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Abstract

Claim investigation is a fundamental part of an insurer’s business. Queues form as claims

accumulate and claims are investigated according to some queueing mechanism. The natural

existence of queues in this context prompts the inclusion of a queue-based investigation

mechanism to model features like congestion inherent in the claims handling process and

further to assess their overall impact on an insurer’s risk management program.

This thesis explicitly models a queue-based claim investigation mechanism (CIM) in two

classical models for insurance risk, namely, insurer surplus models (or risk models) and

aggregate claim models (or loss models).

Incorporating a queue-based CIM into surplus and aggregate claims models provides an

additional degree of realism and as a result, can help insurers better characterize and manage

risk. In surplus analysis, more accurate measures for ruin-related quantities of interest such

as those relating to the time to ruin and the deficit at ruin can be developed. In aggregate

claims models, more granular models of the claims handling process (e.g., by decomposing

claims into those that are settled and those that have been reported but not yet settled) can

help insurers target the source of inefficiencies in their processing systems and later mitigate

their financial impact on the insurer.

As a starting point, Chapter 2 proposes a simple CIM consisting of one server and no

waiting places and superimposes this CIM onto the classical compound Poisson surplus

process. An exponentially distributed investigation time is considered and then generalized

to a combination of n exponentials. Standard techniques of conditioning on the first claim are

used to derive a defective renewal equation (DRE) for the Gerber-Shiu discounted penalty

function (or simply, the Gerber-Shiu function) m(u) and probabilistic interpretations for the

DRE components are provided. The Gerber-Shiu function, introduced in Gerber and Shiu

[1998], is a valuable analytical tool, serving as a unified means of risk analysis as it generates
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various ruin-related quantities of interest.

Chapter 3 extends and generalizes the analysis in Chapter 2 by proposing a more complex

CIM consisting of a single queue with n investigation units and a finite capacity of m claims.

More precisely, we consider CIMs which admit a (spectrally negative) Markov Additive

Process (MAP) formulation for the insurer’s surplus and the analysis will heavily rely and

benefit from recent developments in the fluctuation theory of MAPs. MAP formulations for

four possible CIM generalizations are more specifically analyzed.

Chapter 4 superimposes the more general CIM from Chapter 3 onto the aggregate claims

process to obtain an aggregate payment process. It is shown that this aggregate payment

process has a Markovian Arrival Process formulation that is preserved under considerable

generalizations to the CIM. A distributional analysis of the future payments due to reported

but not settled claims (“RBNS payments”) is then performed under various assumptions.

Throughout the thesis, numerical analyses are used to illustrate the impact of variations

in the CIM on the ruin probability (Chapters 2 and 3) and on the Value-at-Risk (V aR) and

Tail-Value-at-Risk (TV aR) of RBNS payments (Chapter 4).

Concluding remarks and avenues for further research are found in Chapter 5.
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Chapter 1

Introduction

This thesis proposes a queueing-theoretic approach to model an insurer’s claims investigation

process. Two foundational areas of risk theory are addressed, surplus models and aggregate

claims models, each constituting a distinct approach to analyzing and characterizing insurer

risk.

Aggregate claims models (or loss models) analyze the properties of (total) losses over

a finite-time horizon and do not consider the balance of premiums against losses as they

are incurred over time. In contrast, surplus models (or risk models) offer a more dynamic

point of view; they analyze the stochastic behaviour of an insurer’s surplus as premiums are

received and claims are paid out over time. The event of “ruin” is the event involving a drop

in surplus below any level of capital the insurer wishes or is required to maintain.

Contemporary loss and surplus models typically proceed on the assumptions that ev-

ery claim is immediately paid and the amount paid always equals the amount claimed (or,

stated more implicitly, that any significant effect relating to claim investigation/delays is

embedded in the model parameters). In doing so, contemporary models may sacrifice a sig-

nificant amount of realism since claim investigation mechanisms (and the resulting payment
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adjustment and delays) are a foundational aspect of the insurance business.

Claim investigations help protect insurers against the harms of moral hazard relating

to non-compliant, inflated or fraudulent claims. However, claim investigations are also a

significant cost source for insurers who must devote resources to design and run effective

investigation processes. Where claim investigation is inefficient or ineffective, insurers face

costs related to poor customer service (due to processing delays), loss of profits (due to

insufficent claims adjusting), or poor human resource management.

Incorporating a queue-based claim investigation mechanism into surplus and aggregate

claims models will provide an additional degree of realism and as a result, can help insurers

better characterize and manage risk. For example, higher levels of resolution could be

achieved in aggregate claims models (e.g., by decomposing claims into those that are settled

and those that have been reported but not yet settled) and more accurate measures for

ruin-related quantities of interest such as those relating to the time to ruin and the deficit

at ruin.

The remainder of this chapter provides a brief literature review of surplus and aggregate

claims analysis, defines surplus and aggregate claims models that are fundamental to the

thesis, and introduces mathematical tools that will be utilized. An outline of the thesis

concludes the chapter.
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1.1 Background

1.1.1 Insurer surplus analysis

The classical compound Poisson risk process (or Cramér-Lundberg model) was first intro-

duced in the pioneering work of Lundberg [1903] to provide a theoretical basis for the risk

management of an insurance company (see, e.g., Cramér [1969] and references therein). The

Cramér-Lundberg process U = {Ut}t≥0 which models the insurer’s surplus is defined by

Ut = u+ ct− St, (1.1)

where u (u ≥ 0) is the initial surplus level and c (c > 0) is the level premium rate per

unit time. The aggregate claim process S = {St}t≥0 is assumed to be a compound Poisson

process, i.e., the aggregate claim at time t is given by

St =


Nt∑
i=1

Xi, Nt > 0,

0, Nt = 0,

(1.2)

where N = {Nt}t≥0 is the claim number process which is assumed to follow a homogeneous

Poisson process that is independent of all else in the model. The rv’s {Xi}∞i=1 are assumed

to be i.i.d. (also independent of all else in the model) and Xi denotes the amount of the ith

claim.

To provide sound risk management, insurers must adequately understand the risk of their

financial obligations. This entails understanding worst case scenarios; as such, risk theory

is generally focused on understanding “ruin” which is defined as the event in which the

insurer’s surplus process becomes negative (see, e.g., Asmussen and Albrecher [2010]). Of

particular interest is the time to ruin T defined as T = inf{t ≥ 0 : Ut < 0} with T = ∞ if

Ut > 0 for all t ≥ 0.
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A risk measure of great interest is the probability of ruin which can consider a finite or

infinite time-horizon. The infinite-ruin probability is defined by ψ(u) = P (T < ∞|U0 = u)

and the finite-time ruin probability is given by ψ(u, t) = P (T ≤ t|U0 = u). Both measures

can provide insight into the insurer’s vulnerability to insolvency.

While infinite-time ruin probabilities have less practical interpretations, they are far

more tractable than their finite-time counterparts and can still provide useful insights into

an insurer’s risk profile. Recent work on the topic of finite-time ruin can be found in, e.g.,

Dickson and Willmot [2005], Borovkov and Dickson [2008], and Landriault et al. [2011].

Since the Laplace transform of the time to ruin is far more tractable than its distribution

function, numerical inversion techniques can be used to compute finite-time ruin probabilities

(see Section 1.3 for possible techniques).

Two ruin-related quantities of interest include: the deficit (or shortfall) at ruin |UT | which

corresponds to the minimum capital injection required to bring the insurer back to solvency,

and the surplus immediately before ruin UT− . Note that the claim causing ruin is of size

UT− + |UT |.

A valuable analytical tool to understand the event of ruin is the Gerber-Shiu discounted

penalty function (or simply, the Gerber-Shiu function) which is defined as

m (u) ≡ E
[
e−δTw (UT− , |UT |) 1{T<∞} |U0 = u

]
, (1.3)

for δ ≥ 0 and the so-called “penalty function” w(x, y) for x, y ≥ 0 satisfies mild integrability

conditions (namely, we silently assume that the expectation exists). The Gerber-Shiu func-

tion generates various ruin-related quantities of interest and thus acts as a unified means

of risk analysis. A considerable amount of risk theory research has been devoted to the

function’s study after its introduction in the seminal paper of Gerber and Shiu [1998].

In Gerber and Shiu [1998], the function was studied under the classical compound Poisson
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model (1.1). A comprehensive treatment of the classical surplus process (2.1) can be found

in e.g., Rolski et al. [1999, Chapter 1.6] and Asmussen and Albrecher [2010, Chapter 1.1].

The classical surplus process is generalized to the ordinary Sparre Andersen model by

relaxing the assumption of a Poisson arrival process and instead assuming claims arrive

according to a renewal process (i.e., interclaim times remain i.i.d. but instead follow an

arbitrary density). Gerber-Shiu analysis in the ordinary Sparre Andersen model can be

found in, e.g., Gerber and Shiu [2005], Li and Garrido [2004], Li and Garrido [2005].

By further introducing a dependence structure between claim sizes and their incurral

times, one obtains the dependent Sparre Andersen model. Studies of the Gerber-Shiu func-

tion in the dependent Sparre Andersen model can be found in, e.g., Boudreault et al. [2006],

Cheung et al. [2010], and Landriault et al. [2014a].

Risk models with Markovian claim arrivals (see, e.g., Ahn and Badescu [2007], Badescu

et al. [2005], and Cheung and Landriault [2009a]) have a special role in the present work. A

more detailed discussion of studies relating to claim investigation is deferred to Chapter 2

and Chapter 3.

In Chapter 2 and Chapter 3, a queue-based claim investigation mechanism is proposed

and superimposed onto the compound Poisson risk process (1.1). In Chapter 2, we are

interested in the Gerber-Shiu function (1.3) where the deficit at ruin |UT | is generalized to

|UT | + ηVT , where η ∈ [0, 1] and Vt is the total (future) payment amount due to claims

under investigation at time t (if any). Hence, we assume that the insurer remains liable for

a fixed portion η of the total payment amount of claims undergoing investigation when U

drops below 0. The work in Chapter 3 extends Chapter 2 with a more generalized claim

investigation mechanism and the joint Laplace transform of the time and generalized deficit

at ruin is of main interest.
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1.1.2 Aggregate claims analysis

The aggregate loss is a mathematical representation of the total payments made on all claims

that occur in a fixed time period on a set of insurance contracts. There are two main ways

to aggregate payments: add individual payment amounts as they become due (collective risk

model) or add total payment amounts arising from each policy (individual risk model). In

the collective risk model, the frequency and severity of losses are modelled separately which

can lead to greater flexibility (see, e.g., Klugman et al. [2013]).

Under the collective risk model, the aggregate claims process {St}t≥0 is defined using the

compound sum representation given by

St =


Nt∑
i=1

Xi, Nt > 0,

0, Nt = 0,

(1.4)

where the claim sizes {Xi}∞i=1 are assumed to form a sequence of i.i.d. rv’s and the claim

number process {Nt}t≥0 is a counting process which is independent of the Xi’s. Analyzing

the distribution of St which is difficult in general has been a central problem in aggregate

claims analysis. For a comprehensive treatment of the aggregate claims model given by

(1.4), readers are referred to Sundt and Vernic [2009] and [Klugman et al., 2013, Section 7.2,

Chapter 9].

By relaxing the independence assumption between the claim frequency and severity, a

time dependent claim model is obtained. Time dependent models enable the modelling of

realistic features such as interest rates, inflation, and time delays due to claim reporting and

processing (see, e.g., Willmot [1989], Jang [2004], Asimit and Badescu [2010], Li et al. [2010],

and Xu [2016]).

Mathematical models of aggregate claims that incorporate time lags can be broadly cate-

gorized into deterministic methods and stochastic models. Deterministic formulations (e.g.,
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the well-known chain ladder method) are unable to capture the stochastic nature of the claim

incurral and reporting processes. They are also unable to model realistic phenomena such

as increased congestion in the insurer’s claims handling mechanism (and the e.g., associated

increase in processing time or rise in the number of claims being paid without investigation).

In Chapter 4, the queue-based claim investigation mechanism proposed in Chapter 3 is

superimposed onto the compound model for aggregate claims given by (1.4) where the claim

arrival process {Nt}t≥0 is a Poisson process. Chapter 4 develops a stochastic model for claim

liabilities; in this way, the randomness inherent in claim liabilities is captured and features

such as congestion can be modelled. Models with Markovian claim arrivals such as Ren

[2008], Ren [2016], and Kim and Kim [2007], have a special role in the present work.

A number of studies have been devoted to the study of discounted aggregate claims (see,

e.g., Kim and Kim [2007] and Ren [2008]). The present work considers the special case where

there is no discounting and capitalizes on the tractability of such models. We refer readers

to Chapter 4 for further discussion and references related to the analysis of aggregate claims

in the context of claims handling.

1.2 Risk models

1.2.1 Spectrally negative Lévy process

There has been considerable research interest in modelling the risk of an insurer’s surplus

process using the class of spectrally negative Lévy processes which contain the classical

compound Poisson process as a special case. The downward jumps and diffusion component

of such processes are well-suited to model the main features of an insurer’s surplus process:

payment of claims and variability from premium or investment income.
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Define a strong Markov process X = {Xt; t ≥ 0} with càdlàg paths on a filtered probabil-

ity space (Ω, F , F, P). We say X is a Lévy process if P (X0 = 0) = 1, the increment Xt−Xs

is independent of Fs and Xt − Xs has the same distribution as Xt−s for each 0 ≤ s ≤ t.

Thus, a Lévy process X is an adapted stochastic process starting from 0 and has stationary

and independent increments. We also have that the distribution of X is infinitely divisible.

Such models are extensively studied in, e.g., Bertoin [1998] and Kyprianou [2006].

There exists a function Ψ such

E
[
eisXt

]
= e−tΨ(s),

for t ≥ 0 and s ∈ R. The function Ψ is called the characteristic function and uniquely

determines the distribution of a Lévy process. By the Lévy-Khintchine formula (see, e.g.,

Kyprianou [2006]), the form of Ψ is given by

Ψ(s) = ias+
1

2
σ2s2 +

∫
R

(
1− eisx + isx1{|x|<1}

)
Π(dx),

where s, a ∈ R, σ ≥ 0 and Π is a measure, called the Lévy measure, is concentrated on

R\{0} such that
∫
R (x2 ∧ 1) Π(dx) <∞.

Using the Lévy-Itô decomposition (see, e.g. Kyprianou [2006]), the Lévy process X can

be represented as the independent sum

X = X(1) +X(2) +X(3),

where X(1) is a linear Brownian motion with drift −a and volatility σ, X(2) is a compound

Poisson process with Poisson intensity rate Π(R/(−1, 1)) and i.i.d. jumps distributed as

Π(dx)/Π(R/(−1, 1)), and X(3) determined by Π is a square integrable martingale with an

almost surely countable number of jumps which are of magnitude less than 1 on each finite

time interval.

The subclass of Lévy processes called the spectrally negative Lévy process has the restric-

tion Π(0,∞) = 0 such that only downward jumps are possible. In what follows, we assume
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X belongs to the subclass of spectrally negative Lévy processes. A spectrally negative Lévy

process is uniquely characterized by its Laplace exponent which is a function defined as

ψ(z) =
1

t
logE

[
ezXt

]
= −Ψ (−iz) , (1.5)

for z ≥ 0. When Π ⊆ (−∞, 0), the Laplace exponent becomes

ψ(z) = −az +
1

2
σ2z2 +

∫
(−∞,0)

(
ezx − 1− zx1{x>−1}

)
Π(dx), (1.6)

which is infinitely differentiable, strictly convex, and limz→∞ ψ(z) =∞. A special case which

will become important in Chapter 3 is the perturbed classical Poisson risk process which is

obtained by choosing the Laplace exponent

ψ(z) = cz +
1

2
σ2z2 + λ

(∫ ∞
0

e−zyP (dy)− 1

)
,

where c > 0 is the premium rate, σ > 0 is the volatility of the diffusion component, λ > 0 is

the Poisson arrival rate, and P is the df of the i.i.d. jumps.

The definition of a scale function, a fundamental quantity in the study of exit problems,

is presented next. For q ≥ 0, the q-scale function W q(·) : R 7→ [0,∞) is characterized on

[0,∞) as a strictly increasing and continuous function with Laplace transform∫ ∞
0

e−zxW q(x)dx =
1

ψ(z)− q
, (1.7)

for z > Φq where Φq is the largest real solution to ψ(z) = q. The existence of scale functions

is shown in Kuznetsov et al. [2012]. Also important is the second scale function Zq defined

as

Zq(x) = 1 + q

∫ x

0

W q(y)dy,

for x ∈ R.

We define the first passage times of X

T+(−)
x = inf{t ≥ 0 : Xt > (<)x},

9



for x ∈ R. Well-known exit results which can be found in [Kyprianou, 2006, Section 8.2]

are presented in the following theorem where we write Eu[·] for the conditional expectation

E[·|X0 = u].

Theorem 1. For q ≥ 0, the one-sided exit results are

Eu

[
e−qT

−
0 1{T−0 <∞}

]
= Zq(u)− q

Φq
W q(u),

for any u ≥ 0 and

Eu

[
e−qT

+
x 1{T+

x <∞}

]
= e−Φq(x−u),

for 0 ≤ u ≤ x. The two-sided exist results are

Eu

[
e−qT

+
x 1{T+

x <T
−
0 }

]
=
W q(u)

W q(x)
,

and

Eu

[
e−qT

−
0 1{T−0 <T

+
x }

]
= Zq(u)− Zq(x)

W q(u)

W q(x)
,

for 0 ≤ u ≤ x.

1.2.2 Spectrally negative Markov additive process

The spectrally negative Markov additive process (MAP) studied in, e.g., Kyprianou and Pal-

mowski [2008] and Ivanovs and Palmowski [2012], is an extension of the spectrally negative

Lévy process discussed in the last section.

Define a process X = {Xt; t ≥ 0} with càdlàg paths on a filtered probability space (Ω,

F , F, P) and an irreducible continuous-time Markov process (CTMC) J = {Jt; t ≥ 0} with

finite state space E = {1, 2, . . . , n} and infinitesimal generator Q. The bivariate process

(X, J) is a MAP if given {Jt = i}, the pair (Xt+s −Xt, Jt+s) is independent of (Xs, Js) for
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all 0 ≤ s ≤ t and i ∈ E and has the same law as (Xs −X0, Js) given {J0 = i}. Let us use

Pu,i with u ∈ R, i ∈ E to denote the law of (X, J) given {X0 = u, J0 = i}.

When {Jt = i}, the process X, commonly referred to as the additive component, evolves

as some spectrally negative Lévy process X i and the processes X1, X2, . . . , Xn are assumed

to be independent. In addition, a transition of J from i to j 6= i triggers a downward jump

of X whose (absolute) size is distributed as Pi,j ≥ 0 for i, j ∈ E. Note that only spectrally

negative MAPs are considered because X is assumed to have downward jumps only. Also,

the special case of a spectrally negative Lévy process is recovered when n = 1.

For z ≥ 0, the Laplace exponent of the spectrally negative Lévy process X i is given by

ψi(z) = −aiz +
1

2
σ2
i z

2 +

∫
(−∞,0)

(
ezx − 1− zx1{x>−1}

)
Πi(dx),

where E
[
ezX

i
t

]
= eψi(z)t. Furthermore, the Laplace exponent of a Lévy process given in (1.6)

is generalized to an n× n matrix Fq(z) called the matrix exponent where

E
[
e−qt+zXt ; Jt

]
= eF

q(z)t,

and

Fq(z) = diag {ψi(z)}ni=1 + Q ◦G(z)− qI, (1.8)

where I is the identify matrix, (G(z))i,j = E
[
e−zPi,j

]
for i 6= j and (G(z))ii = 1 for i, j ∈ E.

The notation A ◦B = (aijbij) stands for the entry-wise (Hadamard) matrix product.

Results related to the scale matrix and exit problems for X are now given. For q ≥ 0,

the q-scale matrix Wq(x) is characterized by its Laplace transform,∫ ∞
0

e−zxWq(x)dx = Fq(z)−1,

for z > η = max {Re(s) : s ∈ C, det(F (s)) = 0} and can be seen as the matrix analogue of

the scale function given by (1.7). It was shown in Ivanovs and Palmowski [2012] that there

11



exists a unique continuous function Wq : [0,∞) → Rn×n such that Wq(x) is invertible for

all x > 0. Also, the second q-scale matrix is defined as

Zq(s, u) = esu
(

I−
∫ u

0

e−syWq(y)dyFq(s)

)
.

We define the first passage times of X as

TX,+(−)
x = inf {t ≥ 0 : Xt > (<)x} ,

for x ∈ R. In [Ivanovs and Palmowski, 2012, Theorem 1], a second representation of the

q-scale matrix is given by

Wq(x) = e−D
qxLq(x),

where Dq is a transitional rate matrix of the Markov chain associated with the first pas-

sage and Lq(x) is a matrix associated with the expected occupation times at 0 up to the

first passage time over x. More specifically, Dq satisfies E
[
e−qT

X,+
x ; JTX,+x

]
= eD

qx, and

(Lq(x))i,j = E
[
Lq(j, TX,+x )|J0 = i

]
where Lq (j, t) is the limit in L2(P) of

Lqε(j, t) =
1

2ε

∫ t

0

e−qs1{|Xs|<ε, Js=j}ds,

as ε ↓ 0. For a discussion concerning Dq and its identification through a certain matrix

integral equation, see, e.g., Ivanovs and Palmowski [2012] and references therein. Define

Lq = limx→∞ Lq(x) and it is proven in [Ivanovs and Palmowski, 2012, Lemma 10] that Lq

has finite entries and is invertible unless Q1 = 0 (i.e., q = 0) and the asymptotic drift

limt→∞Xt/t = 0, P0,i-a.s. for all i ∈ E.

The two-sided exit results for X are presented in the following theorem and can be found

in [Ivanovs and Palmowski, 2012, Theorem 1 and Corollary 3]. We write Eu [ · ; JT ] to indicate

a matrix with (i, j)th element corresponding to E
[
· 1{JT=j}

∣∣U0 = u, J0 = i
]
.

Theorem 2. For 0 ≤ u ≤ x,

Eu

[
e−qT

X,+
x 1{TX,−0 >TX,+x }; JTX,+x

]
= Wq(u)Wq(x)−1,

12



and

Eu

[
e
−qTX,−0 −s

∣∣∣∣UTX,−0

∣∣∣∣
1{TX,−0 <TX,+x }; JTX,−0

]
= Zq(s, u)−Wq(u)Wq(x)−1Zq(s, x).

More results will be provided as needed in subsequent chapters.

Remark 1. We consider a subclass of the spectrally negative MAPs called the perturbed

Markovian arrival risk process (MArP) which will become important in Chapter 3. Un-

der this subclass, the bivariate process (X, J) is identical to the general model defined in

Section 1.2.2 except that when {Jt = i}, the process X evolves as X i = {X i
t ; t ≥ 0}, a

compound Poisson process with diffusion (rather than the more general spectrally negative

Lévy process). More specifically, we define

X i
t = cit+ σiB

i
t − Sit ,

where ci > 0, σi > 0, {Bi
t; t ≥ 0} is an independent standard Brownian motion, and Sit is a

compound Poisson process with Poisson intensity rate λi > 0 and i.i.d. jumps distributed as

Pi (where Pi > 0 without loss of generality). The Laplace exponent of X i is given by

ψi(z) = ciz +
σ2
i

2
z2 + λi

(∫ ∞
0

e−zyGii(dy)− 1

)
,

and from (1.8), the matrix exponent is given by

Fq(z) = Cz + Σz2 −Λ + Λ ◦P(z) + Q ◦G(z)− qI,

where C = diag{ci}ni=1, Σ = diag{σ
2
i

2
}ni=1, Λ = diag{λi}ni=1 and P(z) = diag{E

[
e−zPi

]
}ni=1.

Generalized two-sided exit results for this subclass of spectrally negative MAPs can be

found in Landriault et al. [2017]. In particular, when det (Fq(ρi)) = 0 for ρi > 0 and ρi 6= ρj

for i 6= j (i, j ∈ E), it can be shown (see, e.g., Li [2015]) that Dq in (3.5) is explicitly given

by

Dq = −Θdiag{ρi}ni=1Θ
−1,

where Θ = (θ1, . . . ,θn) and θi denotes the right-eigenvector associated to the eigenvalue 0

of Fq(ρi), i.e. Fq(ρi)Θi = 0.
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1.3 Numerical Laplace inversion techniques

There are many algorithms for the numerical inversion of Laplace transforms (see, e.g., Abate

and Valkó [2004] and references therein). In the following, we present three algorithms,

namely, the Gaver-Stehfest (GS) method, the Gaver-Wynn-Rho (GWR) algorithm, and the

Fourier-cosine (COS) series expansion.

We outline how each of the three algorithms can be used to numerically invert a LT given

by f̃(s) =
∫∞

0
e−stf(t)dt to obtain an approximant for f(t).

1.3.1 Gaver-Stehfest method

The Gaver-Stehfest (GS) method is one of the most popular inversion algorithms. It is

fast and usually gives good results, especially for smooth functions (see, e.g., [Usábel, 1999,

Section 4]). The method involves the so-called Gaver functionals which are given by

fk(t) = zk

(
2k

k

) k∑
j=0

(−1)j
(
k

j

)
f̃ ((k + j) z) , (1.9)

where z = ln(2)/t. The Gaver functionals were developed in Gaver Jr [1966] and are useful

in the numerical inversion of Laplace transforms. Since the sequence is logarithmically

convergent, an acceleration method is needed (see, e.g. Valkó and Abate [2004]). The GS

method utilizes Salzer summation to accelerate convergence, as proposed by Stehfest [1970]

and the approximant for f(t) is given by

f(t, N1) =

N1∑
k=1

wkfk(t),

where

wk = (−1)k+N1
kN1

N1!

(
N1

k

)
,
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i.e., the approximant for f(t) involves calculating f1(t), . . . , fN1(t) and taking a weighted sum

using weights wk (see, e.g. Valkó and Abate [2004]). Another expression for the approximant

that is commonly used is given by

f(t,M) = z

M∑
k=1

bkf̃ (kz) , (1.10)

where

bk = (−1)k+M
2

min(k,M2 )∑
i=b(k+1)/2c

i
M
2 (2i)!(

M
2
− i
)
!i!(i− 1)!(k − i)!(2i− k)!

, (1.11)

and M = 2N1, i.e., the approximant for f(t) involves evaluating the LT f̃(s) at M = 2N1

values for the Laplace argument and taking a weighted sum using weights bk (see, e.g., Usábel

[1999]). Note that the weights bk depend only on M and can be easily calculated.

The accuracy of the GS method increases with N1 (or M) up to a point. The method

becomes unstable for greater values of N1 (without a corresponding increase in arithmetic

precision) since (1.10) and (1.11) are prone to rounding-error.

1.3.2 Gaver-Wynn-Rho algorithm

Like the GS method discussed above, the Gaver-Wynn-Rho (GWR) algorithm also involves

the Gaver functionals given by (1.9) but instead uses the Wynn rho algorithm to accelerate

convergence. The Wynn rho algorithm is given by the following recursive algorithm

ρ
(n)
−1 = 0, ρ

(n)
0 = fn(t), n ≥ 0, (1.12)

ρ
(n)
k = ρ

(n+1)
k−2 +

k

ρ
(n+1)
k−1 − ρ

(n)
k−1

, k ≥ 1, (1.13)

and under the GWR method, the approximant to f(t) is obtained as

f(t, N2) = ρ
(0)
N2
, (1.14)
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for even positive integer N2 (see, e.g., Abate and Valkó [2004]). This method requires the

computation of f1(t), . . . , fN2(t) and it is clear from (1.9) that this involves evaluating the

LT f̃(s) at 2N2 + 1 values for the Laplace arguments.

The accuracy of the approximant increases with N2 up to a point. Thereafter, rounding

error accumulation in (1.9) and (1.13) causes a decline in accuracy.

1.3.3 Fourier-cosine series expansion

Another method for numerical inversion of Laplace transforms is known as the COS method

which is based on the Fourier-cosine series expansion (see, e.g., Fang and Oosterlee [2008],

Zhang [2017], and references therein). This method can be easily used if the corresponding

Fourier transform is available. For ω ∈ R, the Fourier transform is defined as

f̂(ω) =

∫ ∞
0

eiωtf(t)dt

= f̃(−iω).

Under the COS method, for sufficiently large a (a > 0), the approximant for f(t) is given by

f(t, N3) =

N3−1∑
k=0

′ ck cos

(
kπt

a

)
, (1.15)

where
∑ ′ indicates that the first term in the summation is weighted by one-half, and

ck =
2

a
Re

(
f̂

(
kπ

a

))
where Re(·) denotes taking the real part of the argument.

In Zhang [2017], an upper bound for the approximation error(∫ A

0

(f(t)− f(t, N3))2 dt

) 1
2

,
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where 0 < A ≤ a, was found and is minimized by setting parameter a to

a∗ = O
(
K

1
2

)
.

An approximant for F (t) ≡
∫ t

0
f(s)ds can be found by integrating (1.15) for a given surplus

level and is given by

F (t, N3) =

N3−1∑
k=0

′ ck sinc

(
kπt

a

)
t, (1.16)

where

sinc(x) =


sin(x)
x

, x 6= 0,

1, x = 0.

(see [Zhang, 2017, Remark 2]). Equation (1.16) is used later in the thesis to find the finite-

time ruin probability of a surplus process.

It is clear from (1.15) (and (1.16)) that this method involves evaluating the LT f̃(s) at

N3 values for the Laplace argument.

The accuracy of the approximants (1.15) (and (1.16)) increases with N3 up to a point

but becomes unstable for large values of N3 due to the accumulation of rounding error.

1.4 Mathematical preliminaries

1.4.1 Dickson-Hipp and Laplace transforms

The present work relies considerably on the Dickson-Hipp transform (see, e.g., Dickson and

Hipp [2001], Li and Garrido [2004]). Let f be an integrable real-valued function and r ∈ C

with <(r) ≥ 0. The Dickson-Hipp transform of f is defined as

Trf(x) ≡
∫ ∞
x

e−r(u−x)f(u)du, x ≥ 0. (1.17)
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We note that the Laplace transform is a special case of the Dickson-Hipp transform which

is recovered from (1.17) by setting x = 0, i.e.,

f̃(r) ≡
∫ ∞

0

e−ruf(u)du,

= Trf(0). (1.18)

Properties of the Dickson-Hipp transform can be found in Li and Garrido [2004]. In

particular, the present work makes use of a property related to repeated application of the

Dickson-Hipp transform which is given next.

Property 1.4.1. If r1, r2, . . . , rk are distinct complex numbers with non-negative real part,

then repeated application of the Dickson-Hipp transform to f is equal to

Trk · · ·Tr2Tr1f(x) = (−1)k−1

k∑
l=1

Trlf(x)

τ ′k(rl)
, x ≥ 0, (1.19)

where τk(r) =
∏k

l=1(r − rl). In addition, for s ∈ C, the corresponding Laplace transform is

TsTrk · · ·Tr2Tr1f(0) = (−1)k

[
f̃(s)

τk(s)
−

k∑
l=1

f̃(rl)

(s− rl)τ ′k(rl)

]
.

Note that when k = 2, we have that

Tr2Tr2f(x) =
Tr1f(x)− Tr2f(x)

r2 − r1

.

1.4.2 Defective renewal equations

Defective renewal equations (see, e.g., Feller [1971]) are employed in risk theory to arrive at

analytical results for the Gerber-Shiu function. In this section, we present well-known results

for the general solution of defective renewal equations, namely, a closed-form expression for

the general solution, exponential bounds, and the Cramér-Lundberg asymptotic result.
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Definition 1 (Defective renewal equation). For F (y) = 1−F (y) a distribution function for

y ≥ 0 with F (0) = 0, a function m(x) satisfies a defective renewal equation if

m(x) = φ

∫ x

0

m(x− y)dF (y) + v(x), x ≥ 0, (1.20)

where φ ∈ (0, 1). We assume v(x) ≥ 0 is a locally bounded function, i.e., v(x) < ∞ for

x <∞.

An associated compound geometric tail G(y) = 1−G(y) is defined as

G(y) =
∞∑
n=1

(1− φ)φnF
∗n

(y), y ≥ 0,

where F
∗n

(y) is the tail distribution of the n-fold convolution of F with itself. Note that

G(y) has a mass point of (1− φ) at y = 0.

The general solution to (1.20) (see, e.g., Resnick [1992, Section 3.5]) is presented in the

following proposition.

Proposition 3. The solution to the defective renewal equation (1.20) is given by

m(x) = v(x) +
1

1− φ

∫ x

0

v(x− y)dG(y), x ≥ 0.

Now suppose there exists a constant R > 0 satisfying∫ ∞
0

eRydF (y) =
1

φ
, (1.21)

then we have the following two propositions which provide exponential bounds (see, e.g.,

Willmot et al. [2001]) as well as an asymptotic result (see, e.g., Resnick [1992, Section 3.11])

for m(x) .

Proposition 4 (Exponential bounds). If m(x) satisfies (1.20) and (1.21) holds, then we

have

CLe
−Rx ≤ m(x) ≤ CUe

−Rx, x ≥ 0,
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where CL = infz≥0 α(z), CL = supz≥0 α(z), and

α(z) =
eRzv(z)

φ
∫∞
z
eRydF (y)

.

In the following proposition, note that we use a(x) ∼ b(x) to mean limx→∞ a(x)/b(x) = 1.

Proposition 5 (Cramér-Lundberg asymptotic result). If m(x) satisfies (1.20) and (1.21)

holds, then we have

m(x) ∼ Ce−Rx, x→∞,

where

C =

∫∞
0
eRyv(y)dy

φ
∫∞

0
yeRydF (y)

,

provided eRxv(x) is directly Riemann integrable.

1.4.3 Rouché’s theorem and a modification to Rouché’s theorem

The present work employs Rouché’s theorem to show that there exists some number of roots

to Lundberg’s fundamental equation (see, e.g., Titchmarsh [1939]). This allows us to solve

for unknown constants expressed in terms of the roots. Rouché’s theorem is stated below.

Theorem 6 (Rouché’s theorem). If f(z) and g(z) are analytic inside and on a closed contour

D and |g(z)| < |f(z)| on D, then g(z) and g(z) + f(z) have the same number of zeros inside

D.

In some instances, we can succeed in showing |g(z)| < |f(z)| on all points of some closed

contour except one (e.g., at z = 0). In such cases, the following modification of Rouché’s

theorem can be used (see, e.g. Klimenok [2001]).
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Theorem 7 (A modification of Rouché’s theorem). Let the functions f(z) and φ(z) be

analytic in the open disk |z| < 1 and continuous on the boundary |z| = 1 and the following

relations hold:

|f(z)||z|=1,z 6=1 > |φ(z)||z|=1,z 6=1,

f(1) = −φ(1) 6= 0.

Let also the functions f(z) and φ(z) have the derivatives at the point z = 1 and the following

inequality holds

f ′(1) + φ′(1)

f(1)
> 0.

Then the numbers Nf+φ and Nf of zeros of the functions f(z)+φ(z) and f(z) in the domain

|z| < 1 are related as follows

Nf+φ = Nf − 1.

1.5 Outline of the thesis

In Chapter 2, a simple queue-based claim investigation mechanism (CIM) is proposed and

superimposed onto the classical compound Poisson risk model. The standard technique

of conditioning on the first claim is utilized to derive a defective renewal equation (DRE)

satisfied by the Gerber-Shiu function. Numerical examples illustrate the impact of claim

investigation on the ruin probability.

Chapter 3 extends the work in Chapter 2 by proposing a more realistic CIM. A (spectrally

negative) Markov Additive Process (MAP) formulation is developed for the insurer’s surplus.

Four possible CIM generalizations are discussed and their MAP formulations are provided.
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Numerical examples are used throughout the chapter to illustrate the impact of various CIMs

on the ruin probability.

In Chapter 4, the proposed CIM from Chapter 3 is superimposed onto the aggregate

claims process to obtain the aggregate payment process. It is shown that this aggregate

payment process has a Markovian Arrival Process (MAP) formulation. A distributional

analysis of the future payments due to RBNS claims (”RBNS payments”) is then performed

under some assumptions for the claim size density and CIM. Numerical examples are used

to assess the impact of various CIMs on the V aR and TV aR of the RBNS payments.

In conclusion, Chapter 5 provides final remarks and a discussion of potential avenues for

future research.
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Chapter 2

A risk model with a simple claim

investigation mechanism

2.1 Introduction

Contemporary insurer surplus models do not typically consider claim investigation practices

in an explicit manner. Rather, features related to claim investigation have to be a priori

embedded in the defined risk model of interest by adjusting the model’s parameters. In this

chapter, we directly model claim investigation practices by considering a particular queue-

based claim investigation mechanism. Investigation practices and strategies are developed

to determine the extent of liability and identify ineligible or inflated claims which are crucial

components of a sound insurance practice. For example, Juri [2002] discusses a risk process

where claims are sums of dependent random variables. Such processes allow for the modelling

of (allocated) loss adjustment expenses generated by claim investigations. As a result of

investigation practices, claim payments are often modified to reflect investigation findings,

in addition to the natural delay accompanying the investigation process. Claim payments
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may also be delayed by queueing times which we discuss next.

An insurer’s investigation strategy is constrained by the number of investigators, time

per investigation, and volume of claims, among others. Queues form as claims accumulate

and claims are served according to some queueing discipline. The natural existence of queues

in this context prompts the inclusion of a queue-based investigation mechanism in surplus

modelling. Queueing mechanisms have been an intensive area of research for many decades.

A seminal reference in the context of a single server is Cohen [1982]. While there are

well-known connections between ruin and queueing problems (e.g., Asmussen and Albrecher

[2010] or Sigman [2006]), there has been little study of queues in surplus models. Thus,

the present model is a first step in a longer inquiry on the topic, furthering the strong ties

between the two research disciplines.

A queue-based investigation mechanism will help to improve the realism of an insurer’s

cash flow dynamics. Many analogous modifications to improve realism have been made in

the ruin theory literature such as the inclusion of dividend payments (e.g., Lin et al. [2003])

and tax payments (e.g., Albrecher and Hipp [2007]). More closely related to claim investiga-

tions, claim settlement delays and time dependent payments have also been considered in a

ruin context, e.g., claims inflation (e.g., Taylor [1979]), interest rates (e.g., Cai and Dickson

[2002]), and IBNR (e.g., Trufin et al. [2011] and references therein). Such features have

also been discussed in an aggregate claim context under various assumptions for the num-

ber of claims process (e.g., Landriault et al. [2014b] for the nonhomogeneous birth process

case, as well as references therein). In this chapter, we use a different approach to model

claim settlement delay from the widely studied Chain-Ladder method and its variants (e.g.,

Hossack et al. [1999, Chapter 10]) where a major concern is the time until payment. The

present model is intended for modelling short-term claim liabilities and moreover, its aim is

to involve some queueing features (such as congestion) in an insurer’s surplus analysis.
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The present chapter consists of 4 sections. Section 2.2 provides a description of the pro-

posed queue-based claim investigation mechanism, a mathematical definition of the surplus

process and the definition of a generalized Gerber-Shiu function which will be the main sub-

ject matter of this chapter. Section 2.3 derives a defective renewal equation (DRE) for this

Gerber-Shiu function assuming the investigation time is distributed as a combination (or

generalized mixture) of exponentials. Probabilistic interpretations for the DRE components

are also provided. In Section 2.4, numerical examples are presented to illustrate the impact

of claim investigation strategies on the ruin probability.

2.2 Claim investigation surplus process

For completeness, we first recall the definition of the Cramér-Lundberg surplus process U∗ =

{U∗t }t≥0, where

U∗t = u+ ct− St. (2.1)

We note that u (u ≥ 0) is the initial surplus level and c (c > 0) is the level premium rate per

unit time. The aggregate claim process S = {St}t≥0 is assumed to be a compound Poisson

process, i.e., has Poisson arrivals at rate λ > 0 and the claim sizes {X1, X2, . . .} are assumed

to be i.i.d. with common density p. The time to ruin T ∗ is defined as T ∗ = inf{t ≥ 0 : U∗t < 0}

with T ∗ = ∞ if U∗t > 0 for all t ≥ 0. A comprehensive treatment of the classical surplus

process (2.1) can be found in e.g., Rolski et al. [1999, Chapter 1.6] and Asmussen and

Albrecher [2010, Chapter 1.1].

In what follows, we propose to superimpose the following queueing-based claim investi-

gation mechanism onto the surplus process (2.1):

1. The claim investigation mechanism consists of a single investigation unit that allows

for at most one claim to be investigated at any given time. Hence, the investigator will
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alternate between idle (no claim currently investigated) and busy periods (a claim is

under investigation).

2. When the investigator is idle, a claim of size x ≥ 0 will

• avoid the investigation process with probability q0 (x) ≥ 0 and be paid immedi-

ately in its entirety;

• undergo investigation with probability q1 (x) = 1− q0 (x) ≥ 0 to assess the accu-

racy/validity of the amount claimed x. The investigation time is assumed to have

density h which we refer to as the investigation time density with mean µ.

Following an investigation period, the amount claimed x will result in a payment

w with distribution function (df) Lx(w) (w ≥ 0), independent of any other rv’s

in the risk model.

The decision to investigate a claim of size x (when the investigator is idle) is indepen-

dent of anything else in the risk model. Also, investigation times are assumed to be

mutually independent and independent of any other rv’s in the risk model.

3. When the investigator is busy, all claimed amounts will immediately be paid in full.

This assumption is consistent with the concept of a single server queue with balking

(e.g., Gross et al. [2011, Section 1.2.1]) or finite storage in queueing theory (see, e.g.,

Kleinrock [1975, Section 3.6]).

The queueing-based claim investigation mechanism can be represented diagramatically

as shown in Figure 2.1.

An example for the df Lx(w) is now given and will later be considered in the numerical

examples of Section 2.4. Suppose a claim of size x ≥ 0 selected for investigation is either de-

termined fraudulent and denied with probability ς(x) or paid in its entirety with probability
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Figure 2.1: Diagramatic representation of the simple queue-based claim investigation mech-

anism

1− ς(x) (where the decision is made independently of any other rv’s in the risk model), then

the resulting Lx(w) is of the form

Lx(w) =

 ς(x), 0 ≤ w < x,

1, w ≥ x.
(2.2)

Remark 2. Throughout this chapter, the term “claim” refers to the loss amount declared by

the policyholder (after appropriately applied coverage modifications, e.g. deductible, policy

limit, etc.), while the term “payment” refers to the amount actually paid to the policyholder

by the insurer.

We propose to refer to the resulting surplus process as a queueing-based claim inves-

tigation (QBCI) surplus process. A formal mathematical definition of this process is now

provided. We first decompose the aggregate claim process S into two independent compound

Poisson processes S0 and S1, where Si has Poisson arrivals with rate λi = λ
∫∞

0
p (y) qi (y) dy,
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and independent and identically distributed (i.i.d.) positive jumps with density

pi (x) =
p (x) qi (x)∫∞

0
p (y) qi (y) dy

, x > 0.

We refer the reader to, e.g., Karlin and Taylor [1981, Chapter 16] for this well-known de-

composition.

Given that the investigation unit alternates between idle and busy periods (and we silently

assume throughout that the investigator is idle at time 0), we define M = {Mt}t≥0 with

Mt = sup{k = 1, 2, . . . : W1 + . . . + Wk ≤ t} (where Mt = 0 for t < W1) to be an

alternating renewal process where the inter-arrival times {Wj}∞j=1 are mutually independent

(and also independent of any other rv’s in the risk model). We assume that for j odd, the

Wj’s are exponentially distributed with mean 1/λ1, while for j even, Wj is distributed as a

combination (or generalized mixture) of exponentials with density

h(t) =
n∑
i=1

ωiαie
−αit, t > 0, (2.3)

where ωi ∈ (−∞,∞) for i = 1, 2, . . . , n with
∑n

i=1 ωi = 1 and αi > 0 for i = 1, 2, . . . , n. We

have µ =
∑n

i=1 ωi/αi and without loss of generality, we assume that the αi’s are distinct. Note

that the class of combinations of exponentials is dense in the set of continuous distributions

defined on (0,∞) (see Dufresne [2007]).

For convenience, let εt =
∫ t

0
1{Ms is odd}ds be the total time that the investigator is busy

in [0, t]. Hence, the QBCI surplus process U = {Ut}t≥0 is defined as

Ut = u+ ct− Zt, (2.4)

where

Zt = S0
t + S1

εt + Jt. (2.5)

The process J= {Jt}t≥0 in (2.5) is further defined as

Jt =


bMt2 c∑
j=1

Yj, Mt = 2, 3, . . . ,

0, Mt = 0, 1,
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where bxc denotes the integer part of x, and {Yj}∞j=1 are independent rv’s (also independent

of any other rv’s) with common df

K(w) =

∫ ∞
0

Lx (w) p1 (x) dx, (2.6)

and Laplace transform (LT)

k̃(s) =

∫
[0,∞)

e−swK(dw).

Note that Jt corresponds to the aggregate payment of all claims that have undergone a

complete investigation by time t. It is not difficult to see that U reduces to the classical

compound Poisson risk process (2.1) when q0(x) = 1 for all x > 0.

Since the seminal contribution of Gerber and Shiu [1998], the Gerber-Shiu discounted

penalty function has been extensively studied in increasingly complex models and serves as

a useful tool to unify the study of risk in surplus processes (see Albrecher et al. [2010]). For

the surplus process (2.4), we propose to use |UT | + ηVT as the deficit at ruin (rather than

the usual |UT |), where η ∈ [0, 1] and Vt is the (future) payment amount of the claim under

investigation at time t (if any) given by

Vt =

 YMt+1
2
, Mt is odd,

0, otherwise.
(2.7)

Hence, we assume that if a claim is undergoing investigation when U drops below 0, the

insurer remains liable for a fixed portion η of the payment amount. Thus, for δ ≥ 0, the

Gerber-Shiu analytic tool of interest is defined as

m (u) ≡ E
[
e−δTw (UT− , |UT |+ ηVT ) 1{T<∞} |U0 = u

]
, (2.8)

where T = inf{t ≥ 0 : Ut < 0} is the time of ruin with T = ∞ if Ut ≥ 0 for all t ≥ 0

and w(x, y) for x, y ≥ 0 satisfies mild integrability conditions (namely, we assume that the

expectation in (2.8) exists). We therefore focus our risk analysis on the study of m (u) in

the next section.
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Remark 3. Equation (2.7) indicates that the future payment amount of a claim under

investigation has df K and is therefore determined with partial knowledge of the amount

that had been claimed. Only that the claim was selected for investigation is known but

not the precise amount claimed. Hence, we are assuming that the future payment amount

of a claim under investigation is assessed by an external (independent) agent who does not

have access to the precise amount claimed. In the event that precise knowledge of the claim

amount, say x, is known, then the future payment amount would instead have df Lx.

To conclude this section, we comment on the QBCI surplus process U in the case when

the investigation time density h is of phase-type form. In particular, in this context, a

Markov-additive process (MAP) formulation is possible. To be specific, for a phase-type

investigation time density with n states (excluding its absorbing state), we introduce an

auxiliary process Θ = {Θt}t≥0, where Θt = 0 if no claim is under investigation at time t and

Θt = i (i = 1, 2, . . . , n) when a claim is under investigation and the “state” of the phase-type

investigation process at time t is i. Under the above assumptions, Θ is a Markov process and

more generally, the bivariate process (U,Θ) can be shown to be a spectrally negative MAP

(see Ivanovs and Palmowski [2012] and references therein for more detail on MAPs). This

MAP formulation allows for m (u) to be analyzed using standard MAP machinery. However,

additional analysis would still be required to arrive at results of a similar nature to those of

Section 2.3. Furthermore, the present approach utilizing the dense class of combinations of

exponentials (2.3) can handle various distributions of both non-phase-type (e.g., the logbeta

distribution of Section 2.4) and phase-type form (e.g., mixtures of exponentials).

2.3 Gerber-Shiu analysis

In this section, we derive a defective renewal equation (DRE) satisfied by the Gerber-Shiu

function (2.8). A discussion of the components of the DRE follows. Note that the existence
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of this DRE representation for m is not immediate given the superimposition of a queueing

mechanism.

2.3.1 A defective renewal equation

To first derive an integral equation satisfied by m(u), we condition on the time (t) and

amount (x) of the first claim and whether or not it is investigated. We note that the surplus

immediately before payment of the claim is u+ ct. If the first claim is:

(a) not selected for investigation with probability q0(x), then we further condition on whether

or not the claim causes ruin. Suppose we have that:

(i) x > u + ct, then the claim causes ruin. Therefore, the surplus immediately prior

to ruin is UT− = u + ct and the deficit at ruin |UT | + ηVT = |UT | = x − u − ct.

Note that VT = 0 since there are no claims under investigation at the time or ruin.

Hence, the conditional Gerber-Shiu function in this case is e−δtw(u+ct, x−u−ct).

(ii) x ≤ u + ct, then the claim does not cause ruin and the surplus is reduced to

u+ ct− x ≥ 0. The surplus process renews with initial surplus u+ ct− x and the

conditional Gerber-Shiu function in this case is e−δtm(u+ ct− x).

(b) selected for investigation with probability q1(x), then the claim is assumed to begin

investigation and the conditional Gerber-Shiu function is

e−δtE
[
e−δ(T−W1)w (UT− , |UT |+ ηVT ) 1{T<∞}

∣∣UW1 = u+ ct,W1 < T,X1 = x
]
,

where we point out the above expectation corresponds to the Gerber-Shiu counterpart

to (2.8) if the QBCI surplus process is assumed to begin investigation at time 0 for a

claim of size x.
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Given that the time of the first claim is exponentially distributed with rate λ and the amount

of the first claim has density function p(x), it follows from the law of total probability that

m(u) =

∫ ∞
0

λe−λte−δt

×

(∫ u+ct

0

m(u+ ct− x)q0(x)p(x)dx+

∫ ∞
u+ct

w(u+ ct, x− u− ct)q0(x)p(x)dxdt

+

∫ ∞
0

E
[
e−δ(T−W1)w (UT− , |UT |+ ηVT ) 1{T<∞}

∣∣UW1 = u+ ct,W1 < T,X1 = x
]
q1(x)p(x)dx

)
dt.

We can more succinctly write the above integral equation using

m(u) =

∫ ∞
0

e−(λ+δ)t (λ0σ(u+ ct) + λ1φ(u+ ct)) dt, (2.9)

by defining

σ(z) =

∫ z

0

m(z − x)p0(x)dx+ β(z), (2.10)

where

β(z) =

∫ ∞
z

w(z, x− z)p0(x)dx,

and

φ(u) =

∫ ∞
0

E
[
e−δ(T−W1)w (UT− , |UT |+ ηVT ) 1{T<∞} |UW1 = u,W1 < T,X1 = x

]
p1(x)dx

= E
[
e−δ(T−W1)w (UT− , |UT |+ ηVT ) 1{T<∞} |UW1 = u,W1 < T

]
.

Using the Dickson-Hipp operator Td defined as Tdf(x) ≡
∫∞
x
e−d(y−x)f(y)dy for Re (d) ≥ 0,

(2.9) can be written as

m(u) =
1

c
Tλ+δ

c
(λ0σ(u) + λ1φ(u)) . (2.11)

From Property 2 related to repeated application of the Dickson-Hipp operator (see Li and

Garrido [2004, p. 393]), the LT of (2.11) is

m̃(s) ≡
∫ ∞

0

e−sum(u)du

=
1

c
Ts,λ+δ

c
(λ0σ(0) + λ1φ(0))

=
K1 − λ0σ̃(s)− λ1φ̃ (s)

cs− λ− δ
, (2.12)
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where K1 = cm(0) and Td1,d2,...,dnf(x) ≡ Td1Td2 · · ·Tdnf(x) for n = 1, 2, . . .. In what follows,

we normally add the tilde symbol ˜ over a quantity to denote its corresponding Laplace

transform.

From (2.12), we observe that an explicit expression for the LT φ̃ is needed. When a

claim is being handled for investigation, one can condition on whether ruin or the undergoing

investigation finishes first. This results in

φ(z) = E
[
e−δ(T−W1)w(UT− , |UT |+ ηVT )1{W1+W2>T}

∣∣UW1 = z,W1 < T
]

+

∫ ∞
0

E

[
e−δW21{

U
(W1+W2)

−∈ dl,W1+W2<T
}∣∣∣∣UW1 = z,W1 < T

]
E [m (l − Y )] ,

(2.13)

where Y has df K defined in (2.6), and

E [m (l − Y )] =

∫
[0,l]

m(l − y)K(dy) +

∫
(l,∞)

w(l, y − l)K(dy).

Equation (2.13) can be further characterized by making connections with existing results

in the Cramér-Lundberg surplus process. For the second term on the RHS of (2.13), using

Kyprianou [2006, Corollary 8.8], it follows that

E

[
e−δW21{

U
(W1+W2)

−∈ dl,W1+W2<T
}∣∣∣∣UW1 = z,W1 < T

]
=

n∑
i=1

ωiαi
(
e−ρilvαi+δ(z)− vαi+δ(z − l)1{z>l}

)
dl, (2.14)

where the scale function vαi+δ is defined through its LT

ṽαi+δ(s) =
1

cs+ λp̃(s)− (λ+ δ + αi)
, s > ρi, (2.15)

and ρi = ρ(αi+δ) (i = 1, 2, . . . , n) is the real and strictly positive root of ṽ−1
αi+δ

(s). By analytic

continuation, we assume that the functional form of (2.15) holds for s < ρi (obviously,

ṽαi+δ(s) is not a LT on this domain). From Gerber and Shiu [1998, Equation (2.52)], we

have

ṽαi+δ(s) =
g̃αi+δ (s)

s− ρi
, (2.16)
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where

g̃αi+δ (s) =
1

c− λTs,ρip(0)
=

1

c
+

∫ ∞
0

e−sxg+
αi+δ

(x)dx,

with

g+
αi+δ

(x) = c−1

∞∑
j=1

(
λ

c

)j
(Tρip)

∗j (x),

and (Tρip)
∗j is the j-fold convolution of Tρip with itself.

Now, for the first term on the RHS of (2.13), given that VT defined in (2.7) has df K and

the payment amounts were assumed to be independent of any other rv’s in the risk model,

it follows that

γ(z) := E
[
e−δ(T−W1)w(UT− , |UT |+ ηVT )1{W1+W2>T}

∣∣UW1 = z,W1 < T
]

=

∫
[0,∞)

E
[
e−δ(T−W1)w(UT− , |UT |+ ηx)1{W1+W2>T}|UW1 = z,W1 < T

]
K(dx).

Furthermore, given that UW1 = z and T > W1, the triplet (T −W1, UT− , |UT |) is distributed

as (T ∗, U∗T ∗− , |U∗T ∗|) with U∗0 = z when W1 +W2 > T . Together with (2.3), one finds that

γ(z) =

∫
[0,∞)

E
[
e−δT

∗
w(U∗T ∗− , |U∗T ∗|+ ηx)1{W2>T ∗}|U∗0 = z

]
K(dx)

=
n∑
i=1

ωi

∫
[0,∞)

E
[
e−(αi+δ)T

∗
w(U∗T ∗− , |U∗T ∗|+ ηx)1{T ∗<∞}|U∗0 = z

]
K(dx), (2.17)

which corresponds to a summation of Gerber-Shiu-type functions in the Cramér-Lundberg

surplus process U∗ (e.g., Gerber and Shiu [1998]). Thus,

γ(z) =
n∑
i=1

ωi

∫
[0,∞)

∫ ∞
0

∫ ∞
0

w(a, y + ηx)h∗αi+δ(a, y|z)dadyK(dx),

where

h∗αi+δ(a, y|z) =
λ

c

(
e−ρi(a−z)1{a>z} +

∫ min{a,z}

0

e−ρi(a−t)cg+
αi+δ

(z − t)dt

)
p(a+ y),

is known as the discounted density of the surplus immediately prior to ruin and the deficit

at ruin (e.g., Landriault and Willmot [2009]).
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Substituting (2.17) and (2.14) into (2.13) and taking LT on both sides results in

φ̃(s) = γ̃(s) +
n∑
i=1

ωiαiṽαi+δ(s)
(
m̃(ρi)k̃(ρi)− m̃(s)k̃(s)

)
+ b̃(s), (2.18)

where b̃(s) is the LT of

b(z) =
n∑
i=1

ωiαi

∫ ∞
0

(
e−ρilvαi+δ(z)− vαi+δ(z − l)1{z>l}

) ∫
(l,∞)

w(l, y − l)K(dy) dl, (2.19)

for z ≥ 0. Substituting (2.10) and (2.18) into (2.12) yields(
cs− λ− δ + λ0p̃0(s)− λ1

n∑
i=1

ωiαiṽαi+δ(s)k̃(s)

)
m̃(s) = K1 − τ̃(s)−

n∑
i=1

K2,iṽαi+δ(s),

(2.20)

where K2,i = λ1ωiαim̃(ρi)k̃(ρi) (i = 1, 2, . . . , n), and

τ̃(s) = λ0β̃(s) + λ1

(
γ̃(s) + b̃(s)

)
. (2.21)

Using (2.16), we multiply both sides of (2.20) by
n∏
k=1

(ρk − s) which leads to

L(s)m̃(s) = K1

n∏
k=1

(ρk − s)− χ̃(s), (2.22)

where

L(s) =
n∏
k=1

(ρk − s) (cs− λ− δ) + ζ̃(s), (2.23)

with

ζ̃(s) = λ0

{
n∏
k=1

(ρk − s)

}
p̃0(s) + λ1

n∑
i=1

ωiαi

{
n∏

k=1,k 6=i

(ρk − s)

}
g̃αi+δ(s)k̃(s), (2.24)

and

χ̃(s) =

{
n∏
k=1

(ρk − s)

}
τ̃(s)−

n∑
i=1

K2,i

{
n∏

k=1,k 6=i

(ρk − s)

}
g̃αi+δ(s). (2.25)

Clearly from (2.22), m̃(s) depends on the unknown constants K1 and K2,i (i = 1, 2, . . . , n)

whose numerical values can be obtained with the help of Proposition 1. This culminates in

the result of Theorem 8 where it is shown that m satisfies a DRE which provides several

well-known analytical results for its solution (e.g., Resnick [1992, Section 3.5]).
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Proposition 1. For δ > 0, L(s) has exactly n+ 1 zeros, say rj = rj(δ) (j = 1, 2, . . . , n+ 1),

with positive real part.

Proof: As in other applications in ruin theory, we prove this result via Rouché’s theorem.

Let

L(s) =
n∏
k=1

(ρk − s) (h1(s)− h2(s)) ,

where

h1(s) = cs− λ− δ + λ0p̃0(s),

and

h2(s) = λ1

(
n∑
i=1

ωiαiṽαi+δ(s)

)
k̃(s).

We define a contour Cr which consists of the semi-circle of radius r centered at 0 with

positive real numbers which is closed by the connecting part of the imaginary axis. Given

that |h1(s)| behaves asymptotically as a linear function in r, it is clear that |h1(s)| > |h2(s)|

on the semi-circle of Cr for r sufficiently large.

Using (2.15), we have

h2(s) = −λ1

(
n∑
i=1

ωi
αi

αi + λ+ δ − cs− λp̃(s)

)
k̃(s).

Then for any point on the imaginary axis

|h2(s)| ≤ λ1

∣∣∣h̃ (λ+ δ − cs− λp̃(s))
∣∣∣ ,

where we recall that h̃ is the LT of the investigation time density (2.3). Furthermore, since

Re{λ+ δ − cs− λp̃(s)} ≥ δ, we have that |h2(s)| < λ1. We also have

|h1(s)| ≥ |λ+ δ − cs| − λ0 |p̃0(s)|

≥ λ+ δ − λ0

= λ1 + δ

> |h2(s)| .
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Clearly,
n∏
k=1

(ρk − s)h1(s) and
n∏
k=1

(ρk − s)h2(s) are analytic inside and on Cr. Therefore,

we can apply Rouché’s theorem. Given it is well known that h1(s) has only one strictly

positive and real zero (e.g., Gerber and Shiu [1998, Figure 2]), it follows that
n∏
k=1

(ρk − s)h1(s)

and L(s) =
n∏
k=1

(ρk − s) (h1(s)− h2(s)) have the same number of zeros with strictly positive

real part, namely n+ 1. �

For δ = 0, it can be shown that there also exist n+ 1 non-negative solutions to L(s) = 0

under an additional condition related to process drift. Indeed, from random walk theory

(e.g., Rolski et al. [1999, Theorem 6.3.1]), this condition is given by E [UW1+W2 − u] > 0, or

equivalently

c >

λ0E[X0]
λ1

+ λµE [X] + E [Y ]
1
λ1

+ µ
, (2.26)

where X0, X, and Y have LT p̃0, p̃, and k̃, respectively.

Remark 4. From a simple analysis of the function L(s), we deduce that if the investigation

time density (2.3) is of a mixture form (i.e. ωi > 0 (i = 1, 2, . . . , n)) then the zeros {rj}n+1
j=1

are real and interweave with the values {ρi}ni=1, i.e. r1 < ρ1 < r2 < ρ2 < · · · < ρn−1 < rn <

ρn < rn+1. In general, the ordering is unclear and we henceforth assume that the rj’s are

distinct and rj 6= ρi for any j = 1, 2, . . . , n+ 1 and i = 1, 2, . . . , n.

In the following theorem, we show that m satisfies a DRE. For simplicity, we henceforth

assume that k̃ is of the form

k̃(s) = K(0) +

∫ ∞
0

e−sxk+(x)dx,

i.e. the df K has density k+ on (0,∞). The analysis can easily be extended to the more

general case. For convenience, we define (gαi+δ ∗ k)+(y) as having LT g̃αi+δ(s)k̃(s)−K(0)/c,

i.e.

(gαi+δ ∗ k)+(y) = g+
αi+δ

(y)K(0) +
k+(y)

c
+

∫ y

0

g+
αi+δ

(y − x)k+(x)dx, y > 0.
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Theorem 8. For δ > 0 or for δ = 0 and (2.26) holds, the Gerber-Shiu function m(u)

satisfies the following defective renewal equation

m(u) =

∫ u

0

m(u− y)a(y)dy + ξ(u), (2.27)

where

a(y) =
n+1∑
l=1

Dl

c

(
λ0Trlp0(y) + λ1

n∑
i=1

ωiαi
Trl(gαi+δ ∗ k)+(y)

ρi − rl

)
, (2.28)

ξ(u) =
n+1∑
l=1

Dl

c

(
Trlτ(u)−

n∑
i=1

K2,i

Trlg
+
αi+δ

(u)

ρi − rl

)
, (2.29)

with

Dl =

n∏
j=1

(rl − ρj)

n+1∏
j=1,j 6=l

(rl − rj)
, (2.30)

and the constants K2,i are as given in (2.31).

Proof: From Proposition 1, one concludes that the RHS of Equation (2.20) also has

zeros {rj}n+1
j=1 and thus, K1 and {K2,i}ni=1 satisfy the following system of linear equations:

K1 − τ̃(rj)−
n∑
i=1

K2,iṽαi+δ(rj) = 0,

for j = 1, 2, . . . , n + 1. In matrix form, the constants K
T

= (K1, K2,1, K2,2, . . . , K2,n) are

given by

K = A−1τ , (2.31)

where τ T = (τ̃(r1), τ̃(r2), . . . , τ̃(rn+1)) and

A =


1 −ṽα1+δ(r1) −ṽα2+δ(r1) · · · −ṽαn+δ(r1)

1 −ṽα1+δ(r2) −ṽα2+δ(r2) · · · −ṽαn+δ(r2)

...
...

... · · · ...

1 −ṽα1+δ(rn+1) −ṽα2+δ(rn+1) · · · −ṽαn+δ(rn+1)


,
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is assumed to be invertible.

Removing the zeros rj for j = 1, 2, . . . , n+ 1 on both sides of (2.22), we obtain

L(s)
n+1∏
j=1

(s− rj)
m̃(s) =

K1

n∏
k=1

(ρk − s)− χ̃(s)

n+1∏
j=1

(s− rj)
. (2.32)

Using (2.23), partial fractions and Property 6 of the Dickson-Hipp operator (see Li and

Garrido [2004, p. 394]), it is not difficult to show that

L(s)
n+1∏
j=1

(s− rj)
= (−1)n

(
c− Ts,r1,r2,...,rn+1ζ(0)

)
. (2.33)

Again using partial fractions and Property 6 of the Dickson-Hipp operator, it can be shown

that for f̃1 a LT and f̃2 (s) =
∏n

k=1 (ρk − s) f̃1 (s), we have

Ts,r1,r2,...,rn+1f2(0) =
n+1∑
l=1

Dl Ts,rlf1(0). (2.34)

Similarly if f̃1,i is a LT and f̃2,i (s) =
∏n

k=1,k 6=i (ρk − s) f̃1,i (s), we have

Ts,r1,r2,...,rn+1f2,i(0) =
n+1∑
l=1

Dl
Ts,rlf1,i(0)

ρi − rl
. (2.35)

Using Equations (2.34), (2.35) and (2.24), it follows that

Ts,r1,r2,...,rn+1ζ(0) =
n+1∑
l=1

Dl

(
λ0Ts,rlp0(0) + λ1

n∑
i=1

ωiαi
Ts,rl(gαi+δ ∗ k)+(0)

ρi − rl

)
= c ã(s),

which corresponds to the LT of (2.28) multiplied by c. Similarly, we conclude that

K1

n∏
k=1

(ρk − s)− χ̃(s)

n+1∏
j=1

(s− rj)
= (−1)nTs,r1,r2,...,rn+1χ(0). (2.36)
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Using Equations (2.25), (2.34) and (2.35) again, we obtain Ts,r1,r2,...,rn+1χ(0) = c ξ̃(s) given

by the LT of (2.29).

Substituting (2.33) and (2.36) into (2.32) yields

m̃(s) = m̃(s)ã (s) + ξ̃(s),

whose LT inversion results in (2.27). It remains to show that a(y) for y ≥ 0 is a defective

density when either δ > 0 or δ = 0 and (2.26) holds. This is proven in Remark 5 of Section

2.3.2. �

We point out that the numerical examples of Section 2.4 focus on the ruin probability

ψ(u), a special case of (2.8) with w(x, y) = 1 and δ = 0. No particular simplification arises

to the DRE representation (2.27) for the special case ψ(u).

The following corollary provides the special case of Theorem 8 when the investigation

time density is exponentially distributed.

Corollary 1. For exponential investigation times with mean 1/α1, the Gerber-Shiu function

m(u) satisfies the following DRE (2.27) with

a(y) =
λ0

c

(
ρ1 − r1

r2 − r1

Tr1p0 (y) +
r2 − ρ1

r2 − r1

Tr2p0 (y)

)
+
λ1α1

c
Tr1,r2(gα1+δ ∗ k)+(y),

and

ξ(u) =
1

c

(
ρ1 − r1

r2 − r1

Tr1τ(u) +
r2 − ρ1

r2 − r1

Tr2τ(u)−K2,1Tr1,r2g
+
α1+δ(u)

)
,

where K2,1 = −Tr1,r2τ(0)/Tr1,r2vα1+δ(0) and τ can be simply obtained from (2.21), (2.19),

and (2.17) with n = 1.
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2.3.2 Defective density a(y)

This section provides a probabilistic interpretation for a(y) as the discounted (defective)

density of the first drop in surplus when no claim is being investigated.

Theorem 9. For δ > 0 or for δ = 0 and (2.26) holds, the function a(y) in the DRE (2.27)

can be expressed as

a(y) =
d

dy
E
[
e−δT

†
1{|UT†|≤ y,T †<∞}

∣∣∣U0 = 0
]
,

where T † = inf{t ≥ 0 : Ut < 0 and Mt is even} with T † =∞ if Ut ≥ 0 whenever Mt is even

for all t ≥ 0.

Proof: From the uniqueness of Laplace transforms, it is equivalent to show ã (z) = m†(0)

where

m† (u) ≡ E
[
e−δT

†−z|UT†|1{T †<∞}
∣∣∣U0 = u

]
.

The following proof employs an analysis similar to that of Section 2.3.1. As a result, only

the crucial steps of the proof will be sketched. Similar to Equation (2.12), we have

m̃†(s) =
cm†(0)− λ0σ̃

†(s)− λ1φ̃
†
(s)

cs− λ− δ
, (2.37)

where

σ̃†(s) = m̃†(s)p̃0(s) + Ts,zp0(0), (2.38)

and

φ†(u) = E
[
e−δ(T

†−W1)−z|UT†|1{T †<∞}
∣∣UW1 = u,W1 < T †

]
.

To obtain an expression for m†(0), we shall further analyze the LT φ̃
†
. Conditioning

on the surplus level at the end of the current investigation period (but not including the
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investigated claim payment), it follows that

φ†(u) =

∫ ∞
−∞

E

[
e−δW2 1{

U
(W1+W2)

−∈ dl
}∣∣∣∣UW1 = u,W1 < T †

]
E
[
m† (l − Y )

]
=

∫ ∞
−∞

E

[
e−δW2 1{

U∗
W−2
∈ dl

}∣∣∣∣U∗0 = u

]
E
[
m† (l − Y )

]
, (2.39)

where

E
[
m† (l − Y )

]
=


m†(l)K(0) +

∫ l
0
m†(l − y)k+(y)dy + Tzk

+(l), l ≥ 0,

ezlk̃(z), l < 0.

(2.40)

From Kyprianou [2006, Corollary 8.9], one deduces that

E

[
e−δW21{

U∗
W−2
∈ dl

}∣∣∣∣U∗0 = 0

]
∼=

n∑
i=1

ωiαi
(
g̃αi+δ(ρi)e

−ρil − vαi+δ (−l) 1{−l>0}
)
dl,

which implies that (2.39) becomes

φ†(u) =
n∑
i=1

ωiαi

∫ ∞
0

(
g̃αi+δ(ρi)e

−ρi(l−u) − vαi+δ (u− l) 1{l<u}
)

E
[
m† (l − Y )

]
dl

+
n∑
i=1

ωiαi

∫ ∞
u

(
g̃αi+δ(ρi)e

ρil − vαi+δ (l)
)

E
[
m† (u− l − Y )

]
dl. (2.41)

Substituting (2.40), (2.41) and (2.38) into Equation (2.37) followed by algebraic manipula-

tions, one obtains

L(s)m̃†(s) =
n∏
k=1

(s− ρk)

(
cm†(0)−

n∑
i=1

Ci
s− ρi

− τ̃ †(s)

)
, (2.42)

where {Ci}ni=1 are some constants and

τ̃ †(s) = λ0Ts,zp0(0)− λ1

n∑
i=1

ωiαi
Ts,z(gαi+δ ∗ k)+(0)

s− ρi
. (2.43)

From (2.42), the zeros {rl}n+1
l=1 of L(s) must also be zeros of cm†(0) −

∑n
i=1

Ci
s−ρi − τ̃

†(s)

which implies that

cm†(0)−
n∑
i=1

Ci
rl − ρi

− τ̃ †(rl) = 0, (2.44)
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for l = 1, 2, . . . , n + 1. Multiplying (2.44) by Dl defined by (2.30) and summing over l =

1, 2, . . . , n+ 1 yield

cm†(0)
n+1∑
l=1

Dl −
n∑
i=1

Ci

(
n+1∑
l=1

Dl

rl − ρi

)
−

n+1∑
l=1

Dlτ̃
†(rl) = 0. (2.45)

We now show that

n+1∑
l=1

Dl = 1, (2.46)

and

n+1∑
l=1

Dl

rl − ρi
= 0, (2.47)

for i = 1, 2, . . . , n. From an application of Lagrange polynomials on f(x) =
∏n

j=1(x − ρj),

we have

f(x) =
n+1∑
l=1

f(rl)
n+1∏

j=1,j 6=l

x− rj
rl − rj

=
n+1∑
l=1

Dl

n+1∏
j=1,j 6=l

(x− rj) . (2.48)

Equating coefficients of xn on both sides of (2.48), we obtain
∑n+1

l=1 Dl = 1. Also from (2.48),

f(x) =

{
n+1∏
j=1

(x− rj)

}
n+1∑
l=1

Dl

x− rl
. (2.49)

Evaluating (2.49) at x = ρi, we conclude that
∑n+1

l=1
Dl
ρi−rl

= 0 for i = 1, 2, . . . , n, since we

assume rj 6= ρi for any i = 1, 2, . . . , n and j = 1, 2, . . . , n+ 1.

Finally, using (2.45), (2.46) and (2.47), we obtain

cm†(0) =
n+1∑
l=1

Dlτ̃
†(rl) (2.50)

Substituting (2.43) into (2.50), it is easy to show m†(0) = ã(z) given by the LT of (2.28), as

required. �
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Remark 5. From Theorem 9, it is clear that {a(y)}y≥0 is a defective density when δ > 0.

For δ = 0 and (2.26) holds, we note that a remains a defective density from the theory on

random walks (e.g., Rolski et al. [1999, Theorem 6.3.1]).

We now turn our attention to the function ξ(u), another term appearing in the DRE

(2.27).

2.3.3 Comment on the function ξ(u)

Define

ζ = inf{t ≥ 0 : Ut < U0 and Mt is even},

to be the first time the surplus process is below its initial surplus level when no claim is

being investigated. We have ζ = T † almost surely when U0 = 0. Since a was shown to be

the discounted (defective) ladder height density in the QBCI surplus process, it follows that

a(y) =
d

dy
E
[
e−δζ1{U0−Uζ≤y}|U0 = u

]
.

When u > 0, we propose to decompose a(y) into two terms, namely aNR(y;u) and

aR(y;u), which accounts for whether (or not) the process U makes a first passage below level

0 prior to ζ. Thus, we define

aNR(y;u) =
d

dy
E
[
e−δζ1{U0−Uζ≤y,ζ<T}|U0 = u

]
, 0 < y < u, (2.51)

and

aR(y;u) =
d

dy
E
[
e−δζ1{U0−Uζ≤y,ζ≥T}|U0 = u

]
, y > 0,

where

a(y) = aNR(y;u) + aR(y;u), (2.52)

for y > 0.

44



Another way to obtain a renewal-like equation for the Gerber-Shiu function m(u) is to

condition on events related to whether {T ≤ ζ} or {T > ζ}. Indeed, using Equation (2.51),

we have

m(u) =

∫ u

0

m(u− y)aNR(y;u)dy + E
[
e−δTw(UT− , |UT |+ ηVT )1{T≤ζ}|U0 = u

]
. (2.53)

Substituting (2.52) into (2.53) and subsequently comparing it to (2.27), it is clear that

ξ(u) = E
[
e−δTw(UT− , |UT |+ ηVT )1{T≤ζ}|U0 = u

]
−
∫ u

0

m(u− y)aR(y;u)dy.

In general, it may be difficult to infer on whether ξ(u) is positive for all u ≥ 0.

However, in the special case w(x, y) ≡ 1, we have

E
[
e−δT1{T≤ζ}|U0 = u

]
≥ E

[
e−δT1{T<ζ,Uζ≥0}|U0 = u

]
≥

∫ u

0

aR(y;u)dy.

It follows that

ξ(u) ≥
∫ u

0

aR(y;u) (1−m(u− y)) dy,

which is non-negative given that m (u) stands for the LT of the time to ruin in this case,

and is therefore bounded by 1.

2.4 Numerical examples

We now measure the impact of variations in the claim investigation mechanism on the ruin

probability ψ(u). Our objective is to confirm some intuitive risk management features of the

model and more importantly, quantify their impact from a risk management standpoint.

As a baseline case, we assume claims arrive according to a Poisson process with rate λ = 5,

and claim sizes are distributed as a mixture of an Erlang-2 and an Erlang-5 distribution with
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LT

p̃ (s) = 0.8

(
0.6

0.6 + s

)2

+ 0.2

(
2

2 + s

)5

, s ≥ 0. (2.54)

A premium rate of c = 18 is assumed. Investigation times are assumed to follow a logbeta

distribution, i.e. W2 = −lnY , where Y is a beta rv with density

fY (y) =
Γ(n+ α + 1)

Γ(α + 1)(n− 1)!
yα(1− y)n−1, 0 < y < 1, (2.55)

with α = −0.7615 and n = 2. It can be shown (e.g., Dufresne [2007] and Klugman et al.

[2013, Example 2.2]) that W2 has density (2.3) where n = 2, ω1 = 1.2385, α1 = 0.2385,

ω2 = −0.2385, and α2 = 1.2385. The mean of W2 can be found to be µ = 5. Unless stated

otherwise, the next four examples in this section will all use these baseline case assumptions.

We also assume Lx(w) is as given in (2.2) where ς(x) = ς = 0.15 in Sections 2.4.1–2.4.3

while in Section 2.4.4, we more realistically assume that the probability ς(x) that a claim

subject to investigation is determined to be fraudulent increases with its claim size.

Before continuing, note that the effect of catching fraudulent claims cannot be equiva-

lently modelled by simply thinning the arrival rate of claims subject to investigation λ1 using

1 − ς(x) (e.g., Ross [2007, p. 310–311]). The inability to utilize thinning in our setting is

due to the balking feature of the assumed queueing mechanism.

To clarify, note that the arrival rate of claims that actually undergo investigation is λ1

only when the investigator is idle. When the investigator is busy, the arrival rate of claims

that undergo investigation is equal to zero because claims arriving when the investigator is

busy are immediately paid in full, i.e., there is balking.

The effect of catching fraudulent claims could be modelled by thinning as noted above if

the claim investigation mechanism employs an infinite number of investigators. In this case,

the mechanism does not experience congestion (since there are always available investigators

to investigate incoming claims) and there is no balking. As a result, at any given time, λ1 is
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the arrival rate of claims that actually undergo investigation.

2.4.1 Effect of q1(x) and cost of implementing a claim investigation

mechanism

In this first example, we assume the probability a claim is subject to investigation is constant,

i.e. q1(x) ≡ q1. To illustrate q1’s impact on an insurer’s surplus, ruin probabilities for various

q1 are provided in Table 2.1 and plotted in Figure 2.2. We note that when q1 = 0, the classical

compound Poisson model (without investigation) is recovered.

Table 2.1: Ruin probabilities for varying q1

q1 \ u 0 15 30 45 60 75

0 0.8796 0.4083 0.1871 0.0857 0.0393 0.0180

0.05 0.8604 0.3719 0.1647 0.0738 0.0332 0.0149

0.5 0.7893 0.3362 0.1499 0.0668 0.0298 0.0133

1 0.7438 0.3336 0.1487 0.0662 0.0295 0.0131

Table 2.1 and Figure 2.2 show that all else being equal, the ruin probability decreases

as q1 increases. This suggests that introducing a claim investigation mechanism (and fur-

thermore increasing the probability a claim is subjected to investigation) leads to lower ruin

probabilities. This confirms our intuition since an investigation mechanism has the effect of

causing some claim payments to be both delayed by an investigation and potentially denied.

As evidenced in Table 2.1, this payment delay/denial effect is naturally less pronounced as

the initial surplus level increases.

A somewhat more realistic example consists in taking into account a certain cost asso-

ciated with the claim investigation activities. Here, we assume that any costs generated by
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Figure 2.2: Ruin probabilities for varying q1

the claim investigation mechanism (e.g. investigator’s salary, administrative systems, etc.)

can be modelled as a continuous fixed rate, ccost, that effectively reduces the (net) rate of

premium collected to c− ccost. To be a sensible risk management strategy, the cost ccost as-

sociated to the investigation process is assumed to not lower the drift of the surplus process

(assuming no investigation), that is,

ccost <
ςE[X]
1
λ1

+ µ
.

Now consider fixing q1 = 0.2 and letting c = 18 − ςE[X]
(

1
λ1

+ µ
)−1

= 17.9208 such

that the drift is equal to that of a process with q1 = 0 (no investigation) and c = 18. Ruin

probabilities for both processes are given in Table 2.2. We observe that while the drifts of

both processes are equal, the lower ruin probability associated with claim investigations can

be attributed to the payment delay/denial effect.
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Table 2.2: Ruin probabilities for two processes with the same drift

(q1, c) \ u 0 15 30 45 60 75

(0, 18) 0.8796 0.4083 0.1871 0.0857 0.0393 0.0180

(0.2, 17.9208) 0.8334 0.3571 0.1626 0.0745 0.0341 0.0156

2.4.2 Effect of mean investigation time

In this example, we fix q1(x) = q1 = 0.1 and vary the mean investigation time µ by adjusting

in (2.55) the value of α while fixing n = 2. We observe different effects on the ruin probability

depending on the value of ς. To illustrate, we consider ς = 0.15 and ς = 0.5. First, we let

ς = 0.15 and the ruin probabilities can be found in Table 2.3 for varying µ.

Table 2.3: Ruin probabilities for varying µ when ς = 0.15

µ \ u 0 15 30 45 60 75

0.5 0.8554 0.3648 0.1562 0.0669 0.0287 0.0123

1 0.8521 0.3622 0.1567 0.0680 0.0295 0.0128

2 0.8495 0.3597 0.1573 0.0692 0.0305 0.0134

5 0.8475 0.3575 0.1580 0.0706 0.0317 0.0142

∞ 0.8462 0.3558 0.1589 0.0723 0.0331 0.0152

Table 2.3 shows that when u is small (e.g. u = 0, 15), the ruin probabilities decrease

with increasing mean investigation time and the opposite effect is observed for larger u (e.g.

u ≥ 30). Now consider the ruin probabilities for varying µ when ς = 0.5 in Table 2.4. Table

2.4 shows the ruin probability increases with increasing mean investigation time for all u. The

behaviour exhibited in Tables 2.3 and 2.4 can be explained by two counter effects resulting

from longer mean investigation time. Longer investigation times will further delay claim
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payments which will decrease the ruin probability. On the other hand, longer investigation

times will decrease additional opportunities for the investigator to identify fraudulent claims

which will increase the ruin probability.

Table 2.4: Ruin probabilities with varying µ when ς = 0.5

µ \ u 0 15 30 45 60 75

0.5 0.8342 0.3051 0.1115 0.0408 0.0149 0.0055

1 0.8356 0.3138 0.1192 0.0455 0.0173 0.0066

2 0.8380 0.3246 0.1291 0.0517 0.0207 0.0083

5 0.8415 0.3383 0.1419 0.0602 0.0256 0.0109

∞ 0.8462 0.3558 0.1589 0.0723 0.0331 0.0152

When ς = 0.15, the first effect dominates for small u while the second effect takes over for

larger u. When ς = 0.5, fraudulent claims are more prevalent so the second effect dominates

for all u and the ruin probability increases with the mean investigation time for all u.

This suggests that in our proposed model, when the probability of fraudulent claims

is relatively high, it is advantageous for the insurer to implement efficient investigation

processes with shorter investigation times. However, this also suggests that when both the

initial surplus and the probability of fraudulent claims are low, it is advantageous for the

insurer to have longer investigation times. From a practical standpoint, competitive pressure

would disincentivize insurers from artificially implementing inefficient investigation processes

to, e.g., lower the solvency risk.
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2.4.3 Three investigation strategies

In this example, we consider three different strategies to determine whether or not a claim

will be subject to investigation. Unlike the previous two examples, we allow q1(x) to vary in

x by assuming that

q1(x) = θ + (1− θ)
(
1− e−κx

)
,

where θ and κ are chosen such that the mean probability of subjecting a random claim to

investigation is set to be 0.1. Thus, on average, a percentage θ (θ ≤ 0.1) of all claims are

automatically subjected to investigation; the other (1− θ) are subjected based on the claim

amount with a probability of 1− e−κx for a claim of size x. We consider the following three

strategies with their respective ruin probabilities in Table 2.5:

Strategy 1: θ = 0.1 (κ = 0)

Strategy 2: θ = 0.05 (κ = 0.0173)

Strategy 3: θ = 0 (κ = 0.0341)

Table 2.5: Ruin probabilities with varying investigation strategies

θ \ u 0 15 30 45 60 75

0.1 0.8475 0.3575 0.1580 0.0706 0.0317 0.0142

0.05 0.8408 0.3448 0.1513 0.0674 0.0300 0.0134

0 0.8343 0.3335 0.1456 0.0646 0.0287 0.0127

Table 2.5 shows that the ruin probability decreases with decreasing θ. This behaviour

suggests that when determining whether or not a claim should be subject to investigation,
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the strategy that minimizes the ruin probability is one that is completely based on the claim

amount. This again agrees with intuition.

2.4.4 Probability of fraudulent claims increasing with claim size

In this example, we again fix q1(x) = q1 = 0.1. Also, we assume that a claim of size x

subject to investigation will result in a payment with df (2.2). We compare the strategy of

Section 2.4.2 where ς = 0.15 (and µ = 5) with ς(x) = (1− e−ϕx) /2 with ϕ = 0.1227. For

comparative purposes, both strategies have the same expected conditional probability that

a claim is determined to be fraudulent, i.e.
∫∞

0
ς(x)p1(x)dx = 0.15. Ruin probabilities are

provided in Table 2.6.

Table 2.6: Ruin probabilities for constant and non-constant ς(x)

ς(x) \ u 0 15 30 45 60 75

0.15 0.8475 0.3575 0.1580 0.0706 0.0317 0.0142

(1− e−ϕx)/2 0.8465 0.3540 0.1550 0.0687 0.0305 0.0136

When the probability of catching fraudulent claims increases with its size, the investigator

is more likely to entirely deny larger claims which leads to lower ruin probabilities. This

effect is confirmed in Table 2.6 where ruin probabilities when ς(x) = (1− e−ϕx) /2 are lower

than those when ς(x) is constant.
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Chapter 3

A risk model with a more advanced

claim investigation mechanism with

MAP formulation

3.1 Introduction

This chapter extends the surplus analysis conducted in Chapter 2 by proposing a generalized,

more realistic queue-based claim investigation mechanism (CIM). The proposed CIM consists

of n (n ∈ {1, 2, . . .}) investigation units and m (m ∈ {0, 1, 2, . . .}) waiting places. By

contrast, the CIM studied in Chapter 2 consisted of one investigation unit (n = 1) and zero

waiting places (m = 0). Note that Chapter 2’s CIM, with some restrictions, can be shown

to be a special case of the generalized CIM proposed in this chapter.

Analyzing this generalized model using the standard techniques of conditioning on the

first claim (as used in Chapter 2) is prohibitive because the resulting risk process no longer

has i.i.d. interclaim times. An alternative way to analyze the model involves showing the
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insurer’s surplus can be formulated using a (spectrally negative) Markov Additive Process

(MAP) (see, e.g., Ivanovs and Palmowski [2012]).

To develop the MAP formulation, we introduce a background process that counts the

number of claims in the CIM at any given time. Under the CIM assumptions, the background

process behaves as a Markov process and the insurer’s surplus can be represented as a MAP.

More specifically, the insurer’s surplus can be formulated as a special case of the MAP,

namely, the perturbed Markovian Arrival Process (see, e.g., Neuts [1979]). By using a MAP

formulation for the model, standard MAP machinery can be used to analyze various risk

management quantities of interest, such as, the joint Laplace transform (LT) of the time and

the deficit at ruin.

In addition, the flexibility of the MAP allows for a large number of possible generaliza-

tions to the CIM while preserving the surplus’ MAP formulation. Specifically, the MAP

formulation can accommodate any CIM modelled after a queueing system (see, e.g., Klein-

rock [1975]) having an embedded Markov process and Markov-modulated Poisson arrivals.

This chapter discusses four possible CIM generalizations in detail and provides a MAP

formulation for each. These more general CIMs supply an additional degree of realism to the

mathematical model by enabling the model to better characterize the levels of congestion

faced by insurers in their claims handling activities, i.e., the volume of claims waiting or

undergoing investigation and their associated claim size. Each of the four generalizations

supplies an additional degree of realism as follows:

1. We relax the assumption of exponential investigation time to consider phase-type dis-

tributed investigation times. In practice, investigation times may not follow an expo-

nential distribution. The class of phase-type distributions is a very general distribution

because it is dense in the sense of weak convergence for all distributions with positive

support (see, e.g., [Asmussen and Albrecher, 2010, Chapter IX]).
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2. We relax the assumption that a claim’s size and investigation time are independent.

In practice, we would expect that larger (smaller) claims experience longer (shorter)

investigation times on average.

3. We relax the assumption that all claims entering a CIM are assumed to undergo only

one stage of investigation before becoming settled. In practice, the claims handling

process usually involves multiple stages, e.g., an eligibility specialist may first determine

a claim’s eligibility for coverage before it gets passed to investigation where the payment

amount is determined, and a final stage of payment processing may be required for

claims that pass investigation.

4. We relax the assumption that claims occur according to a Poisson process and consider

instead a Markov-modulated Poisson claim arrival process. In practice, the claim

arrival rates that insurers experience can often depend on the state of the economy (see,

e.g., Wells et al. [2009]). For example, group disability insurers often experience higher

claim arrival rates in weak economic times. One explanation for this effect is that,

during a recession, employees who had health impairments face a lower opportunity

cost when applying for benefits when they become unemployed (Maestas et al. [2015]).

Note that using our approach, any of these generalizations can be combined so long as

the resulting CIM can be modelled after a queueing system having an embedded Markov

process and Markov-modulated Poisson arrivals. By better characterizing the congestion

inherent in the insurer’s business, these more realistic CIMs can allow for more accurate

estimates of ruin-related quantities. They can also better model and predict the impact of

alternative CIM process designs.

There have been a number of studies of insurer surplus models having a Markovian arrival

process representation (see, e.g., Asmussen [1989], Badescu et al. [2005], Ahn and Badescu

[2007], and Cheung and Feng [2013]). Special cases of these risk models have also been
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studied in, e.g., Albrecher and Boxma [2005] and Lu and Tsai [2007]. As well, work in the

context of a dividend barrier strategy can be found in, e.g., Li and Lu [2007] and Cheung

and Landriault [2009b]. The model proposed in this chapter is a special case of that found

in Cheung and Landriault [2009b] though without the application of dividends. Instead,

we introduce a particular claim settlement application to their model and from a numerical

standpoint, examine the impact of variations in an insurer’s claims handling practices on

their probability of ruin.

More recently, in Ahn et al. [in press], a claim developmental process is superimposed

onto the insurer’s surplus process to incorporate the liability due to Incurred But Not Re-

ported (IBNR) and Reported But Not Settled (RBNS) claims. Their model’s representation

as a Markovian risk process is discussed. Furthermore, connections to fluid flow models are

made for when payments are phase-type distributed and the Gerber-Shiu function and joint

moments involving the ruin time and aggregate payments with and without claim settle-

ment. Their numerical illustrations demonstrate the generality of their model. Furthermore,

a numerical example involving a real dataset is presented where the ruin probability is com-

puted following calibration of the model, and a discussion of some difficulties involved is also

included.

Like in Ahn et al. [in press], we superimpose a claim developmental process onto the

insurer’s surplus process. However, we do not consider IBNR and focus only on the impact

of RBNS claims on the ruin probability. In other words, we are concerned only with the

claims handling process that takes place as soon as notification of a claim has reached the

insurer. Our study is distinct from Ahn et al. [in press] in five major respects:

1. We focus on measuring the effect on the ruin probability of variations in the CIM

at an operational level. For example, modelling a CIM that possesses stages (such

as investigation, payment processing, etc.) or allowing for a dependence structure
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between claim size and investigation time.

2. We consider the interplay of costs and benefits generated by variations in the CIM,

such as the trade-off between the cost and benefit of hiring additional investigators.

3. We model the effect of diffusion which aims to model the variability from premium,

investment income, or other factors perturbing the insurer’s surplus process.

4. We assume that the insurer remains liable for a fixed portion of the total payment

amount of claims undergoing investigation at the time of ruin.

5. We also compare three LT inversion methods to calculate the finite-time ruin probabil-

ity in our model and find that the Gaver-Stehfest method (see, e.g., Abate and Valkó

[2004] and references therein) is very efficient.

The present model is a special case of the more general (spectrally negative) Markov Ad-

ditive process and their results to some exit problems can be found in Ivanovs and Palmowski

[2012]. Also, for a generalization of the Markovian arrival model where waiting times between

two successive events have an arbitrary distribution, see Cheung and Landriault [2010].

The chapter is organized as follows. Section 3.2 presents the model and its MAP formu-

lation. Section 3.3 gives an expression for the joint LT of the time and generalized deficit

at ruin. Numerical examples are provided in Section 3.4 to assess the cost and benefit to

the insurer of additional investigators as well as the effect of diffusion on the ruin prob-

ability. To conclude, a detailed discussion of generalizations to the MAP formulation for

four possible CIM generalizations can be found in Section 3.5. Numerical examples are also

included throughout Section 3.5 to measure the impact of variations in the CIM on the ruin

probability.
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3.2 Model presentation

Recall the definition of the Cramér-Lundberg surplus process with diffusion perturbation

U∗ = {U∗t }t≥0 given by

U∗t = u+ ct+ σBt − St, (3.1)

where u (u ≥ 0) is the initial surplus level, c (c > 0) is the level premium rate per unit

time, {Bt}t≥0 is a standard Brownian motion, and the aggregate claim process {St}t≥0 is a

compound Poisson process with Poisson arrivals at rate λ (λ > 0) and positive jumps with

density p, independent of {Bt}t≥0.

In what follows, we propose a queueing-based claim investigation mechanism (CIM),

superimpose it onto the surplus process (3.1) and provide the Markov Additive Process

(MAP) formulation for the resulting surplus process.

3.2.1 Proposed queueing-based claim investigation mechanism

We propose a claim investigation mechanism (CIM) that consists of n investigation units

where each investigation unit investigates one claim at a time. Thus, the CIM allows for at

most n claims to be investigated at any given time. The CIM also permits at most m claims

to wait for investigation at any given time. Details on how claims are selected to enter the

CIM for investigation, (possibly) wait in the queue, and depart from the CIM are provided

next.

We define the number of claims in the CIM as the sum of the number of claims either

under investigation or waiting in the queue. When there are no claims in the CIM, we say

the CIM is empty while the CIM is said to be at full capacity when there are n+m claims in

the CIM. We also say an investigation unit is busy (idle) if it is (not) investigating a claim.
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Next, we separately consider two cases: the CIM is not at full capacity and the CIM is

at full capacity. First, when the CIM is not at full capacity (i.e., when there are less than

n+m claims in the CIM), a claim arriving of size x > 0 will:

1. with probability q0(x) ≥ 0, not be selected for investigation, avoid the CIM and be

paid immediately in its entirety; or

2. with probability q1(x) = 1− q0(x) ≥ 0, be selected to enter the CIM for investigation

and:

(a) if at least one investigation unit is idle (i.e., when there are less than n claims in

the CIM), the claim will immediately undergo investigation of the amount claimed

x, or

(b) if all n investigation units are busy (i.e., when there are n or more claims in the

CIM), the claim will enter the queue to wait for investigation. Claims waiting for

investigation are assumed to form a single queue.

The decision to investigate a claim of size x depends only on its size x and is independent

of all else in the risk model.

All claim investigation times are i.i.d. exponential rv’s with mean 1/α and are assumed

to be independent of all else in the risk model. Following the completion of investigation by

an investigation unit, the claim amount under investigation, say x, will result in a payment

w with df Lx(w) (w ≥ 0), independent of all else in the risk model, and the claim is said

to depart from the CIM. Furthermore, if there is at least one claim waiting in the queue,

the investigation unit will immediately begin investigation on the claim at the front of the

queue. This is consistent with the first come first serve discipline (FCFS) in queueing (see,

e.g., [Kleinrock, 1975, Section 1.2]).
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Lastly, we consider the case where the CIM is at full capacity (i.e., there are n + m

claims in the CIM). In this case, all arriving claims will be immediately paid in full. This

assumption is consistent with the concept of a single server queue with balking (e.g., Gross

et al. [2011, Section 1.2.1]) or finite storage in queueing theory (see, e.g., Kleinrock [1975,

Section 3.6])

The queueing-based claim investigation mechanism can be represented diagramatically

as shown in Figure 3.1.

Arriving Claim, x

Not subject to 

Investigation

Subject to 

Investigation

CIM at full capacity

CIM not at full 

capacity

Pay x

Pay x

1 …2 m

1 Pay w

2 Pay w

n Pay w

��� ∝

q1(x)

q0(x)p(x)

�� �

�� �

�� �

��� ∝

��� ∝

…

Figure 3.1: Diagramatic representation of the more advanced queue-based claim investigation

mechanism

We continue to use the term “claim” to refer to the loss amount declared by the poli-

cyholder (after appropriately applied coverage modifications, e.g. deductible, policy limit,

etc.), and the term “payment” to refer to the amount actually paid to the policyholder by

the insurer.

Note that if we let there be one investigation unit and zero waiting places (i.e., n = 1

and m = 0), then we obtain the CIM from Chapter 2 if the investigation times are assumed
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to be exponential (i.e., if the investigation time density (2.3) is given by h(t) = αe−αt for

t > 0) and independent of the claim size under investigation.

3.2.2 Markov additive process formulation

Superimposing the proposed CIM described in the last section onto the surplus process (3.1)

results in a surplus process that can be formulated as a Markov additive process (MAP).

Recall that a technical background on MAPs was provided in Section 1.2.2. More specifically,

the resulting surplus process can be formulated as a well-known special case of the MAP

called the perturbed Markovian arrival risk process (MArP) and was defined in Remark

1. In this section, we present this MArP formulation and determine the matrix exponent

characterizing the surplus process.

As was done in Chapter 2, we define

λl = λ

∫ ∞
0

p(y)ql(y)dy,

and

pl(x) =
p(x)ql(x)∫∞

0
p(y)ql(y)dy

,

for l = 0, 1, and x > 0. We have that λ1 (λ0) corresponds to the arrival rate of claims that

are selected to enter the CIM (avoid the CIM) and p1(x) (p0(x)) is the claim size density of

such claims. We also define

K(w) =

∫ ∞
0

Lx(w)p1(x)dx,

corresponding to the size of a payment for a claim undergoing the investigation process.

For completeness, we recall the definition of a MArP process. Define a process U =

{Ut}t≥0 and an irreducible continuous-time Markov process J = {Jt}t≥0 with finite state
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space E and infinitesimal generator Q. When {Jt = i}, the process U , commonly referred

to as the additive component, evolves as some perturbed compound Poisson risk process U i

and the processes U1, U2, . . . , Un are assumed to be independent. In addition, a transition

of J from i to j 6= i triggers a downward jump of U whose (absolute) size is denoted by rv

Pi,j ≥ 0 for i, j ∈ E. For i, j ∈ E, the matrix G(z) is defined as having (i, j)th element equal

to E
[
e−zPi,j

]
when i 6= j and diagonal elements equal to one.

From the MArP definition, we note that there are two types of downward jumps in

U : those triggered by state transitions in J and those occurring when J remains in some

state (via a compound Poisson process). Correspondingly, note that there are two types of

claim payments in our surplus process: payments from claims exiting the CIM after their

investigation and payments from claims that do not enter the CIM (due to claims that avoid

being investigated or arrive when the CIM is at capacity). In the following, we model our

surplus process using U with:

1. payments from claims that exit the CIM modelled by jumps triggered by state transi-

tions in J , and

2. payments from claims that do not enter the CIM modelled by jumps from a compound

Poisson risk process when J remains in some state.

We let Jt correspond to the number of claims in the CIM at time t by specifying the

infinitesimal generator Q as follows:

1. When 0 ≤ i < n + m and j = i + 1, we let (Q)i,j = λ1. That is, when the CIM is

not at full capacity, a transition in J from state i to state i+ 1 corresponds to a claim

entering the CIM which occurs at rate λ1. Note that these transitions do not trigger

any payment, i.e., Pi,j = 0.
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2. When 0 < i ≤ n+m and j = i−1, we let (Q)i,j = min(i, n)α. That is, when the CIM

is not empty, a transition in J from state i to state i−1 corresponds to a claim exiting

the CIM which occurs at rate iα if i (i < n) investigation units are busy and rate nα

if all investigation units are busy. Note that these transitions trigger a payment Pi,j

having df K.

3. Since there are no other possible transitions for J , all remaining off-diagonal elements

of Q are equal to zero. Also, the diagonal elements of Q are negative such that the

sum of the elements on each row of Q is zero.

Thus, Q is given by

Q =



−λ1 λ1 0 · · ·

α −(λ1 + α)
. . . . . .

0 2α −(λ1 + 2α)

...
. . . . . . . . .

nα −(λ1 + nα)

. . . . . .

nα −nα


. (3.2)

From the infinitesimal generator specified above, it is easy to see that J is irreducible. Also,

we have that the matrix G(z) has all elements equal to 1 except (G(z))i,j = k̃(z) when

0 < i ≤ n+m and j = i− 1, i.e.,

G(z) =



1 1 · · ·

k̃(z)
. . . . . .

1
. . .

...

k̃(z) 1


. (3.3)

Recall that when {Jt = i}, the process U evolves as a perturbed compound Poisson risk
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process U i for i ∈ E. We define

U i
t = ct+ σBt − Sit ,

where {Sit}t≥0 is a compound Poisson process. When 0 ≤ i < n + m, the CIM is not at

full capacity and the compound Poisson process Sit has intensity rate λ0 and i.i.d. jumps

with density p0. This corresponds to claims that are not selected for investigation and are

immediately paid in their entirety. When i = n + m, the CIM is at full capacity and the

compound Poisson process Sn+m
t has intensity rate λ and i.i.d. jumps with density p. This

corresponds to claims that are paid immediately in full since they arrived to find the CIM

at full capacity. It is assumed that the processes U1, U2, . . . , Un+m are independent.

Let ψi(z) be the Laplace exponent of U i defined as

E
[
ezU

i
t

]
= eψi(z)t,

where when 0 ≤ i < n+m,

ψi(z) = cz +
σ2

2
z2 + λ0 (p̃0(z)− 1) ,

and when i = n+m,

ψn+m(z) = cz +
σ2

2
z2 + λ (p̃(z)− 1) .

Also, define Fδ(z) to be the U -matrix analogue of the Laplace exponent called the matrix

exponent such that

E
[
e−δt+zUt ; Jt

]
= eF

δ(z)t.

Proposition 10. The matrix exponent characterizes our surplus process U (see, e.g., Ivanovs

and Palmowski [2012]) and is given by

Fδ(z) =

(
cz +

σ2

2
z2 − δ

)
Iz −Λ + Λ ◦P(z) + Q ◦G(z), (3.4)
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where Q and G(z) are given by (3.2) and (3.3), respectively. Also, Λ = diag{λ0, . . . , λ0, λ}

is a diagonal matrix with all diagonal entries equal to λ0 except the last which is λ and

P(z) = diag{p̃0(z), . . . , p̃0(z), p̃(z)} is a diagonal matrix with all diagonal entries equal to

p̃0(z) except the last which is given by p̃(z).

Thus, we conclude that the surplus process (3.1) with superimposed CIM can be formu-

lated by a MArP via the bivariate process (U, J) specified above with matrix exponent given

by (3.4).

Remark 6. Consider a special case of the CIM from Chapter 2 where investigation times

are exponential (i.e., the density (2.3) is restricted to h(t) = αe−αt for t > 0). Note that

this special case has one investigation unit and zero waiting places. The surplus process for

this special case can be formulated by a MArP as described in this section with n = 1 and

m = 0 having matrix exponent given by (3.4) with Q and G(z) respectively replaced by

Q =

−λ1 λ1

α −α

 ,
and

G(z) =

 1 1

k̃(s) 1

 .
Given the MArP representation of the surplus process U , we recall some results on scale

functions for MAPs which will be helpful in the characterization of first passage quantities

for U . For δ ≥ 0, the δ-scale matrix Wδ(x) is defined through its LT∫ ∞
0

e−zxWδ(x)dx = Fδ(z)−1.

The δ-scale matrix Wδ(x) is closely related to exit problems for MAPs. Its existence is

shown in Kyprianou and Palmowski [2008] and a detailed treatment of MAPs and their exit

results can be found in Ivanovs and Palmowski [2012]. Also, the second δ-scale matrix is
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defined as

Zδ(z, u) = ezu
(

I−
∫ u

0

e−zyWδ(y)dyFδ(z)

)
.

A second representation of the δ-scale matrix given by [Ivanovs and Palmowski, 2012, The-

orem 1] is introduced in Section 1.2.2 and for completeness, we recall it here. For x ∈ R, let

T
U,+(−)
x = inf{t ≥ 0 : Ut > (<)x} be the first passage time of U . The δ-scale matrix can be

written as

Wδ(x) = e−D
δxLδ(x),

where Dδ is a transitional rate matrix of the Markov chain associated with the first pas-

sage and Lδ(x) is a matrix associated with the expected occupation times at 0 up to the

first passage time over x. More specifically, Dδ satisfies E
[
e−δT

X,+
x ; JTX,+x

]
= eD

δx, and(
Lδ(x)

)
i,j

= E
[
Lδ(j, TX,+x )|J0 = i

]
, where Lδ (j, t) is the limit in L2(P) of

Lδε(j, t) =
1

2ε

∫ t

0

e−δs1{|Xs|<ε, Js=j}ds,

as ε ↓ 0. Define Lδ = limx→∞ Lδ(x) and it is proven in [Ivanovs and Palmowski, 2012,

Lemma 10] that Lδ has finite entries and is invertible unless Q1 = 0 (i.e., δ = 0) and the

asymptotic drift limt→∞ Ut/t = 0, P0,i-a.s. for all i ∈ E.

In the following section, we consider the joint LT of the time and deficit at ruin by making

connections with existing MAP results.

3.3 Joint Laplace transform of the time and deficit at

ruin

In this section, we propose a generalized definition for the deficit at ruin (consistent with

what was done in Chapter 2) and make connections with existing MAP results to obtain an

expression for the joint LT of the time and deficit at ruin.
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For notational simplicity, the time of ruin TU,−0 is denoted by T where T =∞ if Ut ≥ 0

for all t ≥ 0. We propose to use |UT | + ηVT as the deficit at ruin (rather than the usual

|UT |), where η ∈ [0, 1] and Vt is the total (future) payment amount of all claims in the CIM

(either waiting or undergoing investigation) at time t (if any). In the proposed CIM, Vt is

given by

Vt =
Jt∑
i=1

Yi (3.5)

where {Yi}∞i=1 forms a sequence of i.i.d. rv’s with common df K and is independent of all else

in the model. Recall that Jt denotes the number of claims in the CIM at time t. We adopt

the convention that the empty sum is 0. Hence, we assume that if claims are in the CIM

when the surplus process U drops below 0, the insurer remains liable for a fixed portion η

of their payment amounts. Note that this is consistent with the deficit at ruin as defined in

Chapter 2.

In what follows, we write Eu [ · ; JT ] to indicate a matrix with (i, j)th element correspond-

ing to

E
[
· 1{JT=j}

∣∣U0 = u, J0 = i
]
.

For δ, z ≥ 0, we let

mδ,z(u) ≡ Eu
[
e−δT−z(|UT |+ηVT )1{T<∞}; JT

]
, (3.6)

denote the joint matrix LT of the time and deficit at ruin matrix. Note that (3.6) is a special

case of the more general Gerber-Shiu function (2.8) studied in Chapter 2.

Proposition 11. The (i, j)th element of mδ,z(u) is given by

(mδ,z(u))i,j =
(
γδ,z(u)

)
i,j

(
k̃(zη)

)j
. (3.7)

where from [Ivanovs and Palmowski, 2012, Corollary 4]

γδ,z(u) := Eu
[
e−δT−z|UT |1{T<∞}; JT

]
= Zδ(z, u)−Wδ(u)

(
Lδ
)−1 (

z1n+m + Dδ
)−1

Lδ Fδ(z). (3.8)
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Note that (3.8) holds assuming it is not true that δ = 0 and the asymptotic drift limt→∞ Ut/t =

0.

The proof of Proposition 11 involves conditioning on JT and using (3.5).

Remark 7. We assume that the surplus process U has a positive drift by letting

c >

n+m∑
i=0

πi

n+m∑
j=0

di,jE [Pi,j] , (3.9)

where π = (π0, . . . , πn+m) is the stationary distribution of the background process J and can

be found by solving πQ = 0 and π1n+m+1 = 1. Also, di,j is the rate of transition of J from

state i to state j (with possibly i = j) with an accompanying claim. Note that πi can be

interpreted as the long-run probability of finding i claims in the CIM. Also,
∑n+m

j=0 di,jE [Pi,j]

corresponds to the infinitesimal rate of payment expense given there are i claims in the CIM.

Thus, (3.9) requires that the premium rate exceeds the long-run payment expense per unit

time and is known as the positive security loading condition.

Under the CIM we have proposed, we obtain

di,j =



min(i, n)α, 0 < i ≤ n+m and j = i− 1,

λ0, 0 ≤ i < n+m and j = i,

λ, i = j = n+m,

0, otherwise,

(3.10)

and

E [Pi,j] =



E [Y ] , 0 < i ≤ n+m and j = i− 1,

E [X0] , 0 ≤ i < n+m and j = i,

E [X] , i = j = n+m,

0, otherwise,

(3.11)

by considering all possible transitions in J with an accompanying claim, namely, transitions

corresponding to payment of claims that:
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1. Have completed investigation,

2. Are not selected for investigation, or

3. Arrive when the CIM is at full capacity.

Substituting (3.10) and (3.11) into (3.9) yields

c > λE [X]−
(

(1− πn+m)λ1E
[
X1
]
− αE [B]E [Y ]

)
, (3.12)

where E[B] =
∑n+m

j=0 min(j, n)πj is the long-run mean number of busy investigators and X,

X1, and Y have LT p̃, p̃1, and k̃, respectively. We point out that λE [X] corresponds to the

long-run rate of payment expenses if there is no investigation (i.e., when q1(x) = 0). Also,

the long-run rate of savings resulting from the CIM is given by

long-run rate of savings = (1− πn+m)λ1E
[
X1
]
− αE [B]E [Y ] , (3.13)

which corresponds to the long-run rate of claim expenses entering the CIM minus the long-

run rate of payment expenses exiting the CIM. Thus, the right-hand side of (3.12) can be

interpreted as the long-run rate of claim expenses net of the long-run rate of savings resulting

from the CIM. Note that (3.13) is positive iff E [X1] > E [Y ] because (1− πn+m)λ1 = αE [B]

(see, e.g., Little’s law in [Kleinrock, 1975, Section 2.1]). Thus, introducing a CIM in the

insurer’s procedures will lower the drift of the process provided E [X1], the mean claim size

under investigation, is greater than E [Y ], the mean payment following investigation.

It is somewhat more realistic to take into account a certain cost generated by the CIM.

This can be modelled as a continuous fixed rate ccost that effectively reduces the rate of

premium collected. Thus, c in (3.12) can be viewed as the premium rate net of ccost. In the

numerical examples to follow, we will examine the impact of ccost on the optimal number of

investigators.
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Inversion of mδ,z(u) in both δ and z results in the joint density of the time and deficit at

ruin. Furthermore, the density of the time to ruin and the finite-time ruin probability (see,

e.g., Dickson and Willmot [2005] and references therein) can be obtained by inversion in δ of

mδ,0(u) and mδ,0(u)/δ, respectively. The dependence of (3.7) on z and particularly on δ is

not straightforward and as such analytical Laplace inversion is in general a very challenging

task. Numerical Laplace inversion techniques are discussed in Section 1.3.

We remark that the proposed CIM assumes claims wait in a single queue for homogeneous

investigators with exponential investigation times. The flexibility of the model’s MArP

formulation allows for considerable generalizations to the model while preserving the MArP

formulation which is the topic of Section 3.5.

3.4 Numerical examples

3.4.1 Baseline case

As a baseline case for the numerical examples to follow, we assume claims arrive according to

a Poisson process with rate λ = 5 and claim sizes have LT given by (2.54). A (gross) premium

rate of 18 is assumed. The probability a claim is selected for investigation is constant, i.e.

q1(x) ≡ q1 = 0.5, and investigation times are assumed to follow an exponential distribution

with mean 1/α = 5. We also assume Lx(w) is as given in (2.2) where ς(x) = ς = 0.25 so

that it is assumed that 25% of the claims are fraudulent. Furthermore, the surplus process

is assumed to have no diffusion (i.e. σ2 = 0). Unless stated otherwise, the remaining

examples in this chapter will all use these baseline case assumptions. The matrix exponent

characterizing our surplus process U is obtained by using Proposition 10 with m = 0.

The baseline case considered here is equivalent to that considered in Section 2.4 except

70



that here, we have n investigators, investigation times are assumed to be exponentially

distributed and ς(x) = ς = 0.25 rather than 0.15. We consider a CIM with a higher ς than

in Section 2.4 to better illustrate the impact of the CIM in the numerical examples to follow.

Also, recall that the baseline case from Section 2.4 has investigation times distributed as a

combination of exponentials and hence its surplus process cannot be formulated as a MAP.

3.4.2 Performance of three numerical Laplace transform inversion

algorithms

In this section, we evaluate the performance of the three numerical Laplace inversion algo-

rithms introduced in Section 1.3, namely, the Gaver Stehfest (GS) method, Gaver-Wynn-

Rho (GWR) algorithm, and Fourier-cosine series (COS) expansion. These techniques may

be used to invert mδ,0(u) and mδ,0(u)/δ in δ to obtain the density of the time to ruin and

finite-time ruin probability, respectively. Recall that mδ,0(u) is the LT of the time to ruin

and is obtained using Proposition 11 with z = 0. Note that the dependence of mδ,0(u) on δ is

not straightforward and as such analytical Laplace inversion is in general a very challenging

task. The reader is invited to consult Shi [2013] for more details on this topic.

We compare the performance of the three inversion techniques by using each technique to

calculate the finite-time ruin probability ψ(u, t) = P (T ≤ t|U0 = u) for a CIM that follows

the baseline case outlined in Section 3.4.1 with n = 2. We use the GS and GWR methods to

approximate ψ(u, t) by numerically inverting mδ,0(u)/δ. For the COS method, we instead

approximate ψ(u, t) by letting mδ,0(u) be the LT of interest and using (1.16).

For the GS method, we denote the approximant (1.10) using ψGS(u, t) and let N1 = 13.

For the GWR method, we denote the approximant (1.14) using ψGWR(u, t) and let N2 = 14.

For the COS method, we denote the approximant (1.16) using ψCOS(u, t) and let N3 = 30.
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Note that all three methods involve evaluating the LT at a comparable number of values for

the Laplace argument (i.e., 2N1 ≈ 2N2 + 1 ≈ N3).

All calculations were performed in MATLAB using 100 significant digits and all three

methods have comparable runtimes of approximately 40 seconds. Approximations to the

finite-time ruin probabilities ψGS(u, t) using the GS method, rounded to the 4th decimal

place can be found in Table 3.1 for various u and t. Table 3.2 shows the magnitude of the

difference |ψGS(u, t)− ψGWR(u, t)| expressed in negative powers of 10.

Table 3.1: Approximation for finite-time ruin probabilities ψGS(u, t)

u \ t 1 5 10 20 40

0 0.4965 0.6449 0.6824 0.7036 0.7127

15 0.0201 0.1338 0.1931 0.2342 0.2537

30 0.0006 0.0261 0.0567 0.0859 0.1026

45 0.0000 0.0041 0.0147 0.0299 0.0410

60 0.0000 0.0005 0.0033 0.0098 0.0161

75 0.0000 0.0001 0.0007 0.0030 0.0062

From Table 3.2, we observe that the difference between the GS and GWR approximations

have magnitude orders between 9 and 15.

To evaluate the performance of the COS method, consider Table 3.3 which shows the

magnitude of the difference |ψGS(u, t)− ψCOS(u, t)| expressed in negative powers of 10.

From Table 3.3, we observe that the difference between the GS and COS approximations

have magnitude orders between 2 and 6 which are less than those found in Table 3.2. Also,

we find that the efficiency of the COS method tends to increase with u.

72



Table 3.2: Magnitude order of |ψGS(u, t)− ψGWR(u, t)| in negative powers of 10

u \ t 1 5 10 20 40

0 9 9 10 10 9

15 11 10 10 10 11

30 11 10 10 10 11

45 12 10 10 10 10

60 14 11 10 10 10

75 15 11 11 10 10

Table 3.3: Magnitude order of |ψGS(u, t)− ψCOS(u, t)| in negative powers of 10

u \ t 1 5 10 20 40

0 2 2 3 3 4

15 3 4 4 4 3

30 4 5 4 4 3

45 6 5 4 4 4

60 6 4 5 4 4

75 6 5 5 4 4

If we instead calculate the approximant ψCOS(u, t) using N3 = 8000, the runtime of the

COS method increases from 40 seconds to approximately 5 hours and the difference between

the GS and COS approximations are found to have magnitude orders between between 4

and 15. While these values are closer to those found in Table 3.2, it comes at the cost of

much slower computation time.

We conclude that both the GS method and GWR algorithm perform well while the COS
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method is far less efficient. In the following numerical examples, we use the GS method

when performing numerical LT inversions because the method is well-known and as shown

above, is found to perform very efficiently.

3.4.3 Cost and benefit of adding investigators

In this example, we assume a cost per investigator that can be modelled as a continuous

fixed rate ccost. This cost can be viewed as expenses generated by a claim investigator (e.g.,

salary, office equipment, etc.). For n investigators, this cost effectively leads to a lowered

(net) rate of premium collected equal to c− nccost. In the following, we vary the number of

investigators n and observe the different impact on the ruin probability depending on the

value of ccost. We assume a CIM that follows the baseline case outlined in Section 3.4.1.

When investigation has no cost (ccost = 0)

To begin, we consider the scenario where investigation has no cost (i.e., ccost = 0). The ruin

probabilities for this process can be found in Table 3.4 for varying n.

Table 3.4: Ruin probabilities for varying n when ccost = 0

n \ u 0 15 30 45 60 75

0 0.8796 0.4083 0.1871 0.0857 0.0393 0.0180

1 0.7862 0.3275 0.1432 0.0627 0.0275 0.0120

2 0.7153 0.2597 0.1083 0.0454 0.0190 0.0080

3 0.6595 0.2042 0.0810 0.0325 0.0130 0.0052

4 0.6152 0.1596 0.0600 0.0231 0.0089 0.0034
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From Table 3.4, we observe the ruin probability decreasing with increasing n for all u.

As more investigators are added, the CIM has greater capacity to delay and deny claims.

When there are no offsetting costs, this has the effect of reducing the ruin probability and

this effect is confirmed by Table 3.4.

When investigation has non-zero cost (ccost = 0.35)

Now let ccost = 0.35. The ruin probabilities for this process can be found in Table 3.5 for

varying n.

Table 3.5: Ruin probabilities for varying n and ccost = 0.35

n \ u 0 15 30 45 60 75

0 0.8796 0.4083 0.1871 0.0857 0.0393 0.0180

1 0.8130 0.3819 0.1870 0.0916 0.0449 0.0220

2 0.7797 0.3700 0.1937 0.1017 0.0534 0.0280

3 0.7655 0.3713 0.2080 0.1172 0.0660 0.0372

4 0.7646 0.3856 0.2318 0.1403 0.0850 0.0515

Table 3.5 shows that when ccost = 0.35, it is not true that the ruin probability decreases

with n for all u (as was the case when ccost = 0). For example, when u ∈ {15, 30}, the ruin

probability decreases with n up to some point, and thereafter, the ruin probability begins

to increase with n. When u ∈ {45, 60, 75}, the ruin probability begins to increase with n

as soon as one investigator is added. When u = 0, the ruin probability decreases with n up

to the addition of four investigators; with further analysis we find that the ruin probability

begins to increase with n when at least five investigators have been added. We shade in gray

the portion of Table 3.5 where ruin probabilities begin to increase with n for a given u.
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The behaviour observed in Table 3.5 illustrates the tradeoff between the cost and benefit

of adding investigators to the CIM. Recall that when an investigator is added, the CIM’s

delay and deny capacity is increased. Loosely speaking, if the marginal increase in the delay

and deny capacity exceeds (falls below) the added cost of the investigator, the resulting ruin

probability will decrease (increase).

We observe that the ruin probability decreases with n up to some point, and thereafter,

the ruin probability begins to increase with n. Note that this point occurs immediately when

u ∈ {45, 60, 75}. This suggests that the CIM experiences diminishing marginal increases in

its delay and deny capacity with each added investigator such that the rising costs eventually

causes the ruin probability to increase with n. Note that as one continues to add investigators

to the CIM, the ruin probability will eventually equal 1 because the loading condition given

by (3.12) will no longer be satisfied.

We refer to the number of investigators that minimizes the ruin probability n∗ as the

optimal number of investigators. For example, the optimal number of investigators when

u = 15 and u = 30 is equal to n∗ = 2 and n∗ = 1, respectively. From Table 3.5, we observe

that the optimal number of investigators is non-increasing with u. This is explained by

considering an insurer with small u. When u is small, an insurer is particularly vulnerable

to the event of ruin caused by an early claim. Thus, an increase in the delay and deny

capacity of this insurer’s CIM is especially valuable and results in a higher optimal number

of investigators. The opposite is true when u is large. Note that analytical analysis to

determine the optimal number of investigators appears to be a challenging problem.

In sum, when ccost is positive, there is a tradeoff between the cost and benefit of adding

investigators. Adding investigators can lower an insurer’s ruin probability but only up to a

point and thereafter, the ruin probability will begin to increase. Also, the optimal number

of investigators is non-increasing with the initial surplus u.
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Increasing ccost

We now increase ccost from 0.35 to 0.45 and consider its effect on the optimal number of

investigators n∗. The ruin probabilities for a process with ccost = 0.45 can be found in Table

3.6 for varying n.

Table 3.6: Ruin probabilities for varying n and ccost = 0.45

n \ u 0 15 30 45 60 75

0 0.8796 0.4083 0.1871 0.0857 0.0393 0.0180

1 0.8210 0.3994 0.2021 0.1024 0.0518 0.0263

2 0.8001 0.4111 0.2303 0.1293 0.0726 0.0408

3 0.8023 0.4450 0.2770 0.1730 0.1081 0.0676

4 0.8226 0.5063 0.3517 0.2455 0.1713 0.1196

As ccost increases, we expect that it becomes less advantageous to hire more investigators.

This effect is confirmed by comparing Table 3.6 with Table 3.5. For example, when u = 15

and if ccost = 0.35, it is optimal to hire two investigators but if ccost = 0.45, then it is optimal

to hire one investigator. Also, when u = 30 and if ccost = 0.35, we find that it is optimal to

hire one investigator but if ccost = 0.45, it is optimal not to hire any investigators.

Finite-time ruin probability where there is non-zero cost (ccost = 0.325)

Up to this point we have been considering the impact of varying n on the ultimate ruin

probability. We now turn our attention to the finite-time ruin probability. More specifically,

consider the probability of ruin before time 25 in Table 3.7 when ccost = 0.325.

Note that Table 3.5 and Table 3.7 both consider when ccost = 0.325 though Table 3.5
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Table 3.7: Probability of ruin before time 25 for varying n and ccost = 0.325

n \ u 0 15 30 45 60 75

0 0.8743 0.3849 0.1612 0.0646 0.0246 0.0089

1 0.8001 0.3456 0.1497 0.0618 0.0242 0.0089

2 0.7575 0.3174 0.1417 0.0601 0.0241 0.0091

3 0.7322 0.2976 0.1365 0.0594 0.0243 0.0093

4 0.7177 0.2847 0.1337 0.0596 0.0249 0.0097

provides the ultimate ruin probabilities while Table 3.7 provides the probability of ruin before

time 25.

From Table 3.5 and Table 3.7, the number of investigators that minimizes the finite-time

ruin probability is greater than the number that minimizes the ultimate ruin probability

when u ∈ {0, 15, 30, 45, 60}. For example, when u = 60, hiring no investigators will minimize

the ultimate ruin probability while hiring two investigators will minimize the finite-time ruin

probability. This makes sense because adding investigators to a CIM will increase its capacity

to delay claims. Thus, payments that are delayed to some point after the time horizon t = 25

are accounted for in the ultimate ruin probability but not the finite-time ruin probability.

Thus, the finite-time ruin probability reflects a greater benefit from adding investigators

which results in a higher optimal number of investigators. Note that when u = 75, the

finite-time and ultimate ruin probability are minimized when no investigators are added.

This is due to the smaller benefits from adding investigators when u is large which was

explained earlier.

In conclusion, the optimal number of investigators will depend on the time-horizon t

considered and more specifically, it will be more advantageous to hire more investigators as

t decreases.
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3.4.4 Effect of diffusion

In this example, we illustrate the impact of the diffusion component on the surplus process

for varying σ. Recall that the diffusion component models the variability from premium,

investment income, or other factors perturbing the insurer’s surplus process. We let n = 2

such that there are two investigators in the CIM and all other features of the CIM are

assumed to satisfy the baseline case. Ruin probabilities for various σ are provided in Table

3.8.

Table 3.8: Ruin probabilities for varying σ

σ \ u 0 15 30 45 60 75

0 0.7153 0.2597 0.1083 0.0454 0.0190 0.0080

1 1.0000 0.2638 0.1110 0.0469 0.0198 0.0084

2 1.0000 0.2760 0.1191 0.0517 0.0224 0.0097

3 1.0000 0.2958 0.1329 0.0600 0.0271 0.0122

4 1.0000 0.3227 0.1525 0.0725 0.0344 0.0164

Table 3.8 shows that the ruin probability increases with σ. This confirms our intuition

since increasing the volatility of the diffusion process will increase the variability of the

surplus process which leads to a greater risk of ruin. Note that when u = 0, a positive σ

leads to ruin probabilities equal to 1.
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3.5 Generalizations to the claim investigation mecha-

nism

The CIM proposed in Section 3.2.1 assumes claims arrive according to a Poisson process

and investigation times are i.i.d. exponential rv’s that are independent of all else in the

model. In this section, we discuss possible generalizations to the CIM while preserving

the model’s useful MArP formulation. The flexibility of the MArP and in particular, the

flexibility in defining and developing its background process allows for a large number of

possible generalizations and a considerable amount of added realism.

Recall that in the MArP formulation presented in Section 3.2.2, the background process

J is given by the Markov process corresponding to the number of claims in the CIM. By more

generally viewing J as corresponding to the state process of the CIM, it is not difficult to

see that the model’s MArP formulation can accommodate any CIM (more general than that

proposed) provided its state process can be defined as a Markov process and claims arrive

according to a Markov-modulated Poisson process (MMPP). Thus, a CIM modelled after any

queueing system studied in the vast number of queueing problems can be accommodated,

provided the queue contains an embedded Markov process and has MMPP arrivals. Such

queues include but are not limited to those with: heterogeneous servers, responsive servers,

phase-type service times, bulk claim arrivals/service, server vacations, parallel queues and

networks of service nodes (see, e.g., [Kleinrock, 1975, Chapter 3 and 4], [He, 2014, Chapter

4], [Sericola, 2013, Section 5.8] and references therein). Indeed, the background process J

developed in Section 3.2.2 for the CIM proposed in Section 3.2.1 corresponds to the system

state process of the well-known M/M/n/n + m queue with customer arrival rate λ1 and

service rate α (see, e.g., [Gross et al., 2011, Section 2.5]).

In the following subsections, we generalize the proposed CIM while preserving the model’s
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MArP formulation. We consider four generalizations to the proposed CIM, namely, (1)

phase-type investigation times, (2) investigation time dependence on claim size, (3) claim

investigation networks, and (4) Markov modulated Poisson claim arrivals.

For each generalization, the key objective is to determine the matrix exponent Fδ(z) for

the resulting surplus by updating the MArP formulation of the proposed CIM from Section

3.2.2. We recall that the matrix exponent characterizes the surplus process U and plays a

central role in exit results via the closely-related scale matrix.

After each CIM generalization is introduced, each subsection proceeds as follows:

1. A multivariate background process J is defined which serves to enlarge the state space

and to keep the Markovian structure of the (U,J) process.

2. The infinitesimal generator Q is identified.

3. The matrix G(z) is identified.

4. The matrix exponent Fδ(z) for the resulting surplus process is obtained by outlining

the required modifications to (3.4).

5. The joint LT of the time and deficit at ruin is obtained by outlining the required

modifications to (3.7).

For the subsections relating to investigation time dependence on claim size and claim

investigation networks, a numerical example is provided to illustrate the impact of the gen-

eralization on the ruin probability.

The following notation will be used in the remainder of this section. We use In to denote

an n × n identity matrix and 1n to denote a column vector of size n with all entries equal

to 1. We denote by en,h the row vector of size n with hth entry equal to 1 and all other
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entries equal to 0. Suppose we have two matrices A = (ai,j) of size k × l and B = (bi,j) of

size m× n. The Kronecker product of A and B is denoted by A⊗B and defined by

A⊗B =


a1,1B a1,2B · · · a1,lB

a2,1B a2,2B · · · a2,lB

...
...

. . .
...

ak,1B ak,2B · · · ak,lB


.

3.5.1 Phase-type investigation times

In this section, we generalize the proposed CIM described in Section 3.2.1 by assuming that

investigation times are distributed according to a phase-type distribution (β,T) of order s

with β1s = 1 and we set T 0 = −T1s. We continue to assume that investigation times are

i.i.d. and independent of all else in the model. All other features of the CIM are assumed to

satisfy the proposed CIM of Section 3.2.1. In what follows, we superimpose this generalized

CIM onto the surplus process and present the MArP formulation of the resulting surplus

process. We remark that the generalized CIM is modelled after the M/PH/n/n+m queue

studied in queueing theory. A treatment of the M/PH/n queue where infinite capacity is

assumed can be found in Sericola [2013].

Note that the class of phase-type distributions is dense in the sense of weak conver-

gence for all distributions with positive support and is therefore a very general distributional

assumption. Special cases of phase-type distributions include the exponential, mixture of

exponential, Erlang, and Coxian distributions. A more detailed account of phase-type dis-

tributions can be found in [Asmussen and Albrecher, 2010, Chapter IX].
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1. Defining background process J

We begin by defining the generalized background process and its state space. For j ∈

{1, . . . , s}, define Rj = {Rj,t}t≥0 where Rj,t corresponds to the number of claims under

investigation in phase j at time t. The generalized background process is defined by the

multivariate Markov process J = {(Jt, R1,t, . . . , Rs,t)}t≥0 where Jt = (Jt, R1,t, . . . , Rs,t) cor-

responds to not only the number of claims in the CIM but also, the number of claims under

investigation in each phase at time t. Thus, the generalized state space is given by

E =
n+m⋃
i=0

Ci,

where for i > 0,

Ci = {(i, r1, . . . , rs) , 0 ≤ rh ≤ n, for all h ∈ {1, . . . , s} and r1 + · · ·+ rs = min(n, i)},

and to simplify the notation in what follows, we let C0 = (0, 0, . . . , 0), a zero vector of size

s + 1. Note that when at least one of the rh’s is non-zero, then i > 0. Also, the cardinality

of Ci when i > 0 depends on i and is equal to |Ci| =
(
s+min(n,i)−1
min(n,i)

)
(see, e.g., [Feller, 1971,

Section 5]).

2. Identifying infinitesimal generator Q

We now determine the transition rates of J. Let r = (r1, . . . , rs) with r1 + · · ·+rs = min(n, i)

and r′ = (r′1, . . . , r
′
s) with r′1+· · ·+r′s = min(n, i′). For (i, r), (i′, r′) ∈ E, denote the transition

rate of J from state (i, r) to (i′, r′) by q(i,r),(i′,r′). All transition rates of J starting from state

(i, r) ∈ Ci are given in the following:

1. Claims entering the CIM: If the CIM is not at capacity, claims enter the CIM at

rate λ1. Suppose an entering claim finds i claims in the CIM. If 0 ≤ i < n, then not
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all servers are busy and the claim immediately begins investigation at phase h with

probability βh for h ∈ {1, . . . , s}. Otherwise, if n ≤ i < n + m, then all servers are

busy and the claim joins the queue. Thus, if 0 ≤ i < n,

q(i,r),(i+1,r+es,h) = λ1βh, for all 1 ≤ h ≤ s,

and if n ≤ i < n+m,

q(i,r),(i+1,r) = λ1.

2. Claims departing the CIM: Suppose the CIM is not empty and furthermore, that

there are i claims in the CIM. If there are rg claims at phase g of investigation, then

a claim departs from the CIM from phase g at rate rg · (T 0)g for g ∈ {1, . . . , s}.

Furthermore, if the claim makes its departure while there is at least one claim waiting

in the queue (i.e., n < i ≤ n + m), then the claim at the front of the queue begins

investigation at phase h with probability βh where h ∈ {1, . . . , s}. Thus, if 0 < i ≤ n,

q(i,r),(i−1,r−es,g) = rg · (T0)g , for all 1 ≤ g ≤ s,

and if n < i ≤ n+m,

q(i,r),(i−1,r−es,g+es,h) = rg · (T0)g βh, for all 1 ≤ g, h ≤ s and g 6= h,

and

q(i,r),(i−1,r) =
s∑

g=1

rg · (T0)g βg. (3.14)

The summation over g ∈ {1, . . . , s} in (3.14) is explained by considering all the ways

that J transitions from state (i, r) to state (i− 1, r). That is, such a transition occurs

whenever a claim departs the CIM from phase g and a waiting claim enters investigation

at the same phase g, for any g ∈ {1, . . . , s}.

3. For transitions with a fixed number of claims in the CIM: A transition in J

with a fixed number of claims in the CIM occurs when a claim undergoing investiga-

tion transitions between phases of investigation. If there are rg claims at phase g of
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investigation, a claim transitions from phase g to phase h with rate rg · (T)g,h. Thus,

if 0 < i ≤ n+m,

q(i,r),(i,r−es,g+es,h) = rg · (T)g,h , for all 1 ≤ g, h ≤ s and g 6= h.

No other transitions in J are possible.

Using the transition rates for J described above, we are able to determine the infinitesimal

generator Q. The diagonal elements of Q are found such that its rows sum to zero. According

to the transition rates given above, it follows that

q(i,r),(i,r) =


−λ1, i = 0,

−λ1 +
∑s

j=1 rj · (T)j,j , 0 < i < n+m,∑s
j=1 rj · (T)j,j , i = n+m,

for all (i, r) ∈ E. The matrix Q has the same structure as (3.25). However, according to

the transition rates described above, we do not have simple expressions for the submatrices

Qi,i′ like we do in Section 3.5.4.

3. Identifying matrix G(z)

Next, we consider the LT of payments triggered by transitions in J to determine the matrix

G(z). Let g(z)(i,r),(i′,r′) denote the LT of the claim payment triggered when J transitions

from state (i, r) to (i′, r′) where (i, r), (i′, r′) ∈ E. Recall that a payment is triggered only at

transitions in J corresponding to a claim completing investigation and departing the CIM

and that the payment sizes have LT k̃(z). Thus, if 1 ≤ i ≤ n,

g(z)(i,r),(i−1,r−es,g) = k̃(z), for all 1 ≤ g, h ≤ s,

and if n < i ≤ n+m,

g(z)(i,r),(i−1,r−es,g+es,h) = k̃(z), for all 1 ≤ g, h ≤ s and g 6= h,
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and

g(z)(i,r),(i−1,r) = k̃(z).

Since all other transitions in J do not trigger payments (which is mathematically equivalent

to assuming such transitions trigger a payment of size 0), all other entries in G(z) are equal

to 1. The matrix G(z) has the same structure as (3.27). However, we do not have simple

expressions for the submatrices like we do in Section 3.5.4.

4. Matrix exponent Fδ(z)

Given the MArP formulation provided thus far, we are ready to give the matrix exponent

of the surplus process.

Proposition 12. For phase-time investigation times, the resulting surplus process U is

characterized by the matrix exponent given by (3.4) with Q and G(z) as identified in this

section. Also, Λ and P(z) are respectively replaced by

Λ = diag{λ0, . . . , λ0, λ, . . . , λ︸ ︷︷ ︸
|Cn+m|

},

a diagonal matrix where all diagonal elements are equal to λ0 except for the last |Cn+m|

diagonal elements which are equal to λ, and

P(z) = diag{p̃0(z), . . . , p̃0(z), p̃(z) . . . , p̃(z)︸ ︷︷ ︸
|Cn+m|

},

a diagonal matrix where all diagonal entries are equal to p̃0(z) except for the last |Cn+m|

diagonal elements which are equal to p̃(z).

5. Joint LT of the time and deficit at ruin

Lastly, we note that the joint LT of the time and deficit at ruin is given by (3.7) and (3.8)

using the matrix exponent Fδ(z) identified in Proposition 12. No further modifications are
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necessary because Vt, which we recall is defined as the total (future) payment amount of all

claims in the CIM at time t (if any), is still given by (3.5).

3.5.2 Investigation time dependence on claim size

In this section, we introduce a dependence structure into the CIM proposed in Section 3.2.1.

More precisely, we consider a dependence structure where investigation times are distributed

as a mixture of exponentials.

We continue to assume that investigation times are i.i.d. exponential rv’s except that the

rate of investigation is now assumed to depend on the size of the claim under investigation.

More precisely, a claim under investigation of size x will undergo investigation with duration

having df
∑d

j=1 fj(x) (1− e−αjt), for t > 0. That is, conditional on the claim size x, a claim

under investigation is investigated for an exponential amount of time at rate αj > 0 (i.e.,

having mean 1/αj) with probability fj(x) > 0 for j ∈ {1, 2, . . . , d}. For simplicity, we will say

that an investigation time is Exp(αj) if it is exponentially distributed with mean 1/αj. We

assume
∑d

j=1 fj(x) = 1 for all x > 0. Investigation times are assumed to remain independent

of any other rv’s in the risk model and all other features of the CIM are assumed to satisfy

the proposed CIM given in Section 3.2.1. For a random claim selected for investigation, we

have that investigation times follow a mixture of exponential distributions where the jth

exponential has rate αj with corresponding mixing weight

wj ≡
∫ ∞

0

fj(x)p1(x)dx,

for j ∈ {1, . . . , d}. Hence, the resulting CIM is said to behave as a M/Hd/n/n + m queue

studied in queueing theory (see, e.g. [Kleinrock, 1975, Section 4.7] for a treatment of the

M/Hd/1 queue where a single server and infinite capacity is assumed). Note that if d = 1,

we recover the proposed model from Section 3.2.1 with α replaced by α1.
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Remark 8. Note that in practice it is often the case that larger claims experience longer

investigation times on average. This relationship can be modelled under our proposed depen-

dence structure by having larger claims be more likely to have smaller rates of investigation.

Supposing α1 < · · · < αd, we can, for example, choose {fj(x)}dj=1 such that for large (small)

x, fj(x) is decreasing (increasing) in j.

It is well-known that the mixture of exponential distributions is included in the class of

phase-type distributions (see, e.g., [Latouche and Ramaswami, 1999, Section 2.2]). Thus,

the investigation times under our proposed dependence structure are phase-type (β,T) of

order d with β = (w1, . . . , wd),

T = −diag{αj}dj=1,

and T0 = (α1, . . . , αd)
T and the resulting surplus process can be formulated as a special case

of that in Section 3.5.1 where phase-type investigation times were discussed.

1. Defining background process J

We obtain the background process from Section 3.5.1 by setting s = d and letting Rj,t

correspond to the number of claims having Exp(αj) investigaiton time at time t.

2. Identifying infinitesimal generator Q

We obtain the infinitesimal generator Q from Section 3.5.1 by setting s = d, (T0)g = αg,

(T)g,h = 0 when g 6= h, and (T)j,j = −αj for all 1 ≤ g, h, j ≤ d.
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3. Identifying matrix G(z)

Next, we consider the LT of payments triggered by transitions in J to determine the matrix

G(z). We define

k̃j(z) =
1

wj

∫ ∞
0

l̃x(z)fj(x)p1(x)dx,

for j ∈ {1, . . . , d}, corresponding to the LT of the payment size following investigation given

the investigation time was Exp(αj). Thus, similar to Section 3.5.1, if 0 < i ≤ n,

g(z)(i,r),(i−1,r−es,g) = k̃g(z), for all 1 ≤ g ≤ s where rg ≥ 1,

and if n < i ≤ n+m,

g(z)(i,r),(i−1,r−es,g+es,h) = k̃g(z), for all 1 ≤ g, h ≤ s and g 6= h where rg ≥ 1

and

g(z)(i,r),(i−1,r) =
d∑
g=1

(
rgαg∑d
l=1 rlαl

)
k̃g(z). (3.15)

The summation over g in (3.15) is explained by considering all possible transitions of J from

state (i, r) to state (i− 1, r). This transition occurs whenever a claim departs the CIM after

having an Exp(αg) investigation time and a waiting claim begins investigation (also) with an

Exp(αg) investigation time, for any g ∈ {1, . . . , d}. A claim departs the CIM after having an

Exp(αg) investigation time with probability rgαg/
∑d

l=1 rlαl and triggers a payment with LT

k̃g(z). Thus, the LT of the payment triggered by this transition in J involves an expectation

over all the possible rates of investigation for the departing claim.

Since all other transitions in J do not trigger payments (which is mathematically equiv-

alent to assuming such transitions trigger a payment of size 0), all other entries in G(z) are

equal to 1. The matrix G(z) has the same structure as (3.27). However, we do not have

simple expressions for the submatrices like we do in Section 3.5.4.
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4. Matrix exponent Fδ(z)

Given the MArP formulation provided thus far, we are ready to give the matrix exponent

of the surplus process.

Proposition 13. Introducing the proposed dependence structure results in a surplus process

U characterized by a matrix exponent given by (3.4) with Q and G(z) as identified in this

section. Also, Λ and P(z) are respectively replaced by

Λ = diag{λ0, . . . , λ0, λ, . . . , λ︸ ︷︷ ︸
|Cn+m|

},

a diagonal matrix where all diagonal elements are equal to λ0 except for the last |Cn+m|

diagonal elements which are equal to λ, and

P(z) = diag{p̃0(z), . . . , p̃0(z), p̃(z) . . . , p̃(z)︸ ︷︷ ︸
|Cn+m|

},

a diagonal matrix where all diagonal entries are equal to p̃0(z) except for the last |Cn+m|

diagonal elements which are equal to p̃(z).

Remark 9. The risk model from Chapter 2 with the added restriction that the investigation

time density (2.3) is of a mixture form (i.e., all mixing weights ωi > 0) is obtained by the

CIM discussed in this section by setting n = 1 and m = 0. Thus, the resulting surplus

process has matrix exponent given by (3.4) with Q replaced by

Q =

Q0,0 Q0,1

Q1,0 Q1,1

 ,
where Q0,0 = −λ1, Q0,1 = λ1 (w1, . . . , wd), Q1,0 = (α1, . . . , αd)

T , and Q1,1 = −diag{αj}dj=1,

and the matrix G(z) is given by

G(z) =

 0 0

G1,0(z) 0

 ,
where G1,0(z) =

(
k̃1(z), . . . , k̃d(z)

)T
.
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5. Joint LT of the time and deficit at ruin

Lastly, to obtain the joint LT of the time and deficit at ruin matrix

mδ,z(u) ≡ Eu
[
e−δT−z(|UT |+ηVT )1{T<∞}; JT

]
,

some modifications to (3.7) are required which we outline below. Modifications are required

because Vt is no longer given by (3.5) under the proposed dependence structure introduced

in this section.

Recall that Vt is the total (future) payment amount of all claims in the CIM at time

t (if any). Let r = (r1, . . . , rd) with r1 + · · · + rd = min(n, i) and r′ = (r′1, . . . , r
′
d) with

r′1 + · · ·+ r′d = min(n, i′). In what follows, for (i, r), (i′, r′) ∈ E, we write (Eu [ · ; JT ])(i,r),(i′,r′)

to denote

E
[
· 1{JT=(i′,r′)}

∣∣U0 = u,J0 = (i, r)
]
.

It follows that

(mδ,z(u))(i,r),(i′,r′) = E [ e−δT−z(|UT |+ηVT )1{JT=(i′,r′), T<∞} |U0 = u,J0 = (i, r)]

=
(
γδ,z(u)

)
(i,r),(i′,r′)

E
[
e−zηVT |JT = (i′, r′)

]
, (3.16)

where γδ,z(u) := Eu
[
e−δT−z|UT |1{T<∞}; JT

]
is given by (3.8) using the matrix exponent Fδ(z)

identified in Proposition 13.

In the following, we consider VT given JT = (i′, r′) where (i′, r′) ∈ E. Note that if

JT = (0, 0, . . . , 0), a zero vector of size d+ 1, then the CIM is empty at the time of ruin and

VT = 0 such that E
[
e−zηVT |JT = (0, 0, . . . , 0)

]
= 1.

Recall that a claim with an Exp(αg) investigation time results in a payment amount

having LT k̃g(z) for g ∈ {1, . . . , d}. Thus, for g ∈ {1, . . . , d}, if there are r′g claims being

investigated for an Exp(αg) time, their total payments have LT
(
k̃g(z)

)r′g
.
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If n < i′ ≤ n+m, then there are (i′ −min(i′, n)) claims waiting in the queue. Recall that

a claim waiting in the queue has probability wg of having an Exp(αg) investigation time for

g ∈ {1, . . . , d}. Thus, the total payments from claims waiting in the queue have LT given

by
(∑d

g=1wgk̃g(z)
)i′−min(i′,n)

.

Thus, it follows that

E
[
e−zηVT |JT = (i′, r′)

]
=

(
d∑
g=1

[
k̃g(zη)

]r′g)( d∑
g=1

wgk̃g(zη)

)i′−min(n,i′)

. (3.17)

Thus, the joint LT of the time and deficit at ruin under the proposed dependence structure

is given by substituting (3.17) into (3.16).

6. Numerical example

In this example, we compare the ruin probability of a CIM following the baseline case

outlined in Section 3.4.1 with n = 1 before and after a dependence structure between the

investigation time and claim size is introduced. Recall that the baseline case with n = 1 has

exponential investigation times having mean 1/α = 5 that are independent of all other rv’s

in the model. The ruin probability for this process can be found in Table 3.9.

The dependence structure we introduce follows that discussed in this section and assumes

d = 2, f1(x) = e−βx, f2(x) = 1 − e−βx, 1/α1 = 2, and 1/α2 = 10.5714. Thus, with

probability w = w1 = p̃1(β), a random claim selected for investigation will have a “short”

mean investigation time of 1/α1 = 2; otherwise, with probability 1−w, it will have a “long”

mean investigation time of 1/α2 = 10.5714. We set β = 0.1508 such that w = p̃1(β) = 0.65.

All remaining assumptions follow the baseline case assumptions outlined in Section 3.4.1.

Note that f1(x) (f2(x)) is decreasing (increasing) in x. Thus, larger claims are more

likely to have the long mean investigation time of 1/α2 = 10.5714 and smaller claims are
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more likely to have the short mean investigation time of 1/α1 = 2.

The matrix exponent for this process is given by Proposition 13 and its ruin probabilities

for various u are also given in Table 3.9.

Table 3.9: Ruin probabilities with and without a dependence structure

Investigation times \ u 0 15 30 45 60 75

Independent 0.7862 0.3275 0.1432 0.0627 0.0275 0.0120

Dependent 0.7821 0.3190 0.1381 0.0602 0.0263 0.0115

From Table 3.9, we observe that the ruin probability is lower with the introduction of the

dependence structure. Note that under both processes, the mean investigation time for a

random claim selected for investigation is equal to 5. However, when investigation times are

dependent on claim sizes, payment of larger claims tend to be delayed by longer investigation

times - which is not the case when investigation times are independent of claim sizes. Since

insurers have increased exposure to ruin from larger claims, longer delays associated with

larger claims will lower the risk of ruin. This effect is confirmed in Table 3.9.

3.5.3 Claim investigation networks

Up to this point, a claim entering a CIM is assumed to undergo only one stage of investiga-

tion before it is paid. However, more realistically, the claims handling process may involve

multiple stages. For example, a first stage may be dedicated to determining a claim’s eli-

gibility for coverage. An eligibility specialist may screen key documentation and determine

whether the claim complies with policy terms. In subsequent stages, eligible claims may be

assessed in greater detail, additional information may be collected (e.g., for disability insur-

ance, physician and employment records are typically required), and fair payment amounts
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are determined. In the final stages, claims may undergo administrative processing before

payments are made to policyholders.

In this section, we assume a network-based CIM consisting of n nodes where each node

represents a stage in the claims handling process. At each node, we say that a claim re-

ceives service which might include, e.g., eligibility review, investigation, and administrative

processing. We remark that the CIM proposed in Section 3.2.1 consists of one node that is

assumed to encompass all stages of the claims handling process. Furthermore, the network-

based CIM is assumed to satisfy the following:

1. Claims enter the CIM at node j (j ∈ {1, . . . , n}) with probability γj ≥ 0 where∑n
j=1 γj = 1.

2. Each node consists of a single server having i.i.d. exponential service times and a

single queue where claims enter service according to a FCFS discipline. We let µj be

the service rate at node j. All nodes are assumed to be independent.

3. Having completed service at node j, a claim will either transfer to node h with prob-

ability pj,h ≥ 0 for h ∈ {1, . . . , n} or depart from the CIM with probability pj,0 ≥ 0

independently of all else in the model. We assume
∑n

h=0 pj,h = 1 for all j ∈ {1, . . . , n}.

A claim of size x departing from the CIM at node j is assumed to trigger a (possi-

bly zero) payment with LT l̃x,j(z) ≤ 1. Note that a zero payment is triggered if, for

example, the claim is determined to be fraudulent and is therefore denied.

4. The CIM is said to be at full capacity when the total number of claims (waiting in a

queue or being serviced) across all n nodes is equal to n + m. When the CIM is at

full capacity, all arriving claims will not enter the CIM and be immediately paid in

entirety. Thus, each node has capacity n+m with the added restriction that the total

number of claims across all nodes does not exceed n + m and therefore, it is possible

for n+m claims to be at a single node provided all other nodes are empty.
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All other features of the network-based CIM are assumed to be given by the proposed CIM.

From the four characteristics listed above, we remark that a claim is permitted to enter the

CIM at any node, traverse among nodes where it is allowed to avoid and revisit nodes, and

depart from any node to trigger a (possibly zero) payment. Also, claims do not necessary

flow through nodes in the same order.

In queueing problems, a queueing network having the first three of the four characteristics

listed above is referred to as an open Jackson network with single-server nodes. Queueing

networks is a large area of research in queueing theory and interested readers are referred to,

e.g., [Kleinrock, 1975, Section 4.8]. Note that the special case where claims always arrive at

node 1 and must flow through all nodes in a single direction before departure at node n is

obtained by setting γ1 = 1, pi,i+1 = 1 for 1 ≤ i ≤ n− 1, and pn,0 = 1. In queueing problems,

these network queues are called series or tandem queues.

Remark 10. Note that this network-based CIM can be generalized to allow for multi-server

nodes while preserving the model’s MArP formulation by further enlarging the state space.

In what follows, we superimpose the network-based CIM onto the surplus process which

preserves the model’s MArP formulation. We present the MArP formulation and determine

the matrix exponent characterizing the resulting surplus process.

1. Defining background process J

We begin by defining the generalized background process and its state space. Let us define

Gj = {Gj,t}t≥0 such that Gj,t corresponds to the number of claims at node j at time t for

j ∈ {1, . . . , n}. The generalized background process is chosen to be the multivariate Markov

process J = {(Jt, G1,t, . . . , Gn,t)}t≥0 where Jt = (Jt, G1,t, . . . , Gn,t) corresponds to not only

the number of claims in the CIM but also, the number of claims at each node at time t.
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Thus, the generalized state space is given by

E =
n+m⋃
i=0

Ci,

where for i > 0,

Ci = {(i, g1, . . . , gn) , 0 ≤ gh ≤ i, for all h ∈ {1, . . . , k} and g1 + · · ·+ gn = i},

and to simplify the notation in the following, we let C0 = (0, 0, . . . , 0), a zero vector of size

n+ 1. Note that when at least one of the gh’s is non-zero, then i > 0. Also, the cardinality

of Ci when i > 0 depends on i and is equal to |Ci| =
(
n+i−1

i

)
(see, e.g., [Feller, 1971, Section

5]).

2. Identifying infinitesimal generator Q

We now determine the transition rates of J. Let g = (g1, . . . , gn) with g1 + · · ·+ gn = i and

g′ = (g′1, . . . , g
′
n) with g′1 + · · · + g′n = i′. For (i,g), (i′,g′) ∈ E, denote the transition rate

of J from state (i,g) to (i′,g′) by q(i,g),(i′,g′). All transition rates for J starting from state

(i,g) ∈ Ci are given as follows:

1. Claims entering the CIM: Suppose the CIM is not at capacity. Claims enter the

CIM at rate λ1 and begin service at node j with probability γj for j ∈ {1, . . . , n}.

Thus, if 0 ≤ i < n+m,

q(i,g),(i+1,g+en,j) = λ1γj, for all 1 ≤ j ≤ n.

2. Claims departing the CIM: Suppose the CIM is not empty and furthermore, that

there is a claim undergoing service at node j for j ∈ {1, . . . , n}, i.e. gj ≥ 1. The claim

completes service with rate µj and subsequently departs the CIM with probability pj,0.

Thus, if 0 < i ≤ n+m,

q(i,g),(i−1,g−en,j) = µjpj,0, if gj ≥ 1 for all 1 ≤ j ≤ n.
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3. Transitions with fixed number of claims in the CIM: A transition in J with a

fixed number of claims in the CIM occurs when a claim completes service at one node

and transfers to another node (or revisits the same node). Suppose there is a claim

undergoing investigation at node j for j ∈ {1, . . . , n}, i.e. gj ≥ 1, it completes service

at rate µj and subsequently transfers to node h with probability pj,h for h ∈ {1, . . . , n}.

Thus, if 1 < i ≤ n+m,

q(i,g),(i,g−en,j+en,h) = µjpj,h, if gj ≥ 1 for all 1 ≤ j, h ≤ n.

No other transitions in J are possible.

Using the transition rates for J described above, we are able to determine the infinitesimal

generator Q. The diagonal elements of Q are found such that its rows sum to zero. According

to the transition rates given above, it follows that

q(i,g),(i,g) =


−λ1, i = 0,

−λ1 −
∑n

j=1 µj (1− pj,j) I{gj>0}, 0 < i < n+m,

−
∑n

j=1 µj (1− pj,j) I{gj>0}, i = n+m,

for all (i,g) ∈ E. The matrix Q has the same structure as (3.25). However, according to

the transition rates described above, we do not have simple expressions for the submatrices

like we do in Section 3.5.4.

3. Identifying matrix G(z)

Next, we consider the LT of payments triggered by transitions in J to determine the matrix

G(z). Let g(z)(i,g),(i′,g′) denote the LT of the claim payment triggered when J transitions

from state (i,g) to (i′,g′) where (i,g), (i′,g′) ∈ E. Recall that a payment is triggered only at

transitions in J corresponding to a claim completing investigation and departing the CIM.
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Also note that the payment size triggered by a claim departing the CIM from node j has LT

k̃j(z) =

∫ ∞
0

l̃x,j(z)p1(x)dx.

Thus, if 0 < i ≤ n+m,

g(i,g),(i−1,g−en,j)(z) = k̃j(z), if gj ≥ 1 for all 1 ≤ j ≤ n,

Since all other transitions in J do not trigger payments (which is mathematically equivalent

to assuming such transitions trigger a payment of size 0), all other entries in G(z) are equal

to 1. The matrix G(z) has the same structure as (3.27). However, we do not have simple

expressions for the submatrices like we do in Section 3.5.4.

4. Matrix exponent Fδ(z)

Given the MArP formulation provided thus far, we are ready to give the matrix exponent

of the surplus process.

Proposition 14. For the network-based CIM proposed in this section, the resulting surplus

process U is characterized by the matrix exponent given by (3.4) with Q and G(z) as

identified in this section. Also, Λ and P(z) are respectively replaced by

Λ = diag{λ0, . . . , λ0, λ, . . . , λ︸ ︷︷ ︸
|Cn+m|

},

a diagonal matrix where all diagonal elements are equal to λ0 except for the last |Cn+m|

diagonal elements which are equal to λ, and

P(z) = diag{p̃0(z), . . . , p̃0(z), p̃(z) . . . , p̃(z)︸ ︷︷ ︸
|Cn+m|

},

a diagonal matrix where all diagonal entries are equal to p̃0(z) except for the last |Cn+m|

diagonal elements which are equal to p̃(z).
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5. Joint LT of the time and deficit at ruin

Lastly, to obtain the joint matrix LT of the time and deficit at ruin

mδ,z(u) ≡ Eu
[
e−δT−z(|UT |+ηVT )1{T<∞}; JT

]
,

some modifications to (3.7) are required which we outline below. Modifications are required

because Vt is no longer given by (3.5) for the network-based CIM proposed in this section.

Recall that Vt is the total (future) payment amount of all claims in the CIM at time t (if

any). Let g = (g1, . . . , gn) with g1 + · · ·+ gn = i and g′ = (g′1, . . . , g
′
n) with g′1 + · · ·+ g′n = i′.

In what follows, for (i,g), (i′,g′) ∈ E, we write (Eu [ · ; JT ])(i,g),(i′,g′) to denote

E
[
· 1{JT=(i′,g′)}

∣∣U0 = u,J0 = (i,g)
]
.

It follows that

(mδ,z(u))(i,g),(i′,g′) = E [ e−δT−z(|UT |+ηVT )1{JT=(i′,g′), T<∞}; |U0 = u,J0 = (i,g)]

=
(
γδ,z(u)

)
(i,g),(i′,g′)

E
[
e−zηVT |JT = (i′,g′)

]
, (3.18)

where γδ,z(u) := Eu
[
e−δT−z|UT |1{T<∞}; JT

]
is given by (3.8) using the matrix exponent Fδ(z)

identified in Proposition 14.

In the following, we consider VT given JT = (i′,g′) where (i′,g′) ∈ E. Note that if

JT = (0, 0, . . . , 0), a zero vector of size n+ 1, then the CIM is empty at the time of ruin and

VT = 0 such that E
[
e−zηVT |JT = (0, 0, . . . , 0)

]
= 1.

Recall that a claim departing the CIM from node j results in a payment amount having

LT k̃j(z) for j ∈ {1, . . . , n}. Now consider a claim at node h (either being serviced or waiting

in the node’s queue) for h ∈ {1, . . . , n}. The payment amount for this claim is determined

based on the node from which it eventually departs the CIM. Suppose ωh,j is the probability

that a claim at node h departs the CIM from node j. Then the claim at node h results in a
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payment with LT
∑n

j=1 ωh,j k̃j(z). Furthermore, if there are g′h claims in node h, their total

payments have LT
(∑n

j=1 ωh,j k̃j(z)
)g′h

for h ∈ {1, . . . , n}. Thus, it follows that

E
[
e−zηVT |JT = (i′,g′)

]
=

n∏
h=1

(
n∑
j=1

ωh,j k̃j(zη)

)g′h

. (3.19)

Therefore, the joint LT of the time and deficit at ruin under the network-based CIM is given

by substituting (3.19) into (3.18). Explicit expressions for {ωh,j}nh,j=1 are provided next.

Consider {Nt}t≥0 where Nt represents the node at which the claim resides at time t. We

have that {Nt}t≥0 is a semi-Markov chain with transient states {1, . . . , n} representing the n

service nodes and an absorbing state {0} representing the claim’s state after it departs the

CIM. The process {Nt}t≥0 is Markovian on the claim’s service completions at each node it

visits before departure. Recall that a claim at node h transfers to node j at rate µhph,j and

departs the CIM at rate µhph,0. It follows that ωh,j is the probability that Nt is eventually

absorbed into state 0 from state j given N0 = h.

We remark that ωh,j is independent of the time spent (waiting for or undergoing service)

at each node. Thus, consider {N∗t }t≥0, a (fully Markovian) CTMC with the same underlying

Markov chain as {Nt}t≥0. We have that ωh,j is also the probability that N∗t is eventually

absorbed into state 0 from state j given N∗0 = h. Note that N∗t represents the node at which

the claim resides at time t assuming there are an infinite number of servers at each node such

that the claim spends no time waiting for service. The infinitesimal generator of {N∗t }t≥0 is

given by

R =

 0 0

S0 S

 ,
where S = [sh,j]

n
h,j=1 and sh,j = µhph,j when h 6= j, and sh,h = −µh(1 − ph,h) for h, j ∈

{1, . . . , n}. Also,

S0 = −S1n = (µ1p1,0, . . . , µnpn,0)T .
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From the general theory of CTMCs, we have that

P (N∗t = j|N∗0 = h) =
(
eRt
)
h,j
.

Then
(
eRt
)
h,j

(S0)j is the probability that N∗t equals j at time t and is then immediately

absorbed, given N∗0 = t. Thus, by integrating over all possible time t, we obtain the following

expression for ωh,j

ωh,j =

∫ ∞
0

(
eRt
)
h,j

(S0)j dt,

for h, j ∈ {1, . . . , n}.

6. Numerical example

In this example, we compare a one-node CIM composed of one node and one waiting place

(i.e., n = 1 and m = 1) with a two-node CIM composed of two nodes and no waiting places

(i.e., n = 2 and m = 0). Note that both CIMs reach full capacity when two claims are in

the system.

In the one-node CIM, all claims handling is assumed to occur in a single node. All other

features of the process follows the baseline case outlined in Section 3.4.1. For example, service

time at the single node is assumed to be exponentially distributed with mean 1/α = 5 and

a claim that completes service is either determined fraudulent and denied with probability

ς = 0.25 or paid in its entirety with probability 1− ς = 0.75. The matrix exponent for this

process is given by either Proposition 14 or Proposition 10 with n = 1 and m = 1.

In the two-node CIM, claims handling is assumed to span two nodes. We let Node 1

be dedicated to claims investigation and Node 2 be dedicated to administrative payment

processing. We assume that a claim entering the CIM arrives for service at Node 1 (i.e.

γ1 = 1). Claim investigation at Node 1 takes place for an exponential amount of time
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with mean 1/µ1 = 3a/5. A claim that completes investigation at Node 1 is determined

to be fraudulent and departs the CIM with no payment with probability p1,0 = ς = 0.25.

Otherwise, the claim is determined to be not fraudulent and will transfer to Node 2 with

probability p1,2 = 1 − ς = 0.75. We assume that no payment is triggered when the claim

transfers to Node 2 (i.e. k̃1(z) = 1).

At Node 2, administrative payment processing takes place for an exponential amount

of time with mean 1/µ2 = 2a/5. For comparative purposes with the one-node system, a

claim that completes processing at Node 2 will exit the CIM (i.e. p2,0 = 1) and a payment

is triggered equal to the full amount claimed (i.e. k̃2(z) = p̃1(z)). All other features of

the process follows the baseline case outlined in Section 3.4.1. The matrix exponent for the

resulting surplus process is given by Proposition 14.

Let ξ1 and ξ2 be, respectively, the long-run mean time an arriving claim spends (either

waiting for or undergoing service) in the one-node and the two-node CIM, given the claim

enters the CIM. Recall that an arriving claim enters either the one-node or two-node CIM

only if there are less than 2 claims in the CIM. We set parameter a such that ξ1 = ξ2.

In the following, we find ξ1 and ξ2. For j = 1, 2, let Jj be the background process for the

j-node CIM having state space Ej and infinitesimal generator Qj. Note that we have

E1 = {(0, 0), (1, 1), (2, 2)},

and

E2 = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (2, 2, 0), (2, 0, 2), (2, 1, 1)}.

Define

π1 = (π1(i, g) )(i,g)∈E1
,

and

π2 = (π2(i,g) )(i,g)∈E2
,
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to be, respectively, the stationary distribution of the one-node CIM and the two-node CIM

(i.e., πjQj = 0 and πj1|Ej | = 1 for j = 1, 2). In what follows, for simplicity, we use Exp(µ)

to refer to an exponential rv with mean 1/µ.

In the one-node CIM, given a claim enters the CIM, if it finds:

1. No claims in the CIM, with long-run probability π1(0, 0)/(π1(0, 0) + π1(1, 1)), it will

immediately enter service for an Exp(0.2) amount of time, and then exit the CIM.

2. One claim in the CIM, with long-run probability π1(1, 1)/(π1(0, 0) + π1(1, 1)), it will

wait for service for an Exp(0.2) amount of time, then enter service for an Exp(0.2)

amount of time, and then exit the CIM.

Thus, we have

ξ1 =
π1(0, 0)

π1(0, 0) + π1(1, 1)

1

0.2
+

π1(1, 1)

π1(0, 0) + π1(1, 1)

(
1

0.2
+

1

0.2

)
= 9.6296. (3.20)

To find ξ2, we will separately consider the cases where the claim entering the CIM is

fraudulent versus not fraudulent. Let ξ2,fraud (ξ2,notfraud) be the long-run mean time that a

fraudulent (not fraudulent) claim spends in the two-node CIM, given that it enters the CIM,

such that

ξ2 = ςξ2,fraud + (1− ς)ξ2,notfraud. (3.21)

For simplicity, define

π∗2(i, g1, g2) ≡ π2(i, g1, g2)

π2(0, 0, 0) + π2(1, 1, 0) + π2(1, 0, 1)
(3.22)

to be the long-run probability that an arriving claim finds the CIM in state (i, g1, g2), given

that the claim enters the CIM.

Given a claim is fraudulent and it enters the CIM, if it finds:
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1. No claims in the CIM, with long-run probability π∗2(0, 0, 0), it will immediately enter

service at Node 1 for an Exp(µ1) amount of time, and then exit the CIM.

2. One claim in the CIM undergoing service at Node 2, with long-run probability π∗2(1, 0, 1),

it will immediately enter service at Node 1 for an Exp(µ1) amount of time, and then

exit the CIM.

3. One claim in the CIM undergoing service at Node 1, with long-run probability π∗2(1, 1, 0),

it will wait for service at Node 1 for an Exp(µ1) amount of time, then enter service at

Node 1 for an Exp(µ1) amount of time, and then exit the CIM.

Thus, we have

ξ2,fraud ≡ π∗2(0, 0, 0)
1

µ1

+ π∗2(1, 0, 1)
1

µ1

+ π∗2(1, 1, 0)
2

µ1

. (3.23)

Given a claim is non-fraudulent and it enters the CIM, if it finds:

1. No claims in the CIM, with long-run probability π∗2(0, 0, 0), it will immediately enter

service at Node 1 for an Exp(µ1) amount of time, then immediately enter service at

Node 2 for an Exp(µ2) amount of time, and then exit the CIM.

2. One claim in the CIM undergoing service at Node 2, with long-run probability π∗2(1, 0, 1),

it will immediately enter service at Node 1 and:

(a) If service at Node 2 completes before service at Node 1, the claim will spend an

Exp(µ1) amount of time in Node 1, then immediately enter service at Node 2 for

an Exp(µ2) amount of time, and then exit the CIM.

(b) If service at Node 1 completes before service at Node 2, the claim will be in service

at Node 1 and wait for service at Node 2 for an Exp(µ2) amount of time, then

enter service at Node 2 for an Exp(µ2) amount of time, and then exit the CIM.
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3. One claim in the CIM undergoing service at Node 1, with long-run probability π∗2(1, 1, 0),

it will wait for the claim ahead to complete service for an Exp(µ1) amount of time,

then enter Node 1 where:

(a) If the claim ahead was fraudulent (and has exited the CIM), it will spend an

Exp(µ1) amount of time in Node 1, then immediately enter service at Node 2 for

an Exp(µ2) amount of time, and then exit the CIM.

(b) If the claim ahead was not fraudulent (and has moved to Node 2), then we have

the second scenario described above.

Thus, using (3.22), we have

ξ2,notfraud = π∗2(0, 0, 0)

(
1

µ1

+
1

µ2

)
+ π∗2(1, 0, 1)

(
E [max(Exp(µ1), Exp(µ2))] +

1

µ2

)
+ π∗2(1, 1, 0)

(
1

µ1

+ ς
1

µ1

+ (1− ς)E [max(Exp(µ1), Exp(µ2))] +
1

µ2

)
.

(3.24)

Note that E [max(Exp(µ1), Exp(µ2))] = 1/µ1 + 1/µ2 − 1/ (µ1 + µ2).

Setting (3.20) equal to (3.21) and using (3.23) and (3.24), we solve for a ≈ 7.0276. The

ruin probability for both the one-node and two-node CIMs are given in Table 3.10.

Table 3.10: Ruin probabilities for a network-based CIM

(n,m) \ u 0 15 30 45 60 75

(1,1) 0.7214 0.2732 0.1188 0.0519 0.0227 0.0099

(2,0) 0.7170 0.2710 0.1179 0.0515 0.0225 0.0099

Suppose the claims handling process is indeed composed of two stages (i.e., a claim is first

investigated for fraudulence, then it moves onto processing if it is not fraudulent). Modelling
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this process using a one-node CIM would overestimate the ruin probability since it does not

reflect the speedier exit of fraudulent claims from the CIM. The speedier exit of fraudulent

claims means more claims can enter the CIM (less balking) and greater opportunity to catch

more fraudulent claims which should lower the ruin probability. This is confirmed by the

Table 3.10 where we observe the ruin probability for the two-node CIM is lower than for the

one-node CIM.

3.5.4 Markov-modulated Poisson claim arrivals

The claim arrival rates that insurers experience can often depend on the state of the economy

(see, e.g., Wells et al. [2009]). For example, group disability insurers often experience higher

claim arrival rates in weak economic times. One explanation for this effect is that, during

a recession, employees who had health impairments face a lower opportunity cost when

applying for benefits when they become unemployed (Maestas et al. [2015]).

Recall that in the proposed CIM, claims arrive according to a Poisson process with rate

λ. In this section, we let the claim arrival process be governed by the more general Markov

modulated Poisson process (MMPP). That is, claim arrivals are assumed to be governed by

a Poisson process whose rate depends on the state of R = {Rt}t≥0 which is defined to be a

continuous-time Markov process with finite state space {1, . . . , v} and infinitesimal generator

D = (dl,l′) where l, l′ ∈ {1, . . . , v}. When {Rt = l}, we say the ‘environment’ is in state

l at time t and claims are assumed to arrive according to a Poisson process with rate λ(l)

(λ(l) > 0). All other features of the CIM are assumed to satisfy the proposed CIM given in

Section 3.2.1. Thus, if there is only one environmental state (i.e., v = 1), we recover the

proposed CIM with λ replaced by λ(1).

Superimposing this generalized CIM onto the surplus process preserves the MArP formu-

lation and in this section, we present the MArP formulation for the resulting surplus process
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and determine its matrix exponent.

1. Defining background process J

We begin by defining the generalized background process and its state space. The generalized

background process is defined by the bivariate Markov process J = {(Jt, Rt)}t≥0 where

Jt = (Jt, Rt) corresponds to not only the number of claims in the CIM but also, the state of

the environment at time t. Thus, the generalized state space is given by

E =
n+m⋃
i=0

Ci,

where Ci = { (i, 1) , . . . , (i, v)} for i ∈ {0, . . . , n+m}.

2. Identifying infinitesimal generator Q

We now determine the transition rates of J. For j = 0, 1 and l ∈ {1, . . . , v}, define

λ
(l)
j = λ(l)

∫ ∞
0

p(y)qj(y)dy.

When the CIM is not at capacity and the environment is in state l, λ
(l)
1 (λ

(l)
0 ) corresponds to

the arrival rate of claims that enter (avoid) the CIM. When the CIM is at capacity and the

environment is in state l, recall that all arriving claims (arriving at rate λ(l)) avoid the CIM.

Denote the transition rate of J from state (i, l) to (i′, l′) by q(i,l),(i′,l′) for (i, l), (i′, l′) ∈ E. All

transition rates starting from state (i, l) ∈ Ci are given below:

1. Claims entering the CIM: Given the CIM is not at capacity and the environment

is in state l, claims enter the CIM at rate λ
(l)
1 . Thus, if 0 ≤ i < n+m,

q(i,l),(i+1,l) = λ
(l)
1 , for all 1 ≤ l ≤ v.
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2. Claims departing the CIM: Given the CIM is not empty and the environment is

in state l, claims complete investigation and depart the CIM at rate iα if i (i < n)

investigation units are busy and depart from the CIM at rate nα if all investigation

units are busy. Thus, if 0 < i ≤ n+m,

q(i,l),(i−1,l) = min(n, i)α, for all 1 ≤ l ≤ v.

3. Transitions with a fixed number of claims in the CIM: A transition with a

fixed number of claims in the CIM occurs when there is a transition in the environment

process R. We have that a transition in R from state l to l′ occurs at rate dl,l′ . Thus,

for all 0 ≤ i ≤ n+m,

q(i,l),(i,l′) = dl,l′ , for all 1 ≤ l, l′ ≤ v.

No other transitions in J are possible.

Using the transition rates for J described above, we are able to give the infinitesimal

generator Q. The diagonal elements of Q are found such that its rows sum to zero. According

to the transition rates given above, it follows that

q(i,l),(i,l) =


dl,l − λ(l)

1 , i = 0,

dl,l − λ(l)
1 −min(n, i)α, 0 < i < n+m,

dl,l −min(n, i)α, i = n+m,

for all (i, l) ∈ E. Let us define

Λj = diag
{
λ

(l)
j

}v
l=1

,

for j = 0, 1, and

Λ = diag
{
λ(l)
}v
l=1

.
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The infinitesimal generator Q can be written and partitioned as follows

Q =



Q0,0 Q0,1 0 0 0 · · ·

Q1,0 Q1,1 Q1,2 0 0 · · ·

0 Q2,1 Q2,2 Q2,3 0 · · ·

0 0 Q3,2 Q3,3 Q3,4 · · ·
...

...
...

. . . . . . . . .

Qn+m,n+m−1 Qn+m,n+m


. (3.25)

where Qi,i′ are submatrices of transition rates from states in Ci to states in Ci′ . According

to the transition rates described above, we have simple expressions for these submatrices.

For i = 0, we have

Q0,0 = D−Λ1, and Q0,1 = Λ1.

When 0 < i < n+m, we have

Qi,i−1 = min(n, i)αI, Qi,i = D−min(n, i)αI−Λ1, and Qi,i+1 = Λ1.

Finally, when i = n+m, we have

Qn+m,n+m−1 = nαI, Qn+m,n+m = D− nαI.

3. Identifying matrix G(z)

Next, we consider the LT of payments triggered by transitions in J to determine the matrix

G(z). Let g(z)(i,l),(i′,l′) denote the LT of the payment triggered when J transitions from state

(i, l) to (i′, l′) where (i, l), (i′, l′) ∈ E. Recall that a payment is triggered only at transitions

in J corresponding to a claim completing investigation and departing the CIM and that the

payment sizes have LT k̃(z). Thus, if 0 < i ≤ n+m,

g(z)(i,l),(i−1,l) = k̃(z), for all 1 ≤ l ≤ v. (3.26)
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Since all other transitions in J do not trigger payments (which is mathematically equivalent

to assuming such transitions trigger a payment of size 0), all other entries in G(z) are equal

to 1. Thus, we can write and partition the matrix G(z) as follows

G(z) =



1 1 1 1 1 · · ·

G1,0(z) 1 1 1 1 · · ·

0 G2,1(z) 1 1 1 · · ·

1 1 G3,2(z) 1 1 · · ·
...

...
...

. . . . . . . . .

Gn+m,n+m−1(z) 1


(3.27)

where Gi,i−1(z) are submatrices of the LT of payments triggered by transitions in J from

states in Ci to states in Ci−1. According to (3.26), for all 0 < i ≤ n + m, Gi,i−1(z) is given

by a v× v matrix where all diagonal elements are equal to k̃(z) and all off-diagonal elements

are equal to 1.

4. Matrix exponent Fδ(z)

Next, we consider the surplus process when J remains in a particular state. Let the surplus

process U evolve as U (i,l) = {U (i,l)
t }t≥0 when {Jt = (i, l)} and denote the Laplace exponent

of U (i,l) by ψ
(l)
i (z) for (i, l) ∈ E. When 0 ≤ i < n+m, we have

ψ
(l)
i (z) = cz +

σ2

2
z2 + λ

(l)
0 (p̃0(z)− 1) , for all 1 ≤ l ≤ v,

and when i = n+m, we have

ψ
(l)
n+m(z) = cz +

σ2

2
z2 + λ(l) (p̃(z)− 1) , for all 1 ≤ l ≤ v.

Given the MArP formulation provided thus far, we are ready to give the matrix exponent

of the surplus process.
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Proposition 15. For claim arrivals governed by a MMPP, the resulting surplus process U

is characterized by the matrix exponent Fδ(z) given by (3.4) with Q and G(z) replaced by

(3.25) and (3.27), respectively. Also, Λ and P(z) are respectively replaced by

Λ = diag{Λ0, . . . ,Λ0, Λ},

a block diagonal matrix where all diagonal blocks are equal to Λ0 except for the last which

is equal to Λ, and

P(z) = diag{p̃0(z), . . . , p̃0(z), p̃(z)} ⊗ I,

a diagonal matrix where all diagonal entries are equal to p̃0(z) except for the last v diagonal

entries which are all equal to p̃(z).

5. Joint LT of the time and deficit at ruin

We note that the joint LT of the time and deficit at ruin is given by (3.7) and (3.8) using the

matrix exponent Fδ(z) identified in Proposition 15. No further modifications are necessary

because Vt, which we recall is defined as the total (future) payment amount of all claims in

the CIM at time t (if any), is still given by (3.5).
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Chapter 4

An aggregate claims model with

claims investigation

4.1 Introduction

Chapters 2 and 3 considered a queue-based claim investigation mechanism (CIM) superim-

posed on the insurer’s surplus process. This chapter extends this inquiry by superimposing

the CIM onto the insurer’s aggregate claims process. An insurer’s aggregate claim is a math-

ematical representation of the total claims received by the insurer over some time period.

There is a time lag between the time a claim is reported to an insurer and the time it

is settled. An insurer experiences congestion whenever claims are reported but not imme-

diately paid as a result of investigation/processing times or time spent waiting in queue for

investigation/processing. As a result of payments not being made as soon as they are re-

ported, insurers must estimate outstanding claim liabilities. Developing accurate estimates

of claim liabilities associated with congestion is important because these estimates can af-

fect the amount of reserves insurers are required by regulation to set aside to meet future
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obligations.

There are two major categories of the claim liability associated with time lags:

• Incurred But Not Reported (IBNR) which refer to incurred losses for which the insurer

has not (yet) received notification of.

• Reported But Not Settled (RBNS), which refer to claims for which notification has

reached the insurer but for which no payment has been made.

For IBNR claims, the time taken to report a claim corresponding to an incurred loss can

be assumed to be independent of other claims in a similar IBNR state. By contrast, for

RBNS claims, the time it takes to settle a reported claim does depend on the presence of

other RBNS claims, i.e., claims that are currently waiting for or are under investigation.

Mathematical models of aggregate claims that incorporate time lags can be broadly

categorized into deterministic methods such as the well-known chain-ladder method (see, e.g.,

Brown and Gottlieb [2007]), macro-level (stochastic) models, and micro-level (stochastic)

models (see, e.g., Badescu et al. [2016] and references therein). The model developed in this

chapter would be described as a micro-level model since it characterizes the behaviour of

individual claims. Readers are referred to, e.g., Norberg [1993] and its follow-up Norberg

[1999] for micro-level models of IBNR and RBNS claim liabilities where claims follow a

non-homogeneous marked Poisson process.

The present work focuses on formulating a model for the RBNS claim liability. By altering

the design of the claim investigation and settlement process, insurers can control the RBNS

claim liability. A model for the RBNS claim liability can be of value to insurers because they

could be used to measure the impact of alternative process designs. More specifically, such a

model could help insurers quantify the costs/benefits of particular claims handling operations
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and identify alternative practices, e.g., determining a sufficient number of investigators,

choosing target service rates, or changing the set-up of the claim investigation mechanism.

Furthermore, insurers could use such a model to predict the future RBNS claim liability.

A RBNS liability model may be especially helpful when data relating to RBNS claim size,

count, and frequency is either not available or costly to obtain (see, e.g., Willmot [1990]).

In general, a claims handling system benefits insurers when it denies ineligible claims

or corrects inflated claims. It creates costs for insurers due to the need for personnel, ad-

ministration and, when executed poorly, the customer dissatisfaction and risk to reputation

resulting from excessive wait times or inaccurate assessments. The time delay between re-

ceiving and paying a claim reflects the efficiency of a claims processing system. Being able

to process claims in shorter periods of time (on average) may also be a particularly valuable

competitive advantage. More granular models of the claims handling process could help

insurers target the source of inefficiencies in their processing systems.

Finally, queue-based claim investigation processes raise many practical questions for

which queueing-theoretic models have the potential to provide insights. For example:

• What is the effect of changes to an insurer’s investigation strategies on their risk profile?

• How does the RBNS liability evolve over time?

• What is the long-run behaviour of the RBNS claims in the CIM?

• For two different CIMs, which generates greater RBNS liability risk?

These kinds of questions motivate the development of a queueing-theoretic mathematical

model of claims investigations.

Some studies have been done on claim liabilities using a queue-based model for the settle-
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ment process. Hachemeister [1980] proposed a claim reporting/handling process represented

by a Markov chain. It was assumed that an incurred claim went through some staged

reporting and handling process such as “IBNR”, “RBNS”, and “settled”.

Willmot [1990] studied the liability of reported and unreported claims when modelling

the claim settlement process using an infinite capacity queue with Poisson claim arrivals.

Queues of varying complexity were considered and the claim settlement process was assumed

to have reached equilibrium. Connecting with results from Queueing Theory (see, e.g.,

Kleinrock [1975]), the approximate right-tail behaviour of the liability from reported claims

was examined which allowed for an estimate of the amount needed to cover such liabilities

with a specified probability.

Kim and Kim [2007] and Ren [2008] studied the aggregate discounted claims with a

Markovian claim arrival process. The present work introduces a particular claim settlement

application to this work and considers the special case where there is no discounting. Ag-

gregate claims models that do not incorporate discounting are more tractable due to their

regenerative features and the present work capitalizes on the explicit results that are avail-

able for such models. The present model is intended for claims with short time lags or when

it is believed that inflation on claim severities offsets interest earned on assets backing the

reserve (see, e.g., Léveillé and Garrido [2001]). If the claims being considered have longer

delays or inflation is not assumed to offset interest, then the present model could be viewed

as providing a conservative estimate of the claim liability.

More recently, Ren [2016] found the joint distribution and moments of the IBNR, RBNS,

and settled claims in a model for the claim occurrence, reporting, and handling process

assuming claims occur according to a Markovian arrival process. The model in this chapter

is a special case of that found in Ren [2016] since it examines only claim liabilities arising

from RBNS and settled claims, where claims arrive according to a Poisson process. However,
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this work conducts a more in-depth analysis of future payments due to RBNS claims.

As done in Ren [2016], this chapter superimposes a claim investigation mechanism (CIM)

onto the aggregate claims process. The resulting process models the total payments actually

paid to the policyholder by the insurer and is referred to as the “aggregate payment process”.

The CIM that is superimposed is assumed to be the queue-based CIM described in Section

3.2.1.

Under the model assumptions, the aggregate payment process is found to have a Marko-

vian Arrival Process (MAP) formulation. Furthermore, from the discussions on CIM gener-

alizations in Chapter 3, it follows that considerable generalizations to the CIM are possible

while preserving the MAP formulation.

We define the “RBNS payments” to be the future (eventual) payments due to reported

but not settled claims. By making connections with existing MAP results, the joint LT and

moments of the settled and RBNS payments are obtained.

The RBNS payments is a quantity of particular interest in this chapter. Its distribution

is found under some assumptions. In addition, its distribution is obtained when it is further

assumed that the claim size density follows a mixed Erlang, gamma, or inverse Gaussian

distribution.

In numerical examples, the Value-at-Risk (V aR) and Conditional Tail Expectation (TV aR)

of the RBNS payments are computed for varying claim investigation practices. The V aR

of a loss denoted by rv X is interpreted as a threshold value for which the probability that

the loss exceeds this threshold is less than some specified probability. More precisely, at

confidence level p (0 < p < 1), a loss X has its V aR defined as

V aRp = inf{x ≥ 0 : P (X > x) ≤ 1− p}.

The TV aR is a more conservative risk measure associated with the V aR. At confidence level
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p (0 < p < 1), a loss has its TV aR defined by (see, e.g., [Klugman et al., 2013, Chapter 5])

TV aRp =

∫ 1

p
V aRφdφ

1− p

= V aRp +
FX(V aRp)

1− p

(
E [X|X > V aRp]− V aRp

)
,

where FX is the survival function of X. Note that when the distribution of X is continuous

at V aRp, then TV aRp is given by the conditional expectation of X given that it exceeds the

V aRp, i.e.,

TV aRp = E [X|X > V aRp] .

The V aR and TV aR of RBNS payments in the long-run is also considered as these

quantities can provide a measure of the overall risk due to RBNS claims. That is, we

consider the risk due to RBNS claims when the CIM “settles down” to some equilibrium

state at some arbitrary time in the distant future (see, e.g., [Kleinrock, 1975, Chapter 3]).

Overall, we will observe that our findings from the numerical examples in this chapter

are consistent with those from Chapters 2 and 3.

The remainder of this chapter is organized as follows: Section 4.2 presents the model, the

joint LT and moments of settled and RBNS payments are found in Section 4.3, Section 4.4

contains a distributional analysis of the RBNS payments, remarks on possible generalizations

to the CIM are included in Section 4.5, and numerical studies are included in Section 4.6 to

conclude the chapter.

4.2 Model presentation

In what follows, we propose a queue-based claim investigation mechanism (CIM) that is

identical to that proposed in Chapter 3 and we refer readers to Section 3.2.1 for the CIM
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assumptions.

Recall the definition of the aggregate claims process S∗ = {S∗t }t≥0 under the collective

risk model (see, e.g., [Klugman et al., 2012, Chapter 9] or Buhlmann [1970]) where

S∗t =

N∗t∑
i=1

Xi, t ≥ 0, (4.1)

with the convention that S∗t = 0 if N∗t = 0. For the compound sum (4.1), the claim sizes

{Xi}∞i=1 are assumed to form a sequence of i.i.d. positive rv’s and the claim number process

{N∗t }t≥0 is a counting process with N∗t representing the number of claims that have arrived

by time t. It is generally assumed that the counting process {N∗t }t≥0 is independent of

{Xi}∞i=1.

In this section, we superimpose the proposed CIM described in Section 3.2.1 onto the

aggregate claims process (4.1) which in essence consists in incorporating a settlement delay

when claims are reported to the insurer. We assume the counting process {N∗t }t≥0 is a

Poisson process and we find that the resulting payment process has payment arrivals that

follow a Markovian arrival process (MAP).

Remark 1. In this chapter, “aggregate claims” refers to the total amount declared by

policyholders (after appropriately applied coverage modifications, e.g. deductible, policy

limit, etc.) and “aggregate payment” refers to the total payments actually paid to the

policyholders by the insurer.

Remark 2. The Markovian arrival process (MAP) discussed in this chapter is not to be

confused with either the Markovian additive process or the Markovian arrival risk process

(both discussed in Chapter 3), despite the fact that these three processes typically share the

“MAP” abbreviation.

The following notation will be used in the remainder of this chapter. We use In to denote

an n×n identity matrix and 1n to denote a column vector of size n with all entries equal to
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1. We denote by en,h the row vector of size n with hth entry equal to 1 and all other entries

equal to 0. Suppose we have two matrices A and B of the same dimension. The Hadamard

product of A and B is denoted by A ◦B and has (i, j)th element given by

(A ◦B)i,j = (A)i,j (B)i,j .

For completeness, we recall the definition of an aggregate loss process with MAP arrivals

(see, e.g., [Latouche and Ramaswami, 1999, pg. 78] ). Define an aggregate loss process

S = {St}t≥0 given by

St =
Nt∑
i=1

Yi, t ≥ 0, (4.2)

where payments of size {Yi}∞i=1 occur according to a MAP. That is, payments occur according

to a MAP with background process J = {Jt}t≥0 which is assumed to be an irreducible

continuous-time Markov process with finite state space E and infinitesimal generator Q.

There are two types of transitions in J :

• Type-1 : Transitions in J from state i to state j (j 6= i) without an accompanying

payment. Such transitions are assumed to occur at rate d0,i,j.

• Type-2 : Transitions in J from state i to state j (with possibly j = i) with an ac-

companying claim denoted by rv Pi,j having LT h̃i,j. Such transitions are assumed to

occur at rate d1,i,j.

We let Type-1 transitions be governed by the matrix D0 = (d0,i,j)i,j∈E and Type-2 transitions

be governed by the matrix D1 = (d1,i,j)i,j∈E. The diagonal elements of D0 are assumed to

be negative such that the elements of each row of Q = D0 + D1 sum to zero. We also define

the matrix H(s) =
(
h̃i,j(s)

)
i,j∈E

. It follows that the LT of the aggregate loss process St is

given by (see, e.g., [Latouche and Ramaswami, 1999, pg. 78])

E
[
e−sSt ; Jt

]
= e(D0+D1◦H(s))t, t ≥ 0. (4.3)
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Note that we write E [ · ; Jt] to indicate a matrix with (i, j)th element corresponding to

E
[
· 1{Jt=j}

∣∣ J0 = i
]
.

By the definition of the aggregate loss process with MAP arrivals given by (4.2), we can

have:

1. a payment when J makes a state change,

2. no payment when J makes a state change, and

3. a payment when J makes a transition but does not change state (i.e., J revisits the

state it is in).

Correspondingly, by superimposing the proposed CIM onto the aggregate claims process

given by (4.1), we can have:

1. a payment when the number of claims in the CIM changes,

i.e., a payment made following a claim investigation where the number of claims in the

CIM decreases by one,

2. no payment when the number of claims in the CIM changes,

i.e., no payment made when a claim is selected for investigation and enters the CIM

where the number of claims in the CIM increases by one,

3. a payment without a change in the number of claims in the CIM,

i.e., a payment made following a claim that is not selected for investigation or arrives

when the CIM is full where the number of claims in the CIM does not change.

Thus, letting J be the Markov process corresponding to the number of claims in the CIM

(where E = {0, 1, . . . , n + m}) results in an aggregate payment process for settled claims

that can be modelled by St with LT given by (4.3).
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Since the CIM assumed here follows that proposed in Chapter 3, the infinitesimal gener-

ator Q is given by (3.2). As was done in Chapters 2 and 3, we define

λl = λ

∫ ∞
0

p(y)ql(y)dy, (4.4)

and

pl(x) =
p(x)ql(x)∫∞

0
p(y)ql(y)dy

, (4.5)

for l = 0, 1, and x > 0. We have that λ1 (λ0) corresponds to the arrival rate of claims that

are selected to enter the CIM (avoid the CIM) and p1(x) (p0(x)) is the claim size density of

such claims. We also define

K(w) =

∫ ∞
0

Lx(w)p1(x)dx, (4.6)

corresponding to the size of a payment for a claim undergoing the investigation process. To

determine D0 and D1, we consider the transitions in J with and without an accompanying

claim. Under the proposed CIM, we obtain

d1,i,j =



min(i, n)α, 0 < i ≤ n+m and j = i− 1,

λ0, 0 ≤ i < n+m and j = i,

λ, i = j = n+m,

0, otherwise,

and

h̃i,j(s) =



k̃(s), 0 < i ≤ n+m and j = i− 1,

p̃0(s), 0 ≤ i < n+m and j = i,

p̃(s), i = j = n+m,

1, otherwise,

by considering all possible transitions in J with an accompanying claim, namely, transitions

corresponding to payment of claims that: have completed investigation, are not selected for
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investigation, or arrive when the CIM is at full capacity. Thus, D1 and H(s) are respectively

given by

D1 =



λ0 0 · · ·

α λ0
. . . . . .

0 2α λ0

...
. . . . . . . . .

nα λ0

. . . . . .

nα λ


, (4.7)

and

H(s) =



p̃0(s) 1 · · ·

k̃(s) p̃0(s)
. . . . . .

1 k̃(s) p̃0(s)

...
. . . . . . . . .

k̃(s) p̃(s)


. (4.8)

We also obtain

d0,i,j =


λ1, 0 ≤ i < n+m and j = i+ 1,

− (λ+min(i, n)α) , 0 ≤ i ≤ n+m and j = i,

0, otherwise,

by considering all possible transitions in J without an accompanying claim, namely, tran-

sitions corresponding to claims that enter the CIM. Also, recall that the diagonal elements

of D0 are set such that the elements on each row of the matrix Q = D0 + D1 sum to zero.
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Thus, D0 is given by

D0 =



−λ λ1 0 · · ·

0 −(λ+ α) λ1
. . .

...
. . . −(λ+ 2α)

. . .

. . .

−(λ+ nα)
. . .

. . . λ1

−(λ+ nα)


. (4.9)

For t ≥ 0, define

Rt =
Jt∑
i=1

Yi, (4.10)

where {Yi}∞i=1 are i.i.d. rv’s with LT k̃. For a fixed time t, we can interpret Rt as the

total future payments due to Reported But Not Settled (RBNS) claims at time t and we

henceforth refer to Rt as the “RBNS payments” at time t. In the following section, for a

fixed time t, we consider the joint LT of the aggregate payments for settled claims St and

the RBNS payments Rt. Note that if a study of the total future payments due to RBNS

claims involves varying time t (such as a study of joint distributions), then a more rigorous

definition than that given by (4.10) is required.

4.3 Joint Laplace transform and moments of settled

and RBNS payments

In this section, we present the joint LT and moments of the aggregate payments for settled

claims St and RBNS payments Rt by making connections with existing MAP results. In the

following proposition, connections to the LT of St (given by (4.3)) are made to obtain the

joint LT of St and Rt.
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Proposition 16. The joint LT of the settled payments St and RBNS payments Rt, condi-

tional on J0 = i is given by

E
[
e−sSt−zRt

∣∣ J0 = i
]

= en+m+1,ie
(D0+D1◦H(s))ta(z),

where a(z) is a column-vector given by

a(z) =
(
k̃(z)j

)
j∈E

,

and the elements of D0, D1, and H(z) are given, respectively, by (4.9), (4.7), and (4.8).

Also, by making connections with results for the moments of St (see, e.g., Ren [2008]),

we have the following proposition for the joint moments of St and Rt.

Proposition 17. For c, d non-negative integers, the joint moments of St and Rt are given

by

E
[
SctR

d
t

∣∣ J0 = i
]

= (−1)cgc,i(t)bd,

where gc,i(t) is a row vector given by

gc,i(t) =

(
(−1)cE

[
Sct1{Jt=j}

∣∣ J0 = i
])

j∈E

and bd is a column vector given by

bd =
(
E
[
(jY )d

] )
j∈E =

(
(−j)d dd

dzd
k̃(z)

∣∣∣∣
z=0

)
j∈E

.

We have g0,i(t) = en+m+1,ie
Qt and for c ≥ 1, gc,i(t) can be found by numerically solving the

following system of differential equations (see Ren [2008])

dgc,i(t)

dt
= gc,i(t)Q +

c−1∑
k=0

(
c

k

)
(−1)c−kgk,i(t) (D1 ◦∆n−k) ,

where

∆k =
(
E
[
P k
i,j

])
i,j∈E = (−1)k

dk

dzk
H(z)

∣∣∣∣
z=0

.
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In what follows, we focus our attention on the RBNS payments Rt. Suppose

eQt = (P (Jt = j|J0 = i))i,j∈E ≡ (ai,j(t))i,j∈E ,

By Proposition 16 with s = 0, the LT of Rt conditional on J0 = i is given by

E
[
e−zRt

∣∣ J0 = i
]

=
n+m∑
j=0

ai,j(t)k̃(z)j = Ai,t

(
k̃(z)

)
, (4.11)

where Ai,t(z) =
∑n+m

j=0 ai,j(t)z
j is a probability generating function (pgf) for the discrete

probability distribution {ai,0(t), ai,1(t), . . . , ai,n+m(t)}. Identifying the distribution of Rt and

studying quantities such as the expectation, Value-at-Risk, and Conditional Tail Expectation

of Rt serves to quantify the risk of the insurer’s future liability arising from claims that have

been reported but not yet settled due to claim investigation congestion. Furthermore, it

allows for analysis of the impact of various CIMs on Rt.

Remark 3. We can also consider Rt when t is large to assess the risk due to reported claims

that remain unpaid in the long-run due to claims investigation congestion. This analysis can

provide an indicator of the overall risk of an insurer’s CIM associated with RBNS claims.

Let π = (π0, . . . , πn+m) be the stationary distribution of the background process J which

can be found by solving πQ = 0 and π1n+m+1 = 1. We have that the stationary distribution

π exists and is unique since J is an irreducible CTMC with finite state space (see [Ross,

2007, Chapter 6]).

Then the LT of Rt in the long-run (i.e., at some arbitrary time in the distant future) is

given by

lim
t→∞

E
[
e−zRt

∣∣ J0 = i
]

=
n+m∑
j=0

πj k̃(z)j. (4.12)
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4.4 Distribution of the RBNS payments

In this section, we identify the distribution of RBNS payments Rt (conditional on J0 = i)

under some assumptions including an investigation strategy that was discussed in Chapter

2 which impacts q1(x).

Recall that following an investigation, the amount claimed x will result in a payment w

(w ≥ 0) with df Lx(w) . Suppose that a claim of size x (x ≥ 0) selected for investigation

is either determined fraudulent and denied with probability ς(x) or paid in its entirety with

probability 1− ς(x). Then Lx(w) is given by (2.2) and

l̃x(z) =

∫
[0,∞)

e−zwLx(dw)

= ς(x) + (1− ς(x)) e−zx. (4.13)

Also suppose that the probability of a fraudulent claim increases with its size. More precisely,

suppose that (see Section 2.4.4)

ς(x) =
(
1− e−γx

)
ς0, (4.14)

where 0 ≤ ς0 ≤ 1 and γ ≥ 0. As a result, from (4.6) and using (4.14), the payment size of a

claim undergoing investigation has LT

k̃(z) =

∫ ∞
0

l̃x(z)p1(x)dx

= (1− p̃1(γ)) ς0 + (1− ς0) p̃1(z) + ς0p̃1(γ)p̃∗1,γ(z), (4.15)

where

p∗1,γ(x) =
e−γxp1(x)

p̃1(γ)
,

is the Esscher transform density of p1 (see, e.g., Gerber and Shiu [1994]) with LT p̃∗1,γ(z) =

p̃1(γ + z)/p̃1(γ).
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It follows from (4.15), that

k̃(z) = ξ + (1− ξ) h̃(z), (4.16)

where

ξ = (1− p̃1(γ)) ς0, (4.17)

and

h̃(z) =
1

1− ξ
(
(1− ς0) p̃1(z) + ς0p̃1(γ)p̃∗1,γ(z)

)
. (4.18)

Thus,

k̃(z) = P
(
h̃(z)

)
, (4.19)

where P (z) = ξ+(1− ξ) z is a Bernoulli pgf. That is, if l̃x(w) and ς(x) are respectively given

by (4.13) and (4.14), k is distributed as a compound Bernoulli rv with secondary LT given

by (4.18) which is a mixture of p1 and its Esscher transform density p∗1,γ. Thus, from (4.11),

it follows that Rt (conditional on J0 = i) is distributed as a compound rv with primary pgf

Ai,t(z) and secondary LT a compound Bernoulli rv with LT (4.19).

In what follows, we further particularize k̃(z) under the following assumption on q1(x):

q1(x) = θ + (1− θ)(1− e−κx)

= 1− (1− θ)e−κx, (4.20)

where 0 ≤ θ ≤ 1 and κ ≥ 0 (see Section 2.4.3). Recall that q1(x) is the probability that a

claim of size x is selected for investigation. Thus, from (4.20), on average, a percentage θ of

all claims are automatically subjected to investigation and the other (1 − θ) are subjected

based on their claim amount with probability 1 − e−κx for a claim of size x. Recall from

(4.4) and (4.5) that claims that have been selected for investigation have density

p1(x) =
λ

λ1

p(x)q1(x).
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If q1(x) is given by (4.20), then we have

p̃1(z) =
λ

λ1

(p̃(z)− (1− θ)p̃(κ)p̃∗κ(z)) , (4.21)

where

λ

λ1

=
1

1− (1− θ) p̃(κ)
, (4.22)

and

p∗κ(x) =
e−κxp(x)

p̃(κ)
,

is the Esscher transform density of p with LT p̃∗κ(z) = p̃(κ+ z)/p̃(κ). Thus, if q1(x) is given

by (4.20), then from (4.21), p1 is a combination of p and its Esscher transform density p∗κ.

Now suppose q1(x) is given by (4.20) and ς(x) is given by (4.14), then we can show that

h̃(z) = C0

(
C1p̃(z) + C2p̃

∗
κ(z) + C3p̃

∗
γ(z) + C4p̃

∗
κ+γ(z)

)
, (4.23)

where

C1 = (1− ς0) , C2 = − (1− ς0) (1− θ) p̃(κ)

C3 = ς0p̃(γ), C4 = −ς0(1− θ)p̃(κ+ γ), (4.24)

and from (4.17), (4.22), and (4.24), C0 = λ
λ1(1−ξ) = (C1 + C2 + C3 + C4)−1. Thus, from

(4.19), it follows that k is distributed as a compound Bernoulli rv with secondary LT given

by (4.23) which is a combination of p and its Esscher transform densities with parameters

κ, γ, and κ+ γ.

Note that if γ =∞ such that from (4.14), ς(x) = ς0, then (4.23) simplifies to

h̃(z) =
1

(1− (1− θ)p̃(κ)) (1− ς0)
((1− ς0)p̃(z)− (1− ς0)(1− θ)p̃(κ)p̃∗κ(z)) ,

i.e., h̃ is the LT of a combination of p and its Esscher transform density p∗κ. Instead, if κ =∞

such that from (4.20), q1(x) = 1, then C2 = C4 = 0 and (4.23) simplifies to

h̃(z) =
1

1− (1− p̃1(γ)) ς0

(
(1− ς0)p̃(z) + ς0p̃(γ)p̃∗γ(z)

)
,
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i.e., h̃ is a mixture of p and its Esscher transform density p∗γ.

Next, we present three examples where we identify the distribution of the total RBNS

payments Rt (conditional on J0 = i) under various distributional assumptions for the claim

size density p. We also assume q1(x) and ς(x) are respectively given by (4.14) and (4.20).

Example 1. Mixture of Erlangs distributed claim size

Suppose the claim size is mixed Erlang distributed with density

p(x) =
∞∑
j=1

qjej(x), x > 0, (4.25)

where

ej(x) =
β (βx)j−1 e−βx

(j − 1)!
, x > 0,

for β > 0 and q = {q1, q2, . . .} is a discrete probability distribution with pgf Q(z) =∑∞
j=1 qjz

j. It follows that the LT of (4.25) is given by

p̃(z) =
∞∑
j=1

qj

(
β

β + z

)j
= Q

(
β

β + z

)
. (4.26)

It is well-known that the mixed Erlang class of distributions is very large and is also dense

in the class of positive continuous probability distributions (see, e.g., Willmot and Lin [2011]

and references therein).

In [Willmot and Woo, 2018, Example 1.4.6], it is shown that for µ > 0, p̃∗µ(z) = p̃(µ +

z)/p̃(µ) can be expressed as

p̃∗µ(z) = Qµ

(
β + µ

β + µ+ z

)
, (4.27)

where Qµ(z) =
∑∞

n=1 qn,µz
n is a pgf with

qn,µ =

(
β

β+µ

)n
qn

Q
(

β
β+µ

) , (4.28)
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which has a discrete Esscher form. That is, the Esscher transform density of a mixture of

Erlangs is also a mixture of Erlangs. We define qµ = {q1,µ, q2,µ, . . .}.

Consider the following algebraic identity (see, e.g., Willmot and Lin [2011])

β

β + z
=

β + µ

β + µ+ z

 β
β+µ

1−
(

1− β
β+µ

)
β+µ
β+µ+z

 . (4.29)

Using (4.29), (4.26) may be expressed as (see [Willmot and Woo, 2007, pg. 103] for further

details)

p̃(z) = Q

(
β

β + z

)
= Dβ,µ,q

(
β + µ

β + µ+ z

)
, (4.30)

where Dβ,µ,q(z) =
∑∞

n=1 dn,β,µ,qz
n is a pgf with

dn,β,µ,q =
n∑
j=1

qj

(
n− 1

n− j

)(
β

β + µ

)j (
1− β

β + µ

)n−j
. (4.31)

That is, a mixture of Erlangs can be expressed as a different mixture of Erlangs with larger

scale parameter.

Using (4.26) and (4.27), it follows that (4.23) is given by

h̃(z) = C0

{
C1Q

(
β

β + z

)
+ C2Qκ

(
β + κ

β + κ+ z

)
+ C3Qγ

(
β + γ

β + γ + z

)
+ C4Qκ+γ

(
β + κ+ γ

β + κ+ γ + z

)}
, (4.32)

where C1, C2, C3, and C4 are given by (4.24). Additionally, using (4.30) on the first three

terms of (4.32), we obtain

h̃(z) =
∞∑
n=1

dn

(
β + κ+ γ

β + κ+ γ + z

)n
, (4.33)

where

dn = C0

(
C1dn,β,κ+γ,q + C2dn,β+κ,γ,qκ + C3dn,β+γ,κ,qγ + C4qn,κ+γ

)
. (4.34)
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Using (4.28) and (4.31), it is easy to show that (4.34) is given by

dn =
C0

(β + κ+ γ)n

(
n∑
j=1

(
n− 1

n− j

)
qjβ

jrn−j − ς0(1− θ)qnβn
)
, (4.35)

where

rn−j = (1− ς0) (κ+ γ)n−j − (1− ς0)(1− θ)γn−j + ς0κ
n−j

= (1− ς0)
[
(κ+ γ)n−j − (1− θ)γn−j

]
+ ς0κ

n−j.

By removing the last term from the summation in (4.35) and simplifying, we have that

dn =
C0

(β + κ+ γ)n

(
n−1∑
j=1

(
n− 1

n− j

)
qjβ

jrn−j + qnβ
nθ

)
,

where we adopt the notational convention that the empty sum is 0. It is easy to see that

rn−j > 0 for j < n and thus, dn > 0 for n ≥ 1. Therefore, (4.33) can be expressed as

h̃(z) = D

(
β + κ+ γ

β + κ+ γ + z

)
,

where D(z) =
∑∞

n=0 dnz
n is a pgf. Also, from (4.19), k̃(z) is distributed as a mixed Erlang

with LT

k̃(z) = B

(
β + κ+ γ

β + κ+ γ + z

)
,

where B(z) =
∑∞

n=0 bnz
n = P (D(z)) is a compound Bernoulli rv with secondary pgf D(z).

Since P is a pgf of a member of the (a, b, 1) class, recursive techniques are available to easily

evaluate bn (see, e.g., [Klugman et al., 2013, Chapter 6]). Furthermore, from (4.11), we have

E
[
e−zRt

∣∣ J0 = i
]

= G

(
β + κ+ γ

β + κ+ γ + z

)
,

where G(z) =
∑∞

n=0 gnz
n = Ai,t(B(z)) is a compound rv with primary pgf Ai,t(z) and

secondary pgf B(z). Thus, the RBNS payments Rt is distributed as mixed Erlang rv with

mixing weights {g1, g2, . . .}. Evaluation of {g1, g2, . . .} is a well understood problem in loss

analysis (see, e.g., [Klugman et al., 2013, Section 3.4]). For example, if Ai,t(z) is the pgf of

a distribution from the (a, b, 1) class, the mixing weights {g0, g1, . . .} are easily obtained.
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Example 2. Gamma distributed claim size

For β > 0 and α > 0, suppose the claim size density is gamma distributed with density

p(x) =
βα

Γ (α)
xα−1e−βx, x > 0, (4.36)

and LT

p̃(z) =

(
β

β + z

)α
.

We have that the Esscher transform density of a gamma rv is also a gamma rv with

different scale parameter, i.e., for µ > 0,

p̃∗µ =
p̃(µ+ z)

p̃(µ)
=

(
β + µ

β + µ+ z

)α
.

Using the algebraic identity (4.29), we have(
β

β + z

)α
=

(
β + µ

β + µ+ z

)α β
β+µ

1−
(

1− β
β+µ

)
β+µ
β+µ+z

α

=

(
β + µ

β + µ+ z

)α ∞∑
n=0

fn,β,µ

(
β + µ

β + µ+ z

)n
=

∞∑
n=0

fn,β,µ

(
β + µ

β + µ+ z

)α+n

(4.37)

where

fn,β,µ =

(
n+ α− 1

n

)(
β

β + µ

)α(
1− β

β + µ

)n
, (4.38)

corresponding to the negative binomial probabilities (see, e.g., [Willmot and Lin, 2011, Ex-

ample 2]).

Then using (4.37), it follows that (4.23) is given by

h̃(z) = C0

{
C1

(
β

β + κ

)α
+ C2

(
β + κ

β + κ+ z

)α
+ C3

(
β + γ

β + γ + z

)α
+ C4

(
β + κ+ γ

β + κ+ γ + z

)α}
, (4.39)
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where C1, C2, C3, and C4 are given by (4.24) and using (4.37) on the first three terms of

(4.39), we have

h̃(z) =
∞∑
n=0

dn

(
β + κ+ γ

β + κ+ γ + z

)α+n

, (4.40)

where

d0 = C0 (C1f0,β,κ+γ + C2f0,β+κ,γ + C3f0,β+γ,κ + C4) (4.41)

and for n ≥ 1

dn = C0 (C1fn,β,κ+γ + C2fn,β+κ,γ + C3fn,β+γ,κ) . (4.42)

Using (4.38), it is easy to show that (4.41) is given by

d0 = C0

(
β

β + κ+ γ

)α
θ,

and for n ≥ 1, (4.42) is given by

dn = C0

(
n+ α− 1

n

)(
β

β + κ+ γ

)α
(1− ς0) [(κ+ γ)n − (1− θ)γn] + ς0κ

n

(β + κ+ γ)n
.

Since (κ+ γ)n − (1− θ)γn > 0 for n ≥ 1, we have that dn > 0 for n ≥ 0 and it follows that

(4.40) is the LT of a mixture of gammas.

Thus, from (4.11) and (4.19),

E
[
e−zRt

∣∣ J0 = i
]

=
n+m∑
j=0

ai,j(t)

(
ξ + (1− ξ)

∞∑
r=0

dr

(
β + κ+ γ

β + κ+ γ + z

)r+α)j

=
n+m∑
j=0

ai,j(t)

j∑
l=0

(
j

l

)
ξj−l (1− ξ)l

(
β + κ+ γ

β + κ+ γ + z

)αl( ∞∑
r=0

dr

(
β + κ+ γ

β + κ+ γ + z

)r)l

,

using binomial expansion. If we define the pgf D∗l (z) =
∑∞

r=0 d
∗
r,lz

r = D(z)l, then we have

E
[
e−zRt

∣∣ J0 = i
]

=
∞∑
r=0

n+m∑
l=0

gr,l

(
β + κ+ γ

β + κ+ γ + z

)r+αl
, (4.43)
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by changing the order of summation, where

gj,l =
n+m∑
j=l

ai,j(t)

(
j

l

)
ξj−l (1− ξ)l d∗r,l,

Thus, the RBNS payments Rt (conditional on J0 = i) is distributed as a mixture of gammas

with LT (4.43).

Example 3. Inverse Gaussian distributed claim size

Suppose the claim size follows an inverse Gaussian distribution with density

p(x) =
µ√

2πσx3
e−

(x−µ)2
2σx , x > 0, (4.44)

where σ > 0 and µ > 0. It follows that the LT of (4.44) is given by

p̃(z) = e−
µ
σ (
√

1+2σz−1) ≡ G (z;µ, σ) .

We can show that the Esscher transform density of p is also inverse Gaussian distributed,

i.e.,

p̃∗κ(z) =
p̃(z + κ)

p̃(κ)
= exp

{
−µ
σ

(√
1 + 2σ(z + κ)− 1

)
+
µ

σ

(√
1 + 2σκ− 1

)}
= e−

µκ
σκ

(
√

1+2σκz−1)

= G(z;µκ, σκ) (4.45)

where µκ = µ/
√

1 + 2σκ and σκ = σ/ (1 + 2σκ).

Thus, using (4.45), it follows that (4.23) is given by

h̃(z) = C0

(
C1G(z;µ, σ) + C2G(z;µκ, σκ) + C3G(z;µγ, σγ) + C4G(z;µκ+γ, σκ+γ)

)
, (4.46)

It follows from (4.19) that k̃(z) is a compound Bernoulli LT where the secondary distribution

is a combination of inverse Gaussian distributions with LT given by (4.46).
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Thus, from (4.11), it follows that Rt (conditional on J0 = i) is distributed as a compound

rv with primary pgf A(z) and secondary LT a compound Bernoulli rv with LT (4.19) where

h̃(z) is given by (4.46).

Further Remarks

Up to this point, we have considered ς(x) and q1(x) to be respectively given by (4.14) and

(4.20) which both contain an exponential tail. We remark that this section’s analysis can be

easily extended if ς(x) and q1(x) are generalized to instead contain a mixed Erlang tail. In

what follows, we present a brief outline of how the analysis would be extended. Suppose

ς(x) =

(
1−

∞∑
j=0

F j

j!
(γx)j e−γx

)
ς0, (4.47)

where F j =
∑∞

i=j+1 fi and {f1, f2, . . .} is a discrete probability distribution and

q1(x) = 1− (1− θ)
∞∑
n=0

Gn

n!
(κx)n e−κx, (4.48)

where Gn =
∑∞

j=n+1 gj and {g1, g2, . . .} is a discrete probability distribution. Note that

(4.14) and (4.20) are respectively recovered from (4.47) and (4.48) by letting f1 = 1 and

g1 = 1.

Define the density

hn,κ(x) =
(κx)n e−κxp(x)

cn,κ
, x > 0, (4.49)

where cn,κ is easily obtained using cn,κ = (−κ)np̃(n)(κ). Note that when n = 0, h0,κ is the

Esscher transform density of p with parameter κ.

Recalling that p1(x) = λ
λ1
p(x)q1(x) and assuming q1(x) is given by (4.48), it follows that

p̃1(z) =
λ

λ1

(
p̃(z)− (1− θ)

∞∑
n=0

Gn

n!
cn,κh̃n,κ(z)

)
, (4.50)
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i.e., p1 is a combination of p and {hn,κ}∞n=0. Also, using (4.13), (4.47) and (4.50), it can be

shown that

k̃(z) =

∫ ∞
0

l̃x(z)p1(x)dx

= ξ∗ + (1− ξ∗)h̃∗(z), (4.51)

where ξ∗ = ς0

(
1−

∑∞
j=0 F j p̃

(j)
1 (γ)/j!

)
and

h̃∗(z) =
1

C∗0

(
C∗1 p̃(z) +

∞∑
n=0

C∗2,nh̃n,κ(z) +
∞∑
j=0

C∗3,jh̃j,γ(z) +
∞∑
j=0

∞∑
n=0

C∗4,j,nh̃n+j,κ+γ(z)

)
,(4.52)

where

C∗1 = 1− ς, C∗2,n = −(1− ς0)(1− θ)Gn

n!
cn,κ,

C∗3,j = ς0
F j

j!
cj,γ, C∗4,n,j = −ς0(1− θ)F j

j!

Gn

n!

(
γ

κ+ γ

)j (
κ

κ+ γ

)n
cn+j,κ+γ,

and

C∗0 = C∗1 +
∞∑
n=0

C∗2,n +
∞∑
j=0

C∗3,j +
∞∑
j=0

∞∑
n=0

C∗4,j,n.

Thus, from (4.51), it follows that k is distributed as a compound Bernoulli rv with secondary

LT given by (4.52) which is a combination of p and the transforms of p given by (4.49) with

various parameters. Note that if f1 = g1 = 1, we recover (4.16) and (4.23) respectively from

(4.51) and (4.52).

Suppose that p(x) is mixed Erlang distributed with density (4.25) (see Example 1). It

would follow that hn,κ(x) given by (4.49) is a mixed Erlang density given by

hn,κ(x) =
∞∑
j=1

qj,n,κ
(β + κ)n+j xn+j−1e−(β+κ)x

(n+ j − 1)!
,

where

qj,n,κ =
1

cn,κ
qj

(n+ j − 1)!

(j − 1)!

(
β

β + κ

)j (
κ

β + κ

)n
,
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and cn,κ =
∑∞

j=1 qj
(n+j−1)!

(j−1)!

(
β

β+κ

)j (
κ

β+κ

)n
. Thus,

h̃n,κ(z) = Qn,κ

(
β + κ

β + κ+ z

)
,

where Qn,κ(z) = zn
∑∞

j=1 qj,n,κz
j is a pgf of the distribution {qj,n,κ}∞j=1 shifted to the right by

n. It also follows that h∗ given by (4.52) is a mixed Erlang density; the details are tedious

and involve similar techniques employed in Example 1 and as a result, they are omitted.

Now suppose that p is gamma distributed with density (4.36) (see Example 2), then

hn,κ(x) given by (4.52) has the gamma density

hn,κ(x) =
(β + κ)n+j

Γ(n+ α)
xn+α−1e−(β+κ)x, x > 0,

and using similar techniques employed in Example 2, it can be shown that h∗ given by (4.52)

is a mixed gamma density. The details are tedious and thus omitted.

Finally, suppose p is inverse Gaussian distributed (see Example 3) with density given by

(4.44), then from (4.49), we can show that

hn,κ(x) =

(
a
b

) p
2

2Kp

(√
ab
)xp−1e−(ax+ b

x)/2, x > 0,

where p = n − 1/2, a = 2k + 1/σ, b = µ2/σ, and Kp is a modified Bessel function of the

second kind, i.e., hn,κ(x) is a generalized inverse Gaussian density.

4.5 Generalizations to the claim investigation mecha-

nism

Considerable generalizations to the CIM proposed in Section 3.2.1 are possible while preserv-

ing the Markovian arrival process formulation of the aggregate payment process presented in

Section 4.2. We refer readers to Section 3.5 for a detailed discussion of such generalizations.
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Generalizations to the CIM of the type discussed in Section 3.5 involve viewing J =

{Jt}t≥0 more generally as the state process of the CIM. Suppose we define the generalized

state process by the CTMC J = {Jt}t≥0 with generalized state space E∗. As discussed in

Section 4.2, the matrices D0 and D1 are respectively found by determining the transition

rates of J that occur with and without an accompanying claim and the infinitestimal gen-

erator of J is given by Q = D0 + D1. Also, we have H(s) =
(
h̃i,j(s)

)
i,j∈E∗

where h̃i,j is the

LT of a claim accompanying a transition in J from state i to j.

The joint LT of the settled payments St and RBNS payments Rt (conditional on J0)

under the generalized CIM is easily determined from Proposition 16 by replacing a(z) with

a∗(z) =
(
ãj(z)

)
j∈E∗ where ãj(z) denotes the LT of the RBNS payments in the CIM when

J = j. Similarly, the joint moments of St and Rt can be found using Proposition 17 with

bd replaced by b∗d =
(

(−1)d dd

dzd
ãj(z)

∣∣∣
z=0

)
j∈E∗

. Also if π∗ is the stationary distribution of

the background process J which can be found by solving π∗Q = 0 and π∗1n+m+1 = 1, then

from (4.12), the LT of Rt in the long-run is given by

lim
t→∞

E
[
e−zRt

∣∣J0 = i
]

= π∗a∗(z). (4.53)

4.6 Numerical Examples

This section presents numerical examples which quantify the impact of variations in the

CIM on an insurer’s RBNS payments with the objective of measuring the risk associated

with claims congestion caused by the claims handling process. Recall that Chapter 2 and

Chapter 3 also considered variations in the CIM however their impact on the ruin probability

was measured. In particular, the following numerical examples compare the Value-at-Risk

(V aR) and Tail Value-at-Risk (TV aR) of Rt for various CIMs.

The following examples each revisit scenarios considered earlier in Chapter 2 and Chapter
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3. Also, all the examples except the first implicitly assume that J0 = 0, i.e., the CIM is

empty at time 0.

4.6.1 Varying time horizons

In this example, we consider the V aR and TV aR of the RBNS payments Rt at various t,

conditional on the number of claims in the CIM at time 0. We make the same assumptions

as in Example 2.4.1 with q1(x) = q1 = 0.05, except that the investigation time here is instead

assumed to follow an exponential distribution with rate α = 0.2. The LT of Rt is given by

(4.11) when t <∞ and by (4.12) when t =∞ (such that the CIM is in steady-state). Table

4.1 and Table 4.2 respectively present the V aR and TV aR of the RBNS payments Rt at

various t given J0 = 0 and J0 = 1.

Table 4.1: V aR and TV aR of RBNS payments for varying t when J0 = 0

t V aR0.85 TV aR0.85 V aR0.9 TV aR0.9 V aR0.95 TV aR0.95 V aR0.995 TV aR0.995

0.5 0 1.2741 0 2.8667 2.5385 4.6481 7.3604 9.3295

1 1.0771 3.5145 2.2887 4.4228 3.8085 5.8674 8.5384 10.4757

5 3.3974 5.4653 4.2492 6.3001 5.6933 7.7110 10.3096 12.2080

10 3.6094 5.6723 4.4584 6.5054 5.9010 7.9129 10.5033 12.3980

∞ 3.6329 5.6953 4.4818 6.5283 5.9241 7.9354 10.5249 12.4192

From Table 4.1 and Table 4.2, we are able to see how the V aR and TV aR values evolve

over time t conditional on J0 = 0 or J0 = 1, respectively. Table 4.1 shows that when J0 = 0

(J0 = 1), the V aR and TV aR increase (decreases) with time which corresponds to the

‘ramping-up’ (‘emptying’) of CIM operations from its empty (at capacity) starting point.

We observe that as t increases, the V aR and TV aR converge to the same values as the CIM

139



Table 4.2: V aR and TV aR of RBNS payments for varying t when J0 = 1

t V aR0.85 TV aR0.85 V aR0.9 TV aR0.9 V aR0.95 TV aR0.95 V aR0.995 TV aR0.995

0.5 4.6664 6.7092 5.5109 7.5336 6.9402 8.9215 11.4728 13.3508

1 4.4958 6.5420 5.3408 7.3680 6.7730 8.7592 11.3166 13.1971

5 3.8031 5.8621 4.6507 6.6938 6.0916 8.0980 10.6810 12.5724

10 3.6515 5.7135 4.5002 6.5464 5.9425 7.9532 10.5419 12.4360

∞ 3.6329 5.6953 4.4818 6.5283 5.9241 7.9354 10.5249 12.4192

reaches its steady-state whether J0 = 0 or J0 = 1. We note that the CIM is close to reaching

steady-state by time 10 since the V aR and TV aR values at t = 10 and t = ∞ are quite

close.

In the following examples, we let t = ∞ for all calculations and consider the RBNS

payments in the long-run, i.e., when the CIM has approached steady-state. Recall that risk

measurements that involve the CIM in steady-state can provide an indicator of the insurer’s

overall risk due to RBNS claims.

4.6.2 Effect of q1(x)

In this example, we assume the probability that a claim is subject to investigation is constant,

i.e. q1(x) ≡ q1, and consider q1’s impact on the RBNS payments. All assumptions here

follow those made in Example 2.4.1 except the investigation time is instead assumed to be

exponentially distributed with rate α = 0.2. The long-run RBNS payments has LT given by

(4.12) and its V aR and TV aR values are presented in Table 4.3. Note that if q1 = 0, we

have that V aR = TV aR = 0 since there is no investigation and all claims are immediately
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settled.

Table 4.3: V aR and TV aR of RBNS payments for varying q1

q1 V aR0.85 TV aR0.85 V aR0.9 TV aR0.9 V aR0.95 TV aR0.95 V aR0.995 TV aR0.995

0.5 3.6329 5.6953 4.4818 6.5283 5.9241 7.9354 10.5249 12.4192

0.1 4.1598 6.2123 5.0059 7.0412 6.4429 8.4389 11.0085 12.8942

0.5 4.7016 6.7437 5.5459 7.5677 6.9746 8.9549 11.5050 13.3825

1 4.7803 6.8207 5.6243 7.6440 7.0515 9.0296 11.5769 13.4533

As q1 increases, it becomes more likely that claims will enter the CIM (when it is not at

capacity). This leads to more claims residing in the CIM in the long-run and all else being

equal, greater RBNS payments for the insurer. Table 4.3 confirms our intuition since the

V aR and TV aR of the long-run RBNS payments increases as q1 increases.

4.6.3 Three investigation strategies

In this example, we revisit the three investigation strategies discussed in Example 2.4.3 that

are used to determine whether or not a claim will be subject to investigation. The three

strategies involve allowing q1(x) to vary in x and more precisely, assume that

q1(x) = θ + (1− θ)
(
1− e−κx

)
, (4.54)

where

Strategy 1: θ = 0.1 (κ = 0)

Strategy 2: θ = 0.05 (κ = 0.0173)

Strategy 3: θ = 0 (κ = 0.0341)
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Recall that θ and κ are chosen such that the mean probability of subjecting a random claim

to investigation is set to be 0.1, i.e.,
∫∞

0
q1(x)p(x) = 0.1. According to (4.54), on average,

a percentage θ (θ ≤ 0.1) of all claims are automatically subjected to investigation and the

other (1 − θ) are subjected based on their claim amount with a probability 1 − e−κx for a

claim of size x. All other assumptions follow those in Example 2.4.3 except the combination

of exponential investigation time is replaced here by an exponential investigation time with

the same mean, i.e. α = 0.2. The long-run RBNS payments has LT given by (4.12) and its

V aR and TV aR for each of the three investigation strategies are presented in Table 4.4 at

various confidence levels.

Table 4.4: V aR and TV aR for varying investigation strategies

θ V aR0.85 TV aR0.85 V aR0.9 TV aR0.9 V aR0.95 TV aR0.95 V aR0.995 TV aR0.995

0.1 3.5562 5.6203 5.0059 7.0412 6.4429 8.4389 11.0085 12.8942

0.05 5.1460 7.5216 6.1642 8.4705 7.8271 10.0327 12.8453 14.8623

0 5.9495 8.3582 6.9986 9.3155 8.6780 10.8786 13.6794 15.6819

Table 4.4 shows that the V aR and TV aR increase with decreasing θ. From (4.54), as we

decrease θ, we increase the degree to which the investigation strategy is based on the claim

size. Thus, for smaller θ, claims that have been selected to enter the CIM will tend to be

larger on average and therefore lead to larger RBNS payments in the long-run. This effect

is confirmed by Table 4.4.

4.6.4 Investigation time dependence on claim size

In this example, we revisit the two scenarios discussed in the numerical example from Section

3.5.2 and compare the V aR and TV aR of the RBNS payments under both scenarios. The
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first scenario involves a CIM with investigation times that are independent of all else in

the model whereas the second scenario involves a CIM with investigation times that depend

on claim sizes. The details of the second scenario’s dependence structure and all other

assumptions can be found in Section 3.5.2. Note that the mean investigation time for a

random claim is set to be equal under both scenarios. The LT of the total long-run RBNS

payments in the two-node CIM is given by (4.53) where

ã(0,0,0)(z) = 1,

ã(1,1,0)(z) = k̃1(z),

ã(1,0,1)(z) = k̃2(z),

where k̃1, k̃2, and Q are formally defined in Section 3.5.2. The V aR and TV aR for the long-

run RBNS payments under both scenarios can be found in Table 4.5 for varying confidence

levels.

Table 4.5: V aR and TV aR with and without a dependence structure

Dependence V aR0.85 TV aR0.85 V aR0.9 TV aR0.9 V aR0.95 TV aR0.95 V aR0.995 TV aR0.995

No 4.4404 6.4877 5.2857 7.3142 6.7187 8.7065 11.2658 13.1472

Yes 5.3224 7.5268 6.2637 8.4083 7.8040 9.8641 12.4967 14.4023

From Table 4.5, we observe that the V aR and TV aR increase with the introduction of

the dependence structure. This makes sense because when investigation times are dependent

on claim sizes, smaller claims tend to exit faster from the CIM while larger claims tend to

be delayed by longer investigation times. Thus, the in long-run, larger claims are more likely

to be found in the CIM (which lead to larger long-run RBNS payments). The numerical

results are therefore consistent with our intuition.
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4.6.5 Claim investigation network

In this example, we revisit the two scenarios discussed in the numerical example of Section

3.5.3. The first scenario involves a one-node CIM composed of one node and one waiting

place (i.e., n = 1 and m = 1) and the second scenario involves a two-node CIM composed

of two nodes and no waiting places (i.e., n = 2 and m = 0). Readers are referred to the

numerical example of Section 3.5.3 for the scenario assumptions. The LT of the total long-run

RBNS payments in the two-node CIM is given by (4.53) where

ã(0,0,0)(z) = 1, ã(1,1,0)(z) = k̃(z)

ã(1,0,1)(z) = p̃1(z), ã(2,1,1)(z) = k̃(z)p̃1(z)

ã(2,2,0)(z) = k̃(z)2, ã(2,0,2)(z) = p̃1(z)2,

and Q is as discussed in Section 3.5.3. The V aR and TV aR for both the one-node and

two-node CIMs are given in Table 4.6.

Table 4.6: V aR and TV aR for a network-based CIM

(n,m) V aR0.85 TV aR0.85 V aR0.9 TV aR0.9 V aR0.95 TV aR0.95 V aR0.995 TV aR0.995

(1,1) 7.8749 10.4362 8.9792 11.4572 10.7651 13.1355 16.1616 18.3263

(2,0) 8.2994 10.8470 9.3967 11.8628 11.1731 13.5336 16.5482 18.7070

Suppose the claims handling process is indeed composed of two stages as described in

Section 3.5.3 (i.e., a claim is first investigated for fraudulence, then it moves onto processing

if it is not fraudulent). Modelling this process using a one-node CIM would underestimate

the RBNS payments since it would not reflect that claims that have completed the first stage

of investigation and successfully moved onto administrative processing will be paid in full.

This is confirmed by the Table 4.6 where we observe the V aR and TV aR for the two-node

CIM is higher than for the one-node CIM.
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Chapter 5

Conclusion and Future Research

There has been little study of queues in insurer surplus and aggregate claim models. The

work of this thesis may be viewed as a first steps in this line of inquiry by explicitly modelling

claim investigation practices in classical models for insurance risk. In particular, a queue-

based claim investigation mechanism (CIM) was proposed to model features like congestion

in the claims handling process. The CIM was superimposed onto the classical insurer’s

surplus model as well as the aggregate claims model to measure the impact of the CIM on

some common risk-based quantities of interest.

Chapter 2 proposed a simple CIM consisting of one server and no waiting places. It was

assumed that the investigation times were distributed as a combination of n exponentials.

Standard techniques of conditioning on the first claim were used to derive a defective renewal

equation (DRE) for the Gerber-Shiu function m(u) and probabilistic interpretations for the

DRE components were provided. Via numerical examples, the impacts of various claim

investigation strategies and CIMs on the ruin probability were measured.

Chapter 3 extended and generalized the surplus analysis conducted in Chapter 2 by

proposing a more realistic queue-based claim investigation mechanism (CIM). The proposed
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CIM consisted of a single queue with n investigation units and a finite capacity of m claims.

More specifically, we considered CIMs which admit a (spectrally negative) Markov Additive

Process (MAP) formulation of the insurer’s surplus and relied on recent developments in the

fluctuation theory of MAPs to perform our analysis. The flexibility of the MAP enabled

generalizations to the CIM while preserving the surplus’ MAP formulation. A detailed

discussion of four possible CIM generalizations and their MAP formulations were provided.

Numerical examples were used to assess the cost and benefit of additional investigators as

well as the impact of variations in the CIM on the ruin probability.

In Chapter 4, the proposed CIM from Chapter 3 was superimposed onto the aggregate

claims process to obtain the aggregate payment process. It was shown that this aggregate

payment process has a Markovian Arrival Process (MAP) formulation that is preserved under

considerable generalizations to the CIM. A distributional analysis of the future payments

due to RBNS claims (”RBNS payments”) was then performed under assumptions for q1(x)

(the probability that a claim of size x is selected for investigation) and Lx (the distribution of

the payment amount due to a claim of size x that had undergone investigation). The RBNS

payment distribution was also found when the claim size density p was furthermore assumed

to follow either a mixed Erlang, gamma, or inverse Gaussian density. Finally, numerical

examples were used to assess the impact of various claim investigation practices on the V aR

and TV aR of the RBNS payments. Numerical findings were consistent with those from

Chapters 2 and 3.

There are a number of directions in which this work may be extended which I briefly

discuss below.

Chapters 2 and 3 of this thesis focused on classical quantities of interest that can be

studied using the Gerber-Shiu function such as the time and deficit at ruin and the ruin

probability. One way to extend this effort is to study other quantities of interest. For
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example, an insurer performing a cost-benefit analysis of their claims handling process could

benefit from a quantity that measures the net benefit of a CIM. The costs of a CIM include

investigator salaries and administration system expenses. The benefit may be defined, for

example, as the difference - discovered via investigation - between an inflated claim amount

and the amount actually payable to the policyholder.

Assuming costs are incurred continuously at rate κ, the following quantity

Πt :=

bMt2 c∑
j=1

(X1,j − Yj)− κt, (5.1)

may be interpreted as the benefit of the CIM minus its cost, where bMt/2c is the number

of claims that have completed investigation by time t, and X1,j (Yj) is the claim (payment)

size of the jth claim completing investigation. Deriving a DRE for Πt under Chapter 2’s risk

model by using the same approach found in the chapter appears to be a promising avenue

of investigation. Further work would be needed to study this quantity in the risk model

proposed in Chapters 3 and 4. Another cost associated with the CIM that can be measured

is the excess payment due to inflated claims that were paid because the claim had arrived

when the CIM was at full capacity and was therefore paid without investigation.

Work on optimality questions is another direction in which this work may be extended.

It would be of interest to determine an optimal claim investigation mechanism that min-

imizes (or maximizes) some objective function such as the ruin probability or the CIM’s

net benefit (see above). For example, consider increasing the probability a claim (of size x)

is investigated q1(x) or the number of investigators n. While this will increase the cost of

investigation, it will also lead to the adjustment of a greater number of claims. Analytical

studies can be performed to examine how q1(x) and/or n can be chosen to, for example, min-

imize the ruin probability. Numerical analysis can also be performed, e.g., some examples

in Chapter 3 employed numerical analysis to determine the optimal number of investigators

n that minimized the ruin probability.

147



Another way this work may be extended is to further improve realism by considering

adaptive claim investigation mechanisms. For example, in bad economic times associated

with large job losses, policyholders may be more inclined to file fraudulent or inflated claims.

This results in a greater claim arrival rate coupled with an increased probability that a

claim (of size x) is fraudulent ς(x). The insurer may respond by reinforcing their CIM,

e.g., adding more investigators to their CIM and increasing the probability a claim (of size

x) is investigated q1(x). The increased cost from the reinforced CIM would also need to

be accounted for. Also, the insurer may wish to undo their reinforcements when economic

times improve. The greater frequency of claims in bad economic times may be modelled

using Markov modulated Poisson arrivals (see Section 3.5.4) though further work would be

needed to model the other adaptive features. Also, insights from industry can be used to

set plausible changes in model assumptions, for example, the change in ς(x) when economic

times deteriorate. In addition, optimality questions may be explored relating to how the

CIM should best be adapted in response to changes in the environment to minimize (or

maximize) some objective functions.

The CIM could also be assumed to adapt in response to its level of congestion. For

example, in times when the mechanism is approaching full capacity, the insurer may decide

to investigate only the largest claims. For instance, suppose that when the mechanism is

less than 80% full, the insurer investigates all claims over size l but when the mechanism is

greater than 80% full, the insurer will focus its investigation on claims over size h (h > l).

Here again, this direction of research would be of interest to insurers in the design of optimal

CIMs which is an important component of their comprehensive set of risk management

activities.
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processes. In Séminaire de probabilités XLI. Springer, 2008.

D. Landriault and G. E. Willmot. On the joint distributions of the time to ruin, the surplus

prior to ruin, and the deficit at ruin in the classical risk model. North American Actuarial

Journal, 13(2):252–270, 2009.

D. Landriault, T. Shi, and G. E. Willmot. Joint densities involving the time to ruin in the

Sparre Andersen risk model under exponential assumptions. Insurance: Mathematics and

Economics, 49(3):371–379, 2011.

D. Landriault, W. Y. Lee, G. E. Willmot, and J. K. Woo. A note on deficit analysis in

dependency models involving Coxian claim amounts. Scandinavian Actuarial Journal,

2014(5):405–423, 2014a.

153



D. Landriault, G. E. Willmot, and D. Xu. On the analysis of time dependent claims in a

class of birth process claim count models. Insurance: Mathematics and Economics, 58:

168–173, 2014b.

D. Landriault, B. Li, and S. Li. Drawdown analysis for the renewal insurance risk process.

Scandinavian Actuarial Journal, 2017(3):267–285, 2017.

G. Latouche and V. Ramaswami. Introduction to matrix analytic methods in stochastic

modeling, volume 5. SIAM and ASA, Philadelphia, 1999.
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