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The brain activity observed on EEG electrodes is influenced by volume conduction and functional con-
nectivity of a person performing a task. When the task is a biometric test the EEG signals represent the
unique “brain print”, which is defined by the functional connectivity that is represented by the interac-
tions between electrodes, whilst the conduction components cause trivial correlations. Orthogonalisation
using autoregressive modelling minimises the conduction components, and then the residuals are related
to features correlated with the functional connectivity. However the orthogonalisation can be unreliable
for high-dimensional EEG data. We have found that the dimensionality can be significantly reduced if
the baselines required for estimating the residuals can be modelled by using relevant electrodes. In our
approach, the required models are learnt by a Group Method of Data Handling (GMDH) algorithm
which we have made capable of discovering reliable models from multidimensional EEG data. In our
experiments on the EEG-MMI benchmark data which include 109 participants, the proposed method
has correctly identified all the subjects and provided a statistically significant (p < 0.01) improvement
of the identification accuracy. The experiments have shown that the proposed GMDH method can learn
new features from multi-electrode EEG data, which are capable to improve the accuracy of biometric
identification.
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1. Introduction

Recent advances in neural engineering and human-

machine interaction based on the electroencephalo-

gram (EEG) are receiving much attention and active

development in many application areas. In biomet-

ric security applications, EEG signals cannot be re-

produced by an intruder or remotely captured with

sensors1,2 and are extremely difficult to imitate. A

person cannot be forced to reproduce a biometric

test under stress conditions.3 The recently developed

EEG sensor technologies have significantly improved

the usability of EEG headsets, thus making EEG-

based technologies user-friendly.4

EEG-based person identification and recogni-

tion methods employ different approaches to extract-

ing EEG features that can represent a person’s indi-

viduality as a “brain print”. The EEG features are

typically represented by frequency spectra.5–7 When

EEG recordings are made from a multi-electrode sys-

tem, the features are extracted for each electrode.

New promising approaches8–10 to EEG biomet-

rics are based on the “connectome” which reflects in-

dividual differences in the brain organisation, known
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as the brain functional connectivity, of a person.11,12

The connectivity represents the interaction be-

tween different brain regions.13 Attempts have been

made to estimate the interactions in terms of cor-

relations between EEG electrodes.14,15 However, the

correlations can be misleading for estimating the con-

nectivity because of the volume conduction problem.

The volume conduction causes the neural activity

from a single source to be received by multiple elec-

trodes. As the result, the observed correlations be-

tween the electrodes are trivial and do not reflect the

true connectivity.

Following,16 an event can be caused by volume

conduction if (i) the event is seen at more than

two electrodes, (ii) the event appears with the same

waveform, and (iii) peaks and deflections occur syn-

chronously at all electrodes where the event is ob-

served.

Recently, it has been proposed to estimate the

connectivity by computing the phase shifts between

EEG signals.9,10 It has been shown that phase shifts

cannot be consistently caused by the volume con-

duction, and so are predominately correlated with

the true connectivity.17,18

However, the phase differences are computed for

each pair of electrodes, and the number of pairs can

be large for multi-electrode systems. The delays are

estimated for each frequency that can be present in

the EEG signal. This makes the brain print data

high-dimensional.

Orthogonalisation using Autoregressive (AR)

modelling minimises the trivial correlations, and the

connectivity features can be then extracted from the

residuals.8,19,20 However this approach can be unre-

liable in the case of high-dimensional EEG data.

The desired solutions can be found with con-

ventional machine learning methods in cases where

model structures are well-defined. These methods

are limited in terms of modelling real-world prob-

lems represented by underdetermined, “ill-defined”

or contaminated data, see e.g.21 Under such condi-

tions conventional Artificial Neural Networks (ANN)

are prone to providing unreliable solutions.22–24

The other machine learning methods such as re-

gression and classification trees,25 which are based

on recursive data partitioning, are limited in their

ability to generalise, their prediction accuracy can

be poor on new data.

The above problems with model structures and

data have been partly resolved within the Group

Method of Data Handling (GMDH),22,26,27 shown

to deliver efficient data-driven solutions to problems

of modelling, prediction, and pattern recognition.

Nowadays GMDH algorithms are considered as Deep

Learning paradigms due to their ability to generate

new features for multi-layered ANN, which makes

their architectures “deep”.28 Within the Deep Learn-

ing framework, neurons at new layers of neural net-

works are generated with new features which are ca-

pable of improving the ability to generalise.28–30

The advantages of the GMDH approach have

been shown in our early research,31,32 in which a new

algorithm developed for learning GMDH-type ANN

has outperformed the conventional ANN trained

with the back-propagation method. The methods

have been compared in terms of the accuracy of clas-

sification of clinical EEG.

In this paper we aim (i) to explore the condi-

tions under which reliable biometric features can be

extracted from the residuals, which are associated

with the brain functional connectivity individual for

a person, and (ii) to develop a new feature extrac-

tion method for EEG-based person identification us-

ing the advantages of Deep Learning.

In sections 2 and 3 we review the related lit-

erature, define the problem and consider limitations

of the existing methods. In two other sections 4 and

5 we describe the proposed method and EEG data

for our experiments. In sections 6 and 7 we present

the experiments and discuss the results, and finally

section 8 concludes the paper.

2. Related Work

EEG-based person identification and recognition

methods employ different approaches to extracting

EEG features that can represent a person’s individu-

ality as a “brain print”. EEG features are represented

by frequency spectra, which are calculated by using

Fourier or wavelet transforms, or by the coefficients

of AR models. EEG records are typically made from

a multi-electrode EEG system during the specified

types of activities performed by the subject.

The most recent EEG-based biometric studies

have been aimed at extracting the “connectome”

which represents the brain functional connectivity

of a person. EEG signals, which are recorded from

electrodes in different positions on the scalp, con-

tain the important features that can be extracted for



February 15, 2018 15:41 main˙R2

FEATURE EXTRACTION WITH GMDH-TYPE NEURAL NETWORKS FOR EEG-BASED PERSON IDENTIFICATION 3

purposes of estimating the connectivity and person

identification.

In this section we review the existing methods of

EEG-based identification, which have been validated

on representative data sets. We attempt to analyse

the main approaches to estimating the brain func-

tional connectivity because we think that they are

the most promising.

2.1. Spectral-based features

One of the earliest attempts to develop an EEG-

based person recognition system was based on the

statistical analysis of EEG spectra aimed at defining

the individual biometric pattern. The developed sys-

tem5 was tested on the EEG data recorded from 82

subjects and provided accuracy of 90%. Later stud-

ies33,34 have confirmed that EEG features contain

the information related to an individual trait, which

is stable over time.

Classification of EEG recordings from 40 sub-

jects was attempted in the study.6 Recordings were

obtained with 8 electrodes, and subjects were at rest-

ing state with eyes open and eyes closed. The EEG

signals were represented by the coefficients of AR

models. Linear discriminant analysis was employed

for classification. AR models of orders from 3 to

21 were compared and the identification accuracy of

82% was reported with 21 coefficients.

Visually evoked EEG potentials recorded from

a multi-electrode system have been investigated for

biometric identification of 102 subjects.35 The in-

vestigators assumed that the frequency powers in

the Gamma band (32-48 Hz) represent the informa-

tive features for biometric identification. The spec-

tral powers were estimated for each electrode in or-

der to form a feature vector. Biometric identification

was performed with Elman neural networks which

allowed an accuracy of 98% to be achieved.

The same EEG benchmark has been studied for

identification by using a support vector machine. The

biometric features were represented by the spectral

powers, and an accuracy of 91% was reported.36 The

Physionet Motor Movement/Imagery EEG data set

(EEG-MMI),37 including recordings made from 109

subjects via a 64-electrode EEG system, has been

used in a number of the recent works in biometric

recognition and identification. The recordings were

made from the subjects during the rest periods with

eyes open or eyes closed. The subjects also performed

motor tasks including real and imagined movements

of hands and feet.

The accuracy of biometric authentication has

been explored on six publicly available data sets, in-

cluding the EEG-MMI benchmark. The study7 com-

pared the authentication accuracy that was achieved

by using the spectral features extracted from the con-

ventional frequency bands, as well as by employing

different movement-related tasks. A Bayes classifier

was used for the biometric identification. It was re-

ported that the EEG features from a wide range of

frequencies were similarly informative for the identi-

fication. The analysis of the electrode positions has

not revealed their best location in terms of identi-

fication accuracy. An accuracy of around 80% was

reported for 100 subjects. In a subsequent work by

the same authors38 an accuracy of 95% was achieved

on the EEG-MMI benchmark by analysing the shape

of the power spectrum.

The resting state recordings from the EEG-MMI

data set have been used in the experiments.39 The

1-min long recordings were split into 12 5-sec epochs

to be represented by the coefficients of AR models of

orders given between 5 to 20. The accuracy of bio-

metric identification was reported to be 87.2%.

The EEG-MMI benchmark has been used to

research the effects of movement-related tasks on

biometric recognition.40 The 4-sec long task-related

recordings were joined into 30-sec long epochs in

order to extract the biometric features by using a

wavelet transform. The recognition was performed

with linear discriminant analysis, and an accuracy

of nearly to 100% was achieved. This approach re-

quires the 30-sec long recordings for the biometric

identification, which under certain conditions is not

user-friendly and can limit applications.

2.2. Mapping the brain functional
connectivity

The brain functional connectivity reflects the inter-

action between different brain regions, that is ob-

served and explained in one of the existing forms

of measuring brain activity.41 The electrical brain

activity can be measured directly and represented

by potentials induced on EEG electrodes. The brain

activity can be also estimated from the Magneto-

electroencephalogram (MEG)42 or functional Mag-

netic Resonance (fMRI).8 The observations are

mapped onto the “connectome” that represents her-
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itable individual differences in the brain organisa-

tion,11,12,43 which makes the connectivity-based ap-

proach promising for biometric purposes.

In the study8 the individual differences in a con-

nectome were defined as “connectotype” analogously

to genotype. For estimating the connectome from

fMRI data, AR modelling was employed to predict

activity of a given brain Region of Interest (ROI) as

a weighted sum of the activity of it’s neighbouring

regions.

The neural activity in fMRI data is represented

by the Blood-Oxygen-Level Dependent (BOLD) sig-

nal which reflects the changes in blood oxygen sat-

uration associated with activation of neurons. The

BOLD signal measured in a given ROI is correlated

with EEG recorded from an electrode.44 As the con-

sequence, the techniques developed for analysis of

BOLD signals can be transferable to EEG feature

extraction.

The early attempts41,45 to map the connectivity

used the correlation estimated between the regions of

interest, which can be represented by EEG or fMRI

signals. The correlation was estimated between pairs

of the regions of interests.

Later the connectivity mapping was considered

in the frequency domain in terms of coherency which

reflects the linear relationship between a pair of EEG

channels at a given frequency. However it was found

that the interpretation of the coherence is affected

by the volume conduction which leads to erroneous

estimation of the coherence.46

A study was proposed to estimate the connec-

tivity in terms of phase synchrony between EEG

electrodes, which is known as Phase Locking Value

(PLV). The PLV is based on the observation that

during a cognitive process groups of neurons generate

the EEG signals with a precise phase synchrony. The

observed synchronies between brain regions were ca-

pable of reflecting the functional connectivity, whilst

the local synchronies observed within a given region

were related to the volume conduction. Being influ-

enced by the volume conduction, the neighbouring

electrodes receive an EEG component with a similar

electrical potential, which affects the mapping of the

functional connectivity.47

Another approach17 to mapping the functional

connectivity in terms of phase synchronisation was

by estimating an imaginary part of the coherence.

The imaginary part captures the information about

phase differences of two signals while the real part

of coherence (or ordinary coherence) is sensitive to

signal magnitude. It was observed that the EEG sig-

nals recorded at the scalp electrodes do not have

phase differences with the underlying source activ-

ity induced by the volume conduction. On the other

hand, the presence of phase differences cannot be

explained by the influence of the volume conduction.

The real and imaginary parts of coherence were ex-

plored, and it was found that the imaginary part can

reflect the interaction as a biometric feature related

to the functional connectivity.

Although the imaginary part of coherence was

promising for estimating the true interactions be-

tween brain regions,17 this approach has the fol-

lowing two limitations. First, to achieve reliable re-

sults long EEG sessions are required. Second, the

coherence is defined under the unrealistic assump-

tion that the phase difference between two signals is

constant.19

An improved mapping of phase interactions

was proposed and defined as the Phase Lag Index

(PLI).18 The PLI maps the asymmetry of the dis-

tribution of phase differences between two signals.

The distribution is expected to be uniform if there

is no synchronisation between the two signals, and

it becomes asymmetrical if phase synchrony is ob-

served. It was concluded that the PLI is more robust

to the volume conduction than the coherence-based

mapping.

2.3. Connectivity-based features

Connectivity-based features14 have been proposed

for biometric recognition by estimating the coher-

ence between two frontal electrodes. The new fea-

tures taken along with the estimates of conventional

power spectral density have provided an identifica-

tion accuracy of 98.1% for 51 subjects, using 1-min

long EEG recordings.

Another study15 proposed mapping the coher-

ence along with the standard spectral features for

biometric recognition using the resting-state 1-min

long EEG recordings from the EEG-MMI bench-

mark. An identification accuracy of 100% was re-

ported. The accuracy is likely to be overestimated

because there was no evidence that the validation

subsets, which were used for feature selection, were

different from those which were used for estimating

the performance. The resting-state data were taken
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from a continuous 1-min session, which cannot repre-

sent the natural interstate variations. The influence

of the volume conduction was not considered within

the proposed method.

As described in the previous section, the PLI-

based features can be used for extracting features

robust to the influence of the volume conduction.

Such a method9 has been proposed for extracting

the connectivity-based features calculated for each

pair of EEG electrodes. The generated features were

then used for estimating so-called network centrality

within which the importance of electrodes is evalu-

ated for identification of the connectome patterns.

Recently,10 PLV and PLI based features have

been compared on the EEG-MMI benchmark. It was

shown that the PLV features require EEG signals to

be orthogonalised by using linear regression analysis

in order to remove the influence of the volume con-

duction. An accuracy close to 90% was reported for

recognising the resting-state EEG of 109 subjects.

It was shown that the recognition accuracies of the

PLV and PLI features were comparable.

3. Problem Statement

In this section we introduce definitions and then

consider the connectotype-based approach to EEG-

based identification and state the research problem.

As discussed above, the brain functional connectiv-

ity, which is individual for a person, can be anal-

ysed when the effect of volume conduction is reduced

to a minimum. There are three main approaches to

achieve this goal: the first and second are based on

decorrelation and orthogonalisation of signals respec-

tively, whilst the third estimates phase shifts between

multi-electrode signals, which make biometric fea-

tures robust to the volume conduction. Advantages

and limitations of this approach are discussed at the

end of the section.

3.1. Volume conduction and brain
functional connectivity

The brain activity that is related to a task (e.g. per-

ceptional, motor or mental) performed by a subject,

as observed via a multi-electrode EEG system, from

the neurophysiologic point of view has two projec-

tions or components caused by (i) the volume con-

duction and (ii) the brain functional connectivity.

The first projection is determined by the electrical

conduction of the brain volume, and so causes trivial

correlations between EEG electrodes. The signals of

this component have similar waveforms and phases

over multiple EEG electrodes and so are not related

to a task of biometric test, although volume con-

duction makes a contribution to biometric informa-

tion on the individual brain morphology.15 However

during biometric test the influence of the brain con-

duction is trivial and has to be removed from the

biometric analysis.

Figure 1. Volume conduction and brain functional con-
nectivity. The upper plot: a source of the neural activity
generates a sine wave received by the sensors placed on
the scalp. The component caused by the volume conduc-
tion is recorded without a phase delay. The lower plot:
the sine wave passing different network connections is re-
ceived with a phase difference on the electrodes.

The second component is caused by the brain

functional connectivity that defines the brain “con-

nectotype” of a person. The sources of this EEG com-

ponent have a unique anatomical localisation and so

induce electrode potentials with phase delays.48,49

Fig. 1 illustrates this phenomenon. Being generated

from different brain areas, the connectotype com-

ponents induce the potentials which are correlated

with the personal brain functional connectivity and

so represent a unique biometric “brain print”.

The EEG component caused by the volume con-

duction, which is not correlated with the biometric

brain print, can be modelled and then removed by

orthogonalising the EEG signals received from the

electrodes.
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3.2. Decorrelation using source
derivation

To reduce the effect of brain conduction in a multi-

electrode EEG system, Hjorth50 has suggested a

source derivation method employing the Laplace op-

erator to approximate a distribution of the poten-

tial field on the surface of a conductive volume. The

method aims to estimate the potential ψs of the

source component as follows:

ψs = −(d2x + d2y)ψxy,

where d2x and d2y are the operators that define the

2nd order differences along x and y coordinates of

the surface underlying the scalp electrodes, and ψxy
is the distribution of potentials over the x and y co-

ordinates.

Consider a 5-electrode placement with the cen-

tral electrode at a position P0 and the four surround-

ing electrodes at positions P1, . . . , P4 along the x and

y coordinates. In particular, the electrode positions

P3, P0, P1 are placed along the x coordinate, whilst

the others P4, P0, P2 are placed along the y coordi-

nate. In this framework, the operators d2x and d2y are

defined as follows: d2x = (ψ1 − ψ0) − (ψ0 − ψ3) and

d2y = (ψ2 − ψ0)− (ψ0 − ψ4).

Finally the potential of interest ψs is written

as a superposition of four radial bipolar derivations

around the central electrode:

ψs = (ψ0−ψ1)+(ψ0−ψ2)+(ψ0−ψ3)+(ψ0−ψ4). (1)

Fig. 2 shows the block diagram of the source deriva-

tion method implementing the above Eq. 1.

xi1
1
4

∑4
1. . .

xi4

−

xi

xis

Figure 2. Block diagram of the source derivation
method implementing Eq. 1. Here xi1, . . . , xi4 are the
signals from four electrodes neighbouring to the central
electrode, xi is the signal from the central electrode, and
xis the derived component of the signal.

The common reference derivation for M elec-

trodes has a similar form that can be written as

ψs = ψ0 −
1

M

M∑

i=1

ψi. (2)

However the source derivation method, imple-

menting Eq. 1, excludes superimposed contributions

from sources located outside of neighbouring areas

in a multi-electrode system. As a result, the source

derivation has improved the separation by a factor of

2 compared with the common reference implement-

ing Eq. 2 in terms of correlation caused by the brain

conduction. Correspondingly, the estimated source

component will have a greater signal-to-noise ratio.

An attempt51 to improve the source derivation

resolution within the 10-20 system of electrode place-

ment has been made by applying weights 1/(1 +R2)

to contributions of the electrodes, where R stands for

the distances from the electrode position to the sur-

face element. However this technique has produced

only a minor improvement of the resolution.

Analysing the source derivation method,

Hjorth50 has found that correlations between neigh-

bouring and central electrodes have different signs:

nearest electrodes often have a positive correlation,

whilst more remote electrodes often have a negative

correlation. He has concluded that this can explain

why the common reference technique (Eq. 2) applied

within the standard 10-20 electrode system cannot

improve the source separation resolution.

Further attempt52 to obtain the optimal resolu-

tion has been made by adaptation of the derivation

technique using covariances in the potential field y

observed on the scalp electrodes. According to the

method, the brain activity is represented by the sig-

nals s = (si, . . . , sM ) referenced to the common av-

erage x = ([I] − 1/M [1])s, where [I] is the identity

matrix and [1] the unit matrix.

Resultant superposition in the potentials y de-

pends on the transfer function matrix A: y = Ax,

where x are the intrinsic data subject to convolution

by the matrix A.

Independence and equal variances of x are the

necessary conditions to relate the covariance matrix

C to A: C = yyᵀ = Ax(Ax)ᵀ = σ2
xAAᵀ, that make

it possible to identify the matrix A : A =
√

C.

The correlations which are caused by of-diagonal

elements of A cannot be directly minimised by the

inverse of A without a term 1/M [1], addition of

which finally brings the solution to the problem:

B = (A + 1/M [1])−1. (3)

This solution nevertheless can be numerically

unstable, thus affecting the desired decorrelation of
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the source z : z = By. In practice, the adaptive

source derivation method has produced a minor im-

provement.52

3.3. Orthogonalisation using regression
modelling

In EEG, MEG, and fMRI modalities of brain activ-

ity imaging, the connectomes can be represented by

a residual component of the signal predicted with

an AR model that has been obtained for each per-

son during the enrolment (training) sessions.8 The

residuals r are mathematically defined as compo-

nents which are orthogonal to the predicted signal ŷ.

Being orthogonal, the residuals are affected by the

trivial correlation to a lesser degree.19,20 The com-

mon idea of these methods can be outlined as follows.

Signals
{
xi(t)

}M
i=1

, t = 1, . . . , T , are obtained

from an M -channel system, as part of a biometric

test that is performed by a person during the enrol-

ment and identification sessions in the form of motor

or mental task. Here T is the number of samples in

recording of a task which is used for the enrolment

and identification.

The signal x(t) is represented by an AR model:

x(t) =

P∑

j=1

αjx(t− j) + r(t), (4)

where αj are the coefficients of the AR model, P is

the order of the model, and r is the residual compo-

nent which is associated with the connectome.

Given the EEG samples for each enrolment and

identification session, the desired coefficient vectors

α̂ are defined as follows

α̂ = arg min
α

S(α), (5)

where α = (α1, . . . , αP )ᵀ.

Here S(α) is the error function calculated for

the residuals r:

S(α) =

T∑

t=P+1

r2t =

T∑

t=P+1

[
x(t)−

P∑

j=1

αjx(t−j)
]2
.

In the matrix form the above problem can be

rewritten as follows

S(α) = ||y −Xα||. (6)

Here y = (xT , . . . , xP+1)ᵀ, and X is the data matrix:

X =




xT−1 xT−2 . . . xT−P

xT−2 xT−3 . . . xT−P−1

. . . . . . . . . . . .

xP xP−1 . . . x1



.

The above minimisation problem (Eq. 5) has a

unique solution α̂ when all P columns of X are lin-

early independent. In this case the solution can be

found by solving the normal equations:

(XᵀX)α̂ = Xᵀy,

that finally allows us to calculate the coefficient vec-

tor α̂ using the inverse operator (·)−1:

α̂ = (XᵀX)−1Xᵀy. (7)

The residual vector r is written as follows:

r = y −Xα̂. (8)

According to the method,8 the AR models of or-

der P = 5, described by Eq. 4, are built in order to

remove the trivial correlation caused by the disper-

sion of signals in each channel m = 1, . . . ,M during

the enrolment sessions. The correlations are removed

from the data of each person.

The residual vectors rm,m = 1, . . . ,M , are cal-

culated using Eq. 8 are then used for analysis of the

brain functional connectivity. Then the residuals are

arranged for the ith lag (frame) t = P + 1, . . . , T

as follows rt = (r1,t, . . . , rM,t)
ᵀ in order to model

the neural interaction between the electrodes (ROIs),

where P is the number of lags.

The interaction is linearly modelled as follows:

r̂t =

P∑

j=0

Bi−jri−j , (9)

where Bj is a M ×M matrix:

Bj =




0 b1,2,j . . . b1,M,j

b2,1,j 0 . . . b2,M,j

. . . . . . . . . . . .

bM,1,j bM,2,j . . . 0



. (10)

The coefficients of Bj are determined by using

a Pseudo-Inverse (PINV) technique, which similarly

to the technique based on normal equations (Eq. 7)

provides a unique solution. The PINV-based solution

is numerically stable when the numbers of rows and

columns are equal, and M is large (M = 184), whilst
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a technique based on the normal equations requires

a larger number of rows than columns.

Within the above method, the coefficient vec-

tors α(l) and coefficients matrices B(l) are calculated

for each of L enrolled persons l = 1, . . . , L and then

saved for an identification session.

During identification the test data received from

a person via the M channels are used to calculate the

residual vectors r given the vectors α and B obtained

for each enrolled persons.

Then it is assumed that the residual vectors r

(Eq. 8) and r̂ (Eq. 9), calculated for the test of the

lth person with the parameters α(i) and B(i), are

statistically similar if i = l and significantly different

if i 6= l, where i = 1, . . . , L.

The similarity between the residuals r and r̂ is

estimated over the test by using a correlation co-

efficient rxy. In Pearson’s definition, the correlation

coefficient rxy is estimated between the samples x

and y.

The correlation coefficients rxy are calculated

for each channel and then the mean correlation over

all M channels is estimated for each candidate l.

The person l∗, whose mean correlation coeffi-

cient r̂xy is maximal, is identified to be with the best

matching brain print:

l∗ = arg max
1≤l≤L

(r̂(l)xy),

The MRI-based identification method8 has been

tested on a benchmark set including 27 persons each

of whom is represented by a trial including a few

samples (frames). The training and test frames have

been randomly selected from the same trial. The

identification accuracy has been evaluated on the

test frames which can be correlated with the training

frames, and so the reported performance 100% can

be overestimated. The second trials have been taken

from only 5 persons, which cannot be sufficient.

3.4. Phase-based approach

According to17,18,47 the brain connectivity influences

the phase delays ϕ in the EEG signals received from

different brain regions via a multi-electrode system.

The neural activity in a local area passing different

network connections induces a distinct electrical po-

tential on EEG electrodes. Because the sources are

located in different areas, the induced EEG signals

have different phases φi so that the phase delays ϕij

between electrodes i and j are

ϕij = φi − φj , i 6= j = 1, . . . ,M. (11)

The phases φi are estimated instantaneously.18

Their estimates contain noise components assumed

to have a Gaussian distribution with variance υ2i .

The resultant phase delays ϕij will be therefore af-

fected by noise with a larger variance υ2ij = υ2i + υ2j .

The delays ϕij are estimated for each pair of

electrodes, and their number is M(M − 1)/2. This

can be large for multi-electrode systems, for exam-

ple when M = 64, the number becomes 2016. The

delays are estimated for each frequency that can be

present in the EEG signal.

3.5. Limitations of the approaches

The analysis of the above EEG-based biometric

methods reveals the following limitations.

(1) Some studies have reported identification

performances which are statistically overestimated

because of the following reasons: (i) the test and

training samples (frames) are taken from the same

trial and (ii) the test data include a small number of

participants. However reliable estimates can only be

obtained on test data having a sufficient number of

samples not included in the training data set.

(2) The EEG-based trials have been reported to

be 30-sec, and MRI-based methods have 2-min tri-

als. For some biometric applications such long trials

cannot be considered as user-friendly.

(3) Both EEG-based and MRI-based methods

deal with multidimensional data. The analysis of

such high-dimensional data is connected with gen-

eral problems of calculating a pseudo-inverse of the

matrix B (Eq. 10), which has to be capable of pro-

viding a numerically stable solution.

(4) The interaction with the historical lags in

the residual vector r̂ (Eq. 9) is not modelled. The in-

clusion of new lags, j = 1, . . . , P , will therefore cause

a problem of computing a pseudo-inverse of matrices

Bj .

(5) Being affected by the noise and artefacts,

some of the delays ϕij in Eq. 11 as biometric fea-

tures can be irrelevant to the personal brain print

and so have to be removed in order to achieve reli-

able identification. These above problems limit the

reliability of biometric identification.
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4. Proposed Method

The above findings motivate us to consider ways to

overcome the existing limitations and develop a new

approach capable of improving the accuracy and reli-

ability of EEG-based person identification. The new

method should also be user-friendly and provide the

identification result using biometric tests of a reason-

ably short duration.

4.1. Statement 1

We found that the limitations discussed in the above

section can be overcome with a new technique which

can (i) use a smaller set of features than that pro-

vided by the pairwise interactions and (ii) be capable

of reducing the intensity of noise components present

in ϕ.

Both these requirements are satisfied by using a

“virtual” (in contrast to a physical electrode that is

used as the reference) baseline instead of the above

pairwise-electrode interaction. The idea behind the

proposed approach is to use the neighbouring elec-

trodes for modelling the baseline, which is required

for estimating the brain connectivity represented by

the phase delays ϕ.

Statement 1: Residuals of Autoregressive

modelling of EEG signals referenced to the

proposed “virtual” baseline are correlated

with brain functional connectivity.

To support Statement 1, let us assume a model

that can predict the EEG signal observed at the ith

electrode using the signals obtained from the other

electrodes so that the predicted signals form the “vir-

tual” baseline observed with a phase φ̂i. Then the

delay ϕi for the ith electrode can be estimated as

follows:

ϕi = φi − φ̂i, i = 1, . . . ,M.

Here in contrast to the delays ϕij calculated for the

pairwise interactions described by Eq. 11, the above

features are estimated only for M electrodes.

The use of an AR model of an order P for pre-

dicting the EEG signals reduces the noise component

that contaminates the phases φj in Eq. 11. The total

sum of the absolute values of ϕij over all T predicted

samples is proportional to the total sum of the resid-

ual |ri| at the ith electrode:

T∑

t=P+1

|ϕit| →
T∑

t=P+1

|rit|. (12)

The phases mapped in this way onto the resid-

uals are used in our experiments as biometric fea-

tures capable of making important contributions to

the identification.

The distribution of the phases ϕ over the multi-

ple electrodes is the unique biometric pattern of in-

terest. In this connection, the research18 has demon-

strated that the brain connectivity can be estimated

by evaluating the shape of a distribution of phase

differences between two signals. This distribution is

uniform when there are no interactions between the

signals, and the interactions exist if the distribution

is asymmetrical.

4.2. Statement 2

It is important to note that improvement of the accu-

racy of modelling the volume conduction by adding

new inputs (channels) to the AR, described by Eq. 4,

explicitly increases the dimensionality of the coeffi-

cient vector α. An increase in the dimensionality of

an AR model will cause problems of finding a numer-

ically stable solution capable of minimising the error

function S(α) in Eq. 5 and providing the vector α̂

by using the inverse operator used in Eq. 7.

Given a limited set of the enrolment data, re-

liable estimation of AR model parameters can be

achieved with the regularisation criterion,22,26 ∆,

that is evaluated on the disjoint subsets A and B
of the enrolment data set W:

W = A ∪ B,B 6⊂ A.
The subsets A and B are assigned for fitting

and validation of AR models, respectively. The sub-

set A is used for fitting the coefficient vector αA of

an AR model f(XA;αA,X ) given with a structure

vector of the input variables X = (xi1 , . . . , xim), here

1 ≤ m ≤M .

The desired regularisation is achieved by evalu-

ating the residual ∆ of the model f(·;αA,X ) on the

entire enrolment data including the validation subset

B:

∆ = ‖f(X;αA,X )− ẙ‖. (13)

In the absence of knowledge of the structure vec-

tor X , a reasonable set of K vectors (X1, . . . ,XK) is
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generated so that the residuals of AR models are ar-

ranged as follows:

∆i1 ≤ ∆i2 ≤ · · · ≤ ∆iK .

The model f∗(·;α,Xi1) with the structure vec-

tor Xi1 , which provides the lowest residual ∆i1 , is

selected and assigned to be “optimal”.

A family of GMDH algorithms22,26,27 can learn

the model of interest under the above conditions,

namely (i) when the enrolment data X are repre-

sented with a small number of instances or under-

determined (N < M), and (ii) when the structural

vector X is unknown.

Statement 2: GMDH can learn the “opti-

mal” structure of Autoregressive model from

given enrolment data.

To support Statement 2, let the signals x(i), i =

1, . . . ,M , be the result of interaction between M

electrodes, which can be modelled by AR models:

x(i)(k) =

M∑

m=1

β(i)
m

Pi∑

j=1

α
(i)
j x(i)(k − j) + r(i)(k), (14)

where β(i) = (β1, . . . , βM ) are the vectors of coeffi-

cients of an electrode i with β
(i)
m = 0 when m = i,

Pi ∈ {1, P} are the orders of AR models at the elec-

trode i, which are unknown but limited to the max-

imum P , and r(i) are the residual of the electrode i,

which is associated with the brain connectivity that

is the subject of biometric estimation.

The delayed components of the signal, x(i)(k −
j), are included in the above Eq. 14 to model a con-

tribution of the brain activity which is caused by the

functional connectivity.

The AR models will therefore include the elec-

trode coefficient vector β = (β1, . . . , βM ) so that the

residual ∆(i) at each channel is defined:

∆(i) = ‖fi(X;β,α,X )− ẙ‖, (15)

where the underscripts A for the above β and α are

omitted for simplicity.

Therefore, in the multichannel framework the

solution to the minimisation problem needs to be

found for an extended vector of the parameters β, α

and X :

(β̂, α̂, X̂ )(i) = arg min
β,α,X

∆(i)(β,α,X ). (16)

The block diagram of the proposed method im-

plementing Eq. 14 is shown in Fig. 3.

xi1 d1 . . . dP

∑
β
∑
α. . .

xiM d1 . . . dP

−

xi

xis

Figure 3. Block diagram of the proposed method im-
plementing Eq. 14. Here d1, . . . , dP are the delay units,
xi is the central electrode, and xis the orthogonalised
component of the signal.

Because of the limitations discussed in the sub-

section 3.5, finding the reliable solution, based on an

extended parameter vector (β̂, α̂, X̂ ), will be under-

taken within the GMDH framework introduced in

section 4.2. The proposed GMDH algorithm is dis-

cussed in the next section.

4.3. GMDH polynomial algorithms

Having outlined the main idea of GMDH algorithms

in the section 4.2, here we consider a family of

GMDH-type polynomial networks and then outline

the limitations of the existing GMDH approaches.

4.3.1. Description

Given a polynomial reference function with argu-

ments z1, . . . , zµ, GMDH algorithms can approxi-

mate an arbitrary polynomial of interest with M

arguments. Within GMDH, the approximation ac-

curacy is estimated by using the regularisation crite-

rion ∆, which is described by Eq. 13 for given data

partitions A and B.

For example, given an order of 3, a polynomial

of interest can be described as

y = w0 +

M∑

i=1

wizi +

M∑

i=1

M∑

j=1

wijzizj+

M∑

i=1

M∑

j=1

M∑

n=1

wijmzizjzm,

where wi, wij and wijm are the coefficients for the

terms of order 1,2 and 3, respectively.

A reference function g described by a short-

term polynomial of 2 arguments z1, z2 can be con-

sidered as a neuron activation function. In this nota-

tion, GMDH algorithms build ANNs which can be

learnt from data without prior information about

ANN structure.22,28
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In the case of 2 arguments, an activation func-

tion g with the coefficient vector w is written as fol-

lows:

y = g(z1, z2; w).

We can therefore define the polynomial activa-

tion functions of the 1st and 2nd orders, the most

common of which are:

y1 = w0 + w1z1 + w2z2,

y2 = w0 + w1z1 + w2z2 + w12z1z2,

y3 = w0 + w1z1 + w2z2 + w12z1z2 + w11z
2
1 + w22z

2
2 .

The 1st order polynomial yi is used for mod-

elling of linear systems. The 2nd order polynomials

y2 and y3 are used for modelling of nonlinear sys-

tems.

Having the training data [X; ẙ], including a

N ×M -matrix of the enrolment data X and the tar-

get vector ẙ, we could set a polynomial order and

then define a corresponding activation function g.

Below we provide details of our algorithm mod-

ified for the experiments with the EEG biometric

data. Using a given activation function, GMDH gen-

erates new neurons which are fitted to the train-

ing data [X; ẙ]. The generated candidate-neurons are

then evaluated in terms of the regularity error ∆ that

is estimated on the validation data. Such a construc-

tion enables GMDH to select neurons with the best

generalisation ability.

The neurons, which have been selected at the

layer r, generate features for neurons at a new layer

r + 1. The number of layers r is consequently in-

creased, and the network is growing, whilst its gen-

eralisation ability is improved. During this phase

the values of regularity error ∆ calculated for lay-

ers 1, 2, . . . , r tend to decrease. Once at the layer

r∗ = r+1, the network becomes overcomplicated, its

error ∆(r∗) will increase according to the regularisa-

tion criterion. Having reached this phase, the GMDH

algorithm is terminated as illustrated on Fig. 4.

r∗

r, Layers

∆
(r

)
,
R
eg
u
la
ri
ty

er
ro
r

Figure 4. Regularity errors ∆(r) over layers r =
1, 2, . . . , r∗. The algorithm is terminated at the layer
r∗ = r + 1 when ∆(r+1) > ∆(r).

4.3.2. Problems of learning GMDH-type
ANN

The candidate-neurons, which have been generated

at a layer r, are arranged by their regularity errors ∆

in ascending order to be selected for the next layer.

The first F neurons with the lowest errors are se-

lected as follows:

∆i1 ≤ · · · ≤ ∆iF ≤ · · · ≤ ∆iK . (17)

where i1, . . . , iK are the indexes and K is the number

of the candidate-neurons in a layer r.

In conventional GMDH algorithms, the “opti-

mal” number F is typically set to be around 0.4K

and refined in experiments. GMDH selects the same

number of neurons in each layer r = 1, 2, . . . , r∗,
which under certain conditions provides the reliable

results.22 However such a selection is not efficient

when a network with a large number of layers tends

to “degrade” in terms of the diversity of neuron out-

puts. The selected neurons generate correlated out-

puts which are not capable of making a distinctive

contribution.

4.4. Proposed GMDH algorithm

The analysis of the above limitations gives new in-

sights into the problem of GMDH and we describe

an algorithm and its implementation.

4.4.1. Description

An efficient solution to the above problem is based on

removal of the correlated outputs. The modified al-

gorithm is terminated at a layer r∗ when the number

of independent outputs is below a given threshold.
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Using a given activation function g(z; w), the

algorithm generates a feature vector z = (xi1 , xi2)

for neurons at the 1st layer (r = 1), where i1 6=
i2, i1 = 1, . . . ,M . The number of generated neurons

is Kr = M(M−1)/2 that is defined by the number of

pairwise combinations for M input variables at the

1st layer.

The outputs yi of neurons at layer r = 1 are

written as:

y
(r)
i = g(z; ŵ

(r)
i ), i = 1, . . . ,Kr. (18)

Given a set A of the training instances, the

coefficient vectors ŵ(r) are fitted to the data

[X(A); ẙ(A)] by solving the normal equations. Their

solutions are numerically stable as the number of in-

stances included in the set A is larger than the num-

ber of the inputs in the activation function, and the

variables in columns i1, i2 of the matrix X(A, [i1, i2])

are not correlated. The estimates of the weight coef-

ficients ŵ therefore are:

ŵ(r) = [1 X(A, [i1, i2])]−1ẙ(A), (19)

where 1 denotes the unit vector.

Having the outputs yi on the entire data X, the

regularity errors ∆ is calculated as follows:

∆i = ‖yi − ẙ‖. (20)

The errors are sorted into ascending order (Eq. 17),

and then the first F neurons with lowest errors are

selected for the next layer.

As discussed in section 4.3.2, the outputs yi can

be correlated with outputs of the other neurons gen-

erated at a layer r. To avoid this problem, the pro-

posed algorithm excludes the neurons with correlated

outputs from the yi1 , . . . ,yiF to be selected for the

next layer. So the number of selected neurons after

decorrelation can vary Kr: 1 ≤ Kr ≤ F .

Neurons at the next layers r + 1 are generated

by applying the function g to an extended data ma-

trix Z(r) = [Y(r); X], which includes the outputs

of the selected neurons Y(r) = [yi1 , . . . ,yiKr
], and

the input data X, so that the matrix Z(r) contains

Mr = M +Kr columns, where Mr=1 = M .

Similarly, the coefficient vectors ŵ(r+1) are es-

timated for the (i1, i2) columns of the matrix Z(r).

The outputs of neurons y(r+1) are then calculated as

follows:

y
(r+1)
i = g(z

(r)
i1
, z

(r)
i2

; ŵ
(r+1)
i ), i = 1, . . . ,Kr, (21)

where i1 6= i2; i1 = 1, . . . ,mr, i2 = 1, . . . ,Mr, and

Kr = Mr(Mr − 1)/2 are the number of pairwise

combinations for the Mr columns. Fig. 5 illustrates

fitting and selection of neurons y
(r)
i at a layer r.

zi1
zi2

S
el
ec
ti
on

. . .

z1
z2

y1

. . .

zMr−1

zMr

yKr

z1

zMr

. . .

r r + 1

Figure 5. Fitting and selection of neurons y1, . . . , yKr

at a layer r + 1 are described by Eq. 21 and Eq. 17 re-
spectively.

The algorithm generates new layers and the net-

work grows while the number of neurons Kr selected

at a layer r is larger than a given threshold F0. The

block diagram of the proposed GMDH algorithm is

shown on Fig. 6.
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Generate Network

Initialise: the layer r = 1

and the network Net

Generate candidate-neurons

with pairwise combina-

tions of inputs at the layer r

Fit the generated neurons

to the given enrolment data

Evaluate regularity errors

∆ for the fitted neurons

Select Neurons at Layer r

Sort the neurons by the errors ∆

Find the neurons Iu with

uncorrelated outcomes

|Iu| > F0

Remove the neurons with corre-

lated outputs from the layer r

Update Net with the new neu-

rons selected at the layer r

Increment r = r + 1

Return Net

Y

N

Figure 6. The block diagram of the proposed GMDH
algorithm. The candidate-neurons are generated using
Eq. 21. Then the neurons are fitted to the given enrol-
ment data according to Eq. 19. The fitted neurons are
evaluated in terms of the regularity error Eq. 20. The
candidate-neurons are then sorted by using Eq. 17. The
neurons, outcomes of which calculated by Eq. 21 are un-
correlated, form a set Iu. The network Net is updated
with the new neurons Iu while their number |Iu| exceeds
the given minimum F0 : |Iu| > F0. Finally the Net in-
cludes a GMDH-type multilayered network learnt from
the given data.

5. EEG Data

The EEG Motor Movement/Imagery Data set (EEG-

MMI),37 available from Physionet,53 includes over

1,500 one- and two-min EEG recordings. The record-

ings were obtained from 109 subjects, and each sub-

ject performed the same sets of tasks, which include

real and imagined motor movements. The EEG were

recorded at 160 Hz sampling rate using 64 electrodes

positioned according to the standard international

10-10 system. The EEG signals are received by the

electrodes with numbers 1 to 64 as shown in Fig. 7
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Figure 7. Positions of the 64 electrodes on the scalp.37

Each subject was instructed to relax, and 2-min

long resting state EEG recordings were made. After

that each subject performed movement and imagery

tasks in the response to cues shown on the screen.

During the movement tasks when a cue appears on

the screen, the subject opens and closes the left or

right fist, or both fists or feet. During the imagery

tasks the subject is instructed to imagine the move-

ments.

Each task was performed in 2-min long experi-

mental runs, which include on average 15 trials corre-

sponding to the real/imagined movements. Each trial

was 4-sec long following after a short resting period.

The movements of the left or right fist (or both fists

or feet) were assigned randomly with equal probabil-

ities.

It has been shown,17 that a task determines a

specific connectome. However in our research we will

study a connectome which is evoked by one type of

task, which is the left fist movement, including in

total 2,471 trials, on average, 23 trials per subject.

The subjects were instructed to remain still dur-

ing the recording in order to minimise the occurrence

of muscle or electrode movement artefacts. However,

the EEG recordings contain some artefacts related

to eye movements. We assume that these artefacts

are natural and so did not removed them. The raw

EEG data were however preprocessed by filtering
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slow drifts with frequencies below 0.5 Hz, as well as

filtering noise and high-frequency interference above

50 Hz.

6. Experiments

In this section we discuss the experiments which have

been run on the EEG-MMI data described in sec-

tion 5. The aim of these experiments is to compare

the proposed and existing methods in terms of iden-

tification accuracy and to provide evidences for the

statements outlined in section 4.2.

The data used in our experiments include the

EEG recordings of the Task 1 type, which have been

made from 109 subjects. The average number of tri-

als was 23, and the performances (in terms of iden-

tification accuracy on the test trials) were compared

within 3-fold cross-validation.

6.1. Comparison of feature extraction
methods

The first experiments were run to compare the per-

formances of the proposed and existing feature ex-

traction methods. The proposed method described

in the above section 4.2 represents the residuals ∆i

(Eq. 15) as the feature vector ∆ = (∆1, . . . ,∆M ).

According to the statements, the residuals are as-

sumed to be correlated with the functional connec-

tivity of a subject.

The GMDH-type network is trained on the sub-

set A, whilst the subset B is used for validation as de-

scribed in section 4.2. The remaining instances which

have not been included in the subsets A and B are

used for testing the performance of the trained net-

work.

To identify the given L subjects (classes), the

GMDH algorithm has been used within the pairwise

(round-robin) scheme54,55 that requires L(L − 1)/2

pairs of binary classifiers.

The proposed feature extraction method has

been compared with the two conventional methods.

The first method7 employs the Spectral Power Den-

sities (PSD) which are calculated within 0.5 to 40

Hz, and the second8 employs the AR models in or-

der to calculate the residuals and then find the best

match using the correlation coefficients.

McNemar’s test, which is used for comparison of

classification methods, has shown a statistically sig-

nificant improvement of the identification accuracy

for the proposed GMDH method. Table 1 shows the

performances of the PSD, AR, and GMDH meth-

ods in terms of identification accuracy, shown as the

mean and the standard deviation over the folds along

with the McNemar’s test p-values.

Table 1. Performances of the conven-
tional PSD and AR methods versus the
proposed GMDH method.

# Method Performance, % p-value

1 PSD 84.5 ±1.8 < 0.001
2 AR 93.1 ± 1.2 < 0.01
3 GMDH 100.0 ± 0.0

We can see that the proposed GMDH method

provides the most accurate (100%) identification and

significantly outperforms the existing PSD and AR

methods on this benchmark data using 4-sec EEG

segments for the biometric test. In this regard, it is

important to note that the study40 has reported a

99% accuracy on the EEG-MMI Task 1 data, which

include 108 subjects, using a much longer 30-sec du-

ration of EEG segments, which can limit cases of

user-friendly applications.

6.2. Comparison of classification
schemes

In the second experiments we compared the per-

formances of the classification schemes using the

residual-based feature vector ∆. Table 2 shows the

experimental results.

The conventional ANNs trained within the mul-

ticlass scheme (MANN) have provided the best per-

formance (83.4%) with around 90 neurons in the hid-

den layer. Within the pairwise scheme (PANN), the

ANNs with around 8 neurons have provided a better

performance, on average 95.9%. The Support Vector

Machine (SVM), which has been also trained in the

pairwise scheme, provided the best performance at

99%.
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Table 2. Performances of MANN, PANN,
and SVM using the features extracted by
the proposed GMDH method.

# Algorithm Performance, %

1 MANN 83.4 ± 2.8
2 PANN 95.9 ± 1.3
3 SVM 99.1 ± 0.6

The above results show that the new features ∆,

extracted by the proposed method, carry the infor-

mation about connectotypes which can be identified

within the main classification schemes.

6.3. Influence of muscle artefacts

Fig. 8 shows the EEG signals of a 4-sec trial along

with the predicted and residual signals. The upper

plot shows the EEG signal (in Red) recorded from

electrode 2 (FC3), and the signals from its 4 neigh-

bouring electrodes, which have been selected by the

proposed method. The signals from the neighbouring

electrodes were used to predict the signals from elec-

trode 2 in order to generate the “virtual” baseline

within the proposed method. The predicted signals,

which form the baseline, are shown on the middle

plot (in Blue) along with the actual signal (in Red)

from electrode 2. The residual signal is shown on the

lower plot.

We can observe that the residual signal is in-

creased, for example, at around 600, 3000 and 3400

ms, when a phase difference appears between the ac-

tual and predicted signals. Eq. 12 explains this ob-

servation for the proposed method. These peaks are

not correlated with the ocular artefacts occurring at

around 900 and 2300 ms.

6.4. Examples of brain prints

Besides the identification accuracy achieved in our

experiments on the EEG-MMI data including 109

participants and shown in Table 1, Fig. 9 illustrates

examples of brain prints of 5 persons taken from this

benchmark. Each person here is represented by a se-

quence of 5 brain prints which have been learned

from a 4-sec EEG trial.

The brain prints are represented by the residu-

als which were calculated for all 64 electrodes placed

on the scalp as described in section 5. The residual

values range from low (in Blue) to high (in Yellow).

Analysing the colour distributions over all the

electrodes, we find that the patterns for each person

are visually different. We can conclude that the resid-

uals, visualised in colour, carry information about

brain prints or connectotypes of persons. In contrast,

the patterns are similar within a sequence of 5 trials

taken from a person.

Fig. 10 shows the brain prints averaged over all

the trials for each subject.

The large residual value at channel 25 can be

caused by the activity of the forehead muscles. The

large values are observed for persons 1, 2 and 4 across

the trials. However this activity is not observed for

persons 3 and 5. We therefore can accept that such a

muscle activity is individual56 and so associated with

a biometric feature. This allows us to conclude that

muscle artefacts influencing residuals are part of the

biometric trait of a person.

6.5. Examples of Power Spectra
Distributions of residuals

The residuals can be represented by the power spec-

tral distribution (PSD) calculated within the stan-

dard frequency bands: Delta 0-4 Hz, Theta 4-8 Hz;

Alpha 8-12 Hz, Beta 12-30 Hz and Gamma 30-50 Hz.

The variations in PSD over the scalp electrodes are

individual and can be visualised as an EEG-based

trait.

Fig. 11 shows the two traits extracted from EEG

of two persons recorded in two trials. Although PSD

vary over the scalp electrodes, some regularity is vi-

sually recognised in the traits extracted for a person.

For example, observing the trait of person 1, we see

that the high powers are observed in the Beta and

Gamma bands (Green and Yellow bars) at the frontal

and temporal electrodes: 22-26, 28-31, 38, 40, and

42. The trait of person 2 shows PSD with the low-

frequency components in the Delta and Theta bands

(Dark and Light Blue bars) at the frontal, temporal,

and central electrodes: 1-5, and 15-21. The two traits

of a person are similar in both trials. For example,

the similarity is observed between electrodes 22-38

in the two trials undertaken by person 1.

7. Discussion

In this section we discuss the main results in terms of

the accuracy of the proposed method for biometric
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Figure 8. EEG signals and residuals. a) The EEG signal of channel 2 (Red) along with its 4 closest neighbouring chan-
nels. b) The predicted (Blue) and observed (Red) signals. c) The residuals with the ocular artefacts occurring at 900
ms and 2300 ms, whose phases are close to the phases at the neighbouring channels. The influence of these artefacts is
minimal. The residual is large when the phase difference between the predicted and neighbouring signals is increased as
it happened at around 3400 ms.

identification and provide evidence to support State-

ments 1 and 2 made in section 3. The evidence has

been obtained in this study and described in sec-

tion 6. We also outline possible advantages and limi-

tations of the presented method and finally consider

areas of possible applications where the analysis of

brain functional connectivity is the research focus.

7.1. Influence of artefacts

EEG signals can be heavily corrupted by cardiac,

eye movement and muscle artefacts.57,58 Two main

types of artefacts are related to eye movement and

face muscle activity during the performance of the

tasks (tracking of targets on screen). The eye move-

ment artefacts are seen as slow waves (1-2 Hz) with

a high amplitude most heavily affecting the frontal

electrodes, and the eyebrow muscle, or frontalis, arte-

facts are observed as 30-40 Hz activity mostly affect-

ing the electrodes AF7/8.56 The eye movement arte-

facts are observed on multiple electrodes without dis-

tinguishable phase shifts, and so their influence can

be predicted and minimised within the approach we

proposed. In contrast, the frontalis muscle artefacts

affect local electrodes and their potentials are more

difficult to predict and remove within our approach

using the predicted baseline.

On the other hand, the frontalis muscle activ-

ity widely varies between individuals in terms of

spectral characteristics distributed over electrodes.56

Such muscle activity can be associated with a bio-

metric feature of the individual brain print, whose

influence on the residuals improves the accuracy of

identification.

7.2. Support for Statement 1

Statement 1 has pointed out in section 4.1 that phase

delays, which are correlated with the individual brain

functional connectivity, are represented by a high-

dimensional feature vector which includes the esti-

mates of phase delays between pairs of EEG signals

received by a multi-electrode system. In our case the

number of electrodes M = 64 and therefore the num-
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(e) Person 5

Figure 9. Examples of brain prints discovered for 5 persons from the EEG-MMI data in a sequence of 5 trials. The lowest
residual values are in Blue and the highest in Yellow.
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(e) Person 5

Figure 10. Examples of brain prints averaged over the trials for the above 5 persons.

ber of pairwise comparisons and the dimensionality

is 2016 for each of frequency component of the EEG.

Biometric features obtained in such a way are eas-

ily contaminated by noise and artefacts so that some

can be irrelevant to the brain print.

The proposed technique, aimed at reducing the

dimensionality of the “phase-based” feature vector,

employs the AR-based modelling of the EEG signals

received from M electrodes, which delivers a “vir-

tual” baseline required for estimating the individual

patterns of brain functional connectivity. As a result,

the dimensionality of feature vectors has been signif-
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Figure 11. Examples of power spectra distributions of residuals for 2 persons. The distributions are represented in the
Delta, Theta, Alpha, Beta, and Gamma bands.

icantly reduced from 2016×f to 64, where f is the

number of frequency components.

Following,59 the methodology underlying the

proposed method has a fundamental limitation re-

lated to the loss of information from signal compo-

nents caused by fast propagation of neural activity

between brain areas under a relatively low sampling

rate. In our experiments the EEG-MMI data have

a sampling rate of 160 Hz, and so the event delays

that are shorter than 6.25 ms will not be captured by

the method. Therefore the components of such activ-

ity cannot be distinguished from the volume conduc-

tion. However in our experiments the loss of these

components has a minor effect and the identification

accuracy, shown in Table 1, has not been affected.

The above limitation is inherent in Hjorth’s

source derivation method outlined in section 3.2.

Both methods aim to decorrelate the signals, how-

ever the differences between the source derivation

and proposed methods can be seen from Eq. 1 and

Eq. 14, and the corresponding block diagrams 2 and

3, as follows. The source derivation method in its

advanced adaptive form52 requires the inverse oper-

ator to calculate the sensor matrix B in Eq. 3, which

can produce unstable derivation of the source. The

proposed method employs AR modelling to orthog-

onalise signals of brain activities received by EEG

electrodes from different brain areas. In this regard,

it is important to note that AR modelling has been

shown efficient for discovering directions of informa-

tion flows in brain structures.60 Neither the source

derivation method50 nor its extensions51,52 consider

this important component of the brain functional ac-

tivity. We can also assume that both methods use
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the same 5-electrode placement without delayed sig-

nals so that Eq. 14 has M = 5 and P = 0. Then

the source derivation method50 produces outcomes

determined by Eq. 1 for the predefined unit coeffi-

cients. In contrast, the proposed method produces

the outcomes determined by Eq. 14 with the coef-

ficients β1, . . . , βM , which have been fitted to the

signal of a central electrode i. Taking into account

the above differences, we conclude that the proposed

method is more advanced for modelling the brain

connectivity.

The AR-based models have efficiently sup-

pressed the noise and artefacts we discussed in sec-

tion 7.1. Fig. 8 shows that the artefacts, which are

caused by eye movements at around 900 and 2,300

ms, do not affect the virtual baseline (the Blue line

on the middle plot) and so their residuals (on the

bottom plot) do not exceed the average value.

Based on the experimental evidence we conclude

that the phases mapped in this way onto the mod-

elling residuals, which are used as biometric features,

are capable of making important contributions to the

identification.

7.3. Support for Statement 2

The Statement 2 has pointed out in section 4.2 that

the enrolment data, which are represented by a ma-

trix X, can be underdetermined, and columns of

the matrix can be correlated. These conditions make

finding of a numerically stable estimate of the coef-

ficient vector ŵ problematic.

The GMDH-based technique has been stated to

be capable of overcoming this problem by using the

regularisation criterion. This criterion is based on

splitting the training data into 2 disjoint subsets,

namely training A and validation B, that has been

shown efficient to find reliable estimates of ŵ. In our

experiments on the benchmark data the desired regu-

larisation is achieved by evaluating the residual ∆ of

the model f(·;αA,X ) on the entire enrolment data

that include the validation subset B.

Besides the above problems, the AR modelling

requires determination of a structural vector X which

describes the interactions between channels. In our

experiments the proposed GMDH algorithm has

found the structure vector with the largest contribu-

tion made from 4 electrodes neighbouring a central

electrode. It is interesting that this finding matches

the results50 reported by Hjorth.

Under these conditions the reliable modelling of

the multichannel interregional interaction, which in-

cludes the contribution of components of AR model

can be achieved by Eq. 14 with the extended param-

eter vectors (β̂, α̂, X̂ ). These vectors can be learnt

from the given enrolment data by using the proposed

GMDH algorithm. In our experiments we found that

the proposed algorithm is capable of delivering a re-

liable solution to the minimization problem (Eq. 16).

In this relation the modelling of the multi-

channel interaction can be seen as an integration over

brain regions:

x(t) =

M∑

i=1

βi

Pi∑

j=1

αijx(t− j) + r(t)

=

Mp∑

i=1

αix(t− j) + r(t),

where Mp is the number of weight coefficients in-

cluded in the vector α.

In our study, given M = 64 electrodes and

P = 5 lags, the maximum Mp is 320, which is suffi-

cient to achieve the accurate extraction of the brain

print features from the multi-channel EEG data pre-

sented for the enrolment.

A limitation of our study is that the experiments

were performed on EEG data recorded on a single

session for each individual. This limitation, however,

is inherent to all studies on EEG biometrics discussed

in section 2 which were performed on the EEG-MMI

data, the largest publicly available benchmark.

7.4. Possible application areas and
future work

Biometric methods have shown the potential to im-

prove security and convenience in many areas, in-

cluding health care. Recent work has shown that

EEG signals are distinctive enough for each individ-

ual person to be used for biometric applications. In

health care, patient misidentification is a real prob-

lem. In the UK, more than 24,000 cases of patients

were reported mismatched to their care between 2006

and 2007. The NHS lists patient misidentification as

serious patient safety incidents that should not oc-

cur.61
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EEG is an important tool for the assessment

of brain development in newborns.62–65 It has been

found that coherent EEG activity during sleep may

provide unique insight into maturation processes of

brain functional connectivity. Assessments have con-

firmed that sleep EEG coherence increases across de-

velopment.66

Brain connectivity in patients with psychiatric

disorders has been investigated using EEG tech-

niques enabling the exploration of oscillatory brain

dynamics. The results from the EEG studies clar-

ify the role of neuronal network synchronisation as a

potential biomarker of bipolar,67 depressive68,69 and

autism58 disorders.

Attention deficit disorders (ADD) that inter-

fere with successful lives cannot be reliably diag-

nosed with MRI. This is because ADD is not only an

anatomical pattern of brain abnormality, but also re-

flects a unique response to different pathology causes.

ADD-specific brain patterns may be better detected

by measuring EEG coherence and cortical connectiv-

ity.70–72

Brain functional connectivity being represented

by statistical dependencies between the dynamics

of recorded EEG signals is used to analyse the dy-

namical interactions of brain regions. The functional

connectivity patterns obtained from the scalp EEG

recordings reveal information about the dynamics of

the epileptic brain and can be used to predict up-

coming seizures.73

Alzheimer’s disease (AD), which is the common

type of neurodegenerative disorder, targets cortical

neuronal networks related to cognitive functions. AD

is partially reflected by the abnormal mechanisms of

cortical neural synchronisation that generate resting

state EEG rhythms. The cortical neural synchroni-

sation can be therefore represented by EEG power

densities representing the brain functional connec-

tivity.74

Neural activity during movement tasks carries

important information for Brain-Computer Interface

(BCI). It has been shown that the functional connec-

tivity can be measured to discriminate hand move-

ments and resting state conditions. The analysis of

the functional connectivity could be an efficient al-

ternative to conventional BCI techniques.75

8. Conclusion

Methods of EEG-based person identification and ex-

traction of biometric features have been analysed in

terms of reliability and accuracy. The analysis has re-

vealed that EEG signals represent the brain activity

which is mainly influenced by the volume conduction

and functional connectivity. The first component is

not relevant to the brain print because of trivial cor-

relations between electrodes, while the second com-

ponent determined by the “connectotype” of a per-

son. In the presence of the volume conduction, this

component can be estimated after orthogonalisation

of the multichannel EEG data. The results are repre-

sented as a high-dimensional matrix of interchannel

interactions. The biometric features which are rele-

vant to the brain connectivity can be extracted from

the residuals (Eq. 8). The model parameters are the

solution of the minimisation problem (Eq. 13) that

is delivered by the orthogonalisation.

However the conventional methods of orthogo-

nalisation of high-dimensional EEG data in the pres-

ence of electrode noise and muscle artefacts cannot

provide reliable solutions for the minimisation prob-

lem (Eq. 6), which is required to correlate the resid-

uals with the connectotype of a person during a rea-

sonably short test. We found that the dimensionality

can be significantly reduced if the baselines which are

required for estimating the residuals can be reliably

modelled by using electrodes neighbouring a central

electrode.

These findings have led to our new approach to

learning of the required models by using a GMDH al-

gorithm, which is capable of discovering models that

provide the maximal generalisation ability in the case

of multidimensional EEG data. In our experiments

on the EEG-MMI data benchmark with 109 partic-

ipants, the proposed method has shown 100% iden-

tification accuracy using short 4-sec tests, thus out-

performing existing biometric approaches.

The above discussion and findings allow us to

conclude that the proposed method is a promising

approach to achieving reliable results of EEG-based

person identification in many realistic cases, and this

will be further explored in a wider scope of relevant

biometric applications and tasks.
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Martin, T. J. L. Fernandez, C. E. Polkey and C. N.
Guy, Mechanisms involved in the propagation of in-
terictal epileptiform discharges in partial epilepsy,
Clinical Neurophysiology: from receptors to Percep-
tion, eds. G. Comi, C. Lucking, J. Kimura and
P. Rossini, Electroencephalography and Clinical Neu-
rophysiology Supplements 50 (Elsevier, 1999), pp.
259–278.

17. G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vor-
bach and M. Hallett, Identifying true brain inter-
action from EEG data using the imaginary part of
coherency, Clinical Neurophysiology 115(10) (2004)
2292–2307.

18. C. J. Stam, G. Nolte and A. Daffertshofer, Phase
lag index: Assessment of functional connectivity
from multi channel EEG and MEG with diminished
bias from common sources, Human Brain Mapping
28(11) (2007) 1178–1193.

19. M. Brookes, M. Woolrich and G. Barnes, Measur-
ing functional connectivity in MEG: A multivariate
approach insensitive to linear source leakage, Neu-
roImage 63(2) (2012) 910–920.

20. J. F. Hipp, D. J. Hawellek, M. Corbetta, M. Siegel
and A. K. Engel, Large-scale cortical correlation
structure of spontaneous oscillatory activity, Nature
Neuroscience 15(6) (2012) 884–890.

21. C. Liu, B. Abu-Jamous, E. Brattico and A. K. Nandi,
Towards tunable consensus clustering for studying
functional brain connectivity during affective pro-
cessing, International Journal of Neural Systems
27(02) (2017) p. 1650042.

22. H. R. Madala and A. G. Ivakhnenko, Inductive
Learning Algorithms for Complex Systems Modeling
(CRC Press, Boca Raton, 1994).

23. D. J. Hand, Pattern detection and discovery, Pattern
Detection and Discovery: ESF Exploratory Work-



February 15, 2018 15:41 main˙R2

22 V. Schetinin et al.

shop, eds. D. J. Hand, N. M. Adams and R. J. Bolton
(Springer, 2002).

24. T. Hastie, R. Tibshirani and J. Friedman, The Ele-
ments of Statistical Learning (Springer-Verlag New
York, 2009).

25. L. Breiman, J. Friedman, R. Olshen and C. Stone,
Classification and Regression Trees (Chapman and
Hall, 1984).

26. A. Ivakhnenko, Polynomial theory of complex sys-
tems, IEEE Transactions on Systems, Man and Cy-
bernetics SMC-1(4) (1997) 364–378.

27. S. J. Farlow, Self-Organizing Methods in Modelling:
GMDH Type Algorithms (Marcel Decker, 1984).

28. J. Schmidhuber, Deep learning in neural networks:
An overview, Neural Networks 61 (2015) 85–117.

29. Y. LeCun, Y. Bengio and G. Hinton, Deep learning,
Nature 521 (May 2015) 436–444.

30. F. C. Morabito, M. Campolo, N. Mammone, M. Ver-
saci, S. Franceschetti, F. Tagliavini, V. Sofia,
D. Fatuzzo, A. Gambardella, A. Labate, L. Mumoli,
G. G. Tripodi, S. Gasparini, V. Cianci, C. Sueri,
E. Ferlazzo and U. Aguglia, Deep learning repre-
sentation from electroencephalography of early-stage
Creutzfeldt-Jakob disease and features for differen-
tiation from rapidly progressive dementia, Interna-
tional Journal of Neural Systems 27(02) (2017) p.
1650039.

31. V. Schetinin and J. Schult, Learning polynomial net-
works for classification of clinical electroencephalo-
grams, Soft Computing 10 (Feb 2006) 397–403.

32. V. Schetinin and J. Schult, A neural-network tech-
nique to learn concepts from electroencephalograms,
Theory in Biosciences 124 (Aug 2005) 41–53.
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