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Abstract

Power and energy efficiency have become an increasingly important design metric for
a wide spectrum of computing devices. Battery efficiency, which requires a mixture of
energy and power efficiency, is exceedingly important especially since there have been no
groundbreaking advances in battery capacity recently. The need for energy and power
efficiency stretches from small embedded devices to portable computers to large scale data
centers. The projected future of computing demand, referred to as exascale computing,
demands that researchers find ways to perform exaFLOPs of computation at a power bound
much lower than would be required by simply scaling today’s standards.

There is a large body of work on power and energy efficiency for a wide range of ap-
plications and at different levels of abstraction. However, there is a lack of work studying
the nuances of different tradeoffs that arise when operating under a power/energy budget.
Moreover, there is no work on constructing a generalized model of applications running
under power/energy constraints, which allows the designer to optimize their resource con-
sumption, be it power, energy, time, bandwidth, or space. There is need for an efficient
model that can provide bounds on the optimality of an application’s resource consumption,
becoming a basis against which online resource management heuristics can be measured.

In this thesis, we tackle the problem of managing resource tradeoffs of power/energy
constrained applications. We begin by studying the nuances of power/energy tradeoffs
with the response time and throughput of stream processing applications. We then study
the power performance tradeoff of batch processing applications to identify a power con-
figuration that maximizes performance under a power bound. Next, we study the tradeoff
of power/energy with network bandwidth and precision. Finally, we study how to combine
tradeoffs into a generalized model of applications running under resource constraints.

The work in this thesis presents detailed studies of the power/energy tradeoff with
response time, throughput, performance, network bandwidth, and precision of stream and
batch processing applications. To that end, we present an adaptive algorithm that manages
stream processing tradeoffs of response time and throughput at the CPU level. At the task-
level, we present an online heuristic that adaptively distributes bounded power in a cluster
to improve performance, as well as an offline approach to optimally bound performance.
We demonstrate how power can be used to reduce bandwidth bottlenecks and extend our
offline approach to model bandwidth tradeoffs. Moreover, we present a tool that identifies
parts of a program that can be downgraded in precision with minimal impact on accuracy,
and maximal impact on energy consumption. Finally, we combine all the above tradeoffs
into a flexible model that is efficient to solve and allows for bounding and/or optimizing
the consumption of different resources.
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Chapter 1

Introduction

1.1 Importance of Power and Energy Efficiency

Designing low-power computing system architectures has been an active area of research
in the recent years, partly due to the increasing cost of energy as well as the high demands
on producing and manufacturing environment-friendly devices. While the former is an
explicit financial cost-benefit issue, the latter is attributed to green computing. However,
with the recent explosion in mobile computing and incredible popularity of smart-phones
and tablet computers, energy efficiency in software products has become a prime concern in
application design and development and in fact as important as energy-optimal hardware
chips.

Energy efficiency plays an important role in large-scale data centers. This can be
easily observed in the growing size of data centers that serve internet-scale applications.
Currently, such data centers consume 1.3% of the global energy supply, at a cost of $4.5
billion. This percentage is expected to rise to 8% by 2020 [79]. In fact, power and cooling
are the largest cost of a data center. For example, a facility consisting of 30,000 square
feet and consuming 10MW, for instance, requires an accompanying cooling system that
costs from $2-$5 million [106], and the yearly cost of running this cooling infrastructure
can reach up to $4-$8 million [138]. The rise in energy costs has become so prevalent that
the cost of electricity for fours years in a data center is approaching the cost of setting up
a new data center [12].

Power efficiency does not always imply energy efficiency. Power efficiency is sometimes
the objective regardless of energy efficiency. With the increasing urgency to reach exascale
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computing, governments must inevitably impose a constraint on the power consumption
of data centers [15]. Power efficiency constraints also apply to embedded systems. Certain
components are constrained to draw power allowed by the battery installed in the system,
thus for instance forcing designers to reduce the clock speed of processors. A lower peak
power also extends the lifetime of the battery [135] which is a target for consumer elec-
tronics. Thus, system designers often target energy efficiency as well as power constraints.

1.2 Resource Tradeoffs and the Status Quo

Multiple resources affect and are affected by power and energy consumption. Time is a
resource that is often associated with power consumption. Higher power consumption leads
to lower execution time or lower response time. Lower precision of floating point arithmetic
reduces energy consumption through faster performance at the cost of accuracy [39]. Higher
usage of network bandwidth implies higher power consumption [25]. Moreover, there are
subtle tradeoffs that allow power to control resource utilization. For instance, in some
cases, parallel tasks can be staggered using power bounds to reduce network bottlenecks,
preventing these tasks from sending data at the same time, causing a bottleneck [100].

The tradeoffs between various resources and power and energy are non-trivial to man-
age, especially in dynamic heterogeneous systems. Identifying the optimal configuration of
resources to meet a system’s constraints and objectives is a difficult problem. This problem
becomes more complicated when we consider the efficiency of the proposed solution. An
energy management system running on a battery powered device should be conscious of
its own energy footprint, refraining from using costly CPU-intensive algorithms. More-
over, the energy management system should respond to changes in the environment under
timing constraints, which is often the case in embedded systems. On the other side of the
spectrum, Big data and HPC applications could deploy tens of thousands of tasks. The
different characteristics of tasks, nodes, and network infrastructure grossly complicate the
tradeoff management of such massively parallel systems.

There is a large body of work on managing the performance energy tradeoff. The work
ranges from low-level control at the CPU level [37, 70, 101, 196] to high level control at
the task level across multiple nodes [62, 92, 141, 142, 169]. There has been extensive work
studying the bandwidth energy tradeoff from the perspective of network design [25,89,140].
Moreover, various articles demonstrated the impact of precision on performance as well as
energy [39,41,116,117].

Most of the literature tackles the intricacies of specific tradeoffs and present sophisti-
cated optimizations that impact various application areas. However, the current literature
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lacks the following in hierarchical order:

• The current literature lacks specific in depth studies on the energy/power tradeoff
against specific aspects of resource use. For instance, the tradeoff between energy
and response time and throughput of low-level concurrency primitives, as opposed
to the extensively studied energy / performance tradeoff.

• The industry’s focus on green computing allowed for advanced controls on the power
and energy consumption of computing systems in the form of hardware power bound-
ing and drivers for DVFS (Dynamic Voltage and Frequency Scaling) and DPMS
(Dynamic Power Management System). Such controls are not robustly available for
other resources such as bandwidth and precision. The current literature lacks studies
on how to use such power controls to indirectly manage other resources.

• Finally, the current literature lacks work on a generalized model of systems with
respect to energy / power and all resources that affect or are affected by energy /
power consumption.

The above gaps in the literature culminate to the lack of a generalized system resource
model that is centered around power and energy consumption. A model that allows cap-
turing nuanced tradeoffs allows the designer to better optimize performance. By exploring
resources that can be controlled using power and energy, a designer can have more con-
trol over a wider array of system resources. A model that accounts for a wide array of
resources and their interactions allows the designer to optimize systems to their full extent
while maintaining granular control over specific resource tradeoffs.

1.3 Thesis Statement

In this thesis, we validate the following hypothesis: as opposed to hardware based ap-
proaches, exclusively software-based approaches can provide a control mechanism with
which engineers can manage the physical resource tradeoffs of their applications running
in a power and/or energy constrained setting.

1.4 Research Problem

Thus, the high level research question we pose here is how multiple resource tradeoffs can
be managed in an environment where power and energy are constrained. More concretely,
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can we construct a model that captures multiple resource tradeoffs with power and energy
and allows for constraining and/or optimizing the consumption of different resources.

In this thesis we tackle the above research problem by setting the following high level
objectives:

• Study the tradeoff of power / energy versus performance at different levels of ab-
straction in order to construct a generalized model.

• Study how power / energy constraints can affect the consumption of resources that
are difficult to control explicitly.

• Construct a model that captures the resource tradeoffs involving power and/or en-
ergy.

1.5 Overview of the Proposed Approach

The thesis begins by studying the nuances of the tradeoff between energy and performance
at the level of DVFS and DPMS for stream processing applications. We then move onto
a higher task-level abstraction and study the tradeoff of power and performance for batch
processing applications. Next, we study how bandwidth can be treated as a resource that
can be indirectly managed by power controls. Next, we study how we can manage the
tradeoff between precision and power. Finally, we combine the tradeoffs we studied above
with other well-established tradeoffs to construct a flexible general model that allows for
optimizing and/or constraining resource consumption.

1.5.1 Energy versus Response Time

We begin in Chapter 2 by studying the intricacies of the energy / performance tradeoff
of a general concurrency problem: namely the producer consumer problem. The producer
consumer problem models a wide range of systems, from sensor processing to web servers to
parallel stream processing in Big Data applications. Studying the energy profile of different
implementations of this problem gives us insight into the impact of different synchroniza-
tion primitives on energy consumption with respect to CPU core wakeups and frequency
residency. Then, we develop an algorithm to manage the tradeoff between energy consump-
tion and consumer response time. Furthermore, we extend the algorithm to manage the
tradeoff between energy and memory footprint and demonstrate that intelligently timed
memory allocations can significantly reduce energy consumption.
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1.5.2 Power versus Performance

In Chapter 3, we study the power / performance tradeoff at a higher level of abstraction,
working towards our end goal of a general model. To that end, we study the collective
power consumption of a cluster of machines performing batch computation. While it is
well investigated that more power almost always means better performance, we attempt
to design an algorithm to maximize performance under a cluster power bound. We refer
to this as the power distribution problem (how to distribute power optimally across the
cluster). The problem becomes complicated when there is diversity in both the task load
and the node power profiles. First, we introduce an ILP to minimize the makespan of a set
of tasks with dependencies under a power bound. Next, we design an online heuristic to
reduce the makespan by dynamically and strategically transferring power from one node
to another to help long running tasks finish sooner. We demonstrate the effectiveness of
the ILP and the heuristic on a well known set of parallel processing benchmarks.

1.5.3 Power, Energy and Bandwidth Tradeoffs

In Chapter 4, we extend the work in Chapter 3 in two ways. First, we study the relationship
between power and bandwidth. More concretely, we study how power can be used to create
artificial staggering in order to alleviate bandwidth bottlenecks. We demonstrate that
millisecond staggering in computation tasks can significantly reduce total communication
time, even in over-provisioned network infrastructures. Our results indicate that in stressed
networks, staggering can be a significant improvement to execution time. Second, we
develop a linear programming model that performs power distribution as well as bandwidth
and energy distribution. The linear programming model is significantly more scalable than
the ILP in Chapter 3. We demonstrate how the LP can scale to solve larger problems
where there are tens of thousands of variables.

1.5.4 Power, Energy and Precision

In Chapter 5, we study the final tradeoff in the thesis: power versus precision. Prior work
has demonstrated that programs that use single-precision floating point execute faster than
their double-precision counterparts, and thus consume less energy. However, there is a loss
in accuracy due to rounding error. We explore whether there is a tradeoff where only part
of the program uses single-precision, and this part dictates the energy savings and the loss
in accuracy. We refer to control points within the tradeoff as precision levels. Further-
more, we develop a tool that analyses a program that uses double-precision floating point,
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and identifies functions in the program that are most recommended to be downgraded to
single-precision. A highly recommended function is one that saves a significant amount of
energy while having minimal impact on accuracy. We demonstrate how our tool allows the
developer to manage the energy precision tradeoff by applying the tool on a well-known
computer vision application. We demonstrate that the developer can select multiple control
points where accuracy is traded for energy and performance. With our tool, we identify
one function in the program that can reduce energy consumption by 16% with zero impact
on accuracy in our test data set.

1.5.5 Generalized Model

By Chapter 5 we have already studied the tradeoff of power and/or energy with response
time, throughput, execution time, bandwidth, and precision. In Chapter 6, we treat all the
aforementioned factors as resources, whether renewable (e.g. power, bandwidth, through-
put) or non-renewable (energy, time, accuracy). Using this abstraction, we can construct
a generalized model that captures all tradeoffs of modelled resources. To that end, we
modify the linear program in Chapter 4 to model a network of producers and consumers
extending the abstraction of Chapter 2 where all the tradeoffs of the previous chapters are
captured. In this model, a node in the network can be both a consumer of data received
on its incoming edges and a producer of data on its outgoing edges. We abstract the
precision of a node as a quality level at which the node performs its computation. This
abstraction captures precision levels as well as algorithm alternatives which can consume
varying amounts of resources. Our model allows the system designer to optimize for a
specific resource while bounding any / all of the other resources, and is extensible to model
more resources that have not been studied in this thesis.

1.6 Organization

The thesis is organized as follows: Chapter 2 presents the tradeoff of energy versus response
time. Chapter 3 presents the tradeoff of power versus performance. Chapter 4 presents the
tradeoff of power and bandwidth. Chapter 5 presents the tradeoff of energy and precision.
Chapter 6 presents the generalized model that captures all tradeoffs. Chapter 7 presents
the literature review, and finally Chapter 8 concludes the thesis.
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Chapter 2

Energy versus Response Time

The majority of classic concurrency control algorithms were designed in an era when en-
ergy efficiency was not an important dimension in algorithm design. Concurrency control
algorithms are applied to solve a wide range of problems from kernel-level primitives in
operating systems to networking devices and web services. These primitives and services
are constantly and heavily invoked in any computing system and by a larger scale in net-
working devices and data centers. Thus, even a small change in their energy spectrum can
make a huge impact on overall energy consumption for long periods of time.

This chapter focuses on the classic producer-consumer problem, which models a wide
range of stream processing applications. First, we study the energy profile of a set of ex-
isting producer-consumer algorithms. In particular, we present evidence that although the
functional goal of these algorithms are the same, these implementations behave drastically
differently with respect to energy consumption. Then, we present a dynamic algorithm for
the multiple producer-consumer problem, where consumers in a multicore system use learn-
ing mechanisms to predict the rate of production, and effectively utilize this prediction to
attempt to latch onto previously scheduled CPU wake-ups. Such group latching increases
the idle time between consumer activations resulting in more CPU idle time and, hence,
lower average CPU frequency, which in turn reduces energy consumption. We enable con-
sumers to dynamically reserve more pre-allocated memory in cases where the production
rate is too high. Consumers may compete for the extra space and dynamically release it
when it is no longer needed. Our experiments show that our algorithm provides a 38%
decrease in energy consumption versus a mainstream semaphore-based producer-consumer
implementation when running 10 parallel consumers. We validate our algorithm with a
set of thorough experiments on varying parameters of scalability. Finally, we present our
recommendations on when our algorithm is most beneficial.
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2.1 Introduction

Classic algorithms in computer science are heavily used in virtually any computing system
ranging from web services and networking devices to device drivers and operating systems
kernels. However, these algorithms were designed in an era when energy efficiency was
not an important dimension in algorithm design. For example, Dijkstra’s shortest path
algorithm fails in the context of energy-optimal routing problems, as simply evaluating
edge costs as energy values does not work [145]. Thus, we argue that many of such
classic algorithms need to be re-visited and re-designed, so that on top their functional
requirements, energy constraints are treated as a first-class objective as well. Some of
these algorithms are applied in such a high capacity that even small improvements in their
energy consumption behavior may have a huge impact in the energy profile of large-scale
systems and mobile devices in long periods of time.

Producer-consumer is a classic problem in concurrent computing, where two processes,
the producer and the consumer share a common bounded-size memory buffer as a queue.
The multiple producer-consumer problem extends this setup by having multiple producers
and consumers using the same buffer. In this chapter, we study the more general case
of a set of producer-consumer islands where each island has its own buffer, and its own
producers and consumers. We abstract each island as a single producer-consumer pair
associated with a separate buffer. This abstraction helps simplify our online analysis and
reduction of energy consumption without loss of generality. In that setup, we focus on the
interaction between multiple producer-consumer pairs, and in turn their combined energy
consumption. The multiple producer-consumer pairs problem applies to a multitude of
real-world scenarios in many systems around us, specifically stream processing applications.
Examples include:

• Operating systems primitives. Such primitives provide developers with high-level
system calls to read and consume data received from I/O devices, e.g., in device
drivers. In this setting, each device is a producer, providing data to its respective
consumer, i.e. the user application.

• Web servers. HTTP requests produced by web browsers are stored in separate buffers
per web application, that are consumed and processed by threads in each application’s
thread pool.

• Runtime monitoring. In runtime monitoring, different events produced by the envi-
ronment or internal system processes are consumed and processed by multiple run-
time monitors with separate buffers.
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• Networking. In most networking devices (e.g., routers), data packets received from
the network need to be removed and processed from internal buffers of the device
and routed to different destinations. Buffers separate subnets, Virtual LANs, or QoS
levels.

In this chapter, we propose a novel energy-efficient algorithm for the multiple producer-
consumer pair problem for multicore systems, where each consumer is associated with one
and only one producer. To the best of our knowledge, this is the first instance of such an
algorithm. To better understand the vital contributing factors to the energy consumption
behavior of the problem, we first conducted a study to analyze the energy profile of exist-
ing popular implementations of the producer-consumer problem. The implementations in
our analysis consist of a yield-based algorithm, two algorithms based on synchronization
data structures (i.e., semaphores and mutexes), and two algorithms that employ batch
processing. We observed that these implementations behave drastically differently with
respect to energy consumption. While the yield algorithm is the worst in energy efficiency
due to high CPU utilization, the algorithms, where the consumer processes data items in
batches are the most energy-efficient due to a lower average CPU frequency. In particular,
batch processing results in 75% reduction in energy compared to yield and 32% compared
to the semaphore-based implementations. This is validated by a strong positive correla-
tion between average CPU frequency and energy consumption. Such a dramatic shift in
energy profile clearly motivates the need for designing an energy-aware solution for the
producer-consumer problem.

Roughly speaking, our proposed algorithm exploits bounded-time dynamic batch pro-
cessing. It interprets time as a track with periodic slots. To increase the idle time between
wakeups, it dynamically constitutes track slots, so consumers can latch on and exploit a
CPU wakeup in groups. Given a set of cores, since each core may host a set of consumers,
a core manager component targets aligning consumers to the slots in that core’s track. The
core manager is responsible for managing the slot allocations on the track of its respective
core. Consumers are designed so that they can dynamically predict production rate of
data items to compute and request appropriate latching time. Furthermore, consumers
may lend each other buffer space, so that a consumer dealing with a producer with high
production rate can continue latching on other consumers and not cause new wakeups.

Our approach can well-adapt to systems that already employ dynamic voltage and
frequency scaling (DVFS). In particular, our design

1. can work with state-of-the-art DVFS schemes by leveraging their energy savings
which focus on optimum choices of CPU frequency. Dynamic batch processing bene-
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fits from such frequency manipulations such that a batch consumption job consumes
minimum energy.

2. reduces energy savings further by reducing the number of CPU wakeups. Thus, a
lower number of wakeups coupled with efficient CPU frequency manipulations results
in an improved energy consumption.

To demonstrate the effectiveness of our approach, we conduct our experiments over
a wide range of varying parameters and explore the strengths and weaknesses of using
dynamic batch processing. This allows us to provide a recommendation as to what systems
are better suited to employ dynamic batch processing. We argue that our dynamic batch
processing approach is particularly beneficial in two application areas:

1. According to a Google study [11], web servers are rarely completely idle and seldom
operate near their maximum utilization, instead operating most of the time at be-
tween 10 and 50 percent of their maximum utilization levels. Moreover, the CPU
contributes to more than 50% of Google server power consumption. In such servers,
our approach results in longer CPU idle periods, which saves a great deal of energy.
This energy saving comes at a cost in terms of response time, which is significantly
reduced when using batch processing. However, our approach provides controls with
which a user can tune the energy saving versus response time.

2. Data-processing-intensive applications are becoming more widespread every day. In
such applications, throughput is more important than individual item response time.
Our experiments show that our approach results in higher throughput while saving
a considerable amount of energy. This makes dynamic batch processing significantly
beneficial for applications that can fit in a producer-consumer model.

We validate our claims by conducting thorough experiments using a synthetic queueing
theory based arrival pattern, as well as a data set of a web server incoming HTTP re-
quests log [5]. Our results show that our algorithm can lower energy consumption by 51%
compared to a semaphore-based implementation of producer-consumer when running 10
parallel consumers. In comparison to a simple batch processing approach, our algorithm
provides up to a 15% improvement in energy consumption. We experiment with varying
buffer sizes, number of parallel consumers, as well as data item inter-arrival period. The
objective of these experiments is to study the scalability of the proposed algorithm and
identify its strengths and weaknesses. To that end, we present our results and recommen-
dations on when it is most appropriate to use our dynamic batch processing approach. Our
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experimental results demonstrate the tradeoffs between response time and energy savings.
The results suggest that the selection of consumer implementation should depend on the
required maximum response time and the expected mean inter-arrival period.

Organization. The rest of the chapter is organized as follows. In Section 2.2, we de-
scribe the background concepts on CPU power states. Section 2.3 presents our findings
on energy profile of various implementations of the producer-consumer problem. We for-
mally state the energy optimization objective for the multiple producer-consumer problem
in Section 2.4. Our energy-efficient solution to multiple producer-consumer is described
in Section 2.5, while Section 2.6 analyzes the results of experiments. Finally, we make
concluding remarks in Section 2.7.

2.2 Background

Power management technologies approach energy/power efficiency from different perspec-
tives:

• Static power management (SPM) simplifies the power management problem by pro-
viding support for low-power modes at the hardware level. A system can statically
transition to the low-power modes on demand. An example of this is a cell phone go-
ing into idle mode when it is locked, or a sensor periodically sleeping at a predefined
period.

• Dynamic power management (DPM) employs dynamic techniques at run time that
determine which power state the system should be in. DPM uses different techniques
to infer whether or not a transition to a more efficient state is worthwhile, and, which
efficient state to transition to.

In DPM, hardware with scalable power consumption is combined with management
software to achieve improved efficiency. Hardware support comes in multiple flavors, e.g.,
Dynamic Voltage Scaling (DVS) and Dynamic Frequency Scaling (DFS). DVS scales the
voltage at which the CPU operates, and thus controls its energy consumption. This is
based on the basic Watt’s law

P = V · I

where V is the voltage, I is the current, and P is the power. DVS is becoming more
prominent in disk drives, memory banks, and network cards [45]. DFS scales the frequency
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at which the CPU operates, such that when a high demand occurs, the frequency is raised
to meet that demand, at a higher energy cost. When the CPU utilization drops, so does
the operating frequency, causing a decrease in energy/power consumption. This is because
dynamic power is calculated by

Pd = C · V 2 · f

where C is the capacitance switched per cycle, V is the voltage, and f is the current
CPU frequency. DVS and DFS are often combined into DVFS, where both techniques
are used to scale CPU power consumption. CPUs generally support a predefined set of
frequency/voltage combinations performance states, known as P-states. These states define
the performance of the CPU in terms of power and throughput.

A relatively different approach to power saving is utilizing CPU C-states. C-states are
modes at which the CPU operates, differing mainly in their power consumption. This
is achieved by turning off parts of the CPU that are needlessly consuming energy. This
may include gradually turning off internal CPU clocks, cache, the bus interface, and even
decreasing the CPU voltage (DVS). C-states generally start at C0 which indicates the CPU
is fully active, and gradually increases the number (C1, C2, . . . ) until the idle state or in
some cases the hibernate state.

Race-to-Idle is a well-known energy saving concept based on the premise that it is more
energy efficient to execute the task at hand faster (a higher P-state, which indicates a
higher CPU frequency) and then go to idle mode (i.e., a deeper C-state, which is a deeper
CPU idle state), versus running the task at a lower speed resulting in less idle time. Race-
to-idle is based on the fact that idle power is significantly less than active power even at a
low frequency. Furthermore, recent CPU chipsets such as the Intel Haswell are even more
optimized to save a significant amount of power in idle mode. This indicates that hardware
manufacturers are moving towards approaches that attempt to increase CPU residency in
deeper C-states. This is especially useful in the context of core parking, where specific cores
are put in a deep sleep state, reducing their energy consumption significantly.

Active

Idle

Time

Figure 2.1: Overhead due to waking up and
idling the CPU.

Although race-to-idle is a valid ap-
proach, in the context of the producer-
consumer problem - where items are ar-
riving at a certain rate and not in bulk -
race-to-idle may not be the most appropri-
ate strategy. If the items are arriving in
such a way that denies the CPU any actual
idle time, voltage scaling will detect that
there is a consistent load on the CPU and
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thus increase its frequency. Effectively, the
CPU attempts to race-to-idle but never gets a chance to go to idle, and this results in huge
energy waste, due to ”racing” most of the time without any chance to ”rest”. This is in
addition to the energy wasted due to idling and waking up frequently. In other words, a
certain delay must occur in order for idle mode to be advantageous. Figure 2.1 illustrates
that more contiguous idle time is more efficient. Thus, a valid energy saving strategy is to
increase the contiguousness of idle periods. This approach should be combined with race-
to-idle to ensure that a power management strategy targets more idle time with minimum
wasted power due to idle-active and active-idle transitions.

2.3 Producer-Consumer Energy Profile

In this section, we present experimental evidence showing that different implementations
of a widely used concurrency control algorithm exhibit drastically different energy con-
sumption profiles.

2.3.1 Producer-Consumer Implementations

The producer-consumer problem is a classic multi-process synchronization problem, where a
producer process produces data items and places them in a memory buffer, and, a consumer
process consumes the items from the same memory buffer. Since these processes work
concurrently, they need to synchronize to prevent deadlocks and race conditions. Most
of the implementations we study in this section rely on the use of a circular buffer. The
advantage of a circular buffer is that reading from it and writing into it involves two
different pointers, and, thus, alleviates the need to put a single counter in a critical section
to avoid concurrency issues.

We study the following implementations:

• Yield. This implementation uses sched yield within a spinlock to yield the CPU if
the buffer is full/empty.

• Mutexes and conditional variables (Mutex). This implementation uses pthread
mutex to ensure mutually exclusive concurrent access to a buffer. We use conditional
variables to signal when data is available for the consumer and when space is available
for the producer.
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• Semaphores (Sem). This implementation uses two semaphores used for synchro-
nizing emptiness and fullness of the buffer.

• Batch processing (BP). This implementation is similar to the semaphores imple-
mentation, except that the consumer waits until the buffer is full and then processes
all items in the buffer in one batch.

• Periodic batch processing (PBP). This implementation is similar to the batch
processing implementation, except that the consumer processes the batch within
fixed time intervals (using the usleep() system call) instead of whenever the buffer
gets filled. The period for this experiment is 1ms.

2.3.2 Experimental Settings

We study the energy consumption of the different producer-consumer implementations
using two methods: PowerTop1 and RAPL (Running Average Power Limit)2.

PowerTop is a popular Linux tool that uses CPU performance counters to estimate the
power consumption of all running processes in the system. We use PowerTop to measure
the number of wakeups per second that a process causes, and the percentage of CPU usage
that the process consumes. The unit for CPU usage in PowerTop is microseconds per
second, meaning the number of microseconds the process spends executing every second.

RAPL is an interface that provides monitoring and controlling power consumption of
specific Intel CPUs. Starting from the second generation Core i7 processor, codenamed
Sandy Bridge, RAPL can be used to monitor energy consumption by reading machine
specific registers (MSRs). We use the Linux RAPL driver over PAPI to measure energy
consumption of each experiment. Our test machine uses an Intel Core i7 Sandy Bridge
processor.

Finally, each implementation of producer-consumer is tested using two datasets. First,
a synthetic dataset based on an M/M/1/B queue [159]. This denotes that the production
and processing times are drawn from exponential distributions (M/M), there is 1 consumer
(1 consumer for every producer), and the items are buffered in a buffer of size B. Second, a
real-life dataset based on web server incoming HTTP requests log [5]. We use a portion of
the log that covers web requests received over 40 days. Each experiment constitutes running
5 producers/consumers in parallel until the full dataset items are consumed. In the case of

1https://01.org/powertop/
2https://01.org/blogs/tlcounts/2014/running-average-power-limit--rapl
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the web server data, the log is divided equally such that each producer simulates 8 days of
logs. All producers run on one core, and all consumers run on another core. Since cores can
be idled separately, this allows us to demonstrate the impact of consumers synchronization
on energy consumption regardless of the behavior of producers, which is not in our control.
We execute 50 replicates of each experiment for statistical confidence. 95% confidence
intervals are calculated for all measurements. We measure five metrics in each experiment:

• Energy (joules). The number of joules consumed by the system when the respective
implementation is executed.

• Wakeups/s. The number of CPU wakeups per second due to the respective imple-
mentation.

• Usage (ms/s). The number of milliseconds out of every second that the CPU
spends executing the respective implementation.

• Core idle percentage. The percentage of idle time that each CPU core spends
during the respective implementation.

• Core frequency percentage. The percentage of time the CPU spends operating
at each possible frequency while executing the respective implementation.

2.3.3 Experimental Results

Sanity Checks

We perform the following set of sanity checks to ensure our experimental setup is valid:

• We execute a test with a busy waiting multithreaded program running on two cores
of the processor, and we ensure that no experiment reaches the energy consumption
found in that implementation.

• We execute a test where no background processes are running except kernel tasks,
and we measure energy. We ensure that the energy consumed in this experiment is
less than any other experiment we run.

• We measure the statistical confidence interval to ensure that our conclusions are not
based on outliers.
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Energy consumption of producer-consumer implementations

Figure 2.2 shows the energy consumption of each of the five producer-consumer implemen-
tations. The energy results are highly consistent, as apparent in the small error bars. The
Yield implementation consumes the most energy since the CPU is mostly active during
its execution. On average, both CPU cores are idle only 1% of the time when executing
Yield. Mutex and Sem have similar energy consumption profiles, using 50% of the energy
consumed by Yield. BP reduces energy consumption further down to 35% of Yield, and 68%
of Sem. Finally, PBP is consistently the most energy efficient implementation consuming
32% of Yield and 62% of Sem. This indicates that batch-processing-based implementations
can improve upon the most widely used implementation today significantly.

Understanding root causes of energy profile

Next, we study the CPU usage and number of wakeups in each implementation (see Fig-
ure 2.3). Yield has the lowest number of wakeups which is expected since the CPU is active
most of the time. However, the CPU usage of Yield is significantly less than all other
implementations. This is counter-intuitive given the high energy consumption of Yield.
Upon studying the percentage of time spent in each available CPU frequency, Yield spends
on average 99% of the time at the highest CPU frequency of 3.4GHz. Intel SpeedStep
dynamic voltage scaling recognizes that the CPU is active most of the time and upgrades
its frequency to the maximum.
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Figure 2.2: Energy consumption for all
five implementations when running the
M/M/1/B dataset.

Yield Mutex Sem BP PBP
0

200

400

600

800

1000

1200

1400

U
sa

ge
(µ
s/
s)

Usage (µs/s)
Wakeups/s

0

20

40

60

80

100

120

140

160

180

W
ak

eu
ps

pe
r

se
co

nd

Figure 2.3: Wakeups/s versus usage µs/s
for all five implementations when running
the M/M/1/B dataset.

16



800 1300 1800 2310 2810 3310
CPU Frequency (MHz)

0%

5%

10%

15%

20%

P
er

ce
n
t

of
ti

m
e

in
fr

eq
u

en
cy

Mutex

Sem

BP

PBP

Figure 2.4: Percentage of time the CPU spends operating at different frequencies for Mutex,
Sem, BP, and PBP when running the M/M/1/c dataset.

The number of wakeups of Mutex and Sem is similar, as is their energy consumption.
BP has a significantly high number of wakeups, which can be explained by the consumers
waiting for the buffer to be filled. PBP reaches a compromise by using a periodic activation
of consumers, which reduces the number of wakeups by approximately 50%. This decrease
in the number of wakeups results in an increase in usage since the CPU has no chance to
go to sleep too often.

The key to understanding the energy consumption of the different implementations is
the distribution of time spent in different CPU frequencies. As mentioned earlier, Yield

spends 99% of its time at the maximum CPU frequency. Figure 2.4 shows the percent
of time spent in different CPU frequencies of the remaining four implementations. We
omitted Yield from Figure 2.4 to make it more readable for the remaining implementations.
Notice that Mutex and Sem have low percentages when residing in lower frequencies, and
a spike at 3GHz. This explains their relatively high energy consumption compared to the
batch-based implementations. BP on the other hand spends most of the time at the lowest
CPU frequency of 800MHz (approx. 18%). PBP spends even less time at frequencies higher
than 800MHz.

These results are interesting since the initial assumption is that a batch-based imple-
mentation will have a lower energy consumption due to the reduced number of wakeups.
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However, results show that batch-based behavior actually leverages DVFS effectively to
increase the percentage of time the CPU operates at lower frequencies. A simple DPM
scheme demotes the CPU C-state gradually by checking CPU activity periodically. Imple-
mentations such as Mutex and Sem activate the CPU too frequently and, thus, the DPM
has no chance to demote the C-state. On the other hand, Intel SpeedStep increases CPU
frequency gradually to match CPU activity, which causes it to operate mostly at high
frequencies in these implementations.

Batch-based implementations such as BP and PBP give DPM time to demote the CPU
c-states. This idling of the CPU prevents Intel SpeedStep from promoting the CPU fre-
quency, and thus most of the time is spent at the lowest CPU frequency. PBP has a lower
energy consumption versus BP due to the following reasons:

• CPU spends less time in higher frequencies compared to BP (see Figure 2.4). This is
because BP only wakes up to a completely full buffer, which increases the processing
load resulting in the CPU climbing up to higher frequencies. However, the periodicity
of PBP prevents this from happening, since it frequently wakes up to consume a
small number of items, and the CPU does not have a chance to climb up to higher
frequencies.

• The number of wakeups of PBP is less than BP.

• Due to periodically consuming items, PBP finishes processing the dataset slightly
faster.

These conclusions are further supported by analyzing the correlation between the aver-
age CPU frequency and energy/power consumption. This correlation is calculated across
all 250 experiments, and checked for pearson correlation assumptions. The result is a
0.70 correlation between average CPU frequency (weighted average) and both energy and
power, indicating a strong positive correlation. The correlation between the number of
wakeups per second and energy/power is −0.71, indicating a strong negative correlation.
We explore this further by studying the correlation between energy consumption and the
percent of the time spent at frequencies above 3GHz, which has a higher value of 0.86,
indicating the significance of residency at higher frequencies on energy/power. Between
batch processing implementations, the significant factor is the number of wakeups, which
is 0.65 correlated to energy/power. Thus, the large difference in energy consumption be-
tween batch implementations and all others is due to the lower average frequency which is
caused by the higher number of wakeups, while the small difference between both batch
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implementations is mainly due to the difference in the number of wakeups, since these
implementations don’t differ significantly in CPU frequency distribution.

Batch processing has its drawbacks, mainly the latency in responding to items. Mutex

and Sem implementations have much lower latency. However, when energy efficiency is
a main concern, a batch-based implementation with a bounded latency can provide a
energy-efficient and acceptable solution. We study this in further detail in the upcoming
sections.

In summary, the lesson learned from this simple study of a fundamental problem is the
following:

We believe that the reduction level in energy consumption observed in our experi-
ments strongly justify the pressing need to re-visit the design and implementation
of classic algorithms to make them energy efficient.

2.4 Formal Problem Description

In this section we formally present the optimization problem for reducing energy consump-
tion in multiple producer-consumer pairs.

2.4.1 Approach

As explained in Section 2.3, the number of wakeups and the average CPU frequency have a
significant effect on energy consumption. Batch processing implementations leverage longer
periods of idle in increasing the number of CPU wakeups. This results in the CPU waking
up to lower frequencies instead of promoting its frequency due to continuous load and lack
of idle time. Thus, a logical objective is to force the CPU to sleep longer between wakeups.
However, such an approach requires incorporating the DPM and DVFS mechanisms in the
underlying system to determine the best period to sleep in order to force the CPU to go
into a deeper idle state and consequently reduce average CPU frequency. In this chapter,
we attempt to formulate the problem in a way that is independent of the underlying DPM
and DVFS mechanism implemented in the system. First, we assume a simple power model
where there are only two CPU states: active and idle. The CPU immediately goes to idle
when a sleep or lock is called. For instance, in such an abstract system, a producer will
sleep after producing an item, and wake up to produce the next item. A semaphore based
consumer will wake up whenever a ticket is available to consume, and will sleep while
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there are no tickets available in the semaphore. Thus, the objective becomes reducing the
number of wakeups. This implies longer idle periods between wakeups. If we reapply this
back to our actual system, longer idle periods results in a higher chance that the CPU
actually gets demoted to idle, as opposed to shorter idle periods where the CPU has no
chance to go to sleep. This results in a higher number of physical wakeups/sec and a lower
average CPU frequency.

2.4.2 System Assumptions

We begin by stating the assumptions on which the problem is based:

• Multicore system. The system we attempt to optimize for energy is a multicore
system, which supports core parking.

• Abstraction of DVFS and DPM. For generality, we abstract the operations of DVFS
and DPM in managing CPU frequency and idle state respectively.

• Multiple producer-consumers. The system hosts a set of producer-consumer pairs
where each consumer has its own buffer.

• Independent producer rates. Each producer produces data elements at its own non-
linear and non-constant rate, independent of other producers.

• Maximum response latencies. Each consumer defines the maximum time allowed for
a data item to be buffered and not processed. Any data item must be processed
before or at the maximum response latency.

• Consumer isolation. Consumers are isolated on dedicated cores. This assumption is
to isolate the effect of background processes that can potentially wakeup the core on
which the consumer is executing. We also assume producers are either processes on
separate cores or external events, such that they do not interfere with the consumers
and their dedicated cores.

2.4.3 The Optimization Problem

We now formalize the multiple producer-consumer energy efficiency problem for a multicore
system. Since we assume cores support parking, and can be idled and frequency scaled
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separately, we will focus the rest of the problem on one core and extend trivially to all
cores of the system.

A set of producers P = {p1, p2, . . . , pM} produce data items at their independent varying
rates. Each producer pi, 1 ≤ i ≤M , produces the data items Di = di,1, di,2, . . . , di,Ni

, where
Ni is the total number of items produced by producer pi. Each data item is a tuple defined
as follows:

di,j = 〈υi,j, πi,j〉
where υi,j is the time stamp at which producer pi produces data item di,j, and πi,j is the
computational load of consuming di,j in terms of CPU cycles.

We assume pairs of producers and consumers. Let there be a set C = {c1, c2, . . . , cM}
of consumers running on a single core. In case the system has multiple cores, we assume
that each core serves a fixed set of consumers (i.e, consumers do not change core). Each
consumer ci, 1 ≤ i ≤ M , consumes items produced by producer pi. For each consumer
ci, let the activation times of the consumer be the total order set Ti = {ti,1, ti,2, . . . , ti,ki},
where ki is the number of activations of the consumer. The value of ki depends on the
time of the activations and the number of data items buffered in between. If the consumer
does not employ batch processing (such as Sem), then ki = Ni, meaning the consumer will
be activated every time it receives a data item. If it uses simple batch processing and has
a buffer of size 10, then ki = dNi/10e.

We now define four functions that return activation times, and buffered and processed
data items:

• Activation times. Let δi(t) be a function that returns the last activation of con-
sumer i before time t:

δi(t) = max{ti,j | ti,j < t}

• Buffered items. We define function γi(t) to denote the buffered data items at time
t (items that have not been consumed yet):

γi(t) = {di,j | δi(t) < υi,j ≤ t}

Thus, if the buffer size is B, then the following condition must hold to prevent buffer
overruns:

∀i : ∀j : γi(ti,j) ≤ B (2.1)

• Processed items. Let β(di,j) be a function that returns the time at which data
item di,j is processed by consumer i:

β(di,j) = min{ti,j | ti,j ≥ υi,j}
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Thus, the following condition must hold to maintain a maximum response time M:

∀i : ∀j : β(di,j)− υi,j ≤M (2.2)

where M is the upper bound on response time. Let A be the set of the union of all
activation times ti,j for every consumer ci running on a single core.

A =
⋃

i∈[1,M ]

Ti

We will refer to A as the set of core activations. Thus, this set is of the form
A = {a1, a2, . . . , aL}, where each al is a core activation time. Let λ(al) be a function
that returns all the data items that are buffered by all consumers at core activation
al:

λ(al) =
⋃

i∈[1,M ]

γi(al)

Next, we define functions that help calculate the energy consumption given an abstract
DPM and DVFS:

• Wakeup energy. Let us define

εω(tp, fs)→ 〈E, fe〉

as a function that calculates the energy consumed by the CPU when no items are
being processed for a duration of tp, given that the CPU is initially operating at
frequency fs. If the DPM decides to idle the CPU core during time tp, the following
costs will apply:

– The energy cost associated with the power-down of the CPU core (which is
initially running at frequency fs).

– The energy cost of an idle CPU for a portion of tp.

– The wakeup energy of the CPU at the end of period tp.

The function will return the total energy consumed (denoted εω(tp, fs) · E) and the
frequency of the CPU at the end of tp (denoted εω(tp, fs) · fe).
If the period is too short to go to idle, and the DPM decides to keep the CPU active,
then there is no energy consumed due to idling in period tp, and the returned energy
is that of an active CPU for the duration of tp.
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• Consumption energy. Let us define the following function:

εϑ(D, fs)→ 〈E, tc, fe〉

This function receives a set of data items D and the initial CPU frequency fs. The
function returns a tuple of the energy E consumed to process these items, the time
tc to consume them, and the CPU frequency fe at the end of consumption. This
function represents how DVFS would manage the energy consumption and comple-
tion time of a set of data items. We assume the CPU core does not go to idle while
consuming items in D since all items are already buffered and ready for processing.
This assumption isolates DPM from DVFS, such that εϑ(D) is solely responsible for
the energy consumption of the CPU in stretches of time where it is active, without
DPM intervention.

Now, we define the functions that calculate the energy consumption between every two
consecutive core activations in A. Let us start with the very first activation; i.e., a1. The
CPU is assumed to be idle before a1, and, hence, we need to calculate the first wakeup
energy:

ω(a1) = εω(a1, 0)

where ω(a1) denotes the tuple of energy consumed to wake the CPU up for the first time
(E) and the CPU frequency at a1 (i.e., fe). Hence, the first wakeup energy is ω(a1) · E.

Next, we need to calculate the energy of consuming items buffered at a1. Let ϑ(a1) be
defined as follows:

ϑ(a1) = εϑ(λ(a1), ω(a1) · fe)
where ϑ(a1) denotes the tuple of (1) energy consumed to process buffered items at a1 (i.e.,
E), (2) the final frequency at the end of consumption (i.e, fe), and (3) the consumption
time (i.e, tc). Hence, the energy of consuming items buffered at a1 is ϑ(a1) · E. Now, the
definition of ϑ can be generalized as follows:

ϑ(al) = εϑ(λ(al), ω(al) · fe)

where ω(al) · fe is the final frequency of the (possibly) idle period right before al.

For all the subsequent activations, wakeup energy is calculated recursively as follows:

ω(al) = εω(al − al−1 − ϑ(al−1) · tc, ϑ(al−1) · fe) (2.3)

Thus, the activation wakeup energy ω of core activation al is the energy consumed within
the inactive period between al−1 and al. This period is calculated as the time between al−1
and al minus the time spent consuming the items that were buffered at al−1.
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Finally, our ultimate objective is to minimize the energy consumption of the CPU core
given all possible activations A. Our optimization function is defined as follows:

min
A

{
L∑
l=1

ϑ(al) · E + ω(al) · E

}
(2.4)

Thus, the optimization objective to construct a wakeup pattern for all consumers running
in the CPU core such that the set of core activation times A minimizes the total energy
consumption.

2.5 Energy-aware Multiple Producer-Consumer Al-

gorithm

This section presents the design of our algorithm to solve the multiple producer-consumer
problem presented in Section 2.4. The optimization Objective 2.4 will yield an optimal
energy consumption given retroactive knowledge of all arriving items. To design an on-
line algorithm, we incorporate the insight gained in Section 2.3 with the formulation in
Section 2.4. Roughly speaking, our algorithm interprets time as a track with periodic
slots. Consumers latch onto core activations scheduled at slot boundaries to process their
respective buffered items. This results in an increase of the length of idle time between
consecutive core activations. Hence, the design attempts to minimize energy by targeting
the two components of the objective in Formula 2.4:

• overall wakeup energy
∑L

l=1 ω(al) · E is reduced by extending the period of idle time
between core activations.

• consumption energy
∑L

l=1 ϑ(al) · E is reduced due to longer idle periods which result
in lower initial frequencies ω(al) · fe.

To that end, we introduce a core manager component that targets aligning consumers
to the slots in that core’s track. The core manager is responsible for managing the slot
allocations on the track of its respective core. Consumers are designed so that they can
predict the production rate of data items to compute an appropriate latching time.

In the rest of this section, we describe our technique and design choices for core man-
agers and consumers in Subsections 2.5.1, 2.5.3, and 2.5.2, respectively.
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2.5.1 Contiguous Consumer Activations

As established in Section 2.3, longer time between consumer activations results in the CPU
going into deeper sleep, and hence, running at a lower frequency at the next consumer acti-
vation. This results in a lower average CPU frequency, and in turn, lower energy consump-
tion. Recall that in Section 2.3, we identified batch processing as a more energy-efficient
implementation of the producer-consumer problem. Now, consider three consumers: c1,
c2, and c3 that are invoked when their respective buffer is full. Since the amount of time
it takes to fill the buffer depends upon the rate of the data item production, a possible
activation pattern of these three consumers could be as shown in Figure 2.5a. The DPM
can handle the consumer activations in the figure in one of two ways:

• The DPM can put the CPU to sleep after each consumer finishes consumption,
resulting in an energy and time overhead.

• The DPM does not idle the CPU due to the shortness of the inactive period between
consumer activations, and DVFS increases the CPU frequency assuming a continuous
load, resulting in significantly higher energy consumption.

Our algorithm attempts to group consumer activations dynamically. We begin with
interpreting time as a track with periodic slots. In our case, this is denoted as the slot
size ∆. The default slot size is equal to the minimum of all maximum acceptable response
latencies defined by the producer-consumer pairs. Figure 2.5b presents this idea. Observe
that upon grouping, the number of wakeups is reduced to three, and the idle time between
slot activations is longer. This gives DPM a chance to idle the CPU, which in turn wakes up
to a lower frequency and so on. This example illustrates the potential impact of grouping
on energy consumption. Let the timestamps of the start of these slots be the set S =

Time

(a) Uncontrolled wakeups of multiple consumers.

Slot Size Slot Size

Slot

Time

(b) Aligned wakeups with consumer latching.

Figure 2.5: Uncontrolled vs. aligned wakeups of 3 consumers A, B, and C.
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{s1, s2, s3, . . .∞} where sm− sm−1 = ∆. The initial objective of the algorithm is to ensure
that all core activations are aligned to the slots:

∀l : al ∈ S (2.5)

While this constraint may result in a suboptimal core activation pattern, it simplifies
the problem in the context of an online algorithm.

2.5.2 Consumer Design

The consumer is responsible for predicting the rate of items produced by the producer
based on the recent past. We use a moving average estimation to determine the upcoming
rate of items.

r̂i,j+1 =

∑j
j′=j−h+1 ri,j′

h

where i is the index of the consumer, j is the index of the consumer activation, ri,j′ is the
rate recorded at activation j′, and

h is the number of previously recorded rates used by the moving average to estimate
the future rate r̂i,j+1. Any rate ri,j is calculated as follows for consumer ci:

ri,j =
|γi (ti,j−1, ti,j)|
ti,j − ti,j−1

where γi is defined in Equation 2.1. The reason for selecting the moving average is the
simplicity of its calculation, imposing very low overhead on the processing involved, which
is a desirable characteristic when attempting to minimize energy consumption.

2.5.3 Core Manager Design

The fundamental part of the proposed solution is the design of the core manager. The core
manager performs the following steps:

1. Upon a scheduled wakeup, it looks up the registered consumers for the current slot,
and activates them. This can be achieved by, for instance, signalling a semaphore.
The consumers update their predicted rate in their individual data structures and
begin processing items normally.
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2. After activating all consumers, the core manager calculates how to distribute the
shared buffer space such that consumers experiencing high load receive extra space
to accommodate for the increase. Resizing is performed once every q core manager
invocations. This is detailed in Subsection 2.5.3.

3. Next, the core manager reads the predicted rate of each consumer, and according to
the new buffer size, makes a reservation to minimize the number of CPU wakeups.
This is detailed in Subsection 2.5.3.

4. Finally, the core manager determines the next slot to wake up. Note that this does
not necessarily have to be at time sm + ∆, where sm is the current slot. The core
manager will schedule the next slot with at least one reservation, thus, ensuring that
the CPU is not activated needlessly. This results in a longer idle period, and thus
has a direct impact on reducing wakeup energy and an indirect impact on reducing
consumption energy (Formula 2.4).

It is worth noting that the core manager does not use a significant amount of memory
in storing the reservations, since it only needs to maintain the set of reservations in the
near future. Past reservations are replaced and future reservations are limited to only the
next activation of every consumer.

Dynamic Buffer Resizing

Consider the case where the predicted rate of items is too high to be accommodated within
one slot. This implies that a buffer overflow may occur before the closest slot triggers. Such
a scenario motivates our idea on implementing a dynamic buffer resizing solution.

We previously introduced B as the size of the buffer used by each producer-consumer
pair. To allow dynamic buffer resizing, we divide the buffer into a guaranteed portion B0

and a dynamic portion Bd such that B = B0 + Bd. Thus, the total amount of dynamic
buffer space is Bd ×M , where M is the number of consumers.

A consumer can relinquish part of the dynamic portion of its buffer to other consumers
that are experiencing a high load. Thus we define Bi,m as the actual reserved dynamic
buffer size of consumer i at slot m. Thus, at slot m, the total buffer size available for
consumer i is B0 +Bi,m ≤ B.

A consumer can be forced to run before its reserved slot to avoid a buffer overflow.
This would occur if the producer is attempting to write an element for which there is no
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space, and the consumer is still sleeping. The consumer is then immediately activated to
empty the buffer and provide space for the producer. We refer to this forced wake up as a
buffer trigger.

Dynamic resizing works as follows: after the core manager wakes up the scheduled /
forced consumers, it calculates the number of times each consumer was buffer triggered
during the last q invocations. It then redistributes the dynamic buffer space proportionally
according to the number of buffer triggers. Consumers with more buffer triggers receive
more dynamic space. Note that the core manager only redistributes space used by the
consumers it activated, so as to not interfere with sleeping consumers awaiting activation.

The shared buffer space requires synchronization since it is being used across consumers.
This synchronization is similar to that used in the multiple producer consumer problem
with a single shared buffer.

The core manager blocks each producer-consumer pair while the update is in progress
using mutexes. There might be a case where a buffer is shrinking and a producer has
already written to an item beyond the newly shrunk size. Consequently, another producer
which now has a bigger buffer cannot fully utilize it since there is no space left. This
problem will be remedied once the consumers starts pulling items out of the buffer, and
will not arise again until the next qth invocation of the core manager, at which new resizing
will apply.

Reservation

The process of selecting a slot to reserve is based on minimizing the cost function ρ over
the set of possible slots:

(2.6)ρi (sm′) =
ω (sm′) · E + εϑ(r̂i,j+1 × (sm′ − sm) , ω (sm′) · fe) · E

r̂i,j+1 × (sm′ − sm)

where s′m is the slot being evaluated and sm is the current slot. The value of r̂i,j+1 ×
(sm′ − sm) is used to calculate the number of data items predicted to have been buffered in
slot sm′ , given that ti,j = sm (the last activation of the consumer was at slot time sm). The
cost function ρ is normalized to represent the cost per data item. This gives perspective
on the tradeoff between latching on a slot with a low predicted number of items versus
reserving a new slot with a high predicted number of items.

Recall that the size of the buffer that the consumer reads from is now B0 +Bi,m. Thus,
given that the current time (slot) is sm and the predicted rate is r̂i,j+1, the time expected
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to fill the buffer is

sm +
B0 +Bi,m

r̂i,j+1

To provide response time guarantees, the actual time we consider as the time the buffer
is filled is the following:

tf = sm + min{B0 +Bi,m

r̂i,j+1

, Ti}

where Ti is the maximum response time allowed for consumer i.

The core manager starts evaluation at the latest slot to occur before tf and backtracks
until it is impossible to find a slot with lower ρ. If a slot has higher ρ than its predecessor,
then it is safe to assume that no better slots can be found by further backtracking. Using a
helper function in the core manager that backtracks to the next slot with reservations, the
backtracking process only consumes one iteration and is, hence, a lightweight operation
taking constant time and energy.

2.6 Implementation and Experimental Results

This section presents the results of the experiments to compare our algorithm with other
standard implementations of the multiple producer-consumer problem. The experimental
settings are similar to the ones presented in Subsection 2.3.2, with the addition that the
core manager runs on a separate core, resulting in a total of 3 cores used.

2.6.1 Experimental Parameters

The experiments are based on executing producer-consumer pairs in parallel. We evaluate
three implementations: Sem and BP discussed in Section 2.3, and our proposed algorithm
in Section 2.5, periodic batch processing with latching (PBPL). We chose Sem because it
is the most widely used implementation and also the most energy efficient out of common
producer-consumer implementations. We chose BP because it is the simplest form of batch
processing and is our frame of reference in terms of trivial batch processing implementa-
tions. To that end, we run two sets of experiments:

• M/M/1/B: Each producer-consumer pair use an M/M/1/B process to generate /
service requests. We experiment with different arrival rates by varying the λ pa-
rameter of the exponential distributions in the M/M/1/B process in an increasing
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fashion, such that the mean inter-arrival period ranges from 10µs to 10ms. We use
a constant service time rate parameter and B indicates the buffer size we use.

• Web server log data: In these experiments the producers use the web server log
data set mentioned in Section 2.3 with different phase shifts to create more variation
among the producers and their production rates.

Furthermore, we experiment with the following parameters:

• Number of consumers: We experiment with 10, 20, and 30 producer-consumer pairs.

• Buffer size: For the batch processing based implementations (BP and PBPL), we
experiment with three different buffer sizes: 25, 50, and 100. Due to space limitations,
the next sections report results only from buffer size 25, and we refer to results of
the other buffer sizes in Section 2.6.7.

• Maximum response time: For our implementation (PBPL), we experiment with dif-
ferent response time upper bounds, namely: 10µs, 100µs, 1ms, and 10ms.

We run each experiment for a duration of 100 seconds and measure the energy consumed
during that period given an infinite supply of data items to consume.

2.6.2 Experimental Metrics

The following is the set of metrics measured for the executed experiments:

• Energy. The energy consumption in joules.

• Number of wakeups per second. The number of wakeups per second measured
by PowerTop.

• Average response time. The average response time of consuming items, measured
from the time the item is produced till the time it is consumed.

• Number of buffer triggers. The number of times a consumer is activated because
the buffer is full.

• Throughput. The number of items consumed per second.

• CPU frequency percentage. The percentage of time spent by the CPU at different
frequencies.
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Figure 2.6: Plots of energy consumption and average response time at various mean inter-
arrival periods of the M/M/1/B queue.

2.6.3 Energy Consumption Results

M/M/1/B Process

Figure 2.6a shows the energy consumption of the three compared implementations at ex-
ponentially increasing mean inter-arrival periods. The results in this figure are based on 10
concurrent consumers running on the same core and sharing a single core manager. As can
be seen in the figure, PBPL reduces energy consumption of the popular semaphore-based
implementation (Sem) by 38%, and is 16% better than a basic buffered implementation.
That is in the case of a short inter-arrival period of 10µs. The advantage decreases as
the mean inter-arrival period increases, with PBPL and BP approaching each other at 1ms
and approaching sem at 10ms. This is expected since idle power dominates experiments
with a large inter-arrival period, since we are measuring each trial within a window of 100
seconds.

Figure 2.6b show the energy consumption of the three implementations when 30 con-
sumers are running in parallel. The reduction in energy drops to 26% when 30 consumers
run in parallel, which is due to the high contention accompanied by running a larger number
of consumers in parallel with a short inter-arrival period.

Web Server Dataset Input

We observe similar energy savings when running the producers using the web server dataset
that we used for our study in Section 2.3 (see Figure 2.7). PBPL reduces energy consumption
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by 33%, 42%, and 45% when 10, 20, and 30 consumers are running in parallel, respectively.
It also improves upon BP by up to 7.5%.
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Figure 2.7: A plot of energy consumption of all
3 implementations running 10, 20, and 30 concur-
rent producer-consumer pairs. These experiments are
based on the web server dataset.

Energy consumption results
from both sets of experiments
demonstrate a consistent advan-
tage in using the PBPL implemen-
tation. PBPL reduces energy con-
sumption significantly and consis-
tently for systems that experience
high loads, whether due to high
concurrency or short inter-arrival
period.

The explanation for the re-
duced energy consumption of
PBPL and BP is similar to our
findings in the study in Sec-
tion 2.3. The batch-based invo-
cation of consumers in both im-
plementations results in a lower
average CPU frequency, since the
CPU has a chance to switch to
idle. When the CPU wakes up,
it starts operating at the lowest available frequency and gradually increases. This is in
contrast to Sem which does not transition to idle that often and, hence, the CPU DVFS
mechanism increases the frequency due to the continued arrival of items to process. The
overhead of context switching for each element is magnified as processing overhead, result-
ing in an average frequency of 1.8GHz for Sem versus an average of 1.2GHz for BP.

Figure 2.8 shows the frequency distribution of all three implementations when running
10 parallel consumers. Sem spends approximately 45% of its time at 3GHz, while BP and
PBPL spend approximately 30% of their time at 800MHz, the lowest available frequency.
PBPL outperforms BP due to the periodicity of its wakeup pattern. This allows it to
mitigate the high loads more uniformly, resulting in a lower average CPU frequency of
1.1GHz. This is visible in Figure 2.8 where PBPL spends more time at 800MHz and less
time at every higher frequency. Moreover, the latching behavior of consumers allows the
load to be more uniform, and reduces the number of wakeups per second by 30% on average.
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Figure 2.8: Percentage of time the CPU spends operating at different frequencies for Sem,
BP, and PBPL when running the M/M/1/B dataset.

2.6.4 Average Response Time Results

As expected, the average response time of batch-processing-based implementations is sig-
nificantly higher than that of a standard semaphore implementation. Figure 2.6c shows
the response times of experiments based on M/M/1/B arrival pattern with varying mean
inter-arrival periods. The figure shows that both BP and PBPL are orders of magnitude
slower than Sem in terms of average response time. Due to the prediction and latching
mechanism of PBPL, it has a response time ranging from 82% to 42% of the response time
of BP. This is a significant advantage of PBPL, since it can provide better energy savings
than BP while reducing response time by half.

PBPL allows the user to control the maximum allowed latency, thus allowing the user
to control the tradeoff between energy savings and average response time. To that end, we
run a set of experiments that demonstrate the energy savings of PBPL versus Sem when
different maximum latency settings are applied. Figure 2.9 shows the different average
response times of PBPL when different latency settings are applied. As can be seen in
the figure, a maximum response time setting of any value less than the mean inter-arrival
period causes a spike in the energy consumption of PBPL, due to the complicated logic
of prediction and latching, and the overhead of setting timers whose period is shorter
than the mean inter-arrival rate. Energy savings begin to manifest when the maximum
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Figure 2.9: A plot of the energy and average response time of the three implementations
when running 10 concurrent producer-consumer pairs at different latency presets (Max.
Resp. Time). The experiments are executed at various mean inter-arrival periods of the
M/M/1/B queue.

response time is set to the inter-arrival period or higher. This can be easily mitigated
by selectively turning PBPL on or off based on the detected mean inter-arrival rate and
configured maximum response time. This will result in a system of energy consumption
equal to the minimum of PBPL and Sem.

2.6.5 Throughput Results

10 100 1000 10000
Inter-arrival period (µs)

0

100

200

300

400

500

T
h

ro
u

gh
p

u
t

(i
te

m
s

p
er

m
s)

495

220

31
3

503

220

31
3

318

209

31
3

PBPL

BP

Sem

Figure 2.10: A plot of the throughput of all 3 imple-
mentations running 10 concurrent producer-consumer
pairs at various mean inter-arrival periods of the
M/M/1/B queue.

Next, we study throughput. In-
terestingly, while the average re-
sponse time of batch-based im-
plementations is orders of mag-
nitude slower than that of the
semaphore implementations, the
throughput of batch-based imple-
mentations is consistently equal or
higher. Figure 2.10 demonstrates
the throughput recorded for the
M/M/1/B experiments running
30 parallel consumers. As can be
seen, both BP and PBPL outper-
form Sem at all inter-arrival peri-
ods. The improvement in through-
put reaches 1.58x in case of an
inter-arrival period of 10µs. This
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improvement diminishes at larger inter-arrival periods. The cause for this behavior is that
when the inter-arrival period is significantly short the parallel producers and consumers
become contentious. This results in a significant increase in context switching overhead in
Sem, which causes the producers to block too often waiting for an empty slot in the cir-
cular buffer. Frequent blocking results in thrashing between the producers and consumers
threads. This thrashing is reduced when using BP and PBPL since they process items in
bulk, resulting in less context switching, and higher throughput.

2.6.6 Buffer Triggers

A buffer trigger indicates the CPU was activated before its scheduled slot. This counteracts
the benefits of PBPL by increasing the total number of CPU wakeups. We introduced dy-
namic buffer resizing to reduce the number of buffer triggers. According to our M/M/1/B
experiments, dynamic buffer resizing reduces the number of buffer triggers by approxi-
mately 50%. This translates into an energy saving of 10% compared to a run without
dynamic buffer resizing when running 10 consumers at an inter-arrival period of 10µs. The
energy benefits diminish as shown in Figure 2.6a due to the decreased number of wakeups
altogether.

2.6.7 Discussion

We validated the effectiveness and efficiency of our algorithm by conducting a set of ex-
periments. Our experiments demonstrate the following advantages of using the proposed
approach:

• Our proposed approach (PBPL) can reduce energy consumption by 38% compared to
a standard semaphore implementation of producer-consumer. It can reduce energy
consumption by 16% compared to a simple batch-processing implementation.

• PBPL consistently has lower response time than BP, in some cases reaching 42% of
the response time of BP.

• PBPL has a higher throughput than a semaphore based implementation in most cases,
reaching 1.58x in a highly contentious setting.

More importantly, the experiments help identify the circumstances where the proposed
approach is beneficial, and where it should not be used.
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• If the required maximum response time is too stringent (less than 1ms in our ex-
periments), then PBPL will fail to provide meaningful energy savings. In fact, if
transiently that is the case, the system should fall back to a semaphore based imple-
mentation.

• Energy savings are diminished when the inter-arrival period is longer than 10ms.

• PBPL reduces energy consumption and increases throughput when the system is con-
tentious, either due to a high number of consumers or a short inter-arrival period, or
both.

• If the inter-arrival period is too short or the number of consumers is too high, PBPL
fails to provide any advantages, since the system is almost fully utilized all the time.

• The gap between PBPL and BP in terms of energy is dimished when the buffer size
increases.

Another aspect that can influence energy savings is service time. In this chapter, we
have shown the impact of synchronization strategies - in isolation - on energy consump-
tion. It is important to note that if service time is considered, the impact of PBPL will
be affected. As service time increases, the CPU is active for a longer time while servicing
requests. This results in increases in CPU frequency, and consequently, energy consump-
tion. Applications where consumers are CPU-bound are less likely to benefit from our
concurrency based energy savings, since energy consumption is dominated by consumers
processing data items. Applications that perform limited computation on data items or
serve static content can benefit from PBPL. Examples are web servers serving static con-
tent, runtime monitors updating state, or networking buffers passing on requests without
any involved processing.

We have also experimented with larger buffer sizes (50 and 100). Similar to our conclu-
sions regarding contentiousness of inter-arrival periods, smaller buffer sizes magnify energy
savings. Large buffer sizes result in a relaxed system that does not transition from idle to
active very frequently, and hence the energy savings are diminished.

The above findings help identify the system where PBPL is most suitable. If the system
is contentious with strict constraints on throughput rather than response time, PBPL is a
suitable choice to reduce energy consumption. The situations where PBPL increases energy
consumption can be easily detected and conditioned to run an implementation such as
Sem.
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2.7 Summary

In this chapter, we proposed a novel energy-efficient algorithm for the multiple producer-
consumer problem for multicore systems, where each consumer is associated with one and
only one producer. To our knowledge, this is the first instance of such an algorithm. Our
approach is based on dynamic periodic batch processing, such that consumers process a
set of items and let the CPU switch to idle state, hence, saving energy. Consumers make
prediction about the rate of incoming data items and group themselves together. This
results in two energy reducing consequences: (1) the number of wakeups is significantly
reduced versus trivial batch processing, and (2) high loads are mitigated and spread out
uniformly preventing DVFS mechanisms from promoting the CPU frequency, resulting in
the CPU spending most of its time at lower frequencies.

We observed that our algorithm can lower energy consumption by 51% compared to a
mutex/semaphore implementation when running 10 parallel consumers. In fact, it provides
up to 15% improvement over the batch processing implementation in our study. We also
observe that our algorithm excels with the increase in the number of consumers, making
it scalable and robust.
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Chapter 3

Power versus Performance

The power performance tradeoff has taken a new form with the increasing importance
of exascale computing. Limited provisioning of power stations is enforcing a bound on
the power consumption of data centers. Thus, performance optimization under power
constraints is becoming a major design issue for large scale data centers. This chapter
tackles the problem of performance optimization for distributed applications operating
under a power constraint. We focus on a subset of distributed applications where nodes
encounter multiple synchronization points and exhibit inter-node dependency. We abstract
this structure into a dependency graph, and leverage the asymmetry in execution time
of parallel tasks on different nodes by using power redistribution. Power redistribution
dynamically detects that a node is blocked (i.e. waiting for other nodes), and reduces its
power bound so that it can increase the blocking nodes power bound while still maintaining
the same total power consumption. To that end, we present an online heuristic that
dynamically redistributes power at run time. We implement the heuristic as an MPI
wrapper that infers dependency and redistributes power online. To quantify the accuracy
of the heuristic, we compare it to an offline solution based on integer linear programming
(ILP) that optimally distributes power. In our experiments, the heuristic shows significant
reductions in total execution time of a set of parallel benchmarks with speedup reaching
1.8 times.

3.1 Introduction

Heterogeneous clusters are becoming favorable as opposed to homogeneous clusters [137],
due to their lower operational cost and easier and cheaper upgrades. However, improving
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performance of heterogeneous clusters when operating at a power constraint is a challenging
task due to two reasons: (1) heterogeneous clusters are often over-provisioned, such that
the cluster power bound can be lower than the maximum total power consumption of all
nodes running at maximum frequency, and (2) when running a distributed application
with data dependency, nodes will often block waiting for other nodes to continue. The
latter will result in cluster power being under-utilized, which translates into increased
total execution time. Thus, there is need for a dynamic method to intelligently distribute
power among nodes according to their inter-dependency. Extensive work has studied the
trade-off between power efficiency and delay [58,62], as well as work that targets reducing
execution time, which results in reduced energy consumption [141]. However, there is
little work on dynamically optimizing power distribution of distributed applications with
inter-node dependency given a cluster power bound.

With this motivation, in this chapter, we focus on designing a technique that attempts
to maximize the performance of distributed applications running on a heterogeneous clus-
ter, while satisfying a given power bound. To achieve this goal, we introduce power redis-
tribution. Power redistribution is an online method of dynamically changing node power
bound according to the application’s behavior. For instance, a node will becomes idle when
it completes its task and blocks waiting for other nodes. Such a node is called a blocked
node, which waits for blocking nodes to continue execution. A power redistribution con-
troller can dynamically redistribute the power budget from the blocked node to the blocking
nodes. Thus, such a controller will set the blocked node to run at a power bound lower
than its original bound. The controller then uses the gained power budget to increase the
power bound of blocking nodes, which results in the blocking nodes finishing their tasks
sooner.

To illustrate how power redistribution works, consider a cluster consisting of two iden-
tical nodes. The cluster power bound is 10 watts. Each node uses ondemand DVFS, yet is
configured to never exceed 5 watts, thus honoring the cluster power bound. The nodes run
a computationally intensive task and consume power close to 5 watts. Assume that the
first node finishes its task, and its power consumption drops to 2 watts. However, since
the power bound on the second node is static, we have to wait for the node to finish its
task. An opportunistic power redistribution heuristic will detect this scenario and transfer
the power budget from node 1 to node 2, setting the maximum for node 1 to 2 watts, and
8 watts for node 2. This allows node 2 to finish its task sooner, thus reducing the total
execution time.

This chapter introduces the following:

1. We introduce an online heuristic to distribute power in a cluster running a parallel
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application. We construct a power distribution controller that is responsible for
distributing power dynamically while honoring a cluster power bound (Figure 3.1).
The controller can detect when a node is blocked, and it determines how much power
is gained by idling the blocked node. The controller then distributes the gained power
to blocking nodes using short network commands.

2. To make the approach more versatile for MPI applications, we build an MPI wrapper
that communicates with the power distribution controller, making power redistribu-
tion transparent to the application developer. A significant advantage of the proposed
solution is that it is designed to improve performance of distributed applications with
minimal requirements. Simply by linking existing code to the proposed MPI wrapper
and connecting a low-end embedded board hosting the power distribution controller,
a cluster can immediately benefit from dynamic power redistribution. Our approach
utilizes DVFS drivers by configuring the maximum frequency that a DVFS scheme
can use, thus allowing DVFS to operate normally while honoring the node power
bound.

3. As a reference to evaluate our heuristic, we build an ILP (Integer Linear Program-
ming) model that is capable of producing an optimal assignment of power to synchro-
nization blocks of the program. The ILP model is used for comparison to evaluate
the speedup results of the power redistribution heuristic.

Power Distribution Controller

Node 1 Node 2 Node N

report node is blocked
network

Block detector

Power-to-frequency
translator

distribute power budget

report message (    )

distribute message (    )

Figure 3.1: Block diagram of an HPC cluster equipped with power distribution.

To validate our approach, we conduct a set of simulations and actual experiments. First,
we simulate a simple parallel program running using equal-share (all nodes have the same
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power bound), ILP based, and heuristic based power distribution schemes. The simulation
demonstrates the correlation between the variability in execution time and speedup. The
improvement in execution time is promising, reaching a speedup of 2.5 times for ILP-based
distribution and 2.0 time achieved by our online heuristic. To demonstrate the applicability
of the approach to homogeneous clusters, we run the simulation where all parallel tasks
consume the same amount of time, and all nodes are identical. The speedup in this case is
an encouraging 2.0 for optimal distribution (ILP), and 1.64 for the online heuristic-based
distribution.

We then experiment on a physical environment using a 12-node cluster where nodes
vary in CPU, operating system, and manufacturer. We implement our MPI wrapper that
detects changes to node state and communicates it with a power distribution controller
that executes our online heuristic. Using different benchmarks from the NAS benchmark
suite, we demonstrate that our online heuristic can produce speedups up to 1.8 times, while
the ILP based solution reaches 1.86 times. We also draw conclusions on the type of MPI
program that would benefit most from our online power redistribution heuristic.

Organization: The rest of the chapter is organized as follows. Section 3.2 introduces a
motivating example to demonstrate our approach. Section 3.3 outlines a formal definition
of the power distribution problem. Section 3.4 details the design of our online heuristic.
Section 3.5 presents an algorithm to achieve the optimal solution. Section 3.6 presents
the simulation results. Section 3.7 presents the MPI specific implementation and the
experimental results. Finally, we summarize the chapter in Section 3.8.

3.2 Motivation

This section outlines a motivating example to demonstrate the existence of an opportunity
to optimize performance by redistributing power. Listing 3.1 shows an abridged version
of the rank function in the Integer Sort benchmark of the NAS Benchmark Suite [10]. As
can be seen in the code, there are four main blocks of computation: The first block spans
lines 2 to 7. This is followed by a blocking collective operation at line 8. This sequence
continues until the last block spanning lines 17 to 19.

Figure 3.2 illustrates a possible execution of this function on a 3-node cluster. In this
cluster, a cluster power bound is enforced, and this results in a power cap assigned per
node, which sets a maximum frequency that DVFS can use. Thus, as shown in the figure,
all blocks consume at most 33% of the cluster power bound. It is possible and quite
frequent that some nodes finish execution of a block of computation earlier than others,

41



yet a blocking operation forces them to wait. This can be the result of, for instance,
using heterogenous nodes, differences in workload, or nodes executing in different execution
paths. This is demonstrated in Figure 3.2 by the dark grey blocks in the figure, which we
denote as blackouts. Naturally, execution cannot proceed until all nodes arrive at the
barrier. This also applies to node-to-node send and receive operations.

Our research hypothesis is that an intelligent distribution of power can reduce these
blackout periods, resulting in reduction of total execution time. This is demonstrated in
Figure 3.3. The thickness of a block indicates how much power it is allowed to consume.
The percentage of total power each block consumes is shown inside the block. Blocks that
consume a relatively short time in Figure 3.2, such as the first block in node 2, operate at a
lower power cap in Figure 3.3 (using at most 23% of total power versus the original 33%).
An optimum solution is capable of eradicating all blackouts, and minimizing those that are
unavoidable (such as a ring send/receive). This results in a reduced total execution time
within the cluster power bound.

1 void rank( int iteration ) {
2 for(i=0;i<NUM_BUCKETS+TEST_ARRAY_SIZE;i++) {
3 // Computation
4 }
5 for( i=0; i<TEST_ARRAY_SIZE; i++ ) {
6 // Computation
7 }
8 MPI_Allreduce( · · · );
9 for( i=0, j=0; i<NUM_BUCKETS; i++ ) {

10 // Computation
11 }
12 MPI_Alltoall( · · · );
13 for( i=1; i<comm_size; i++ ) {
14 // Computation
15 }
16 MPI_Alltoallv( · · · );
17 for( i=0; i<TEST_ARRAY_SIZE; i++ ) {
18 // Computation
19 }
20 }

Listing 3.1: Abridged rank method in the NPB IS benchmark
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Figure 3.2: A possible execution of rank on 3 nodes.
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Figure 3.3: An optimum execution of rank on 3 nodes using power redistribution.

3.3 Formal Problem Description

This section presents a formal description of the power distribution problem. Consider
a set N = {N1, N2, . . . , Nn} of nodes in a parallel computing cluster that is required to
satisfy a power bound P. Each node runs a single instance of a parallel program. We model
the execution of the program instance on a node as a sequence of tasks:

Ji = 〈Ji,1Ji,2Ji,j · · ·〉

where Ji,j is the jth task on node i. A task represents a block of execution of the program
instance on a single node that, once started, can be completed independently and without
communication with other nodes. A task is defined as the following tuple:

Ji,j = 〈τ(Ji,j, P ), θ(Ji,j), π(Ji,j)〉
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where

• τ(Ji,j, P ) is a function that encodes the execution time of task j on node i operating
under power bound P , which directly enforces a maximum frequency that the CPU
of node i can utilize.

• θ(Ji,j) is a function that encodes the dependency of one task on a set of preoccuring
tasks with the condition that it does not depend on multiple tasks in any other node.
Such behavior can be expressed indirectly by chaining dependency. Naturally, in the
serial execution of a program instance on node i, every task j is dependent on its
predecessor j − 1. That is, Ji,j−1 ∈ θ(Ji,j). This implies that the execution of task j
cannot begin unless task j − 1 is completed.

• π(Ji,j) denotes the power bound that node i should honour during execution of task
j.

Our objective is to determine the mapping π of all tasks on all nodes to their power
bounds (π(Ji,j)) such that:

1. The dependency of tasks θ is not violated;

2. The cluster power bound P is not exceeded, and

3. The total execution time is minimized.

3.3.1 Task Dependency Graph

In order to calculate the total execution time, we construct a task dependency graph.

Task dependency graph A task dependency graph D is a directed acyclic graph, where
vertices represent tasks Ji,j and directed edges represent the dependency relation as de-
scribed by θ, such that if (Ji,j, Ji′,j′) is a directed edge of D, then Ji,j ∈ θ(J(i′, j′)).

The task dependency graph is acyclic since a cycle will indicate circular dependency of
tasks, which is impossible to occur since a task cannot be dependent on itself, directly or
indirectly.
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3.3.2 Total execution time

The total execution time of a program is the time taken to execute the critical path of
the program. Let an initial task (J I) be a task that does not depend on any other task to
begin execution. A final task (JF ) is a task on which no other task depends. An execution
path ρ is a path from an initial task to a final task (J I  JF ) in a task dependency graph.
The function ε(ρ) denotes the execution time of path ρ. Let a task dependency graph D
contain a set of execution paths %D = {ρ1, ρ2, ρk, · · ·}. The critical path is the path in %D
with the longest execution time.

3.3.3 Example of a Task Dependency Graph

To demonstrate how a task dependency graph is constructed and how it is used to determine
the total execution time of a parallel program, in this section, we introduce a simple MPI
program as our running example throughout the chapter. The program performs a set of
commonplace MPI operations. The code in Listing 3.2 demonstrates an MPI program that
goes through 3 steps:

1. Broadcasts a message from the root node.

2. Sends a message between nodes in a ring.

3. Performs a reduction on a variable.

Assume this program runs in a cluster of 3 nodes. Based on the steps mentioned earlier,
nodes will execute the following tasks:

• J ,1: represents lines 2-11. This is applicable to all nodes.

• J0,2 represents lines 13-21. However, J1,2 and J2,2 represent lines 13-25.

• J0,3 represents line 22, while the other two nodes represent line 27.

• J ,4 represents lines 30-31.

• J ,5 represents line 32.
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1 void main(int argc, char *argv[]) {
2 int msg1, msg2, msg3;
3 int rank, size, next, prev;
4 MPI_Init(&argc, &argv);
5 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
6 MPI_Comm_size(MPI_COMM_WORLD, &size);
7

8 if (rank == 0)
9 msg1 = 10;

10

11 MPI_BCast(&msg1,1,MPI_INT,0,MPI_COMM_WORLD);
12

13 next = (rank + 1) % size;
14 prev = (rank + size - 1) % size;
15

16 if (rank == 0)
17 msg2 = size;
18

19 if (rank == 0) {
20 msg2--;
21 MPI_Send(&msg2, 1, MPI_INT, next, rank, MPI_COMM_WORLD);
22 MPI_Recv(&msg2, 1, MPI_INT, prev, prev, MPI_COMM_WORLD);
23 }
24 else {
25 MPI_Recv(&msg2, 1, MPI_INT, prev, prev, MPI_COMM_WORLD);
26 msg2--;
27 MPI_Send(&msg2, 1, MPI_INT, next, rank, MPI_COMM_WORLD);
28 }
29

30 msg2 = rank;
31 MPI_Reduce(&msg2, &msg3, 1, MPI_INT, MPI_MIN, 0, MPI_COMM_WORLD);
32 MPI_Finalize();
33 }

Listing 3.2: A simple MPI program.

In total, there are 15 tasks in the system. Figure 3.4 presents the dependency graph
of the program with some hypothetical task execution times. These execution times are
a result of applying the same power bound P on every node in the cluster, which we
denote as the nominal power bound. The nominal power bound P is equal to P/N , simply
distributing the cluster power bound equally among all nodes in the system. Every block
in the figure represents a task, which can be identified by its column, indicating to what
node the task belongs to, and its row, indicating the index of that task in the sequence of
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node tasks. The nominal execution time of each task (that is τ(Ji,j,P)) is indicated by the
number inside the block. The arrows represent dependency among nodes. As can be seen
in the figure, the longest execution path starts with J2,1 and proceeds along the dashed
lines. Hence, the total execution time is 19 time units.
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Figure 3.4: Dependency graph of the program in Listing 3.2.

Now, let us validate that the longest execution path is indeed indicative of the total
execution time:

• Execution starts at task 0 in all nodes, which is a block of code that ends with a call
to MPI BCast. A broadcast operation is an implicit barrier, and, hence, no node can
proceed unless all J ,1 tasks are completed. This is visualized by connecting every
J ,2 task with every J ,1 task.

• Since J2,1 takes the longest time, all J ,2 start after 3 time units. This is indicated
by the superscript of these blocks in the figure.

• J2,2, which ends with a call to MPI Recv, will block execution until node 1 completes
J1,2 which ends with a call to MPI Send. Thus, J2,3 is dependent on both its prede-
cessor J2,2 and J1,2 which will send a message. The consequence of this dependency
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is that J2,3 executes at 7 time units, which is the maximum of the completion times
of J2,2 and J1,2, as indicated by the subscript of the respective blocks.

• If we follow this process we can determine the completion time of all nodes, indicated
by the subscript of the final tasks JF,5, after which the program terminates. The last
tasks to complete are J2,5 and J3,5, which finish after 19 time units.

As shown in Figure 3.4, the execution time of the longest path is the time at which all
nodes in the cluster finish execution.

3.4 Online Heuristic for Power Redistribution

This section introduces the design of an online heuristic that dynamically distributes power.
We approach the design of the heuristic with the following set of objectives:

• The optimum solution introduced in the previous section requires the knowledge of
the execution time of every task at every CPU frequency. This is not realistically
available for a running application, and, hence, obtaining an optimum online solution
is not possible. Thus, our objective is to build an algorithm that receives realistic
input and can make online decisions.

• Making power distribution decisions must incur minimal overhead; i.e., in a thrashing-
free manner.

• Design the algorithm to be lightweight, executable on non-sophisticated power-efficient
hardware.

The heuristic targets HPC clusters composed of heterogenous nodes. Figure 3.1 illus-
trates the structure of such a cluster, and introduces the following components:

• Block detector. The block detector is responsible for detecting when a node be-
comes blocked, awaiting some input from one or more other nodes. It is also respon-
sible for detecting when the node becomes active again. it reports these changes in
state to the power distribution controller. The block detector is further explained in
Subsection 3.4.1.
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• Power distribution controller. The power distribution controller receives mes-
sages whenever a node is blocked or unblocked. Since the blocked node will transition
to idle, the total power consumption of the cluster will drop. This will provide a
power budget that can be distributed to other nodes. The power distribution con-
troller makes a decision on how to distribute the power budget on running nodes.
The decision procedure is the core of our online heuristic, which is explained in detail
in Subsection 3.4.2.

• Power-to-frequency translator. This component receives the distribute message
and translates the power bound dictated by the power distribution controller to a
CPU frequency. It selects the maximum CPU frequency that can satisfy the power
bound in the message and forces the node to operate at that frequency.

3.4.1 Block Detector

As shown in Figure 3.1, the block detector sends a report message to the power distribution
controller whenever a change in the node state is detected. A report message is a tuple
α = 〈s, i, B, pg〉 where

• s is the state of the node, whether Blocked or Running.

• i is the index of the node from which the report message originated.

• B is a set of node indices that are causing node i to be blocked. If s = Running, B
becomes an empty set.

• pg is the power gained by blocking node i, which is calculated as follows: pg = pfc−ps
where fc is the CPU frequency before the block is encountered, pfc is the power
consumed by running the CPU at frequency fc, and ps is the idle power.

To compute pg, we require that each node hosts a lookup table mapping CPU frequency
to power. This is obtained by executing a simple benchmark that loads the CPU 100% at
each frequency, and records the power consumption. However, if a node hosts a multicore
CPU and is executing multiple tasks concurrently, one per core, the power gain becomes
the current power minus the power consumed when one less core is active. Hence, we
require that the lookup table includes the power consumption of the node at each available
frequency and at every possible number of active cores. For instance, a quad-core CPU
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that supports 10 different frequencies will result in a lookup table of 40 entries. An entry
will be identified by (1) the number of active cores in parallel (e.g., 1 − 4 for quad-core
CPUs), and (2) the CPU frequency.

To formally define this, let pm,f be the power consumption of the node when m cores
are active and the CPU frequency is f . Let mc and fc be the number of active cores and
the CPU frequency before the block is encountered on a task executing in one core. In
that case, pg is calculated as follows:

pg = p(mc−1,fc) − ps (3.1)

3.4.2 Online Heuristic Design

Algorithm 1 details the logic behind the power distribution heuristic. The heuristic is
initialized with a cluster power bound P watts and an empty (online) dependency graph
G = (V,E). The following steps detail the operation of the heuristic:

1. The function ProcessMessage is invoked whenever the power distribution manager
receives a report message α from any node in the cluster (line 4).

2. Lines 5-11 in function ProcessMessage update the online dependency graph using
the received message. ProcessMessage creates a vertex for the node if it does not
already exit, and connects the vertex to other vertices representing nodes that are
blocking the sender node.

3. Lines 12-15 calculate the available power budget by adding the power gain pg of all
blocked nodes in the graph.

4. The function then calls RankGraph which calculates the priority of a node based
on the number of other nodes that it is blocking. A node of rank 0 has no incoming
edges, and hence is not blocking any node. A node of rank 1 blocks one other node,
and so on.

5. Finally, function DistributePower is responsible for distributing the power budget
over running nodes. If a node is blocking two other nodes, it will receive twice the
amount of power received by a node that is blocking only one other node. This
strategy allows the system to gradually increase the power bound of the older blocking
nodes, since every time any node is blocked, the older blocking node receives a portion
of the power gain.
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Algorithm 1 Power distribution online heuristic.
1: INPUT: Cluster power bound P, number of nodes n
2: declare G = (V,E), initially V = E = {} . Online Dependency Graph
3: declare po = P/n
4: function ProcessMessage(α)
5: if α.i 6∈ V then
6: v ← AddVertex(V , α.i)
7: else
8: v ← V [α.i]

9: v.s← α.s
10: v.pg ← α.pg
11: UpdateEdges(G, v, α.B) . Update connections of v using α
12: declare ε = 0 . Power budget
13: for u ∈ V do
14: if u.s = Blocked then
15: ε← ε+ u.pg

16: t← RankGraph
17: DistributePower(ε, t)

18: function UpdateEdges(G, v, B)
19: ClearOutgoingEdges(v)
20: for u ∈ B do
21: AddEdge(E, v, u)

22: function RankGraph
23: t← 0
24: for u ∈ V do
25: if u.s = Running then
26: u.r ← |{e = (a, b) ∈ E | e.b = u}|
27: t← t+ u.r . Sum of all ranks

28: return t

29: function DistributePower(ε, t)
30: for u ∈ V do
31: if u.s = Running then
32: p′b = po + ε× u.r/t
33: if u.pb 6= p′b then
34: u.pb = p′b
35: γ ← (u.i, u.pb)
36: SendPowerBound(γ)

51



3.5 Optimal Solution

This section presents a method based on integer linear programming (ILP) to obtain the op-
timal solution for the power distribution problem. We, in particular, develop this method,
so we have a reference of goodness for our online algorithm in Section 3.4. The ILP solution
is based on the following assumptions:

• A task is a block of execution followed by a communication/synchronization primitive.

• The power bound of a node cannot be changed while the task is executing.

While these assumptions limit the optimality of the solution, in the sense that a better
solution can be found if for instance the power bound can be changed mid task, these
assumptions allow for a reasonably sized model, by breaking down a program to well-
defined synchronization points. For future work we attempt to extend the ILP model to
waive these assumptions.

In order to limit the number of variables in the ILP instance, we design an algorithm
that establishes potential interleavings among tasks executing in different nodes. This
algorithm is similar to real-time scheduling algorithms for task dependency on multipro-
cessors, with the added dimensions of task power bounds and variable execution times.
The following subsection introduces the Task Concurrency Optimization algorithm.

3.5.1 Task Concurrency Optimization Algorithm

The task concurrency optimization algorithm determines which tasks can execute concur-
rently without violating the dependency structure encoded in the task dependency graph.
Since our objective is to reduce the length of blackouts, we can make an abstraction and
avoid exploration of all possible interleavings in a parallel program. First, we begin by
introducing the following definitions.

Task Max-Depth The max-depth δ of a task J in a task dependency graph D is the
length of the longest path that starts from an initial task and ends with task J . That is

δ(J) = max {l | ρ(l) = J ∧ ρ ∈ %D}
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Task Depth Range The depth range ∆ of a task J in a task dependency graph D is an
integer interval defined as follows:

∆(J) = [δ(J), β(J)− 1]

where δ(J) is the max-depth of task J and the start of the interval, and β(J) is the
minimum max-depth of all J ’s children, that is the set of tasks that are dependent on J :

β(J) = min {δ(J ′) | J ∈ θ(J ′)}

where J ′ is a task in the task dependency graph.

Let us clarify the use of these definitions by referring to our earlier example in List-
ing 3.2, and the respective task dependency graph in Figure 3.4. Table 3.1 shows the
max-depths of all the tasks in the graph. Note that the max-depth is affected by the ring
of sends/receives in task 3 across all 3 nodes. Figure 3.5 visualizes how max-depths map to
concurrency in execution. The dark grey blocks represent blackout periods, which should
be optimally eradicated to reduce total execution time.

Table 3.1: Max-depths of tasks in Figure 3.4.

Node 1 Node 2 Node 3
Task 1 0 0 0
Task 2 1 1 1
Task 3 4 2 3
Task 4 5 3 4
Task 5 6 6 6

Table 3.2 shows the depth ranges of all tasks in the graph. The depth ranges allow
us to revisit the task concurrency in Figure 3.5 to produce an assignment that exhibits
less blackouts. Figure 3.6 demonstrates applying depth ranges to determine optimum task
concurrency. Observe task J3,2 in the figure, which represents the code executed after the
MPI BCast and before the MPI Recv called by the third node. The next block of code to
be executed by node 3 requires that node 2 sends a message (J2,3). This implies that the
execution of J3,2 can be stretched beyond its max-depth level until node 2 sends a message.
Stretching a task in this manner implies allowing it to operate at a lower power level, thus
enabling a higher power cap for other nodes in the cluster.

Thus, Figure 3.6 shows that utilizing depth ranges helps remove blackout periods in
execution, except for unavoidable blackouts such as a message ring as shown in our example.
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Figure 3.5: Task concurrency as indicated by task max-depths.

Table 3.2: Depth ranges of tasks in Figure 3.4.

Node 1 Node 2 Node 3
Task 1 [0,0] [0,0] [0,0]
Task 2 [1,1] [1,1] [1,2]
Task 3 [4,4] [2,2] [3,3]
Task 4 [5,5] [3,5] [4,5]
Task 5 [6,6] [6,6] [6,6]

The algorithm is simple to implement, since calculating the max-depths of tasks in
the dependency graph is a straight-forward node traversal, and the complexity is O(E),
where E is the number of edges in the graph. Finding max-depth in the case of the task
dependency graph is thus linear in the size of the graph. Likewise, computing depth ranges
requires iterating over the outgoing edges of every task in the graph, resulting in similar
complexity.

3.5.2 ILP Instance

This section introduces the ILP instance used to find the optimum power bound assignment
π, which assigns a power bound to every task in the dependency graph. Refer to Figure 3.6,
which shows how depth ranges reduce blackouts. Note that the figure does not represent
the actual execution times of all tasks. For instance, the execution time of tasks J ,1 in
Figure 3.4 are 2, 3, and 1, respectively. This implies a blackout will exist at node 1 between
2 and 3 time units, and at node 3 between 1 and 3 time units. Figure 3.7 illustrates how
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Figure 3.6: Task concurrency after applying depth ranges.

such blackouts would occur.
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Figure 3.7: Blackouts in execution due to difference in execution time.

Solving the ILP instance produces a set of power-bound assignments to tasks that min-
imizes these blackout periods. The ILP instance is detailed as follows.

Variables. The ILP instance abstracts the range of power bounds that can be applied
to a certain node into a finite set of power bounds that map to operating frequencies of
the node’s CPU. This is a reasonable abstraction since any CPU supports a finite set of
operating frequencies, and we can hypothetically determine the power ceiling of the node
when operating at every respective frequency. Hence, we introduce the following variables:

• (Task-to-power-bound-assignment xj,b) This is a binary variable that indicates whether
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task j is assigned to power bound b. In a dependency graph consisting of 10 tasks,
where each task can operate at 5 different power bounds, the ILP model will contain
50 task-to-power-bound-assignment variables.

• (Maximum execution time t) This variable represents the maximum time it takes any
node in the system to finish execution.

Constraints. The model employs 3 types of constraints.

• (Unique power bound assignment) These constraints ensure that no task is assigned
to two different power bounds. There is one such constraint per task in the graph.

∀j :
∑
b

xj,b = 1

• (Cluster power bound enforcement) These constraints enforce the power bound P
on the entire cluster. Generating these constraints relies on the output of the task
concurrency optimization algorithm (refer to Figure 3.6). Every depth level column
indicates which tasks will execute concurrently. For instance, task J3,2 is concurrent
with {J2,2, J1,2} at depth level δ = 1. It is also concurrent with J2,3 at depth level
δ = 2. Hence, there is one power bound enforcement constraint per depth level in
the graph:

∀δ :
∑
δj

xj,b × b ≤ P

where δj is a set that contains any task for which δ is within its depth range:

δj = {J | δ ∈ ∆(J)}

• (Maximum execution time) These constraints ensure that no node executes beyond
the maximum execution time variable t, which is the variable to be minimized.

∀i :
∑
j∈Ji

∑
b

xj,b × τ(j, b) ≤ t

where i indicates the node, Ji is the sequence of tasks in that node, j is a task in
that sequence, and τ(j, b) is the execution time of task j under power bound b.
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The total number of constraints in the model is the result of the following formula:∑
i

|Ji|+ max
J
{δ(J)}+ n

where n is the number of nodes.

Optimization objective. Finally, the objective of the model is to minimize the maximum
execution time: min t

3.6 Simulation results

To validate the intuition behind our model, the ILP solution, and the online heuristic,
we implement a simulator to calculate the total execution time of an MPI program. The
simulator is initialized with the following:

• a text file detailing the task dependency graph,

• a cluster power bound, and

• the type of simulation: Equal-share, ILP, or Heuristic.

The Equal-share simulation assigns equal power bounds to all nodes in the cluster. The
ILP simulation first solves the power assignment problem for an optimal (or nearly optimal
due abstractions) solution, and then simulates execution using the resulting task-to-power-
assignments. The Heuristic simulation applies the online power distribution algorithm.

Figure 3.8 shows the results of simulating the dependency graph in Figure 3.4. The
power-to-frequency lookup values, as well as the execution time of tasks at different CPU
frequencies are measured on an Arndale Exynos 5410 ARM board. The results indicate that
the ILP-based solution excels at the lower power bounds, producing a 2.5 speedup versus
equal-share. The heuristic also produces a significant speedup of 2 at lower power bounds.
The improvement for both ILP-based solution and the heuristic decreases until it matches
the execution time of equal-share as the power bound is relaxed. This is expected since at
a relaxed power bound the nodes are already operating at their maximum frequencies.

These results are based on the assigned execution times in the task dependency graph
in Figure 3.4, which are completely synthetic. To add some notion of ground truth to the
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Figure 3.8: Simulation results of the dependency graph in Figure 3.4.

simulations, we rerun the simulation given that the execution times of all tasks is the same.
Hence, no bias exists that would favor a power distribution alternative to equal-share. In
such a case, the ILP-based solution still outperforms equal-share at lower power bounds,
producing a speedup of 2, while the heuristic speedup is 1.64. The improvement comes
from the fact that the ring communication pattern forces blocking in the equal-share distri-
bution, even when the execution times of tasks is the same. This is improved significantly
by applying the stretching of tasks across multiple depth levels, and distributing power
optimally on running nodes.

In light of these results, we construct a set of experiments based on the same dependency
graph, yet varying in execution times. We quantify the variation in execution times using
the standard deviation of execution times of individual tasks. Hence, the experiments
present synthesized execution times to target specific standard deviations. The standard
deviation starts at 0 and increases till 6, given a mean of 10 time units. Figure 3.9 illustrates
the speedup gained by running the heuristic and the ILP solution, given the minimum
possible cluster power bound. The figure shows a trend of increasing speedup as the
variation increases, which confirms our intuition that our algorithms excel when execution
times exhibit more variability. Yet, at high variability, speedup becomes unstable since it
is heavily dependent on the specific execution times assigned to tasks.
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Figure 3.9: Simulation results using different standard deviations of execution times.

3.7 Implementation and Experimental Results

3.7.1 Implementation

The model proposed in this chapter can generally map to clusters that exhibit task depen-
dency. MPI is a widely used interface for managing synchronization and communication
among tasks. To demonstrate how our model operates in real-life environments, we im-
plement an MPI wrapper with underlying logic to perform the functionality of the Block
Detector (see section 3.4.1). The power distribution controller is implemented as a stan-
dalone lightweight UDP server that receives report messages and responds with distribute
messages.

MPI wrapper

The MPI wrapper is designed to intercept MPI calls and deduce whether the node will
be blocked or unblocked. Currently the wrapper supports MPI Send, MPI Recv, MPI BCast,
MPI Wait, MPI Scatter, MPI Reduce, and MPI AlltoAll.
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Report Manager

A report manager is responsible for buffering report messages to the power distribution
controller to avoid thrashing the CPU with frequency changes. It applies a timeout mech-
anism that uses the breakeven solution to the popular ski-rental problem [76]. Figure 3.10
demonstrates how the timeout is calculated for a hypothetical MPI BCast call.

time

before
BCast

after
BCast

after
BCast

breakeven
point

thrashing improved performance

Power Distribution Controller

Figure 3.10: The breakeven point at which the report manager checks the buffer.

The wrapper is missing implementations for MPI IRecv and other asynchronous func-
tions. Also, it lacks support for multiple communicators, which would require a hierarchical
approach to power distribution.

3.7.2 Experimental setup

To validate the heuristic in practice, we design a set of extensive experiments to study the
performance of the heuristic in different circumstances. We attempt to cover multiple use
cases by varying the hardware setup and the software benchmark.

Cluster setup

The use of embedded boards to build clusters is rapidly becoming a trend. Boards such
as Raspberry Pi, BeagleBone, etc. are orders of magnitude cheaper than large-scale Intel-
based racks. Embedded boards are also much less power hungry and require significantly
less power for cooling. Recent work in [34] and [121] demonstrates the use of some of these
boards in constructing an HPC cluster. In fact, ARM has recently gained traction in the
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HPC domain as a power-efficient contender to Intel [21,134]. Thus, building heterogeneous
clusters of cheap embedded nodes drastically reduces the operational cost, yet it introduces
challenges in managing power within such diverse clusters.

To that end, we setup a 12 node heterogeneous cluster of ARM based boards. The
nodes are as follows:

• Arndale Exynos 5410, hosting a dual-core 1.7GHz A15 CPU.

• odroid-x, hosting a quad-core 1.8GHz A15 CPU.

• 2 BeagleBone boards, hosting a AM335x 720MHz ARM Cortex-A8 CPU.

• 2 BeagleBone Black boards, hosting a AM335x 1GHz ARM Cortex-A8 CPU.

• 6 Raspberry Pi boards, hosting a 700MHz ARM CPU.

Heterogeneity also extends to the OS installed on the nodes. The Arndale board runs
linaro ubuntu trusty (14.04), the odroid runs linaro ubuntu raring (13.04), the the Bea-
gleBone boards run Debian, and the Raspberry Pi runs Raspbian. This selection of vary-
ing manufacturer, CPU capabilities, and OS and kernel versions mimics what would be
available at a larger scale in heterogenous clusters. All nodes use MPICH 1.4.1, and are
connected to an Extech 380803 Power Analyzer that measures their collective power con-
sumption.

Benchmarks

We run 3 benchmarks in the NAS Parallel Benchmark suite (NPB). The benchmarks are
as follows:

• IS. An integer sort benchmark that is memory intensive.

• EP. Embarrassingly parallel benchmark that is CPU intensive.

• CG. The conjugate gradient benchmark that is communication intensive.

The benchmarks present a diverse set of applications that demonstrate the behavior of
the heuristic when the load is dominantly CPU bound, memory bound, or communication
bound. For every benchmark, we run a standard problem size as defined by NPB (size
class A).
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Experimental Factors

The experiments are based on combinations of the following experimental factors:

Active nodes. To demonstrate the scalability of the heuristic in increasing cluster
sizes of 2, 4, 6, 8, 10, and 12 nodes. The setups are: 2 Raspberry Pi, 4 Raspberry Pi, 6
Raspberry Pi, 6 Raspberry Pi plus 2 BeagleBone Black, then adding 2 BeagleBone, and
then finally adding Arndale and odroid for a total of 12 nodes.

Power distribution mode. Every experiment is executed with one of the following
power distribution schemes in place:

• Median. Each node receives its median power level. This simple approach ensures
that every node is operating at a medium level, and it naturally satisfies the power
bound which is the sum of medians. We chose median over equal-share since our
cluster has nodes with non-intersecting power spectrums, and thus a median distri-
bution is a more reasonable approach versus a mean (equal-share) that is biased by
extremes.

• Heuristic (Online). Our heuristic is responsible for managing power distribution
within the power bound.

• ILP (Offline). The ILP solution is used to determine the power level to assign to
every task in every node.

Finally, every experiment is executed 3 times to ensure that the results are not outliers.

3.7.3 Experimental Results

Figure 3.11 shows the results of executing the EP benchmark on the different cluster
configurations. The first three sets of columns represent results from a homogeneous cluster
of Raspberry Pi boards. As can be seen, the heuristic manages to produces some speedup
yet it is not as prominent as the latter three columns. This is attributed to the homogeneity
of the cluster, since all nodes are identical and are executing the same workload. However,
there is still variance in execution time among identical nodes. The heuristic distributes
power within this period of variance to the lagging nodes. This results in a speedup up
to 1.16x. As for ILP, it has surprisingly lower speedup than the heuristic. Upon deeper
inspection, we discovered that the heuristic has an advantage over ILP: it can change
a task’s frequency mid-execution. This allows it to achieve a tighter asymptotic power
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Figure 3.11: Heuristic speedup versus ILP speedup of the EP benchmark.

consumption relative to the power bound. It is only apparent when the number of nodes
is low and the nodes are homogeneous, making this subtle difference the major deciding
factor.

The latter three columns in Figure 3.11 demonstrate an increasing trend in both heuris-
tic and ILP speedup. The addition of 2 BeagleBone Blacks in the 8 node configuration
causes a strong rise in speedup, since these boards are more powerful than Raspberry Pis,
running at 1000MHz. At 10 nodes, speedup takes a slight dip due to the addition of 2 weak
BeagleBones. Finally, the addition of the multicore Arndale and odroid causes a strong
rise in the speedup once again.

Figure 3.12 presents the heuristic speedup for both the CG and IS benchmarks. Note
that the ILP speedup has been omitted since these benchmarks have a high number of
synchronization points, and therefore the ILP problem becomes extremely large (tens of
thousands of variables) and finding a solution can take days. Both benchmarks can only
execute on a number of nodes that is a power of 2. The results of the heuristic with
respect to the CG benchmark show a fluctuating speedup of approximately 1.0. This lack
of improvement is due to the high volume of communication in the CG benchmark, and
the sparsity of long running CPU bound tasks. The heuristic actually causes a speed-down
at 4 active nodes, yet it is a negligible value. This suggests that the heuristic is better
suited for CPU bound applications and has minimal negative impact on communication
heavy applications. The heuristic performs better in the IS benchmark, yet since it also
involves frequent communication and lacks the long running heavy computation of EP, the
speedup is not as impressive as in EP.
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Figure 3.12: Heuristic speedup of the CG and IS benchmarks.

3.8 Summary

In this chapter, we tackled the problem of optimizing the performance of distributed pro-
grams on heterogeneous embedded clusters subject to a power bound. There is little work
on this problem in the literature, but we argue that given energy constraints of data cen-
ters and the increasing demand for computing power, we are in pressing need to address
the problem. We then introduced a formulation of the power distribution problem, and
an online heuristic that detects when a node is blocked and, subsequently, redistributes
its power to other nodes based on a ranking algorithm. We then presented an ILP-based
solution to obtain the optimal job-to-power-bound assignment, which we use to evaluate
the performance of our heuristic. We validated the approach using simulation and actual
experiments. Our online heuristic produces a speedup of up to a factor of 1.8, specially in
CPU bound programs, while it is ineffective in communication intensive applications.
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Chapter 4

Power, Energy and Bandwidth
Tradeoffs

In the age of exascale computing, it is crucial to provide the best possible performance under
power constraints. A major part of this optimization is managing power and bandwidth
intelligently in a cluster to maximize performance. There are significant improvements
in the power efficiency of HPC runtimes, yet no work has explored our ability to use
power as a control mechanism for mitigating bandwidth bottlenecks. In this chapter, we
explore using power as a means to artificially stagger parallel tasks to avoid bandwidth
bottlenecks. Moreover, we construct a model based on network flow principles that allows
us to efficiently bound the makespan of the parallel program by optimizing power and
bandwidth distribution. We demonstrate that our model is extensible and supports both
renewable and non-renewable resources.

4.1 Introduction

In the previous chapter we introduced the power distribution problem. The problem is
essentially identifying an optimal assignment of task power bounds to minimize the exe-
cution time of the the entire program (modelled as a task graph). We then introduced an
integer program to provide a theoretical bound on the performance, which is synonymous
with the minimum possible execution time. Unfortunately, the ILP is not scalable enough
to support real-life deployments of parallel programs.

In this chapter we broaden the scope of the problem and provide a much simpler method
of establishing a theoretical bound on performance. Rather than focusing solely on power
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as the scarce resource, we use network flow algorithms to bound performance across any
combination of renewable resources. Non-renewable resources such as energy, processors
and disk space endure over time: if some amount of disk space is unused at a given moment,
it can be saved and used at a later time. Renewable resources such as power and bandwidth
are only useful in the moment: they cannot be banked to be used later. If a processor is
capable of running at 120 Watts but has only enough work to consume 60 Watts, the extra
watts cannot be “saved” for later.

While renewable resources cannot be moved in time, they can often be scheduled in
space. Where multiple nodes share one communication link, temporal bandwidth limits
can be established to optimize throughput or execution time. Where a job-wide power
bound exists, power can likewise be scheduled so that the critical path of execution runs
as fast as possible and no other path becomes longer than critical.

Because this problem is one of temporal scheduling we must work under a constraint
that the sum of any renewable resource in the system never exceed the total amount
of that resource available. Running under an MPI model of communication, however,
does not provide a complete ordering of tasks. As with Lamport’s logical clocks, node
synchronization via message passing can establish a before-and-after temporal relationship,
as can the ordering of tasks on a single processor. The usefulness of network flow lies in
the fact that, so long as renewable resources are scheduled at MPI communication calls, we
are guaranteed to never arrive at an infeasible solution. While the theoretical optimal may
require finer-grained scheduling, the network flow heuristic in practice gets us very close to
the optimal without having to resort to computationally infeasible ILP approaches. And
because we are not relying on power-specific features, we are able to create near-optimal
schedules given constraints on multiple renewable resources.

The rest of the chapter is organized as follows: Section 4.2 introduces the problem
statement. Section 4.3 presents the proposed linear programming model. Section 4.4
demonstrates how to use the model to represent MPI programs. Section 4.5 illustrates an
example of an MPI program modelled and optimized using our LP. Section 4.7 presents
our experiments on benchmarking the LP, and Section 4.8 explores the practical improve-
ment of communication time when using an LP suggested resource distribution. Finally,
Section 4.9 summarizes our approach.

4.2 Problem Statement

Much attention has been paid to the problem of scheduling under a power bound, but
power is not the only constrained resource in computing systems. In this work, we aim to
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schedule tasks under dual constraints – namely, power and network bandwidth. Specifically,
the scheduler we consider must determine not only when a task executes, but also determine
how much power and network bandwidth will be allocated to the task. The aim is to have
a scheduler that determines these things in a manner that the job completes as quickly as
possible.

4.2.1 Resource-Constrained Project Scheduling

The resource-constrained project scheduling problem (RCPSP) addresses the issue of as-
signing tasks to one or more resources with the aim of meeting some stated objective. All
the resources have limited availability. The challenge is to meet the objective without ever
using more resources than are available. This problem has been extensively studied for
over 50 years (see, e.g., [35, 36]). Variations of this problem include the following [182]:

• With or without preemption,

• With or without precedence constraints,

• Discrete time or continuous time,

• Constant or variable resource availability, and

• Single-mode or multi-mode.

The first four variations are self-explanatory. In single-mode systems, tasks’ behavior is
constant, while in multi-mode the behavior (e.g., the runtime) can change in different
modes.

Typically, the objective function is to minimize the makespan – i.e., the completion
time of the last task to complete execution. Other, non-standard, objective functions may
be used instead [182]. For example, maximizing cash flow, minimizing resource consump-
tion, and maximizing the smoothness of the resource usage are possibilities for alternative
objective functions.

This work addresses minimizing the makespan with constrained power and constrained
network bandwidth. We consider a multi-mode problem, as runtimes change with changes
in power. We assume the bounds are constant and that tasks’ resource usage remains
constant over time. The time model is continuous, meaning the scheduler can be invoked
at any time, not just at discrete time intervals. Finally, tasks run without preemptions
and precedence constraints are present in the system.
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4.3 Linear Programming Model

4.3.1 The Model

First we define two types of tasks: a computation task tc and a network communication
task tn. We define a computation task tc = 〈C,P, S〉 as a tuple where C : W → T is
a function that maps a power bound in domain W (watts) to the duration of the task
if running at the given power bound. P is the set of predecessor tasks and S is the set
of successor tasks. A network communication task is defined as tn = 〈N,P, S〉 where
N : B → T is a function that maps a bandwidth bound in domain B (bps) to the duration
of the task if running at the given bandwidth bound.

Next, we define the task graph as a directed acyclic graph G = (V,E) where V is the set
of tasks (computation and communication), and E is a set of edges represented as ordered
pairs of vertices such that

E = {(x, y) | y ∈ Sx}
where Sx is the set of successors of task x. E+ is the transitive closure of edges E, such
that

E+ = {(x, y) | x y}
indicating there is a path from x to y. To incorporate nodes reachable by transitive closure
in the predecessors and successors of a task, we define the following:

P+
t = {t′ | (t′, t) ∈ E+}

S+
t = {t′ | (t, t′) ∈ E+}

where P+
t is the set of predecessors of task t including both direct and transitive closure

predecessors. S+
t is the set of successors of task t including both direct and transitive

closure successors.

As mentioned earlier, we use the multi-commodity network flow model to solve our
problem, where the commodities are power and network bandwidth. For each edge there
is a flow of power and bandwidth, denoted as Fρ(x,y) and Fβ(x,y) where (x, y) is an edge from

task x to task y in E+. For each task, there is an inflow / outflow of power and bandwidth.
We denote the inflow of power to a task t as Iρt , and the outflow as Oρt . Similarly, the
inflow / outflow of bandwidth is denoted as Iβt and Oβt respectively.

To support network flow, we add two placeholder tasks: a start task ts and a finish
task tf . Both tasks complete in zero seconds. ts is a predecessor of tasks and has no
predecessors in G, and tf is a successor to all tasks and has no successors in G.
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The following are variables in the model:

• st is the start time of task t,

• dt is the duration of task t,

• µwt is the percentage of task t’s work executed at power bound w,

• vbt is the percentage of task t’s data transmitted at bandwidth b.

Finally, the model uses the following constants:

• P is the power bound enforced over the entire system.

• B is the bandwidth bound enforced over the entire system.

4.3.2 Constraints

Conservation of flow

The first set of constraints enforce the flow conservation rule.

∀ t ∈ V ∪ {tf} :
∑
t′∈P+

t

Fρ(t′,t) = Iρt (4.1)

∀ t ∈ V ∪ {ts} :
∑
t′∈S+

t

Fρ(t,t′) = Oρt (4.2)

∀ t ∈ V ∪ {ts, tf} : Iρt = Oρt (4.3)

That is, the sum of all flow of power entering a task is equal to the flow exiting the task
to its successors. Constraints 4.1, 4.2 and 4.3 are defined in the same way for bandwidth
(replacing ρ with β).

To enforce the entire graph to obey the power and bandwidth bounds, we constrain the
placeholder tasks as follows:

Iρts = Oρtf = P (4.4)

Iβts = Oβtf = B (4.5)
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Task duration

The inflowing power determines the duration of a computation task, whereas the inflowing
bandwidth determines the duration of a communication task. We use the variables µwt
and vbt to indicate portions of the task spent at different power levels / bandwidths. The
purpose of this is to approximate the non-linear relation between power/bandwidth and
task duration. Variables µwt and vbt are constrained to add up to 1.0 such that the entire
task is included in the solution:

∀ tc ∈ V :
∑
w∈W

µwtc = 1.0 (4.6)

∀ tn ∈ V :
∑
b∈B

vbtn = 1.0 (4.7)

The duration of a computation task is calculated as follows:

∀ tc ∈ V : dtc =
∑
w∈W

Ctc(w)× µwtc (4.8)

Similarly, the duration of a network communication task is calculated as follows:

∀ tn ∈ V : dtn =
∑
b∈B

Ntn(b)× vbtn (4.9)

As mentioned earlier, the duration of placeholder tasks is zero: dts = dtf = 0.

The effective power/bandwidth used is the weighted average of all power levels/band-
widths utilized in the task’s execution.

∀ tc ∈ V :
∑
w∈W

w × µwtc = Iρtc (4.10)

∀ tn ∈ V :
∑
b∈B

b× vbtn = Iβtn (4.11)

Task start time

To ensure that the resulting schedule obeys task precedence, we use constraints to assign
start times to the tasks.

∀ t ∈ V ∪ {tf} : st ≥ max
t′∈Pt

{st′ + dt′} (4.12)

These constraints ensure that the start time of a task is at or after the time the last
predecessor finishes execution. As an initial condition, sts = 0.
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Objective

Finally, the objective of the LP model is to minimize the start time of the placeholder final
task, i.e. minimizing the makespan of the schedule.

min stf (4.13)

4.4 Modelling MPI programs

In this section, we demonstrate how to use the task graph model in Section 4.3.1 to
represent simple MPI programs.

4.4.1 Send/Recv

Our first example is a two rank blocking send/receive (Figure 4.1). As mentioned earlier,
ts and tf are placeholder tasks to control power/bandwidth flow. t1 and t2 are computation
tasks that ranks 0 and 1 perform at startup respectively. Then, rank 0 initiates a blocking
send, represented by network communication task t3. t4 represents the receive operation
performed by rank 1, which is dependent on the send operation. Finally, the program
terminates after receive is complete.

tf

t4

t3

t2

t1

ts

Figure 4.1: Simple two rank blocking send / receive. Tasks with a thick solid border are
computation tasks, tasks with a thick dotted border are communication tasks, and tasks
with a thin border are placeholder tasks.

4.4.2 ISend/IRecv

Next, we demonstrate how to model non-blocking communication (Figure 4.2). In this
example, both ranks perform computation at startup, represented by tasks t1 and t2. Then,
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rank 0 initiates an asynchronous send (t3) and continues computation represented by task
t4. Similarly, rank 1 initiates an asynchronous receive (t5) and continues computation
represented by task t6. Both ranks then wait for communication completion in tasks t7
and t8 respectively.

t1

t2

t3

t4

t5

t6

t7

t8

ts tf

Figure 4.2: Simple two rank non-blocking send / receive.

4.4.3 IAlltoAll

Figure 4.3 illustrates the task graph of a two-rank non-blocking all-to-all. In this example,
both ranks send (t3, t4) and receive (t7, t8) data asynchronously, while performing compu-
tations in parallel (t5, t6). Finally, both ranks wait until the all-to-all operation is complete
(t9, t10) before terminating.

ts

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

tf

Figure 4.3: Simple two rank non-blocking all-to-all.

4.5 LP Model Example

In this section, we demonstrate how the LP model can be used to identify a schedule of
the example MPI program in Section 4.4.3.
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Table 4.1: The execution time of computation tasks in Figure 4.3 at different power bounds.

Task

Power
(watts) 50 60 70 80

t1 60s 22s 15s 13s
t2 71s 35s 22s 15s
t5 50s 29s 18s 14s
t6 40s 25s 15s 10s
t9 45s 22s 16s 14s
t10 45s 22s 16s 14s

Table 4.2: The execution time of communication tasks in Figure 4.3 at different band-
widths.

Task

Bandwidth
(mbps) 40 60 80 100

t3, t4, t7, t8 25s 12.5s 5s 2.5s

4.5.1 Assumptions

Let us assume that the two ranks in Figure 4.3 run on two nodes connected on the same
switch. The power bound for this two-node cluster is 150w. The bandwidth bound is
100mbps. Table 4.1 shows the execution time of the computation tasks in Figure 4.3 at
different power bounds. Table 4.2 shows the execution time of the communication tasks in
Figure 4.3 at different bandwidths.

4.5.2 Network flow solution

We identify a schedule for the IAlltoAll example using the network flow representation
in Section 4.3. We use the CPLEX solver to identify an optimal makespan for the model
we provide. Based on the parameters of the example, the optimal makespan is 45.62s.
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4.5.3 Proposed schedule

Figure 4.4 illustrates the optimal schedule found by the LP solver. In the figure, each block
represents a task. Timing is indicated from left to right and scaled using the axis at the
bottom of the figure. For instance, task t1 starts at time 0s, and ends at approximately
14s. The makespan of the schedule is 45.62s. Computation tasks indicate how much power
they receive at the left side of the respective block. Similarly, communication tasks indicate
how much bandwidth they receive. The top row contains node 1 computation tasks (t1,
t5, and t9). The second row contains node 1 communication tasks (t3 and t7). The third
and forth rows contain node 2 computation and communication tasks respectively.

As can be seen in the solution, power is 100% utilized across the two nodes (tasks t1, t5,
t9 versus t2, t6, t10. Send tasks fully utilize bandwidth (t3 and t4), while receive tasks only
consume enough bandwidth to complete transmission before t9 and t10 which depend on
the received data. The most notable example of flow is that from t4 to t7 which increases
the bandwidth available for node 1, aiding in completing communication before the data
is required.

t1

t2

0s 10s 20s 30s 45.62s

74.57w 74.57w

75.43w

t3

t4

t5

t675.43w

t736.3mbps 39mbps

t863.7mbps 39mbps

t9

t10

74.57w

75.43w

Figure 4.4: A schedule for the IAlltoAll example.

4.6 Advanced modelling

The network flow model can be used to model more complex scenarios. We utilize the
multi-commodity aspect of the network flow to model more realistic networking setups as
well as supporting resources other than power and networking. The following subsections
detail some examples of such models.
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4.6.1 Modelling local bandwidth bottlenecks

The model in Section 4.3 applies a single bandwidth bound B on the entire system. This
is most probably a loose approximation of a realistic network configuration. In reality,
bandwidth constrains a subgroup of nodes in the cluster connected directly to the same
physical switch (for instance Infiniband on the same rack).

To model these switches individually, we introduce bandwidth resources specific to each
switch. Thus, communication tasks do not share a single bandwidth bound over the entire
cluster. In fact, they share individual bandwidths available to each sub group.

Let S be a set of switches {s1, s2, · · · , sk, · · ·}. Let σ(tn) denote the switch on which tn

transmits data. Let Bk be the bandwidth available on switch sk. In Section 4.3, the place-
holder start task ts received P as the input power bound, and B as the input bandwidth.
To model switches individually, ts must receive Bk for all sk ∈ S. The conservation of flow
constraints 4.1, 4.2, 4.3 are repeated for each Bk. Constraint 4.11 is modified as follows:

∀ tn ∈ V :
∑
b∈B

b× vbtn = Iσ(t
n)

tn (4.14)

such that the weighted average of vbtn is equal to the inflow of bandwidth in tn’s switch
σ(tn). That forces the task to use only bandwidth provided by its designated switch.

4.6.2 Modelling interconnection network topologies

Depending on the interconnection network topology, data can be transferred across different
layers of switches until it reaches its destination. For instance, a fat tree interconnection
network will transfer data up the tree into switches with larger bandwidth and down again
until the data is delivered to the receiving node. Such topologies can be modelled as
explained above: using separate tasks for data transmission on individual switches. These
tasks only utilize the bandwidth of their respective switches, and all bandwidths of all
switches are inputted into the network through the placeholder start task ts. Thus, we
model each switch as a commodity that flows through the network, only being utilized by
tasks that use this commodity.

4.6.3 Modelling other renewable resources

Using the same method described above, more renewable resources can be modelled using
the multi-commodity network flow. For instance, disk I/O whether used for reading /
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writing job input / output, or for checkpointing, can be a commodity flowing through
the network. The same applies to tasks that utilize GPUs, where task duration will be
affected by power, number of kernels used, contention on the PCI Express bus, and other
configurable parameters.

4.6.4 Modelling non-renewable resources

Our model also supports non-renewable resources such as energy or money. A user could
provide an energy consumption bound on the entire job, or a monetary bound on the cost
of processing the job in paid cloud computing services. Such resources, such as the energy
bound or the monetary budget can be modelled by modifying the constraints in Section 4.3.
To demonstrate how the model changes to support renewable resources, we will use energy
as an example. The model is modified as follows:

• Similar to non-renewable resources, energy flows through the network. This implies
adding flow variables (F ε(x,y)) between vertices, as well as inflow and outflow variables

(Iεt and Oεt).

• The pLaceholder start task receives the energy bound as its energy inflow:

Iεts = E

• The placeholder task constrains the outflowing energy to be greater than zero, pre-
venting the network from using energy beyond the available budget:

Oεtf ≥ 0

• Conservation of flow is modified to be positive only:

∀ t ∈ V ∪ {ts, tf} : Iεt ≥ Oεt

• The energy used by a task is defined as follows:

∀ t ∈ V : Et = Iεt −Oεt

Energy can then be used to determine the duration of the task. A non-linear relationship
can be modelled using piece-wise linear formulations by creating variables to denote the
percentage of a task that is run at a specific energy budget. The energy consumed by the
task is the weighted average, similar to Constraint 4.11.
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Figure 4.5: Randomizing task execution time using the inverse relationship between power
and duration.

4.7 LP Model Benchmark

In this section we introduce our experiments on the scalability of the LP model and the
improvement it provides over a trivial schedule.

4.7.1 Experiment Setup

Model

The model is based on the IAlltoAll example in Figure 4.3. We modify the example
such that is configurable by number of ranks, number of synchronization points (number
of iterations an IAlltoAll is executed), and the size of the data being transmitted at
each iteration.

We introduce variability in the size of parallel tasks, which models real-life variability
across nodes even in homogeneous clusters. We model this by assuming P ∝∼

1
D2 where P

is the power bound of the task, and D is the duration. Figure 4.5 shows how we generate
random task execution times. The two anchor points on the graph are drawn from normal
distributions and the curve is adjusted to pass through the new random points. Then,
we can use piece-wise linear approximation to model the whole curve. The two points
represent the task duration at the lowest and highest allowable power bounds respectively.
The normal distributions have a tight variance of µ± 10%.

Environment

We use the python Pulp library for modelling coupled with the CPLEX solver.
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Parameters

We experiment with 2, 4, 8, 16, and 32 ranks, 1, 3, and 5 synchronization points or
iterations, and finally 10, 100, and 1000 MB of data transmitted at each iteration. We
generate 5 random problems for each configuration.

Metrics

We study the solution time, the makespan of the resulting schedule, as well as the makespan
of a schedule that evenly distributes resources.

4.7.2 Results

Figure 4.6 shows the solution time of different problem sizes. As expected, the growth in
the number of variables increases the solution time exponentially. The largest problem we
experimented with had 20800 variables, and was solved in approximately 26 minutes. Note
that the solution times are overlayed at ranks 4 and above due to having very close values.

Figure 4.7 shows the speedup gained by using the LP model. We compare our LP
against a version of the LP that assigns equal power bounds and bandwidth bounds to all
ranks. As shown in the figure, speedup is mostly between 5% and 10%. Note that the
variation between parallel tasks is limited to within 10% of the mean. Higher variation will
further disadvantage a simple equal share schedule. Similarly, tighter power/bandwidth
bounds will increase the benefit of power/bandwidth distribution.

Figure 4.8 shows the speedup grouped by the size of transmitted data. The figure
shows that a smaller data size results in better improvement. We examined the resulting
schedules, and discovered that data transmission of 10MB is too small to change the entire
schedule. Refer to Figure 4.3. Since the communication tasks are very short, they are never
on the critical path, making t9 and t10 rely on the time t5 and t6 complete. Hence, the
improvement in the figure is solely due to power manipulations of the computation tasks.
At 100MB, the LP tries to balance between power and bandwidth, resorting to staggering
computation tasks to be able to efficiently manipulate the bandwidth being distributed to
communication tasks. At 1000MB, communication tasks dominate the schedule and there
is little staggering that could be done using power that would improve the makespan.

The utility of staggering is demonstrated in Table 4.3. The table demonstrates the
start and end times of the computation and communication tasks in a single iteration of
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Table 4.3: Solution of a single iteration of an 8-rank AlltoAll program.

Rank tc start tc W tc end tn start tn mbps tn end
0 0.00 62.78 57.46 57.46 24.47 93.88
1 0.00 60.00 58.61 58.61 25.91 93.88
2 0.00 58.89 53.88 53.88 20.00 93.88
3 0.00 60.00 59.44 59.44 26.94 93.88
4 0.00 58.33 53.88 53.88 20.00 93.88
5 0.00 60.00 54.85 54.85 21.21 93.88
6 0.00 60.00 58.90 58.90 26.28 93.88
7 0.00 60.00 66.04 66.04 35.30 93.88

the IAlltoAll program. The computation tasks in the table are equivalent to tasks t1 and
t2 in Figure 4.3, while the communication tasks are equivalent to tasks t3 and t4.

The tasks have almost the same execution times (±10%) and could be made to complete
at the same time. However, we observe that tasks are staggered to complete at different
times, after which the successor communication tasks begin execution. Communication
tasks that start later receive more bandwidth, which benefits the entire schedule by reduc-
ing the time at which the next synchronization point occurs. As shown in the table, all
communication tasks finish at the same time, right before the MPI Wait call.
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Figure 4.6: The solution time of problems of different ranks and number of iterations.
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Figure 4.7: Speedup of the LP optimized schedule versus a trivial equal share power and
bandwidth distribution.
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Figure 4.8: Speedup of the LP optimized schedule grouped by transmitted data size.

4.8 Synthetic MPI experiments

In this section we explore the applicability of the staggering technique proposed by the LP
in real-life scenarios.
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4.8.1 Experiment Design

As seen in Table 4.3, power is used to stagger the completion time of computation tasks
such that the communication bandwidth is not overloaded all at once. To replicate this,
we implement two synthetic MPI benchmarks that utilize the staggering suggested by the
LP. The benchmarks are (1) an asynchronous ring communication program, and (2) an
IAlltoAll. The IAlltoAll is based on the example we use in Section 4.7. We have
also modelled a ring communication program and solved it using our LP, yielding similar
results to that presented in Section 4.7.

To simulate the staggered start of communication, we use timers that trigger at differ-
ent times for different ranks. These triggers initiate asynchronous communication and we
record the time it takes for data to transferred. We compare these results to the commu-
nication time of a perfectly synchronized program that uses the same power bound across
all nodes, and results in computation tasks finishing at the same time.

We run 1000 iterations of the ring / IAlltoAll programs to get reliable communica-
tion time measurements. We experiment with different transmission data sizes similar to
our approach in Section 4.7. We also experiment with different number of nodes: 2, 4, 8,
16, and 32. We run each configuration 5 times.

4.8.2 Results

Figure 4.9 illustrates the observed speedup in communication time when using the stag-
gered schedule of the LP model. This is measured as the total time it takes all ranks
to send/receive data, starting from the moment ISend is called, through IRecv, and
until MPI WaitAll. As shown in the figure, an improvement of approximately 2.5% is
observed at small sizes of transmitted data, which reaches up to 15% when each node
transmits 100MB. At 10MB per node, the improvement is approximately 5%. This im-
provement is in line with the results of the LP. Moreover, it indicates that communication
time can be reduced despite the lack of control mechanisms such as RAPL that are capable
of throttling bandwidth.

Figure 4.10 illustrates the communication time speedup when studying the IAlltoAll
example. In this example, the improvement is not consistent, and staggering can actually
hurt the performance in more than half of the runs. We attribute this to the way collective
operations handle late arrivals. This has been demonstrated extensively in the work by
Faraj [38]. In that work, the authors demonstrate that collective operations, including
IAlltoAll have a weak tolerance to late arrivals. This weak tolerance is manifests as
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unreliable and unpredictable performance. Our working explanation is that since we are
manufacturing late arrivals by staggering, we are creating a disturbance with respect to
the collective operation. The MPI implementation is failing to control this disturbance
at larger data sizes, causing a high variability in performance and a penalty to staggered
arrival of data. Further investigation into this behavior is needed, which is our ongoing
work.
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Figure 4.9: Speedup of communication time in a ring communication MPI program.
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Figure 4.10: Speedup of communication time in an IAlltoAll communication MPI
program.
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4.9 Summary

In this chapter, we presented an efficient method to bound the performance of MPI appli-
cations that utilize various renewable resources. We outlined a modelling approach that
utilizes the network flow paradigm to produce a relatively efficient linear program. We
demonstrated how our approach can model different MPI programs, different intercon-
nection networks, as well as different types of resources. We presented benchmarks to
evaluate the performance of the linear program in producing an optimal schedule, and we
validated that the output of the linear program can be used to improve the communication
time via staggering. We presented examples where staggering can be useful or harmful to
performance.
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Chapter 5

Power, Energy and Precision

Modern embedded systems are becoming more reliant on real-valued arithmetic as they
employ mathematically complex vision algorithms and sensor signal processing. Machine
learning in large scale data centers heavily uses floating-point arithmetic in complex and
iterative processes. Double-precision floating point is the most commonly used precision
in many algorithm implementations due to the convenience of no-compromise accuracy.
A single-precision floating point can provide a performance boost due to less memory
transfers, less cache occupancy, and relatively faster mathematical operations on some
architectures. However, adopting it can result in loss of accuracy. Identifying which parts of
the program can run in single-precision floating point with low impact on error is a manual
and tedious process. In this chapter, we propose an automatic approach to identify parts
of the program that have a low impact on error using shadow-value analysis. Our approach
provides the user with a performance / error tradeoff, using which the user can decide how
much accuracy can be sacrificed in return for performance improvement. We illustrate the
impact of the approach using a well known implementation of Apriltag detection used in
robotics vision. We demonstrate that an average 1.3x speedup can be achieved with no
impact on tag detection, and a 1.7x speedup with only 4% false negatives.

5.1 Introduction

Embedded systems are becoming more and more sophisticated as they utilize software that
was traditionally only used on desktop machines. Computer vision, speech recognition,
and machine learning modules are now becoming more common in embedded systems such
as self-driving cars, IoT devices, and robots. One common feature of such applications

84



is their extensive use of floating-point arithmetic to perform computationally intensive
mathematics. When technology migrates to the embedded domain, it becomes even more
crucial to optimize its performance and energy efficiency. Software that traditionally ran
on powerful desktop machines may now be required to run on small, battery-powered
embedded devices. In this context, heavy floating-point arithmetic can become a serious
obstacle in developing resource-efficient embedded software.

Naturally, domains of traditional reliance on floating-point arithmetic stand to benefit
significantly from floating-point performance optimizations. The HPC community has
researched various aspects of floating-point efficiency, including floating-point alternatives.
Machine learning applications, now commonly deployed in large scale data centers, rely
heavily on complex mathematics to construct models of massive amounts of data. The
performance and energy efficiency of data centers is of the utmost importance, especially
if the gains in performance and energy are made at a measured and acceptable loss of
accuracy.

Double precision is commonly used in mathematically complex algorithms since it pro-
vides the highest level of accuracy available in standard hardware. However, using single
precision provides a performance boost due to less memory transfer, less cache occupancy,
and fewer clock cycles for some mathematical operations. Better performance implies less
energy consumption, especially with modern architectures optimizing idle power signifi-
cantly. A single-precision implementation that is idle for a longer period of time is more
energy efficient.

The advantages of single precision can potentially come at the cost of accuracy, es-
pecially in algorithms that require complex mathematics, such as algorithms involving
computer vision, speech recognition, and AI. In this chapter, we show the quantifiable
impact of single-precision on the accuracy of a computer vision library [115]. In some
cases, it is feasible to convert the entire code to single-precision and retain an acceptable
level of accuracy. In fact, modern AI libraries provide the user with a switch to toggle
between single and double precision [102]. However, as we show in this chapter, the is-
sue is often more subtle and complicated. To maximize performance while maintaining a
level of accuracy that the developer can accept, the developer has to perform the tedious
process of analyzing each part of their code to identify which variables or functions can
be downgraded to single-precision without significant loss in accuracy. This involves an
understanding of the algorithm, its input, and floating-point arithmetic.

To tackle the aforementioned subtleties, developers need an automatic approach to
guide the process of precision downgrade without drilling into the details of the code.
More specifically, developers need an automatic approach to identify which parts of the
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program are candidates for a downgrade from double to single precision. Candidates are
parts of the program (variables, functions, instructions) which when downgraded result in
an acceptable loss of accuracy. Such an automatic approach should aid the developer in
managing the performance/error tradeoff, by providing information that can tell the user
how much performance they can gain versus how much accuracy they can lose.

In this chapter, we present a novel automatic approach for managing the perfor-
mance/error tradeoff by identifying parts of the program that can tolerate lower preci-
sion with little increase in overall error. Our approach uses dynamic instrumentation to
compute how a single-precision version of the program impacts error at the function gran-
ularity. We present methods to quantify and prioritize functions that can be converted to
single precision. Then, we demonstrate our approach on a robotics vision case study, where
robots detect 2D barcodes to identify locations and orientation. The proposed approach
can present the developer with a spectrum of choices to manage the performance / error
tradeoff. We present performance and error results of several points along that spectrum
where we made manual changes to the code guided by the analysis results. In our case
study, we demonstrate that we can achieve a speedup of 1.3x without any impact on the
accuracy of detection. We also demonstrate that a speedup of up to 1.7x can be achieved
with only a 4% drop in accuracy. We also study the energy and power consumption of the
reduced precision implementations. We show that we can achieve a 16% energy reduction
without sacrificing accuracy.

The chapter presents the following contributions:

• An analysis tool that can trace the evolution of error per memory location / instruc-
tion, providing insight into how error changes as execution progresses. This insight
can support sophisticated precision-switching mechanisms.

• An analysis tool that can isolate the error per function, canceling out the effect of
error propagation and determining the isolated impact of a function’s code on error.

• A method that provides developers with a quantifiable tradeoff between error and
performance per function. This tradeoff aids the developer in making decisions re-
garding precision downgrade at the function level. Our tool provides recommenda-
tions as to which functions to downgrade iteratively. These recommendations are
relatively simple to apply manually, since they are at the function level.

Organization The rest of the chapter is organized as follows: Section 5.2 describes the
proposed approach. Section 5.3 describes the process of managing the performance / error
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tradeoff. Section 5.4 introduces the case study and the results of the analysis. Section 5.5
details our experiments with multiple precision levels and validates the quantification of
performance and error provided at the analysis phase. Section 5.6 discusses our proposed
analysis and the experimental results. Finally Section 5.7 summarizes the chapter.

5.2 Proposed Approach

5.2.1 Problem Statement

In this chapter, we address the following problems:

• At function granularity, automatically quantify the error resulting from converting
that function to use single precision floating-point.

• At function granularity, automatically estimate the performance benefit gained by
converting that function to use single precision floating-point.

• Provide recommendations to the developer as to which mix of single and double
precision functions to use to reach error and performance targets.

5.2.2 Evolution of Precision Error

For every memory location containing a floating-point variable in the original precision,
shadow value analysis refers to maintaining a shadow value in the alternative precision.
All mathematical computations on the original variables are repeated in the alternative
precision on the shadow variables. This analysis produces error estimates that support
decision-making regarding full or partial conversion of floating-point variables and code to
the alternate precision.

In this chapter, we build on top of an existing floating-point shadow value analysis
tool [84] by extending it to support the proposed analysis. The tool uses Intel’s Pin [95] to
modify the target program via just-in-time instrumentation. To perform the analysis, our
tool monitors memory access to double precision floating-point locations. It then maintains
a map of memory addresses and shadow values, which can be in native single precision
or any arbitrary precision. The tool detects SSE instructions and replicates them using
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the target precision. After the program under inspection terminates, the tool reports the
relative error per memory location which is calculated as∣∣∣∣vs − vovo

∣∣∣∣
where vs is the shadow value and vo is the original value.

In the remainder of this section, we describe the modifications we made to the tool
in [84] to support the proposed analysis. Our objective is to study how error evolves as
the program progresses with respect to both memory locations and program instructions.
This analysis can help identify parts of the program that can be converted from double
precision to single precision with an acceptable impact on error.

5.2.3 Tracing Memory Error

The first modification to the tool is to track the error at each memory write. This analysis
can help us identify error behavior for floating-point variables. The following are possible
scenarios:

• The error is consistently low, making the variable a good candidate for conversion to
single precision.

• The error is consistently high, indicating that the variable should remain at the
original double precision.

• The error increases as execution progresses. We have observed this behavior in scien-
tific computations [77], where rounding error accumulates as the application proceeds.
This indicates potential for migrating the variable to single precision mid-execution.
We discuss this further in Section 5.7.

• The error decreases as execution progresses. We have observed this behavior in a
laser beam stabilizing control system. In this system, the initial state exhibits large
physical error. This reflects in a larger relative error as the control system tries
to stabilize the laser on the target. Once the laser is stable, the error drops, even
during the rhythmic disturbance caused by a motor. This scenario makes the case
for running at single precision only after the controller has stabilized. This is also
further discussed in the future work section.
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Figure 5.1: Error trace per memory location. A darker pixel indicates higher error.

To avoid large CPU and memory overhead due to instrumentation, our modification
constructs an error trace by sampling the memory write operations. This is achieved
by adding a knob to the Pin tool that configures the number of memory writes to skip
before storing an error value. We found this useful when experimenting with time-sensitive
applications such as control systems, where instrumentation overhead can spin the system
out of control.

We use a visualization of the evolution of error to aid the user in identifying variables
that are candidates for precision downgrade. In this visualization, each pixel represents the
relative error between the original value and the shadow value of a specific memory location
at a specific write operation during the run of the program. Figure 5.1 demonstrates an
example of this visualization for the laser beam stabilizing control system mentioned earlier.
The x-axis represents floating point memory locations observed during instrumentation.
The y-axis represents the normalized write operations made to each memory location, and
serves as a rough proxy to a time axis. In Figure 5.1, each memory location is normalized
to be written to 800 times. Each pixel in the image represents the relative error, and a
darker pixel indicates higher error.
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Figure 5.1 demonstrates multiple behaviors that should guide the precision downgrade
process. For some locations, the error increases as time progresses (as we move north
along the y-axis). For other locations, the error is initially high and drops shortly after
the start of execution. This can be seen around memory locations 140, 280, and 600
(indicated by the red arrows at the bottom). There is also a significant portion of memory
where error changes periodically (indicated by orange arrows at the top). This periodic
change is indicative of repetitive behavior in the controller due to the motorized disturbance
applied to the stabilizer. Thus, this visualization suggests that there are locations that
can be downgraded to single precision permanently, and others that can be downgraded
dynamically depending on the error trace.

5.2.4 Tracing Instruction Error

The next modification made to the tool is to support tracing the error caused by each
floating point instruction. To do this, we record the result of every floating point instruc-
tion, tracking the output whether written to memory or an XMM register. We compare
this result with the single-precision version of that instruction. Similar to memory error,
we sample instruction error to avoid large overhead.

We visualize instruction error in a similar fashion to memory error. Figure 5.2 illustrates
the error per instruction at each execution of an instruction in the laser beam stabilizer
mentioned earlier. The x-axis represents instructions executed during instrumentation
grouped by function. For instance, control output is a function whose instructions
begin under the function label and continue to the right until the control update
label. The y-axis represents the normalized executions of the instructions, where every
instruction is normalized to be executed 120 times. The color of the pixel represents the
log of the relative error for the respective instruction on the x-axis and the respective
execution on the y-axis.

As shown in Figure 5.2, control output is the largest function. The code for the
laser beam stabilizer is generated using Quanser’s Simulink package [133] which generates
a single large function containing almost all the logic. In general, the error is mostly high
(see red braces at the top of the plot), yet there are parts of the code where the error is
high at the beginning but drops shortly after the start of the execution (see orange braces
at the bottom of the plot). This indicates parts of the function that can be dynamically
downgraded to single-precision. control update is also a candidate for permanent
downgrade to single-precision since it has mostly low error (black brace at the bottom of
the plot).
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Figure 5.2: Error trace per instruction. A darker pixel indicates higher error. Relative
error is in log10 scale.

5.2.5 Isolating Function Error

Simply tracing the error per instruction is not sufficient to determine the real impact of
the instruction on error. This is because error propagates through instructions via their
operands. We mitigate this by isolating error at the function level. Upon entering a
function, we push all shadow values onto a stack, and reset the working map of memory
addresses to shadow values. Any instruction within the function uses the original values in
double precision, and the error we track is solely due to the rounding error of performing
the instruction in single precision. The stack matches the call stack, and so calling one
function from another resets the shadow values upon entering the called function, and pops
the shadow values upon returning from the called function.

The process of isolating the error per function helps to make relatively coarse decisions
about downgrading parts of the program to single-precision. A downgrade of a function to
single-precision entails changing all stack variables to floats, all doubles passed by value to
floats, and all mathematical operations to their single precision counterparts (ex. MULSD
to MULSS). There are several advantages to performing the downgrade at the function
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level:

• The downgrade is simple enough to apply manually, which we do in the case study
in Section 5.4. It does not require changing data types that impact other functions,
which makes it easier to apply.

• The downgrade is coarse enough that it would not introduce too much overhead.
Obviously this varies depending on the size of the function, but applying the down-
grade at the function level will in general introduce less casting and copying of double
precision variables than a downgrade at the instruction level.

• Analysis at the function level reduces the search space of interactions with respect to
error. While we can measure the isolated impact of a function on error, we cannot
predict the interaction when two functions are simultaneously downgraded. The error
might be canceled out or magnified. Studying these interactions can result in a huge
search space if done at the instruction level. We discuss further techniques to reduce
the search space in the next section.

• Isolating the error at the function level helps create a set of independent random vari-
ables representing the error per function. Without isolation, the error of a function
is dependent on other functions’ errors. Such independent random variables simplify
experimental design to understand interactions and compound effect on error.

5.3 Managing the performance / error tradeoff

The visualizations in the previous section illustrate how error changes as execution pro-
gresses with respect to the input data set. These illustrations will look different for different
test data sets. If the user provides a data set that is representative enough of the applica-
tion’s real world use, results should be predictable. This is the same for any system that
uses training data and is also true of performance analysis, which requires a representative
workload to achieve useful optimization.

The visualizations also do not capture the tradeoff between the performance gain when
downgrading a specific function, and the error resulting from the downgrade. To aid the
user in managing this tradeoff, we use plots similar to the one in Figure 5.3.

Figure 5.3 illustrates the tradeoff between performance gain and average error for every
function. The x-axis represents the number of executed instructions per function. This
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Figure 5.3: Tradeoff between performance gain and error for every function. Average error
is in log10 scale.

is a proxy for the performance gain achieved by downgrading the precision of each func-
tion, with a larger value indicating larger gains. The rationale for the use of this proxy is
that single precision instructions are generally faster than double precision on most archi-
tectures due to fewer memory transfers, less cache occupancy, and fewer cycles for some
mathematical operations. This advantage also extends to energy, since a single precision
implementation is idle for a longer time, resulting in reduced energy consumption. The
y-axis represents the average error over all instructions in the function. Naturally, a lower
average error is more desirable. The objective of the plot is to aid the user in identify-
ing which functions to downgrade in precision. In general, functions residing in the lower
right-hand quadrant are the best candidates for downgrading.

We use two methods to select functions for precision downgrade:

1. Arbitrary separation. An arbitrary, positively-sloped line can be drawn origi-
nating from the plot’s origin, under which all functions are downgraded, and above
which all functions remain at double precision. An example of such lines is shown
in Figure 5.3. The lines in the figure gradually increase in slope resulting in the
inclusion of functions that have higher error but also high performance gains.

2. Scoring. A score could be associated with each function in the form of

s =
κ
ε

(5.1)
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where s is the score, κ is the number of executed instructions and ε is the average
error. Functions with the highest score should be downgraded first.

An automatic search could be employed to find the optimum subset of functions to
downgrade such that the compound error is minimized and the performance gain is max-
imized. This is somewhat similar to a knapsack where functions have value (performance
gain) and weight (error), except that the combination of functions in the knapsack af-
fects the total weight. This is similar to the work in [82, 144]. We discuss this further in
Section 5.7.

5.4 Apriltag detection case study

5.4.1 The Apriltag Library

Figure 5.4: An April-
tag [4].

Apriltags [115] are two-dimensional bar codes that are similar to
QR codes and are used in a variety of applications such as robotics
and augmented reality. The advantage of Apriltags over QR codes
is that they encode less information, allowing more robust detec-
tion at longer distances. Apriltags can also identify a 3D position
of the tag with respect to a calibrated camera. Figure 5.4 shows
an example of an Apriltag.

Apriltag detection is implemented in a self-contained C li-
brary [4] that can process static images as well as live video. We
compile it with gcc 5.4.0 with -O4 optimization. Our first step
was to verify whether the library uses double precision floating-
point arithmetic. We used Intel Pin’s Insmix tool to extract
statistics of instruction usage. Table 5.1 lists the percentage of
instructions executed per category. A small percentage of single
precision instructions were executed but double precision domi-
nated, accounting for almost a third of all executed instructions. This indicates a large
potential for performance improvement if all or some of these double precision instructions
are downgraded to single precision.
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Table 5.1: Apriltags library instruction breakdown

Category Percentage

General purpose 50%
MMX 1%

Single-precision SSE 5%
Double-precision SSE2 27%

Others 18%

5.4.2 Test Dataset

We use the PennCOSYVIO dataset [122] to test the reduced-precision versions of the
Apriltags library. The dataset consists of a set of videos shot on a university campus using
a GoPro camera mounted on a robot. The path of the robot is populated with physical
Apriltags printed at various locations. The videos are approximately 3 minutes long at
1080p resolution.

5.4.3 Initial Comparison of Double vs. Single Precision

The next step was to study whether a full single precision implementation can result in
acceptable error. It might be the case that converting all variables and instructions to
single precision yields low error, in which case there is no need for sophisticated analysis of
specific memory locations and functions. To perform this check, we converted all double
precision variables in the source code to single precision and tested a set of sample images,
some containing Apriltags and some not.

We observed two behaviors when testing a full single-precision version of the library.
In some cases, the modified version did not terminate due to strict convergence criteria on
a particular loop. Capping the iterations of this loop resulted in false negatives.

These results demonstrate that while single precision computation does often run faster
than its double precision counterpart, algorithms with value-based control flow or strict ter-
mination criteria might exhibit worse performance when using single precision arithmetic.
This is an important factor that should be considered when applying precision-related
optimizations.

Next, we compared double and single precision implementations against a video from
the dataset. The video is split into 2888 frames and we measure the number of tags
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Figure 5.5: Speedup of the full single-precision implementation.

detected by both implementations in each frame. False negatives are abundant and the
single precision version misses 75% of all tags. False positives also occur yet are very
infrequent (< 0.1%).

Figure 5.5 demonstrates the per frame speedup gained by using single precision. The
red line indicates 1x speedup, above which every point is an improvement, and below
which every point is a slow down in performance. As can be seen in the plot, while there
are significant improvements reaching up to 3x, the single precision implementation is not
reliable. It runs longer than the original double precision implementation 11.4% of the
time and generally has a higher variance. The occasional increase in run time is due to the
algorithm taking more time to converge at single precision. This indicates that a trivial
single-precision implementation is not appropriate because it yields high error with no
reliable performance improvement.

5.4.4 Using the Proposed Approach to Analyze Error

The results in Section 5.4.3 indicate there is potential to find a sweet spot between er-
ror and performance. While a full single-precision implementation can provide attractive
speedup, the accuracy drops significantly. Next, we used the analysis approach described
in Section 5.2 to understand the behavior of the Apriltags library and find a compromise
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Figure 5.6: Memory error trace of the Apriltags library.

between error and performance.

Apriltags memory error trace

We first studied error with respect to double-precision memory locations. As explained
in Section 5.2.3, we use our Pin tool to capture the error behavior during execution.
Figure 5.6 illustrates the error trace per memory location. As shown in the figure, the
error is generally high in all memory locations at some point during execution, making
per-variable optimizations (such as the optimizations suggested in [144]) difficult.

Apriltags instruction error trace

We next studied the error caused by each executed instruction (see Section 5.2.4). Fig-
ure 5.7 (top) demonstrates the non isolated error per instruction grouped by function. As
can be seen in the figure, there are functions that are reasonable candidates for precision
downgrade, such as fit line, fit quad, and quad decode task.

Apriltags isolated instruction error trace

In Section 5.2.5, we introduced a method to isolate the error per function such that the
measured error is not affected by propagated error passed to the function as parame-
ters or accessed by the function using pointers. Upon repeating the analysis using such
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Figure 5.7: Instruction error trace of the Apriltags library isolated per function and non-
isolated.

isolation, the error profile of some functions differed drastically. Figure 5.7 (bottom) il-
lustrates the error per instruction isolated by function. As shown in the figure, functions
like quad goodness are now prominent candidates for downgrade due to their low error.
This indicates that the error observed within quad goodness’s instructions was actually
a byproduct of propagated error by different functions. We can identify such functions
using this simple plot, whereas tracing through the code manually is an extremely tedious
process. Other functions like homography compute and quad segment maxima ex-
hibit similar behavior and are also candidates for precision downgrade.

Apriltags performance vs error tradeoff

Finally, we used our tool to visualize the tradeoff between performance gain and error
per function. Figure 5.8 illustrates the tradeoff. There is a cluster of functions at the
bottom right, which are strong candidates for precision downgrade due to low error and
a relatively high number of executed instructions. However, while we know the isolated
impact of individual functions on error, we do not know what interactions will arise when
combinations of functions are downgraded simultaneously. In the next section we describe
experimentation to explore this effect.

5.4.5 Identifying Precision Levels

Using the information provided in Figure 5.7 and 5.8, we can start downgrading parts of
the program to single precision. The downgrade process is currently manual, although it
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Figure 5.8: Tradeoff between performance gain and error for every function in the Apriltags
library.

could be automated as discussed in Section 5.7. Currently, the downgrade process includes:

• changing double-precision passed-by-value parameters to single precision, and

• changing local variables to single precision.

In this case study, each function downgrade took a few minutes and was mostly a find and
replace process. The harder problem is identifying which functions to downgrade. Since
there is a prohibitively large number of function combinations, we are only concerned with
testing a limited number of combinations. We use the term precision level to refer to an
implementation where a particular subset of all functions is downgraded to single precision.
The following sections detail the proposed methods of defining different precision levels.

Levels defined by score

The first method attaches a score to a function, and converts functions with the highest
score first, greedily adding more functions. We use the score formula in Equation 5.1 with
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c = 1. The top 5 functions are atan2 (a libmath function that cannot be downgraded),
quad goodness, matd svd tall, sincos (similar to atan2), and matd multiply.

We define two levels to experiment with levels by score:

• Level-1: quad goodness

• Level-2: quad goodness and matd svd tall

Levels defined visually

The second method is to use an arbitrary line on the tradeoff graph to decide which
functions are downgraded (below the line) and which are not. An example of such lines
is shown in Figure 5.8. This method helps make changes more coarse and can be used in
combination with scores, as we will show in the next section. We use the lines in Figure 5.8
to define our levels visually:

• Level-3: quad decode task, quad segment maxima, and quad decode.

• Level-4: fit line, fit quad, quad segment maxima, quad decode, and
quad decode task.

5.5 Experiments and Results

In this section, we demonstrate how to define precision levels and ultimately find a com-
promise between performance and error.

5.5.1 Metrics

We use a set of metrics to measure the quality of an implementation from the perspective
of performance as well as error. The following are the metrics we measure in each run:

• Speedup vs. the double-precision version by measuring frame processing time.

• Energy vs. the double-precision version.

• Power vs. the double-precision version.
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• Number of false positives per frame (i.e., the library detects tags that do not exist
or have the wrong ID).

• Number of false negatives per frame (i.e., the library fails to detect existing tags in
the frame).

5.5.2 Experimental setting

We perform our tests on two architectures: an Intel Core i5 machine (i5-4460S CPU @
2.90GHz, 4 cores, 6MB Cache, 8GB RAM) and a Raspberry Pi 3 (1.2 GHZ quad-core ARM
Cortex A53, Broadcom VideoCore IV GPU, and 1 GB LPDDR2-900 SDRAM). Testing
on Raspberry Pi illustrates the portability of the analysis, which was done on an Intel
machine using Intel’s Pin instrumentation tool, to a different architecture. The Raspberry
Pi is widely used in robotics with some interesting applications [111]. As a test set, we
used a video from [122] to verify the significance of our conclusions against thousands of
frames.

5.5.3 Speedup results

Figure 5.9 shows the speedup per precision level. As can be seen, all precision levels almost
always dominate the double-precision implementation. Table 5.2 shows the percentage of
frames where single precision runs faster than double precision (% with speedup). The table
also shows the average speedup across all frames.

There are some interesting points to observe:

• Level-1 is the most reliable in terms of speedup, since the speedups are tightly
distributed, and the number of times a frame runs slower in Level-1 is less than 1%.

• Level-2 improves speedup significantly. This is due to the downgrade of matd svd tall
to single precision. Figure 5.8 indicates that this function is in the top five functions
with most executed instructions. However, speedup is loosely distributed indicating
that the function affects a part of the program that relies on precision to terminate.
This is also supported by the function’s high error (see Figure 5.8).

• Level-3 and Level-4 provide higher speedup than Level-1 with a relatively tight
distribution. However this comes at the cost of consistency.
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Figure 5.9: Speedup per precision level.

Table 5.2: Apriltags levels performance and accuracy.

Level Avg. Speedup % with Speedup Accuracy

Level 1 1.30x±0.09 99.30% 100%
Level 2 1.70x±0.25 98.60% 96.64%
Level 3 1.35x±0.18 98.06% 61.48%
Level 4 1.36x±0.249 95.77% 60.51%

5.5.4 Accuracy results

Figure 5.10 shows the number of false positives and negatives per level. As can be seen in
the figure, Level-1 has no false positives or negatives since tags in all frames match those
in the double-precision implementation. However, the accuracy drops significantly when
downgrading the Level-3 functions as well as the Level-4 functions. This is indicative of
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Figure 5.10: False positives / negatives for each level.

a compounding effect that increases error when these functions are downgraded. Table 5.2
lists the accuracy (# of frames with no false positives or negatives / number of frames).
Thus, Level-1 appears to achieve perfect accuracy (against our test dataset) while pro-
viding a 1.3x speedup. However, the decision of which level to select is to be made by the
user, who can tweak their implementation to match a desired accuracy. In some cases, 96%
might be acceptable, and Level-2 could be selected for its more significant 1.7x speedup.

5.5.5 Energy results

Figure 5.11 shows the ratio between the energy consumption of each precision level versus
the energy consumption of the original double precision implementation. This is measured
per frame such that the comparison is fair. We use Intel’s RAPL [155] to determine energy
consumption. As expected, performance gain also results in energy reduction. Level-1
reduces energy consumption on average by 16%, Level-2 by 33%, Level-3 by 20% and
Level-4 by 21%. Similar to our remarks on speedup, Level-1 seems to be more consistent
in its improvements. This is attributed to the Level-1 modification not affecting the
iterative process of convergence, which can sometimes cause longer run times.

Figure 5.12 shows the ratio between the power consumption of each precision level
versus that of the original double-precision implementation. We use Intel’s RAPL to
determine the average power consumption. Interestingly, all precision levels consume more
power than the double-precision implementation. On average, all levels increase power
consumption by around 10%. We investigated the reason behind the increase in power
consumption, first exploring the CPU frequency and idle status during execution. We used
powertop [154] to log the percentage of time the CPU spends in each frequency as well as
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Table 5.3: Apriltags perf statistics.

Implementation CPU Cycles Instructions IPC

Double precision 18.1× 109 25.0× 109 1.39
Level-1 13.9× 109 26.7× 109 1.92
Level-2 10.0× 109 20.5× 109 2.04
Level-3 13.2× 109 25.3× 109 1.91
Level-4 13.4× 109 25.7× 109 1.91
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Figure 5.11: Energy ratio per precision level.

idle. We used this log to calculate the weighted average CPU frequency. After comparing
the average CPU frequency across different levels and different frames, we failed to prove
that there is any significant difference between levels in terms of CPU frequency. This was
confirmed using a t-test.
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Figure 5.12: Power ratio per precision level.

Next, we verified whether there is a significant difference in the number of CPU cycles
used by the single precision levels versus double precision. We used perf to count the
number of CPU cycles and instructions. Table 5.3 shows the average number of cycles and
instructions per precision level, as well as the instructions per cycle (IPC). As shown in
the table, reduced-precision levels lower the number of cycles by approximately 25%−55%
while increasing the number of instructions per cycle by 37% − 47%. The increase in
instructions per cycle shows more optimized pipelining due to the use of more efficient
32-bit vectorization. This explains the 10% increase in power consumption despite all
implementations running at roughly the same CPU frequency.

5.5.6 Raspberry Pi results

We repeated our experiments on a Raspberry Pi 3 board to validate the impact of reduced
precision on different architectures. The Raspberry Pi 3 is equipped with an ARM Cortex
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Table 5.4: Apriltags on Raspberry Pi.

Implementation Speedup Energy Ratio Power Ratio

Level-1 1.21x±0.07 0.74 0.92
Level-2 1.61x±0.23 0.59 0.91
Level-3 1.27x±0.17 0.79 1.03
Level-4 1.23x±0.25 0.78 0.97

A53 (ARMv8) quad core processor. The analysis was based on Intel’s instrumentation
tool, running on an Intel processor, so it is interesting to see the performance and error of
precision levels on an ARM processor. To measure power, we use a USB power meter. Due
to timing constraints, we tested only 100 frames on the Raspberry Pi as it is significantly
slower than an Intel Core i5.

Table 5.4 summarizes the performance of the precision levels on the Raspberry Pi. As
shown in the table, speedup is similar to that on the Intel processor. Energy savings are
higher on the Raspberry Pi than on the Intel processor, which is encouraging for a versatile
device in embedded systems. The power consumption is generally the same across different
levels versus double precision. While the Intel processor employs sophisticated pipelining
technologies resulting in higher power consumption of single precision levels, the Raspberry
Pi power consumption is slightly less for single precision versus double precision in most
cases.

5.6 Discussion

In this section we discuss several remarks on our proposed analysis.

Effectiveness of isolated error analysis. Since our analysis isolates error per function,
inter-functional error propagation is not captured. As mentioned earlier, identifying the
impact of any combination of functions on error is a combinatorial problem. Our analysis
approach approximates this using isolated error, which we have shown is capable of yielding
positive results. Moreover, using test data to verify different precision levels helps identify
levels where actual error does not match predicted error.
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Portability of analysis results. Since our tool uses Intel Pin instrumentation, it can
only be used on architectures where Pin is supported. If the program cannot run on
Pin-supported machines, we will not be able to collect error data. On the other hand,
the program itself can be deployed on architectures different from the one used to collect
error data. If the floating-point behavior is drastically different between two architectures,
our function downgrade recommendations may be erroneous. However, most architectures
adhere closely to the IEEE 754 specification for floating-point arithmetic, ensuring that
results are portable up to compiler-related differences. We have also demonstrated that our
recommendations were useful on at least one very different architecture (the ARM-based
Raspberry Pi).

Utility of methods for defining precision levels. We proposed two methods to
recommend which functions to pick first when experimenting with downgrading precision:
a score method and a line based separation method. The difference between the two
methods is as follows: line based separation will include cheap conversions, i.e. small
functions that have low impact on error and a low number of instructions. Score based
selection will target the functions with the highest executions to error ratio. This can
result in different outcomes depending on the application. In our case study, it appears
that cheap conversions in the line based approach (levels 3 and 4) cluster into a significant
drop in accuracy, due to interactions. However, the score based method results in higher
accuracy and speedup. This outcome could be different for different applications, and thus
it is important to use selection heuristics such as those we propose to reduce the search
space and provide acceptable performance improvements.

Recursive functions. Since we reset error upon entering the function, recursion should
still be supported. An interesting scenario would occur if recursion depends on the float-
ing point value converging. We encountered a similar phenomenon but with loops. For
instance, let’s assume the function recurses 10 times at double precision and 20 times at
single precision. Since we are using Pin to shadow the original double precision execution,
we only record error for 10 recursive calls of the function at single precision. It is safe to
assume that the error at the end of these 10 calls will be higher for single precision. This
higher error will proxy the cost of downgrading the precision of the recursive function, and
produce an appropriate recommendation.

Effect of sampling. Sampling can result in missing key computations that affect the
error reported for the function. The user is responsible for managing the tradeoff between
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accuracy and instrumentation time. However, since we are using average error to make
recommendations, a few extreme error values will not have a strong impact on the average
error. Our approach in the case study of this chapter was to start at a low sampling
frequency and incrementally increase the frequency until there was no change in the shape
of error curve.

5.7 Summary

In this chapter, we presented a novel approach for identifying parts of a program that
can tolerate lower precision with little increase in overall error. The approach focuses
on the function granularity, quantifying the error and performance gain resulting from
downgrading a function to single precision. We proposed multiple approaches to select
functions for reduced precision based on the quantification made by our tool.

To demonstrate the applicability of the proposed approach, we applied our methodology
on a robotics vision case study. We analyzed the code of a C library responsible for
detecting 2D barcodes in input video streams. We demonstrated that our approach can
identify functions that have the least impact on error while providing a large performance
boost. To validate our tool’s analysis results, we downgraded several suggested functions
to single precision and measured accuracy and performance. Results indicate that we can
achieve a speedup of 1.3x at no cost to accuracy with respect to our test dataset. Results
also show that a speedup of 1.7x can be achieved at a loss of only 4% of accuracy.

We further expanded on the utility of the proposed approach for embedded systems
by studying the energy and power consumption of the reduced precision implementations.
We show that we can achieve a 16% energy reduction on Intel and a 26% energy reduction
on ARM with an implementation that has perfect accuracy yet reduced precision. By
sacrificing 4% of accuracy, energy reduction can reach 33% on Intel, and 41% on ARM.

Our analysis of the applicability of our approach to several systems resulted in the
conclusion that the proposed approach is most effective in floating-point intensive appli-
cations. Applications that utilize floating-points in computations on low-precision sensory
data are not suitable candidates for our approach, since it is often the case that the sensory
precision eclipses the difference between single and double floating-point precisions. Our
approach is most suitable for applications involving complex mathematics, which is the
case for almost all vision, speech, and AI applications.
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Chapter 6

Generalized Model

In Chapter 4, we introduced a flexible model that supports managing tradeoffs of renewable
and non-renewable resources for task-based systems. We demonstrated that the model can
be used to minimize the makespan of the program by controlling resources such as power
and bandwidth. Such a model can be used to bound the performance of batch systems
with inter-node dependencies.

In this chapter, we combine concepts from Chapters 2, 3 , 4 and 5 to construct a
generalized model for streaming applications. The producer consumer problem discussed
in Chapter 2 is a suitable abstraction for many stream processing systems, and the model
in Chapter 3 which was improved and generalized in Chapter 4 is modified to support
streaming applications instead of task graphs. Moreover, we generalize the energy precision
tradeoff in Chapter 5 to model consumers capable of processing data at various quality
levels.

This Chapter is organized as follows: Section 6.1 discusses the problem statement,
Section 6.2 introduces the proposed generalized model, Section 6.3 demonstrates how the
model can be used to capture the tradeoffs of a toy example, Section 6.4 discusses how to
construct a linear program that optimizes resource consumption, and finally Section 6.5
summarizes the chapter.

6.1 Problem Statement

Parallel stream processing applications involve complicated tradeoffs. The rate of incoming
items forces a tradeoff between infrastructure cost and processing quality. High quality
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output – which could be more complex processing algorithms or a higher sampling rate –
will commonly have an impact on power, energy, and bandwidth. In multistage systems
where nodes are receiving data from one layer, processing it and feeding it into another
layer of nodes, the tradeoff becomes difficult to manage. This is magnified in systems
where load dynamically shifts from one part of the network to another. In such systems,
it is difficult to determine an optimal configuration that would balance tradeoffs cheaply
and dynamically.

Most systems employ manual controls to manage tradeoffs. For instance, commercial
Data Loss Prevention software allows administrators to control the quality of malicious
activity detection according to the expected load [104]. This approach is often targeting
a specific subset of resources, and lacks the flexibility required by large dynamic systems.
Another approach is to aggressively over-provision the processing infrastructure in terms
of machine capabilities (CPU, memory, etc...), network bandwidth, and allocated power
budget such that no limits are hit. This is a very costly approach that is often not possible
and is not future proof.

To that end, this chapter tackles the following problem: assume a stream processing
network where each node in the network encounters a tradeoff between quality of processing
and resource usage. Nodes are subject to resource constraints that can be individual or
collective. Lower quality results in higher error, which propagates through the network
and can potentially impact the quality of subsequent nodes. Our objective is to provide
an efficient methodology to model such a system such that resource bounds are respected
and a chosen goal by the designer is optimized. This goal could be minimizing error,
maximizing quality, minimizing consumption of energy or any other resource modelled in
the system.

In this chapter, we propose an abstract model of stream processing applications. In
our model, the processing nodes are modelled as a network of producers and consumers.
Each node in the network is a consumer of data flowing through its incoming edges, and a
producer of data flowing through its outgoing edges. Processing of data being consumed
/ produced by a node can be performed at a variable quality level. The quality level of
processing dictates the amount of resources used by the node. Resources include power,
energy, RAM, disk, or network bandwidth. In addition to these resources, we model
accuracy as a non-renewable resource that flows through the network and is partially
depleted when a node reduces its quality level. We demonstrate how to use the model
to determine the optimal quality level assignment that minimizes the usage of a specific
resource.
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6.2 Model

In this section, we present our model used to capture parallel stream processing applica-
tions.

6.2.1 The Producer / Consumer Network

A node in the producer consumer network can be a producer, a consumer, or both a
producer and consumer. We define a node v = 〈Pv, Sv〉 as a tuple where Pv is the set of
predecessor nodes from which v receives data, and Sv is the set of successor nodes which
receive data from v.

Let G = (V,E) be a directed acyclic graph. V = {v1, v2, · · · , vN} is a set of vertices
representing nodes, and E is a set of edges represented as ordered pairs of vertices such
that

E = {(x, y) | y ∈ Sx}

where Sx is the set of successors of task x. An edge from x to y represents a stream of
items flowing from x to y, in which case x is a producer (potentially also a consumer) and
y is a consumer (potentially also a producer).

6.2.2 Resources

In this subsection, we demonstrate how to model both renewable and non-renewable re-
sources.

Renewable Resources

Renewable resources are not depleted when an item is processed. Examples of renewable
resources are CPU, power, memory, network bandwidth, and quality. These resources are
instantly reclaimed once an item is processed. We define the set of renewable resources in
the system as follows:

R = {R1, R2, · · ·} (6.1)
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Non-renewable Resources

Non-renewable resources are depleted once an item is processed. Examples of non-renewable
resources are energy, time, and accuracy. For instance, once error is encountered during
the processing of an item along its path through the network, it cannot be reclaimed. We
define the set of non-renewable (depletable) resources as follows:

D = {D1, D2, · · ·} (6.2)

6.2.3 Resource Flows

A resource (renewable or non-renewable) can flow through the network using network flow
principles. We define three variables for every node in the graph:

• ζγv denotes the inflow of resource γ into node v.

• µγv denotes the consumption of resource γ in node v.

• ξγv denotes the outflow of resource γ from node v.

We define the amount of flow going through an edge in the network as νγe where e ∈ E.

Resource Inflow

The amount of a resource flowing into a node depends on the amount of flow carried over
all its incoming edges. Traditionally, the inflow is the sum of all flows on incoming edges.
We generalize this notion using function Z:

ζγv = Zγ
v ({νγe | e ∈ {(v′, v) | v′ ∈ Pv}}) (6.3)

For instance, power is a resource that can be summed over incoming edges. Accuracy is
more complicated since inaccurate data coming from different nodes has a different impact
on the receiving node’s accuracy.
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Resource Outflow

The amount of a resource flowing out of a node is traditionally equal to the amount of
the resource flowing in, which is the conservation of flow principle. This models renewable
resources efficiently, yet does not capture non-renewable resources. We generalize the
outflow using function Ξ:

ξγv = Ξγ
v (ζγv , µ

γ
v) (6.4)

For instance, power is a renewable resource and thus ΞPWR
v

(
ζPWR
v , µPWR

v

)
= ζPWR

v , whereas
energy is depletable and thus ΞE

v

(
ζEv , µ

E
v

)
= ζEv − µE

v .

6.2.4 Resource Bounds

Our model supports bounding resources on either nodes or edges. A bound on nodes is
defined as

bv = 〈γ,N , βL, βU〉

where γ ∈ R ∪ D is the bounded resource, N is a set of nodes that are bounded, βL and
βU are the lower and upper limit of the bound respectively. A bound on edges is defined
as

bv,v′ = 〈γ, E , βL, βU〉

which is similar to bv except that E is a set of nodes that are bounded. A bound on nodes
enforces the following:

βL ≤
∑
v∈N

µγv ≤ βU (6.5)

A bound on edges enforces the following:

βL ≤
∑
e∈E

νγe ≤ βU (6.6)

For instance, if a node v has 8 cores, the maximum CPU usage is 800% as in the common
notation of multicore systems. In this case, a bound b = 〈RCPU, {v}, 0, 800〉 is applied.
The set of bounds in the system is

B = {bv1 , bv2 , · · ·} ∪ {be1 , be2 , · · ·}

Another example is a cluster of nodes that is power bounded. This implies that the sum
of power consumed by all nodes in the cluster should not exceed a specific value. A bound
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b = 〈RPWR, {v1, v2, v3}, 0, 500〉 denotes that the total power consumption of nodes v1, v2
and v3 should not exceed 500 watts.

We use bounds on edges to control the distribution of resources across outgoing edges
of a node. We identify two main methods of assigning flow to outgoing edges: broadcast
and distribution resources.

Broadcast In this case, nodes broadcast their outflow to outgoing edges. Accuracy is
broadcasted, since all outgoing edges of a node carry data with the same accuracy level
that the node produces. We can enforce resource γ to be broadcast using the following
bounds:

∀(v, v′) ∈ E : b(v,v′) = 〈γ, {(v, v′)}, ξγv , ξγv 〉 (6.7)

Distribution In this case, the outflow is distributed across all outgoing edges. For
instance, in a multiple consumer setting any one of a set of receiving nodes can process
items. In this case, the outgoing data flow of the producer is distributed among all consumer
nodes. The objective here is to determine the fraction of data flowing to each consumer
such that resource bounds are respected and the usage of a specific resource is optimized.
We can enforce resource γ to be distributed using the following bounds:

∀v : bv = 〈γ, {(v, v′) | v′ ∈ Sv}, ξγv , ξγv 〉 (6.8)

6.2.5 Configurations

There are various configuration parameters that impact the resource usage of a node and
the accuracy of its output.

• Sampling rate: in some systems, sampling can be supported. In this case, the amount
of resources consumed by a node is probably proportional to the sampling rate. On
the other hand, lower sampling rate is commonly associated with reduced accuracy
or confidence. Hence, sampling rate is a configuration parameter that controls the
tradeoff between resource usage and accuracy.

• Outgoing data rate: the outgoing data rate of a node impacts the resource usage of
subsequent nodes. If subsequent nodes decide to sample this data, then accuracy is
negatively impacted.
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• Precision: some algorithms support controllable precision. The work in [98] demon-
strates the how configurable precision impacts accuracy and resource usage.

• Algorithm alternatives: in some systems, there are different algorithms that can
be used to process the data, with varying degrees of resource usage and accuracy.
For instance, DLP (Data Loss Prevention) systems employ different classifiers for
malicious activity that are designed to have different processing costs [104].

To simplify our model, we abstract all the above parameters into a single quality pa-
rameter. First, we define the incoming and outgoing rates of data. Let Ov be the outgoing
data rate of node v, and Iv be the rate of incoming data to node v. The rate of incoming
data is defined as follows:

Iv =
∑
v′∈Pv

Ov′

where Pv is the set of v’s predecessor nodes. Hence, the rate of incoming data is the sum
of all the rates of outgoing data of predecessor nodes.

We use a single parameter to identify the quality of a node’s processing, which encom-
passes sampling, precision and algorithmic alternatives. Let Qv = {qv,1, qv,2, · · · , qv,k} be a
set of quality levels that node v could use to process items. Also, let κv denote the quality
level of node v such that κv ∈ Qv. Let ϑv : Λ × Qv → Λ be a function that maps an
incoming data rate and a quality level to an outgoing data rate. Note that Λ refers to the
domain of data rates.

Thus, we can define the outgoing rate of a node as follows:

Ov = ϑ(Iv, κv) (6.9)

6.2.6 Relationships

In this subsection, we define the relationships between configurations and resources. Let
ϕγv : Λ×Qv → Ωγ be a function that maps node v’s rate of incoming data and its quality
level to a value in the domain Ωγ of resource γ. Resource γ can be either renewable or
non-renewable. Hence, each node defines a set of functions as follows:

Φv = {ϕγv | γ ∈ R ∪ D− {A}}

where A is the accuracy resource. We exclude accuracy since it is defined differently.
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While accuracy depends on the quality level of a node like other resources, it also
depends on the accuracy of incoming data. We incorporate this notion to model sys-
tems where error is compound, i.e. receiving erroneous data may impact the accuracy of
produced data differently even at the same quality level. This behaviour is common in
precision based quality levels, where rounding error is compounded as more mathematical
operations are performed on a data path [105]. Thus, the accuracy of node v is defined as
follows:

αv = ψv(κv, {αv′ | v′ ∈ Pv}) (6.10)

where v′ is a predecessor node of v, and the set {αv′ | v′ ∈ Pv} is a set of accuracies of all
predecessor nodes of v.

6.2.7 Revised definitions

Based on the definitions introduced in the previous subsections, we now redefine a node as
follows:

v = 〈Pv, Sv, Qv, ϑv,Φv, ψv〉 (6.11)

Thus, the node now includes a set of quality levels (Qv), a function that determines the
rate of outgoing data (ϑv), a set of functions that determine resource usage (Φv), and a
function that determines the accuracy of the node’s output (ψv).

Finally, we redefine the graph as follows:

G = 〈V,E,R,D,B〉 (6.12)

Thus, the graph now defines a set of non-renewable resources (R), a set of renewable
resources (D), and a set of bounds on resources (B).

6.3 Toy Example

In this section, we introduce a toy example we use to demonstrate how our proposed
model can be used to optimize various resources. Figure 6.1 illustrates a simple example
of a producer / consumer network. The network models a hierarchical monitoring system
where v[1,4] are producers of events that are consumed and manipulated by nodes v[5,8].
Nodes v[5,8] then transmit the manipulated events into v9 for aggregation. Node vs is a
placeholder node for enforcing flow-based bounds, which we elaborate on later.
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Figure 6.1: A simple producer / consumer network.

6.3.1 Resource Relationships

First, let us introduce the characteristics of the nodes in the network. Table 6.1 lists the
outgoing rate (O), power (%), and response time (π) of nodes v[1,4] at different qualities.
the quality level for nodes v[1,4] is designated by the sampling rate. Thus, q1 which is the
highest quality level has the highest rate of outgoing items, versus the lowest quality level
q3.

Table 6.1: Nodes v[1,4] resource usage.

O (items per sec) % (watts) π (msec)
q1 q2 q3 q1 q2 q3 q1 q2 q3

v1 100 75 50 80 65 40 10 13.3 20
v2 90 60 30 75 55 35 11.1 16.6 33.3
v3 100 70 40 80 65 40 10 14.3 25
v4 120 90 60 85 70 40 8.3 11.1 16.6

Second, we introduce the power usage and response time of v[5,9]. Resource usage of
nodes v[5,9] is affected by the rate of incoming data and the node’s quality level. The rate
of incoming data is the sum of the rates of outgoing data of predecessors (v[1,4]). Figure 6.2
illustrates the relationship of incoming rate and quality versus power and response time.
As quality decreases, power consumption decreases and response time increases. Note that
outgoing rate of nodes v[5,8] is the same as their incoming rate.

117



40

60

80

P
ow

er
(w

at
ts

)
q1 q2

v5 v6 v7 v8 v9

q3

100 150 200
15

20

25

30

35

R
es

p
on

se
ti

m
e

(m
s)

100 150 200

Incoming rate (items per second)

100 150 200

Figure 6.2: Relationships of v[5,9] quality and incoming rate versus power and response
time.

6.3.2 Accuracy

Next, we define accuracy for nodes v[5,9]. Accuracy is affected by the quality level of the
node as well as the accuracy of its predecessors. In this example we model this relationship
as a linear equation in the following form:

αv = A× Pv +B × Q̂v + c (6.13)

where c is a constant, Pv ∈ Ω
|Pv |
α is a vector of accuracies of node v’s predecessors, and A

is a vector of the coefficients of these accuracies. Q̂v ∈ [0, 1]|Qv | is a unit vector of binary
values indicating the quality assigned to node v while B is a vector of the coefficients of
each quality level. That is Q̂v = (ρv,1, ρv,2, · · · , ρv,|Qv |) such that:

ρv,i =

{
1 κv = qv,i

0 κv 6= qv,i
(6.14)

Table 6.2 assigns values to vectorsA andB and constant c in Equation 6.13 to concretely
define the accuracy of nodes v[5,8]. We define the accuracy of node v9 separately as follows:

αv9 =− 0.12αv5 − 0.06αv6 − 0.07αv7 − 0.04αv8
+ ρv8,1 + 0.89ρv8,2 + 0.71ρv8,3 + 4.0

(6.15)
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Table 6.2: Coefficients of the accuracies of nodes v[5,8] in Equation 6.13.

A0 A1 B0 B1 B2 c
v5 −0.15 −0.01 1.0 0.82 0.67 2.0
v6 −0.14 0.00 1.0 0.85 0.73 2.0
v7 −0.08 −0.09 1.0 0.79 0.62 2.0
v8 −0.12 −0.09 1.0 0.81 0.59 2.0

6.3.3 Resource Flows

In our example, two resources flow through the network: accuracy and response time.
Below we define the functions that dictate how these resources flow in and out of nodes.

Accuracy

we have defined the inflow and outflow of accuracy implicitly in Subsection 6.3.2. We
now detail how the definition maps to the flow of accuracy as a resource. The inflow of
accuracy depends on the specific weights we assign to specific incoming edges. Table 6.2
demonstrates these weights in vector A. For instance, the inflow of v5 is defined as follows:

ζαv5 = Zα
v5

({να(v1,v5), ν
α
(v2,v5)

}) = −0.15να(v1,v5) − 0.01να(v2,v5)

The outflow of accuracy depends on the accuracy of the node as follows:

ξαv5 = Ξ(ζαv5 , µ
α
v5

) = ζαv5 + ρv5,1 + 0.82ρv5,2 + 0.67ρv5,3 + 2.0

which matches v5’s coefficients (B and c) in Table 6.2.

Response time

response time increases as an item accumulates processing time while flowing through the
network. Thus, the inflow response time of a node is the maximum response time across
all it’s predecessors. Let π be the response time resource. We define Zπ (see Equation 6.3)
as follows:

Zπ
v = max

{
{νπe | e ∈ {(v′, v) | v′ ∈ Pv}}

}
The outflow of response time is defined as follows:

Ξπ
v (ζπv , µ

π
v ) = ζπv + µπv
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6.3.4 Resource Bounds

We define seven resource bounds on the example system in Figure 6.1. First, we enforce
five power bounds, denoted in the figure by the dashed rectangular borders. These bounds
are defined as follows:

b%,1 = 〈%, {v1, v2}, 140〉
b%,2 = 〈%, {v3, v4}, 140〉
b%,3 = 〈%, {v5, v6}, 150〉
b%,4 = 〈%, {v7, v8}, 150〉
b%,5 = 〈%, {v9}, 90〉

(6.16)

Next, we define bounds on the response time.

bπ,1 = 〈π, {vs}, 0, 0〉

This bound serves as an initialization of the response time resource. All response time
flows initially from vs onto the entire network. For a resource like energy, the bound at vs
would enforce that the energy budget flows from vs to the rest of the network.

bπ,2 = 〈π, {v9}, 0, 50〉

Thus, the maximum response time allowed at the aggregation node v9 is 50ms.

Finally, we can also initialize accuracy as follows:

bα = 〈α, {vs}, 1.0, 1.0〉

Thus, accuracy is initially 100% at node vs.

6.3.5 Objective

The objective for the toy example is to maximize accuracy at the aggregation node v9:

max αv9 (6.17)
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6.4 Linear Program

The transformation of the model described in Section 6.2 to an ILP is straightforward,
given all flow and resource functions are linear (Z, Ξ, ϑ, ϕ, and ψ). The integer variables
in the model are the quality variables ρ which indicate which quality level a node uses.
In this section, we introduce an LP relaxation of the problem to support solving larger
models in reasonable execution time. The following subsections outline the relaxation.

6.4.1 Quality Fractions

The first step in constructing a linear program relaxation is to replace binary variables ρv,i
with continuous versions. Recall that ρv,i indicates whether node v is configured to run at
quality level qv,i. To transform the discrete choice between quality levels to a continuous
one, we use λv,i ∈ [0, 1] to indicate the fraction of items that are processed at quality level
qv,i. This implies the following:

∀v :

|Qv |∑
i

λv,i = 1 (6.18)

Since we are dealing with stream processing applications, it is not unreasonable to
assume that a consumer can process incoming items at different quality levels based on the
designated fractions λv,i. This assumption becomes more appropriate if the total resource
consumed is linear in the consumption of the individual fractions. Power is a resource
that can be approximated in such a way without significant loss of accuracy [72]. This
assumption allows us to define the resource relationship functions ϕγv in a piece wise linear
fashion:

ϕγv(rv, λv,1, · · · , λv,|Qv |) = ϕγv,1(rv, λv,1) + · · ·+ ϕγv,|Qv |(rv, λv,|Qv |) (6.19)

Where ϕγv,i is a function that calculates the consumption of resource γ by node v
at quality level i. Assuming ϕγv,i(rv, λv,i) is linear in the incoming data rate rv and the
fraction λv,i of items processed at quality level qv,i, we now have a linear expression for the
consumption of resource γ by node v.

6.4.2 Non-linear relationships

The assumption that ϕγv,i(rv, λv,i) is linear in its parameters might be too simplified for
some relationships. A more reasonable assumption is that the fraction λv,i is multiplied

121



by the rate of incoming data rv to scale it proportionally to the fraction of items being
processed at quality level qv,i. In such a case, we have a term that is the multiplication of
two continuous variables, which takes us outside the realm of linear programming. In this
case, we resort back to using the binary variables ρv,i and formulating the problem as an
ILP. Hence, ϕγv,i is defined as follows:

ϕγv(rv, ρv,1, · · · , ρv,|Qv |) = ϕγv,1(rv)× ρv,1 + · · ·+ ϕγv,|Qv |(rv)× ρv,|Qv | (6.20)

This definition results in the multiplication of a continuous variable (rv) by a binary variable
(ρv,i), assuming ϕγv,i is linear in the incoming data rate rv. Fortunately, the multiplication
term can be eliminated using techniques well known in optimization literature [18]. To
eliminate the multiplication term, we replace it with the variable yv,i = rv× ρv,i such that:

yv,i ≤ urvρv,i

yv,i ≤ rv

yv,i ≥ rv − urv(1− ρv,i)
yv,i ≥ 0

(6.21)

where urv is the upper bound of the incoming data rate rv.

To obtain an LP from this formulation, we simply relax the problem by replacing the
binary variable ρv,i with λv,i in every constraint in Inequalities 6.21. Thus, the final form
of ϕγv is as follows:

ϕγv =

|Qv |∑
i

Cv,i × yv,i + Cv (6.22)

where Cv,i and Cv are constants, and yv,i = rv × λv,i.

6.4.3 Accuracy

We showed in Subsection 6.2.6 that accuracy is calculated differently, since it depends on
the quality level as well as the accuracies of the nodes connected to incoming edges (see
Equation 6.10). However, our approach to relaxing accuracy is the same. Let us first define
the accuracy of node v in terms of the binary variables ρv,i:

αv =

|Qv |∑
i

ρvi × ψv,i({αv′ | v′ ∈ Pv}) (6.23)
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where ψv,i is a function that calculates the accuracy of node v at quality qv,i and based on
the accuracy of all predecessor nodes. We assume that ψv,i is linear in the accuracies of
predecessors αv′ . Since the expression now contains the multiplication of binary variables
(ρv,i) by continuous variables (αv′), we replace it with

zv,i,v′ = ρv,i × αv′

which is subject to the same constraints as in Inequalities 6.21. Next, we replace ρv,i with
λv,i to relax the problem. The final form of αv is as follows:

αv =
∑
v′∈Pv

|Qv |∑
i

Cv,i,v′ × zv,i,v′ + C ′v (6.24)

where Cv,i,v′ and C ′v are constants.

6.4.4 Objective Function

The objective function can target any resource modelled in the system, either to be maxi-
mized or minimized. For instance, one objective is to maximize the accuracy at the final
aggregator node. In systems where there are multiple leaf nodes (nodes with no outgo-
ing edges), the objective could be to maximize a weighted average of leaf accuracy, or
maximizing the minimum of all leaf accuracies.

Multiple resources can be optimized if the objective function is linear in all the resource
values. Normalizing and using a weighted average is a well-known approach to combine
multiple objectives into one objective function.

6.5 Summary

In this chapter, we presented a generalized model for representing stream processing ap-
plications with support for complex data flows. We argue that the model can capture
complex systems such as Big Data stream processing workflows, where multiple stages of
manipulations are applied to data to produce the end result. The model represents such
systems as a network of producers and consumers, where nodes can be consumers of data
arriving on their incoming edges, and producers of data flowing through their outgoing
edges.
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The purpose of the model is to manage multiple resource tradeoffs. To that end, we
designed the model to support renewable and non-renewable resources as abstractions for
many system resources present in practical systems. We generalized the model to capture
complex relationships between resources in a simplified manner, that allows for bounding
of performance. We demonstrated that the model can be used to bound multiple resources
in different parts of the network, while optimizing the consumption of a user-specified
resource.

To demonstrate the use of the model in determining optimal configurations, we pre-
sented a toy example which simplifies many relationships with linear abstractions. This
simplification allows using linear programming relaxations to efficiently find optimal re-
source configurations for large and complex systems. Moreover, we discussed the challenges
of constructing a linear program to determine an optimal combination of configurations
that adhere to resource bounds and optimize user-specified resource consumption. We
presented methods to relax the problem to obtain a bound on the objective function.
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Chapter 7

Literature Review

This chapter presents a literature review of of work related to the problems discussed in
the thesis. We begin in Section 7.1 by discussing work related to the low-level optimization
of energy consumption. This covers work that deals with operating system schedulers and
energy management device drivers that optimize energy consumption at the level of p-
states and c-states. In Section 7.2, we discuss work related to the management of power
and energy at the task-level across multiple nodes. Finally, Section 7.3 discusses work
related to the management of precision in floating-point intensive applications.

7.1 Low-Level Energy-Efficient Algorithms

This section discusses the literature related to low-level energy-efficient algorithms. To
organize this section, we divide related work into a taxonomy of three categories:

1. DVS scheduling. An extensive overview of work on DVS scheduling and how it
relates to power-efficient algorithms for concurrency problems.

2. DPM techniques. An extensive overview of published dynamic power manage-
ment techniques. However this line of work does not strictly target the scheduling
community.

3. Energy models for concurrency problems. An extensive review of work that
target the specific niche proposed by our research problem.
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The chapter is organized as follows: Subsection 7.1.1 discusses the literature on DVS
scheduling, Subsection 7.1.2 introduces previous work on DPM techniques, and finally
Subsection 7.1.3 discusses algorithms tied to concurrency problems.

7.1.1 DVS Scheduling

The work on DVS scheduling is diverse between real-time systems, and a workstation-like
model where latency is not an issue, rather a quality of service metric. The following
subsections discuss the different approaches taken in DVS scheduling.

Interval-based approaches

The work in [52,120,123,171,186] discusses interval-based approaches to voltage scaling. In
these techniques, time is divided into intervals during which CPU utilization is studied and
a decision is made on whether to change the CPU frequency. Different classes of schedulers
are considered in this work, mainly differentiated with the approach used to make a CPU
frequency change decision. The two main categories are future-based algorithms that
determine the minimum clockrate to operate at given varying constraints, or past-based
algorithms that utilize recent past to predict the future.

Slack exploitation

The initial techniques to utilize DVS-enabled processors in real-time systems revolved
around static slack reclamation. This is based on the observation that generally processor
utilization is often far lower than 100%, which creates an opportunity to reduce energy
consumption by statically reducing CPU frequency, while still honoring deadlines. The
work in [131] was among the first to introduce DVS-based fixed priority scheduling for
real-time systems. The work in [186] introduced an offline EDF based approach to reducing
CPU energy. The work in [7, 23, 194–196] introduce online scheduling algorithms for real-
time systems.

Stochastic DVS scheduling

A line of work considered devising strategies to reduce the expected energy consumption
of a certain workload on an ideal processor. In this work [54, 55, 181, 193], a probability
distribution of the workload is provided. The work in [54,55] considered scheduling multiple
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tasks based on their worst case execution time. The work in [181] incorporated dynamic
task behavior with slack reclamation to minimize expected energy. The work in [193]
presents offline and online algorithms for hard real-time systems using stochastic workload
information.

Static analysis techniques

A complementary approach is utilizing profiling information obtaining from studying the
control flow graph (CFG) of the program and employing path locality [148]. The work
in [128] argues the scalability issues of obtaining all branch probabilities of large programs,
and instead utilizes knowledge of frequently executed paths.

DVS with power-down strategies

With the observation of the cost of leakage power, it became apparent that consideration
of power-down strategies (DPM) in combination with slowdown (DVS) should be consid-
ered. The work in [70] considered the combined problem for a real-time system. Following
the authors’ work on surveying the algorithmic problems in energy management [69], they
proposed a 3-approximation offline algorithm, and was later followed by an online algo-
rithm [68]. The work in [132] considered the problem for fixed-priority systems. The work
in [88] studied procrastination based scheduling in periodic real-time systems.

Feedback control techniques

Upon realizing the inadequacy of pure DVS techniques in adapting to systems with variable
load, the work in [87, 148, 149] attempted a feedback based approach for soft real-time
systems. The work in [78] extended these approaches to cover hard real-time systems.

Comparison to our work

Our problem differs from work on DVS scheduling in the following aspects:

• Our work does not tackle the problem from a scheduling perspective; specifically not
real-time scheduling, on which most of the focus exists. While DVS scheduling in
real-time systems makes sense, for general systems pure DVS scheduling has been
argued to lack adaptivity to variable load and varying system dynamics [149]. In
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fact, work in feedback control techniques for real-time systems attempts to counter
this deficiency.

• We focus on idle power as well as voltage scaling. The majority of work on DVS
scheduling deals with the problem of selecting the frequency to assign to a task,
with the exception of the line of work by Irani [70], which also considers power-
down strategies. However, similar to the first point, the work is rooted in scheduling
theory and thus studies competitive ratios and performs adversary analyses. This is
a different objective than our problem proposes: namely studying the efficiency of
concurrency algorithms and data structures.

With the differences mentioned, we should also demonstrate how our approach to the
problem builds on top of basic concepts used in DVS scheduling:

• Interval-based scheduling. We utilize the basic concept of interval based schedul-
ing in constructing our adaptive approach. By observing the system periodically
decisions can be made adaptively according to varying workload.

• Slack exploitation. Slack exploitation is a fundamental concept that is utilized in
many approaches in energy management. While it is not used in its strict sense with
respect to scheduling, we study idle periods during which a process is waiting for
input in an under-utilized environment.

• Feedback control. As mentioned above, feedback control is a fundamental compo-
nent in constructing adaptive approaches. We utilize different feedback mechanisms
in designing our adaptive approaches.

7.1.2 DPM techniques

DPM techniques have been extensively studied by both the research community [66, 68,
136,150,157] and industry [3,32,67]. ACPI [32] demonstrates the realization and combined
effort of the industry to tackle the problem of energy efficiency in a mobile and battery
powered era.

Designing DPM strategies

According to a survey on designing DPM strategies [94], research has been classified into
two categories: predictive schemes and stochastic schemes. Recently, approaches based on
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machine learning algorithms have emerged, which creates a third category: learning-based
schemes.

Predictive schemes Predictive schemes generally attempt to predict a device’s usage
based on history, and consequently decides to change the device power state accordingly.
When discussing DPM techniques, we focus on power states in which parts (or all) of the
CPU is idle. The majority of work on predictive schemes follows an adaptive approach,
in which observed system behavior with respect to idle periods affects the prediction of
future idle periods. Various work in the literature has tackled this problem [29, 66]. The
work in [66] uses an exponential-average methodology in predicting the next idle period
and utilizes sleep states accordingly. The work in [29] utilizes a sliding window in the
characterization of non-stationary (initially unknown) service requests.

Stochastic schemes Stochastic schemes use observations to construct a probability
distribution of usage patterns. This is then used to formulate an optimization prob-
lem, for which the solution is a DPM scheme. Various work has tackled such prob-
lem [112, 113, 130, 151]. The work in [130, 151] formulates the optimization problem on
Markov decision processes. The work in [112, 113] uses formal methods to verify the cor-
rectness of a DPM strategy.

Machine-learning schemes Work on machine-learning-based techniques in designing
DPM strategies argues that simple prediction techniques such as those presented in [66,
157] do not perform well when requests are not highly correlated, and do not consider
performance constraints, resulting in a lack of a trade-off control between performance and
energy. The work in [37] utilizes machine learning to select a strategy online. The work
in [160, 161, 164, 170, 189] uses reinforcement learning to construct a DPM strategy. The
work in [160] utilizes Q-learning to learn the best next state given the current system state,
using a reward and penalty approach. However, this approach has a large overhead. The
work in [170] improved the convergence rate by using TD learning.

Further approaches leveraging machine learning target multi-core systems, such as those
presented in [51,59,71,73,187].

OS level DPM techniques

This section introduces various prominent work on OS-level dynamic power management [14]
that have been integrated in actual systems.

129



Linux on-demand governor The on-demand governor [118] has become the defacto
power management controller in linux systems due to its simplicity and effectiveness. It
operates by observing CPU utilization and manipulates CPU frequency such that the
CPU maintains approximately 80% utilization. It supports SMP as well as multicore and
multithreading architectures.

ECOSystem ECOSystem [191, 192] treats energy as a first-class system resource. The
work introduces a currentcy model with which energy accounting is possible per application,
and a target energy discharge can be achieved by fairly allocating currentcy to running
applications and services.

Nemesis OS The work in [110] is similar to ECOSystem in the sense that the objective is
managing energy as a resource. Nemesis OS also employs per process energy accounting, yet
also incorporates a feedback model with applications, where the OS communicates energy
usage to the application which should act accordingly. This is similar to what widely exists
in some mobile platforms with respect to memory management: the OS communicates a
memory warning to the sandboxed application, which should consequently release some
objects to reduce its memory footprint.

GRACE project The Illinois GRACE project [146, 165] argues that all layers of the
system should coordinate to adapt to usage needs while targeting reduced energy con-
sumption. Thus, the project proposes a framework that comprises global adaptation, per
application adaptation, and per layer adaptation.

PowerNap The work in [101] targets server based systems, which are shown to have
generally low utilization. The authors propose a method to transition the system from
fully active to fully idle faster, saving time and energy in the transition process.

Comparison to our work

The approach taken in research on DPM techniques resembles our approach in many ways.
The following points illustrate the similarities:

• Contrary to DVS scheduling, the work on DPM techniques focuses on exploiting idle
time, either exclusively or in unison with frequency scaling. This allows for a more
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integrated approach to managing energy, versus working solely with either DPM
or DVS. Granted, a holistic approach that includes DVFS, DPM, and scheduling
is still considered by part of the community as a goal that would allow for seam-
less integration between the three components, versus the independence and lack of
communication that currently exists [85].

• Our problem shares the demand for online adaptive approaches with work on DPM
techniques. More specifically, the work mentioned above on DPM veered from the
path of theoretical scheduling and competitive analyses, which is the approach we
followed.

• Work on DPM targets general purpose systems that can experience variable work-
loads, which has directed most of the work towards experiments with real work-
loads [101], or integration in the linux kernel [118, 146, 192]. This is illustrated in
Subsection 7.1.2.

• Work on DPM involves some kind of prediction mechanism to adapt to varying
workload (Subsection 7.1.2). Our approach to the proposed problem also utilizes
prediction methods.

Our approach compared to work on DPM techniques is better illustrated as a complemen-
tary relationship. In fact, our work should integrate nicely with work on DPM to form
a diverse basis of OS-level energy management. This is further clarified in the following
points:

• Our work assumes a DPM strategy is in place. This is a fundamental differentiator
between our work and the literature on DPM. Our objective is not to replace current
DPM techniques with smarter / more robust alternatives. We assume the existence
of a DPM strategy and a DVFS governor. Our objective is to improve the energy
efficiency of concurrency primitives given the existence of DPM and DVFS.

• Hence, our focus on concurrency primitives complements the work on DPM by fol-
lowing mostly the same approach but targeting a different part of the OS: namely the
part most involved in idling and activating the CPU, i.e concurrency. While DPM
techniques are closer to the hardware level, mostly concerned with management of
CPU idle states or frequencies, targeting concurrency allows us to be closer to the
application level, covering multithreaded behavior and resource producer / consumer
relationships.
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• Most of the work on DPM uses as input some low level utilization monitor such as
CPU utilization, performance counters, interrupt monitors, etc... However, since our
work is concerned with concurrency primitives, our input is data item streams or
data structures involved in concurrency operations. This allows for more insight into
the behavior of the application, without getting involved into the user code. This
is a main objective in energy management research in general, to be seamless and
transparent to the developer. We believe by targeting concurrency primitives, we
reside in a niche that is closest to the application yet can be fully automated without
developer assistance. This is in comparison to some currently existing techniques
that require a developer to call certain API that provides information on the energy
demand of a certain task.

7.1.3 Energy Models for Concurrency Problems

This section discusses work most closely related to our work in Chapter 2. The work cited
in this section mostly targets energy modelling of concurrency data structures.

Work on energy models

The work in [31] uses performance counters to estimate the power consumption of a system.
The paper proposes power weights, which map hardware performance counters to power
consumption. The work in [168] proposes a method to estimate per-core power consump-
tion using CPU frequency and IPC as the only PMC used. The work in [163] proposed a
per-instruction power model, in which they calculate a cost per instruction and extrapolate
power consumption of compositions.

Work on energy models for queues

The work in [65] experimentally evaluates the performance and energy of both lock-based
and lock-free FIFO queues using a set of contentious workloads. By comparing execution
time, peak power, and total energy consumption, the paper concludes that lock-free queues
are more energy efficient than their lock-based alternatives.

The work in [44] compares locks to software transactional memory in terms of energy
efficiency. The premise of the paper is based on the fact that synchronization techniques
are designed to exploit multicore architectures and are optimized for performance. With
the increasing demand for energy efficient systems, it is necessary to study the energy
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efficiency of popular synchronization techniques. While comparing locks with STM has
been done before [108], this work is the first to execute the comparison on real hardware.
The paper also studies the impact of DVFS and DPM strategies on the energy consumption
of synchronization techniques.

The work in [6] introduces an analytical model for the energy consumption of lock-free
queues. The model focuses on steady state behavior as its basis. The paper studies both
performance and power dissipation of lock-free queues, by constructing models for each.
Such models are based on a subset of data points and thus are more feasible to construct
than exhaustive stochastic approaches that are used to build energy models.

Comparison to our work

Our work can be compared to the work on energy models for concurrency problems with
the following points:

• Energy modelling provides the distinct advantage of simplicity in prediction of energy
demand of a system and its feasibility by avoiding exhaustive empirical analysis.
However, such models suffer from two drawbacks: (1) assumptions that limit the
applicability of the model to a diverse range of systems, and (2) low accuracy due
to extrapolation. Active research in energy modelling should result in high fidelity
models with reduced empirical dependence as shown in [6]. In that sense, currently
we rely on online adaptation to construct real-time models used to make energy-
aware decisions, yet leveraging advanced energy models partially or fully can further
improve our results. Thus, the work on energy modelling should provide a launching
point for our energy management techniques.

• Our objective is managing energy consumption online. An inherent condition is
that these approaches should have a low energy footprint, otherwise its existence
defeats its purpose. This requires lightweight models with minimal computational
and energy demands. This objective is not stressed in work on energy modelling,
since their purpose is to construct a high fidelity model and not a robust online
mechanism.

• Another differentiator to consider is that we assume the existence of a DPM strategy
and a DVFS governor. An energy model that takes these factors into account will
be considerably complex, again defeating its purpose.
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• In comparison to the work in [6], the lack of a strict model allows us to adapt to
variable workloads and provide a more robust experience. While the work in [6] is
based on the assumption of a steady state system, we use actual datasets and real
life experiments to provide more confidence in the applicability and adaptability of
the proposed approach.

7.2 Cross-node Power and Energy Management

This section discusses the literature related to the problem of managing power and energy
in compute clusters. To organize this chapter, we divide related work into a taxonomy of
three categories:

1. Dynamic workload distribution. An overview of work on dynamic workload
distribution as an early alternative to power distribution.

2. Energy saving. An overview of published work on reducing energy consumption of
compute clusters. We show how this problem differs from the proposed problem.

3. Power distribution. An extensive review of work that target the specific niche
proposed by our research problem.

The section is organized as follows: Subsection 7.2.1 discusses the literature on dynamic
workload distribution, Subsection 7.2.2 introduces previous work on energy efficient com-
puting clusters. Subsection 7.2.3 discusses algorithms and runtimes for power distribution.
Finally, Subsection 7.2.4 presents a summary of the work on power management in large
scale data centers and illustrates how our research problems fits in this spectrum.

7.2.1 Dynamic workload distribution

Load balancing has been studied extensively decades ago. With the explosion of cloud
computing, load balancing in internet scale services is crucial, and the literature on the
topic is dense. The survey in [114] provides an overview of the current state of load balanc-
ing in cloud computing. However, the rising relevance of heterogeneous clusters mutated
the problem towards dynamic workload distribution based on node capabilities [137]. In
this section, we discuss different approaches to improving performance in heterogeneous
clusters.
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Performance in heterogeneous clusters

The work in [13,173,175,176,185] is among the first to study the performance of a parallel
program in a heterogeneous environment. The work in [13,173,185] attempts to construct
models to evaluate and predict the performance of a parallel program running in a hetero-
geneous cluster. The work in [175, 176] is among the first to suggest adaptive techniques
to manage a resource - namely memory - in a heterogeneous setting.

Load balancing in heterogeneous clusters

The work in [16,19,129] tackles load balancing in heterogeneous settings. The work in [19]
specifically addresses the problem of assigning tasks to nodes according to node capabilities.
The work in [129] focuses on I/O intensive applications, and approaches the problem by
proposing a method to migrate high intensity I/O bound workloads to low I/O utilization
node.

The series of papers by Yang et al [27,183,184] tackle the interesting problem of schedul-
ing parallel loops on heterogeneous clusters. They propose a series of methods and enhance-
ments to build self-scheduling parallel loops.

MPI

Naturally, the evolution of the work presented in the previous sections led to the focus on
specific sets of applications that are widely used in HPC. The first candidate is MPI. The
work in [17] targets building an adaptive MPI layer that relies on migration to achieve
load balancing. The book in [74] compiles most of the work on object migration, and
includes work on related frameworks such as MPI and Charm++. Papers such as [53,86]
target building a heterogeneous message-passing platform. The work in [86] provides the
programmer with interfaces that allow for describing an underlying parallel algorithm that
supports heterogeneity. The work in [53] presents an architecture for heterogeneous support
for Open MPI that is transparent to the user. The paper classifies heterogeneity into four
categories: processor, network, run-time environment, and binary heterogeneity. Our main
focus is processor heterogeneity.

MapReduce

The work on optimizing the performance of MapReduce on heterogeneous has gathered
especially significant attention. Due to its widespread use in cloud computing, performance
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optimization of MapReduce on heterogeneous clusters has been extensively studied. The
work in [2, 24, 127, 162, 180, 190] all deals with optimizing MapReduce in heterogeneous
environments. In [190], the authors identify that the task scheduler of Hadoop [172] can
cause significant performance degradation in a heterogeneous cluster. The authors propose
a new scheduling algorithm (LATE) that improves performance in a heterogeneous cluster.
The work in [162] also proposes a Hadoop scheduler but one that caters to heterogeneous
workloads. With the same objective, the work in [180] focuses adapting Hadoop to hetero-
geneous clusters, yet via data placement. The work in [24] criticizes the LATE scheduler
due to its static operation, and suggests an adaptive scheduler that constantly updates its
decisions according to the continuously varying environment. The work in [127] extends
the adaptive scheduler with knowledge of the underlying hardware capabilities.

Comparison to the proposed problem

The proposed problem has one fundamental difference from the problems tackled in this
section: power distribution versus workload distribution. The basic argument is that
workload distribution suffers from the following drawbacks:

• Static workload distribution is difficult. The redesign of parallel algorithms accu-
mulating decades of work on design and implementation is difficult and costly to
achieve. It also relies heavily on models of the heterogeneous cluster and its var-
ied capabilities. This is a fragile dependence, since small changes in the cluster can
vary the output significantly. Further complications such as multiple tasks running
concurrently increases the complexity of the model and the difficulty of the static
distribution decision. Another example is software aging of a node, which again has
to be mitigated in the static distribution decision.

• Adaptive workload distribution is costly. While adaptive workload distribution is an
alternative to static distribution that avoids most of its problems, it is costly in terms
of communication, overhead, and subsequently energy. Transferring of data between
nodes to mitigate heterogeneity is bound to introduce overhead that does not exist
in a static distribution setting.

Another major difference is that the work mentioned above does not consider power or
energy efficiency. The next section presents an overview of work targeting energy efficiency
in HPC clusters.
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7.2.2 Energy saving

The work on energy efficiency in clusters spans multiple research directions. The survey
in [92] covers the various techniques in power management for HPC. Most of the basic
techniques have been discussed earlier in this article, however the survey discusses metrics
applicable to the HPC domain, and profiling techniques for parallel applications. The
following subsections detail the different research directions beginning with metrics and
profiling, and then categorizing research efforts into work related to runtime systems, and
work related to studying optimal energy savings.

Metrics

As mentioned above, the survey in [92] discusses metrics used for evaluation of the energy
efficiency of an HPC cluster. The most basic metric is energy-delay to the nth (EDn) [119],
which originated in the VLSI community. ED2P (ED2) was first introduced by [20] at-
tempts to cancel out the exponential effect of frequency scaling (energy is directly pro-
portional to the square of frequency in most contexts). In [47], the author proposes a
generalized metric called Weighed ED2P, which accounts for the variation in systems. The
work in [63] is among the first to argue that classical metrics such as the performance-power
ratio and energy-delay product are biased for massively parallel systems.

Energy profiling

The work in [46] proposes an analytical model (PowerPack) to predict execution time in
power-constrained clusters. The model also predicts the energy-delay tradeoff according to
various system configurations. The work in [152] uses PowerPack to study the power and
energy profiles of the HPC Challenge benchmark. This paper is able to use PowerPack
to correlate application functions to power profiles, memory access patterns to power con-
sumption, and energy consumption to workload. PowerPack is further extended in [50] to
support multicore multiprocessor nodes and resolves the issues arising from applying DVFS
to such nodes. Similarly, the work in [153] proposes an analytical model that is based on
iso-efficiency [80]. The paper denotes their proposed model as iso-energy-efficiency, and
applies it to various applications in the NAS parallel benchmark [9].
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Runtime systems

The work in [48, 62] proposes a distributed DVS scheduling framework to reduce energy
consumption in HPC clusters. The work studies the energy-delay tradeoff when using their
respective runtime systems. The work in [49] extends that in [48] to support autonomous
DVS scheduling on clusters, as well as support for multicore multiprocessor systems. The
work also couples the run time system with a performance prediction model. The work
in [49] relies on a feedback mechanism, where history based performance counter readings
are used to determine the next frequency to use.

Optimal energy savings

Many researchers targeted the problem of finding optimal energy savings without impacting
performance. The work in [43] studies the trade-off between energy and delay for a wide set
of applications. The paper also studies metrics to use to predict memory or communication
bottlenecks. The paper makes two significant conclusions: (1) in the case of programs
that have a memory or communication bottleneck, power management can reduce energy
consumption significantly while costing small delay. (2) for some programs, increasing
the number of nodes and decreasing their operating frequency can in fact reduce energy
consumption and concurrently improve performance.

The work in [64, 93] attempted to tackle the problem on a single processor. The work
mainly proposes an alternative DVFS strategy that maintains the same performance at
reduced energy consumption. The work in [174] discusses the effectiveness of using control
theory in power management. The series of papers [177–179] constructs an ILP model
to determine the minimum energy consumption that a program can consume on a single
processor. Then, the authors propose a heuristic to approximate the ILP, and couples this
with an analytical model for energy consumption prediction.

Comparison to the proposed problem

The proposed problem differs in multiple aspects from the work on energy saving. These
aspects are as follows:

• Our objective is not to reduce energy consumption. The issue with this objective is
that it sets the work on track to the highly argued territory of energy versus delay.
With exascale computing demands becoming increasingly imminent, attempting to
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improve performance given a provisioned power bound is a more realistic objective,
specially that delay is and will generally always be intolerable in the HPC domain.

• Very little of the work on energy efficiency in HPC clusters targets heterogeneous
clusters. We deal with two types of heterogeneity: processor and workload. While
there is an abundance of work on heterogeneity with the objective of performance (see
Section 7.2.1), very little work consider the problem in a power-constrained setting
or from an energy efficiency perspective.

7.2.3 Task-Level Power Distribution

In this section, we discuss work most closely related to our work in Chapters 3, 4, and 6.
We will discuss five main papers, each in its own subsection, with a comparison to the our
work.

Minimizing execution time on energy-constrained clusters

In [156], the authors propose an analytical model coupled with actual program execution to
determine a schedule that minimizes execution time given a bound on energy consumption.
A schedule in the context of the paper is a tuple identifying the number of nodes to be
used, and the sequence of frequencies to assign to each computational phase. The authors
propose a method that combines performance modelling, prediction and actual program
execution, to determine the minimum execution time. The authors claim that the proposed
method is an improvement over an exhaustive search in the set of all possible schedules.

Our research differs from this work in the following points:

• Our setting is fundamentally different than that of [156]. We attempt to reduce
execution time (which is a common goal) given a power bound (not an energy bound),
in a heterogeneous cluster (versus homogeneous) online (versus offline).

• We do not require trial runs of the program to construct a performance model. In
fact, we do not attempt to construct performance models.

• The task model in this work is simple and hides complex dependencies and relation-
ships that exist in most parallel applications.
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Jitter

In [75], the authors attempt to exploit slack time to reduce energy consumption. The
proposed framework decreases the frequency of nodes that are assigned less computation,
thus resulting in an overall reduction in the cluster energy consumption. The idea behind
the paper is as follows: if a node is assigned less computation than its peers, it will probably
arrive at a global synchronization point earlier than other nodes. If we were to decrease
its frequency while it executes its job, it would arrive just in time to the synchronization
point concurrently with its peers, which will result in all nodes unblocking and continuing
execution.

Our work and proposed approach differs from this work in the following key points:

• Our problem setting is different. The objective of the work in [75] is to reduce
energy consumption while minimally impacting performance. It has been argued
repeatedly that delay is not acceptable in the HPC community. We attempt to
improve performance given a power budget, which is a more acceptable goal and
which supports exascale computing.

• This point is further exemplified in the results mentioned in the paper. While energy
is reduced by 8%, execution time is increased by 2.5%. This launches the debate
on the value of both energy reduction versus execution time increase. Such a com-
parison depends on many external factors and hence limits the applicability of such
approaches in general.

• Our proposed approach builds on top of a task dependency model, where blocking
nodes are detected in run time.

• Jitter requires a special directive to indicate the completion of a computation phase.
Our problem requires a developer-transparent approach.

• Our proposed approach simultaneously decreases the frequency of a blocked node
and increases the frequency of the blocking nodes to improve overall performance.
We propose a ranking mechanism to sort blocking nodes and determine their quota
of extra power.

Bounding energy consumption

In [141], the author addresses the problem of determining a DVS schedule across the cluster
such that energy consumption is minimized. While the problem of assigning frequencies to
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jobs to minimize energy consumption is NP-complete, the authors proposes an LP model
to bound the energy consumption of an application given its communication trace and
the cluster characteristics. This is very useful to evaluate run time algorithms, since the
quality of the algorithm can be quantified against the energy consumption bound.

Our research problem and proposed approach differs from this work in the following
key points:

• The work in [141] proposes a method to bound the energy consumption of an MPI
program using an LP model that knows the execution time of jobs on machines and
the effect of changing the frequency on their speedup. Our work proposes an online
heuristic that distributes power dynamically without knowledge of the jobs. This is
a major distinction.

• Bounding energy is a different problem versus minimizing execution time given a
power budget. The constraints are different, and as of yet there is no LP formulation
for the problem (specifically for a heterogeneous cluster), versus the availability of
an LP formulation for the energy bounding problem.

• While our execution model is similar to the work in [141], our execution model extends
it by identifying which jobs run concurrently via the ”stretching” mechanism. This
is preprocessed ahead of formulating the ILP model.

• Another major distinction is that our execution model supports heterogeneous clus-
ters, versus the homogeneous cluster discussed in [141] based on its execution model.

MIMO

In [169], the authors present a control theoretic approach to power management in a
cluster setting. The authors argue that single-input-single-output (SISO) control models
used in the literature are only capable of controlling a single node, and fail to take into
consideration a cluster in which multiple nodes share the workload. Thus, the paper focuses
on multiple-input-multiple output (MIMO) control models. The solution presented follows
standard controller design methodology: first, system identification is used to construct a
model of the cluster, then a MIMO controller is designed based on the cluster model.

Our research problem differs from the work in [169] in the following points:

• The solution in [169] requires using system identification to build a controller that
is tailored for a specific cluster. The solution cannot be automatically deployed and
hence requires significant preprocessing.
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• The solution does not consider data dependency between nodes, which most probably
will require a non-trivial power distribution across the cluster.

• Concordantly, the paper does not construct a theoretical optimal solution that could
be used a measuring stick with which we evaluate online solutions.

• The work does not support heterogeneity in the cluster hardware.

Adagio

In [142], the authors present a run time system similar to Jitter, yet improves on it in
many aspects. First of all, the authors claim the delay is negligible (less than 1%). The
run time system is transparent to the developer and thus does not require extra directives
to be added to the code. Adagio works as follows:

• Adagio first makes predications about the next task using historical observed stack
traces which are recorded when Adagio intercepts MPI calls.

• The first time a task runs, it is executed at maximum frequency.

• Adagio uses slack information to gradually slow down the task while maintaining its
historical information.

Our research problem and proposed approach differs from this work in the following
key points:

• Adagio targets reducing energy consumption. This is why it can be deployed sepa-
rately on each node in the cluster. All the operations are local and thus optimizations
cannot come from a holistic point of view, which an offline optimal scheduler will be
able to achieve. This is contrary to our problem, which targets reducing execution
time while enforcing a cluster power bound. Consequently, our proposed approach
involves communication among nodes to coordinate power distribution.

• Critical path detection is also localized and hence there is lack of support for het-
erogeneous clusters where a critical path consistently spans multiple nodes. Our
approach is designed to support heterogeneous clusters by adapting power distribu-
tion dynamically to mitigate differences in capabilities among nodes.
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• Our approach builds on top of a task dependency model which Adagio does not
support due to its locality. In our approach, a task dependency graph is constructed
in run time to determine blocking nodes and rank their criticality, which is used to
determine their power quota.

• Adagio only employs slowdown, while our problem requires optimal power distribu-
tion, which includes slow down and speed up. As mentioned earlier, our proposed
approach simultaneously decreases the frequency of a blocked node and increases the
frequency of the blocking nodes to improve overall performance.

7.2.4 Summary

This subsection presents a summary of research on power management in HPC which
has been compiled in [92]. We extend this compilation by illustrating how our research
problem fits in the spectrum of research on the topic. Table 7.1, which is presented in [92]
compiles most of the work we mentioned in the previous section, as well as others. We
have extended the table by adding one row at the end to describe our research problem
using the same comparison points present in the table. As shown in the table, our research
problem proposes a question that is not answered by the spectrum of work in the area:
how can performance be optimized online in a heterogeneous cluster given a power bound.
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Table 7.1: Summary of power management techniques for HPC presented in [92].

Technique /
Tool

Constraints Mechanism Profiling Applicable Systems

Load Concentra-
tion [125]

Acceptable perfor-
mance

Node on/off Homogeneous clusters

Muse [22] SLA Node on/off Analytical modeling Homogeneous clusters
Chan et al. [26] SLA Node on/off, DVFS Analytical modeling Homogeneous clusters
Horvath et
al. [60, 61]

SLA Node on/off, DVFS,
Multiple sleep states

Analytical modeling Multi-tier clusters

Heath et al. [58] Node on/off Analytical modeling Heterogeneous clus-
ters

PDC [124] Disk bandwidth Multi-speed disk Simulation Disk arrays
MAID [30] Request time Spin-down/up Simulation Disk arrays
DIV [126] Redundancy,

Throughput
Disk active or
standby

Analytical modeling Disk arrays with re-
dundancy

Ranganathan et
al. [139]

SLA, Power budget CPU DVFS Simulation, Online
measurement

Homogeneous clusters

Femal et al. [40] Power budget, Mini-
mum service level

CPU DVFS, Device
on/off

Analytical modeling Homogeneous clusters
with non-uniform load

MIMO [169] Power budget CPU DVFS Analytical modeling,
Online measurement

Homogeneous clusters

Mercury and
Freon [57]

Temperature thresh-
old, Utilization
threshold

Node on/off Analytical modeling Homogeneous data
centers

Moore et
al. [107]

Cooling cost, Temper-
ature threshold

Node on/off, CRAC
supply temperature

Analytical modeling Homogeneous data
centers

Hsu et al. [62] Relative performance,
slowdown

CPU DVFS Analytical modeling HPC

Ge et al. [49] Relative performance,
slowdown

CPU DVFS Analytical modeling HPC

Freeh et al. [42] (Energy saving) /
(time delay)

CPU DVFS Online measurement HPC

Lim et al. [90] E*D CPU DVFS HPC
Jitter [75] Net slack CPU DVFS HPC
Adagio [142] Slack CPU DVFS Analytical modeling,

Online measurement
HPC

SLURM [188] HPC
EETDS [197] Performance, Energy Node on/off Analytical modeling Heterogeneous HPC
pMapper [166,
167]

Power budget, Perfor-
mance, Migration cost

Node on/off Analytical modeling Virtualized heteroge-
neous HPC

Stoess et
al. [158]

Failure rate, Tem-
perature constraints,
Power budget, QoS

CPU throttling,
Disk active/idle

PMC-based, Analytical
modeling

Hypervisor-based vir-
tual machines

VirtualPower [109] SLA, Power budget,
Power/Performance

DVFS, Node
on/sleep/off

Virtualized heteroge-
neous HPC

Research
problem

Power budget CPU DVFS Analytical modeling,
Simulation, Online
measurements

Heterogeneous
Clusters
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7.3 Precision Management

Approximate computing is an emerging approach to improve the performance and energy
efficiency of embedded systems by sacrificing accuracy [56]. The work on approximate
computing has targeted both hardware and software. In hardware, researchers have de-
signed arithmetic circuitry that supports approximate computing to achieve higher energy
efficiency [91]. In software, researchers have written tools to simulate program behavior on
approximate computing hardware [103] and characterized the resilience of applications to
approximate computing using computation models [28].

Various work has focused on optimizing precision for performance gains. A primary
motivation for this work is reducing energy consumption. One approach uses qualifiers ex-
plicitly declared by developers to indicate parts of the program that can be approximately
computed [147]. These qualifiers are used to guide an automated system into improving
performance by managing the accuracy of the qualified parts of the program. This ap-
proach has also been explored from a runtime perspective, with dynamic monitoring and
adaptation to maintain a QoS [8]. However, these techniques all require developer input.
Our approach automatically provides the developer with recommendations supported by
our error analysis method without first modifying the source code.

Utilizing lower-precision computation in machine learning applications is an emerging
trend that is gaining traction [33]. Popular open source machine learning libraries such as
Microsoft’s Cognitive Toolkit [102] and Tensorflow [1] use both single and double precision.
However, the selection of precision is left to the developer. In our work, we present an
automatic approach that provides more granularity than a binary whole-program precision
switch.

Finally, various work has used dynamic instrumentation to optimize performance of
floating point arithmetic. This includes a technique for online cancellation detection [83],
an automated mixed precision search framework [82], and a rounding-error-based general
precision analysis tool [81]. Others have implemented similar techniques using a compiler
framework [144]. In this work, an automatic search is employed to determine the com-
bination of variables to switch to single precision. The tool injects instructions to cast
converted variables when reading from / writing to memory. Shadow value analysis has
also been used to investigate the effects of reduced precision levels [84, 143]. However,
these techniques either do not focus specifically on making recommendations, or do not
do so from the perspective of instructions and functions. We have demonstrated that our
approach provides insight into a spectrum for managing the performance/error tradeoff
using simple manipulations to the source code. We have also shown in the case study that
focusing only on memory is not always as effective as considering instructions.
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Chapter 8

Conclusion

This thesis has tackled the problem of managing the resource tradeoffs of power/energy
constrained applications. We approached the problem in a bottom up approach, start-
ing with studying the nuances of power/energy tradeoffs at the CPU level for streaming
applications, then moving towards a higher abstraction of entire tasks, where we studied
how performance can be controlled with power. Next, we designed an efficient model to
capture the tradeoffs of the task-level abstraction. We next examined more resources that
can affect and are affect by power and energy: namely bandwidth and precision. Finally,
we combined all studied tradeoffs into a generalized model that supports constraining
and/or optimizing the consumption of multiple resources. This chapter is organized as
follows: Section 8.1 presents summaries and contributions of each chapter in the thesis and
Section 8.2 presents the future work.

8.1 Summary and Contributions

In Chapter 2, we tackled the energy consumption of applications that can be modelled
using the producer consumer problem. This covers most stream processing applications
from embedded sensor fusion applications to web servers to Big Data stream processing.
We made the following contributions:

• A detailed study into the energy consumption of different implementations using
different concurrency primitives.
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• A novel algorithm that solves the producer consumer problem while providing sig-
nificant energy savings. In fact, our algorithm demonstrated a 51% reduction in
energy consumption versus the widely used mutex/semaphore implementation of the
producer consumer problem.

• An algorithm that strategically manages the allocated memory among parallel con-
sumers in order to alleviate pressure from transient loads. We demonstrate that the
algorithm reduces energy consumption by 10%.

In Chapter 3, we moved beyond the details of every p-state and c-state transition and
studied the power performance tradeoff of entire computation tasks in parallel applica-
tions. We tackled the problem of how performance can be maximized when a cluster of
nodes is operating under a power bound and executing a parallel program with inter-node
dependencies. To that end, we made the following contributions:

• We designed an online power distribution heuristic that intelligently moves power
from blocked nodes to the most nodes that are most likely on the critical path.

• We demonstrated how the heuristic operates in simulation and real-life experiments.
Our online heuristic produces a speedup of up to a factor of 1.8 in CPU bound
programs.

• We designed an integer program to identify the optimum distribution of power such
that the total execution time of the program is minimized.

In Chapter 4, we built on top of our work in Chapter 3 in two ways: (1) we tackled the
scalability issues of the proposed ILP, and (2) we introduced a new resource to the model:
network bandwidth. To that end, we made the following contributions:

• We introduced a linear program that uses network flow principles to optimize the
power distribution in a task graph with the objective of minimizing the total execution
time. We demonstrated that this new model is significantly more efficient than ILP
solutions, and can be used to identify an optimal for a 20800 variable problem in 26
minutes.

• We proposed using power-based staggering of parallel tasks to alleviate network band-
width bottlenecks.

• We demonstrated how bandwidth can be included in the linear program as a resource
in addition to power, energy, and time.
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• We used the new model to show that the linear program staggers tasks using power
when it is beneficial for the total execution time.

• We studied the practical application of the proposed staggering and demonstrate
that it reduces total communication time by up to 15%. This study demonstrates
that power can be used as an indirect control mechanism of other resources for which
there are no explicit controls.

In Chapter 5, we tackled precision not as a binary choice of either single or double-
precision floating point, but as a resource with a spectrum of control points, starting from
a program that is 100% in single-precision, to a program that is 100% in double precision.
This spectrum resulted in a tradeoff between performance and accuracy, with the 100%
single-precision version being the fastest and least accurate, and the 100% double precision
version being the slowest and most accurate. In this chapter, we introduced the novel idea
that parts of the program can be converted to single precision to manage the performance
accuracy tradeoff. Moreover, we made the following contributions:

• We presented a novel approach for scoring parts of the program with respect to their
impact on performance versus accuracy. Our approach is based on dynamic binary
instrumentation of the program under inspection.

• We provided a publicly available tool that performs this scoring of functions in a
program.

• We demonstrated the applicability of the tool on a well known computer vision library
used for detecting QR-code-like tags for use in visual inertial odometry by producing
recommendations for functions that are most beneficial to downgrade in precision.

• We showed that we can easily produce multiple versions of the library with varying
degrees of precision use, and we demonstrated how the increase of use of single
precision gradually decreased accuracy and energy consumption, but interestingly
increased power consumption.

• Finally, we demonstrated that our tool correctly recommended a function for down-
grade which resulted in 1.3x speedup, a 16% reduction in energy consumption, and
zero impact on accuracy.

In Chapter 6, we tackled the problem of constraining and optimizing resource con-
sumption in stream processing applications that exhibit multiple resource tradeoffs. We
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modelled such applications as an abstract network of producers and consumers, which can
be used to model a multitude of stream processing applications. To that end, we made the
following contributions:

• We proposed a novel abstract model based on network flow that captures multiple
resource tradeoffs in a network of inter-dependent producers/consumers. We formal-
ized the interactions of power, energy, execution time, accuracy, precision, bandwidth,
and sampling amongst one another.

• We introduced quality as a resource, which encapsulates precision and algorithmic
alternatives to capture the tradeoff between the quality of processing and its cost.

• We presented an LP relaxation formulated using the model, which allows for bounding
the objective resource consumption of large networks of stream processing applica-
tions efficiently.

8.2 Future Work

The thesis has tackled the problem of managing resource tradeoffs at different granularities.
It will be interesting to further expand this study horizontally.

Concurrency primitives. The producer consumer problem models many systems, how-
ever it is interesting to study how different concurrency problems and primitives can be
redesigned with energy efficiency as a first class requirement. Our research approach could
be extended to different low-level primitives such as epoll or go’s channels. Such primi-
tives are highly popular in modern applications at internet scale.

Task models. There are more complicated task models that could benefit from our
modelling approach in order to provide more tailored resource management. In complex
MapReduce systems, checkpointing for fault tolerance and redundancy for straggler miti-
gation is an integral aspect of design. The models that can be captured from such systems
will introduce new challenges and potential for more tailored resource management.
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Automatic precision management. Our work on precision management creates room
for many extensions that could improve the experience of managing precision. A fully
automatic approach will simplify the optimization process drastically and will allow for
a more optimal exploration of the vast search space of precision levels. Moreover, the
design and implementation of dynamic precision switching has great potential based on
our studies on error evolution and its visualization.

Improved optimization of tradeoff models. We have demonstrated the complexity
of the resource tradeoff model and how to reduce this complexity with approximations.
There are approaches to improve the efficiency of optimization in the operations research
literature as well as machine learning. Exploring these techniques allows us to reduce the
relaxations and produce a tighter bound on optimality.

Explicit resource control. Our work was based around the management of power and
energy versus other resources. It will be interesting to develop explicit control knobs for
other physical resources and explore how our resource tradeoff models can improve resource
distribution. For instance, explicit control knobs for the network bandwidth in different
levels of the interconnection network would allow for more granular optimization, versus
relying on power staggering to control bottlenecks.

Battery driven optimization. Battery consumption is affected by many factors: the
peak, the duration of high load, the ambient temperature, the number of charge cycles,
etc... Modelling these aspects allows for more detailed control over the user experience.
Designing a methodology to incorporate these aspects into a model allows software to make
decisions about resource tradeoffs that are more representative of the physics of the device,
versus approximations of an energy source.

Power source driven optimization. Similar to battery modelling, the modelling of the
power plant affects the approach with which power is distributed in a data center. There are
interesting aspects such as the cost model of power at different times and different seasons,
the availability of solar power and the lifetime of batteries that can provide said power,
the impact of weather on renewable energy and predicting a surge/drop in availability. A
model that captures such aspects could allow us to improve efficiency and reduce energy
costs.
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[144] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel, William
Kahan, Koushik Sen, David H Bailey, Costin Iancu, and David Hough. Precimonious:
Tuning assistant for floating-point precision. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis, page 27.
ACM, 2013.

[145] M. Sachenbacher, M. Leucker, A. Artmeier, and J. Haselmayr. Efficient energy-
optimal routing for electric vehicles. In Proceedings of the 25th Conference on Arti-
ficial Intelligence, (AAAI), 2011.

[146] Daniel Grobe Sachs, Wanghong Yuan, Christopher J. Hughes, Albert Harris,
Sarita V. Adve, Douglas L. Jones, Robin H. Kravets, and Klara Nahrstedt. GRACE:
A hierarchical adaptation framework for saving energy, 2004.

[147] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. Enerj: Approximate data types for safe and general low-
power computation. In ACM SIGPLAN Notices, volume 46, pages 164–174. ACM,
2011.

[148] Jaewon Seo, Taewhan Kim, and Ki-Seok Chung. Profile-based optimal intra-task
voltage scheduling for hard real-time applications. In Proceedings of the 41st annual
Design Automation Conference, pages 87–92. ACM, 2004.

[149] Dongkun Shin, Jihong Kim, and Seongsoo Lee. Intra-task voltage scheduling for low-
energy, hard real-time applications. IEEE Design & Test of Computers, (2):20–30,
2001.

165



[150] Sandeep K Shukla and Rajesh K Gupta. A model checking approach to evaluat-
ing system level dynamic power management policies for embedded systems. In
High-Level Design Validation and Test Workshop, 2001. Proceedings. Sixth IEEE
International, pages 53–57. IEEE, 2001.

[151] Tajana Simunic, Giovanni De Micheli, and Luca Benini. Event-driven power man-
agement of portable systems. In Proceedings of the 12th international symposium on
System synthesis, page 18. IEEE Computer Society, 1999.

[152] Shuaiwen Song, Rong Ge, Xizhou Feng, and Kirk W Cameron. Energy profiling and
analysis of the HPC challenge benchmarks. International Journal of High Perfor-
mance Computing Applications, 2009.

[153] Shuaiwen Song, Chun-Yi Su, Rong Ge, Abhinav Vishnu, and Kirk W Cameron.
Iso-energy-efficiency: An approach to power-constrained parallel computation. In
Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International,
pages 128–139. IEEE, 2011.

[154] Intel Open Source. Powertop. https://01.org/powertop, 2017. [Online; ac-
cessed 03-April-2017].

[155] Intel Open Source. RAPL. https://01.org/rapl-power-meter, 2017. [On-
line; accessed 03-April-2017].

[156] Robert Springer, David K Lowenthal, Barry Rountree, and Vincent W Freeh. Min-
imizing execution time in MPI programs on an energy-constrained, power-scalable
cluster. In Proceedings of the eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 230–238. ACM, 2006.

[157] Mani B Srivastava, Anantha P Chandrakasan, and Robert W Brodersen. Predic-
tive system shutdown and other architectural techniques for energy efficient pro-
grammable computation. Very Large Scale Integration (VLSI) Systems, IEEE Trans-
actions on, 4(1):42–55, 1996.

[158] Jan Stoess, Christian Lang, and Frank Bellosa. Energy management for hypervisor-
based virtual machines. In USENIX annual technical conference, pages 1–14, 2007.

[159] János Sztrik. Basic queueing theory. University of Debrecen, Faculty of Informatics,
193, 2012.

166

https://01.org/powertop
https://01.org/rapl-power-meter


[160] Ying Tan, Wei Liu, and Qinru Qiu. Adaptive power management using reinforcement
learning. In Proceedings of the 2009 International Conference on Computer-Aided
Design, pages 461–467. ACM, 2009.

[161] Gerald Tesauro, Rajarshi Das, Hoi Chan, Jeffrey Kephart, David Levine, Freeman
Rawson, and Charles Lefurgy. Managing power consumption and performance of
computing systems using reinforcement learning. In Advances in Neural Information
Processing Systems, pages 1497–1504, 2007.

[162] Chao Tian, Haojie Zhou, Yongqiang He, and Li Zha. A dynamic mapreduce scheduler
for heterogeneous workloads. In Grid and Cooperative Computing, 2009. GCC’09.
Eighth International Conference on, pages 218–224. IEEE, 2009.

[163] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of embedded soft-
ware: a first step towards software power minimization. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 2(4):437–445, 1994.

[164] M Triki, Y Wang, AC Ammari, and M Pedram. Hierarchical power management of a
system with autonomously power-managed components using reinforcement learning.
Integration, the VLSI Journal, 48:10–20, 2015.

[165] Vibhore Vardhan, Wanghong Yuan, Albert F Harris, Sarita V Adve, Robin Kravets,
Klara Nahrstedt, Daniel Sachs, and Douglas Jones. Grace-2: integrating fine-grained
application adaptation with global adaptation for saving energy. international Jour-
nal of embedded Systems, 4(2):152–169, 2009.

[166] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pMapper: power and migration
cost aware application placement in virtualized systems. In Middleware 2008, pages
243–264. Springer, 2008.

[167] Akshat Verma, Puneet Ahuja, and Anindya Neogi. Power-aware dynamic placement
of HPC applications. In Proceedings of the 22nd annual international conference on
Supercomputing, pages 175–184. ACM, 2008.

[168] Shinan Wang, Hui Chen, and Weisong Shi. SPAN: A software power analyzer for mul-
ticore computer systems. Sustainable Computing: Informatics and Systems, 1(1):23–
34, 2011.

[169] Xiaorui Wang and Ming Chen. Cluster-level feedback power control for performance
optimization. In High Performance Computer Architecture, 2008. HPCA 2008. IEEE
14th International Symposium on, pages 101–110. IEEE, 2008.

167



[170] Yanzhi Wang, Qing Xie, Ahmed Ammari, and Massoud Pedram. Deriving a near-
optimal power management policy using model-free reinforcement learning and
bayesian classification. In Proceedings of the 48th Design Automation Conference,
pages 41–46. ACM, 2011.

[171] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for reduced
CPU energy. In Mobile Computing, pages 449–471. Springer, 1996.

[172] Tom White. Hadoop: The definitive guide. “O’Reilly Media, Inc.”, 2012.

[173] Tiffani L Williams and Rebecca J Parsons. The heterogeneous bulk synchronous
parallel model. In Parallel and Distributed Processing, pages 102–108. Springer,
2000.

[174] Qiang Wu, Philo Juang, Margaret Martonosi, Li-Shiuan Peh, and Douglas W Clark.
Formal control techniques for power-performance management. IEEE Micro, (5):52–
62, 2005.

[175] Li Xiao, Songqing Chen, and Xiaodong Zhang. Dynamic cluster resource alloca-
tions for jobs with known and unknown memory demands. Parallel and Distributed
Systems, IEEE Transactions on, 13(3):223–240, 2002.

[176] Li Xiao, Songqing Chen, and Xiaodong Zhang. Adaptive memory allocations in
clusters to handle unexpectedly large data-intensive jobs. Parallel and Distributed
Systems, IEEE Transactions on, 15(7):577–592, 2004.

[177] Fen Xie, Margaret Martonosi, and Sharad Malik. Compile-time dynamic voltage
scaling settings: Opportunities and limits. In ACM SIGPLAN Notices, volume 38,
pages 49–62. ACM, 2003.

[178] Fen Xie, Margaret Martonosi, and Sharad Malik. Intraprogram dynamic voltage
scaling: Bounding opportunities with analytic modeling. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 1(3):323–367, 2004.

[179] Fen Xie, Margaret Martonosi, and Sharad Malik. Bounds on power savings using
runtime dynamic voltage scaling: an exact algorithm and a linear-time heuristic
approximation. In Proceedings of the 2005 international symposium on Low power
electronics and design, pages 287–292. ACM, 2005.

168



[180] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, James Majors, Adam
Manzanares, and Xiao Qin. Improving mapreduce performance through data place-
ment in heterogeneous hadoop clusters. In Parallel & Distributed Processing, Work-
shops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages
1–9. IEEE, 2010.
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