random decision tree.

3. Present each instance to be evaluated to each random tree in the forest, count the votes
received for each class and output the class receiving the most votes as the output of the
ensemble.

5.2.5 GitHub

GitHub6 provides free and public (private repositories are also available for a fee) Git-based
repository management on the Internet. It is used by individuals for personal projects and entire
teams working on large open-source software projects and can provide anything from a cloud-
based backup solution to a complete version control and collaborative programming platform,
with usage statistics, defect management and project blogging. As of April 2017, GitHub re-
ported that there were 57 million repositories,7 while our own research indicated 89 million
repositories had been created, which includes public, private and removed repositories. GitHub
also provides a data API that can be used to make a limited number of queries anonymously or a
greater (but still rate-limited) number of queries upon registration. Their terms of service8 allows
for the use of the API for research purposes, providing the research is not of a commercial nature
and is in keeping with their privacy policy.9 This huge source of software code that is publicly
available and has a well documented API for obtaining data is a perfect choice to use in our
experiments for gathering real-world training data.

5.3 Obtaining Data

As previously noted, one of the aims of our thesis was to perform a realistic authorship attri-
bution study, to discover, highlight and hopefully overcome some of the practical challenges

6https://github.com/
7https://github.com/blog/2345-celebrating-nine-years-of-github-with-an-

anniversary-sale
8https://help.github.com/articles/github-terms-of-service
9https://help.github.com/articles/github-privacy-statement/
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associated with carrying out a study such as this “in the wild”. All prior studies into source code
attribution have used corpora derived from student assignments, text books and programming
competitions—but none of these sources presents a corpus such as one would encounter in a
real attempt at performing large-scale deanonymization. Student assignments are often relatively
short, all trying to achieve the same end result, and written by individuals from very similar
backgrounds and demographics (particularly with regards to their education). Code from text
books is likely to be proof-read and edited, over-commented and, from the author’s perspective,
a model of perfection. Code from programming competitions is likely to contain much copy and
pasted boilerplate code, taken from their other submissions, as well as being short, uncommented
and probably not following the competitor’s usual style—its purpose is to solve the problem as
quickly as possible, it is not intended to be production quality, readable or maintainable.

To this end, we chose to obtain a large corpus of source code from real projects that had been
published on GitHub, with the caveat that the code belong to a single author (and truly be written
by that person), to ensure purity of style. The multiple-author case is considerably harder, as this
obviously introduces multiple styles, and to varying degrees depending on how many lines each
author had contributed, whether code reviews were conducted and who by, and so on. Trying to
solve the multiple-author case may also not be necessary, as in most cases lone authors are more
likely to be the targets of intimidation, as they are more vulnerable and to remain anonymous it
is more likely one would choose to work alone. Selecting a popular and public source for our
data ensures a wide diversity of both developers, in terms of their background and demographic,
and projects, in terms of purpose and size.

5.3.1 The GitHub Data API

The GitHub data API10 is a RESTful web service returning JSON data that allows, among other
things, for data to be retrieved about specific repositories, including activity, history and owner
and searches to be run. The search method11 uses a rich syntax and allows various fields to be
searched in and filters to be applied to results. Fields that can be filtered on include various
attributes of the repository, such as the creation date, topic and language. The search method
appears to be an ideal choice for our purposes, as we can simply choose to search for all repos-
itories, but filter it by language to just C. There is one issue, however, which is a hard limit
imposed on searches to only return 1,000 results. This limit means that the same search will
always return 1,000 results; it is not a rate limiting feature, but a total limit. It is possible to
search by creation date, so in theory one could take the most recent creation date in the search

10https://developer.github.com/v3/
11https://developer.github.com/v3/search/
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results and use that in the following query to only return results greater than or equal to that date.
This is made more difficult because searches cannot be sorted on creation date, so we would
have to “remember” the most recent date seen in our results. There is still a problem, however,
which is that if we can’t impose an ordering on our results by creation date, there is no guarantee
the results returned will be the 1,000 repositories whose creation dates are immediately after the
date we specified in our query. For example, if our initial search is for any repositories written
in C, we cannot guarantee that GitHub will return the 1,000 oldest repositories, so that when we
take the most recent date seen in those results and apply that to our next query we will get the
next 1,000 repositories according to chronological order. On the contrary, it is likely GitHub will
instead by default return results ranked according to their popularity, reputation, activity or some
other measure of relevance.

As a consequence of this restriction in the standard search operation, we chose to use the
“repositories” method, rather than search, which provides the ability to enumerate all public
repositories on GitHub.12 When called with no parameters, this method returns the first 100
repositories according to their ID, with IDs assigned sequentially according to creation date.
It is guaranteed that no two repositories will have the same ID and if IDi < IDj for some
repositories i and j, then repository i was created before repository j. When this enumeration
method returns, it includes a HTTP header (next) containing the URL of the next page, which
includes a parameter (since) that restricts the query to only repositories with IDs greater than
the parameter; i.e., the 100 repositories with the lowest IDs that are greater than the parameter.
It is recommended by GitHub that this header is used for paging through results.

5.3.2 Rate Limiting

A consequence of using the enumeration method rather than search is that all repositories are
returned, regardless of the language in which they were written, if any (a repository does not
have to contain program source code); this means we must perform our own filtering. GitHub
imposes a rate limit of 5000 requests per hour for registered users, so the theoretical maximum
number of repositories we can enumerate per hour is the number of requests permitted multi-
plied by the number of repositories returned per request, which is 5000 × 100 = 500, 000. The
data returned by the enumeration method mostly consists of links to other REST methods for re-
trieving additional data about the repository and only the id, name, private (Boolean) and forked
(Boolean) fields contain non-URL values. Therefore, to decide whether to exclude a repository
based on its language, or any other criteria not related to its name or forked status, we must make
an additional HTTP request. This requirement makes rate limiting a significant factor, because

12https://developer.github.com/v3/repos/#list-all-public-repositories
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now for each request to the repository enumeration method, we are forced to make 100 additional
requests. This means we can only enumerate a maximum of 5000/1.01 = 4950 repositories per
hour, if we limit by language only. As the ratio of C repositories will likely be small, the number
that will be potentially usable will obviously be far lower than 4,950. This limiting factor is fur-
ther compounded by additional criteria we have to filter our results on, namely that repositories
should be single author and contain enough code to be able to train a classifier with. Luckily,
the size of the repository in terms of bytes is given in the language method’s return data, and is
grouped by language (a repository can contain more than one language), but determining single
authorship entails making another HTTP request to retrieve data relating to contributors, as a first
step (additional methods to ensure sole authorship are discussed in the next sections).

We can see that before a repository can possibly be added to our list, we must make two
requests, giving us an upper limit of 5000/2.01 = 2487 repositories per hour that can be added,
if every repository in that hour is a C repository with a size greater than our minimum acceptable
size in bytes (we chose 32 KB as our minimum threshold) and appears to be singly authored.
The true number will clearly be far lower than this as the proportion of C repositories fitting our
criteria is likely to be fairly small.13

If there were some way we could filter bad repositories based solely on the data returned by
the initial enumeration method, without having to make additional requests, we could increase
the number of repositories we are able to scan per hour. To address this, after running our
enumeration script for several hours we generated statistics of the names of repositories that
were rejected by the script for not containing C, and were able to infer some filtering rules:

1. Names containing other languages’ names—it is common in IT to name software projects
after the language used to write it, particularly for libraries as these are the most language
sensitive; e.g., if looking for a library to use for your Perl program, you ideally want to use
a library that was also written in Perl. Including the language in the name makes it easy
for others to see if a library is going to be usable by their code without digging around in
the documentation. This means we can, with high probability, rule out repositories whose
names start or end with words such as “python”, “ruby” or “JS” (case-sensitive), as these
are highly unlikely to be written in C. There are surely exceptions to this rule, but we are
content to trade a small number of false negatives for the increase in processing rates—we
have plenty of potential repositories from which to derive our corpus.

13In fact, running the query https://api.github.com/search/repositories?q=language:C
returns a total count, even though the results that can actually be viewed are limited by paging and the hard limit
of 1000. The total count returned is 774,763 out of approximately 57 million (as of April 2017—probably higher
now), which is 1.36%, with some of these being too small and many involving multiple authors.
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2. A list of common language-independent names that had far higher occurrences of rejected
than accepted repositories. Examples of these are “try git”,14 “test”, “android” and course
codes for certain Massive Open Online Courses (MOOCs) and even individual universities.
This list was dynamic and changed over time, therefore it was necessary to gather the
statistics every day to update it. “Android” was an interesting case, which we will discuss
next.

3. Names that indicated a repository was being used as a backup for some specific version
of third-party software. In this case the owner may be either investigating defects/vulne-
rabilities they had encountered, or were adding some new functionality to the software,
but did not want or know how to fork it or initiate a pull request on the original repository
(or the original was hosted elsewhere). This category included common software, such as
Android, MySQL and Linux. The determining factor in these cases, and upon which the
rule was based, was the presence of a version number in the repository name; e.g., linux-
3.4 or htc8960-3.4 (taken from a HTC handset). The reasoning behind this rule was that
developers using git to manage their own software would not include a version number
in the repository name, after all Git is a version control system, it is not necessary and
completely nonsensical to create new repositories each time a new version is desired. This
should be, and in the majority of cases is, managed in Git itself with the use of “tags”.
Therefore, only repositories falling into the examples given above would have names con-
taining these version numbers. To detect these cases, we created a regular expression to
look for “-d+\.d+” at the end of repository names. The one exception to this rule was
if the repository in question had a number of “stars”15 greater than some threshold. This
threshold varied depending on the size of the repository: repositories 32 KB–1 MB did not
need any stars, 1–3 MB needed more than ten stars, 3–10 MB needed more than 100 stars,
10–30 MB needed more than 500 stars and 30–100 MB needed more than 1,000 stars.
Repositories with less than 32 KB or greater than 100 MB of data were rejected regardless
of the number of stars. It was reasoned a repository that existed solely as a place to back up
someone else’s copied code would not receive many stars, but also the smaller a repository
was, the less likely it was to be a copy of a popular third-party library or product, as these
tend to be larger repositories; hence the requirement for more stars the larger the suspect
repository was. Clearly there is a trade-off here and these threshold values were chosen
subjectively, but with this consideration in mind.

Implementing these filtering rules based on the repository name enabled us to enumerate far
14Due to a tutorial at https://try.github.io
15A user can star a repository they find interesting, similarly to bookmarking. GitHub reports on the number of

times a repository has been starred as a popularity measure.
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more repositories than would otherwise be possible using the naı̈ve approach of checking the
implemented languages for every single repository. The trade-off in terms of a small number of
false negatives was acceptable given the increase in performance, which at times was as high as
20,000 repositories per hour enumerated.

5.3.3 Ensuring Sole and True Authorship

For our feature extraction to be at all effective, it was of the utmost importance to ensure when-
ever possible that each repository we included in our corpus represented the sole work of the
given owner/contributor. Note that this is far more important in our case than for Caliskan-Islam
et al. [CIHL+15], for example, as we are training and evaluating on completely independent
repositories by the same author. Our classification will almost certainly fail if an author owns
two repositories and one of those repositories were written by a different author; i.e., copied.
Even if all the repositories for a given author were written by others, it is unlikely that the copied
code belonged to the same other author, so there would still be an inconsistency in style. In
the case that the copied code did belong to the same other author, it would still be undesirable,
because the other author is also likely to be in our corpus, so there would be an increase in noise.
While we were able to reduce such noise to a large extent, it is impossible to fully verify that each
and every repository contains code that was written by the owner/contributor, so noise remains
an issue, probably to a greater degree than other studies that had more controlled corpora, such as
student submissions. The reason why verifying the owner is the sole and true author of the code
contained in the repository is impossible is because we rely on the author to leave some tell-tale
sign that the work was truly theirs or not. Tell-tale signs include naming their repository in a
predictable manner that indicates it was copied, or multiple contributors pushing with distinct
user accounts, or, as we will see in the next section, the same code existing elsewhere in our
corpus.

To this end, we began by filtering repositories that were marked as forks, as these are typ-
ically copies of other authors’ repositories and so do not constitute original work. Even if the
owner of the forked repository were the same as the owner of the original, the original would be
enumerated in due course, so there was no need to include both. Our next method for determin-
ing sole authorship was simply to check the contributors’ data provided by the relevant method in
the GitHub API,16 the URL of which is returned for each repository by the enumeration method.
If there is more than one contributor in the returned data, we can safely filter the result. Fol-
lowing this, once cloned, repositories were checked again for the amount of source code they
contained, as the size in bytes indicated by the web service was not completely accurate—some

16https://api.github.com/repos/username/reponame/contributors
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non-C files were marked as C source, as were header files, which we did not use for feature
extraction. We used the file Linux utility and a check for .c file endings. We also excluded
repositories containing fewer than ten and greater than 100 individual files. Requiring at least ten
files ensured we had sufficient training material, while repositories containing greater than 100
files were found to be more likely to be copies, rather than true single-author projects.

An additional check for multiple-author repositories was carried out by examining the com-
mit logs; if there was more than one unique name and email address combination, the repository
was marked for manual inspection. 635 repositories fell into this category, taking several hours
to check. This involved comparing the different names/email addresses seen in the logs to deter-
mine if they probably belonged to the same person or different people. The reason these were
manually checked, rather than being automatically excluded, was because they were often the
same person committing from either a different location with a different SSH key, or they had
changed the name or email address associated with their account, which does not automatically
update the historical commit data. A manual check was necessary, because the clue that reveals
it is the same person varies; trying to define an exhaustive set of rules for these was not practical,
at least not in the time it took to carry out the manual check. Some examples of variations seen
in names and emails were:

• Axel ”0vercl0k” Souchet and Axel Souchet

• Jens John and Jens Oliver John

• adamsch1 and Shane Adams—this one is more subtle, but as both contain the string
“adams” it was enough to suggest this was probably the same person

• amotta91@gmail.com and motta@ubuntu.epfl.ch

• angel.d.death@gmail.com and angeldeath29@gmail.com

5.3.4 Removing Duplicate and Common Files

Another source of noise within our dataset was from duplicate files between repositories belong-
ing to different authors and the same author, and third-party library code included in subfolders
of a repository. It is common practice to put code from third-party libraries into “lib” or “ext”
folders, so these were removed if present. Following this, md5 hashes were taken of all source
code files in our corpus, and if duplicate files were found in two different repositories (belonging
to different authors), this was taken to be an indication the repositories contained copied code
and they were both excluded from our dataset. Note that if this meant we only had one repository
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left for an author, we also excluded that as we require at least two repositories per author in our
dataset. It may have been the case that only some files were copied, but we considered the task
of determining what code probably belonged to the repository owner and what did not to be too
complex for automation and too time-consuming for manual checking. Furthermore, we did not
attempt to determine if one of the authors had copied from the other, or both were copied from a
third source for much the same reasons.

The final step we took was to also remove duplicate files between repositories belonging to
the same author, ensuring that one copy of that file remained. Obviously, there is nothing suspi-
cious about an author reusing the same code for several of their projects, but for our evaluation
purposes, we want to remove such code to avoid overfitting and to make the evaluation strenuous
for our learning system. If, after this removal, a repository was found to contain fewer than ten
source code files, it was excluded and once again authors were excluded if they were represented
with only one repository after this removal.

5.3.5 Summary of Data Collection

In total, then, we enumerated 66,619 C repositories on GitHub, collecting data on 11,164 that
GitHub reported as containing 32 KB or more C code with a single contributor. After cloning,
this number was reduced further after application of our filtering criteria to 1,618 repositories
representing the work of 669 authors. Once duplicate files, third-party libraries and copied repos-
itories had been removed, 1,381 repositories from 645 authors still retained sufficient numbers
of files to meet our inclusion criteria. Out of these, 120 authors had only a single repository left
in the dataset; i.e., their other repositories had been excluded by the filtering criteria. Therefore,
our evaluations were carried out on a final tally of 1,261 repositories from 525 authors. Table 5.1
gives the distribution of the number of repositories per author in our dataset, while our filters are
summarized below:

1. Removing repositories whose commit logs contained names/email addresses of different
people.

2. Removing code from “lib” and “ext” folders.

3. Excluding repositories with different owners that contain identical files, checked by hash
code.

4. Removing duplicate files from the same author, checked by hash code.
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Table 5.1: Distribution of repositories per author
Repositories Authors

2 396
3 88
4 25
5 8
6 2
7 2
8 0
9 2

10 1
11 1

5. Excluding repositories not containing a minimum of 32 KB of C source code (using a more
accurate measure than provided by GitHub) spread over 10–100 files, after the preceding
filters had been applied.

6. Excluding authors that were only represented by a single repository, after all preceding
filters had been applied.

5.4 Feature Extraction

As our tool is an Eclipse plugin, we wanted to integrate the task of feature extraction within the
plugin as much as possible and take advantage of the rich services provided by the IDE for code
parsing. Eclipse CDT provides a convenient mechanism for traversing the AST it constructs
internally, with an abstract class (ASTVisitor) one can implement and pass as an argument to
the object implementing the base interface of the AST (IASTTranslationUnit). Our feature set
is constructed largely from this tree traversal, where the Observer pattern [JGVH95] is used to
notify special classes that contain the logic to extract a particular feature category. Features that
are based on comments and preprocessor directives, such as macro definitions, are extracted with
a different mechanism as described in Section 5.2.2. In this case, comments and directives are
parsed with their own specialized feature classes.

We decided to extract features in the following categories:
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• Node Frequencies—The frequency of AST node type unigrams in the AST (discussed in
Section 5.4.1).

• Node Attributes—The frequency of AST node attributes. These are dependent on the
node type and provide more detail on the content of that node; e.g., for the node type
IASTBinaryExpression, there is an attribute “type” that defines whether the expression is
addition, subtraction, etc. (discussed in Section 5.4.2).

• Identifiers—Naming conventions, average length, etc. (discussed in Section 5.4.3).

• Comments—Use of comments, average length, ratio of comments to other structures, etc.
(discussed in Section 5.4.4).

These categories combined to give us a total of 265 features. We purposefully exclude typo-
graphical features, such as indentation and whitespace, as these inflate the accuracy of a classifier
at the cost of susceptibility to trivial attacks. Furthermore, as Simko et al. [SZK18] alluded to,
asking users to make many minor typographical modifications is tedious and frustrating, while
there would be little research novelty in automating such changes within our tool as code for-
matters are already very common and it would make our adversarial attacks less compelling.
Instead, we invoke Eclipse’s built-in code formatter in order to provide default protection for our
users against the weakest attribution systems, without considering such modifications as being
successful defences. We also decided against implementing node bigrams as used by Caliskan-
Islam et al. [CIHL+15], as this results in extremely high-dimensional feature vectors, or char-
acter n-grams, as implemented by Frantzeskou et al. [FSG+07], as these would be completely
impractical for producing recommendations to the user, being made up of combinations of partial
words, tokens and whitespace. As this is exploratory work and the main purpose of our thesis is
to explore defences against attribution, rather than performing attribution itself, this comprehen-
sive but not exhaustive set of features was chosen to be representative of the features one might
employ if wishing to perform authorship attribution while simultaneously being of a high enough
level to be the source of meaningful advice to present to the user. Our aim is to demonstrate the
feasibility of an approach to parse the model generated by a learning algorithm to automatically
produce change sets for misclassification. Because of the generality of this goal, we have pro-
vided a flexible framework that can accommodate varying feature sets; exploring such alternative
feature sets to discover those that succinctly capture an author’s style, while being amenable to
producing actionable advice, would be an excellent avenue for future work.
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5.4.1 Node Frequencies

Counting Nodes The AST class hierarchy used by Eclipse is not a one-to-one mapping be-
tween tokens seen in the code and classes/interfaces in the hierarchy. Each node typically imple-
ments multiple AST interfaces depending on its syntactical role, making the AST, when viewed
from a class hierarchy perspective, somewhat “hairy” (see Figure 5.1). The concrete class each
node object instantiates is not a suitable level of abstraction to count occurrences for our uni-
gram frequencies, because the Eclipse plugins involved have placed restrictions on referencing
these classes from external plugins, which are enforced to discourage their use. This is to protect
calling code from becoming too tightly coupled to a particular version of the Eclipse platform;
classes are not documented and may be subject to change at any time between even minor ver-
sion releases. Therefore, it is not advisable to assume beforehand which classes are going to
be present in the AST if we wish our plugin to be at least somewhat portable between different
versions of Eclipse; however, at the same time we must predefine our feature set as it is also
not practical to include within a plugin JAR file all the training data in its raw, unextracted form
(e.g., source and associated files). Therefore, we must include the background training data in
an extracted, normalized form of feature vectors ready to be imported directly into our learning
system (Weka). This means for our unigram node frequency features, we must focus on the in-
terfaces, rather than the implementing classes, which presents us with the problem of which of
the multiple AST interfaces that a class implements should it be counted against? The solution
we chose for this problem was to derive a list/array of all relevant interfaces (i.e., extensions of
the root ASTNode) that a node class implements, then record their counts against each of their
parent interfaces. In Java, classes can implement multiple interfaces and interfaces can extend
multiple parent interfaces. This can cause similar issues to multiple class inheritance when try-
ing to carry out reflection/introspection operations or navigate a class hierarchy. We decided to
use a list/array structure rather than a set, because an interface may be implemented or extended
twice in the same class hierarchy. In order to keep child counts in the correct proportion to their
parents, i.e. the sum of the occurrences of all child nodes equal to the occurrences of their par-
ent, it was necessary to count interfaces each time they were encountered, even if this meant
double counting. Indeed, in this case multiple counting is unavoidable if we wish our relative
frequencies to be meaningful—it is no use simply taking the interface that appears lowest in the
class hierarchy, immediately above the concrete class, because the class may directly implement
multiple relevant interfaces and moreover a class may directly implement an interface that is not
a “leaf” interface. In short, the problem we are facing is that each node in the AST is not a
single entity, but due to polymorphism, has its own class hierarchy, which is a graph, not a tree.
Mapping from one to the other to count occurrences for the purposes of frequency derivation
requires that each node in the graph be counted, regardless of its type. The counts for the two
nodes featured in Figure 5.1 are summarized in Table 5.2.
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CASTFunctionDefinition

ASTNode

IASTNode

IASTFunctionDefinition

IASTDeclaration

IASTAmbiguityParent

CASTSimpleDeclSpecifier

CASTBaseDeclSpecifier

ASTNode

IASTNode

ICASTDeclSpecifier

IASTDeclSpecifier

ICASTSimpleDeclSpecifier

IASTSimpleDeclSpecifier

Figure 5.1: Two AST nodes with their respective class hierarchies. The pale green ellipses are
the nodes, while orange labels represent classes (both concrete and abstract) and turquoise labels
represent interfaces.
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Table 5.2: Node counts for the two AST nodes depicted in Figure 5.1. An italicized name is the
concrete class. Neither these nor abstract classes are counted, only interfaces, hence the 0 counts
for rows whose names do not begin with an ‘I’.

Class/Interface Count

CASTFunctionDefinition 0
ASTNode 0
IASTFunctionDefinition 1
IASTDeclaration 1
IASTNode 1

CASTSimpleDeclSpecifier 0
CASTBaseDeclSpecifier 0
ASTNode 0
ICASTDeclSpecifier 1
ICASTSimpleDeclSpecifier 2
IASTSimpleDeclSpecifier 1
IASTDeclSpecifier 3
IASTNode 3
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Feature Representation In total, there are 89 AST interfaces we are interested in for the pur-
poses of frequency derivation. As discussed above, it was necessary to count the occurrences
of a relevant interface for each of its parent interfaces, up to the root ASTNode interface. Each
count is relative to its parent, so this means there are multiple independent counts of the same
interfaces in our feature set, named Child-ParentNodeFrequency to avoid collisions with other
features based on the same child interface. This resulted in a total of 95 AST frequency features,
representing the frequencies of the 89 interfaces.

5.4.2 Node Attributes

Many of the interfaces encountered define attributes that provide additional information about
the particular node type it represents. Table 5.3 provides some examples of this. The informa-
tion provided by these attributes is relevant to us, therefore we created features representing,
for example, the ratio of each unary expression type to the total number of unary expressions,
which would vary between authors that had a preference for prefix instead of postfix incre-
ment/decrement operators.

Table 5.3: Examples of node attributes
Interface Attributes
IASTBinaryExpression, IAS-
TUnaryExpression

int getOperator()—returns a flag indicating the type of oper-
ator; e.g., addition, postfix increment

IASTDeclSpecifier int getStorageClass()—returns a flag indicating the storage
class of this declaration; e.g., extern

IASTLiteralExpression int getKind()—returns a flag indicating the type of the literal;
e.g., character

5.4.3 Identifiers

Identifiers can provide a rich source of style information, demonstrating the programmer’s pref-
erence for certain naming conventions, for example, that can differ depending on educational
background, experience and native language. Depending on the method by which a programmer
learned their craft, they may have been taught or read about a variety of “best” practices regarding
naming of variables, functions, structures and so on. This can also indicate their prior experience
with other languages, as different languages sometimes have their own idiomatic preferred nam-
ing conventions. Their experiences working in teams either professionally or on open-source
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projects will also have moulded their preferences, with different organizations promoting dif-
ferent schemes amongst their team members; e.g., Microsoft’s use of Hungarian notation in its
Win32 API.17 Finally, programmers often use their native language when naming elements of
their code, particularly if they are accustomed to working in teams where their native language
is spoken. This could have an impact on average name length, or character frequencies, for
example.

To try to capture some of these preferences in our feature set, we labelled identifiers according
to the following characteristics (maintaining separate lists for the names of variables, functions
and structs/unions):

• Title Case—First and subsequent words within the identifier are capitalized; e.g., Title-
Case.

• Camel Case—First word is lower case, but subsequent words are capitalized; e.g., camel-
Case.

• All Caps—All characters are in uppercase; e.g., ALLCAPS.

• Underscore Delimited—Words are separated with an underscore; e.g., underscore delim-
ited, or ALL CAPS.

• Underscore prefix—The identifier begins with an underscore; e.g., identifier.

• Single char—The identifier is made up of a single character only; e.g., x.

• Hungarian notation—The identifier uses the so called Hungarian notation, which prefixes
the name with the type of the variable, or return type of the function, in lower case before
reverting to title case for the remainder of the identifier. This is harder to determine, as
the prefixes are often a single character, which could be part of a non-Hungarian notation
identifier. For example ‘a’ is used to denote an array, but an identifier may be called
“aCar”, for example, using camel case notation. These false positives are unavoidable, but
in code that is not actually using Hungarian notation, they would make up a small number,
so a high threshold could be used to separate the programs that genuinely use Hungarian
notation from those that returned a false positive result.

We refrained from using character frequencies or n-grams, with one exception described
below, as the sample would be far too small in any given file. Also, as we are precomputing

17https://msdn.microsoft.com/en-us/library/windows/desktop/aa378932(v=vs.
85).aspx
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our background training data, before the user’s training data can be known, comparing files with
one another is not possible, therefore shared names or words cannot be utilized. In any case,
shared words are likely to be highly identifying when training/evaluating from the same corpus,
i.e. when using cross validation, due to the shared functionality between files from the same
software repository, but would be far less so when evaluating files from different projects by the
same author, as would be the case for our tests. Unigram frequencies of all possible words is
similarly impractical, due to the high number of non-dictionary words that would be present, and
as we do not know what data the user will want to train and evaluate on in advance, we cannot
precompute the words that will be present in our corpus.

In addition to the above features based on labelling identifiers, we also extracted the follow-
ing:

• The character frequencies of single-char identifiers, as it was postulated programmers
would demonstrate a preference for particular characters when using single-char identi-
fiers. While many programmers may favour i, j and k for their control variables in for
loop constructs, others may favour a, b and c. Other programmers may habitually use
single-char identifiers in regular code.

• Average length of identifiers.

5.4.4 Comments

Similarly to identifiers, comments can be highly individualistic as they represent the least re-
stricted aspect of a program’s structure. There is no strict syntax within a comment and styles
vary greatly both in terms of number and length of comments, as well as their contents. Com-
ment contents range from simple notes on the intention of one or more statements, details of bug
fixes, TODOs (tasks) and code fragments, to forming part of formal API documentation. In our
feature set, we catalogue the following features related to comments:

• Comment frequency—As a ratio of total nodes.

• Single vs. multi-line preference—i.e., // or /* */

• Presence of header or footer comments—Before the first non-comment token, or after
the last.

• Character type ratio—ASCII to non-ASCII, letters to non-letters and control chars.
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• Use of frames—When non-letter chars are used to place borders around comments and
between sections; e.g., ********

• Use of tags—Providing metadata attributes, such as author, date and version.

In an earlier version of our feature set, character unigram frequencies were extracted; how-
ever, after testing it was decided to remove these as it was entirely impractical to implement
recommendations based on altering such frequencies; e.g., increasing the occurrences of one or
more letters and decreasing others. Furthermore, our experiments revealed only a modest drop
in classification accuracy after removing these features, illustrated in Section 6.1.

Once again, despite the actual words used in the comments probably revealing much about
authorship, creating features based on bag-of-words or word unigrams would be corpus-specific,
and as the user’s training data cannot be known in advance, it would be of little use without
including either the full representation of the background corpus, or at least the set of words and
their counts/files/author details found in the background corpus, so that the full training data set
including the user’s could be dynamically created. This latter option is feasible, although would
make the plugin larger and somewhat more complex, and is a possibility for future work. There
is also the question of realism, because although finding common words, such as names, within
multiple repositories by the same author would indeed be an identifying feature, we should re-
mind ourselves that the authors of these repositories are not trying to disguise their identity—they
have openly linked these repositories together to one account. In the case where a programmer is
concerned about remaining pseudonymous, it is unlikely they would include their real name, or
a user name that links them to an overt account they also use. It could also be the case, however,
that they have copied and pasted code they wrote in another repository into their covert repository
and this copied code includes their other username, so this could actually be a realistic consider-
ation. These, and other related questions, remain open problems in authorship attribution in both
the natural language and source code settings.

5.4.5 Other

Other features that do not fall into any of the categories mentioned above are:

• Size of AST—Total number of nodes (objects only), reveals more about the complexity
than a simple line count.

• Max breadth and depth of the AST—Can reveal something about the nesting habits of
the developer, i.e. a narrower, deeper tree indicates preference for more deeply nested
code.
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• Ratio of leaf to branch nodes—Also indicates a preference for shallow or deep nesting.

• Fraction of if statements with an else clause

• Average number of parameters to functions

5.5 Training and Making Predictions

Now that we had our background data corpus and a set of features we could extract from it, we
wanted to ascertain the ability of our feature set and chosen random forest classifier to make
predictions about the author of a file, and subsequently of an entire repository. We decided to
use a similar training and evaluation methodology to hold-one-out (see Algorithm 1), meaning,
for each repository in our dataset, we trained our classifier on all repositories except for the
one under evaluation, then we classified each file in the repository being evaluated and recorded
the result. The overall prediction of the author of an entire repository was simply the most
numerous author class assigned to each file in the repository. In the case multiple authors tied
for the plurality, the repository classification was deemed unsuccessful, as was obviously the
case when the most numerous class was incorrect. In general, if the number of classes is greater
than the number of files, as in our case, the minimum number of successfully classified files
necessary for a successful repository classification is two. In our case, the number of classes will
always be greater than the number of files, as we have restricted the number of files to less than
or equal to 100, but our class set has cardinality greater than 100. Another way to derive the
repository prediction using aggregation would be to sum the individual trees’ output predictions
for each class and file, then take the class that received the most votes from individual trees as
the repository prediction, or use this figure to produce a “top n” list of possible authors. It would
be worth exploring the differences this makes in future work. We present the results of our hold-
one-out evaluation against the entire corpus, with and without character unigram frequencies, in
Section 6.1.

5.6 Making Recommendations

A significant part of our system, and crucial to its effectiveness, was the ability to make recom-
mendations to the user on what aspects of their code they should change in order to disguise their
identity as a particular target author. Our reasons for imitating a specific individual, rather than
just “any” author, or “no” author (obfuscation) are as follows: first, with obfuscation the aim is
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Algorithm 1 Method for performing hold-one-out evaluation
for all r ∈ repositories do

training data← repositories \ r
evaluation data← {f | f ∈ r}
classifier ← train(training data)
results← ∅
for all f ∈ evaluation data do

prediction← evaluate(classifier, f)
result← 〈f, prediction〉
results← results ∪ result

end for
end for
// Find the most numerous predicted class
return max prediction(results)

to reduce the classification confidence to some target value, preferably to that of a random guess
or below that of some other author. This typically would involve perturbing the feature vector
to a position just outside the boundaries of that class in the feature space. A second classifier
trained on the same data, or with alternative background data, may derive a different boundary
that places the perturbed feature vector within the bounds of its original class. Furthermore,
there is the problem of selecting which features to perturb, and by how much. Imitation of “any”
author suffers from many of the same drawbacks. Granted, the direction and magnitude of per-
turbations is now more clearly defined (toward the nearest other author in the feature space), but
if it is known that the feature vector has been perturbed, the original author could be determined
by finding what classes are nearest to the feature vector’s position other than the given class. In-
deed, we must assume everything is known about our defences, and design a system that is secure
despite this knowledge; this design requirement follows from Kerckhoffs’ Principle [Ker83].

5.6.1 Requirements

We have the following requirements for our system:

1. The advice should relate to something that is possible for the programmer to change, so not
refer to something that is inherent to the programming language itself, or violate syntactical
rules of the language.
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2. The recommendations should not contradict one another, so not advising the user to in-
crease one feature while simultaneously decreasing another that is strongly positively cor-
related.

3. The user should be presented only with changes that contribute to the desired misclass-
ification—either reducing confidence in their classification or increasing it in the target
author.

4. There should be a minimum of effort on the part of the user; they should be presented with
the minimum set of changes required to effect a misclassification as the target.

5. The recommendations should make sense to the user; they should be able to understand
what is required.

6. Similarly, the advice should not be too vague; there should be a clear connection between
the recommendation and the content of each file.

7. As our tool is aimed at open-source developers, we want them to be able to implement the
changes without having a large negative impact on readability of the code.

Of these requirements, the first two are the most important and possibly easiest to ensure.
The first equates to correctness and is mostly a requirement of feature selection, extraction and
representation. If our feature set captured elements of the code that were beyond the control
of the programmer and simply a result of the programming language syntax, clearly this would
be pointless and not contribute to the overall classification, and in fact would probably be a
hindrance. The second requirement equates to consistency and refers to our ability to analyze
the dataset and the relationships between features; we cannot simply derive recommendations
from the features in isolation, but must take into consideration how features are related and what
impact a recommended change has on the rest of the features.

The third and fourth requirements relate to how we extract meaning from the classification
model itself. The third equates to relevance and can be met by only considering features that
are actually used by the learning algorithm. With random forests, a form of feature selection
occurs during induction, due to the algorithm selecting the best feature/value split at each node
from among a random subset of the total features. Therefore, the more important and influential
features will be seen with greater probability in each tree. With a sizable forest, the inherent
variation introduced with the randomness of bootstrapping and the selection of the feature subset
at each node will be smoothed out. This should result in the most relevant and strongly corre-
lated features appearing most often, while the probability that a unimportant or irrelevant feature
would appear with any great frequency is vanishingly small. This gives us the ability to “rank”
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recommendations according to their influence on the overall (mis)classification, which is gov-
erned by how many paths within the decision trees contain the feature. If every path in every
tree in the forest that leads to a certain class contains the same feature, that feature has maximum
influence on that classification. If every path in every tree contains the same feature, across all
classifications, that feature has maximum influence on the population as a whole. Conversely,
if a feature does not appear in any path leading to a certain class, that feature can be ignored or
assigned any arbitrary value, as it does not contribute to the classification. In some situations,
it can be beneficial to know which features fall into this category, as being able to assign arbi-
trary values to a feature can help when needing to adjust values in another, related feature that
does contribute to the classification, without directly modifying the underlying content relating
to that other feature (more on this later). By only making recommendations to the user that will
actually affect their classification, we can maximize the effectiveness of the plugin, and reduce
the impact on the original code. The fourth requirement equates to efficiency and can be met by
calculating some form of effort requirement to transform the user’s feature vector into one that
elicits a classification as the target. If our analysis presents us with a set of feature vectors that
each produce a classification as the target, then we can use this measure of effort between the
user’s vector and each of the adversarial vectors to select the one requiring the least effort.

The fifth and sixth requirements are related to the tool’s communications with the user. The
fifth equates to simplicity of communication, and can be met by using language that is familiar
to programmers, but without introducing too much jargon. A certain level of familiarity can be
assumed with technical terminology, but where applicable, alternative terms should be used for
the same concepts, as not everyone will use the same lexicon. The sixth requirement equates to
clarity and is mostly related to the features used. Features based on vague patterns found in the
file contents that are not tied to discrete semantic objects, such as character n-grams rather than
words, are going to be hard to relate to real content. Any feature that derives its values from
the contents of a file must be based on semantic structures found in that content, therefore more
concrete features must exist that relay the same information.

The final requirement equates to non-intrusiveness, and is the most difficult of the require-
ments to meet. It is dependent, to a large extent, on the person implementing the change, and
how exactly they choose to do it. However, it is also dependent on the feature set and the inter-
pretation of the classification model. As mentioned above, vague recommendations are hard to
relate to real content and can result in highly intrusive changes that affect readability and other
desirable aspects of the code, possibly even to the detriment of performance and correctness. If
the classification model is interpreted incorrectly, superfluous or over-zealous changes may be
recommended and the more changes made, the more chance there is of one having a negative
impact. As automated program comprehension is far beyond the scope of this thesis, we cannot
expect our plugin to “know” what recommendations it makes will maintain the readability and
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desirable behavioural aspects of a program—this must be the job of the user in their interpretation
of the advice. All we can do, then, is try to ensure the features are at a level of abstraction that is
not too vague, nor too far reaching and fundamental; while features at the lowest level, such as
character or byte n-grams, make for vague and confusing recommendations, features at the high-
est level, such as design patterns or overall architecture, make for intrusive and time-consuming
alterations, leading to extensive refactoring.

Summarizing these requirements as a set of desirable properties for our system, we have that
it should be correct and consistent with regard to feature selection and analysis, while being
relevant and efficient in selecting changes. These changes should be non-intrusive and commu-
nicated with simplicity and clarity to the users.

5.6.2 Parsing the Random Forest

A random forest contains a great deal of information about its training dataset. As discussed
above, Requirement 3 states that the user should only be presented with changes that will affect
their classification. We described an approach to solving this by only considering features that
are present on paths leading to our user’s present classification, and on paths leading to leaf nodes
that classify as our target. Finding the set of features and their split points that contribute to our
current classification is relatively straightforward, requiring only a minor modification to Weka
to add a method that can return this information. As we already have our user’s feature vector,
we simply need to evaluate that vector for each tree in our forest, recording the feature splits
found at each node along the way. As data structures, trees have the property that each node is
itself the root of its own subtree. This recursive property lends itself to recursive algorithms for
traversing the tree structure quite elegantly. Our algorithm for deriving the set of feature splits
for a particular feature vector is also recursive in nature and is given in Algorithm 2.

Finding the set of features and their splits points that exist on paths leading to our target’s
classes is a little more complex, as we do not have a feature vector to traverse the tree with,
however a recursive solution is once again our preferred approach, using a post-order traversal,
and can be summarized as follows:

1. Traverse each path in the tree down to the leaf nodes;

2. Check the majority class at each leaf node—if it is our target, start a list whose first element
is the leaf node;

3. At each branch node, check whether its child nodes eventually lead to a leaf node whose
class is the target. If so, add the current node to the start of each list returned by the
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Algorithm 2 Method for retrieving feature splits for a given vector from a random forest
function GETSPLITS(~x : (x1, x2, . . . , xn), forest : {tree1, tree2, . . . , treen})

allSplits← ∅
for i ∈ {1, . . . , |forest|} do

allSplits← allSplits ∪ GETSPLITSFORTREE(treei, ~x)
end for
return allSplits

end function

function GETSPLITSFORTREE(tree : (node, treeleft, treeright), ~x)
if node = null ∨ (treeleft = null ∧ treeright = null) then

return ∅
else

// node : (i, featurei, split ∈ R)
splits← splits ∪ {node}
if xi < split then

splits← splits ∪ GETSPLITSFORTREE(treeleft, ~x)
else

splits← splits ∪ GETSPLITSFORTREE(treeright, ~x)
end if

end if
return splits

end function
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child node, additionally indicating whether the split is left or right (less than or greater
than/equal, respectively);

4. Once the root node has returned, there will be n lists, one for each leaf node that classifies
as the target, containing all the feature/value splits and their left/right direction for the
nodes on the paths leading to the leaf nodes;

This is presented more formally in Algorithm 3. Note that this algorithm returns nested data
structures, organized by tree, path and node, in that order. Most nodes will appear in more than
one path, as multiple leaf nodes may be reachable from each branch node, and each leaf node is
the endpoint of a distinct path.

Note also that this algorithm can be modified to additionally return the feature vector of each
training instance of our target class, if the random forest is adapted to have a “memory” of its
training instances. We made this adaptation to Weka’s implementation of Random Forest, for
reasons that will be elaborated in the next section.

5.6.3 Analyzing the Split Points

Now that we have a set of feature/value splits that lead to our current classification and our
target’s, we can find a set of changes that, if implemented, will lead to us being classified as
the target. We can actually reduce this to simply finding a set of feature value intervals that
will be classified as the target, then perform a difference calculation with our current feature
values and present to the user as recommendations the features that are outside this interval, with
information on exactly how much to perturb each feature in order to move within the range.
Intervals are the natural representation when dealing with decision trees, because each split point
in a tree defines two intervals; e.g., if the split point is x, then the two ranges are [0, x), [x,+∞).
Two split points define three ranges; e.g., x, y ∈ R : x < y → [0, x), [x, y), [y,+∞). In general,
n split points define n + 1 intervals. If we include the implicit end points 0 and +∞, then there
is one fewer interval than there are split points. We now have the following representation for
multiple split points extracted from a random forest:

splitsf = {s1 = 0, s2, s3, . . . , sn−1, sn = +∞ | si < sj}

Representing the following intervals:

intervalsf = {[s1, s2), [s2, s3), . . . , [sn−1, sn)}
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Algorithm 3 Method for retrieving paths for a given class from a random forest
function GETSPLITSFORFOREST(forest, targetClass)

paths← ∅
for all tree ∈ forest do

paths← paths ∪ GETSPLITSFORTREE(tree, targetClass)
end for
return paths

end function

function GETSPLITSFORTREE(tree, targetClass)
paths← ∅
if tree is a leafNode then

if nodeClass = targetClass then
paths← paths ∪ {()}

end if
else

for all child ∈ tree.children do
childPaths← GETSPLITSFORTREE(child, targetClass)
for all childPath ∈ childPaths do

childPath← (feature, split, direction ∈ {left, right}) ∪ childPath
end for
if childPaths 6= ∅ then

paths← paths ∪ childPaths
end if

end for
end if
return paths

end function
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Where |intervalsf | = |splitsf | − 1. In our case, we are also concerned with the direction
of the split; i.e., whether the path leading to our target class requires that the value of the feature
be greater than/equal or less than the split point, or both (splits found higher in the tree, i.e. at
lower depths, often lead to leaves of a given classification in either direction). We can construct
two sets, Γ and Λ, containing all the split points where the path we are interested in follows the
greater than/equal or less than split, respectively:

Λ = {λ1, λ2, . . . , λn−1, λn = +∞},Γ = {γ1 = 0, γ2, γ3, . . . , γm}

We can place an element in both sets to represent the case where paths exist following both
sides of the split. If we order the two sets, such that:

∀i ∈ {1, . . . , |Λ|}, j ∈ {1, . . . , |Γ|} : λi−1 < λi ∧ γj−1 > γj

And: λ0 = minval(Λ) and γ0 = maxval(Γ), we can construct an interval for each:

[0, λ0), [γ0,+∞)

Such that values in the intervals are guaranteed to satisfy all the split points in their relative
sets. Furthermore, if λ0 > γ0, we can define an interval: [γ0, λ0) that is guaranteed to satisfy all
split points in both Γ and Λ:

γ0 ≤ x < λ0 =⇒ ∀γi ∈ Γ, λj ∈ Λ : γi ≤ x < λj

As our decision trees are inducted from multiple training instances, it can easily be the case
that our constructed sets Γ and Λ contain split points that are less harmonized, causing an overlap
between elements’ split points. If λ0 ≤ γ0, we can construct two subsets, Γ′ = {γ ∈ Γ | ∃λi ∈
Λ : γ ≥ λi} and Λ′ = {λ ∈ Λ | ∃γi ∈ Γ : λ ≤ γi}, then our task is to remove the least number
of elements from either Γ or Λ to reduce both Γ′ and Λ′ to ∅. If we once again order the two sets,
such that the elements in Γ′ are in ascending order and Λ′ are in descending order, we can store
our values into a stack, pushing the elements in order so the top of the stack for Γ′ is the highest
numbered split and for Λ′ it is the lowest. Now, we only need to compare the top of each stack,
and if peek(Γ′) ≥ peek(Λ′), we choose one side to pop according to some rule, and repeat until
peek(Γ′) < peek(Λ′). This approach is summarized in Algorithm 4.
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Algorithm 4 Overall structure of an algorithm for deriving an interval satisfying the split points
of a feature seen on paths in the forest

Let splits be a set of decision point tuples, containing non-negative split value and direction
(left, right) for a particular feature.

function GETINTERVAL(splits)
Γ,Λ← empty list
for all split ∈ splits do

if split.direction = right then
add split.value to Γ

else
add split.value to Λ

end if
end for
SORT(Γ, desc)
SORT(Λ, asc)
if γ0 ≥ λ0 then

RESOLVEOVERLAP(Γ,Λ)
end if
return (γ0, λ0)

end function

function RESOLVEOVERLAP(Γ,Λ)
while γ0 ≥ λ0 do

ϕ← CHOOSE(Γ,Λ, paths) // rules used here are described later
if ϕ = γ0 then

remove γ0 from Γ
else

remove λ0 from Λ
end if

end while
end function
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Path Aware Taking this view of our decision trees and hence random forest, as being a set of
decision points made up of a feature, value and direction (<,≥), it is easy to forget the context
within which these decision points lie—to not see the forest for the trees (or the trees for the
paths (or the paths for the steps)). A path is a sequence of steps (decision points) leading to a
classification:

Π = {π0 = (φ0, x0, ψ0), . . . , πn−1 = (φn−1, xn−1, ψn−1), πn = (θ)}

Where φi is the feature, xj is the split point, ψk ∈ {<,≥} and θ is the class. Paths have the
property that all decision points must be satisfied to reach the classification. In fact, a path is
uniquely defined by its decision points; if a condition is not met by a certain value, then there
must exist another path in which that condition is met by the value. By taking this conceptual
view of a decision tree, and in turn a random forest, as being a set of paths, it becomes clear that
if we eliminate a particular split from either of our sets Λ or Γ, we have effectively eliminated
the entire path that contains the decision point represented by that split, and we should therefore
remove all the other splits on that path from our consideration in their respective Λ or Γ too. If
we fail to remove these “broken” paths from our consideration, we may later make decisions to
disregard other nodes on unbroken paths, due to the presence of nodes on broken paths. As we
consider features one by one, slowly our trees become more “pruned”, resulting in less overlap
between the respective Λ and Γ sets.

As the result of parsing our random forest returns data for all paths leading to our target class,
if the result of not meeting a given condition is a path that still leads to our target class, then we
know that path will exist in our set of paths and so that node will still form part of our change
set for making recommendations, therefore we need not be concerned. Conversely, if the result
is a path that does not lead to our target classification, we know that path will not exist in our set
of paths and the node will truly be excluded. We took this approach in our system, modifying
Algorithm 4 so all nodes in a given path are disregarded if any one of the nodes in the path is
disregarded.

One difficulty in taking this path elimination approach is deciding which feature to consider
first. The order in which features are chosen can have a significant impact—if the first feature’s
set of conditions happens to contain a large degree of overlap, a lot of paths would be eliminated,
but this may not necessarily be optimal. Calculating all possible combinations of feature ordering
in this respect, to decide which is optimal would be expensive computationally. As a path is a
sequence of conditional steps towards a given classification, it is natural to consider conditions
in ascending order of depth. Therefore, in our implementation, we took the greedy approach of
deriving intervals for all the conditions at a particular depth, di, before di+1. Once an optimal
interval has been derived for the features found at depth di, these form the endpoints for the
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ordered sets/stacks Γ and Λ for that feature at depths dj | j > i, meaning any conditions at
dj with splits lower or higher than their respective endpoints are dropped automatically. This
favours the conditions at lower depths, which is a reasonable assumption, as these conditions
have the greatest influence on classification, and are likely to be present on multiple paths.

Tree Aware In addition to being more path aware when choosing to disregard a certain node, it
is also necessary to be aware of the individual trees the paths exist within. The overall output of
our ensemble classifier is determined by the number of trees that voted for each class, therefore
it is beneficial to maximize the number of different trees represented in a set of recommended
changes, to increase our potential votes, as each tree can vote only once on the output classifi-
cation. When selecting a decision point to exclude, it is therefore advisable to select one from
a tree that includes other potential paths to our target class rather than one from the only path
present in a tree. We also included this heuristic in our implementation of Algorithm 4.

Cluster Aware Finally, in order for our calculated intervals to produce feature vectors that will
actually classify successfully as our target, it is necessary to take a holistic approach. Hitherto,
we have considered our features as isolated variables that can be optimized independently of
one another to satisfy the maximum number of decision points, only referencing other features
when deselecting entire paths. It is important to note, however, that paths are constructed during
induction from real training instances, and as such, each path represents a set of features that are
in synergy with one another, representing some configuration of the system we are modelling
(the source code) that is feasible and makes sense in the rules of the system. So, for our model,
each path represents a combination of elements in a source code file that can co-exist in the
definition of the language syntax and produce features whose values satisfy the conditions of the
path’s decision points. We can extrapolate this argument further, by noting that any paths that
were constructed from the same cluster (sets of training instances that can be grouped together
in the feature space), if combined, must produce a set of decision points that some concrete
instances can satisfy. Note that this does not mean any feature vector that can satisfy such a
set is a feasible combination of real elements that could be found in a source code file. The
decision points created in a decision tree represent open-ended intervals—they divide sets of
training instances, but do not bound them. However, we can guarantee that it must be possible
for at least k real instances to exist that satisfy the decision points, where k is equal to the
cluster size, because those decision points are based on the same k training instances. If we
take different paths leading to the same classification, but that were constructed from different
clusters, we cannot just arbitrarily combine the decision points from these two paths to construct
a set of recommendations, because unless we know these paths led to the same cluster of training
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instances, we do not know if the features found can be combined to represent a source code file
that is possible to exist.

As each tree is presented with a slightly different training set and selects from a random
subset of features at each node during induction, we cannot guarantee that the same clusters
will be present throughout our forest. This is particularly true for larger clusters, where the
probability that one of the training instances was not present in the training set is higher. If
two clusters are not exactly the same, we cannot guarantee that combinations of decision points
derived from paths leading to either of the two clusters will be satisfiable. Previously, we noted
that maximizing the number of trees increases the potential classification confidence, or number
of votes, of our target class by the ensemble. Therefore, rather than combining paths for a
particular cluster, it is better to combine paths for a particular training instance. The rationale
behind this is simple: firstly, by selecting only paths leading to a particular training instance, we
guarantee to find a set of decision points that are satisfiable by files that can exist. Secondly, we
will also automatically find a set of decision points that are satisfiable by any other files in the
same cluster. This is true whether the size of the cluster is one or 100. Algorithm 5 enhances
Algorithm 3 with modifications for retrieving nodes by training instance, while Algorithms 6
and 7 are an update to Algorithm 4 with tree- and path-aware behaviour.

Limitations While the approach presented here is a technique for deriving a set of feature value
ranges that are guaranteed to be satisfiable by real source code files, and hence is applicable in
practice, there are certain limitations which should be noted.

The first limitation is that finding sets of conditions for a particular training instance is only
possible for trees that were inducted on training sets containing that instance. As bootstrapping
employs sampling with replacement to produce an alternative training set the same size as the
original, any particular training instance is likely to occur in only 1− 1

e
≈ 63.2% of decision trees,

which means we are only able to gather information from that proportion of our forest to aid us.
In reality, we are likely to accumulate some votes from trees that we did not parse, as a feature
vector that has already been perturbed to resemble our target class is likely to also resemble it in
some unparsed trees, if the out-of-bag error is sufficiently low, the data set exhibits a degree of
clustering and the we have not suffered from overfitting. We could improve this situation further
by evaluating the training instance against the decision trees inducted without it, noting when it
was classified correctly, and also including these paths in our paths set. This would be a suitable
avenue for future work.

The second limitation, also in relation to solving for a particular training instance, is that a
feature vector perturbed according to our recommendations is not guaranteed to return an op-
timal classification confidence. One way we could optimize our feature vector towards higher
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Algorithm 5 Method for retrieving paths for a given class by training instance from a random
forest

Let forest be a collection of decision trees
Let tree be the root of a decision tree, consisting of a feature ID (∈ N), split value (∈ R),
class distribution (∈ RN ) and pointers to two child trees, left and right
Let leafNode be a special tree with no children, which contains training instances
function GETSPLITSFORFOREST(forest)

paths← ∅
for all tree ∈ forest do

treePaths← GETSPLITSFORTREE(tree, targetClass)
Add treePaths to paths

end for
return paths

end function
function GETSPLITSFORTREE(tree, targetClass)

paths← ∅
if tree is a leafNode then

if most numerous class = targetClass then
for all trainingInstance ∈ leafNode do

Initialize path structure, containing the trainingInstance and an empty tuple
Add path to paths

end for
end if

else
for all child ∈ children do

childPaths← GETSPLITSFORTREE(child, targetClass)
for all childPath ∈ childPaths do

// Direction is determined by checking if child is the left or right child
Add (feature, split, direction) to start of tuple contained in childPath

end for
if childPaths 6= ∅ then

Add childPaths to paths
end if

end for
end if
return paths

end function
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Algorithm 6 Method for deriving intervals for a set of paths
Let paths be a set of path items from a random forest for a specific training instance.
Let path be a sequence of conditions in a decision tree
Let condition be the tuple (tree, path, feature, split, direction), where tree ∈ N, path ∈ N,
feature ∈ N, split ∈ R and direction ∈ {left, right}.

function GETINTERVALS(paths)
intervals← empty hashtable
for j ∈ {0, 1, . . . } do

// Build a hashtable of conditions found at depth j in each path, indexed by feature
conditionsj ← BUILDFEATURESPLITS(paths, j)
if conditionsj is empty then

break // Max depth reached
else

for all conditionsEntry ∈ conditionsj.entries do
if conditionsEntry.key ∈ intervals.keys then

interval← intervals.get(conditionsEntry.key)
featureConditions← conditionsEntry.value
set featureConditions endpoints to min and max from interval

else
set featureConditions endpoints to 0 and∞

end if
// Defined in Algorithm 4
interval← GETINTERVAL(featureConditions, paths)
intervals.put(conditionsEntry.key, interval)

end for
end if

end for
return intervals

end function
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Algorithm 7 Method for deriving an interval satisfying the split points, with tree- and path-aware
modifications

Let conditions be a set of condition tuples (tree, path, feature, split, direction), where
tree ∈ N, path ∈ N, feature ∈ N, split ∈ R and direction ∈ {left, right}.
Let paths be a set of path items from a random forest for a training instance τ .

function GETINTERVAL(conditions, paths)
Γ,Λ← empty list
for all condition ∈ conditions do

// It is assumed conditions with left and right directions exist twice in conditions
if condition.direction = right then

add condition to Γ
else

add condition to Λ
end if

end for
SORT(Γ, desc)
SORT(Λ, asc)
if γ0 ≥ λ0 then

RESOLVEOVERLAP(Γ,Λ, paths)
end if
return (γ0, λ0)

end function

function RESOLVEOVERLAP(Γ,Λ, paths)
while γ0 ≥ λ0 do

ϕ← CHOOSE(Γ,Λ, paths)
if ϕ = γ0 then

remove γ0 from Γ
else

remove λ0 from Λ
end if
remove path from paths

end while
end function
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Algorithm 7 continued

function CHOOSE(Γ,Λ, paths)
numPathsγ ← GETNUMPATHSINTREE(γ0.tree, paths)
numPathsλ ← GETNUMPATHSINTREE(λ0.tree, paths)
if numPathsγ = 1 ∧ numPathsλ > 1 then

return λ0
else if numPathsλ = 1 ∧ numPathsγ > 1 then

return γ0
else

// Check which side has the greatest gap to its successor
if γ1 − γ0 > λ0 − λ1 then

return γ0
else if γ1 − γ0 < λ0 − λ1 then

return λ0
else

return Choose randomly ∈ {γ0, λ0}
end if

end if
end function

function GETNUMPATHSINTREE(treeId, paths)
numPaths← 0
for all path ∈ paths do

if path.tree = treeId then
numPaths++

end if
end for
return numPaths

end function
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confidence is with some form of metaheuristic algorithm, such as simulated annealing, memetic
search, hill climbing or genetic algorithms. These all feature randomly initialized populations of
potential solutions and some form of objective function determining “fitness” of a solution, with
fitter solutions propagating into later iterations of the algorithm. In our case, the objective func-
tion would, of course, be an evaluation by the random forest, returning the confidence value of
our target as the primary measure of fitness (and possibly the confidence in our user as an inverse
secondary measure). The open question in this case would be whether discovered solutions can
exist in terms of the original source code. Furthermore, is it the case that a solution reaching
high confidence must represent a feasible solution; i.e., would the random forest encode in its
multitude of nodes a definition of what is possible to exist? By extension, could we assume that
such solutions are feasible and safely present them to our users? Another potential issue with this
form of search through optimization is it does not naturally return intervals, but rather discrete
points in the feature space. Deriving a set of intervals to use for making recommendations from
a set of discrete points in our feature space would be a difficult problem, possibly reducing to our
original problem, albeit with clearer clustering.

5.6.4 Presenting to the User

Once we have a set of intervals, grouped by training instance, that can be used to achieve a
certain classification, our next task is to derive concrete recommendations for the user. Initially,
we must decide which training instance we want to use the set of intervals for. We decided to
base this decision on the degree of change required, primarily how many features to change and
secondarily how many edits within each change. For features based on relative frequencies and
arithmetic means, the difference between the current and recommended values is first calculated,
then this is multiplied by the denominator value that was used to derive the frequency or mean. If
the current value is 0, the recommended value can be inverted and rounded to the nearest integer
to give an approximation of the number of changes; e.g., to change the frequency from 0 to 0.5, at
least 2 changes would need to be made. For Boolean-valued feature changes, the number of edits
is counted as one. We also chose to use the closest endpoint of the recommended interval when
presenting the suggested changes to the user, although they are also advised where the opposite
extremum lies to avoid over-editing. If the user edits their source file, the degree of change metric
will change for each of the target instance intervals. It is possible that these edits may result in
a different set of target intervals returning a lower number for the degree of change, in which
case all the suggested feature values would be updated. Further edits may cause the target to
change repeatedly, particularly if the distances between the user’s feature vector and the targets
were high—a consequence that would be rather disconcerting for the user. In order to maintain
consistency in our recommendations and avoid this “moving target” problem, the plugin records
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the chosen training instance and its intervals, so this selection process is only necessary the first
time the user’s file is evaluated.

Lists of recommended changes are presented to the user and grouped according to their re-
lationship with other features. In the case of node type unigrams, they were grouped with their
siblings according to the extended interface they shared. Features that were already within their
recommended intervals were given, along with features that did not appear in any trees and paths
for that training instance. This is because knowing these values can be incredibly useful when
planning edits to a file, as it informs the user which features can safely be added to or removed
in order to satisfy a related feature’s recommendation. Recommendations that are not currently
met by their respective features are marked for clarity.

Each recommended change is formatted according to a template, indicating the potential
influence of the change (according to how many trees and paths it was seen on in the forest),
the direction (increase/decrease), and magnitude. Additionally, the feature’s name is mapped
to a more descriptive term to aid the user determine what aspect of their file is required to be
changed. The next section provides details on using the plugin with screenshots illustrating the
aspects described here.

5.7 Using the Plugin

In this section, we will describe the plugin and its workflow from the user’s perspective. There
are three main functional components to the system that are accessible to the user: training a
model, evaluating one or more files and making recommendations, and saving/loading trained
models. These actions are presented as commands in a menu accessible from the main toolbar in
the Eclipse editor (see Figure 5.2).

Setup Before using the plugin, the user should have a corpus of publicly available source code
they have authored that is attributable to them, and a second corpus of source code that has not yet
been published, for which they wish to disguise their authorship. In this case, their public source
code will form part of the training data and be combined with the background data included with
the plugin.

Training After selecting this option, the user is presented with a resource selection dialog (see
Figure 5.3), which they can use to select either individual files or entire folders and projects that
are present in the Eclipse workspace (collectively known in Eclipse as resources). The selected
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Figure 5.2: Plugin menu

resources can include files that are not source code files, as the plugin filters out files that do not
contain C code. When training a model, the user should select resources that do not include the
file(s) they wish to modify. Once the plugin has the list of source code files, it proceeds to extract
the features described in Section 5.4 to produce a feature vector for each file, informing the user
once this process is complete. These feature vectors are combined with the background training
data and used to train a random forest classifier from Weka by calling the embedded weka.jar
file, which produces a model.

Saving and Loading To enable users to work across multiple sessions, being able to save
the current model and load it at a later time is vital. Due to the inherent randomness in the
random forest algorithm, there can be a fair degree of variation between models trained on the
same data, causing significant extra work for the user if they must generate a new model in
each session. This would be compounded by the plugin potentially choosing a different training
instance’s set of conditions each time, according to the degree of change metric discussed in
Section 5.6.4. Upon selecting the save action, the user is asked to choose a destination and the
model is serialized to that location and given a standard name (“stylecounsel.model”). When
loading, the model file is also assumed to have this standard name.
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Figure 5.3: Resource selection dialog for training
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Evaluation Upon choosing this command, the user is once again presented with a resource
selection dialog (see Figure 5.4) from which they can select one or more resources they wish to
evaluate and generate recommendations for. If no trained model exists at this point, the command
will exit without taking any action. Assuming a model does exist, the plugin extracts features
for the files being evaluated, classifies them using the trained model and outputs messages in-
dicating the classification and confidence of each file (see Figure 5.5), as well as an aggregate
classification/confidence value for the set of files (see Figure 5.6), if more than one file was se-
lected. Following this, the recommendations are generated by initially computing all paths in
the forest leading to each training instance of the target class (defined a priori). These paths are
processed according to the algorithms presented in Section 5.6, the differences are calculated and
finally recommendations are generated and placed into template messages as described in Sec-
tion 5.6.4. The recommendations are given as warnings in the “problems” view in the workspace
(see Figures 5.7, 5.8 and 5.9).

Figure 5.4: Resource selection dialog for evaluation
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Figure 5.5: Individual file output

Figure 5.6: Aggregate output

Figure 5.7: Overall recommendations view
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Figure 5.8: Sample recommendations—statements

Figure 5.9: Sample recommendations—unary expressions

5.8 Pilot User Study

In order to help assess the usability and feasibility of our plugin, we conducted a small pilot
user study. It was felt receiving feedback from real users would be invaluable in developing
an effective tool, particularly as there is no way to automate the evaluation of these aspects of
the system. We can automate the evaluation of our feature set and recommendation extraction
algorithm, but not its usability.

5.8.1 Study Details

For our pilot study, we chose participants that had C programming experience and a corpus of
source code files they had authored. Three members of the CrySP (Cryptography, Security, and
Privacy) lab at the University of Waterloo who satisfied these criteria volunteered for the study.
Each participant was given two tasks; the first was to manually analyze another author’s source
code with the aim of identifying elements of their style and reproducing those elements in one of
the participant’s own files. The second task was to use our plugin to achieve the same goal, with a
different author so as not to confer an advantage by already having carried out the first task. The
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tasks were chosen in this order so that completion of the assisted task would not provide the user
with insights into the feature set for the unassisted task. Our Office of Research Ethics approved
our study (reference number ORE#22378). We present the results of this study in Chapter 6,
next.
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Chapter 6

Results

In this chapter, we review the results from the series of evaluations we made against the various
aspects of our system. These evaluations are described in Sections 5.5 and 5.8.

6.1 Conducting Source Code Authorship Attribution at the
Internet Scale

Our first evaluation was to empirically test our feature set and random forest combination against
the entire corpus we obtained, as described in Section 5.3. This evaluation was conducted on an
80-core, 2 TB server in the CrySP RIPPLE Facility,1 of which 512 GB was used per test run.
We initially evaluated with two different feature sets: one containing character frequencies in
comments and string literals, and one without. These features and our reasons for excluding
them from the final system were previously discussed in Section 5.4.4. We include the results
of evaluating with and without them to assess the cost of removing them compared to the ben-
efits. Figure 6.1 gives the results of evaluating for individual files, while Figure 6.2 gives the
repository-level results.

Using the hold-one-out methodology required us to train a new classifier for each repository,
as the background and evaluation data sets changed with each evaluation. In fact, our method-
ology involved more than just hold-one-out (for evaluation), as it entailed, for each repository
being held out, training on just one of the author’s repositories at a time, so the hold-one-out
was also enacted on the training data as well as the test data. For authors that had exactly two

1https://ripple.uwaterloo.ca/
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Figure 6.1: Overall accuracy of identifying the author of each file in the complete data corpus
using feature sets with character frequencies and without
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Figure 6.2: Overall accuracy of identifying the author of each repository in the complete data
corpus using feature sets with character frequencies and without
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repositories this had no effect, but each repository for authors with more than two was evaluated
multiple times, n(n − 1) for n author repositories to be exact. The reason for this was because
we wanted to reduce the effect of one copied repository “misleading” the learning algorithm and
having a negative effect on the outcomes of the author’s true repositories. Therefore in total, we
ran our experiment with 1,261 repositories, but performed 2268 evaluations, which took a total
of 36:17 hours, averaging 57.59 seconds per repository evaluation.

Our initial test run with 1,261 repositories and 525 author classes returned a successful clas-
sification for 14.97% of files when using the feature set that included character frequencies and
12.92% without these features. For the repository level, this translates to 26.19% and 24.56%,
respectively. The difference excluding the character frequencies makes is fairly small, but not
trivial. Looking at Figure 6.3, which breaks the success/failure down by how many repositories
were completely misclassified (all fail), failed but with some successful, successful but with some
failures, and completely successful (all correctly classified), the main difference from removing
the character frequencies is in the marginal categories of partial success/fail, while the total fail
and total success categories are largely unaffected. While removing character frequency features
clearly has a negative overall effect on classification ability, we felt the difference was not great
enough to justify including such low-level features that would certainly impact the usability of
the tool and render advice based on these features highly impractical.

While the accuracy of our classifier and feature set may not be very high (although far higher
than a random guess, which would be less than 0.2%), we would like to stress that we do not
rely on typographical features, such as indentation, or presence of word unigrams, which capture
specific variable, function and macro names. Such features are known to be highly influential
in performing classification, but the resulting models have been demonstrated to be vulnerable
to even trivial attacks [SZK18]. Also, as discussed in Section 5.4, word unigrams require an
analysis of the entire corpus; however, in our case there are practical limitations to including
the entire corpus within the plugin at training time, and the user’s own files, which are the most
crucial to accurately represent in the training data, cannot be known in advance. A small number
of our features are based on the apparent naming scheme employed, which we argue is more
representative of overall style than matching specific names, and is harder for an adversary to
modify—specific names and word unigram features can be modified with a single character edit.
We do not use any typographical features in our system either, but do invoke Eclipse’s built-
in code formatter to provide protection against weaker attribution systems, without including
the effect of this type of modification in our results. Furthermore, we employ a modified hold-
one-out methodology at the repository level, which is a considerably more strenuous test of our
feature set and classifier than cross-validation. Performing cross-validation would mix data from
all of a user’s repositories in both training and test sets, resulting in similarities that are influenced
more by the purpose of the repository than the author’s style. Finally, we are more concerned
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with exploring the challenges faced by those attempting to avoid stylometric identification, and
demonstrating general techniques for achieving this, rather than performing attribution itself.
For future work, it would be useful to reduce our feature set using information gain or principal
components analysis, and evaluate our proposed method on established attribution systems to
compare its effectiveness and generalizability with other feature sets.
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Figure 6.3: Results of identifying the author of each repository in the complete data corpus using
feature sets with character frequencies and without

Regarding the effect of noise, it is clear from looking at Figure 6.3 that the majority of
repositories in our dataset were completely misclassified; i.e., every single file. We decided to
investigate further, and by manually inspecting a random sample of 25 of these repositories, we
found that only two of the 25 were definitely the work of a single author, with a further one that
was probably single author. The remaining 22 were either multi-authored works, or different
single authors between the training and test repository, or contained third-party library code that
had not successfully been removed by our filters. These results are summarized in Table 6.1,
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which provides the author name, the training and test repository and the result of the manual
inspection. The result falls into the following categories:

• Single-Author—Only one (or no) author’s name appears in comments, README files or
other artifacts. No evidence of multiple author involvement or someone else’s work.

• Multi-Author—Either multiple author names appear in the code comments or README
files, or there is some other evidence of multiple-author involvement, e.g. abhishek-
Shukla’s System-Call-Inherit repository included a PDF file that appeared to be an aca-
demic paper indicating three authors were involved, or patback66’s Team-254B repository
that linked to a team entry into an academic robotics competition.

• Different Authors—Either two single-author repositories clearly written by two different
people, or two multi-author repositories written by different groups of authors, or some
combination of these.

• 3rd-Party Lib Code—Indicates the presence of library code that had not been successfully
removed by our filters, typically because the directory containing the code was not called
“lib” or “ext”, such as “libavl” in matthewjmiller/mkavl.

• Ported—Indicates the presence of code that has been ported from elsewhere, either to a
different hardware platform or programming language. Ported code is typically heavily in-
fluenced by the original code’s style and behaviour, if not directly copied with the minimal
changes required to effect the port.

• Generated—Code that has been automatically generated by some tool was present in the
repository.

• Copied—Entire repository was written by a different author.

These categories represent different degrees of noise in our dataset, some worse than others.
Clearly, if two repositories owned by the same user have been written by two completely different
authors (group or single), then any similarity in style will be purely coincidental. This type
of noise can seriously mislead a learning algorithm leading to poor performance if present in
significant numbers. Third-party library code is typically less of a problem, depending on what
proportion of the total files are from the third-party. Ported code is usually heavily influenced by
the original code and can also represent significant noise, depending again on how the port was
carried out and the proportion of directly ported code to novel code written by the porting author.
It also depends, of course, on whether the author writing the port is the same as the original
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Table 6.1: Result of investigation into random 25 repositories in “all fail” category
Author Training Repo Test Repo Result
abhishekShukla System-Call-Inherit Linux-Stackable-File-

System
Multi-Author

bruceg barch journald Single-Author
BuckRogers1965 DataObj SDLtut 3rd-Party Lib Code (DataObj)
dougszumski nRF24L01 docLamp Multi-Author, Ported
emmadoraruth MDL Boggle Multi-Author, Generated
jawnsy Alien-Libjio libdebctrl Different Authors
jimwise cempire shared Multi-Author, Different Au-

thors
jmesmon vex-cortex cadaver Different Authors
Kanma sip zziplib Multi-Author, Different Au-

thor, 3rd-Party Lib Code
Ludo6431 DSerial-firmware iptk Multi-Author, Different Au-

thors
lumag mmtrace emv-tools Probable Multi-Author (mm-

trace)
matteobertozzi GDEngine MingChenSlot Different Authors
matthewjmiller C-Interface-Generator mkavl 3rd-Party Lib Code
msantos rst sods Single-Author
noname22 makeadf megadrive-gcc Multi-Author
patback66 Team-254B CS-49C Multi-Author (Team-254B)
robotang academic player plugins Multi-Author (player plugins)
rofl0r gnuboy hexedit0r Multi-Author, Different Au-

thors
siddesh tinycdb cdb Different Authors
svk lib1tquery ritual-scheme 3rd-Party Lib Code, Copied

(ritual-scheme)
tpenguin solarisvoip-asterisk-

zaptel
solarisvoip-asterisk-
addons

Multi-Author, Different Au-
thors

trasz ofx libsmb2 Probably Single-Author
troglobit gul advent4 Multi-Author (gul)
XVilka bvim 2ndboot-ng Multi-Author, Different Au-

thors
yaoweibin libcharguess mod tcache Copied (libcharguess)
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author, in which case it should not be counted as noise. Generated code has been produced by an
automated tool and not a human. Typically, the code is not particularly readable, with minimal
comments, except for a header indicating the tool that generated it.

The results of this manual inspection indicate a high degree of noise in the repositories that
completely failed to be classified correctly. Dauber et al. [DCHG17] found a 15% degree of
corruption in the training set resulted in a greater than 15% reduction in accuracy; in our case,
we found an 88% degree of corruption. Considering this, we re-ran the evaluation twice more,
once including all the repositories that classified at least one file correctly, and once including
only the repositories that had a plurality of correctly classified files. This is summarized in
Figures 6.4 and 6.5. In total, we ran our experiment with 567 and 392 repositories, performing
1096 and 722 evaluations, which took a total of 7:25, and 3:56 hours, averaging 24.36 and 19.61
seconds per repository evaluation, respectively. This time we were able to successfully identify
the owner in 28.64% and 43.02% of files, which translated to a success rate when aggregated
over the entire repositories of 49.27% and 66.76%, respectively.

6.2 Extracting a Class of Feature Vectors That Can System-
atically Effect a Classification as Any Given Target

Our second evaluation was to test the recommendation algorithm described in Section 5.6. The
purpose of this evaluation is to demonstrate that the recommendation algorithm produces correct
recommendations, in terms of eliciting a misclassification as a target author. We also wish to
show that features not included in the recommendations do not contribute to the overall classi-
fication for that target, and can safely be ignored. These tests were all conducted on an Intel R©

CoreTMi7 home PC with six cores and 8 GB RAM.

We carried out this evaluation by extracting the feature value intervals for each file in our
corpus, as though the author of that file were the target, and the training instance representing
the file had been chosen as the basis for the recommendations. Min, max and mid values from
these intervals are used to perturb that file’s existing feature vector and generate sparse feature
vectors. If a feature vector is said to be perturbed, it means the features that were not part of
the recommendations were left as their original values, sparse means they were set to 0. For
example, if a particular feature in the targeted instance had a value of 0.44 and the extracted
interval indicated a perturbation in the range of [0.4, 0.5) was possible, we evaluate the feature
vector with this value set to 0.4, 0.45 and 0.5 − ε, where ε is some suitably small value. If
the perturbed and sparse feature vectors return similar confidence labels, then we can say the
recommendations were only for the features that actually contribute to the classification. This
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Figure 6.4: Overall accuracy of identifying the author of each file in the complete dataset, the
dataset limited to at least one file correct and the dataset limited to the entire repository correctly
classified.
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Figure 6.5: Overall accuracy of identifying the author of each repository in the complete dataset,
the dataset limited to at least one file correct and the dataset limited to the entire repository
correctly classified.
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is a desirable characteristic for our system as we want to minimize the changes we ask users to
make. We then evaluated these feature vectors with both the random forest they were derived
from and a second random forest trained on the same data. The results of these evaluations are
given in Figure 6.6. The confidence returned for the training instances used as the target are
averaged across both random forests, as the differences are negligible, while the confidence for
the sparse and perturbed feature vectors are averaged separately over the respective forests, as
their differences are more significant. We report the confidences, rather than accuracy, because
this more accurately reflects the closeness with which we are able to imitate the target, but note
that with the relatively large number of classes in our corpus, any class receiving a confidence
(i.e., votes) greater than 2% will typically become the overall label attached to that instance; a
class receiving a confidence greater than 50% is guaranteed to become the overall class label.
Therefore, the confidence in our context is always strictly less than the accuracy.

We tested our algorithm with varying numbers of decision trees to see the effect this had on
confidence. It is clear that as the number of trees increases, the classification confidence of the
sparse and perturbed feature vectors on the second random forest also increases. The perfor-
mance with the same feature vectors and the original random forest increases only marginally,
and for the target training instance, the confidence remains almost constant. This increase is
explained by the additional information provided by larger forests, as more combinations of fea-
tures are compared in individual nodes at differing depths and with subtly varied training data,
so the recommendations become more robust and more likely to still give the desired result even
with different classifiers. The perturbed vectors give significantly better confidences in the small-
est forests due to the compensating effects of defaulting to the original training instance’s values
rather than 0. The additional information available in larger forests all but cancels this effect out
with more than 100 trees, however. This additional depth comes at the cost of more recommen-
dations for the user to implement, which is a tradeoff that could be configured according to each
user’s preference.

Comparing the performance of the perturbed and sparse vectors, we can see there is very
little difference, which demonstrates that the subset of features used in deriving the intervals, and
hence the recommendations to the user, are the only features contributing to the classification.
The differences between the target and derived feature vectors’ performances on the original
random forest are a result of the relaxing of the feature vector values from the original single
point to a volume of the feature space encompassing a much greater number of potential feature
vectors, each of which can expect to elicit a similar classification confidence from the random
forest in question as its peers. Having a target volume to guide users toward instead of a single
point in the feature space is far more flexible, providing our users with more options when it
comes to deciding how to implement the suggestions offered by the tool, improving its usability.
This increase in flexibility and usability comes at a cost of lower overall classification confidence,
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however.
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Figure 6.6: Results of evaluating sparse and perturbed feature vectors generated from extracted
intervals used for making recommendations. The fabricated feature vectors were evaluated by
the random forest that produced them and a new random forest trained on the same data. The
confidences reported here indicate how successfully the extracted intervals model the volume of
feature space occupied by the training instance, with higher confidences being more successful.

As previously noted, the set of intervals extracted for each training instance encountered
while traversing the random forest was sampled three times during evaluation: once using the
minimum values, one using the middle values and one using the maximum values in the interval.
The output of these three samples are averaged in Figure 6.6 for clarity, but note that there are
minor differences in their performance. Figure 6.7 gives these differences for the 100 tree forest,
which is the default size used by Weka. For evaluations on the original forest, the feature vectors
using the maximum values from the intervals gave the best average performance. The exact
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reasons for this are unknown, but it would certainly merit further investigation. The results for
the new forest are expected, with the mid-range values providing the best performance. This is
because values at the fringes of the derived intervals are more likely to fall on the wrong side
of a split when a new forest is inducted on a different bootstrapped dataset. There is a certain
amount of fuzziness in the positions of boundaries for the same feature between two independent
forests, therefore it follows that values falling well within these boundaries, rather than near the
end points, would be more resistant to such uncertainty.
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Figure 6.7: Results of evaluating sparse feature vectors against a 100-tree forest generated from
the min, mid and max values of the derived intervals.
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6.3 Pilot User Study

Our final evaluation was to elicit some valuable initial feedback on the usability aspects of our
plugin, and how it compared in the participants’ perspectives to a manual attempt at the same feat.
This evaluation was of a more qualitative nature than our previous assessments, consisting of far
fewer samples, and largely based on feedback responses to a questionnaire, which is provided in
Appendix A. Still, quantitative results were also obtained as part of this process, and these are
discussed alongside the participants’ responses below.

We refer to our three participants as P1, P2 and P3 respectively. Each participant provided a
number of C source files they had written and were tasked with a manual attempt at mimicking
another programmer’s style (Target X) after being given access to a selection of their source
files and an assisted mimicry attempt of a different programmer (Target Y) using our tool. Upon
completion, the participants were asked to complete and return a short questionnaire asking about
their experiences using the plugin and comparing it to their manual attempt, as well as how they
thought the plugin could be improved. Programmers P1 and P2 returned their responses, however
Programmer P3 chose not to complete the questionnaire. Each participant used the same eight-
core AMD desktop PC with 16 GB RAM to carry out their tasks. The workflow during the
assisted attempt was identical to the workflow a real user would follow when using the plugin.
This involved initially training the classifier on the participant’s provided source code plus the
background dataset, then for the file(s) they wish to modify as part of the task, performing an
evaluation and following the recommendations as described in Sections 5.6.4 and 5.7 until a
desired classification confidence was reached, or the time limit of one hour expired. Note that in
a real user session, ideally the classifier would be trained on completely independent repositories
of code to the one being modified, preferably public repositories, if any exist. In our limited
user study, the files provided by the participants did not constitute entire repositories, nor where
they in great enough numbers to split into separate training/test sets, therefore all files were used
for training. Note that this has no bearing on the outcome of the study, as the recommendations
are based on the target programmer, whose code is part of the background dataset. The user’s
files are used to calculate the differences between their current values and the end points of
each interval, regardless of whether that file’s data formed part of the background dataset or
not. Indeed, including all the user’s files in the training data makes the task harder, as the initial
classification confidence will be higher than if it were not included.

6.3.1 Results

Programmer P1 furnished us with 22 files, with an average size of 1.45 KB. After training, their
files were classified with an average confidence of 71.95%. They selected two files for modi-
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fying in the first task, one of which was 4.1 KB and the other 4.6 KB. These files were initially
classified as them with a confidence of 66% and 67%, respectively and the target with 0% (i.e.,
that percentage of trees output those predictions). For task two, they modified the same 4.6 KB
file. After their manual mimicry attempt of Target X, Programmer P1’s classification confidence
had been reduced to 64% for the first file and 30% for the second, while the target’s was still
0% for both. Moving on to the assisted task with Target Y, upon completion Programmer P1’s
classification confidence had been reduced to 6%, while that of the target was still 0%.

Programmer P2 provided ten files, with an average size of 20.06 KB. After training, their
files were classified with an average confidence of 63.3%. They selected one file for modifying
in both tasks, with a size of 14.59 KB, that was classified as them with a confidence of 65% and
the target with 0%. Their manual attempt with Target X resulted in a reduction in confidence to
31% and 0% as the target. The assisted attempt resulted in 5% as themselves and 2% as Target
Y.

Programmer P3 provided 32 files, with an average size of 14.7 KB and classification confi-
dence of 74.78%. The file they selected for both tasks was 4.5 KB in size and had a classification
confidence of 66%, with the target 0%. Upon completion of the first task, they managed to re-
duce this to just 4% (0% Target X), while the second task saw a reduction to 11% for them and
1% as Target Y.

6.3.2 Experiences with Manual Task

P1 reported that they found the manual task easy, while P2 thought it only “seemed easy at
first”, but they were “only able to find distinguishing features that were small in scope” and
were unsure if these were actually useful in identifying authors. On reflection, they stated that
they probably “didn’t imitate them as well as I originally thought”.

Some of the observations made by P1 were that the target often used static functions,
do/while instead of while loops, goto statements, nested if/else conditionals rather
than compound structures and extensive macro definitions. P2 picked out the choice of error
codes returned by functions and use of whitespace as distinctive aspects. In Section 5.4, we out-
lined our reasons for not including whitespace or any typographical-based features in our feature
set. This was also communicated to our participants; however, it is easy to forget such details.
By automatically formatting users’ code with Eclipse’s built-in formatter, despite these features
not forming part of our feature set, all users are able to benefit from this basic protection without
having to think about such minutiae. P1 was able to adapt their code to the differences they no-
ticed to varying degrees, although they reported that they believed they were only “moderately
successful” in achieving the aims, citing the time restriction and the challenge in “identifying the
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changes to be made” as the main limitations. Expanding on this last statement, they described
the task of “[determining] the differences between my own style of writing and the target user’s”
as difficult, because “stylistic aspects of the target user could be present in a multitude of differ-
ent files and the target user may use features of the language on an ad-hoc basis”. P2 made a
similar observation, noting that “it was challenging to find distinctive features for a programmer
that spanned multiple files”.

Overall, the manual task gave the participants complete freedom in how they chose to in-
terpret the target’s style and adapt their own files to mimic this style, leading to changes that
were certain not to have a negative impact on the integrity or readability of the code. The down-
side to this freedom is it causes uncertainty about what aspects of the target they should try to
mimic, what was significant and to what degree they were successful in their imitation. Having
to carry out manual analysis also presented difficulties when it came to identifying the com-
mon features—without having access to quantifiable measures statistically significant aspects
can easily be overlooked.

6.3.3 Experiences with Assisted Task

With the assisted task, P1 reported that they found it a bit tedious and frustrating at times, while
P2 found it to be fun and “almost like a game”. Regarding the clarity of the recommendations,
P1 stated that “it was relatively difficult to implement the plug-in’s suggestions”. They went on
to elucidate: “some terms used to describe syntactical features, in the suggestions, were hard
to understand”. P2 was similarly confused with the recommendations, finding that “at first it
was difficult to interpret which changes I was supposed to make”. This indicates some effort is
required to improve the feature descriptions that are mapped during generation of the recommen-
dation text. In some cases, the node frequencies are based on highly abstracted interfaces from
the Eclipse AST API, which prove to be very difficult to describe in terms of tangible aspects of
the code. A review of these node types, and whether they should in fact be included, would be
prudent in future versions of the plugin.

Both respondents also found some suggestions were hard to implement without negatively
affecting the behaviour and/or performance of the code in question, and were concerned about
maintaining readability while adding redundant code to meet certain suggestions. Comparing
the suggestions to the changes they had identified in the first task, P1 commented:

“in contrast to the features that I identified in the first task, all of which were actionable, not
all of the suggestions provided by the plug-in were stable and implementable. Therefore, I had
to spend time identifying which ones were or were not actionable.”

P2 mostly implemented recommendations related to comments and string literals, because:
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“I was afraid that other changes in the code would alter the behaviour of my program and
would be difficult to manipulate in a functionally correct way.”

However, even this strategy had undesirable consequences, as they noted “my comments
ended up looking very strange”.

This highlights two problems, the first is related to using low-level features while the second
is related to automated generation of recommendations. Using low-level features can present a
problem when linking features to the original phenomena. In most cases, such features represent
some normalization of a real characteristic that may not be a one-to-one mapping, in which case
either assumptions must be made or human interpretation must be employed to ascertain the
origin. In either case, the feature values themselves or any feedback derived from them, do not
represent consumable, “actionable” suggestions. Indeed, the consumer of such advice must carry
out two cognitive tasks: one to determine what underlying characteristics the low-level feature is
derived from, and another to determine if and how those characteristics can be changed without
adversely affecting either the essential or desirable qualities of the artifact. As an analogy, take
character 4-grams in natural language stylometry. It might be the case that a particular author
uses more instances of “tion” than another. For the author wishing to disguise their style and
effect a reduction in this feature, they must firstly find all the words containing this 4-gram, then
decide which of them can be changed and what to change them to. Alternatively, by presenting
them with feedback indicating that a whole word, such as “obstruction”, occurs too frequently,
a tool assisting them could offer suggestions for alternatives, such as “barrier” or “hindrance”.
This reduces the cognitive load on the user, making the tool more intuitive and its results easier
to interpret. While such an approach also improves the automation capability of such a tool (i.e.,
by making concrete suggestions), the second problem with any tool is that it can never decide
on behalf of the user whether a suggestion will irrevocably change some desirable characteristic
of the artifact. Such characteristics are, for the most part, subjective, and extremely difficult to
quantify. By automating as much as can reasonably be automated with regards to the suggestions,
however, we can at least reduce the decisions that must be made by the user to only those that
are infeasible for a computer to calculate.

In terms of the additional information provided by the plugin’s evaluations, P1 said:

“The continuous feedback to me, through the updated textual output to improve my (mis)-
classification and the dialog box indicating the current classification, was very helpful.”

They also liked that the suggestions were grouped according to their sibling and parent fea-
tures, when presenting node frequency suggestions. The most significant benefit P1 found to
using the tool over manual attempts, however, was the automation of the code analysis, which
had proved to be one of the most difficult aspects of task one. They found they “did not need to
spend time identifying stylistic features in my or the target user’s code”. This was confirmed by
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P2, who stated “the advice the tool gave was very useful in pointing out features of my code that
deviated from another author’s programming style.”. P1 also commented that:

“the tool successfully did identify some stylistic features which were missed through the man-
ual observation process in task one. For example, the tool indicated that I used a much higher
frequency of integer type declarations and much lower frequencies for almost all other data
types.”

P2 found a similar benefit, saying “it pointed out features that I didn’t even think of when I
was trying to imitate someone manually”.

For potential improvements, both respondents commented that having examples of feature
recommendations would have helped them complete the task, with P2 suggesting “the task would
have been a lot easier if I had concrete examples from the target’s code”. They also both wanted
to see in future versions suggestions that would not alter the behaviour of the code, with P2
offering as a potential solution formal verification methods.

6.3.4 Summary of User Study

Overall, we can see there were both significant benefits and drawbacks to using the tool to assist
with the mimicry attempt. First, the results for both Programmers P1 and P2 were significantly
stronger in terms of reducing their own classification confidence with assistance than without,
while Programmer P3 was able to achieve a lower confidence in task one than task two. More-
over, all three Programmers’ files were classified as a different author after completion of task
two, even if they did not manage to achieve a classification as the target, whereas only P3 man-
aged to achieve this in task one. From the participants’ responses to the questionnaire, they
thought one of the most important benefits was that analysis of both theirs and the target’s code
was automated. This saves a great deal of time over manually inspecting the files and allows
for objective and comprehensive comparison between features present in both sets of files. Of
course, the automated approach is able to go much farther than that even, as many thousands
of files and authors can all be compared within seconds in order to find the features that are
potentially most significant, which would be beyond the capabilities of a single person carrying
out a manual analysis. An additional benefit was that, with frequent feedback on progress, the
participants were able to keep track of how much of an effect their changes were having and
when they had made sufficient modifications to a particular feature to produce the desired effect.
This guidance allowed them to focus on the important aspects and ignore the rest. The downsides
were that it was often difficult to understand what they were being asked to do by the plugin and
the suggestions often represented changes that were not conducive to maintaining functionality
or readability of the code. The first of these downsides is entirely preventable in future versions if

117



more effort is put into improving the wording of the recommendations and the mapping between
feature names and user-friendly descriptions. This problem would also be greatly improved with
a better selection of features, utilizing fewer low-level and ambiguous representations and more
higher-level characteristics that have a one-to-one mapping to recognizable elements in the code
itself. The second drawback, relating to “correctness” of suggested changes, is much harder, and
possibly touches on some unsolved problems related to automated program synthesis and anal-
ysis, which is an area of active research in its own right and far beyond the scope of this work.
This drawback could be alleviated, however, with the same careful selection of features that
would solve some of the issues related to clarity. Having more concrete recommendations, truly
representative of style rather than content, would be easier for the user to incorporate and could
be combined with examples of how to achieve the suggestion. A solution involving weighting of
features when determining the degree of change could also be incorporated, so features known
to be less intrusive and easier to implement without affecting the program behaviour, could be
favoured over other features that are less easy to alter.
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Chapter 7

Conclusions

Authorship attribution has captured the imaginations of researchers for well over a century, and
applications in legal proceedings date back even farther. Initially concerned with physical doc-
ument scrutiny and handwriting analysis, it has since progressed to examining the content of
typeset digital documents in order to identify similarities in writing composition style—a type
of authorship attribution known as stylometry. Furthermore, there has been a shift from sub-
jective, qualitative analysis by human experts to quantitative, statistical analysis by computers.
This shift towards computational stylometry has also precipitated an automated approach in the
analysis and statistical models made up of multiple variables and very large corpora that would
be far too complex and time consuming for human analysis. We can also see the progression of
stylometry applications, from civil matters, such as disputed authorship, to criminal matters, such
as evidence in legal proceedings, to societal matters, such as identifying rogue accounts in social
networks and other, more Kafkaesque situations, where people are accused of, and punished for,
breaking vague laws they did not know existed and without being told what those rules are.

Despite much published research into authorship attribution of natural language and more
specifically, stylometry, there is still a lack of clear consensus on the precise attributes, their
method of extraction and techniques for analyzing them that produce consistent, and significant,
results over all but the most trivial of author sets. Moreover, there is yet to be published a
study that conclusively demonstrates where the dividing line is between style and content of a
document. There has been some limited research investigating the robustness of stylometry in
adversarial situations, revealing a distinct brittleness in the state of the art to both obfuscation
and mimicry attacks. This brittleness is suggestive of attributes that capture only superficial
similarities between documents by the same author, which may in turn indicate more content-
specific characteristics are being found, rather than true style, which should be present at a more
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fundamental level. These adversarial studies are far from comprehensive, however, and there is
still much more that can, and should, be done.

A closely related field to authorship attribution in the natural language setting, is code sty-
lometry, which seeks to perform authorship attribution on program source code. Computer pro-
gramming languages have much in common with natural languages, but with a stricter, and
simpler, syntax. This is no accident, as they were designed to be more intuitive and easier to read
and follow for humans than machine code. With the addition of comments in particular, which
are free-form text sections in a program source file, many of the same or similar attributes can
be found in source code stylometry as for natural language stylometry. Interestingly, despite a
close kinship with its natural language counterpart, code stylometry arose completely indepen-
dently, with its origins in teaching, and a desire for aesthetically pleasing programs that adhere
to accepted best practices. Unsurprisingly, source code stylometry is firmly rooted in automated,
computer-based analyses, using statistical and machine learning models.

Being a more recent field, and considering it as a subset of the natural language setting,
source code stylometry has naturally been the subject of fewer published research papers. This
correlation extends to the adversarial setting as well, of which there have been no published
studies to date. Source code stylometry has been identified as a potential threat to the privacy
of software developers, particularly those working in the open-source community. In addition,
several recent cases have highlighted a worrying trend of governments targeting the developers of
tools deemed to be used primarily for bypassing Internet censorship and surveillance. It is easy to
see how these two separate phenomena could be combined to threaten the safety and anonymity
of current contributors, as well as push would-be contributors into silence. Alternatively, using
authorship attribution has also been proposed as a means of identifying computer criminals and
malware developers. Before we can reach any meaningful conclusions about its applications,
however, it is important to understand its limitations with more research into its feasibility in
real-world settings, its robustness in adversarial settings and its ability to discern style from
content.

To this end, we evaluated code stylometry on real open-source repositories on GitHub, to
identify some of the difficulties of performing such an operation, and offer some potential solu-
tions. Our aims here were to establish how much of a practical threat this technique poses, and
develop robust defences against it. We decided to implement our defence as an adversarial imi-
tation of another author’s style, utilizing machine learning as a medium by which to extract the
aspects of the code to modify and assess the degree of success of the imitation attempt. Random
forests were chosen as the learning algorithm to achieve this, due to their speed, accuracy and
conduciveness to rule extraction and parsing. We chose to use a human-in-the-loop model for
our system, where the tool provides recommendations for the user that will result in a success-
ful imitation if followed, and it is down to the user’s discretion whether and how to implement
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said recommendations. We presented our solution as a plugin for the popular open-source IDE
Eclipse, embedding the Weka machine learning system as the provider of the learning algorithm.

We used the GitHub data API to enumerate C repositories, filtering those with self-declared
multiple authors or obviously copied code. We further filtered repositories by size and content,
looking for evidence of multiple author involvement in the commit history, common files by hash
and third-party code in specific subdirectories. Despite these precautions, the dataset we ended
up with contained significant amounts of noise in the form of multiple authorship, copied code,
third-party libraries and auto-generated code by tools. This noise became apparent during evalu-
ation of our dataset with our chosen features, when a random selection of 25 repositories that had
performed the worst during evaluation was manually inspected and found to contain 22 “noisy”
repositories. Re-evaluating our dataset while excluding the worst-performing repositories sig-
nificantly improved the accuracy of our classifications. We chose this cleaner dataset for the
background training data used in the plugin, for its improved accuracies, as well as compactness
and faster/more responsive training times.

Our feature set consisted of a mixture of AST node type unigram frequencies, preferences for
operator types, storage classes, macros and data types, naming conventions, and comment and
string literal contents. In order to realize the rule extraction and parsing aspect of our system,
we modified Weka and the random forest algorithm to provide it with a “memory” of its training
instances. We also incorporated a novel algorithm we devised to traverse the trees in the forest,
build a set of conditions and produce recommendations based on a specific training instance that
was closest in terms of a degree of change metric to the file to be modified. These recommenda-
tions were therefore guaranteed to result in a classification as the target user by at least one real
file that is possible to exist.

We tested our recommendation algorithm by producing change sets for every file contained
in our background training data, as though that file were the target we wish to imitate. We then
evaluated the change sets by producing sparse feature vectors containing only feature values
drawn from the recommended intervals and classifying them with the random forest they were
derived from, and a new random forest trained on the same data. Our results showed that the
confidence on the original random forest was close to the confidence for the actual training
instance, demonstrating a very successful imitation, while the confidence for the new random
forest was significantly lower; however, this confidence increased with the size of the forest.
Furthermore, classifier confidence is typically far lower than accuracy, and even relatively low
confidences can result in a successful classification, depending on the number of classes involved.

Finally, we ran a pilot user study to gain feedback and assess the usability of the plugin with
a small number of participants. The results showed that two of the three participants performed
far better in the task of imitating another user with the assistance of the tool than without. The
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participants that returned responses to a questionnaire about their experiences highlighted the
ability of the tool to perform a mass analysis of their and the target’s source code and continual
feedback on progress as the main benefits. The clarity of recommendations and difficulty imple-
menting them without negatively impacting the code’s readability or behaviour were given as the
main drawbacks.

7.1 Future Work

We identified a number of future directions and avenues for this line of research, as well as
improvements to be made to our system.

Starting with data collection, in future work more effort should be invested in ensuring high-
quality data is gathered, with as little noise as possible. In addition to the steps we already
took that were described in Section 5.3, some suggestions include performing searches within
the code itself, looking for strings such as “copyright”, “written by”, “author” or even email
addresses to extract names and compare them to the repository owner, as well as each other;
two distinct names or email addresses in a single repository should be viewed as suspicious,
as should distinct names in two repositories owned by the same user. Furthermore, building a
database of the names of well-known open-source software to use as a blacklist would be useful
(unless that repository is the original repository and happens to be singly authored; e.g., Vim,
written/maintained by Bram Moolenaar). Regarding auto-generated code, typically a comment
is placed in the file by the tool indicating that it was generated, so this could also be searched
for and the file(s) filtered. Finally, in addition to checking file hashes for duplicates, files by
different authors should be flagged that are closer than some threshold edit distance. Clearly,
with greater scrutiny there will be fewer files, repositories and authors in the data set, so the data
collection process should be run for longer, possibly even until all C repositories on GitHub have
been enumerated. This process would take several months at the rates our scripts were limited
to, so some consideration should be given to improving its efficiency.

Moving on to feature extraction, despite the main aim of our work being to devise defences
against stylometry that can work with any feature set, having a better feature set that more ac-
curately captures individual style would be beneficial, for three reasons. First, if this tool is to
be released for public use, we should make sure we have done all we can to produce a strong
classification as a starting point that is not too easy to defeat, else the user may be imbued with
a false sense of security regarding their anonymity. Second, one of our system’s design goals
was to not be too intrusive with recommendations, which is largely dependent on to what degree
the features represent style rather than content. If there is too much correlation with content,
the changes are going to be difficult for the user to implement without damaging readability,
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maintainability or behaviour, possibly even introducing errors or defects. If the features are cor-
related with style, however, there should always be an alternative way of achieving the same end
result that does not have these same negative effects. Therefore, it is crucial that any future work
addresses this point and strives to separate style from content. Third, a better feature set would
also be more informative to the research community in general about how feasible this sort of
forensic analysis is in practice, and hence how serious of a threat it should be considered.

Improving our recommendation algorithm could form part of future work, in particular look-
ing at ways to increase the classification accuracy of feature vectors drawn from the distribution
described by the derived intervals, without sacrificing the flexibility of having relatively wide
ranges. Possibly a very different approach could be taken, using some form of stochastic pro-
cess to search the feature space and optimize toward high classification confidences, although as
pointed out in Section 5.6.3, we would need to demonstrate that this approach generated feature
vectors that valid source files according to the syntax of the language could map to.

In terms of the plugin, the main area requiring improvement is in the wording of the recom-
mendations so they make sense to users. This is also tied in to the feature set and to what degree
it maps to recognizable aspects of the code itself, so the user need not discern the relationship be-
tween a recommendation and its originating location in the code. Using low-level features means
a higher degree of correlation and dependence between features, which makes it harder for users
to implement one recommendation without affecting other feature values and potentially their
suggestions too. This makes using the tool much more complex for the user and increases their
frustration. Features of a more binary nature, such as capturing a preference for using one lan-
guage construct over another, would be much easier for users to comprehend than asking them
to reduce the relative frequency of a language construct to some arbitrary value, while increas-
ing another by an equivalent amount. We must strike an appropriate balance between accuracy
and effectiveness in obfuscation/mimicry and usability. These two qualities may not be entirely
opposed; it is possible one may find an optimum set of features and recommendation technique
that succinctly captures a user’s style, consistent across the majority of their work, that can also
be changed easily and unobtrusively.

Furthermore, future work should expand on our pilot user study to incorporate more partic-
ipants. Ours was limited to graduate students from the CrySP research group at the University
of Waterloo, but a future study could instead invite participants from among the background
data extracted from GitHub; many owners include their real names and email addresses in their
GitHub profiles. Indeed we found a number of “@uwaterloo.ca” email address among the owners
in our dataset, either students or faculty, that would be ideal candidates for an initial recruitment
campaign. If their repositories are in our dataset, they are suitable for inclusion in our study, so
no selection process would be necessary. Any future user study should only be conducted after
the issues highlighted by the respondents to our questionnaire have been addressed, however. We
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would like to see a future study investigate how programmers write code when trying to publish
covertly versus overtly, whether they do in fact take steps to disguise their style or other markers
of identity from the source, and what those steps are. It would be difficult to recruit potential
participants for such a study for two reasons: first, the challenges of identifying anonymous
publication—many user accounts use pseudonyms and do not include contact details, but are
not necessarily trying to remain anonymous. Second, anonymous publishers would probably be
reluctant to participate, and for good reason; such a study would undoubtedly pose a risk to their
continuing anonymity. Therefore, a more sensible approach would be to simulate this scenario
with participants.

Finally, in addition to comprehensive systems such as those developed during this thesis, it
would be of considerable benefit to furnish the community with a set of recommendations, or
manual steps, one might take to provide a minimum level of protection. These steps could be
based on knowledge of the state of the art with regards to attacks, but also sensible measures,
such as checking for personally identifiable information in source code comments, not copying
and pasting code from overt repositories and purging metadata from documents or images.

7.2 Final Remarks

What is style? This word is often used in authorship attribution, but with no attempt to actually
define it. The meaning of the word, however, is far from concrete and absolute. Like the word
art, or humour, for example, it is a rather vague and ambiguous term. Using such a word as this
so often in research papers surely demands a definition of some kind, or more specifically, some
formal description. Many times, the term style is used to describe any characteristic of a docu-
ment, file, etc., that can be statistically correlated to a certain label, with no attempt to critically
evaluate whether that truly represents style, or is simply a manifestation of the content, topic or
functionality of the artifact in question. Just because a characteristic of an artifact is present in
more than one document by the same author and seems to be correlated with that author, does
not mean it is independent of content. Note it is far easier to mix these concepts than it may
appear, especially if one is optimizing according to how well the learning algorithm classifies
samples drawn from the same population as the training data. Files in the same repository often
contain copied and pasted code, as well as comments, from other files. It is our belief that truly
stylistic features should be defined and justified a priori, based on the formal language syntax
itself, rather than its discriminatory power. It must be demonstrated that the feature represents
a choice between (superficially) equally valid options; e.g., choosing whether to implement a
loop as a do/while rather than while. Even a feature that differentiates between do/while
and while loop constructs can pose a problem, as there are legitimate reasons for using one
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rather than the other that have nothing to do with style. A metaphor in everyday life would be
the choice of clothes two people make. If weather is not taken into account, a learning algorithm
may learn that one person’s “style” is to prefer sweaters to t-shirts, or umbrellas to sunglasses.
Granted, there may have been a choice made between these options, but the decision was heav-
ily influenced by the fact it was cold or raining on the day one person’s choice of clothes was
sampled and warm and sunny on the day the other person’s choice was sampled.

Our definition of the word style is that it represents a choice between equally valid options
for achieving some objective, be that summing the results of a number of expressions, or keeping
warm on a cold day. Whenever one is presented with a choice, and the options from which to
decide between are relatively equal in terms of merit, personal preference must come into play.
When a set of preferences are grouped according to the category of choices they express, such as
programming language constructs, we refer to that as a person’s style. Using this definition, we
can assess the claim that a certain feature of an artifact is a matter of style or not, by asking what
other equally valid option did they have for achieving the outcome produced by that feature?
Taking natural language as an example, synonyms can represent style. These were used by Clark
and Hannon [CH07] and were found by Brennan et al. [BAG12] to be the most robust of the
three systems they tested to adversarial modifications. It should be noted, however, that dangers
are present even within this representation of style, as synonyms often have subtly (sometimes
not so subtly, depending on context) different meanings that may favour selecting one word over
its synonyms to convey a particular nuance. In computer programming we can actually assess
this in a far more definite way, due to the fact high-level languages are compiled to machine
code. Clearly, if two different statements compile to the same machine code, then selecting one
over the other was a matter of style, by our very definition of style being a choice between two
or more equally valid options. If the two statements produce exactly the same outcome, they are
equivalent. This could even be expanded to include statements that compile to similar sequences
of machine code, within some limit. In a less exact manner, we could define our assessment
as blocks of statements that have the same effect on program state, and further relaxing the
requirement we could use unit test code written by the author to define the behaviour of a method
or function to define style over a larger structure.

Whatever our definition of style is, we must not lose sight of the original motivations for
this work, namely to assist open-source contributors protect their identity in order to avoid per-
secution. In this respect, what matters most are results, regardless of the method or theory; a
deployed system attempting to perform attribution at scale would likewise be results-oriented,
and it is that we are trying to defend against. Therefore, any defences that are developed should
be required to be tested against all known attacks as a minimum, including those not considered
to be effective, before it is released; if a defence is truly robust, the ineffective attacks should be
trivial to nullify. In the context of website fingerprinting, Wang and Goldberg [WG17] discuss
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defences that are effective against all possible attacks, not just all known attacks. In our case,
such a theoretical defence would be one that, given two programs written by different authors
with the same functionality, could find a set of changes that would transform one into the other,
creating two identical programs. In practice, it is unlikely any human programmers would be so
consistent that their style choices could be predicted so perfectly, but a system that tried to model
the thought processes of a programmer when presented with different problems could bridge this
gap. We have taken the first tentative steps toward the ultimate goal of an effective and usable
advisor, demonstrating the techniques one might employ, the challenges faced, and potential so-
lutions. There is still much more to be done, however, and it is our hope that the challenges will
be met, and overcome, in due course.
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in space: Popular nearest neighbors in high-dimensional data. Journal of
Machine Learning Research, 11(Sep):2487–2531, 2010.

[Rob17] Adi Robertson. A VPN Can Stop Internet Companies From Sell-
ing Your Data—but It’s Not a Magic Bullet, 2017. Online;
https://www.theverge.com/2017/3/25/15056290/vpn-
Isp-Internet-Privacy-Security-Fcc-Repeal.

137

https://en.greatfire.org/blog/2015/aug/chinese-Developers-Forced-Delete-Softwares-Police
https://en.greatfire.org/blog/2015/aug/chinese-Developers-Forced-Delete-Softwares-Police
https://en.greatfire.org/blog/2015/aug/chinese-Developers-Forced-Delete-Softwares-Police
http://www.paradyn.org/html/parse9.0.3-features.html
http://www.paradyn.org/html/parse9.0.3-features.html
https://www.theverge.com/2017/3/25/15056290/vpn-Isp-Internet-Privacy-Security-Fcc-Repeal
https://www.theverge.com/2017/3/25/15056290/vpn-Isp-Internet-Privacy-Security-Fcc-Repeal


[Rou87] Peter J. Rousseeuw. Silhouettes: A Graphical Aid to the Interpretation and
Validation of Cluster Analysis. Journal of Computational and Applied Math-
ematics, 20:53–65, 1987.

[RZM11] Nathan Rosenblum, Xiaojin Zhu, and Barton P. Miller. Who Wrote This
Code? Identifying the Authors of Program Binaries. In Proceedings of the
16th European Conference on Research in Computer Security, ESORICS’11,
pages 172–189, Berlin, Heidelberg, 2011. Springer-Verlag.

[SAM96] Philip Sallis, Asbjorn Aakjaer, and Stephen MacDonell. Software Forensics:
Old Methods for a New Science. Software Engineering: Education and Prac-
tice, 1996. Proceedings. International Conference, pages 481–485, 1996.

[SB88] Gerard Salton and Christopher Buckley. Term-Weighting Approaches in Au-
tomatic Text Retrieval. Information Processing & Management, 24(5):513–
523, 1988.

[Seb02] Fabrizio Sebastiani. Machine Learning in Automated Text Categorization.
ACM Computing Surveys (CSUR), 34(1):1–47, 2002.

[SG06] Conrad Sanderson and Simon Guenter. Short Text Authorship Attribution via
Sequence Kernels, Markov Chains and Author Unmasking: An Investigation.
Computational Linguistics, (July):482–491, 2006.

[Sic75] Herbert S. Sichel. On a Distribution Law for Word Frequencies. Journal of
the American Statistical Association, 70(351a):542–547, 1975.

[Sic86] Herbert S. Sichel. Word Frequency Distributions and Type-Token Character-
istics. Mathematical Scientist, 11(1):45–72, 1986.

[SLP11] Benno Stein, Nedim Lipka, and Peter Prettenhofer. Intrinsic plagiarism anal-
ysis. Language Resources and Evaluation, 45(1):63–82, 2011.

[Smi83] Michael William Smith. Recent Experience and New Developments of Meth-
ods for the Determination of authorship. ALLC BULL., 11(3):73–82, 1983.

[Smi90] M. Wilfrid A. Smith. Attribution by Statistics: A Critique of Four Recent
Studies. Revue, Informatique Et Statistique Dans Les Sciences Humaines,
26:233–251, 1990.

138



[SOS12] Privacy SOS. Programmer and Activist Interrogated at the Border, 2012. [On-
line; Accessed 5-October-2017; https://privacysos.org/blog/
programmer-and-Activist-Interrogated-at-the-Border
].

[Spa88] Eugene H. Spafford. The Internet Worm Program : An Analysis. 1988.

[Spa92] Eugene H. Spafford. Software Forensics : Can We Track Code to Its Authors
? 12:585–594, 1992.

[Spa17] Andrew Sparrow. WhatsApp Must Be Accessible to Authorities,
Says Amber Rudd, 2017. [Online; Accessed 24-September-2017;
https://www.theguardian.com/technology/2017/mar/
26/intelligence-Services-Access-Whatsapp-Amber-
Rudd-Westminster-Attack-Encrypted-Messaging].

[Sta06] Efstathios Stamatatos. Ensemble-Based Author Identification Using Charac-
ter N-Grams. 2006.

[Sta09] Efstathios Stamatatos. Intrinsic Plagiarism Detection Using Character N-
Gram Profiles. threshold, 2(1,500), 2009.

[SW93] Eugene H Spafford and Stephen A Weeber. Software Forensics: Can We
Track Code to Its Authors? Computers & Security, 12(6):585–595, 1993.

[SZK18] Lucy Simko, Luke Zettlemoyer, and Tadayoshi Kohno. Recognizing and Im-
itating Programmer Style: Adversaries in Program Authorship Attribution.
PoPETs, 2018(1):127–144, 2018.

[Tal72] D. Roger Tallentire. An Appraisal of Methods and Models in Computational
Stylistics, With Particular Reference to Author Attribution. PhD thesis, Uni-
versity of Cambridge, 1972.

[TC84] David R. Tobergte and Shirley Curtis. Program Complexity and Program-
ming Style. Data Engineering, 1984 IEEE First International Conference
On, pages 534 – 541, 1984.

[THNC03] Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert
Chu. Class Prediction by Nearest Shrunken Centroids, With Applications to
DNA Microarrays. Statistical Science, pages 104–117, 2003.

139

https://privacysos.org/blog/programmer-and-Activist-Interrogated-at-the-Border
https://privacysos.org/blog/programmer-and-Activist-Interrogated-at-the-Border
https://www.theguardian.com/technology/2017/mar/26/intelligence-Services-Access-Whatsapp-Amber-Rudd-Westminster-Attack-Encrypted-Messaging
https://www.theguardian.com/technology/2017/mar/26/intelligence-Services-Access-Whatsapp-Amber-Rudd-Westminster-Attack-Encrypted-Messaging
https://www.theguardian.com/technology/2017/mar/26/intelligence-Services-Access-Whatsapp-Amber-Rudd-Westminster-Attack-Encrypted-Messaging


[TSH96] Fiona J. Tweedie, Sameer Singh, and David I. Holmes. Neural Network Ap-
plications in Stylometry: The Federalist Papers. Computers and the Humani-
ties, 30(1):1–10, 1996.

[UK16a] HM Government UK. Investigatory Powers Act 2016, 2016. [Online;
Accessed 23-September-2017; http://www.legislation.gov.uk/
id?title=Investigatory+Powers+Act+2016].

[UK16b] HM Government UK. Investigatory Powers Act 2016, 2016. [Online;
Accessed 23-September-2017; http://www.legislation.gov.uk/
ukpga/2016/25/section/128].

[VD02] Ricardo Vilalta and Youssef Drissi. A Perspective View and Survey of Meta-
Learning. Artificial Intelligence Review, 18(2):77–95, 2002.

[VVC08] Heidi Vandebosch and Katrien Van Cleemput. Defining Cyberbullying: A
Qualitative Research Into the Perceptions of Youngsters. CyberPsychology &
Behavior, 11(4):499–503, 2008.

[WC98] David Woolls and Malcolm Coulthard. Tools for the Trade. Forensic Linguis-
tics, 5(2):33–57, 1998.

[WG17] Tao Wang and Ian Goldberg. Walkie-Talkie: An Efficient Defense Against
Passive Website Fingerprinting Attacks. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1375–1390, 2017.

[WMT15] Nicholas Watt, Rowena Mason, and Ian Traynor. David Cameron Pledges
Anti-Terror Law for Internet After Paris Attacks, 2015. [Online; Ac-
cessed 24-September-2017; https://www.theguardian.com/uk-
News/2015/jan/12/david-Cameron-Pledges-Anti-
Terror-Law-Internet-Paris-Attacks-Nick-Clegg].

[YGAR14] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling
and Discovering Vulnerabilities with Code Property Graphs. In Security and
Privacy (SP), 2014 IEEE Symposium on, pages 590–604. IEEE, 2014.

[Yul14] George Udny Yule. The Statistical Study of Literary Vocabulary. Cambridge
University Press, 2014.

[ZES06] Sven Meyer Zu Eissen and Benno Stein. Intrinsic Plagiarism Detection. Ad-
vances in Information Retrieval, pages 565–569, 2006.

140

http://www.legislation.gov.uk/id?title=Investigatory+Powers+Act+2016
http://www.legislation.gov.uk/id?title=Investigatory+Powers+Act+2016
http://www.legislation.gov.uk/ukpga/2016/25/section/128
http://www.legislation.gov.uk/ukpga/2016/25/section/128
https://www.theguardian.com/uk-News/2015/jan/12/david-Cameron-Pledges-Anti-Terror-Law-Internet-Paris-Attacks-Nick-Clegg
https://www.theguardian.com/uk-News/2015/jan/12/david-Cameron-Pledges-Anti-Terror-Law-Internet-Paris-Attacks-Nick-Clegg
https://www.theguardian.com/uk-News/2015/jan/12/david-Cameron-Pledges-Anti-Terror-Law-Internet-Paris-Attacks-Nick-Clegg


APPENDICES

141



Appendix A

User Study Questionnaire

Thank you for agreeing to participate in this study. As previously mentioned, I am interested in
exploring your experiences, thoughts and feedback regarding the tasks you were just asked to
complete. I would like to remind you that you are not obligated to participate in the study or
respond to any questions in the questionnaire if you do not wish to. You may choose to end your
participation in this study at any time without repercussions.

1. How would you describe your experience of completing the first task of imitating the other
author’s style without guidance or assistance? How easy/difficult did you find the task?
Did you feel you were able to make sufficient changes to successfully imitate their style of
programming?

2. What aspects of the task did you find particularly challenging, and why?

3. What aspects of the task did you find particularly easy, and why?

4. How would you describe your experience of completing the second task of imitating an-
other author’s style with the guidance of the tool? How easy/difficult did you find the task?
Do you feel the changes you were able to make were sufficient to successfully imitate their
style of programming?

5. What aspects of this task did you find particularly challenging, and why?

6. What aspects of this task did you find particularly easy, and why?

7. Overall, how would you compare the difficulty of completing the task with and without
the assistance of the tool? Did you find the advice provided by the tool to be useful?
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8. Would you recommend this tool to others who might benefit from its application?

9. What recommendations do you have for how the tool might be more useful or effective in
carrying out the tasks?

10. Do you have any other comments you’d like to add about your participation in the study
today?
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