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BAYESIAN STATIC PARAMETER ESTIMATION FOR PARTIALLY
OBSERVED DIFFUSIONS VIA MULTILEVEL MONTE CARLO∗

AJAY JASRA† , KENGO KAMATANI‡ , KODY LAW§ , AND YAN ZHOU†

Abstract. In this article we consider static Bayesian parameter estimation for partially ob-
served diffusions that are discretely observed. We work under the assumption that one must resort
to discretizing the underlying diffusion process, for instance, using the Euler–Maruyama method.
Given this assumption, we show how one can use Markov chain Monte Carlo (MCMC) and par-
ticularly particle MCMC [C. Andrieu, A. Doucet, and R. Holenstein, J. R. Stat. Soc. Ser. B Stat.
Methodol., 72 (2010), 269–342] to implement a new approximation of the multilevel (ML) Monte
Carlo (MC) collapsing sum identity. Our approach comprises constructing an approximate coupling
of the posterior density of the joint distribution over parameter and hidden variables at two different
discretization levels and then correcting by an importance sampling method. The variance of the
weights are independent of the length of the observed data set. The utility of such a method is
that, for a prescribed level of mean square error, the cost of this MLMC method is provably less
than i.i.d. sampling from the posterior associated to the most precise discretization. However the
method here comprises using only known and efficient simulation methodologies. The theoretical
results are illustrated by inference of the parameters of two prototypical processes given noisy partial
observations of the process: the first is an Ornstein–Uhlenbeck process and the second is a more
general Langevin equation.
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1. Introduction. The hidden Markov model (HMM) is widely used in many
disciplines, including applied mathematic, statistics, economics, and finance; see [2]
for an overview. In this article, we are interested in HMMs that are induced by
diffusions which are partially observed, discretely in time. In particular, we assume
that in order to fit the model to the data, one must resort to a discretization of the
diffusion, for instance, using Euler–Maruyama. In addition, we assume that associ-
ated to the model is a static (non-time-varying) finite dimensional parameter, which
one is interested to infer given a fixed length data record of length n and given a
prior on the parameter. In simple terms, the discretization of level h (independent
of all other parameters of the model), where as h → 0 one obtains the exact dif-
fusion, induces a posterior Πh on the static parameter θ and hidden states at some
observation times X0, X1, . . . , Xn denoted by X0:n. Without any loss of generality
we have assumed the time window in between observations is 1, and we will always
assume that h < 1. We seek to approximate EΠh [ϕ(θ,X0:n)] for appropriately defined
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real-valued functions. Ultimately, one might seek to remove the dependence upon h
and get the exact expectation with no discretization bias. We remark that the model
will be formally introduced in the next section. This framework is relevant to a broad
range of applications in science and engineering; see [2, 18]

The task of computing the expectation for any fixed h > 0 is a nontrivial task,
which often requires quite advanced Monte Carlo methods. As has been remarked in
many articles in the literature, often the joint correlation between θ and X0:n means
even standard MCMC methods may produce very inaccurate of inefficient approxima-
tions of the expectation of interest, despite their theoretical validity. An important
algorithm that has, to an extent, helped to alleviate these difficulties is the parti-
cle MCMC (PMCMC) methods of [1] and their subsequent developments (e.g., [4]).
Intrinsically, this method uses a sequential Monte Carlo (SMC) (e.g., [7]) method
to help move the samples around the state-space, for instance, inside a Metropolis–
Hastings acceptance/rejection scheme, although Gibbs versions also exist. PMCMC
delivers a Markov chain which provides consistent estimates of expectations of the
form EΠh [ϕ(θ,X0:n)], for any fixed h SMC methods are well-known as being efficient
techniques for filtering, when the state-variable at time k, Xk, is of moderate to low
dimension and all the static parameters are fixed.

In the context of this article, there is an additional degree of freedom, which can
be utilized to further enhance the PMCMC method. This is associated to the dis-
cretization level h. We consider using the multilevel Monte Carlo (MLMC) framework
[8, 9, 12]. This allows one to leverage in an optimal way the nested problems arising
in this context, hence minimizing the necessary cost to obtain a given level of mean
square error. Set Π0 as the posterior on θ,X0:n with no discretization bias and Πhl as
the time-discretized posterior on θ,X0:n with time discretization hl, and one has for
an integrable, real-valued function ϕ and +∞ > h0 > h1 > · · · > hL > 0 (the levels)

(1) EΠhL
[ϕ(θ,X0:n)] =

L∑
l=0

{EΠhl
[ϕ(θ,X0:n)]− EΠhl−1

[ϕ(θ,X0:n)]},

where E is the expectation operator and EΠh−1
[ϕ(θ,X0:n)] := 0. The idea of MLMC

is then to approximate each summand by independently simulating Nl samples from
a dependent coupling of (Πhl ,Πhl−1

). In such scenarios, one can show that the overall
mean square error (MSE) associated to the approximation of EΠ0

[ϕ(θ,X0:n)] is

(2) MSE = Bias(L,ϕ)2 +

L∑
l=0

Vl
Nl

,

where

(3) Bias(L,ϕ) = |EΠhL
[ϕ(θ,X0:n)]− EΠ0 [ϕ(θ,X0:n)]| ,

and 0 < Vl < +∞ are a collection of constants. It is remarked that it is the coupled
samples which induce Vl to be a function of hl which is often critical as we explain
below. Assuming the cost of Cl per level, per sample, the cost of the algorithm
is then

∑L
l=0 ClNl. Fixing ε > 0 and given an appropriate parameterization of hl

(e.g., hl = 2−l), one then chooses L to ensure that Bias(L,ϕ)2 = O(ε2) and then
given Cl, Vl characterized as a function of hl optimizes N0, . . . , NL to minimize the
cost so that the term

∑L
l=0

Vl
Nl

= O(ε2); Giles [8] gives the solution to this constrained
optimization problem. In many scenarios of practical interest the associated MLMC
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algorithm can achieve a MSE of O(ε2) at a cost which is less than i.i.d. sampling from
ΠhL ; note that this has not yet been established in the problem under study here.
The main issue is that sampling independently from the couples (Πhl ,Πhl−1

) is not
possible in our context.

In this paper we show how to implement a new approximation of the multilevel
collapsing sum identity. Our approach comprises constructing an approximate cou-
pling of the posterior density of the joint on the parameter and hidden space at two
different discretization levels and then correcting by an importance sampling method,
whose variance of the weights are independent of the length of the observed data set.
The utility of such a method is that it comprises using known and efficient simulation
methodologies, instead of coupling algorithms as explored in [14, 15, 16, 20]. In par-
ticular, our approach facilitates a mathematical analysis which allows us to establish
that our approach can be better than sampling (e.g., by PMCMC) from the posterior
associated to the most precise discretization. The algorithm presented here is distinct
from either of the previously introduced multilevel MCMC (MLMCMC) algorithms
[13, 17] and may be generalized.

This article is structured as follows. In section 2 the model is described. In
section 3 we describe our approach and give a mathematical result associated to the
MSE of the method. In section 4 we give practical simulations to establish the theory.
The appendix contains some of the proofs for the result of section 3 and some details
on coupling Euler approximations and verifying the assumptions for our main result.

2. Model. We consider the following partially observed diffusion process:

dXt = aθ(Xt)dt+ bθ(Xt)dWt(4)

with Xt ∈ Rd = S, t ≥ 0, X0 has initial measure µθ(dx) and {Wt}t∈[0,T ] a Brownian

motion of appropriate dimension. θ ∈ Θ ⊆ Rdθ is a static parameter of interest. The
following assumptions will be made on the diffusion process.

Assumption 2.1. Measurable functions a· : Θ × Rd → Rd, b· : Θ × Rd → Rd×d
satisfy the following:

(i) Global Lipschitz property: There is a C > 0 such that |aθ(x)−aθ(y)|+|bθ(x)−
bθ(y)| ≤ C|x− y| for all x, y ∈ S and all θ ∈ Θ.

(ii) Bounded moments: supθ∈Θ Eθ|X0|p <∞ for all p ≥ 1.

Notice that (i) and (ii) together imply that Eθ|Xt|p <∞ for all t ≥ 0.
It will be assumed that the data are regularly spaced (i.e., in discrete time)

observations y1, . . . , yn, yk ∈ Rm = T. These are observed at one unit of time. It is
noted that we assume that one does not have access to a nonnegative and unbiased
estimate of the transition density of the diffusion and we are forced to work with a
discretized process.

The above formulation can then summarized as follows, on discretizing the diffu-
sion process with discretization level h > 0; h = 0 corresponds to the limiting diffusion
process. We have a pair of discrete-time stochastic processes, {Xn}n≥0 and {Yn}n≥1,
where Xn ∈ S (with associated σ-algebra S) is an unobserved process and yn ∈ T
(with associated σ-algebra T ) is observed. Let θ ∈ Θ ⊆ Rdθ be a parameter. The
hidden process {Xn} is a Markov chain with initial measure µθ(dx) at time 0 and
transition kernel Fθ,h (xp−1,dxp), i.e., for each θ ∈ Θ
(5)
Pθ,h(X0 ∈ A) = µθ(A) and Pθ,h(Xp ∈ A|Xp−1 = xp−1) = Fθ,h(xp−1, A), p ≥ 1,

where Pθ,h denotes probability, A ∈ S. Note that under most discretizations (e.g.,
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Euler) the transition density is not analytically tractable for many diffusion processes,
but can be simulated exactly. In addition, the observations {Yn}n≥1 conditioned upon
{Xn}n≥0 are statistically independent and have conditional measure with probability
density function gθ(x, y) with respect to a dominating σ-finite measure dy on T, i.e.,

(6) Pθ,h(Yn ∈ B|{Xk}k≥0 = {xk}k≥0) =

∫
B

gθ(xn, y)dy

with B ∈ T . We assume g· : Θ × S × T is jointly measurable. The HMM is given
by (5)–(6) and is often referred to in the literature as a state-space model. In our
context θ ∈ Θ is a parameter of interest with prior measure Π(dθ) with probability
density function π(θ) with respect to the Lebesgue measure dθ on Rdθ .

Given the joint measure on U := Θ× Sn+1

(7) Πh(dθ,dx0:n) ∝ Π(dθ)µθ(dx0)

n∏
p=1

gθ(xp, yp)Fθ,h(xp−1,dxp)

for ϕ ∈ Bb(U) ∩ Lip(U), where Bb(U) are the bounded and real-valued measurable
functions on U and Lip(U) are the Lipschitz, measurable functions on U, and for
+∞ > h0 > · · · > hL > 0 we would like to compute

(8) EΠhL
[ϕ(θ,X0:n)] =

L∑
l=0

{
EΠhl

[ϕ(θ,X0:n)]− EΠhl−1
[ϕ(θ,X0:n)]

}
,

where EΠh−1
[·] = 0. We will use the MLMC approach.

Consider only a single pair EΠh [ϕ(θ,X0:n)] − EΠh′ [ϕ(θ,X0:n)], h < h′. It is well
known that if one can sample from a dependent coupling of (Πh,Πh′), such as the
maximal coupling, then Monte Carlo estimation of such a difference can be performed
at a lower cost than i.i.d sampling from the independent coupling of (Πh,Πh′) [8,
9]. The main issue is that such couplings are typically not available, even up-to a
nonnegative and unbiased estimator. We consider the scenario where one samples
from a sensible, approximate, coupling and corrects via importance sampling.

3. Method and analysis.

3.1. Method. We are to approximate the identity (8). Our procedure, when
considering the summands from 1, . . . , L will be to run L independent pairs of the
idea to be described below. The case l = 0 is simply using (e.g.,) PMCMC to approx-
imate EΠh0

[ϕ(θ,X0:n)]; we refer the reader to [1] for details on PMCMC—a simple
description is below. We only consider a pair EΠh [ϕ(θ,X0:n)] − EΠh′ [ϕ(θ,X0:n)],
h < h′. The methodology and analysis in this context of one pair will suffice to justify
our approach as we will explain below.

Let z = (x, x′) ∈ S × S = Z and Qθ,h,h′(z,dz̄) be any coupling (other than
the independent one) of (Fθ,h(x, dx̄), Fθ,h′(x

′,dx̄′)). For instance, in the context of
an Euler discretization a description can be found in [16] (see also Appendix B).
Let Gp,θ(z) = max{gθ(x, yp), gθ(x′, yp)}. (Note that alternative choices of Gp,θ are
possible, and this point is revisited below.) We propose to sample from the probability
measure on V = Θ× S2n+2 (write the associated σ-algebra as V)

Πh,h′(dθ,dz0:n) ∝ Π(dθ)νθ(dz0)

n∏
p=1

Gp,θ(zp)Qθ,h,h′(zp−1,dzp),
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where νθ is the initial coupling

νθ(d(x, x′)) = µθ(dx)δx(dx′).

Here, δx is the Dirac measure. Then for ϕ ∈ Bb(U) ∩ Lip(U),

EΠh [ϕ(θ,X0:n)]− EΠh′ [ϕ(θ,X0:n)]

=
EΠh,h′ [ϕ(θ,X0:n)H1,θ(θ, Z0:n)]

EΠh,h′ [H1,θ(θ, Z0:n)]
−

EΠh,h′ [ϕ(θ,X ′0:n)H2,θ(θ, Z0:n)]

EΠh,h′ [H2,θ(θ, Z0:n)]
,

(9)

where

H1,θ(θ, z0:n) =

n∏
p=1

gθ(xp, yp)

Gp,θ(zp)
,

H2,θ(θ, z0:n) =

n∏
p=1

gθ(x
′
p, yp)

Gp,θ(zp)
.

We note that our choice of Gp,θ(z) ensures that H1,θ and H2,θ are uniformly upper-
bounded by 1 and hence that the variance w.r.t. any probability does not grow with-
out bound as n increases. Another possible choice would be Gp,θ(z) = min{gθ(x, yp),
gθ(x

′, yp)}, but this choice does not share the desirable stability property which ours
does. The exploration of alternative importance distributions, for instance, minimiz-
ing the variance, could be adopted.

3.1.1. Particle MCMC. Let (W,W) be a measurable space such that V ⊆W.
Let K : W ×W → [0, 1] be any ergodic Markov kernel of invariant measure η such
that one can consistently estimate expectations w.r.t. Πh,h′ . For instance, if for every
A ∈ V ∫

A×(W\V)

η(dw) = Πh,h′(A).

Our construction allows a particle MCMC approach to be adopted, which is not quite
as the displayed equation, but nonetheless allows one to infer Πh,h′ . We focus on
one particle MCMC method for completeness, but we reiterate that one can use the
analysis here for more advanced versions of the algorithm, or indeed, any MCMC of
the form above.

We will now describe the particle marginal Metropolis–Hastings (PMMH) al-
gorithm. Let M ≥ 1 and θ be fixed, and introduce random variables a0:n−1 ∈
{1, . . . ,M}n, which will denote the indices of the selected particles upon resampling
at the given steps. One can run a particle filter [5] to approximate

Πh,h′(dz0:n|θ) ∝ νθ(dz0)

n∏
p=1

Gp,θ(zp)Qθ,h,h′(zp−1,dzp)

by sampling from the following joint, on the space {1, . . . ,M}n × ZM(n+1)

(10) P
({
a1:M

0:n−1

}
,dz1:M

0:n

∣∣θ)
=

(
M∏
i=1

νθ
(
dzi0
)) n∏

p=1

M∏
i=1

 Gp−1,θ(z
aip−1

p−1 )∑M
j=1Gp−1,θ(z

j
p−1)

Qθ,h,h′

(
z
aip−1

p−1 ,dz
i
p

) ,
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where G0,θ := 1. Note that this concise equation unambiguously defines the bootstrap

particle filter algorithm at the same time as its joint distribution, i.e., z
aip−1

p−1 is resam-

pled with the probability
Gp−1,θ(z

aip−1
p−1 )∑M

j=1Gp−1,θ(zjp−1)
. Better algorithms can be constructed, but

we just present the most simple approach. We remark that

(11) pMh,h′(y0:n|θ) =

n∏
p=1

 1

M

M∑
j=1

Gp,θ(z
j
p)


is an unbiased estimator of ph,h′(y0:n|θ) =

∫
Zn+1 νθ(dz0)

∏n
p=1Gp,θ(zp)Qθ,h,h′(zp−1,dzp);

see [5].
The PMMH algorithm works as follows. The superscripts for (θ, k) are the itera-

tion (time) counter of the MCMC.
1. Initialize: Sample θ0 from the prior and then sample (a1:M

0:n−1, z
1:M
0:n ) from

p(a1:M
0:n−1, z

1:M
0:n |θ0) as in (10), and store pMh,h′(y0:n|θ0) as in (11). Select a path

ẑj0:n, constructed by drawing ẑjn with probability proportional to Gn,θ0(ẑjn),

then redefining ẑjn−1 = z
ajn−1

n−1 , ẑjn−2 = z
a
a
j
n−1
n−2

n−2 , and so on; set k0 as the index
of the selected path. Set i = 1.

2. Iterate: Sample θ′|θi−1 according to a proposal with conditional density
R(dθ′|θi−1) = r(θ′|θi−1)dθ′ and then from P (da1:M

0:n−1,dz
1:M
0:n |θ′) as in (10).

Select a path ẑj0:n with probability proportional to Gn,θ′(ẑ
j
n) and constructed

as described above; set k′ as the index of the selected path. Set θi = θ′,
ki = k′ with probability

min

{
1,

pMh,h′(y0:n|θ′)
pMh,h′(y0:n|θi−1)

π(θ′)r(θi−1|θ′)
π(θi−1)r(θ′|θi−1)

}
;

otherwise θi = θi−1, ki = ki−1. Set i = i+ 1 and return to the start of 2.
We denote by K the PMMH kernel and denote by (W,W) the measurable space for
which it is defined upon. The invariant measure is denoted η. For the analysis, we
assume the MCMC algorithm is started in stationarity.

Then one estimates (9) by

1
N

∑N
i=1 ϕ(θi, xk

i

0:n)H1,θ(θ
i, zk

i

0:n)
1
N

∑N
i=1H1,θ(θi, zk

i

0:n)
−

1
N

∑N
i=1 ϕ(θi, x′k

i

0:n)H2,θ(θ
i, zk

i

0:n)
1
N

∑N
i=1H2,θ(θi, zk

i

0:n)
.

This estimate is consistent in the limit as N grows; see [1]. To simplify the notation
we replace ki in the superscripts by i from here on.

3.2. Multilevel considerations. As described for MLMC in the introduction,
we will approximate the expectation using the telescopic sum identity given in (1).
We will establish error estimates for

(12)

L∑
l=0

ĒNll (ϕ), ĒNll (ϕ) = ENll (ϕ)− El(ϕ) ,

where

ENll (ϕ) =
1
Nl

∑Nl
i=1 ϕ(θi, xi0:n)H1,θ(θ

i, zi0:n)

1
Nl

∑Nl
i=1H1,θ(θi, zi0:n)

−
1
Nl

∑Nl
i=1 ϕ(θi, x′i0:n)H2,θ(θ

i, zi0:n)

1
Nl

∑Nl
i=1H2,θ(θi, zi0:n)

(13)
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is a consistent estimator of El(ϕ) := EΠhl
[ϕ(θ,X0:n)]−EΠhl−1

[ϕ(θ,X0:n)]. Therefore

(12) is a consistent estimator of EΠhL
[ϕ(θ,X0:n)] and the MSE (2) can be bounded,

up to a constant, by the sum of the squared error of (12) and Bias(L,ϕ)2, as given
by (3), which is O(hL), for example, using Euler–Maruyama.

Using E to denote the expectation w.r.t. the law associated to our algorithm,
assuming the Markov chain is started in stationarity, our objective is therefore to
investigate

(14) E

( L∑
l=0

ĒNll (ϕ)

)2
 =

L∑
l=0

E
[
ĒNll (ϕ)2

]

so as to optimally allocate N0, . . . , NL as described in the introduction. Thus we must
investigate terms such as E[ĒNll (ϕ)2] for a given l.

3.3. Algorithm analysis. Below P(W) are the collection of probability mea-
sures on (W,W). The labelling of the assumptions here is different to that of As-
sumption 2.1 as they are made about the discretized model (7) and PMCMC kernel,
not necessarily directly about the underlying diffusion process.

(A1) For every y ∈ T there exist 0 < C < C < +∞ such that for every x ∈ S,
θ ∈ Θ,

C ≤ gθ(x, y) ≤ C.

For every y ∈ T, gθ(x, y) is globally Lipschitz on S×Θ.
(A2) For any 0 ≤ k ≤ n, q ∈ {1, 2} there exists a β > 0 such that for any

ϕ ∈ Bb(Θ× Sk+1) ∩ Lip(Θ× Sk+1) there exists a C < +∞

(∫
Θ×S2k+2

|ϕ(θ, x0:k)− ϕ(θ, x′0:k)|qΠ(dθ)νθ(dz0)

k∏
p=1

Qθ,h,h′(zp−1,dzp)

)3−q

≤ C(h′)β .

(A3) Suppose that for any n > 0 there exist a ξ ∈ (0, 1) and ν ∈ P(W) such that
for each w ∈W, ϕ ∈ Bb(W) ∩ Lip(W), h, h′:

∫
W

ϕ(w′)K(w, dw′) ≥ ξ
∫
W

ϕ(v)ν(dv).

K is η-reversible, that is,
∫
w∈B η(dw)K(w,A) =

∫
w∈A η(dw)K(w,B) for any

A,B ∈ W.
We note that (A1) can be verified for some state-space models (especially if T and

Θ are compact) and (A3) can be verified for a PMCMC kernel if Θ,S are compact—
indeed, the constants would all be independent of n under appropriate settings of the
algorithm. It is also noted that under the Assumption (A3), allowing the chain to
start in stationarity is not overly strong. However, to deal with the case where the
chain is not started in stationarity requires a very intricate control, for instance, of
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the solution to the Poisson equation (e.g., [10]) in h′. This is undoubtedly possible,
but would require technical details that are beyond the scope of the article. Finally
note that conditions (A2) and (A3) are verified in Appendix C in the case of an Euler
discretization and coupling (see Appendix B).

Theorem 3.1. Assume (A1)–(A3). Then for any n > 0, there exists a β > 0
such that for any ϕ ∈ Bb(Θ×Sn+1)∩Lip(Θ×Sn+1) there exists a C < +∞ such that

E

[(
1
N

∑N
i=1 ϕ(θi, xi0:n)H1,θ(θ

i, zi0:n)
1
N

∑N
i=1H1,θ(θi, zi0:n)

−
1
N

∑N
i=1 ϕ(θi, x′i0:n)H2,θ(θ

i, zi0:n)
1
N

∑N
i=1H2,θ(θi, zi0:n)

−

(
EΠh,h′ [ϕ(θ,X0:n)H1,θ(θ, Z0:n)]

EΠh,h′ [H1,θ(θ, Z0:n)]
−

EΠh,h′ [ϕ(θ,X ′0:n)H2,θ(θ, Z0:n)]

EΠh,h′ [H2,θ(θ, Z0:n)]

))2]

≤ C(h′)β

N
.

Proof. The result follows by using [15, Lemma C.3], the C2-inequality, the bound-
edness of certain quantities, and Proposition A.1. The proof is omitted as it is similar
to the calculations in [15].

3.4. A return to multilevel considerations. Returning to section 3.2, we
assume that hl = 2−l and introduce the further assumption

(A4) The cost to simulate ENll in (13) is controlled by C(ENll ) ≤ CNlh−γl , and the
bias is controlled by

|EΠhL
(ϕ(θ,X0:n))− EΠ0(ϕ(θ,X0:n))| ≤ ChαL

for γ, α, C > 0.
Following assumption (A2), α = β/2 satisfies the above, but it may be larger, e.g.,
for Euler–Maruyama in which α = β.

Given ε > 0, in order to ensure the MSE is O(ε2), the term (3) must be O(ε2).
Following from Assumption (A2), it suffices to let L ∝ 2| log(ε)|/β so that hL = ε.
Following from Theorem 3.1,

L∑
l=0

E
[
ĒNll (ϕ)2

]
≤ C

L∑
l=0

hβl
Nl
,

and note that the constant C may depend upon the time parameter n, which has
been suppressed from the notation; we return to this point below.

Suppose we minimize COST =
∑L
l=0 h

−γ
l Nl subject to

∑L
l=0

hβl
Nl

= O(ε2) as a

function of N0, . . . , NL. This is exactly considered in [8] for γ = 1 and later in [3] for
γ 6= 1 and yields that

(15) Nl ∝ ε−2KLh
(β+γ)/2
l ,

where KL =
∑L
l=0 h

(β−γ)/2
l (see also [15, 6]). This gives a cost of O(ε−2K2

L) per time
step. Hence the following corollary is immediate.
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Corollary 3.1. Assume (A1)–(A4). For any n > 0 and any ϕ ∈ Bb(Θ×Sn+1)∩
Lip(Θ × Sn+1) there exists a C < +∞ such that for any ε > 0 one can choose
(L, {Nl}Ll=1) such that

E

∣∣∣∣∣
L∑
l=0

ENll (ϕ)− EΠ0
(ϕ(θ,X0:n))

∣∣∣∣∣
2
 ≤ Cε2

with a total cost

(16) COST ≤ C


ε−2 if β > γ,

ε−2| log(ε)|2 if β = γ,

ε−(2+ γ−β
α ) if β < γ.

In contrast, for the same scenario, the computational cost of PMCMC is
O(ε−2−γ/α) per time step, which is asymptotically greater than the method devel-
oped here.

It is remarked that all of our constants depend upon the time parameter (number
of data points) and this element has been ignored. This is due to the technical
complexity of the approach. We expect that the constants can be made time-uniform,
and hence we conjecture that the results hold true uniformly in time. Then Nl can
be chosen as above, and for Euler–Maruyama (β = γ = 1 [11]) the cost for a given
n will be O(n2| log(ε)|2ε−2), with similar results for β 6= 1, according to (16). This
results because one needs to take M = O(n) for the particle filter in PMMH [1] and
the cost to obtain a single sample particle filter trajectory is O(n). A verification of
this is left for future work.

4. Numerical simulations.

4.1. Ornstein–Uhlenbeck process. First, we consider the following Ornstein–
Uhlenbeck process:

dXt = θ(µ−Xt)dt+ σdWt, X0 = x0,

Yk|Xk ∼ N
(
Xk, τ

2
)
,

where N (m, τ2) denotes the Normal distribution with mean m and variance τ2. Fur-
ther, the parameters (θ, σ) are unknown and are given the following priors:

θ ∼ G(1, 1), σ ∼ G(1, 0.5),

where G(a, b) denotes the Gamma distribution with shape a and scale b. The remain-
ing parameters are defined as constants, x0 = 0, µ = 0, δ = 0.5, and τ2 = 0.2. A data
set with 100 observations is simulated with θ = 1 and σ = 0.5.

4.2. Langevin SDE. Consider the following Langevin SDE:

dXt =
1

2
∇ log π(Xt)dt+ σdWt, X0 = x0,

Yk|Xk ∼ N
(
0, τ2 expXk

)
,

where π(x) denotes the probability density function of a student’s t-distribution with
θ degrees of freedom. The parameters of interest are (θ, σ), and these are given prior,

θ ∼ G(1, 1), σ ∼ G(1, 1).
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Langevin SDE Ornstein-Uhlenbech process
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Fig. 1. Autocorrelation of a typical PMCMC chain.

The constants are x0 = 0 and δ = 1. A data set with 1,000 observations is simulated
with θ = 10, σ = 1, and τ2 = 1.

4.3. Simulation settings. The simulations proceed as the following. Let h =
2−l be the accuracy parameter. At each level l, we set the number of particles in
the PMCMC kernel to be M = O(n) fixed, and set the number of PMCMC samples
for estimation according to the multilevel analysis. Let NL

l denote the number of
samples at level l within a simulation that targets L-level error, L = 1, . . . . The value
of N1

0 is determined empirically with variance estimated from 100 samplers. For
comparison, a single-level PMCMC sampler is also considered for each L. Its number
of samples NL is determined empirically by running 100 simulations simultaneously.
And these chains are run until the estimated error of the 100 estimates matches that of
the multilevel sampler. In all situations, a fixed burn-in period of 10,000 iterations is
used. This is reasonable given the fast decorrelation of the chains, as illustrated by the
estimated autocorrelation of the single level PMCMC sampler for L = 8 in Figure 1.
The autocorrelation functions look similar for all l for the multilevel sampler.

4.4. Results. We consider the choice of M = O(n). The main results of the
cost vs. error are shown in Figure 2. The estimated cost rates are listed in Table 1.
It is shown in Appendix C that for Euler discretization the method satisfies the as-
sumptions (A1)–(A3), under the mild additional assumption C.1 (i.e., the assumption
is described there). The rate β = 2 in (A2), since the diffusion term bθ is constant in
x [11]. Furthermore, Assumption 4 holds with γ = α = 1. Therefore, the theoretical
results of Theorem 3.1 and Corollary 3.1 predict the rate O(ε−2). Standard PMMH
will incur a cost of O(ε−3). The numerical results confirm this.

We note that the implementation here of the PMCMC, both in its single level
and coupled multilevel instances, is not optimal, and the results may be improved.
However, it is of paramount importance to understand that any such improvement can
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Lagenvin SDE
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Fig. 2. Cost vs. MSE for the 2 parameters for each of the 2 SDEs.

Table 1
Estimated rates of convergence of MSE with respect to cost for various parameters, fitted to the

curves in Figure 2.

Model Parameter ML-PMCMC PMCMC
Ornstein–Uhlenbech process θ −1.022 −1.463

σ −1.065 −1.522
Langevin SDE θ −1.060 −1.508

σ −1.023 −1.481

only hope to improve the constant, and the rates of convergence will not change. The
results here are only intended to numerically verify the theoretical results regarding
the rates of convergence.

Appendix A. Technical results. A Markov kernel K can be viewed as a
linear operator (Kf)(w) =

∫
K(w, dw∗)f(w∗) for f : W→ R on a Hilbert space

L2
0(η) :=

{
f : W→ R;

∫
|f(w)|η(dw) <∞,

∫
f(w)η(dw) = 0

}
with an inner product 〈f, g〉 =

∫
f(w)g(w)η(dw) and norm ‖f‖2 =

√
〈f, f〉. Let

‖K‖2 = supf∈L2
0(η),f 6=0 ‖Kf‖2/‖f‖2 be the operator norm.

By the Döblin condition (A3), we have the total variation distance bound ‖K(w, ·)−
η‖TV = supA∈W |K(w,A) − η(A)| ≤ 1 − ξ (for all w ∈ W) for some ξ ∈ (0, 1). Since
K is η-reversible, the total variation bound implies L2-spectral gap

‖Km‖2 ≤ (1− ξ)m ,

by [19, Theorem 2.1].
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For µ a finite measure on a measurable space (E, E) and ϕ ∈ Bb(E)

µ(ϕ) =

∫
E

ϕ(x)µ(dx).

Defining vi = (θi, zi0:n) as the relevant variables of wi from the MCMC kernel,
and defining

ϕ̃h(vi) :=
{
ϕ(θi, xi0:n)H1,θ(θ

i, zi0:n)− ϕ(θi, x′i0:n)H2,θ(θ
i, zi0:n)

}
,

we are interested in estimates of the form

1

N

N∑
i=1

ϕ̃h(vi).

Proposition A.1. Assume (A1)–(A3). Suppose that {W i}i is a Markov chain
with the Markov kernel K, and W 1 ∼ η. Then for any n > 0, there exists a β > 0
such that for any ϕ ∈ Bb(Θ×Sn+1)∩Lip(Θ×Sn+1) there exists a C < +∞ such that

E

( 1

N

N∑
i=1

ϕ̃h(V i)−Πh,h′(ϕ̃h)

)2
 ≤ C(h′)β

N
,

where V i = (θ, Zi0:n) is the relevant variables of W i.

Proof. Denote the map wi 7→ vi by ψ. Then

E

( 1

N

N∑
i=1

ϕ̃h(V i)−Πh,h′(ϕ̃h)

)2
 = E

( 1

N

N∑
i=1

f(W i)

)2


for f(w) = ϕ̃h ◦ ψ(w)− η(ϕ̃h ◦ ψ) = ϕ̃h(v)−Πh,h′(ϕ̃h). We have

E

( 1

N

N∑
i=1

f(W i)

)2
 =

1

N2

N∑
i,j=1

〈
f,K|i−j|f

〉

=
1

N
‖f‖22 +

2

N2

N−1∑
n=1

(N − n)〈f,Knf〉

≤ 1

N
‖f‖22 +

2

N2

N−1∑
n=1

(N − n)‖Kn‖2‖f‖22

≤ 1

N
‖f‖22 +

2

N

∞∑
n=1

‖Kn‖2‖f‖22

≤ 1

N
‖f‖22

(
1 +

1− ξ
ξ

)
≤ 2‖f‖22

Nξ
.

On the other hand, by Lemma A.2,

‖f‖22 = EΠh,h′

[{
ϕ̃h
(
V i
)
−Πh,h′(ϕ̃h)

}2
]
≤ C(h′)β .

Thus, the claim follows.
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Lemma A.2. Assume (A1)–(A2). Then for any n > 0, q ∈ {1, 2} there exists a
β > 0 such that for any ϕ ∈ Bb(Θ× Sn+1) ∩ Lip(Θ× Sn+1) there exists a C < +∞

(
EΠh,h′ [|ϕ(θ,X0:n)H1,θ(θ, Z0:n)− ϕ(θ,X ′0:n)H2,θ(θ, Z0:n)|q]

)3−q
≤ C(h′)β .

Proof. We prove the result for q = 1, the case q = 2 being almost the same. The
result is proved by induction on n. Set n = 1, and then

EΠh,h′ [|ϕ(θ,X0:1)H1,θ(θ, Z0:1)− ϕ(θ,X ′0:1)H2,θ(θ, Z0:1)|]

=

(∫
θ×Z2

|ϕ(θ, x0:1)H1,θ(θ, z0:1)− ϕ(θ, x′0:1)H2,θ(θ, z0:1)|

Π(dθ)νθ(dz0)G1,θ(z1)Qθ,h,h′(z0,dz1)

)
×
(∫

θ×Z2

Π(dθ)νθ(dz0)G1,θ(z1)Qθ,h,h′(z0,dz1)

)−1

.

As G1,θ(z) is uniformly (in θ, z) bounded below, the denominator on the right-hand
side (R.H.S.) is uniformly lower bounded by a constant that is independent of h, h′.
The numerator on the R.H.S. is

∫
θ×Z2

|ϕ(θ, x0:1)H1,θ(θ, z0:1)− ϕ(θ, z′0:1)H2,θ(θ, z0:1)|

×Π(dθ)νθ(dz0)G1,θ(z1)Qθ,h,h′(z0,dz1)

=

∫
θ×Z2

|ϕ(θ, x0:1)gθ(x1, y1)− ϕ(θ, x′0:1)gθ(x
′
1, y1)|Π(dθ)νθ(dz0)Qθ,h,h′(z0,dz1).

Application of (A2) hence yields

EΠh,h′ [|ϕ(θ,X0:1)H1,θ(θ, Z0:1)− ϕ(θ,X ′0:1)H2,θ(θ, Z0:1)|] ≤ C(h′)β/2.

Assuming the result for k−1, k > 1, by the above argument we only have to consider

∫
θ×Zk+1

|ϕ(θ, x0:k)H1,θ(θ, z0:k)− ϕ(θ, x′0:k)H2,θ(θ, z0;k)|

Π(dθ)νθ(dz0)

k∏
p=1

Gp,θ(zp)Qθ,h,h′(zp−1,dzp)

=

∫
θ×Zk+1

∣∣∣∣∣ϕ(θ, x0:k)

k∏
p=1

gθ(xp, yp)− ϕ(θ, x′0:k)

k∏
p=1

gθ(x
′
p, yp)

∣∣∣∣∣
Π(dθ)νθ(dz0)

k∏
p=1

Qθ,h,h′(zp−1,dzp).
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The R.H.S. can be upper-bounded by∫
θ×Zk+1

ϕ(θ, x0:k)gθ(xk, yk)

∣∣∣∣∣
k−1∏
p=1

gθ(xp, yp)−
k−1∏
p=1

gθ(x
′
p, yp)

∣∣∣∣∣
Π(dθ)νθ(dz0)

k∏
p=1

Qθ,h,h′(zp−1,dzp)

+

∫
θ×Zk+1

k−1∏
p=1

gθ(x
′
p, yp)|ϕ(θ, x0:k)gθ(xk, yk)− ϕ(θ, x′0:k)gθ(x

′
k, yk)|

Π(dθ)νθ(dz0)

k∏
p=1

Qθ,h,h′(zp−1,dzp).

The first term can be treated by the induction hypothesis and the second term via
(A2), which completes the proof.

Appendix B. Coupling Euler approximations. Consider (x, x′) ∈ S2, the
current position of the discretized diffusions. Now we have h, h′ the discretization
levels with 0 < h < h′ and for simplicity set h′ = 2h. Associated to the discretization
level h (resp., h′), one must sample k = δ/h (resp., k′ = δ/h′) points to obtain the
sampled position of the diffusion at the next observation time. Set X(0) = X ′(0) ∼
µθ(dx) and then one can sample the fine discretization for m ∈ {0, . . . , k − 1} as

X(m+ 1) = X(m) + haθ(X(m)) +
√
hbθ(X(m))ξ(m),

where ξ(m)
i.i.d.∼ N (0, Id). (Id is the d× d identity matrix.) For the course discretiza-

tion, using the same simulated ξ(0), . . . , ξ(k − 1) we set for m ∈ {0, . . . , k′ − 1}

X ′(m+ 1) = X ′(m) + 2haθ(X
′(m)) +

√
hbθ(X

′(m))[ξ(2m) + ξ(2m+ 1)].

Appendix C. Verifying assumptions. Now, we want to check conditions
(A2) and (A3) under Assumption 2.1(i)–(ii), (A1), and the following assumption on
Π(dθ) = π(θ)dθ and R(dθ′|θ) = r(θ′|θ)dθ′.

Assumption C.1. Θ is a compact set of Rdθ , and π : Θ → R+ and r : Θ2 → R+

are continuos and strictly positive.

By assumption, Qθ,h,h′(z,dz
∗) is the conditional distribution of Z∗ =

(X(k), X ′(k′)) given Z = (X(0), X ′(0)). Then, under Assumption 2.1(i)–(ii), the
condition (A2) is satisfied with β = 1 for any q = 1, 2, since this is the Lq bound of
the Euler–Maruyama scheme (in fact for constant diffusion coefficient bθ it coincides
with the Milstein method and β = 2) [11].

Next, we want to check the condition (A3). The proposal kernel ψ on W =
Θ× {1, . . . ,M}n × ZM(n+1) × {1, . . . ,M} of PMMH is

ψ(w,dw∗) = P
(

da∗,1:M
0:n−1,dz

∗,1:M
0:n |θ∗

)
R(dθ∗|θ) Gn,θ∗(z

∗,l
n )∑M

i=1Gn,θ∗(z
∗,i
n )

,

where w= (θ, a1:M
0:(n−1), z

1:M
1:n , k), w∗= (θ∗, a∗,1:M

0:(n−1), z
∗,1:M
1:n , l), and P (da∗,1:M

0:n−1,dz
∗,1:M
0:n |θ∗)

is defined in (10). The transition kernel K is

K(w, dw∗) = ψ(w,dw∗)α(w,w∗) + δw(dw∗)R(w),
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where the acceptance probability α(w,w∗) is

α(w,w∗) = min

{
1,
pMh,h′(y0:n|θ∗)π(θ∗)r(θ|θ∗)
pMh,h′(y0:n|θ)π(θ)r(θ∗|θ)

}
,

and the rejection probability R(w) is

R(w) = 1−
∫
w∗
ψ(w,dw∗)α(w,w∗).

By (A1) together with Assumption C.1, C1 = infw,w∗∈W α(w,w∗) > 0, and

inf
w
ψ(w,dw∗) ≥

{
min
θ,θ∗

r(θ∗|θ)
}

1Θ(θ∗)dθ∗P
(

da∗,1:M
0:n−1,dz

∗,1:M
0:n |θ∗

) Gn,θ∗(z
∗,l
n )∑M

i=1Gn,θ∗(z
∗,i
n )

=: C2ψ(dw∗)

for a constant C2 = Leb(Θ) minθ,θ∗ r(θ
∗|θ) > 0 with a probability measure ψ(dw∗).

Here, Leb is the Lebesgue measure on Rdθ . Thus, we have

K(w, dw∗) ≥ C1C2ψ(dw∗).

In particular, the condition (A3) is satisfied.
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