

Title : Replication and availability in decentralised online

social networks

Name : Adil Hassan

This is a digitised version of a dissertation submitted to the University of
Bedfordshire.

It is available to view only.

This item is subject to copyright.

REPLICATION AND AVAILABILITY IN DECENTRALISED

ONLINE SOCIAL NETWORKS

ADIL HASSAN

MPHIL

2017

UNIVERSITY OF BEDFORDSHIRE

REPLICATION AND AVAILABILITY IN DECENTRALISED

ONLINE SOCIAL NETWORKS

by

ADIL HASSAN

A thesis submitted to the University of Bedfordshire in partial fulfilment of the

requirements for the degree of Master of Philosophy

REPLICATION AND AVAILABILITY IN DECENTRALISED

ONLINE SOCIAL NETWORKS

ADIL HASSAN

ABSTRACT

During the last few years’ online social networks (OSNs) have become increasingly popular

among all age groups and professions but this has raised a number of issues around users’

privacy and security. To address these issues a number of attempts have been made in the

literature to create the next generation of OSNs built on decentralised architectures.

Maintaining high data availability in decentralised OSNs is a challenging task as users

themselves are responsible for keeping their profiles available either by staying online for longer

periods of time or by choosing trusted peers that can keep their data available on their behalf.

The major findings of this research include algorithmically determining the users’ availability

and the minimum number of replicas required to achieve the same availability as all mirror

nodes combined. The thesis also investigates how the users’ availability, replication degree

and the update propagation delay changes as we alter the number of mirror nodes their online

patterns, number of sessions and session duration. We found as we increase the number of

mirror nodes the availability increases and becomes stable after a certain point which may vary

from node to node as it directly depends on the node’s number of mirror nodes and their online

patterns. Moreover, we also found the minimum number of replicas required to achieve the

same availability as all mirror nodes combined and update propagation delay directly depends

on mirror nodes’ number of sessions and session duration. Furthermore, we also found as we

increase the number of sessions with reduced session lengths the update propagation delay

between the mirror nodes starts to decrease. Thus resulting in spreading the updates faster as

compared to mirror nodes with fewer sessions but of longer durations.

LIST OF CONTENTS

 III

Abstract

LIST OF TABLES ___ V

LIST OF FIGURES ___ VI

Dedication ___ VIII

Acknowledgements __ IX

CHAPTER 1: INTRODUCTION __ 1
1.1 Background and History of Online Social Networks ____________________________ 2
1.2 The Problem __ 3
1.3 Aim ___ 5
1.4 Research Objectives ___ 5
1.5 Hypothesis ___ 5
1.6 Research Questions __ 5
1.7 Structure of the Thesis __ 6

CHAPTER 2: LITERATURE REVIEW ___ 7
2.1 Centralised Online Social Networks __ 8
2.2 Decentralised Online Social Networks ______________________________________ 9
2.3 Challenges and Opportunities ___ 10

2.3.1 Storage and Data Availability __ 10
2.3.2 Overhead __ 11
2.3.3 Leverage Social Relationships _______________________________________ 12

2.4 Related Work __ 12
2.4.1 PeerSon ___ 12
2.4.2 Safebook __ 13
2.4.3 SuperNova ___ 13
2.4.4 DECENT __ 13
2.4.5 Cachet __ 13
2.4.6 Vis-à-Vis __ 14
2.4.7 FOAF ___ 14
2.4.8 Diaspora __ 14

2.5 Research Gap Analysis __ 16
2.6 Requirements __ 19

2.6.1 Functional Requirements ___ 19
2.6.2 Non-Functional Requirements ______________________________________ 19

CHAPTER 3: RESEARCH METHODOLOGY AND SYSTEM DESIGN ________________ 21
3.1 Research ___ 22
3.2 Research Methodologies ___ 22

3.2.1 Quantitative Research Methodology ___________________________________ 22
3.2.1.1 Descriptive ___ 23

i) Surveys __ 23
ii) Longitudinal ___ 23
iii) Cross-Sectional ___ 24

3.2.1.2 Correlational design __ 24
3.2.1.3 Group Comparison ___ 24

i) Ex Post Facto Design ___ 24
ii) True-Experimental Design ___ 25

3.2.2 Qualitative Research Methodology ____________________________________ 25
3.2.2.1 Action Research ___ 26
3.2.2.2 Case Study ___ 26
3.2.2.3 Grounded Theory __ 26

 IV

3.2.3 Design Science Research Methodology ________________________________ 27
3.2.3.1 Problem Awareness __ 27
3.2.3.2 Objective Setting __ 27
3.2.3.3 Design and Development __ 27
3.2.3.4 Demonstration __ 28
3.2.3.5 Evaluation __ 28
3.2.3.6 Communication __ 28

3.2.4 Conclusion ___ 28
3.3 System Design ___ 30

3.3.1 Availability ___ 30
3.3.2 Update Propagation Delay __ 33
3.3.3 Replication Degree __ 35
3.3.4 Availability on Demand ___ 36

3.4 Conclusion __ 38

CHAPTER 4: RESULTS AND DISCUSSION _____________________________________ 38
4.1 The Context ___ 40
4.2 Model (Objective 2) ___ 41
4.3 Simulation ___ 43
4.4 Availability (Objective 3) __ 44
4.5 Update Propagation Delay (Objective 4) ___________________________________ 48
4.6 Replication Degree (Objective 5 and 6) ____________________________________ 50
4.7 Availability on Demand (Objective 7) ______________________________________ 53
4.8 Conclusion __ 56

CHAPTER 5: CONCLUSION AND FUTURE WORK _______________________________ 57
5.1 Conclusion __ 57
5.2 Limitations and Future Work ___ 62
 5.2.1 Enhancement of Data __ 62
 5.2.2 Enhancement of Algorithms ___ 62
 5.2.3 Enhancement of Research Scope _____________________________________ 63

GLOSSARY OF TERMS __ 64

PUBLICATION __ 65

REFERENCES __ 65

Appendix 1 – Availability Algorithm __ 71

Appendix 2 – Update Propagation Delay Algorithm ________________________________ 72

Appendix 3 – Replication Degree Algorithm ______________________________________ 74

Appendix 4 – Availability on Demand Algorithm ___________________________________ 76

Appendix 5 – Code: Availability, Update Propagation Delay, Replication Degree _________ 77

Appendix 6 – Code: Availability on Demand _____________________________________ 94

 V

LIST OF TABLES

Table 1: Availability in decentralised online social networks _________________________ 15
Table 2: Research methodologies ___ 29
Table 3: Research objectives, assessment method and outcome _____________________ 41
Table 4: Simulation results of availability and replication degree algorithms _____________ 46
Table 5: Simulation results of update propagation delay algorithm ____________________ 49

 VI

LIST OF FIGURES

Figure 1: Quantitative research methods __ 23
Figure 2: Availability algorithm __ 32
Figure 3: Update propagation delay __ 33
Figure 4: Update propagation delay algorithm ____________________________________ 34
Figure 5: Replication degree algorithm ___ 36
Figure 6: Availability on demand algorithm ______________________________________ 37
Figure 7: Model __ 42
Figure 8: Model - graph ___ 43
Figure 9: Availability - graph __ 43

Figure 10: Core node’s diurnal availability (Mirror Nodes: 25) ________________________ 47
Figure 11: Update propagation delay (Mirror Nodes: 25) ____________________________ 47
Figure 12: Core node’s diurnal availability by hour (Mirror Nodes: 25) _________________ 48
Figure 13: Update propagation delay – 100 Mirror Nodes ___________________________ 48
Figure 14: Update propagation delay - 500 Mirror Nodes ___________________________ 49
Figure 15: Replication degree - Model A __ 51
Figure 16: Replication degree - Model A - Result _________________________________ 52
Figure 17: Replication degree - Model B __ 52
Figure 18: Replication degree - Model B Result ___________________________________ 53
Figure 19: Model - Availability on demand _______________________________________ 54
Figure 20: Availability on demand - 3 days ______________________________________ 55
Figure 21: Availability on demand - 30 days _____________________________________ 55
Figure 22: Availability on demand - 60 days _____________________________________ 56

 VII

DECLARATION

I declare that this thesis is my own unaided work. It is being submitted for the degree of

MPhil at the University of Bedfordshire.

It has not been submitted before for any degree or examination in any other University.

Name of candidate: Adil Hassan Signature: Adil Hassan

Date: 17th April 2017

 VIII

Dedication
I dedicate this project to my parents Mr. Manzoor Hussain and Mrs. Jamshaid Akhtar and my

lovely sister Miss. Farzana Yasmeen.

 IX

Acknowledgements
First, I would like to thank my ALLAH (S.W.T) for all HIS (S.W.T) blessings upon me and giving

me the ability to write this Thesis. I would also like to thank my last Prophet Hazrat Muhammad

(S.A.W) and HIS (S.A.W) Noble Family of Ahlul-Bait (A.I/S.A) for all their blessings upon me

and my family.

I would like to thank and express my deepest gratitude to my supervisor Dr. Marc Conrad for

his excellent guidance, motivation, patience and constant support throughout my research.

During my studies I have been through some serious ups and downs of life but Dr. Marc Conrad

was always there to support and encourage me to get through those difficult times. I truly and

whole-heartedly believe without Dr. Marc Conrad’s constant support this thesis would not have

been possible.

I would also like to thank my parents, my sister and my elder brothers for supporting and

encouraging me with their best wishes.

CHAPTER 1: INTRODUCTION
In general, Online Social Networks (OSNs) are digital representations of the individuals

representing their interests, hobbies, and relationships to the outer world. The motivation for an

individual to join a social network is to create a profile and share information with other members

of the network or with the selected network of friends. Over the past few years, the popularity

of OSNs has grown tremendously generating huge amount of users’ sensitive data online

(Falahi, Atif & Elnaffar, 2010).

The centralised architecture of OSNs and commercial nature of service providers raises a

number of issues around users’ privacy and security. Therefore, more effective and flexible

security measures are required for the protection of users’ privacy and for the continued growth

of OSNs. For that reason, we envision a new paradigm shift towards the creation of next

generation of OSNs that may address the drawbacks of the traditional OSNs and offer more

secure social networking platform to its users.

 2

1.1 Background and History of Online Social Networks
The history of OSNs goes beyond the birth of the Internet. The project, called “Community

Memory” was the first public computerised bulletin board system established in 1973 in

Berkeley, California. This allowed the users to enter and retrieve messages between different

computer terminals and share information with other members of the community (Doub, 2016).

Late in 1980’s, with the passage of time and advancement in technology the world has seen a

revolution. This revolution began with the advent of the Internet that has made the world a

global village. With the growth of the Internet usage, people started to create web applications.

This gave birth to a new era of OSNs. In 1995, when Classmates made its presence it

attempted to reconnect people who had attended the same school/college and allowed them

to stay in touch. At the time of its release, Classmates did not allow its users to create profiles

or list their friends; these features were added in the later years (Boyd & Ellison, 2007). In 1997,

SixDegrees was launched and was the first social network of its kind that supported features

like creating profiles, listing friends and browse friends’ friend list. It managed to attract millions

of users, but shortly after 3 years of its launch, the service was closed in 2000. The next major

social network, Friendster appeared in 2002 and was designed to compete with Match.com, a

profitable online dating website. While most of the dating websites focused on introducing users

to strangers sharing common interests, However, Friendster took a different approach and

helped its users to find a better match through ‘friend of a friend’ relationship. It became

successful in attracting millions of users, but with time Friendster lost its popularity for a number

reasons including social collisions, technical issues and a rupture of trust between the users

and the organisation (Boyd & Ellison, 2007). In 2003, MySpace was launched to compete with

Friendster and few others. MySpace wanted to target the estranged Friendster users and with

the support of indie-rock bands (who were expelled from Friendster) MySpace gained a rapid

popularity in a short time. To attract more users MySpace allowed local promoters to advertise

VIP passes for popular clubs. This also gave the opportunity to fans to connect with their

favourite bands and vice versa (Boyd & Ellison, 2007) (Sherchan, Nepal & Paris, 2014). In

2004, a new era of social networking started with the birth of Facebook that initially had a user

database of Harvard students/graduates only. Unlike other social networks, Facebook was

designed to support distinct college networks and to join Facebook one must have to have a

.edu account. The popularity of Facebook started to spread from Harvard to other universities,

high schools and school-going students. In 2006, Facebook was open to public to create

profiles, build relationships and find friends. After Facebook, we have seen a different kind of

social network called Twitter. Twitter was categorised as a micro blogging service that uses a

completely different relationship model i.e. follower and followee model to connect to people.

In 2011, Google+ and Pinterest were released. Google+ extended the traditional relationship

model of fiends to family, acquaintances, and following. It also allowed its users to create their

own social circles and give them appropriate names. It also gave its users the ability to hangout

(online video chat) with other users in the network. Pinterest, however, falls into a completely

different category of OSNs. It is a pin board-style photo sharing website that allows its users to

 3

create theme-based image collections. Users can browse through pins, comment and re-pin

the images they like to their own pin boards. Among all OSNs Facebook is the most dominant

and shares the most number of monthly active users i.e.1.65 billion users as of March 31, 2016

(Facebook, 2016). The popularity of OSNs is growing every day by leaps and bounds and

where they have brought advantages to the people and communities they have also put the

users’ privacy and security at risk as well (Tatjana et al. 2010).

1.2 The Problem
The success of OSNs has changed the way people interact and communicate with each other

today. The enormous reach of OSNs combined with the speed at which the information is

disseminated around the globe is immense.

The traditional online social networking service providers are centralised in nature and their

commercial nature has raised a number of issues around users’ privacy and security among its

users and in the research community. The market leaders like Facebook are striving to obtain

more users’ data by acquiring other social networking applications like Instagram (photo

sharing application) and WhatsApp i.e. instant messaging application to target users who were

either not on Facebook or to obtain more information about its existing users. This means the

users’ of Facebook, Instagram and WhatsApp are administered by a single organisation,

typically a commercial provider who has complete control over users’ data that they can use

for various purposes (Beye et al. 2012). The service providers may exploit users’ data in various

different ways including selling users’ data to third parties for data-mining and targeted

advertisements (Shahriar et al, 2013).

The Facebook program Beacon is one of many examples that exploited users’ privacy. Beacon

was a part of Facebook’s advertisement system that posts updates on users’ profiles when they

interact with its partner websites like Amazon. Just after two years of its launch, the program

went offline due to privacy issues (Zamzami et al. 2010)(Boyd & Ellison, 2010)(Krishnamurthy

& Wills, 2009). Moreover, traditional web-server based architectures of OSNs are viewed as

information silos lacking interoperability across other OSNs (Yeung et al. 2009). Furthermore,

users are often at the mercy of service providers’ service terms and conditions that often

compromises on users’ privacy and property rights (Bielenberg et al. 2012).

All the aforementioned issues are well known to the service providers and its users. Users

either don’t understand the risks of using these services or they don’t want to leave the network

because of their family and friends who they can connect with easily via OSNs. On the other

hand, service providers can permanently fix or improve the protection of users’ privacy by

encrypting users’ data and allowing them to decide with whom they want to share their data but

service providers not implementing this is understandable. As doing that would deprive service

providers to mine, analyze and sell users’ data to third parties that is their major source of

revenue (Shahriar et al. 2013).

 4

Over the past few years, to overcome the drawbacks of the existing OSNs many academic

researchers and practitioners around the world have been working on creating decentralized

OSNs that may offer better data privacy and security to its users. Recent research conducted

in this area has produced some interesting applications that differ greatly in their design and

approach but all aim to solve the same problem i.e. preserving users’ privacy while allowing the

users to participate in OSNs. Few of the applications utilized permanently available resources,

while others embraced mutual cooperation among the users to share resources, bandwidth,

and storage and some adopted a Hybrid approach (Liu et al. 2011) (Sharma and Datta, 2012).

Where each of these approaches tried to overcome the drawbacks of the existing systems,

introduced some other shortcomings e.g. limited data availability, discrimination of users with

few social connections, low adaptivity to user churn rates, and technical and economic

feasibility to deploy these applications on large scale (Beye, 2012). In the next few chapters,

we investigate how these approaches suffer from the multitude of shortcomings, which

prevented them from being successful as the next social network.

In essence, before the paradigm of decentralized OSNs become a serious alternative to

centralized approaches we must experimentally study and address some of the key challenges

i.e. how to achieve high data availability with the minimum number of replicas possible, and

how the users’ availability, replication degree, and update propagation delay changes by

altering the number of mirror nodes and their online patterns. We assume a certain threshold

value to denote ‘high’ data availability. The results can then be applied (as shown in Section

4.4) for specific values of availability such as 90%, 99%, 99.9% and so on. The term “minimum

number of replicas” denotes the smallest number of mirror nodes that achieve the same

availability as all mirror nodes combined. This can be explained as if 300 mirror nodes achieve

23 hours of data availability, then we may find we can achieve the same availability with just

20, 30 or any number of nodes ‘n’ where ‘n’ is less than 300. In this case, we can then say the

minimum number of replicas required to achieve the same availability as all mirror nodes

combined i.e. 300 is 20, 30 or any number of nodes ‘n’.

Achieving high data availability is one of many challenges that we face in building decentralized

OSNs (Shahriar et al. 2013), but it is also important to note that achieving high data availability

itself depends on many other factors including number of replicas/mirror nodes, number of

sessions and session duration. For the rest of the thesis, we interchangeably use replicas and

mirror nodes, where appropriate, that refers to node’s replica hosting locations unless otherwise

specified. In the following sections we summarize the research aim and objectives, hypothesis

and associated research questions.

1.3 Aim
The overall aim of this research is to develop a model and investigate into how the node’s

availability, replication degree, and update propagation delay (dependent variables) changes

 5

on altering its number of mirror nodes, their online patterns, number of sessions and session

duration (independent variables) by studying the effects of changing each of the independent

variables on each of the dependent variables.

1.4 Research Objectives
1. To investigate into how the existing decentralised OSNs have addressed availability issues

in their design.

2. To identify the relationship between the node’s availability and the number of mirror nodes,

number of sessions and session duration.

3. To identify the relationship between the node’s update propagation delay and its number

of mirror nodes, number of sessions and session duration.

4. To identify what is the minimum number of replicas required to achieve the same availability

as all mirror nodes combined from given number of mirror nodes and their online patterns.

5. To introduce the concept of availability on demand and help new joining nodes to find good

mirrors.

1.5 Hypothesis
For given number of mirror nodes and their online patterns it is algorithmically possible to

determine the minimum number of replicas required to keep the node’s profile highly available,

where highly availability may mean 90%, 99%, 99.9% etc. diurnal availability.

1.6 Research Questions
Based on the above hypothesis the research questions that we aim to answer are:

1. What are the challenges in existing decentralized OSNs in achieving high data availability?

2. How the node’s availability changes as we alter its number of mirror nodes, their online

patterns, number of sessions and session duration?

3. How the node’s update propagation delay changes as we alter its number of mirror nodes,

number of sessions and session duration?

4. For given number of mirror nodes and their online patterns what is minimum number of

replicas required to achieve the same availability as all mirror nodes combined?

5. How the new joining nodes can find good mirrors and achieve desired availability targets,

despite of having no or few social connections in the network?

1.7 Structure of the Thesis
The remainder of the Thesis is organised as follows: Chapter 2 discusses the literature review,

outlines the research gap analysis and concludes with the functional and non-functional

requirements of the system. Research Methodology and System Design is discussed in

Chapter 3. In Chapter 4, we conduct extensive evaluation of our model and the algorithms via

 6

simulations and present the results. Finally, in Chapter 5 we conclude and outline the directions

for future work.

 7

CHAPTER 2: LITERATURE REVIEW
Boyd and Ellison (2007) define OSNs as:

“web-based services that allow individuals to (1) construct a public or semi-public

profile within a bounded system, (2) articulate a list of other users with whom they share a

connection, and (3) view and traverse their list of connections and those made by others within

the system”.

OSNs allow users to create public or semi-public profiles and encourage the users to add

personal information about themselves e.g. date of birth, education, workplace, telephone

number, home address etc. Leakage of such personally identifiable information sometimes

leads to undesirable consequences (Falahi et al. 2010). Traditional OSNs are built on

centralised architectures where service providers have unprecedented privileges of access to

users’ private data. This has made privacy advocates and the users of OSNs worrisome alike.

2.1 Centralised Online Social Networks
The traditional centralised - client/server architectures have become a standard model for

developing network applications and all the major OSNs like Facebook, Google+ and Twitter

are built on centralised architectures. In centralised OSNs, users must trust service providers

to enforce access control policies, not to leak or misuse users’ data and to take appropriate

 8

measures to protect the users’ data from external attacks. The massive information aggregation

of users’ sensitive personal information on these central service providers is an inherent threat

to users’ privacy. In the past, leakage of users’ personal data from the aforementioned social

networks happened regularly both intentionally, in the form of selling users data to third parties

and unintentionally, via outside attacks on service providers (Koll, Li & Fu, 2014).

Lam et al. (2008) believe that disclosing personal information in OSNs is like a double-edged

sword. To fully benefit from the services of OSNs sometimes it’s important for the users to

provide personal information that is often misused by service providers. Moreover, the plethora

of information related to users’ personal lives may also invite external attacks as well including

stalking, reputation slander, and phishing attacks (Lam, Chen and Chen, 2008). Greschbach

et al. (2012) highlight the risks of massive central data aggregation of users’ personal

information in conjunction with an advertisement based business model of major social

networking service providers, where the users are not customers, but primarily products. As

service providers use its users’ data for data mining and targeted advertisement, which in turn

generates revenue for them that is their major source of income. Moreover, users of OSNs are

often at the mercy of service providers with their constantly changing service terms and

conditions, which often compromise on users’ privacy and property rights (Koll, Li & Fu, 2014).

Moreover, Facebook and Google also own other social networking applications e.g. Facebook

owns Instagram - a photo sharing application and WhatsApp – an instant messenger and

Google acquired YouTube in 2006. This way service providers can obtain deep insights into

users’ personal and private information and sell it to third parties that in return generate

revenues for them (Dwyer, 2011). Facebook annual report 2012 states that 85% of its annual

income is generated from personalised advertisements (Olteanu & Pierre, 2012).

Another important perspective to this is that users’ data is not only at the mercy of service

providers but also the data at a single entity increases the risks of external attacks as well. If

service provider’s security measures are compromised by the external attacks then the

attackers would be able to gain access to all the users’ data as well. This kind of attack was

seen 2012 when passwords of around 8 million users of LinkedIn were leaked (Koll, Li & Fu,

2014). Moreover, in the past numbers of cases have been reported when service providers

were caught of selling users’ data illegally to third parties breaching users’ privacy (Nilizadeh

et al. 2012).

The privacy and security risks associated with the centralised architectures of OSNs are often

misunderstood, underestimated or completely ignored. Krishnamurthy and Wills (2009) believe

that popularity of OSNs have accelerated the appearance of vast amount of users’ personal

information online. Their research has shown that it is possible for third parties to link personally

identifiable information leaked via OSNs with information present on other non social

networking websites. They also found that despite of privacy controls to limit access 55% to

90% of the users retain default privacy settings that is sometimes open to public access and to

 9

even non-users of social network as well. Moreover, Malin (2005) suggests that it is possible

to infer correct relation of seemingly anonymous data to explicitly identifying information. His

results show that 87% of Americans can be uniquely identified from their date of birth, zip code

and gender.

In the past, OSNs have also become victims of phishing attacks and a distribution channel for

spreading malware. Through OSNs attackers can easily spread malware to millions of users in

few seconds who have a certain level of trust for each other, and gathers users’ personal

information (Tim & Perez, 2010). Despite of the number of privacy and security issues in

traditional OSNs, nothing or very little has been offered from the service providers to improve

the situation. Implementing encryption and allowing users’ to define customized access control

policies would solve most of the problems but service providers not implementing that is

however understandable. As, doing that would prevent them from mining, analyzing and selling

users’ data to third parties that is their main source of income (Koll, Li & Fu, 2014).

In summary, there exists an obvious need for an increased privacy in OSNs. Therefore, to

address the privacy and security issues of the traditional OSNs number of attempts have been

made in the literature to create the next generation of OSNs built on decentralised architectures

where users can have complete control over their data (Koll, Li & Fu, 2014).

2.2 Decentralised Online Social Networks
As mentioned earlier, most of the Internet based applications are built on client/server

architectures because of its number of advantages. The primary advantage of client/server

approach over decentralised model is that the entire network is managed by dedicated servers,

offering reliability, high data availability, accessibility, and ability to perform complex search

queries but on the downside, service providers have full control over users’ data that raises

natural questions of trust and users’ privacy.

In contrast, decentralised OSNs do not have any centralised controlling entity instead it is

maintained by the participating individuals in various different ways depending on the system

design that can vary from one to another. A generic system design for any application build on

decentralised architecture is explained below.

In decentralised architectures data is stored on/by the participating individuals removing the

dependency of any centralised entity or database. In decentralised OSNs users not only

consume system resources but also contribute towards the storage and communication

requirements of the system as well. To offer fine-grained access control policies the

architecture offers sophisticated encryption algorithms to store encrypted data on participants’

machines so that it is accessible only to/by the eligible users. This approach, however, solves

the privacy issues of centralised OSNs in a quite forthright way but introduces some other

 10

challenges e.g. how to achieve high data availability, what is the minimum number of replicas

one must have to achieve the desired availability targets etc.

Looking at the bigger picture of the problem i.e. “building a social network”, the following

arguments are typically brought forward to favour decentralisation over tradition centralised

OSNs. Firstly, the presence of service providers is not necessary as the content generated and

consumed in any OSN is by the users and not for the service providers – this eliminates the

need of service providers. Moreover, data in decentralised OSNs is encrypted and can only be

decrypted by the recipients with whom the author has intended to share. Whereas, in

centralised OSNs service providers are not only trusted to protect users’ data but also to

enforce access rights that the author of the data has defined (Buchegger & Datta, 2009).

Secondly, not having a service provider would eliminate the risk of single point of failure and

large-scale privacy breaches as well. Thirdly, it would prevent information silos that is a problem

with the existing social networking applications where users have to create many profiles on

different OSNs i.e. Facebook, Google+, Twitter and many more (Yeung et al. 2009).

2.3 Challenges and Opportunities
There are a number of challenges involved in decentralising the existing architectures while

providing the same or even more sophisticated functionalities to the users of OSNs (Datta et

al. 2010). It requires finding ways of distributing and storing data in the network (Hales, 2004),

achieving high data availability, minimizing update propagation delay, implementing search

(ability to find other peers in the network), robustness against churn, and mechanisms ensuring

users’ privacy, security, confidentiality and data integrity is not compromised (Buchegger &

Datta, 2009). In the next section, we outline some of the key requirements that must be

addressed to build decentralised OSNs.

2.3.1 Storage and Data Availability
There are number of questions associated with the storage of users’ generated/consumed data

in the network that must be addressed to successfully achieve high levels of data availability

that is close to traditional OSNs. To achieve that there are few different options that can be

considered as alternatives for the missing infrastructure of storage and communication

requirements.

To achieve high data availability decentralised architectures can rely on permanently available

resources like Cloud storage provided by Amazon and other service providers but this would

result in a dependency to third parties for application to perform its operations (Baden et al.

2009). Moreover, it would also incur costs to users that might not be attractive to use paid

service when the existing OSNs are free to use but cost users’ privacy. Furthermore, it would

also violate the true essence of decentralised OSNs as well (Olteanu & Pierre, 2012).

Additionally, in the recent years data privacy and unauthorised access to users’ data in the

 11

cloud has become a major concern among the researchers and industry practitioners (Jansen,

2011)(Zhang, Yang & Zhang, 2012)(Wang, 2011). Using distributed hash table, trusted friends

as proxies, super peers and user administered permanently available resources have also been

proposed in the literature to serve as storage of users’ data as well. However, in completely

decentralised architectures, selecting trusted friends as proxies appears promising but is also

challenging as well as users are dependent on their social connections to keep their profiles

highly available when they themselves are not available. Moreover, the system must not

discriminate between well established and new joining nodes and must offer equal

opportunities to every node to make their profiles highly available. Another important question

that arises of the aforementioned discussion about storage is where the data should be stored?

Should it be stored on users’ trusted nodes i.e. friends? Or should it be stored on random nodes

to achieve high availability targets. Moreover, it is also important to determine what is the

minimum number of replicas required to keep the users’ profile highly available.

2.3.2 Overhead
Whilst designing the system, one may achieve high data availability by spreading the data on

as many nodes as possible but might underestimate the overhead caused by it. If users’ data

is replicated across many different storage locations then it might achieve the first objective but

would also consume network resources in maintaining those replicas as every time a user

updates or uploads a new content it must be distributed to all the storage locations to keep the

data synchronised across all mirror nodes. Therefore, it is important to recognize the trade-off

between achieving high data availability and overhead caused by it (Stoica et al. 2001). The

system must be intelligently designed such that it keeps the storage locations to minimum while

achieving high data availability targets.

2.3.3 Leverage Social Relationships
Research shows applications that leverage social relations in their design have improved their

performance (Viswanath et al. 2010)(Hui, Crowcroft & Yoneki, 2011). Therefore, to design a

better-decentralised OSN the system must exploit social relationships between nodes to

facilitate storage and mirror selection requirements. Moreover, the mutual co-operation

between nodes would help every node in the network to distribute their data efficiently. One

must consider that this must not discriminate users with few or weak social connections and

should give equal opportunities to make their data highly available.

During the last two decades, traditional OSNs have proved themselves extremely successful

offering services to its users, but lacks in providing data privacy and security. On the other

hand, decentralised OSNs offer promising alternative to its users by offering data privacy and

security but have number of other challenges to overcome for example offering high data

availability is the major one.

 12

In the next section, we present a comprehensive overview of the different systems that differ

greatly in their design but all aim to solve the same problems i.e. how to preserve users’ privacy

while offering full set of services to the users that they experience in traditional OSNs. In

completely decentralised architectures, users of OSN form a peer-to-peer network where

everyone contributes towards the storage and communication requirements of the system.

Whereas, partially decentralised architectures depend on distributed servers thus keeping the

client-server paradigm, but giving freedom to the users to host their profiles on the servers they

trust or to administer and host their profiles on their own on permanently available resources.

2.4 Related Work
2.4.1 PeerSon
To address the privacy issues in traditional OSNs Buchegger and Datta (2009) highlighted

some of the key challenges and opportunities for peer-to-peer networks in the area of social

networks and proposed PeerSon a system built on peer-to-peer architecture. The main building

blocks of PeerSon are encryption and decentralisation. Encryption provides privacy and data

integrity to users’ data while decentralisation gives freedom to its users from the service terms

and conditions and allows them to define fine grained access control polices. PeerSon was

built on two-tier architecture, one tier serves as a look-up service and the second tier consists

of peers and users’ data. To facilitate asynchronous communication PeerSon uses OpenDHT

that is a centrally managed deployment of the BambooDHT on PlanetLab. OpenDHT was used

as a look up service that provides a mechanism to keep nodes connected as necessary and to

store the messages of up to 800 characters for a maximum of 7 days. The authors of PeerSon

recognized the issue of high data availability in their design but didn’t provide any mechanism

to address the issue.

2.4.2 Safebook
Cutillo et al. (2009) proposed another social network called Safebook built on peer-to-peer

architecture to provide a decentralised general-purpose social networking experience assuring

users’ privacy, security, data integrity and availability. Safebook mainly focused on preserving

users’ privacy while offering full set of services that users can experience in traditional OSNs.

It consists of three main components i.e. Trusted Identity Service (TIS), matryoshkas and P2P

location substrate. TIS was used for authentication purposes. A set of concentric ring structures

called matryoshkas, serves to store data of the inner most node to nodes in its outer shells.

Data in Safebook was stored on users’ trusted nodes that also served as proxies to core node

in its absence. Any requests to/from the core node were routed through matryoshaksts to

achieve communication anonymization and to obfuscate information flow (Cutillo, Molva &

Onen, 2011). Moreover, to gain access to core node’s data all nodes on the same path towards

to inner-most shell need to be online simultaneously which is very unlikely as user sessions in

OSNs are often short and volatile (Benevenuto et al. 2009). As Safebook’s approach in

achieving high data availability directly depends on one’s number of friends which means it

 13

would be difficult for users to achieve desired availability targets who maintain only few social

connections.

2.4.3 SuperNova
Sharma and Datta (2012) suggest that primary motivation in creating decentralised OSNs is to

achieve privacy and autonomy from big brotherly service providers. They also recognise that

one of biggest problems in building decentralised OSNs is to achieve high data availability when

the data owner is not available. They proposed SuperNova – a super-peer based decentralised

OSN where Super-peers help bootstrap new joining nodes and serve as central directory to

facilitate search. In SuperNova when a node joins a network, it relies on its super-peers to find

good mirrors and increase its data availability. Later a node may find other nodes (friends or

strangers) in the network who act as mirrors/storekeepers.

2.4.4 DECENT
Jahid et al. (2012) proposed DECENT – a fully decentralised peer-to-peer OSN with a special

focus on privacy and security. It utilises distributed hash table to store data and implements

sophisticated cryptographic techniques to ensure confidentiality and data integrity. To ensure

availability users’ data was replicated on multiple locations across the network. The authors of

DECENT recognise that to address availability, number of replicas required in the network

needs to be fine-tuned based on churn patterns of the network that was left to do in their future

work.

2.4.5 Cachet
Nilizadeh et al. (2012) proposed another social network called Cachet built on peer-to-peer

architecture. Like DECENT, replication in Cachet was system driven where users’ data was

replicated on random nodes to ensure high data availability. For efficient data retrieval and

dissemination Cachet made use of social connections between the users which served as

caches to store recent updates in the network. The idea behind social caching was that users

who satisfy attribute based encryption and decryption policies were leveraged to provide and

retrieve cached decrypted objects of other users. This helped the system to reduce

cryptographic and communication overhead in the network.

2.4.6 Vis-à-Vis
Shakimov et al. (2011) proposed Vis-à-Vis, a decentralised framework for OSNs running on

Amazon EC2 computing utility. It mainly focuses on preserving privacy of users’ location

information. In contrast to other approaches, to address availability, Vis-à-Vis took a

philosophical departure from replication by trusting cloud service providers i.e. Amazon EC2

with access to unencrypted version of users’ data that we believe is slightly ambitious. As in

the past, a number of cases have been reported when cloud service providers were accused

of privacy breaches (Jansen, 2011) (Zhang, Yang, Zhang. 2012) (Wang, 2011).

 14

2.4.7 FOAF
Yeung et al. (2009) proposed FOAF (Friend Of A Friend) application built on dedicated trusted

servers. It allowed its users to publish their profiles on the servers they trust or to administer

and host their profiles on their own servers. This gave the users complete control and ownership

of their data but had a number of other issues e.g. it did not provide any mechanism to verify

the reverse links. Because of its distributed nature, it became very easy for anyone to claim

that a user is a friend of another user by just specifying his or her WebID. The main weakness

of the proposed model was that it failed to address how users will be able to communicate or

access each other profiles when the users are offline or servers are down, as FOAF didn’t offer

any replication mechanisms.

2.4.8 Diaspora
Diaspora was built on a semi-decentralised architecture consisting of network of independent,

federated Diaspora servers administered by individual users (Bielenberg et al. 2012). The

architecture of Diaspora gave freedom to its users either to host their profiles on the Diaspora

servers or on their own server(s) to keep complete control of their data (Narendul, Papaioannou

and Aberer, 2012). One of the problems identified in the architecture of Diaspora was that when

a user communicates with another user who hosts its profile on the Diaspora servers then the

user’s communication was stored on the Diaspora server(s) in an unencrypted form thus

leaving the privacy in the hands of server administrators. Another problem identified by

Bielenberg et al. (2012) was that for the successful transaction of communication between the

users both the users have to be online at the same time or otherwise messages get lost in the

network and the sender does not receive any acknowledgement either.

In Table 1 we present a summary of above systems, indicating how they have addressed

availability in their design.

System
Design

System Availability
Replica

Selection
Replica

Placement

 Approach Issues

Peer-to-Peer

Safebook Replication

i) Discriminating nodes

with few social

connections.

ii) Simultaneous

availability requirements

of all mirror nodes along

the same path for

communication.

User Driven Friends

DECENT Replication
Nodes selected randomly

for replication

System

Driven
Random

Cachet
Replication &

Caching

Nodes selected randomly

for replication

System

Driven
Random

 15

Hybrid
SuperNova Replication

Dependency on Super-

Peers.

System

Driven

Super-Peers

Friends,

Strangers

PeerSon - Availability not addressed - -

Permanently

Available

Resources

FOAF

User

Administered

Servers

Dependency on

permanently available

resources.

No replication

mechanisms in place.

- -

Diaspora

User

Administered

Servers –

Diaspora

Administered

Servers

Unencrypted data stored

on untrusted servers
- -

Other Vis-à-Vis Cloud

Dependency on third

parties and privacy

issues associated with it.

- -

Table 1: Availability in decentralised online social networks

From the Table 1, we can see where the different decentralised OSNs tried to overcome the

privacy and security issues of the existing OSNs have introduced some other challenges. i.e.

i) limited success in achieving high data availability ii) discriminating nodes with few social

connections iii) dependency on powerful nodes for different operations e.g. data storage and

search iv) lack of encryption v) dependency on permanently available resources. Most of them

suffer from the multitude of shortcomings and any one of the shortcomings can prevent the

success of decentralised OSNs that can compete with the traditional OSNs. If a new social

network built on decentralised architecture does not offer high data availability then it is not very

likely that it will attract masses. Moreover, if a system offers high data availability but with a

usage fee then it might not attract users either to use a paid service when the existing OSNs

built on advertisement based business models are free to use costing nothing but users’

privacy.

One can argue by exploiting the characteristics of Peer-to-Peer networks and file sharing

applications, that have already proved themselves scalable and extremely successful, we can

build a social network built on decentralised architecture. We must recognize that there are few

major differences between the two. First, the online patterns of users sharing/seeding files over

the network and users of OSNs differ greatly. In file sharing applications, users are online for

longer periods spanning from hours to days whereas users of OSNs often have short and

abrupt online patterns (Benevenuto et al. 2009). Moreover, in traditional Peer-to-Peer

applications high bandwidth offering users would be able to download the files faster than the

users offering lower bandwidth. In contrast, the same principle in context of OSNs is very

different. Users in OSNs can achieve high data availability even if they are not online for most

of the time given they have chosen good mirrors that can keep their data highly available

 16

(Hales, 2004). Among all the shortcomings, one critical drawback of decentralised OSNs is low

data availability that must be addressed when designing a new decentralised OSN that is

competitive in nature with the traditional OSNs.

2.5 Research Gap Analysis
In centralised OSNs, service providers ensure high system availability by providing dedicated

resources that can keep users’ profiles highly available. Whereas in decentralised OSNs it is

the responsibility of the users to keep their profiles highly available either by storing data locally

on the devices, setting up their own servers, relying on third party cloud storage providers, or

replicating data on their friends’ machines who can act as a proxies when the users themselves

are not available. Therefore, achieving high data availability in decentralised OSNs is a

challenging issue and must be addressed. From the literature, we realised the researchers and

practitioners have adopted the following two approaches to address the issue.

1. Replication: Users replicate their profiles on a set of other users who act as proxies when

the users themselves are not available or are offline.

2. Permanently available resources: In this case users choose to host their profiles on their

own either by setting up their own servers or by relying on cloud storage providers. This

approach however offers high data availability with low overhead cost but requires all users

to be technically capable and able to configure and setup their own servers that we believe

is slightly ambitious and impractical. Moreover, choosing cloud storage has its own privacy

and security issues associated with them.

Systems that adopted replication as their preferred choice failed to address the issues around

availability (e.g. Safebook), update propagation delay (e.g. Diaspora), replication degree, and

system overhead (e.g. DECENT), and how the new joining nodes can achieve high data

availability when they don’t have enough friends or social connections in the network to choose

as mirrors (e.g. Safebook).

From the different systems, that we have discussed in Section 2.4 PeerSon acknowledges the

issue of high content availability in decentralised OSNs but doesn’t provide any mechanisms

to address the issue. Safebook adopted replication to address high data availability and created

replication groups in the form of matryoshaks concentric ring structures (i.e. shells) around the

core node based on their friendship relationships. It encourages users to cooperate and create

a temporarily available storage space for each other. This saves them from being dependent

on any permanently available resources and their drawbacks.

The major challenge Safebook had to overcome was to offer reliably high data availability to its

users, which it failed to address for two major reasons. i.e. i) To gain access to core node’s

data all nodes on the same path towards to inner-most shell need to be online simultaneously

which is very unlikely as user sessions in OSNs are often short and volatile (Benevenuto et al.

 17

2009) ii) Safebook’s approach in achieving high data availability directly depends on one’s

number of friends which means it would be difficult for users to achieve desired availability

targets who maintain only few social connections.

Diaspora adopted the second approach of setting up permanently available resources to

achieve high data availability that didn’t require any sophisticated data synchronisation and

replication mechanisms but instead gave freedom to its users to either host profiles on their

own or select one of the diaspora federated servers to host their profiles. It allowed its users to

spread their profiles on multiple different administrative domains but eventually left the privacy

and security of their data in the hands of server administrators.

FOAF followed the same model as Diaspora and allowed its users to publish their profiles on

servers they trust or host their profiles on their own.

Vis-à-Vis addressed availability in its design by running virtual individual servers in a paid cloud

computing utility Amazon EC2. This however offers high data availability but leaves privacy in

the hand of service providers. In Vis-à-Vis users’ data was stored in an unencrypted form and

service provider were trusted not to misuse or share users’ personal information with third

parties that we believe was slightly ambitious leaving privacy in the hands of service providers.

In the past, a number of cases have been reported when cloud service providers were accused

of privacy breaches (Jansen, 2011) (Zhang, Yang, Zhang. 2012) (Wang, 2011).

Moreover, availability in DECENT and Cachet was addressed via replication that was mainly

system driven, which means the system was responsible to select appropriate replicas that

may offer high availability. Replica selection in their design was completely random. The

authors of DECENT however believed number of replicas in their design must be fine-tuned

and was left as future work to do.

To address the availability issues in decentralised OSNs Shahriar et al. (2013) proposed a

different approach, in which data was stored and replicated with in small user groups, which

ensures that for any given time at least Beta members of the replication group are online. Their

results show 2 availability grouping policy delivers high data availability. One of the problems

with their simulation setup was that they performed their experiments on data set obtained from

the users of file sharing applications that doesn’t truly depict the online patterns of users of

OSNs.

Another research conducted by Fu and his colleagues (2014) in finding relationship between

data availability and storage capacity of the devices. They found maintaining high data

availability in decentralised OSNs is one of the biggest challenges and it is often assumed that

friends of a user can always contribute towards the storage requirements to store their friends’

replicas. But this is not always true because most users often use smart phones to access

online social networks and their storage capacity may jeopardize the data availability.

 18

In 2014, Fu et al. (2014) proposed Cadros – a cloud assisted data replication technique for

decentralized OSNs. Fu and his colleague believe that full replication can improve data

availability but pure decentralized OSNs may not be able to deliver sustainable data availability

targets. Therefore, they envision a cloud assisted data replication scheme to improve

availability in decentralized OSNs. Li and Dabek (2006), Shakimov et al. (2009) Gracia-Tinedo

et al. (2012) and Sun et al. (2009) also proposed hybrid replication schemes to achieve high

data availability targets.

Koll et al. (2014) suggests exchanging the recommendations between friends about their mirror

nodes would greatly help in recognizing good and bad mirrors. Olteanu and Pierre (2012)

suggests replica placement should be user driven instead of system driven and preference

should be given to users’ trusted friends to host the replicas and when all friends are offline

data then must be stored on nodes, which are not in users’ friend circle.

Tegeler et al. (2011) proposed a similar approach called Gemstone. Gemstone stores users’

data in the so-called data holding agents (DHAs). If a DHA itself is offline then the data must

be passed on to its DHAs and so on.

Over the past two decades an extensive amount of research has gone into this domain.

Achieving high data availability in decentralized OSNs is a complicated task for a number

reasons. Firstly, user sessions in OSNs are often short and volatile. Secondly, if only friends

are chosen as possible replica hosting locations then users with few social connections or

friends may suffer greatly as they may not have enough replicas in the network to keep their

profiles highly available. Existing work in improving data availability in decentralized OSNs only

focuses on how to store users’ replicas across the network. But none of the approaches attempt

to answer what is the minimum number of replicas required to achieve the same availability as

all mirror nodes combined, how the node’s availability, replication degree, and update

propagation delay changes by changing its number of mirror nodes and their online patterns.

Therefore, in order to address the aforementioned questions the following section outlines the

functional and non-functional requirements of the system.

2.6 Requirements
2.6.1 Functional Requirements
According to Sommerville (2015) functional requirements are:

“Statements of services the system should provide, how the system should react to

particular inputs and how the system should behave in particular situations. In some cases, the

functional requirements may also explicitly state what the system should not do.”

Following the guidelines of RFC-2119 (Bradner, 1997) the functional requirements of our

system as follows:

 19

1. The system must output how the node’s availability changes as we alter its number of mirror

nodes, their online patterns, number of sessions and session duration. (Discussed in detail

in Section 3.3.1 and 4.4).

2. The system must output how the node’s update propagation delay changes as we alter its

number of mirror nodes, their online patterns, number of sessions and session duration.

(Discussed in detail in Section 3.3.2 and 4.5)

3. The system must output what is the minimum number of replicas required to achieve the

same availability as all mirror nodes combined and the ids’ of chosen mirror nodes in order.

(Discussed in detail in Section 3.3.3 and 4.6)

4. The system must be able to analyse mirror nodes’ past online patterns and find their

average daily and hourly availability and the hour during which they are most available.

(Discussed in detail in Section 3.3.4 and 4.7)

2.6.2 Non-Functional Requirements
According to Sommerville (2015) non-functional requirements are:

 “Constraints on the services or the functions offered by the system. They include timing

constraints, constraints on the development process and standards. Non-functional

requirements often apply to the system as a whole. They do not usually just apply to individual

features or services.”

Following the guidelines of RFC-2119 (Bradner, 1997) the non-functional requirements of our

system as follows:

1. The system must be driven by a given model, which is used to simulate the online patterns

of mirror nodes as in traditional OSNs.

2. The system must output node’s diurnal (24 hour) availability in minutes from a given model.

3. The system must output node’s replication degree in numbers from a given model.

4. The system must output the results in form of JavaScript arrays format that are then used

to visualize data on the web.

5. The user must be able to visualize the results in the form of charts and graphs on the web.

There are some interdependencies between the functional and non-functional requirements of

the system stated above. For example, the model, which is a by-product of this research, is a

part of the non-functional requirements but is a vital component of the whole system and plays

a very important role in realizing the functional requirements of the system e.g. calculating

node’s availability, replication degree, update propagation delay, and availability on demand.

We have also created a website to accompany with this Thesis mainly because the number of

simulations performed and the results obtained from them couldn't be contained and presented

in the thesis alone. Therefore, we may refer to links in the website for more detailed simulation

results. However, the results presented in this thesis are self-sufficient and enough to draw

conclusions.

Website Link: www.adilhassan.com/mphil

http://www.adilhassan.com/mphil

 20

CHAPTER 3: RESEARCH METHODOLOGY AND
SYSTEM DESIGN
In this chapter, we present an overview of different research methodologies and investigate if

there exist set of methodologies that are widely accepted in research community for research

projects embarking on creating new artefacts, models and algorithms. Moreover, we then

present a case why our chosen set of methodologies suit best for our needs and how it helps

in conducting, validating and evaluating our research. Furthermore, we then present the system

design driven from the research objectives stated in Chapter 1.

 21

3.1 Research
Gratton and Jones (2003) define research as:

“A systematic process of discovery and advancement of human knowledge.”

In just a single statement, Gratton and Jones have identified several key descriptors of

research. First, it is a systematic process, which means it involves several steps that must be

executed in specific order to obtain reliable and reproducible results. Second, research involves

discovery, which implies that it is a process in which answering one question inevitably reveals

new questions and one’s quest of answering these questions creates new knowledge. Lastly,

research involves advancement of human knowledge, which suggests research by its very

nature is an iterative and a cyclic process that contributes to the body of knowledge both by

expanding the knowledge in a given domain and other related disciplines of the research under

study.

 22

3.2 Research Methodologies
The research project under study aims to understand the relationship between availability,

replication degree, and update propagation delay with one’s number of mirror nodes, their

online patterns, number of sessions and session duration via simulations. This suggests that

our research broadly falls into Information Systems research category which involves creating

artifacts, models, algorithms, and understanding relationships between different variables via

simulations and experiments. In the next section, we review different types of research

methodologies and identify a set of methodologies that fit best for our research.

3.2.1 Quantitative Research Methodology
Creswell (2013) defines quantitative research as:

 “A means of testing objective theories by examining the relationship among variables.

These variables in turn, can be measured, typically on instruments, so that numbered data can

be analysed using statistical procedures.”

Quantitative approaches mainly focus on analysing data and finding relationships between

variables. There are numerous research designs that fall under quantitative research and the

ones’ that we will be discussing in this section are as shown in Figure 1.

Quantitative Research

Descriptive Correlational Group Comparison

Surveys Longitudinal

Cross Sectional

Ex Post Facto True Experimental

Figure 1: Quantitative research methods

 23

3.2.1.1 Descriptive
Descriptive designs are set out to establish associations between variables and describe and

interpret “what is” in a specific situation (Cohen et al. 2000) (Hopkins, 2000). They are often

used to identify problems for further and more sophisticated research. According to Best (1970)

descriptive designs are concerned with:

 “Conditions or relationships that exist; practices that prevail; beliefs, points of views, or

attitudes that are held; processes that are going on; effects that are being felt; or trends that

are developing. At times, descriptive research is concerned with how, what is, or what exists is

related to some preceding event that has influenced or affected a present condition or event.”

In descriptive studies, researchers don’t attempt to manipulate or exert control over events

under study but instead they only observe and measure events as they occur. Moreover,

descriptive studies neither examine causal relationships nor they have any dependent or

independent variables to manipulate. Descriptive designs are mainly divided into three main

categories i.e. Surveys, Longitudinal and Cross-Sectional studies (Cohen et al. 2000).

i) Surveys
Surveys are typically used to scan a wide field of issues, populations and programs to measure

or describe any generalised features. Morrison (1994) suggests that surveys represent wide

target population, generate numerical data, provide descriptive and explanatory information,

and make generalizations to support or refute hypothesis.

ii) Longitudinal
Longitudinal research involves variety of studies conducted over a period of time. In longitudinal

studies, researchers gather data over an extended period of time that can span from several

weeks or months to even years. During the research, data gathering is done from the same

respondents and successive measures are taken at different points in time (Cohen et al. 2000)

(Gall et al. 2006).

iii) Cross-Sectional
Unlike longitudinal studies that span over extended period of time, cross-sectional studies

produce snapshot of population at a particular point in time. Moreover, cross-sectional studies

are usually less effective in identifying and establishing causal relationship between different

variables (Cohen et al. 2000).

3.2.1.2 Correlational design
A correlational design is a statistical procedure used to determine if there exists a relationship

between two or more variables or if one variable can predict the behaviour of another variable

in study. Moreover, it also examines to what extent the variables are related to each other as

well. Furthermore, correlation studies also tend to answer what’s the magnitude and the

direction of relationship between the variables under study. It is often chosen to conduct

exploratory or beginning research to determine if more rigorous research is needed. Therefore,

if correlational design is chosen as a preferred choice then it is very important to ensure that

 24

the significance and role of each variable under study is fully understood and presented (Cohen

et al. 2000)(Morrison, 1994).

3.2.1.3 Group Comparison
i) Ex Post Facto Design
Ex Post Facto design aims to determine possible cause and effect relationship between two or

more variables. In ex post facto studies, researchers retrospectively examine the relationship

between independent and dependent variables and subsequently establish causal link between

them (Cohen et al. 2000). If there exists a strong relationship between the two then the

researchers can make the following three interpretations for dependent and independent

variables (Kerlinger, 1970) (Borkowsky, 1970) i.e.

• Variable x has caused y

• Variable y has caused x

• Unidentified variable z has caused x and y

One of the problems with Ex Post Facto Designs is that researchers are unable to manipulate

independent variables and therefore are unable to establish which one of the above three

interpretations are correct. Moreover, researchers are not always confident whether causation

factor was included or even identified in the study (Kerlinger, 1970) (Spector, 1993)). Despite

of aforementioned limitations and weaknesses, Ex Post Facto Designs proved to be valuable

exploratory tools for researcher to identify ‘what goes with what and under what studies’.

Moreover, they are very useful when possible cause and effect relationships are being explored

and true experimental approaches are not possible to conduct the study.

ii) True-Experimental Design
True Experimental Design is the most rigorous design to examine cause and effect relationship

between dependent and independent variables. True Experimental Designs are mainly

distinguished from other research designs by following three factors (Cohen, 2000) (Campbell

& Stanley, 1996).

a) Manipulation: Researchers can manipulate independent variables and study its effects on

dependent variables.

b) Control: Researchers have high degree of control on the conditions and variables under

study. They also have the ability to give special treatments to one or more variables whilst

keeping other variables constant and study its effects on the dependent variable.

c) Randomization: With the high degree of control researcher can randomly assign one or

more experimental groups to one or more treatment conditions and compare their results with

groups that didn’t receive any special treatment. Because of the high degree of control and

 25

random assignment to conditions True Experiments provide unambiguous and reproducible

results regarding the effects of independent variables on dependent variables that strengthens

the internal validity.

3.2.2 Qualitative Research Methodology
Maanen (1979) defines qualitative research as:

“An umbrella term covering an array of interpretive techniques which seek to describe,

decode, translate and otherwise come to terms with the meaning, not the frequency, of certain

more or less naturally occurring phenomena in the social world.”

According to Punch (1998) qualitative research is a research paradigm that focuses on

collecting subjective data and the data is mostly in the form of written and spoken words and

are especially useful for exploring the full nature of little understood phenomenon. In addition,

in qualitative research words are used as data and are analysed in all sorts of ways whereas

in quantitative research numbers are used as data and are analysed using statistical techniques

(Braun & Clarke, 2013). There are number of techniques to carry out qualitative research and

many of them hold a number of characteristics in common but there are some major differences

as well. The three major research methods that we will be discussing in this section are:

1. Action Research

2. Case Study

3. Grounded Theory

3.2.2.1 Action Research
Blum (1955) explains action research as two stage process i.e. Diagnostic stage and

Therapeutic stage. In diagnostic stage hypotheses are formulated and in therapeutic stage

changes are introduced and their effects are studied. In order to achieve scientific rigor in action

research Susman and Evered (1978) proposes five phase iterative/cyclic process starting with

i) diagnoses, ii) action planning, iii) action taking, iv) evaluating and v) specifying learning

outcomes. Diagnoses involve identification of problems followed by rigorous action planning

and implementation. In phase four and five researchers retrospectively evaluate the outcomes

and learn from their experiences and the cycle continues. Following Action Research principles

researchers typically unfold the study through spiral cycle of planning, acting, observing, and

reflecting (Kuhne & Quigley, 1997). Action research in essence attempts to link theory and

practice achieving both practical and research objectives of the study.

3.2.2.2 Case Study
Yin (2014) defines case study as:

 “A case study is an empirical inquiry that investigates a contemporary phenomenon

(the ‘case’) with in its real-life context, especially when the boundaries between phenomenon

and context may not be clearly evident.”

 26

What distinguishes case study research from other qualitative research methods is that it

delimits the object of study i.e. the case. As Stake (2005) suggests “a case study is less of a

methodological choice than a choice of what to be studied” and according to Smith (1978)

“what” in case study approach is a bounded system, a single entity surrounded by a fence or a

boundary. The “case” however can be a single person, an institution, organization or a program

that is studied within a confined boundary and anything outside of the boundary is out of

interest. In essence, case study research only focuses on studying single unit of analysis within

a bounded system (Merriam, 2009). Therefore, to conduct an effective case study research

one must understand how it differs in its design from other qualitative research methods.

3.2.2.3 Grounded Theory
Strauss and Corbin (2008) defines grounded theory as:

 “A Grounded Theory is one that is inductively derived from the study of the phenomena

it represents”

Grounded Theory in essence focuses on generating theoretical ideas or hypotheses from the

data that is simultaneously collected and analysed during the different phases of the project.

Early data analyses helps to develop theories and explanations of the phenomenon under

investigation and indicates what data to collect next (Glaser & Strauss, 1967). Strauss and

Corbin (2008) explain three stages of grounded theory in the form of open coding, axial coding

and selective coding.

1. Open coding: involves identifying different categories from the data.

2. Axial coding: involves exploring relationships between different categories and making

connections between them.

3. Selective coding: involves identifying core categories as central phenomenon and

producing discursive set of theoretical propositions from them.

Once researchers go through the aforementioned series of stages they then look for the causal

conditions i.e. what factors influences the central phenomenon and develop purposeful and

goal oriented strategies to address the phenomenon.

3.2.3 Design Science Research Methodology
Design Science Research (DSR) involves creation of new knowledge through the design of

novel or innovative artefacts and these artefacts include (but not limited to) algorithms, models,

and HCI (Human Computer Interfaces). To better understand design science Owen (1997)

explains a general model of DSR as “learning through building” in which knowledge is used in

building artefacts and these artefacts are then retrospectively evaluated that contributes to the

existing knowledge base and the cycle continues. March and Smith (1995) suggest DSR

products attempt to create things that serve human purposes and are evaluated by their value

or utility. In essence, DSR mainly consists of two main activities i.e. building and evaluating.

During the last few decades number of design science research process models have been

proposed. Among all most of them share a number of phases in common but differ considerably

 27

in activities carried within these phases. The model that we will be discussing in this section is

adopted from Peffers et al. (2008) that begins with Problem Awareness followed by Setting

Objectives, Design and Development, Demonstration, Evaluation, and Communication.

3.2.3.1 Problem Awareness
Awareness of a problem may come from multiple sources including literature review, new

developments in industry and advancements in reference discipline. The output of this phase

is normally in the form of a research proposal that outlines the research problem, captures its

complexity and atomizes it for better understanding of the problem.

3.2.3.2 Objective Setting
Once the research problem is fully understood, objectives are then set. The set objectives can

be either qualitative or quantitative in nature but it is important to remember the set objectives

must be inferred directly and rationally from the problem definition stated in phase 1 of the DSR

model.

3.2.3.3 Design and Development
During design and development, researchers propose a Tentative Design that determines the

artefacts desired functionality. The tentative design after going through several iterations of

improvement becomes ready to go into the next phase i.e. Development. During development

the proposed design is then implemented, the implementation details however may vary

depending on artefact to be created. After the artefact is fully developed it enters into the next

phase i.e. Demonstration.

3.2.3.4 Demonstration
During demonstration, the efficiency of the artefact is determined to solve the problem. This

can be done via experimentation, simulation, case study, or by other appropriate activity.

3.2.3.5 Evaluation
During evaluation, researchers observe and measure how well the artefact performs to the

problem and whether it meets the set objectives laid in phase 2 of DSR model. After the artefact

is thoroughly evaluated researchers can either decide to go back to phase 3 i.e. Design and

Development and make improvements to the artefact or to continue to the next phase i.e.

Communication and leave further improvements for future work.

3.2.3.6 Communication
During communication, the nature of the problem, its importance, proposed design, the artefact,

its utility and novelty is shared and communicated with other researchers and practicing

professionals in the field via scholarly research publications and other appropriate means.

 28

3.2.4 Conclusion
From the aforementioned set of research methodologies, the Design Science Research

Methodology is best fit for our research study for the following reasons. It is widely accepted

among Information System (IS) researchers and provides a strong conceptual process and

mental model for the production and presentation of IS research. Moreover, DSR offers a

paradigm for conducting applicable yet rigorous research. As Denzin (1978) suggests “no

single method ever adequately solves the problem of rival causal factors. Because each

method reveals different aspects of empirical reality, multiple methods of observations must be

employed”. Therefore, we believe triangulation of research methods (i.e. DSR along with

Qualitative and Quantitative Research Methods) would help in conducting and checking the

validity of our research from multiple perspectives. In addition, methodological triangulation

may also reveal unique findings that might not be evident by just using a single research

method. Therefore, borrowing principles of Correlational and True Experiments research

designs from Quantitative methods helps in determining causal relationship between two or

more variables and if one variable can predict the behaviour of another variable respectively.

Moreover, Case Study Designs from Qualitative methods helps in studying different

components/units of our research within confined boundaries. Table 2 outlines how the chosen

set of research methodologies were used in this thesis.

Research Methodology How it was used? In Thesis

Design Science Research
Methodology

The Design Science Research Methodology was used throughout the research
project i.e. from awareness of the problem to communication and conclusion.

Problem Awareness Section: 1.2 and 2.5
Objective Setting Section 1.4 and 2.6

Design and Development Section 3.3, 4.2, 4.4,
4.5, 4.6 and 4.7

Demonstration and Evaluation Chapter 4
Communication Production of Thesis

Conclusion Chapter 5

Correlational (Quantitative
Research)

The Correlational research method was
predominantly used to determine if there exists a
relationship between different variables i.e. number
of mirror nodes, number of sessions, and session
duration and the system properties i.e. Availability,
Update Propagation Delay and Replication Degree.

Section 4.4, 4.5 and 4.6

True Experiment (Quantitative
Research)

The True Experiment research method was used to
find the relationship between dependent and
independent variables of our system i.e. number of
mirror nodes, number of sessions, and session
duration. It also enabled us to control different
variables in our experiments and study their effects
on system properties e.g. controlling the diurnal
availability of 40 minutes for Models A, B and C and
studying its effects on update propagation delay
and minimum number of replicas required.

Section 4.4, 4.5 and 4.6

Case Study (Qualitative Research)

Following the principles of case study research
methods enabled us to test different
components/units of our system in isolation and
within a confined boundary. It helped us in

Section 4.4, 4.5 and 4.6

 29

identifying and modelling different cases as well
e.g. Models A, B and C.

Table 2: Research methodologies

The following section discusses the iteration roadmap of Design Science Research

Methodology in the context of this project.

The algorithms and the simulation tool presented in this thesis went through several cycles of

iteration during different phases of this project including Design and Development,

Demonstration and Evaluation.

During the design phase, the construction of different algorithms and simulation tool was mainly

conceptual and involved discovery through multiple thought and paper trails of their details.

Following the design, the artefact then entered into the next phase i.e. development where the

artefact was developed and implemented in a programming language of choice i.e. Java. The

initial deliverable of this phase was a working prototype of the artefact, which was

retrospectively evaluated and refined through several cycles of iteration. Following the design

and development, the artefact then entered into the next phase i.e. demonstration where the

efficiency of the artefact was determined via simulations and experiments. Following

demonstration, the artefact then entered into the next phase i.e. evaluation. During evaluation,

minor redesigns of the artefact occurred on several occasions. By the end of this phase, the

developed artefact was rigorously tested and evaluated against the set objectives and system

requirements. One of the biggest advantages of following design science research

methodology was that any of its phases could be spontaneously revisited from any of the other

phases, which greatly helped in making continuous improvements to the algorithms and the

system design.

The algorithms presented in this thesis went through several iterations of improvements. Their

details can found in section 3.3.1, 3.3.2, 3.3.3, and 3.3.4.

3.3 System Design
In this section we present the core components of the system i.e. availability, update

propagation delay, replication degree and availability on demand that are derived from the

requirements set in Section 2.6.

For decentralized OSNs to become a viable option there are a number of feasibility checks that

must be performed. In this section, we present a comprehensive overview of various system

properties including availability, replication degree, update propagation delay and availability

on demand along with different parameters that influence them i.e. number of mirror nodes,

their online patterns, number of sessions and session duration.

 30

Since the sole force behind the creation of decentralized OSNs is the privacy issues in

traditional OSNs. Therefore, in our work we explore the case where user replicas are placed

only on trusted nodes (friends) unless a user is in bootstrapping mode i.e. a user that has

recently joined a network and is looking for suitable replicas. In bootstrapping mode, a node

receives availability statistics from other nodes about their mirror nodes in the network. Based

on those statistics the new joining nodes can then choose suitable replica(s) that meets its

availability requirements; this is discussed in detail in Section 3.3.4 and 4.7.

The four core components of the system that we will be discussing in this section are

availability, replication degree, update propagation delay, and availability on demand in

conjunction with the core node’s number of mirror nodes, their online patterns, number of

sessions and session duration. The term ‘core node’ only refers to the ‘node of interest’. The

‘core node’ is no different from any other node in the network. It only refers to a node whose

availability, replication degree or update propagation delay we want to find.

3.3.1 Availability
Availability of a user in decentralized OSNs is defined as the fraction of a time in a day during

which the user’s profile is available, either directly from a user or via its mirror nodes. In

decentralized OSNs availability is twofold i.e. i) availability for friends ii) 24/7 data availability.

The difference between the two is, in the second approach user’s profile is available for

everyone to access anytime during a day. Whereas in the first approach user’s profile is

available to its friends either directly from a user or via its mirror nodes but this doesn’t

guarantee 24/7 data availability.

In this study, we assume all friends of a user are trusted and can host user replica. We assume

user 𝑢𝑢’s replicas/mirror nodes appear online several times during a day and every time they

appear online they spend some time 𝑡𝑡 (in minutes). Then, the maximum availability a user 𝑢𝑢

can achieve (i.e. 𝑇𝑇𝑢𝑢) is the union of online times of all its mirror nodes minus the overlapping

times between them.

In this case, profile of a user 𝑢𝑢 is accessible to another user 𝑤𝑤 if there exists an overlapping

time between them such that 𝑇𝑇𝑤𝑤 ∩ 𝑇𝑇𝑢𝑢 ≠ ∅. The algorithm shown in Figure 2 just takes the

following four parameters i.e. number of replicas to simulate, each replica’s number of sessions,

session duration and the timings during which they are more likely to appear online that together

form the core node’s availability for any given time. For more detailed version of the algorithm

see Appendix 1.

 31

Figure 2: Availability algorithm

There are different approaches to calculate availability i.e.

1. Users make use of all of its social connections.

2. Users make use of only selected number of social connections as mirrors.

Comparing the above two approaches, we found the second approach however achieves the

same availability as first but with fewer replicas and also incurs less overhead cost too as there

will be fewer replicas to synchronize whenever an update occurs on core node’s replica. This

is explained in detail in Sections 3.3.3 and 4.6.

 32

Availability algorithm went through few iterations of improvements, which are summarized as

below.

During iteration 1, the algorithm had few issues i.e. as per the algorithm instructions the

maximum availability a node could achieve was 1440 minutes (24 hours) but during the

implementation we found sometimes a node could achieve more than 24 hours of availability

during a day. This is because while calculating the node’s total overall availability the algorithm

was also taking that into account the overlapping time between the mirror nodes as well. The

issue was fixed in 2nd iteration of improvements. Further testing the algorithm we found few

issues with randomness of mirror nodes appearing online during different times of the day. As,

sometimes mirror nodes were appearing online twice at the same time of the day and that was

not correct. The issue was fixed in 3rd iteration along with few other minor improvements in the

algorithm design. In the 4th and final iteration, all the hard coded values from the algorithm

were removed and replaced with variables.

3.3.2 Update Propagation Delay
Update propagation delay, in the context of decentralized OSNs, is the delay between the

occurrence of an update on one node and its arrival on another. It directly depends on the

amount of overlapping times between the mirror nodes. High overlapping between the mirror

nodes would spread the updates faster and vice versa. Figure 3 shows a simple example of

how an update propagates through the mirror nodes.

Figure 3: Update propagation delay

In Figure 3, we have indicated four different replicas i.e. 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, and 𝑟𝑟4. Assume an update

arrives at replica 𝑟𝑟1 at 2am then, it will be immediately propagated to 𝑟𝑟2 because of overlapping

time between them i.e. 2am to 3am. Update on 𝑟𝑟3 arrives at 3am from 𝑟𝑟1 and not from 𝑟𝑟2 R

because when 𝑟𝑟3becomes online 𝑟𝑟2 goes offline. Similarly, replica 𝑟𝑟4 receives an update from

replica 𝑟𝑟2 at 6am. In 𝑟𝑟1 absence 𝑟𝑟2 and 𝑟𝑟3 are responsible to respond to any incoming requests

for core node’s updated replica. When 𝑟𝑟4 appears online at 6am and finds 𝑟𝑟2 R is online and has

the latest copy of core node’s profile. It requests 𝑟𝑟2 R for the core nodes’ updated profile and

updates its local copy.

In Section 4.5, we analyse how changing the number of mirror nodes, number of sessions and

session duration affects the update propagation delay while keeping the total online time (for

 33

each of the mirror node) constant. The algorithm to calculate the update propagation delay is

shown Figure 4. For more detailed version of the algorithm see Appendix 2.

Figure 4: Update propagation delay algorithm

The algorithm shown in Figure 4 went through few iteration of improvement during different

phases of the project. The major problem in the algorithm was identified during the

implementation phase, when nodes were receiving updates from other mirror nodes at times

that were in the past. For example as shown in Figure 3, replica (r4) receives the latest copy of

the node at 6am from replica (r2) and that’s correct but the problem was initially it was showing

as replica (r4) had received the updated copy of the node from replica (r2) at 1am because it

was recording the timestamp when the nodes first overlapped in time despite of the fact that

 34

replica (r2) didn’t even had the updated copy of the node itself at 1am. The issue was fixed in

the 2nd iteration of improvements. Further testing the algorithm and its implementation, we

could see a pattern in nodes receiving updates during early hours of the update. This led us in

introducing a new metric i.e. capturing the number of nodes receiving updates during differrnt

hours of the day. Following the principles of design science research, which encourages

researchers to revist and make continuous improvements to different phases of the project,

assisted us in going back to the design phase and add more metrics in our algorithm. This

helped us in drawing conclusions and making relationships between different variables under

study. These metrics were added during the 3rd iteration of improvements. In the 4th and final

iteration, all the hard coded values from the algorithm were removed and replaced with

variables.

3.3.3 Replication Degree
It is the number mirror nodes users choose to host their data, which act as proxies in their

absence. This keeps the users profiles available when the users themselves are offline. The

availability algorithm presented in Section 3.3.1 takes the following four parameters i.e. number

of mirror nodes, number of sessions, session duration and hours during which mirror nodes are

more likely to appear online as input and output the maximum achievable availability. In this

section, we discuss what is the minimum number of replicas required to achieve the same

availability as all mirror nodes combined. With this approach, users don’t necessarily have to

spread their data on all their social connections but to only selected ones’ that achieves the

same availability as all mirror nodes combined. Moreover, this approach also optimizes the

overhead cost that comes with replicating users’ data to multiple locations to increase

availability. Furthermore, the algorithm also shows which nodes to choose and in which order

to increase the availability. Moreover, it also shows how the core node’s availability increases

as the algorithm chooses more and more replicas and become stable after a certain point. The

algorithm is shown in Figure 5 and simulation results are in Section 4.6 and Table 4. For more

detailed version of the algorithm see Appendix 3.

 35

Figure 5: Replication degree algorithm

Replication degree algorithm also went through few iterations of improvements as well. In the

1st iteration, the algorithm had everything in place to find the number of mirror nodes/replicas

required to achieve the same availability as all mirror nodes combined but had few missing

metrics i.e. identifying chosen nodes by their ids and the number of minutes each contributed

to nodes total overall availability. These metrics were added during the 2nd iteration of

improvements. During the 3rd iteration, minor improvements were made in how we output the

data such that it’s easy to interpret and visualize on the web. In the 4th and final iteration, all

the hard coded values from the algorithm were removed and replaced with variables.

3.3.4 Availability on Demand
Availability on demand is to help new joining nodes to achieve the same availability as other

well established nodes in the network despite of having no or few social connections. This is to

provide equal opportunities to every node to keep their profiles highly available. This also

ensures nodes with few social connections are not discriminated as seen in Safebook where

nodes with few social connections were unable to achieve desired availability targets. Every

 36

node maintains a history of online patterns of its mirror nodes for any given number of days.

The online patterns of mirror nodes are then analysed and presented to new joining nodes in

the form of their average daily and hourly availability and the hour during which their availability

is maximum. This is to help new joining nodes to find mirror nodes that are highly available

during certain hours of a day. For example, if a new joining node only wants to keep its profile

available during 3pm to 6pm then the node may find 3 replicas are enough for its requirements.

The availability on demand algorithm is shown in Figure 6 and the simulation results are in

Section 4.7. For more detailed version of the algorithm see Appendix 4.

Figure 6: Availability on demand algorithm

Availability on demand algorithm also went through few iterations of improvements as well. In

the 1st iteration, we simulated the developed algorithm against the session durations that only

lasted for couple of minutes and everything worked fine until we started performing simulations

for session durations that spanned over hours. During the 2nd iteration, we improved the

algorithm by splitting the session duration (spanning over hours) into smaller sessions such

that we could capture the time spread across different hours correctly and use it appropriately

in the algorithm to perfrom different calculations. In the 3rd and final iteration, all the hard coded

values from the algorithm were removed and replaced with variables.

 37

3.4 Conclusion
In this chapter, we reviewed different research methodologies including Quantitative,

Qualitative and Design Science Research Methodology. To benefit from all the aforementioned

research methodologies we decided to take a triangulation approach that checks the

consistency of our findings from multiple views. We then presented our system design and the

algorithms derived from the research objectives stated in Chapter 1 and requirements in

Chapter 2. In the next chapter, we evaluate and check the validity of our algorithms, build

relationships between different system parameters and draw conclusions from the findings.

 38

CHAPTER 4: RESULTS AND DISCUSSION
In this chapter, we experimentally study the relationship between availability, update

propagation delay, and replication degree with core node’s number of mirror nodes, their online

patterns, number of sessions, and session duration. Availability describes for how long the core

node’s profile is available for others to access via its mirror nodes. Update propagation delay

captures the time it takes for an update to spread to core node’s mirror nodes and Replication

degree finds the minimum number of replicas required to achieve the same availability as all

mirror nodes combined. In this chapter, we also discuss the concept of availability on demand

that allows new joining nodes to find good mirrors and achieve desired availability targets

despite of having no or few social connections.

4.1 The Context
The table below shows the research objectives set in Chapter 1 along with the assessment

method and their outcomes.

 39

No Research Objectives Assessment Method Outcome

1

To investigate into how the
existing decentralised OSNs
have addressed availability
issues in their design

During literature review
investigate into how the
different decentralised OSNs
have addressed or overcome
the availability issues in their
design.

From the literature review conducted
in chapter 2 and research gap analysis
presented in section 2.5 we found
most of the decentralised OSNs
discussed in section 2.4 suffer from
the availability issues. Existing work in
improving data availability in
decentralized OSNs only focuses on
how to store users’ data across the
network. But none of the approaches
attempt to answer what is the
minimum number of replicas required
to achieve high data availability
targets, how the node’s availability,
replication degree, and update
propagation delay changes as we alter
its number of mirror nodes, their online
patterns, number of sessions and
session duration.

2

To identify the relationship
between the node’s availability
and the number of mirror nodes,
number of sessions and session
duration

During simulations change the
core node’s number of mirror
nodes, their number of
sessions and session duration
while keeping the total online
time constant.

From the simulation results we found
as we increase the number of mirror
nodes the availability increases and
becomes stable after it reaches 100%
i.e. 24 hours (1440 minutes). We also
found as we move from Model A to C
(discussed in detail in section 4.4) the
probability of overlapping time
between the mirror nodes starts to
increase. Thus, resulting in individual
mirror nodes contributing fewer unique
minutes to core node’s total overall
availability and therefore requiring
more mirror nodes for Model C to
achieve 100% availability than Model
A or B. The same applies for Model B
when compared with Model A.

3

To identify the relationship
between the node’s update
propagation delay and the
number of mirror nodes, number
of sessions and session
duration.

During simulations change the
core node’s number of mirror
nodes, their number of
sessions and session duration
while keeping the total online
time constant.

From the simulation results we found
as we increase the number of
sessions with decreasing session
lengths, such that the total availability
remains constant, the update
propagation delay starts to decrease.
With Models A, B and C, discussed in
detail Section 4.4, we found for any
given number of mirror nodes the
update propagates faster with Model C
than Model A or B. The same applies
for Model B when compared with
Model A. This is because as we move
from Model A to C the probability of
overlapping times between the mirror
nodes increases. Thus resulting in
spreading the updates faster.

4

To identify what is the minimum
number of replicas required to
achieve the same availability as
all mirror nodes combined from
given number of mirror nodes
and their online patterns.

During simulations change the
core node’s number of mirror
nodes, their number of
sessions and session duration
(while keeping the total
availability constant) and
observe how minimum number
of replicas required (MNoRR)
value changes.

From the simulations results we found
once the availability reaches 100% i.e.
1440 minutes and we increase the
total number of mirror nodes to
simulate the minimum number of
replicas required (MNoRR) starts to
decrease for each of the Models A, B,
and C and becomes stable at 1100
and 1200 nodes. Moreover, we also
found the MNoRR value for Model A is
always less than Model B and C. The
same applies for Model B when
compared with Model C (This is true
when MNoRR in not 100%).

 40

5

To introduce the concept of
availability on demand and help
new joining nodes to find good
mirrors.

The model must be flexible,
configurable and easy to use.
The model must also support
analysing nodes’ historical
online patterns for last 30 days.

It helps new joining nodes to find good
mirrors despite of having no or few
social connection in the network. It
also helps new joining nodes to decide
which nodes to choose as mirrors, for
how long and during what time.

Table 3: Research objectives, assessment method and outcome

We have structured the rest of the chapter based on the research objectives stated in Table
3.

4.2 Model
To understand how the core node’s availability and content dissemination changes by changing

the number of mirror nodes and their online patterns, we needed a model that is flexible,

configurable and easy to use. Before we get into the details of our model we must cognize the

online patterns of users in traditional OSNs that would give deep insights into users’ behaviour

in existing OSNs and set the requirements for our model. Bachrach et al. (2012) study in

examining the correlations between users’ personality and the properties of their Facebook

profiles revealed Facebook users on average spend 40 minutes online daily. Similar study

conducted by Muangngeon and Erjongmanee (2015) in ‘analysing usage of Facebook activities

through network and human perspectives’ revealed an interesting perspective of users’ online

patterns. In their study, they examined the distribution of user sessions and session duration(s)

at different times of a day. They found majority of the users i.e. 28.44% of their sample size

(38,355 users) mostly logged in between 09:00 – 11:59 hours and 24.93% of users logged in

for 0.5 to 1 hour. Benevenuto et al. (2009) study on the analysis of user workloads in OSNs

based on detailed clickstream data collected over a 12-day period from 37,024 users revealed

deep insights of users’ behaviour in existing OSNs. Their analysis found 63% of the users only

logged in once over a 12-day period and most frequently signing users accessed the site 4.1

times a day (on average). Moreover, they also found 51% of the users just spent 10 minutes

online over a 12-day period, 14% of the users spent just over an hour and 2% of the users

spent more than 12 hours making an average of an hour a day. Furthermore, they also found

the amount of time a user spends online is not strongly tied to the number of times they appear

online or login to a social network. Junco’s (2011) study in finding relationship between multiple

indices of Facebook usage and academic performance of students, found, in their sample of

1778 students, most users spent a substantial amount of time on Facebook with a mean of 79

and 106 minutes during two days in 5 and 6 sessions with each session lasting for an average

of 22 minutes. Gyarmati and Trinh (2010) conducted a similar study on 80,000 users over six

weeks period and found mean daily usage on 5 different social networking sites i.e. Bebo (30.48

mins), MySpace (26.37 mins), MySpace Friends (53.13 mins), Netlog (68.28 mins) and tagged

(77.31 mins). Therefore, to construct the online patterns of users that are close to traditional

OSNs our model must be configurable with the following parameters:

1. Number of mirror nodes to simulate.

 41

2. How the mirror nodes are grouped into smaller groups depending on their online patterns?

3. Time intervals during which the grouped mirrors nodes are more likely to appear online.

4. Number of sessions for each of the grouped mirror nodes.

5. How sessions are distributed during a day?

6. Session duration for each of the grouped mirror nodes sessions

Ability to configure the above parameters enabled us to construct online patterns of users as in

traditional OSNs. With the code shown in Figure 7 we can simulate users’ availability as in

traditional OSNs.

1. private static int numberOfNodes = 500;
2. private static int[] nodes = {320, 80, 50, 30, 15, 5};
3. private static int[][] sessionsDistribution = {{10, 5, 5}, {1, 2, 2, 10}, {10,

10, 5}, {20, 20, 5}, {25},{10, 10, 10, 10}};
4. private static int[][] sessionsDuration = {{2, 3, 5}, {5, 5, 5, 5}, {5, 5, 5},

{5, 5, 10}, {20}, {30, 30, 15, 15}};
5. private static int[][] sessionsLowerBound = {{0, 6, 18},{13, 15, 16, 17},{0, 0,

0},{0, 0, 0},{0},{0, 0, 0, 0}};
6. private static int[][] sessionsUpperBound = {{3, 2, 2},{1, 1, 1, 2},{24, 24,

24},{24, 24, 24},{24},{24, 24, 24, 24}};

Figure 7: Model

In the Figure 7, at line 1 we set number of mirror nodes to simulate i.e. 500. At line 2, we break

down the total number of mirror nodes to simulate in groups of 320, 80, 50, 30, 15, and 5

depending on their sessions distribution, session duration and online patters that we set at lines

3, 4 and 5-6 respectively. Code in Figure 7 is interpreted as:

“Out of 500 mirror nodes there are 320 nodes that on average spend 60 minutes online

(each), during a day, in 20 different sessions. During 00:00 to 03:00 users stay online for 20

minutes in 10 different sessions with each session lasting for 2 minutes only. During 06:00 to

08:00 users stay online for 15 minutes in 5 different sessions with each session lasting for 3

minutes only. During 18:00 to 20:00 users stay online for 25 minutes in 5 different sessions with

each session lasting for 5 minutes only.”

In the above example, timings, hours and duration during which users appear online is

calculated as follows:

In the nodes array 320 is present at index 0 and represent number of mirror nodes in group 1.

If look at the index 0 of sessionsDistribution array we will find {10, 5, 5} that represent mirror

nodes’ total number of sessions during a day i.e. 10 + 5 + 5 = 20. Next, if we look at index 0 of

sessionsDuration array we will find {2, 3, 5} that represent for how long mirror nodes stay online

during each of their sessions i.e. for 10 sessions they stay online for 2 minutes each, for 5

sessions they stay online for 3 minutes each and for next 5 sessions they stay online for 5

minutes each that together add up to 60 minutes i.e. (10 * 2) + (5 * 3) + (5 * 5) = 60. At lines 5

and 6, sessionsLowerBound and sessionsUpperBound arrays represent hours during which

mirror nodes appear online during a day. The three arrays i.e. sessionsLowerBound: {0, 6, 18}

and sessionsUpperBound: {3, 2, 2} and sessionsDistribution: {10, 5, 5} together can be

interpreted as 320 mirror nodes appear online 10 times during 00:00 to 03:00 hours, 5 times

during 06:00 to 08:00 hours and 5 times during 18:00 to 20:00 hours respectively.

 42

Some of the outputs of the model can be seen in Figures in 8 and 9.

 Figure 8: Model – graph Figure 9: Availability - graph

More detailed simulation results of the Model shown in Figure 7 can be found at
www.adilhassan.com/mphil/model.html that also shows core node’s update propagation delay
in the form of scatter and pie charts and timeline for each of the mirror node’s online
appearance.

4.3 Simulation
There are a number of simulation tools available to simulate and model communication

networks, multiprocessors and other distributed or parallel systems. The most prominent

among all are OMNET++1 (Objective Modular Network Testbed), NS32 (Network Simulator),

OPNET3 (Optimum Network Performance), PeerSim4, and NetSim5. They are mainly used to

design, simulate, verify, and analyze the performance of different networking protocols (Varga

& Hornig, 2008). The aforementioned simulation tools also come with some pre-loaded models

and algorithms as well or one can find the models separately online that can be imported and

tweaked to user needs to run the simulations. In our case, we could not find any readymade

models, algorithms or even the data to perform our simulations. Therefore, we created our own

model, with the parameters that we were interested in to generate the data that resembles

closely to the online patterns of users of the existing online social networks. This led us to write

our own algorithms to analyze the data and draw the conclusions from our findings.

Therefore, we built our own Java based simulation tool that processes the model inputs and

generates data. The data generated from the model is then used in different algorithms

(discussed in chapter 3) to compute core node’s diurnal availability, replication degree, and

update propagation delay. The simulator outputs the results in JavaScript arrays that are then

used to visualise the data in the form of graphs and charts on the web. The simulator not only

outputs core node’s diurnal availability but also hourly availability as well (in minutes). The

simulator also outputs what is the minimum number of replicas required that can achieve the

1 https://omnetpp.org/
2 https://www.nsnam.org/

3 https://www.riverbed.com/gb/products/steelcentral/opnet.html

4 http://peersim.sourceforge.net/

5 http://www.boson.com/netsim-cisco-network-simulator

http://www.adilhassan.com/mphil/model.html

 43

same availability as all mirror nodes combined and the list of best nodes to choose as replicas

in order. Furthermore, the simulator also outputs the core node’s update propagation delay

through and via mirror nodes in the form of scatter and pie charts. The scatter and pie charts

indicate how the update propagates through the mirror nodes as the time passes and

percentage or number of mirror nodes that received the update during any hour of the day

respectively. Moreover, the simulation tool also generates and process the online patterns of

mirror nodes for up to 30 days and outputs each of the mirror node’s average daily and hourly

availability and the hour during which the mirror nodes are most available to help newly joining

nodes to find good mirrors when they don’t have enough friends in the network.

4.4 Availability (Objective 2)
To understand the relationship between the core node’s availability and the number of mirror

nodes, number of sessions and session duration we modelled the online patterns of mirror

nodes by manipulating two different variables i.e. number of sessions and session duration

while keeping the total online time constant i.e. 40 mins. We chose 40 minutes of online time

as a conservative approach from our findings in section 4.2. We also assume users are

geographically distributed and can appear online anytime during a day.

We ran our simulations against three different models/cases, indicated below, with variable

number of mirror nodes ranging from 25 to 1200. We stopped our simulations at 1200 nodes

because we couldn’t see any further improvements to core nodes’ total overall availability and

the minimum number of replicas required (MNoRR) to achieve the same availability as all mirror

nodes combined. Table 4 shows the simulation setup and the results obtained from them.

• Model A: Mirror nodes appear online 5 times a day and every time they appear online

spend 8 minutes online.

• Model B: Mirror nodes appear online 10 times a day and every time they appear online

spend 4 minutes online.

• Model C: Mirror nodes appear online 20 times a day and every time they appear online

spend 2 minutes online.

No. Mirror Nodes Model Diurnal Availability (mins) MNoRR

1 25

A 717 49.7% 25 100%

B 735 51.0% 25 100%

C 748 51.9% 25 100%

2 50

A 1064 73.8% 50 100%

B 1083 75.2% 50 100%

C 1087 75.4% 50 100%

3 100 A 1340 93.0% 83 83.0%

 44

B 1346 93.4% 91 91.0%

C 1355 94.0% 96 96.0%

4 150

A 1417 98.4% 85 56.6%

B 1416 98.3% 100 66.6%

C 1417 98.4% 109 72.6%

5 200

A 1434 99.5% 89 44.5%

B 1435 99.6% 99 49.5%

C 1436 99.7% 111 55.5%

6 250

A 1437 99.7% 79 31.6%

B 1439 99.9% 91 36.4%

C 1438 99.8% 106 42.4%

7 300

A 1439 99.9% 75 25.0%

B 1439 99.9% 88 29.3%

C 1440 100% 100 33.3%

8 350

A 1439 99.9% 74 21.1%

B 1440 100% 88 25.1%

C 1440 100% 95 27.1%

9 400

A 1440 100% 75 18.7%

B 1440 100% 83 20.7%

C 1440 100% 91 22.7%

10 450

A 1440 100% 73 16.2%

B 1440 100% 80 17.7%

C 1440 100% 89 19.7%

11 500

A 1440 100% 70 14.0%

B 1440 100% 80 16.0%

C 1440 100% 90 18.0%

12 600

A 1440 100% 68 11.3%

B 1440 100% 78 13.0%

C 1440 100% 86 14.3%

13 700

A 1440 100% 67 9.5%

B 1440 100% 76 10.8%

C 1440 100% 83 11.8%

14 800

A 1440 100% 65 8.1%

B 1440 100% 75 9.3%

C 1440 100% 82 10.2%

15 900 A 1440 100% 65 7.2%

 45

Table 4: Simulation results of availability and replication degree algorithms

From the simulation results in Table 4, we can infer, as we increase the number of mirror nodes

the availability increases and becomes stable after it reaches 100% i.e. 1440 minutes. The

availability and minimum number of replicas required (MNoRR) was calculated by running the

simulations against each of the aforementioned models 5 times and then taking the average.

The relationship between availability, number of mirror nodes, number of sessions and session

duration can be explained by analysing the data presented in Table 4 as below.

Case 1

For the first two data sets i.e. 25 and 50 mirror nodes, with MNoRR values 100%, we can see

the availability achieved with Model A is slightly less than the availability achieved with Model

B and C. The same applies for Model B when compared with Model C. This is because as we

move from Model A to C the probability of overlapping (time) between the mirror nodes

increases. And if the sessions overlap then we only lose fraction of a time because of the

reduced session lengths as in Model C. This implies the probability of overlapping in Model A

is however low but if the nodes overlap then we lose relatively more time in overlapping as

compared to Model B and C. The same applies to Model B when compared with Model C. This

explains why the availability achieved with Model A is relatively less than the availability

achieved with Models B and C.

Case 2
When the availability reaches 100% for each of the Models A, B and C; and we increase the

number of mirror nodes the MNoRR value starts to decrease and becomes stable after a certain

point i.e. 1100 and 1200 nodes. From the results shown in Table 4, we find MNoRR value for

Model C is always greater than Model B and MNoRR value for Model B is always greater then

Model A. This is because (as said before) moving from Model A to C the probability of

overlapping (time) between the mirror nodes increases. Thus, resulting in individual mirror

B 1440 100% 74 8.2%

C 1440 100% 82 9.1%

16 1000

A 1440 100% 65 6.5%

B 1440 100% 74 7.4%

C 1440 100% 80 8.0%

17 1100

A 1440 100% 66 6.0%

B 1440 100% 73 6.6%

C 1440 100% 78 7.0%

18 1200

A 1440 100% 66 6.0%

B 1440 100% 73 6.6%

C 1440 100% 78 7.0%

 46

nodes contributing fewer unique minutes to core node’s total overall availability. Therefore, we

see more number of mirror nodes required for Model C to achieve the same availability as

Model A and B i.e. 1440 minutes. This explains why MNoRR value for Model C is always

greater than MNoRR values of Model A and B. The same applies for Model B when compared

against Model A. This also supports our argument presented in case 1.

Please note the difference between case 1 and case 2 is in case 1 overlapping cannot be

avoided but in case 2 the algorithm avoids overlapping by selecting mirror nodes with least or

no overlapping at all with the ones that are already chosen.

Some of the outputs of simulation results can found in Figures 10, 11, and 12.

More detailed simulation results can be found at www.adilhassan.com/mphil that contains

output of all our simulations ranging from 25 to 1200 nodes.

4.5 Update Propagation Delay (Objective 3)
To identify the relationship between the core node’s update propagation delay and number of

mirror nodes, number of sessions and session duration we needed to model the availability of

mirror nodes such that they are online for the same amount of time but differ in number of

sessions and session duration. Therefore, we reuse the data generated in section 4.4. From

Figures 13 and 14, we can infer as we increase number of sessions with decreasing session

lengths, the spread between the nodes receiving updates or in other words the update

propagation delay between the mirror nodes decreases. This is because as we move from

Figure 10: Core node’s diurnal availability
(Mirror Nodes: 25)

Figure 11: Update propagation delay
(Mirror Nodes: 25)

Figure 12: Core node’s diurnal availability by hour (Mirror Nodes: 25)

http://www.adilhassan.com/mphil

 47

Model A to C the probability of overlapping times with other mirror nodes starts to increase.

Thus resulting in spreading the updates faster to other mirror nodes. This can be seen in figures

13 and 14 as we move from Model A to B and C we can see a significant increase in the number

of nodes receiving updates during the first few hours of the update.

 100 Mirror Nodes – Model A – Data set 1 100 Mirror Nodes – Model B – Data set 1

100 Mirror Nodes– Model C – Data set 1

Figure 13: Update propagation delay – 100 Mirror Nodes

 500 Mirror Nodes – Model A – Data set 1 500 Mirror Nodes – Model B – Data set 1

 500 Mirror Nodes – Model C – Data set 1

Figure 14: Update propagation delay - 500 Mirror Nodes

We were also interested in finding the percentage of nodes receiving updates during the first 3

hours of the update and found some interesting results shown in Table 5.

Number of

Mirror Nodes
Model

A B C

 48

Percentage of nodes receiving update during
first 3 hours

25 32% 29.6% 51.2%

50 30.4% 39.6% 78%

100 38.8% 58.6% 88%

150 39.46% 64.82% 89.06%

200 44.8% 64% 91.1%

250 44.92% 69.52% 90.24%

300 42.4% 71.14% 90.26%

350 45.08% 68.94% 90.54%

400 45.76% 67.08% 90.02%

450 40.5% 70.66% 89.68%

500 42.8% 72.44% 91.16%

600 47.3% 65.88% 89.08%

700 41.82% 65.06% 88.78%

800 44.42% 65.16% 86.36%

900 44.5% 70.74% 91.08%

1000 42.88% 67.88% 87.04%

1100 45.72% 68.48% 90.38%

1200 48.76% 70.14% 89.38%

Table 5: Simulation results of update propagation delay algorithm

From Table 5, we can see as we move from Model A to C the percentage of nodes receiving

update during the first 3 hours of the update increases with an exception ‘25’ mirror nodes that

does not follow a pattern as in seen in rest of the table. We highlighted some of the cells in

table in red to indicate the outliers in our data, as they don’t closely match in numbers when

compared with other cells of their respective models. If we look at the percentage of nodes

receiving update during the first 3 hours for 200 nodes in model A (i.e. 44.8%) and compare it

with 250, 350, 400, 800, 900, and 1100 nodes we find the percentage of nodes receiving update

is almost the same with ±1% difference. We also see a similar pattern in Model B and Model C

as well. Moreover, if we look at the percentage of nodes receiving update during first three

hours for 150 nodes in Model C (i.e. 89.06%) and compare it with 1200 nodes (89.38%) we find

the difference is just 0.32% but if we compare the number of nodes receiving updates for each

of the two datasets we find a significant difference between the two i.e. 133 of 150 and 1072 of

1200 mirror nodes receiving updates. This indicates the percentage of nodes receiving

updates, during the first 3 hours of the update, for different number of mirror nodes is almost

the same with some degree of difference. The difference however decreases as we move from

Model A to C.

More detailed simulation results can be found at www.adilhassan.com/mphil that contains the

output of all our simulations ranging from 25 to 1200 mirror nodes.

http://www.adilhassan.com/mphil

 49

4.6 Replication Degree (Objective 4)
To identify the best and minimum number of replicas required to keep the core node’s profile

highly available we performed our simulations on two different data sets. The first, whilst

keeping the total availability constant we altered the total number of mirror nodes, number of

sessions and session duration till we reached a point where we couldn’t see any further

improvements in MNoRR (minimum number of replicas required) value and total availability

achieved. This gave us interesting statistics on how MNoRR value changes on changing the

number mirror nodes, number of sessions and session duration. Second, to test the algorithm

and see how the availability changes as we alter the online patterns of the mirror nodes such

that very few of them are available for most of time and most of the mirror nodes are available

for just under few minutes. We expected to see the algorithm to choose the most available

mirror node first followed by the second most available mirror node and so on. For the first set

of simulations, we reuse the data from Section 4.4. From the Table 4, we can see as we

increase the number of mirror nodes the MNoRR value (percentage) starts to decrease for each

of the Models A, B, and C. The reason for that is as we increase the total number of mirror

nodes the algorithm finds more and more nodes with least overlapping times. Thus, resulting

in contributing more unique minutes to core node’s total overall availability with relatively less

nodes. From the data set in Table 4, we also see once the availability reaches 100% the

MNoRR value for each of the Model A, B and C starts to decrease and becomes stable after a

certain point i.e. 1100 and 1200 nodes. Moreover, we can also see the MNoRR value for Model

A is always less than the MNoRR value for Models B and C. The same applies for Model B

when compared with Model C. The reason for that is as we increase the number of sessions

from Model A to C the probability of overlapping time between the mirror nodes starts to

increase. Thus, resulting in individual mirror nodes contributing fewer unique minutes to core

node’s total overall availability. Therefore, we see more number of mirror nodes required for

Model C to achieve the same availability as Model A and B i.e. 1440 minutes. In table 4, the

MNoRR value indicates the minimum number of replicas required to keep the core node’s

profile highly available where ‘high availability’ may mean 90%, 99%, 99.9% etc. diurnal

availability. From the simulation results, we also see a strong correlation between the MNoRR

value and the update propagation delay (when availability reaches 100%) i.e. low MNoRR value

suggests high spread and high MNoRR value suggests low spread in update propagation

delay. To see how the algorithm selects the best nodes or the most available nodes first from

the list mirror nodes we performed simulations on two different models i.e.

1. All mirror nodes are available for the same number of minutes in a day i.e. 40 minutes.

Model
1. private static int numberOfNodes = 500;
2. private static int[] nodes = {500};
3. private static int[][] sessionsDistribution = {{20}};
4. private static int[][] sessionsDuration = {{2}};
5. private static int[][] sessionsLowerBound = {{0}};
6. private static int[][] sessionsUpperBound = {{24}};

 Figure 15: Replication degree - Model A

 50

In the model shown in Figure 15, we simulate 500 mirror

nodes where every node is online for 40 minutes during a day in 20 different sessions with each

session lasting for 2 minutes only. Figure 16 shows the results of our algorithm choosing

different replicas. The algorithm chose Replica ID 0 as the first most available mirror node

contributing 40 minutes to core node’s total overall availability. It then chooses Replica ID 3

again contributing 40 minutes to core node’s overall availability. The reason our algorithm

chose Replica ID 3 as a second best choice instead of Replica ID 1 and Replica ID 2 is because

of their overlapping times with Replica ID 0. Replica ID 1 overlaps with Replica ID 0 at 12:17pm

for 1 minute and Replica ID 2 overlaps with Replica ID 0 at 11:58am for 2 minutes. If our

algorithm would have chosen Replica ID 1 and Replica ID 2 as second best choice then they

could only contribute 39 and 38 unique minutes respectively to core node’s total overall

availability instead of 40minutes as we have seen in choosing Replica ID 3 as the second best

choice. The algorithm repeatedly finds and chooses most available mirror nodes until it reaches

maximum achievable availability.

 Figure 16: Replication degree - Model A - Result

More detailed simulation results of the model shown in Figure 15 can be found online at

www.adilhassan.com/mphil/MNoRR1.html that also contains the output of core node’s update

propagation delay in the scatter and pie charts and the timeline of mirror nodes’ individual online

appearances during a day.

2. Some of the mirror nodes are available for slightly longer than the others.

Model
1. private static int numberOfNodes = 500;
2. private static int[] nodes = {320, 80, 50, 30, 15, 5};
3. private static int[][] sessionsDistribution = {{10, 5, 5}, {1, 2, 2, 10}, {10, 10,

5}, {20, 20, 5}, {25}, {10, 10, 10, 10}};
4. private static int[][] sessionsDuration = {{2, 3, 5}, {5, 5, 5, 5}, {5, 5, 5}, {5,

5, 10}, {20}, {30, 30, 15, 15}};
5. private static int[][] sessionsLowerBound = {{0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0},

{0, 0, 0}, {0}, {0, 0, 0, 0}};
6. private static int[][] sessionsUpperBound = {{24, 24, 24}, {24, 24, 24, 24}, {24,

24, 24}, {24, 24, 24}, {24}, {24, 24, 24, 24}};

With the model shown in Figure 17, we simulate 500 mirror nodes in groups of 320, 80, 50, 30,

15, and 5 depending on their number of sessions, session duration and timings during which

 Figure 17: Replication degree - Model B

http://www.adilhassan.com/mphil/MNoRR1.html

 51

they are most available. From the model, we can see 320 of 500 nodes are available for just

an hour in a day (each) and 5 of 500 nodes are available for 900 minutes each. Therefore, we

expect our algorithm to choose the nodes that are most available first. Looking at the results

shown in Figure 18 we find the algorithm chooses Replica ID 496 as the first mirror contributing

900 minutes to core node’s total overall availability. The second mirror node it chooses is

Replica ID 498 contributing 348 unique minutes to core node’s overall availability and so on

until reaches 100% availability i.e. 1440 minutes.

 Figure 18: Replication degree - Model B Result

More detailed simulation results of the model shown in Figure 17 can be found online at

www.adilhassan.com/mphil/MNoRR2.html that also contains the output of core node’s update

propagation delay in the scatter and pie charts and the timeline of mirror nodes’ individual online

appearances during a day.

4.7 Availability on Demand (Objective 5)
To help new joining nodes to find good mirrors, when they don’t have enough social

connections in the network to choose as replicas, we introduce the concept of availability on

demand. It helps new joining nodes to find good mirrors by receiving statistics from other nodes

about their mirror nodes in the network. The mechanisms of statistics collection, collation and

verification are out of scope of this thesis. We assume nodes are well behaving, trustworthy,

cooperative and maintains history of online patterns of its mirror nodes for last 30 days. When

requested our algorithm converts the historical online patterns of mirror nodes into useful

information and present it to requesting nodes in the form of average daily and hourly availability

and the hour during which the mirror nodes are most available. The new joining nodes can then

choose that node as a possible replica-hosting location either for number of hours or for just an

hour during which it is most available depending on the node’s availability requirements.

To test the algorithm we developed a model that is flexible, configurable and easy to use. We

can customize our model with the following parameters:

1. Total number of mirror nodes to simulate.

2. How the mirror nodes are grouped into smaller groups depending on their online patterns.

3. For how many days do we want to perform our simulation?

4. Number of sessions for each of the grouped mirror nodes per day.

http://www.adilhassan.com/mphil/MNoRR1.html

 52

5. Session duration for each of the grouped mirror nodes per day.

6. Lower and upper bounds of time during which grouped mirror nodes are more likely to

appear online per day.

The figure below shows a model that we will be using to test our algorithm.
1. private static int numberOfDays = 3;
2. private static int numberOfNodes = 6;
3. private static int[] nodes = {3, 2, 1};
4. private static int[][] numberOfSessions = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
5. private static int[][] sessionDuration = {{2, 4, 6}, {8, 10, 12}, {14, 16, 18}};
6. private static int[][] lowerBound = {{0, 0, 0}, {4, 5, 6}, {7, 10, 13}};
7. private static int[][] upperBound = {{24, 24, 24}, {4, 4, 4}, {5, 5, 5}};

In Figure 19, at line 1, we set the number of days we want to run our simulation for i.e. 3. At line

2, we set the number of mirror nodes to simulate i.e. 6. At line 3, we break down the mirrors

nodes into groups of {3, 2, 1} depending on their online patterns defined at lines 4 to 7. At

lines 4 and 5, we set number of sessions and session duration for each of the grouped mirror

nodes per day respectively. At lines 6 and 7, we set the lower and upper bounds of time during

which the grouped mirror nodes are more likely to appear online.

The model in Figure 19 is interpreted as:

 We want to simulate 6 nodes for 3 days. From total of 6 nodes, 3 nodes appear online

anytime during a day. On the first day, they appear online once and spend 2 minutes online.

On the second day, they appear online 2 times and spend 4 minutes online during each

instance. On the third day, they appear online 3 times and spend 6 minutes online during each

instance.

 From the total of 6 nodes, 2 nodes appear online at various times during a day i.e.

between 4am and 10am. On the first day, they appear online 4 times between 4am and 8am

and spend 8 minutes online during each instance. On the second day, they appear online 5

times between 5am and 9am and spend 10 minutes online during each instance. On the third

day, they appear online 6 times between 6am and 10am and spend 12 minutes during each

instance.

 From the total of 6 nodes, 1 node appears online at various times during a day i.e.

between 7am and 6pm. On the first day, the node appears online 7 times between 7am and

12noon and spends 14 minutes online during each instance. On the second day, the node

appears online 8 times between 10am and 3pm and spends16 minutes online during each

instance. On the third day, the node appears online 9 times between 1pm and 6pm and spends

18 minutes online during each instance.

Figure 19: Model - Availability on demand

 53

In the above interpretations number of sessions, session duration, days and online timings is

calculated as follows:

At line 1, we set the number of days we want to run our simulation for i.e. 3. At line 2, we set

the number of mirror nodes to simulate i.e. 6. At line 3, we break down the nodes in group of 3,

2, and 1 node(s) depending on their online patterns. At line 4, we set number of sessions for

each of the grouped mirror nodes per day with a two-dimensional array i.e. {{1, 2, 3}, {4, 5,

6}, {7, 8, 9}}. Each row in the numberOfSessions array is linked to individual elements in the

nodes array such that {1, 2, 3} in numberOfSessions array belongs to 3 nodes in nodes array

at index 0, Similarly {4, 5, 6} in numberOfSessions array belongs to 2 nodes and {7, 8, 9}

belongs to 1 node. Furthermore, each column in each of these rows represent a new day. The

sessionDuration array can be interpreted following the same rules as numberOfSessions array.

The hours in lower and upper bound arrays are calculated as follows: If we look at the index 2

of lowerBound and upperBound arrays we find {7, 10, 13} and {5, 5, 5} respectively. These

indicate the hours during which the node(s) appears online during a day. The lowerBound and

upperBound arrays when seen together with numberOfSessions and sessionDuration can be

interpreted as follows:

1. A node appears online 7 times during a day between 7am and 12noon (7 + 5 = 12) and

spends 14 minutes online during each appearance.

2. A node appears online 8 times during a day between 10am and 3pm (10 + 5 = 15) and

spends 16 minutes online during each appearance.

3. A node appears online 9 times during a day between 1pm and 6pm (13 + 5 = 18) and

spends 18 minutes online during each appearance.

Figures 20, 21, and 22 show the output of model for a node that appears online between 7am

and 6pm i.e. index 2 of nodes array. From the figures, we can see how the node’s daily and

average hourly availability changes and the hour during which it is most available.

Figure 20: Availability on demand - 3 days

 54

Figure 21: Availability on demand - 30 days

Figure 22: Availability on demand - 60 days

From the information shown in Figures 20, 21, and 22 a new joining node can either choose

that node as a mirror for hours during which it is most available or find a better replica-hosting

node depending on its availability requirements.

The graphs shown in Figures in 20, 21, and 22 can also be found online at

www.adilhassan.com/mphil/AoD1.html, .../AoD2.html and .../AoD3.html that allow users to

scale and zoom in to show more detailed information.

4.8 Conclusion
In this chapter, we experimentally studied different system properties including availability,

availability on demand, replication degree, and update propagation delay in conjunction with

other parameters i.e. total number of mirror nodes, number of sessions and session duration.

We have also performed extensive evaluation of our algorithms via simulations and analysed

the results obtained from them. We conclude that the implementation of decentralised OSNs is

feasible but under certain requirements of user online times and the number of mirror nodes

that determines the maximum achievable availability, replication degree and update

propagation delay.

http://www.adilhassan.com/mphil/AoD1.html
http://www.adilhassan.com/mphil/AoD2.html
http://www.adilhassan.com/mphil/AoD3.html

 55

CHAPTER 5: CONCLUSION AND FUTURE WORK
5.1 Conclusion
The success of online social networks has changed the way people interact and communicate

with each other today. Where their success has brought advantages to the people and

communities it has also put the users’ privacy and security at risk as well. This thesis contributes

in performing feasibility checks of creating next generation of online social networks built on

decentralised architectures. The overall aim of the research was:

“To develop a model and investigate into how the node’s availability, replication degree

and update propagation delay (dependent variables) changes on altering its number of mirror

nodes, their online patterns, number of sessions and session duration (independent variables)

by studing the effects of changing independent variables on each of the dependent variables”

To achieve this aim a Model (Section 4.2) was developed that helped to construct and

simulate the online patterns of users as in traditional online social networks. The data generated

from the model was then used as input for different algorithms presented in this thesis including

availability, replication degree, update propagation delay and availability on demand. Chapter

3 (System Design – Section 3.3) discusses the aforementioned algorithms in detail. The

algorithms presented in Chapter 3 are derived from the research objectives set in Chapter 1

and requirements in Chapter 2. In Chapter 4 (Results and Discussion), we performed extensive

evaluation of our algorithms and model via simulations, investigated into how the node’s

availability, replication degree and update propagation delay changes on altering its number of

mirror nodes, their online patterns, number of sessions and session duration and drawn

conclusions from our findings.

This thesis addresses the following research objectives:

Research Objective 1: To investigate into how the existing decentralised OSNs have

addressed availability issues in their design.

 56

In Chapter 2, we reviewed a number of different decentralised OSNs that differ greatly in their

design but all aim to solve the same problem i.e. how to preserve users’ privacy while offering

full set of services to the users of OSNs. We found researchers typically used replication as

their primary choice in achieving high data availability but we have also seen dependency on

third parties in the form cloud storage providers e.g. Amazon EC2 and permanently available

resources as another means of achieving high data availability in decentralised OSNs as well.

The latter two, however, do not completely justify the true essence of decentralised OSNs as

they may leave the privacy of the users in the hands of the service providers (e.g. Vis-à-Vis

and Diaspora). This is discussed in detail in Section 2.4 and 2.5.

Research Objective 2: To identify the relationship between the node’s availability and the

number of mirror nodes, number of sessions and session duration.

This research objective is addressed in Chapter 4 – Section 4.4. To identify the relationship

between the node’s availability and its number of mirror nodes, number of sessions and

sessions we modelled the online patterns of mirror nodes by manipulating two different

variables i.e. number of sessions and session duration while keeping the total availability

constant. We found as we increase the number of mirror nodes the availability increase and

becomes stable after it reaches 100% i.e. 1440 minutes (24 hours). We also found as we

increase the number of sessions with reduced sessions lengths such that the total availability

remains constant the probability of overlapping times between the mirror nodes increases.

Thus, resulting in individual mirror nodes contributing fewer unique minutes to node’s total

overall availability.

Research Objective 3: To identify the relationship between the node’s update propagation

delay and its number of mirror nodes, number of sessions and session duration.

This research objective is address in Chapter 4 – Section 4.5. We found as we increase the

number of sessions with reduced session lengths such that the total availability remains

constant the update propagation delay between the mirror nodes starts to decrease. This is

because as we increase the number of sessions with reduced session lengths the probability

of overlapping time between the mirror nodes starts to increases; thus, resulting in spreading

the updates faster as compared to mirror nodes that appear online relatively fewer number of

times but for longer durations.

Research Objective 4: To identify what is the minimum number of replicas required, to achieve

the same availability as all mirror nodes combined from given number of mirror nodes and their

online patterns.

This research objective is address in Chapter 4 – Section 4.6. We found once the availability

reaches 100% and we increase the number of mirror nodes, the minimum number of replicas

required (MNoRR) starts to decrease and becomes stable after a certain point. Moreover, we

also found once the availability reaches 100% i.e. 1440 minutes (24 hours) the MNoRR value

for mirror nodes that appear online fewer number of times but for longer durations is always

 57

less than the mirror nodes that appear online relatively more often but for shorter durations.

This is because as we increase the number of sessions with reduced session lengths the

probability of overlapping times between the mirror nodes starts the increase; thus, resulting in

individual mirror contributing fewer unique minutes to node’s total overall availability and

therefore requiring more number of mirror nodes to achieve the same availability (i.e. 1440

minutes or 24 hours) as mirror nodes that appear online fewer number of times but for longer

durations.

Research Objective 5: To introduce the concept of availability on demand and help new joining

nodes to find good mirrors.

This research objective is addressed in Chapter 4 – Section 4.7. We introduced the concept of

availability on demand that helps new joining nodes to find good mirrors when they don’t have

enough friends/social connections in the network to choose as mirror nodes. From well-

established nodes, the new joining nodes receive the following statistics i.e. average daily and

hourly availability and the hour during which their mirror nodes are most available. The new

joining nodes then decide which nodes to choose as possible mirror nodes/replica hosting

locations and for how many hours or for just an hour during which they are most available

depending on the new joining nodes’ availability requirements.

The thesis also addresses the following research questions:

Research Question 1: What are the challenges in existing decentralized OSNs in achieving

high data availability?

Over the past few years an extensive amount of research has gone into creating next

generation of OSNs built on decentralized architectures. Where the different decentralised

OSNs have tried to overcome the privacy and security issues of the existing OSNs have also

introduced some other challenges as well e.g. how to achieve high data availability with

minimum number of replicas possible, how to prevent the system discriminating nodes with few

social connections and offer equal opportunities to everyone to keep their profiles highly

available, and how to achieve desired availability targets without depending on third parties

(e.g. cloud storage providers) or permanently available resources. To overcome these issues

Shahriar and his colleagues (2013) proposed a different technique called ‘grouping policy’

where they found 2 availability grouping policy for replication delivers high data availability but

one of the problems with their simulation setup was that they used the data set (online patterns)

of users of file sharing applications which does not truly depict the online patterns of users of

OSNs. Similar studies were conducted by other researchers in determining relationship

between users availability and storage capacity of their devices, using cloud assisted data

replication techniques in improving data availability in decentralised OSNs, exchanging

recommendations between friends in recognizing good and bad mirrors, and fostering user

driven replication instead of random system driven replica placement to achieve high data

availability. From the literature, we found existing working in improving data availability in

 58

decentralised OSNs only focuses on how to store users’ data across the network but none of

the approaches attempt to answer for any given number of mirror nodes and their online

patterns what is the minimum number of replicas required to achieve the same availability as

all mirror nodes combined, how changing the node’s number of mirror nodes and their online

patterns affects the node’s availability and update propagation delay and how the nodes can

achieve desired availability targets despite of having no or few social connections in the

network.

Research Question 2: How the node’s availability changes as we alter its number of mirror

nodes, their online patterns, number of sessions and session duration?

As we increase the number of mirror nodes the availability increases and becomes stable after

it reaches 100% i.e. 1440 minutes (24 hours). We also found when the MNoRR value is 100%

then the availability achieved with mirror nodes that appear online fewer number of times but

for longer durations is slightly less than than the availability achieved with mirror nodes that

appear online several times during a day but only spend fraction of a time during each of their

appearance. This is because as we increase the number of sessions with reduced session

lengths the probability of overlapping between the mirror nodes starts to increase and if the

nodes overlap then we only lose fraction of a time because of their reduced session lengths.

The probability of overlapping for mirror nodes that appear online fewer number of times during

a day is however low but if the nodes overlap then we lose a significant amount in overlapping

which cannot be compensated as there are no other mirror nodes availabile to avoid that

overalppping.

Research Question 3: How the node’s update propagation delay changes as we alter its

number of mirror nodes, number of sessions and session duration?

From the simulation results, we found as we increase the number of mirror nodes the update

propagation delay between the mirror nodes remains almost the same in terms of the

percentage of nodes receiving updates during first few hours of the update. Moreover, we also

found as we increase the number of sessions with reduced session lengths whilst keeping the

total availability constant, the update propagation delay between the mirror nodes starts to

decrease. This is because as we increase the number of sessions with reduced session lengths

the probability of overlapping time between the mirror nodes starts to increase; thus, resulting

in spreading the updates faster.

Research Question 4: For given number of mirror nodes and their online patterns what is

minimum number of replicas required to achieve the same availability as all mirror nodes

combined?

The minimum number of replicas required to achieve the same availability as all mirror nodes

combined depends on the following two parameters:

i) Total number of mirror nodes

 59

ii) Mirror nodes’ online patterns

If we have the number of mirror nodes and their online patterns as input we can then find the

minimum number of replicas required to achieve the same availability as all mirror nodes

combined. We found as we increase the number of mirror nodes the availability increases and

becomes stable after a certain point but MNoRR value keeps dropping and becomes stable at

a different point. This is because as we increase the total number of mirror nodes, we find more

and more mirror nodes with least overlapping time between them; thus, resulting in each mirror

node contributing more unique minutes to node’s total overall availability. Moreover, comparing

the MNoRR values for mirror nodes that appear online several times during a day and only

spend fraction of a time during each of their appearance with mirror nodes that appear online

only fewer number of times but spend a significant amount of time during each of their

appearance we found the MNoRR values of the latter is always less than the other (given

MNoRR is not 100%). This is because as we increase the number of sessions with reduced

session lengths, whilst keeping the total availability constant, the probability of overlapping

between the mirror nodes start to increase; thus, resulting in each mirror node contributing

relatively fewer unique minutes to nodes total overall availability. And therefore, nodes that

appear online more often but for shorter durations require more mirror nodes to achieve the

same availability as mirror nodes that appear online less often but for longer durations.

Research Question 5: How the new joining nodes can find good mirrors and achieve desired

availability targets, despite of having no or few social connections in the network?

To help new joining nodes to find good mirrors we introduced the concept of availability on

demand. New joining nodes receives statistics from other well established nodes in the network

about their mirror nodes in the form of their average daily and hourly availability and the hours

during which they are most available. This helps new joining nodes to identify mirror nodes that

meet their availability requirements.

Referring back to the hypothesis stated in Chapter 1 – Section 1.5:

For given number of mirror nodes and their online patterns it is algorithmically possible

to determine the minimum number of replicas required to keep the nodes profile highly

available, where highly availability may mean 90%, 99%, 99.9% etc. diurnal availability.

The work presented in this thesis investigates in checking the feasibility of creating next

generation of online social networks built on decentralized architectures which involved creating

artifact, developing algorithms, performing simulations and analysing results. We analysed the

affects of changing independent variables including number of mirror nodes, their online

patterns, number of sessions and session duration on the dependent variables i.e. node’s

availability, replication degree and update propagation delay. From the results presented in this

thesis we found it is algorithmatically possible to determine the minimum number of replicas

required to keep the node’s profile highly available, where high availability may mean 90%,

99%, 99.9% diurnal availability.

 60

We conclude the feasibility of such decentralized OSNs is possible but under certain

requirements of node’s number of mirror nodes and their online patterns that determines the

node’s maximum achievable availability, replication degree and update propagation delay.

5.2 Limitations and Future Work
The work presented in this thesis uncovers the relationship the node’s between availability,

replication degree and update propagation delay with the node’s number of mirror nodes, their

online patterns, number of sessions and session duration. The research directions arising for

this work as are as follows:

5.2.1 Enhancement of Data
1) The results presented in this Thesis used the following three Models:

a. Model A: Mirror nodes appear online 5 times a day and every time they appear

online spend 8 minutes online.

b. Model B: Mirror nodes appear online 10 times a day and every time they appear

online spend 4 minutes online.

c. Model C: Mirror nodes appear online 20 times a day and every time they appear

online spend 2 minutes online.

In each of the models, the mirror nodes were available for a constant time i.e. 40 minutes but

differ in their online patterns. With this setup, we found some interesting results that we have

discussed in Chapter 4. Changing the constant availability of 40 minutes to 30 or 50 minutes

and observing its effects on availability, replication degree and update propagation delay may

reveal new findings. Furthermore, studying the effects of changing the online patterns of mirror

nodes and their geographical distribution may also reveal new and interesting findings.

2) The model presented in this thesis has elements of randomness e.g. when the nodes

should appear online during different times of the day given it has the upper and lower

bounds of time for randomness. Future work will consider changing the existing model into

a probabilistic model for all the differernt parameters we have in the existing model and

observe its effects on node’s availability, replication degree, update propagation delay, and

availability on demand.

5.2.2 Enhancement of Algorithms
1) In the availability on demand algorithm, verification of the data received from the nodes

about their mirror nodes in the network was left to do as a future work. Identifying nodes

sending false/contradicting information about mirror nodes would help in identifying and

filtering out malicious or unreliable nodes from the network. This can be done by checking

if multiple nodes who share one or more mirror node(s) in common are sending

contradicting information about them. Nodes sending false information can then be

 61

identified and announced as malicious or unreliable nodes and prevented from sending any

data to existing or new joining nodes in the network.

2) The algorithms presented in this thesis were evaluated in a simulation-based learning

environment. As future work, it would be interesting to see how these algorithms perform

and behave when integrated in real world applications.

3) The algorithms presented in this thesis only consider links/connections between nodes.

Gilbert and Karahalios (2009) however, believe the existence just of a relation between

nodes itself only contributes very little to its tie strength. Future work will take the strength

into account as part of the simulation.

4) The algorirthms presented in this thesis assume every node participating in the network

can accommodate the storage requirements of its mirror nodes. This however may not

always be true because nodes have limited storage capacities that they can offer to host

the replicas of their friends/social connections. Cogitating the available storage space and

the strength of the relationship between nodes could be additional parameters to consider

when choosing to host the replicas of other nodes in the network.

5.2.3 Enhancement of Research Scope
Future work will investigate into the privacy and security issues of the existing online social

networks. The research objectives of this study could be to identify and characterize differernt

types of attacks, the damages that they may cause to users’ privacy and how they can be

prevented.

 62

GLOSSARY OF TERMS
DSR – Design Science Rearch

FOAF – Friend of a Friend

HCI – Human Compuer Interface

IS – Information Systems

MNoRR – Minimum Number of Replicas Required

NS3 – Network Simulator

OMNET++ – Object Modular Network Testbed

OPNET – Optimum Network Performance

OSN – Online Social Network

 63

PUBLICATION
Conrad, M., Hassan, A., Koshy, L., Kanamgotov, A., Christopoulos, A. (2017) ‘Strategies and
Challenges to Facilitate Situated Learning in Virtual Worlds Post-Second Life’. Computers in
Entertainment - ACM, 15(1) doi: 10.1145/3010078

REFERENCES
1. Bachrach, Y., Kosinski, M., Graepel, T., Kohli, P. & Stillwell, D. (2012) "Personality and Patterns

of Facebook Usage", Proceedings of the 4th Annual ACM Web Science Conference, Evanston,
Illinois New York, NY, USA: ACM. p24-32

2. Baden, R., Bender, A., Spring, N., Bhattacharjee, B. & Starin, D. (2009) 'Persona: An Online
Social Network with User-defined Privacy', SIGCOMM Comput.Commun.Rev., 39 (4), pp.135-
146.

3. Banville, C. and Landry, M. (1989) Can the field of MIS be disciplined? Communications of the
ACM, 32, pp. 48-61

4. Benevenuto, F., Rodrigues, T., Cha, M. & Almeida, V. (2009) "Characterizing User Behavior in
Online Social Networks", Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement Conference, Chicago, Illinois, USA New York, NY, USA: ACM. p49-62.

5. Best, J.W. (1970) Research in Education, 2nd Edition, Australia: Englewood Cliffs, N.J. :
Prentice Hall

6. Beye M., Jeckmans, A.J.P., Zekeriya, E., Tang, Q., Lagendijk, R.L. & Tang, Q., (2012) 'Privacy
in Online Social Networks', In A. Abraham (Ed), Computational Social Networks: Security and
Privacy, pp. 87-113. London: Springer

7. Bielenberg, A., Helm, L., Gentilucci, A., Stefanescu, D. & Zhang, H. (2012) "The growth of
Diaspora - A decentralized online social network in the wild", IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), March. p13-18.

8. Blum, F. (1955) Action Research – a scientific approach? Philosophy of Science, 22, pp. 1-7.

9. Borkowsky, F.T. (1970) The relationship of work quality in undergraduate music curricula to
effectiveness in instrumental music teaching in the public schools. Journal of Experimental
Education, 39, pp. 14–19.

10. Boyd, D.M. & Ellison, N.B. (2007) 'Social Network Sites: Definition, History, and Scholarship',
Journal of Computer-Mediated Communication, 13 (1), pp. 210-230.

11. Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, BCP 14, RFC 2119,
March 1997. Available at: http://www.ietf.org/rfc/rfc2119.txt (Accessed: 20 June 2016).

12. Braun, V., Clarke, V. (2013) Successful Qualitative Research: A Practical Guide for Beginners.
London: Sage Publications

13. Buchegger, S. & Datta, A. (2009) "A Case for P2P Infrastructure for Social Networks -
Opportunities & Challenges", Proceedings of the Sixth International Conference on Wireless
on-Demand Network Systems and Services, Snowbird, Utah, USA Piscataway, NJ, USA: IEEE
Press. p149-156.

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt

 64

14. Buchegger, S., Schioberg, D., Vu, L. & Datta, A. (2009) "PeerSoN: P2P Social Networking:
Early Experiences and Insights", Proceedings of the Second ACM EuroSys Workshop on
Social Network Systems, Nuremberg, Germany New York, NY, USA: ACM. p46-52.

15. Campbell, D.T., Stanley, J.C. (1996) Experimental and Quasi-experimental Designs for
Research. USA: Houghton Mifflin Company

16. Cohen, L., Manion, L., Morrison, K. (2000) Research Methods in Education, 5th Edition, London:
RoutkedgeFalmer

17. Corbin, J.M., Strauss, A. (2008), Basics of Qualitative Research Techniques and Procedures
for Developing Grounded Theory. 3rd Edition, California: Sage Publications

18. Creswell J.W. (2013) Research Design: Qualitative, Quantitative and Mixed Methods
Approaches, 4th Edition, California: Sage Publications, Inc.

19. Cutillo, L.A., Molva, R. & Strufe, T. (2009) 'Safebook: A privacy-preserving online social network
leveraging on real-life trust', IEEE Communications Magazine, 47 (12), pp.94-101.

20. Cutillo, L.A., Molva, R. & Önen, M. (2011) "Safebook: A distributed privacy preserving Online
Social Network", IEEE International Symposium on World of Wireless, Mobile and Multimedia
Networks (WoWMoM), June. p1-3.

21. Datta, A., Buchegger, S., Vu, L., Strufe, T., Rzadca, K. (2010). 'Decentralized Online Social
Networks' in Furht, B. (ed) Handbook of Social Network Technologies and Applications.
Springer: US. Pp.349-378.

22. Denzin, N. (1978), The Research Act: A Theoretical Introduction to Sociological Methods, New
York: McGraw-Hill

23. Doub, B. (2016), Community Memory: Precedents in Social Media and Movements. Available
at: http://goo.gl/vnKUop (Accessed: 5 April 2016).

24. Dwyer, C. (2011) 'Privacy in the Age of Google and Facebook', IEEE Technology and Society
Magazine, 30 (3), pp.58-63.

25. Facebook. (2016), Company Info. Available at: http://newsroom.fb.com/company-info/
(Accessed: 10 April 2016).

26. Falahi, K.A., Atif, Y. & Elnaffar, S. (2010) "Social Networks: Challenges and New
Opportunities", Green Computing and Communications (GreenCom), 2010 IEEE/ACM
International Conference on Cyber, Physical and Social Computing (CPSCom), p804-808.

27. Fu, S., He, L., Liao, X., Huang, C., Li, K., Chang, C. & Gao, B. (2014) "Modelling and Predicting
the Data Availability in Decentralized Online Social Networks", Web Services (ICWS), 2014
IEEE International Conference on, June. p161-168.

28. Fu, S., He, L., Liao, X., Huang, C., Li, K., Chang, C. & Gao, B. (2014) "Cadros: The Cloud-
Assisted Data Replication in Decentralized Online Social Networks", Services Computing
(SCC), 2014 IEEE International Conference on, June. p43-50.

29. Gall, M.D., Gall, J.P., Borg, W.R. (2006) Educational Research: An Introduction, 8th Edition,
Pearson.

30. Gilbert, E., and Karahalios, K., (2009), ‘Predicting tie strength with social media’, Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, 2009, ACM, Boston: MA
(USA), p211-220

31. Glaser, B. G., and Strauss, A. (1967) The discovery of Grounded Theory: Strategies for
qualitative research. Chicago: Aldine

http://goo.gl/vnKUop
http://newsroom.fb.com/company-info/

 65

32. Gratton, C., Jones, I. (2003) Research Methods for Sports Studies, London: Routledge

33. Greschbach, B., Kreitz, G. & Buchegger, S. (2012) "The devil is in the metadata - New privacy

challenges in Decentralised Online Social Networks", IEEE International Conference on
Pervasive Computing and Communications Workshops (PERCOM Workshops), March. p333-
339.

34. Gracia-Tinedo, R., S'nchez-Artigas, M. & García-López, P. (2012) "F2Box: Cloudifying F2F
Storage Systems with High Availability Correlation", Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, June. p123-130.

35. Gyarmati, L. & Trinh, T.A. (2010) “Measuring User Behavior in Online Social
Networks”, Network Magazine of Global Internet working., 24 (5), pp.26-3

36. Hales, D. (2004) "From selfish nodes to cooperative networks - emergent link-based incentives
in peer-to-peer networks", Peer-to-Peer Computing, 2004. Proceedings. Proceedings. Fourth
International Conference on, Aug. p151-158.

37. Hopkins, H.W. (2000) Qualitative Research Design. Sportsscience, 4 (1) pp. 12-21.

38. Hui, P., Crowcroft, J. & Yoneki, E. (2011) 'BUBBLE Rap: Social-Based Forwarding in Delay-
Tolerant Networks', IEEE Transactions on Mobile Computing, 10 (11), pp.1576-1589.

39. Jahid, S., Nilizadeh, S., Mittal, P., Borisov, N. & Kapadia, A. (2012) "DECENT: A decentralized
architecture for enforcing privacy in online social networks", IEEE International Conference on
Pervasive Computing and Communications Workshops (PERCOM Workshops), March. p326-
332.

40. Jansen, W.A. (2011) "Cloud Hooks: Security and Privacy Issues in Cloud Computing", 44th
Hawaii International Conference on System Sciences (HICSS), Jan. p1-10.

41. Junco, R. (2012) "Too Much Face and Not Enough Books: The Relationship Between Multiple
Indices of Facebook Use and Academic Performance", Computer Human Behaviour., 28 (1),
pp.187-198

42. Kerlinger, F.N. (1970) Foundations of Behavioural Research. New York: Holt, Rinehart &
Winston

43. Koll, D., Li, J. & Fu, X. (2014) "SOUP: An Online Social Network by the People, for the People",
Proceedings of the 15th International Middleware Conference, Bordeaux, France New York,
NY, USA: ACM. p193-204.

44. Krishnamurthy, B. & Wills, C.E. (2009) "On the Leakage of Personally Identifiable Information
via Online Social Networks", Proceedings of the 2Nd ACM Workshop on Online Social
Networks, Barcelona, Spain. New York, NY, USA: ACM. p7-12.

45. Kuhne, G., And Quigley, B. A. (1997) Understanding and using action research in practice
setting. New Directions for Adult & Continuing Education, 1997(73) pp. 23-40

46. Lam, I., Chen, K. & Chen, L. (2008) "Involuntary Information Leakage in Social Network
Services", Proceedings of the 3rd International Workshop on Security: Advances in Information
and Computer Security, Kagawa, Japan Berlin, Heidelberg: Springer-Verlag. p167-183.

47. Li, J. & Dabek, F. (2006) 'F2F: Reliable storage in open networks', in IPTPS Proceedings of the
5th international workshop on peer-to-peer systems.

48. LinkedIn. 2012. An Update on LinkedIn Member Passwords Compromised. [Online] Available
at: https://goo.gl/1hSaJN (Accessed: 30 May 2016).

https://goo.gl/1hSaJN

 66

49. Liu, D., Shakimov, A., C'aceres, R., Varshavsky, A. & Cox, L.P. (2011) "Confidant: Protecting

OSN Data Without Locking It Up", Proceedings of the 12th ACM/IFIP/USENIX International
Conference on Middleware, Lisbon, Portugal Berlin, Heidelberg: Springer-Verlag. p61-80.

50. Malin, B. (2005) 'Betrayed by my shadow: learning data identity via trail matching', Journal of
Privacy Technology, 2005 pp.20050609001.

51. Manen, J. V. (1979) Reclaiming qualitative methods for organisational research: A preface
Adminstrative Science Quarterly 24(4), 520-526

52. March, S., Smith, G. (1995). Design and Natural Science Research on Information
Technology. Decision Support Systems, 15(4), pp. 251-266

53. Merriam, B.S. (2009), Qualitative research: A Guide to Design and Implementation,
California: Jossey-Bass.

54. Morrison, K. (1994) Planning and Accomplishing School-Centred Evaluation. Bristish Journal
of Educational Studies, 42(4), pp. 417-419

55. Muangngeon, A. & Erjongmanee, S. (2015) "Analysis of facebook activity usage through
network and human perspectives", Knowledge and Smart Technology (KST), 2015 7th
International Conference on, Jan. p13-18.

56. Narendula, R., Papaioannou, T.G. & Aberer, K. (2012) "Towards the Realization of
Decentralized Online Social Networks: An Empirical Study", 2012 32nd International
Conference on Distributed Computing Systems Workshops, June. p155-162.

57. Nilizadeh, S., Jahid, S., Mittal, P., Borisov, N. & Kapadia, A. (2012) "Cachet: A Decentralized
Architecture for Privacy Preserving Social Networking with Caching", Proceedings of the 8th
International Conference on Emerging Networking Experiments and Technologies, Nice,
France New York, NY, USA: ACM. p337-348.

58. Olteanu, A. & Pierre, G. (2012) "Towards Robust and Scalable Peer-to-peer Social Networks",
Proceedings of the Fifth Workshop on Social Network Systems, Bern, Switzerland New York,
NY, USA: ACM. p10:1-10:6.

59. Owen, C.L (1997) Understanding Design Research. Towards an Achievement of Balance,
Journal of the Japanese Society for the Science of Design, 5(2), pp. 36-45

60. Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S. (2008). A Design Science
Research Methodology for Information Systems Research, Journal of Management Information
Systems, 24(3), pp. 45-77.

61. Punch, F. (1998). Introduction to Social Research: Quantitative and Qualitative Approaches.
London: Sage Publications

62. Shahriar, N., Chowdhury, S.R., Sharmin, M., Ahmed, R., Boutaba, R. & Mathieu, B. (2013)
"Ensuring Beta-Availability in P2P Social Networks", IEEE 33rd International Conference on
Distributed Computing Systems Workshops, July. p150-155.

63. Sharma, R. & Datta, A. (2012) "SuperNova: Super-peers based architecture for decentralized
online social networks", 2012 Fourth International Conference on Communication Systems and
Networks (COMSNETS 2012), Jan. p1-10.

64. Shakimov, A., Varshavsky, A., Cox, L.P. & C'aceres, R. (2009) "Privacy, Cost, and Availability
Tradeoffs in Decentralized OSNs", Proceedings of the 2Nd ACM Workshop on Online Social
Networks, Barcelona, Spain New York, NY, USA: ACM. p13-18.

 67

65. Shakimov, A., Lim, H., Cáceres, R., Cox, L.P., Li, K., Liu, D. & Varshavsky, A. (2011) "Vis-a-
Vis: Privacy-preserving online social networking via Virtual Individual Servers", 2011 Third
International Conference on Communication Systems and Networks (COMSNETS 2011), Jan.
p1-10.

66. Sherchan, W., Nepal, S. & Paris, C. (2013) 'A Survey of Trust in Social Networks', ACM
Computer Survey, 45 (4), pp.47:1-47:33.

67. Smith L. M. (1978). An evolving logic of participant observation, educational ethnography, and
other case studies. Review of research in education, 6, pp. 316 -377.

68. Sommerville, I. (2015) Software Engineering, 10th ed. Edinburgh: Pearson

69. Spector, P.E. (1993) Research designs. In M.L. LewisBeck (ed.) Experimental Design and
Methods. International Handbook of Quantitative Applications in the Social Sciences, 3,
London: Sage Publications, pp. 1–74.

70. Stake, R. E. (2005) Qualitative case studies. The Sage Handook of qualitative research, 3rd
Edition, pp. 443-466. Thousands Oaks, California: Sage

71. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F. & Balakrishnan, H. (2001) "Chord: A scalable
peer-to-peer lookup service for internet applications", Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications, San
Diego, California, USA New York, NY, USA: ACM. p149-160.

72. Sun, Y., Liu, F., Li, B. & Zhang, X. (2009) "FS2You: Peer-Assisted Semi-Persistent Online
Storage at a Large Scale", IEEE INFOCOM 2009, April. p873-881.

73. Susman, G., Evered, R (1978) An assessment of the scientific merits of action research,
Administrative Science Quarterly 23, pp. 582-603

74. Tatjana, T., Elena, Aristodemou, E., Georgina, S., Yiannis, L. & Aysu, A. (2010) 'Disclosure of
personal and contact information by young people in social networking sites: An analysis using
Facebook profiles as an example', International Journal of Media & Cultural Politics, 6 (1),
pp.81-101.

75. Tegeler, F., Koll, D. & Fu, X. (2011) "Gemstone: Empowering Decentralized Social Networking
with High Data Availability", Global Telecommunications Conference (GLOBECOM 2011),
2011 IEEE, Dec. p1-6.

76. Timm, C., Perez, R., (2010). Seven Deadliest Social Network Attacks. Syngress

77. Varga, A. & Hornig, Rudolf. 2008, ‘An overview of the OMNET++ simulation environment’
Simutools’08 Proceedings of the 1st international conference on Simulation tools and
techniques for communications, networks and systems & workshops, ACM, Marseille, France

78. Vorakulpipat, C., Marks, A., Rezgui, Y. & Siwamogsatham, S. (2011) "Security and privacy
issues in Social Networking sites from user's viewpoint", 2011 Proceedings of PICMET '11:
Technology Management in the Energy Smart World (PICMET), July. p1-4.

79. Viswanath, B., Post, A., Gummadi, K.P. & Mislove, A. (2010) "An Analysis of Social Network-
based Sybil Defenses", Proceedings of the ACM SIGCOMM 2010 Conference, New Delhi,
India New York, NY, USA: ACM. p363-374.

80. Wang, Z. (2011) "Security and Privacy Issues within the Cloud Computing", International
Conference on Computational and Information Sciences (ICCIS), Oct. p175-178.

81. Yeung, C.A., Liccardi, I., Lu, K., Seneviratne, O. & Berners-lee, T. (2009) "Decentralization:
The future of online social networking", In W3C Workshop on the Future of Social Networking
Position Papers.

 68

82. Yin, R. K. (2014) Case Study research: Design and methods, 5th Edition. Thousands Oaks,

California: Sage Publications

83. Zamzami, I.F., Olowolayemo, A., Bakare, K.K. & Kindy, D.A. (2010) "Sensitivity to online
privacy in social networking sites", International Conference on Information and
Communication Technology for the Muslim World (ICT4M), pB-21-B-26.

84. Zhang, G., Yang, Y., Zhang, X., Liu, C. & Chen, J. (2012) "Key Research Issues for Privacy
Protection and Preservation in Cloud Computing", Second International Conference on Cloud
and Green Computing (CGC), Nov. p47-54.

 69

Appendix 1 – Availability Algorithm

 70

Appendix 2 – Update Propagation Delay Algorithm

 71

 72

Appendix 3 – Replication Degree Algorithm

 73

 74

Appendix 4 – Availability on Demand Algorithm

 75

Appendix 5 – Code: Availability, Update Propagation
Delay, Replication Degree
package com.adilhassan.mphil.availability;

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.SplittableRandom;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
import org.joda.time.DateTime;
import org.joda.time.Duration;
import org.joda.time.Interval;

public class App {

 private static int year = 2015;
 private static int day = 1;
 private static int month = 1;

 //Sample Model
 private static int numberOfNodes = 500;
 private static int[] nodes = {320, 80, 50, 30, 15, 5};
 private static int[][] sessionsDistribution = {{10, 5, 5}, {1, 2, 2, 10}, {10,
10, 5}, {20, 20, 5}, {25},{10, 10, 10, 10}};
 private static int[][] sessionsDuration = {{2, 3, 5}, {5, 5, 5, 5}, {5, 5, 5},
{5, 5, 10}, {20}, {30, 30, 15, 15}};
 private static int[][] sessionsLowerBound = {{0, 6, 18},{13, 15, 16, 17},{0, 0,
0},{0, 0, 0},{0},{0, 0, 0, 0}};
 private static int[][] sessionsUpperBound = {{3, 2, 2},{1, 1, 1, 2},{24, 24,
24},{24, 24, 24},{24},{24, 24, 24, 24}};

 private static int[] nodesAvailabilityInMinutes = new int[numberOfNodes];
 private static ArrayList<Node> node = new ArrayList<>(numberOfNodes);
 private static ArrayList<Node> duplicateNode = new ArrayList<>(numberOfNodes);
 private static SplittableRandom random = new SplittableRandom();

 public static void main(String[] args) throws FileNotFoundException
 {
 System.setOut(new PrintStream(new FileOutputStream("MNoRR1.txt")));

 int[] IndicesOfMostOverlappingNodes = IntStream.range(0, nodes.length)
 .boxed().sorted((i, j) -> nodes[i] - nodes[j])
 .mapToInt(ele -> ele).toArray();
 int onlineDuration = 0;
 for(int i =0; i < IndicesOfMostOverlappingNodes.length; i++)
 {
 for(int j=0;
j<sessionsDistribution[IndicesOfMostOverlappingNodes[i]].length; j++)
 {
 onlineDuration = onlineDuration +
sessionsDistribution[IndicesOfMostOverlappingNodes[i]][j]*sessionsDuration[IndicesOfMo
stOverlappingNodes[i]][j];
 }
 System.out.println("["+nodes[IndicesOfMostOverlappingNodes[i]] + ", " +
onlineDuration+"," + "\"Number of replicas: " +
nodes[IndicesOfMostOverlappingNodes[i]]+ "\\nTime: "+ onlineDuration + " mins each\""
+ "],");
 onlineDuration = 0;
 }
 System.out.println();
 int nodeCounter = 0;

 for(int i=0; i<nodes.length; i++)
 {
 for(int j =0; j<nodes[i]; j++)
 {
 node.add(new Node(nodeCounter));
 duplicateNode.add(new Node(nodeCounter));

 76

 nodeCounter++;
 }
 }

 int hour = 0;
 int minute = 0;
 int sessionNumber = 0;
 nodeCounter = 0;
 Duration duration = null;
 //Generating data from the Model
 for(int x=0; x<nodes.length; x++)
 {
 for(int y = 0; y<nodes[x]; y++)
 {
 for(int z=0; z<sessionsDistribution[x].length; z++)
 {

 node.get(nodeCounter).setEachSessionDuration(sessionsDuration[x][z]);

duplicateNode.get(nodeCounter).setEachSessionDuration(sessionsDuration[x][z]);

 node.get(nodeCounter).setLowerBound(sessionsLowerBound[x][z]);
 node.get(nodeCounter).setUpperBound(sessionsUpperBound[x][z]);

duplicateNode.get(nodeCounter).setLowerBound(sessionsLowerBound[x][z]);

duplicateNode.get(nodeCounter).setUpperBound(sessionsUpperBound[x][z]);

 for(int l=0; l<sessionsDistribution[x][z]; l++)
 {
 hour = (random.nextInt(sessionsUpperBound[x][z]) +
sessionsLowerBound[x][z]);
 minute = random.nextInt(60);

 node.get(nodeCounter).setStartTime(year, month, day, hour,
minute, 0, 0);
 duplicateNode.get(nodeCounter).setStartTime(year, month, day,
node.get(nodeCounter).getStartTime().get(sessionNumber).getHourOfDay(),
node.get(nodeCounter).getStartTime().get(sessionNumber).getMinuteOfHour(),
node.get(nodeCounter).getStartTime().get(sessionNumber).getSecondOfMinute(), 0);
 duration = new
Duration(duplicateNode.get(nodeCounter).getStartTime().get(sessionNumber),duplicateNod
e.get(nodeCounter).getEndTime().get(sessionNumber));
 nodesAvailabilityInMinutes[nodeCounter] =
nodesAvailabilityInMinutes[nodeCounter] + (int)duration.getStandardMinutes();
 sessionNumber++;
 }
 }
 sessionNumber=0;

 Collections.sort(node.get(nodeCounter).getStartTime());
 Collections.sort(node.get(nodeCounter).getEndTime());

 Collections.sort(duplicateNode.get(nodeCounter).getStartTime());
 Collections.sort(duplicateNode.get(nodeCounter).getEndTime());

 nodeCounter++;
 }
 }

 //Finding most available nodes
 ArrayList<Integer> highestAvailableNodes = sort(nodesAvailabilityInMinutes);
 ArrayList<Integer> highestAvailableNodesDuplicate = new
ArrayList<Integer>(highestAvailableNodes.size());
 for(int i =0; i<highestAvailableNodes.size(); i++)
 {
 highestAvailableNodesDuplicate.add(highestAvailableNodes.get(i));
 }
 //Update propagation delay - Section 3.3.2 - Appendix 2
 findUpdatePropagationDelay(highestAvailableNodes, duplicateNode);

 for(int j = 0; j<node.size(); j++)
 {
 for(int i=0; i<node.get(j).getStartTime().size(); i++)
 {

 77

 System.out.println("['Replica ID: " + j + "'," +"new Date(" +
node.get(j).getStartTime().get(i).getYear()+"," +
node.get(j).getStartTime().get(i).getMonthOfYear() +"," +
node.get(j).getStartTime().get(i).getDayOfMonth() + "," +
node.get(j).getStartTime().get(i).getHourOfDay()+","+
node.get(j).getStartTime().get(i).getMinuteOfHour() + ",0)," + "new Date(" +
node.get(j).getEndTime().get(i).getYear() +"," +
node.get(j).getEndTime().get(i).getMonthOfYear() +"," +
node.get(j).getEndTime().get(i).getDayOfMonth() + "," +
node.get(j).getEndTime().get(i).getHourOfDay()+","+
node.get(j).getEndTime().get(i).getMinuteOfHour() + ",0)],");

 }
 }

 //Replication degree - Section 3.3.3 - Appendix 3
 //Availability - Section 3.3.1 - Appendix 1
 ArrayList<Integer> sortedHighestAvailableNodes = new
ArrayList<Integer>(numberOfNodes);
 int minimumNumberOfreplicasRequired = 1;
 ArrayList<Integer> chosenReplicas = new ArrayList<Integer>(numberOfNodes);
 ArrayList<Integer> onlineTime = new ArrayList<Integer>(numberOfNodes);
 chosenReplicas.add(highestAvailableNodes.get(0));
 nodesAvailabilityInMinutes = new int[numberOfNodes];
 do{
 nodesAvailabilityInMinutes =
removeOverlappingTimesAndFindHighestAvailableNodes(highestAvailableNodes.get(0),
highestAvailableNodes);
 sortedHighestAvailableNodes = sort(nodesAvailabilityInMinutes);
 highestAvailableNodes = sortedHighestAvailableNodes;

onlineTime.add(nodesAvailabilityInMinutes[sortedHighestAvailableNodes.get(0)]);

if(!sortedHighestAvailableNodes.get(1).equals(sortedHighestAvailableNodes.get(0)))
 {
 chosenReplicas.add(sortedHighestAvailableNodes.get(1));
 minimumNumberOfreplicasRequired++;
 for(int i=0;
i<node.get(sortedHighestAvailableNodes.get(1)).getStartTime().size(); i++)
 {

 if(!node.get(sortedHighestAvailableNodes.get(1)).getStartTime().get(i).equals(
node.get(sortedHighestAvailableNodes.get(1)).getEndTime().get(i)))
 {

 node.get(sortedHighestAvailableNodes.get(0)).getStartTime().add(node.get(sorte
dHighestAvailableNodes.get(1)).getStartTime().get(i));

 node.get(sortedHighestAvailableNodes.get(0)).getEndTime().add(node.get(sortedH
ighestAvailableNodes.get(1)).getEndTime().get(i));
 }
 }
 }

}while(!sortedHighestAvailableNodes.get(1).equals(sortedHighestAvailableNodes.get(0)))
;

 int replicaAvailabilityByhour[] = new int[24];
 int durationLength = 0;
 int startHour = 0;
 int endHour = 0;
 int startHourCounter = 0;
 Interval interval = null;
 for(int i = sortedHighestAvailableNodes.get(0);
i<(sortedHighestAvailableNodes.get(0)+1); i++)
 {
 for(int j=0; j < node.get(i).getStartTime().size(); j++)
 {

 if(!node.get(i).getStartTime().get(j).equals(node.get(i).getEndTime().get(j)))
 System.out.println("['Core " + "node" + "'," + "new Date(" +
node.get(i).getStartTime().get(j).getYear() + "," +
node.get(i).getStartTime().get(j).getMonthOfYear() + "," +
node.get(i).getStartTime().get(j).getDayOfMonth() + "," +
node.get(i).getStartTime().get(j).getHourOfDay() + "," +
node.get(i).getStartTime().get(j).getMinuteOfHour() + ",0)," + "new Date(" +

 78

node.get(i).getEndTime().get(j).getYear() + "," +
node.get(i).getEndTime().get(j).getMonthOfYear() + "," +
node.get(i).getEndTime().get(j).getDayOfMonth() + "," +
node.get(i).getEndTime().get(j).getHourOfDay() + "," +
node.get(i).getEndTime().get(j).getMinuteOfHour() + ",0)],");

 if(node.get(sortedHighestAvailableNodes.get(0)).getEndTime().get(j).getDayOfMo
nth()== (day+1)
&&node.get(sortedHighestAvailableNodes.get(0)).getEndTime().get(j).getHourOfDay()==0)
 {

 node.get(sortedHighestAvailableNodes.get(0)).getEndTime().set(j, new
DateTime(year, month, day, 23, 59, 59, 0));
 }
 }
 }

 for(int j = sortedHighestAvailableNodes.get(0);
j<(int)(sortedHighestAvailableNodes.get(0)+1); j++)
 {
 startHourCounter = 0;
 for(int i=0; i<node.get(j).getStartTime().size(); i++)
 {
 startHour = node.get(j).getStartTime().get(i).getHourOfDay();
 startHourCounter = startHour;
 endHour = node.get(j).getEndTime().get(i).getHourOfDay();
 for (int ju = 0; ju <= (endHour - startHour); ju++)
 {
 if(ju == 0 && ((endHour - startHour)!=0))
 {
 interval = new Interval(node.get(j).getStartTime().get(i),
new DateTime(2015, 1, 1, (startHourCounter + 1), 0, 0, 0));
 durationLength = (int)
interval.toDuration().getStandardMinutes();
 replicaAvailabilityByhour[startHourCounter] =
replicaAvailabilityByhour[startHourCounter] + durationLength;
 startHourCounter++;
 }
 else if(ju != (endHour - startHour))
 {
 interval = new Interval(new DateTime(2015, 1, 1,
(startHourCounter), 0, 0, 0), new DateTime(2015, 1, 1, (startHourCounter + 1), 0, 0,
0));
 durationLength = (int)
interval.toDuration().getStandardMinutes();
 replicaAvailabilityByhour[startHourCounter] =
replicaAvailabilityByhour[startHourCounter] + durationLength;
 startHourCounter++;
 }
 else if(ju !=0 && ju == (endHour - startHour))
 {
 interval = new Interval(new DateTime(2015, 1, 1,
(startHourCounter), 0, 0, 0), node.get(j).getEndTime().get(i));
 durationLength = (int)
interval.toDuration().getStandardMinutes();
 if(node.get(j).getEndTime().get(i).getMinuteOfHour()==59)
 {
 durationLength = durationLength + 1;
 }
 replicaAvailabilityByhour[startHourCounter] =
replicaAvailabilityByhour[startHourCounter] + durationLength;
 startHourCounter++;
 }
 else if((endHour - startHour)==0)
 {
 interval = new Interval(node.get(j).getStartTime().get(i),
node.get(j).getEndTime().get(i));
 durationLength = (int)
interval.toDuration().getStandardMinutes();
 if(node.get(j).getEndTime().get(i).getMinuteOfHour()==59 &&
(node.get(j).getEndTime().get(i).getSecondOfMinute()==59))
 {
 durationLength = durationLength + 1;
 }

replicaAvailabilityByhour[node.get(j).getStartTime().get(i).getHourOfDay()] =
replicaAvailabilityByhour[node.get(j).getStartTime().get(i).getHourOfDay()] +

 79

durationLength;
 }
 }
 }
 }
 for(int h=0; h<replicaAvailabilityByhour.length; h++)
 {
 if(h<10)
 {
 System.out.println("[["+ h +", 0, 0]" + "," +
replicaAvailabilityByhour[h]+",\"Time: 0" + h +":00\\nMinutes Online: " +
replicaAvailabilityByhour[h] +"\"],");
 }
 else
 {
 System.out.println("[["+ h +", 0, 0]" + "," +
replicaAvailabilityByhour[h]+",\"Time: " + h +":00\\nMinutes Online: " +
replicaAvailabilityByhour[h] +"\"],");
 }
 }
 System.out.println("Minimum number of replicas required = " +
minimumNumberOfreplicasRequired + " to achieve the same availability as " +
numberOfNodes + " and the list is: " + chosenReplicas);

 ArrayList<Integer> nodesNotChosenAsReplicas = new
ArrayList<Integer>(numberOfNodes+2);
 for(int i=0; i<numberOfNodes; i++)
 {
 if(!chosenReplicas.contains(i))
 {
 nodesNotChosenAsReplicas.add(i);
 }
 }
 System.out.println();
 int counter = 0;
 for (int i = 0; i < numberOfNodes; i++) {
 if(i<onlineTime.size())
 {
 System.out.println("[\t" + (i+1) + "\t,\t" + onlineTime.get(i) + "\t,"
+ "\""+ "Replica: " + (i+1) + "\\n"+ "Replica ID: " + chosenReplicas.get(i) +"\\n"+
"Time: " +onlineTime.get(i) +" mins"+ "\"" + ", null, " + "\""+ "Replica: " + (i+1) +
"\\n"+ "Replica ID: " + chosenReplicas.get(i)+ "\\n"+ "Time: " +onlineTime.get(i) +"
mins" + "\"" + "],");
 }
 else
 {
 System.out.println("[\t" + (i+1) + "\t,\t" +
onlineTime.get(onlineTime.size()-1) + "\t," + "\""+ "Replica: " + (i+1) + "\\n"+
"Replica ID: " + nodesNotChosenAsReplicas.get(counter) + "\\n"+ "Time: " +
onlineTime.get(onlineTime.size()-1) +" mins" + "\"" + ", "
+onlineTime.get(onlineTime.size()-1) + ", " + "\""+ "Replica: " + (i+1) +
"\\n"+"Replica ID: " + nodesNotChosenAsReplicas.get(counter) + "\\n"+ "Time: "
+onlineTime.get(onlineTime.size()-1) +" mins" + "\"" + "],");
 counter ++;
 }
 }
 System.out.println();

 double onlineMinutes = onlineTime.get(onlineTime.size()-1);
 double offlineMinutes = 1440 - onlineMinutes;
 double Onlinehours = onlineMinutes/60;
 String onlineHoursAndMinutesString = "" + Onlinehours;
 int onlineDecimalIndex = onlineHoursAndMinutesString.indexOf(".");
 String onlineHourString = onlineHoursAndMinutesString.substring(0,
onlineDecimalIndex);
 String onlineMinuteString =
onlineHoursAndMinutesString.substring(onlineDecimalIndex+1, onlineDecimalIndex+2);
 double offlineHours = offlineMinutes/60;
 String offlineHoursAndMinutesString = "" + offlineHours;
 int offlineDecimalIndex = offlineHoursAndMinutesString.indexOf(".");
 String offlineHourString = offlineHoursAndMinutesString.substring(0,
offlineDecimalIndex);
 String offlineMinuteString =
offlineHoursAndMinutesString.substring(offlineDecimalIndex+1, offlineDecimalIndex+2);
 System.out.println("['Status', 'Time (hh:mm)'],\n"
 + "['Online', " +
((onlineMinutes/60)>24?24:Integer.parseInt(onlineHourString)+"."+onlineMinuteString)+"

 80

],\n"
 + "['Offline', " +
Integer.parseInt(offlineHourString)+"."+offlineMinuteString+"]");
 }
 public static int[] removeOverlappingTimesAndFindHighestAvailableNodes(int
mostAvailableNode, ArrayList<Integer> nodes)
 {
 int nodeCounter = 1;
 int secondMostAvailableNode = nodes.get(nodeCounter);
 DateTime secondMostAvailableNodeEndTime = null;
 DateTime secondMostAvailableNodeStartTime = null;
 Interval mostAvailableNodeInterval = null;
 Interval secondMostAvailableNodeInterval = null;
 int[] nodesAvailabilityInMinutes = new int[numberOfNodes];
 Interval interval = null;

 Collections.sort(node.get(mostAvailableNode).getStartTime());
 Collections.sort(node.get(mostAvailableNode).getEndTime());

 do
 {
 if(secondMostAvailableNode!=mostAvailableNode)
 for(int i=0; i<node.get(mostAvailableNode).getStartTime().size(); i++)
 {
 for(int j=0;
j<node.get(secondMostAvailableNode).getStartTime().size(); j++)
 {
 mostAvailableNodeInterval = new
Interval(node.get(mostAvailableNode).getStartTime().get(i),
node.get(mostAvailableNode).getEndTime().get(i));
 secondMostAvailableNodeInterval = new
Interval(node.get(secondMostAvailableNode).getStartTime().get(j),
node.get(secondMostAvailableNode).getEndTime().get(j));

if(mostAvailableNodeInterval.overlaps(secondMostAvailableNodeInterval))
 {

 if(node.get(mostAvailableNode).getStartTime().get(i).compareTo(node.get(second
MostAvailableNode).getStartTime().get(j))>0 &&
node.get(mostAvailableNode).getEndTime().get(i).compareTo(node.get(secondMostAvailable
Node).getEndTime().get(j))>0)
 {

 node.get(secondMostAvailableNode).getStartTime().set(j,
node.get(secondMostAvailableNode).getStartTime().get(j));

 node.get(secondMostAvailableNode).getEndTime().set(j,
node.get(mostAvailableNode).getStartTime().get(i));
 }
 else
if(node.get(mostAvailableNode).getStartTime().get(i).compareTo(node.get(secondMostAvai
lableNode).getStartTime().get(j))<0 &&
node.get(mostAvailableNode).getEndTime().get(i).compareTo(node.get(secondMostAvailable
Node).getEndTime().get(j))>0)
 {

 node.get(secondMostAvailableNode).getStartTime().set(j, new DateTime(year,
month, day, 0, 0, 0, 0));

 node.get(secondMostAvailableNode).getEndTime().set(j, new DateTime(year,
month, day, 0, 0, 0, 0));
 }
 else
if(node.get(mostAvailableNode).getStartTime().get(i).compareTo(node.get(secondMostAvai
lableNode).getStartTime().get(j))<0 &&
node.get(mostAvailableNode).getEndTime().get(i).compareTo(node.get(secondMostAvailable
Node).getEndTime().get(j))<0)
 {

 node.get(secondMostAvailableNode).getStartTime().set(j,
node.get(mostAvailableNode).getEndTime().get(i));

 node.get(secondMostAvailableNode).getEndTime().set(j,
node.get(secondMostAvailableNode).getEndTime().get(j));
 }
 else
if(node.get(mostAvailableNode).getStartTime().get(i).compareTo(node.get(secondMostAvai

 81

lableNode).getStartTime().get(j))==0 &&
node.get(mostAvailableNode).getEndTime().get(i).compareTo(node.get(secondMostAvailable
Node).getEndTime().get(j))>0)
 {

 node.get(secondMostAvailableNode).getStartTime().set(j, new DateTime(year,
month, day, 0, 0, 0, 0));

 node.get(secondMostAvailableNode).getEndTime().set(j, new DateTime(year,
month, day, 0, 0, 0, 0));
 }
 else
if(node.get(mostAvailableNode).getStartTime().get(i).compareTo(node.get(secondMostAvai
lableNode).getStartTime().get(j))==0 &&
node.get(mostAvailableNode).getEndTime().get(i).compareTo(node.get(secondMostAvailable
Node).getEndTime().get(j))<0)
 {

 node.get(secondMostAvailableNode).getStartTime().set(j,
node.get(mostAvailableNode).getEndTime().get(i));

 node.get(secondMostAvailableNode).getEndTime().set(j,
node.get(secondMostAvailableNode).getEndTime().get(j));

 Collections.sort(node.get(secondMostAvailableNode).getStartTime());

Collections.sort(node.get(secondMostAvailableNode).getEndTime());
 }
 else
if(node.get(mostAvailableNode).getStartTime().get(i).compareTo(node.get(secondMostAvai
lableNode).getStartTime().get(j))==0 &&
node.get(mostAvailableNode).getEndTime().get(i).compareTo(node.get(secondMostAvailable
Node).getEndTime().get(j))==0)
 {

 node.get(secondMostAvailableNode).getStartTime().set(j, new DateTime(year,
month, day, 0, 0, 0, 0));

 node.get(secondMostAvailableNode).getEndTime().set(j, new DateTime(year,
month, day, 0, 0, 0, 0));
 }
 else
if(node.get(mostAvailableNode).getStartTime().get(i).compareTo(node.get(secondMostAvai
lableNode).getStartTime().get(j))>0 &&
node.get(mostAvailableNode).getEndTime().get(i).compareTo(node.get(secondMostAvailable
Node).getEndTime().get(j))==0)
 {

 node.get(secondMostAvailableNode).getStartTime().set(j,
node.get(secondMostAvailableNode).getStartTime().get(j));

 node.get(secondMostAvailableNode).getEndTime().set(j,
node.get(mostAvailableNode).getStartTime().get(i));
 }
 else
if(node.get(mostAvailableNode).getStartTime().get(i).compareTo(node.get(secondMostAvai
lableNode).getStartTime().get(j))<0 &&
node.get(mostAvailableNode).getEndTime().get(i).compareTo(node.get(secondMostAvailable
Node).getEndTime().get(j))==0)
 {

 node.get(secondMostAvailableNode).getStartTime().set(j, new DateTime(year,
month, day, 0, 0, 0, 0));

 node.get(secondMostAvailableNode).getEndTime().set(j, new DateTime(year,
month, day, 0, 0, 0, 0));
 }
 else
if(node.get(mostAvailableNode).getStartTime().get(i).compareTo(node.get(secondMostAvai
lableNode).getStartTime().get(j))>0 &&
node.get(mostAvailableNode).getEndTime().get(i).compareTo(node.get(secondMostAvailable
Node).getEndTime().get(j))<0)
 {
 secondMostAvailableNodeEndTime =
node.get(secondMostAvailableNode).getEndTime().get(j);
 secondMostAvailableNodeStartTime
= node.get(secondMostAvailableNode).getStartTime().get(j);

 82

 node.get(secondMostAvailableNode).getStartTime().set(j, new DateTime(year,
month, day, 0, 0, 0, 0));

 node.get(secondMostAvailableNode).getEndTime().set(j, new DateTime(year,
month, day, 0, 0, 0, 0));

 node.get(secondMostAvailableNode).getStartTime().set(j,
secondMostAvailableNodeStartTime);

 node.get(secondMostAvailableNode).getEndTime().set(j,
node.get(mostAvailableNode).getStartTime().get(i));

 node.get(secondMostAvailableNode).getStartTime().add(node.get(mostAvailableNod
e).getEndTime().get(i));

 node.get(secondMostAvailableNode).getEndTime().add(secondMostAvailableNodeEndT
ime);
 }
 }

Collections.sort(node.get(secondMostAvailableNode).getStartTime());
 Collections.sort(node.get(secondMostAvailableNode).getEndTime());
 }
 }
 nodeCounter++;
 if(nodeCounter<nodes.size())
 {
 secondMostAvailableNode = nodes.get(nodeCounter);
 }
 }while(nodeCounter<nodes.size());

 for(int i=0; i<numberOfNodes;i++)
 {
 for(int j=0; j<node.get(i).getStartTime().size(); j++)
 {
 interval = new
Interval(node.get(i).getStartTime().get(j),node.get(i).getEndTime().get(j));
 nodesAvailabilityInMinutes[i] = nodesAvailabilityInMinutes[i] +
(int)interval.toDuration().getStandardMinutes();
 }
 }
 return nodesAvailabilityInMinutes;
 }

 public static ArrayList<Integer> sort(int[] nodesAvailabilityInMinutes)
 {
 ArrayList<Integer> sortedHighestAvailableNodes = new
ArrayList<Integer>(numberOfNodes);

 int nodeId = 0;
 for(int i=0; i<numberOfNodes; i++)
 {
 int large = 0;
 for(int j=0; j<numberOfNodes; j++)
 {
 if(nodesAvailabilityInMinutes[j]>large &&
!sortedHighestAvailableNodes.contains(j))
 {
 large =nodesAvailabilityInMinutes[j];
 nodeId = j;

 }
 }
 sortedHighestAvailableNodes.add(nodeId);
 }
 return sortedHighestAvailableNodes;
 }

 //Update propagation delay - Section 3.3.2 - Appendix 2
 public static void findUpdatePropagationDelay(ArrayList<Integer>
highestAvailableNodesDuplicate , ArrayList<Node> node)
 {
 ArrayList<DateTime> replicaAvailabilityTimeLineStartTime = null;

 83

 ArrayList<DateTime> replicaAvailabilityTimeLineEndTime = null;
 Interval replicaAvailabilityTimeLineInterval = null;
 Interval nodeInterval = null;
 DateTime startTime = null;
 DateTime endTime = null;
 DateTime replicaReceivedStartTime = null;
 DateTime replicaReceivedEndTime = null;
 DateTime replicaReceivedTimeStamp = null;
 ArrayList<Integer> nodesReceivedUpdatedReplica = new
ArrayList<>(numberOfNodes);
 int numberOfNodesReceivedUpdatedReplica = 0;
 double[] nodesReceivedUpdatedReplicaByHour = new double[24];

 node.get(highestAvailableNodesDuplicate.get(0)).setUpdatedReplica(true);

node.get(highestAvailableNodesDuplicate.get(0)).setUpdatedReplicaReceivedTimeStamp(nod
e.get(highestAvailableNodesDuplicate.get(0)).getStartTime().get(0));

 System.out.println("['Time', ''],");
 replicaAvailabilityTimeLineStartTime =
node.get(highestAvailableNodesDuplicate.get(0)).getStartTime();
 replicaAvailabilityTimeLineEndTime =
node.get(highestAvailableNodesDuplicate.get(0)).getEndTime();
 Collections.sort(replicaAvailabilityTimeLineStartTime);
 Collections.sort(replicaAvailabilityTimeLineEndTime);
 nodesReceivedUpdatedReplica.add(highestAvailableNodesDuplicate.get(0));

 for(int i=0; i<replicaAvailabilityTimeLineStartTime.size(); i++)
 {
 Collections.sort(replicaAvailabilityTimeLineStartTime);
 Collections.sort(replicaAvailabilityTimeLineEndTime);

 startTime = replicaAvailabilityTimeLineStartTime.get(i);
 endTime = replicaAvailabilityTimeLineEndTime.get(i);

 for(int j=0; j<node.size(); j++)
 {

 if(!(nodesReceivedUpdatedReplica.contains(j)))
 for(int k=0; k<node.get(j).getStartTime().size(); k++)
 {
 replicaAvailabilityTimeLineInterval = new Interval(startTime,
endTime);
 nodeInterval = new Interval(node.get(j).getStartTime().get(k),
node.get(j).getEndTime().get(k));
 if(replicaAvailabilityTimeLineInterval.overlaps(nodeInterval))
 {

 if(node.get(j).getStartTime().get(k).compareTo(startTime)>0 &&
(node.get(j).getEndTime().get(k).compareTo(endTime)>0))
 {
 replicaReceivedStartTime =
endTime;
 replicaReceivedEndTime =
node.get(j).getEndTime().get(k);

 replicaAvailabilityTimeLineStartTime.add(replicaReceivedStartTime);

 replicaAvailabilityTimeLineEndTime.add(replicaReceivedEndTime);

 nodesReceivedUpdatedReplica.add(j);
 replicaReceivedTimeStamp =
new DateTime(node.get(j).getStartTime().get(k));

 if(node.get(j).getUpdatedReplicaReceivedTimeStamp()==null)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 else
if(replicaReceivedTimeStamp.compareTo(node.get(j).getUpdatedReplicaReceivedTimeStamp()
)<0)
 {

 84

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 }
 else
if(node.get(j).getStartTime().get(k).compareTo(startTime)>0 &&
(node.get(j).getEndTime().get(k).compareTo(endTime)<0))
 {

 nodesReceivedUpdatedReplica.add(j);
 replicaReceivedTimeStamp =
new DateTime(node.get(j).getStartTime().get(k));

 if(node.get(j).getUpdatedReplicaReceivedTimeStamp()==null)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 else
if(replicaReceivedTimeStamp.compareTo(node.get(j).getUpdatedReplicaReceivedTimeStamp()
)<0)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 }
 else
if(node.get(j).getStartTime().get(k).compareTo(startTime)>0 &&
(node.get(j).getEndTime().get(k).compareTo(endTime)==0))
 {

 nodesReceivedUpdatedReplica.add(j);
 replicaReceivedTimeStamp =
new DateTime(node.get(j).getStartTime().get(k));

 if(node.get(j).getUpdatedReplicaReceivedTimeStamp()==null)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 else
if(replicaReceivedTimeStamp.compareTo(node.get(j).getUpdatedReplicaReceivedTimeStamp()
)<0)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 }
 else
if(startTime.compareTo(node.get(j).getStartTime().get(k))==0 &&
node.get(j).getEndTime().get(k).compareTo(endTime)<0)
 {

 nodesReceivedUpdatedReplica.add(j);
 replicaReceivedTimeStamp =
new DateTime(startTime);

 if(node.get(j).getUpdatedReplicaReceivedTimeStamp()==null)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 else
if(replicaReceivedTimeStamp.compareTo(node.get(j).getUpdatedReplicaReceivedTimeStamp()
)<0)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 }
 else
if(startTime.compareTo(node.get(j).getStartTime().get(k))==0 &&
node.get(j).getEndTime().get(k).compareTo(endTime)>0)
 {
 replicaReceivedStartTime =
endTime;
 replicaReceivedEndTime =

 85

node.get(j).getEndTime().get(k);

 replicaAvailabilityTimeLineStartTime.add(replicaReceivedStartTime);

 replicaAvailabilityTimeLineEndTime.add(replicaReceivedEndTime);

 nodesReceivedUpdatedReplica.add(j);
 replicaReceivedTimeStamp =
new DateTime(node.get(j).getStartTime().get(k));

 if(node.get(j).getUpdatedReplicaReceivedTimeStamp()==null)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 else
if(replicaReceivedTimeStamp.compareTo(node.get(j).getUpdatedReplicaReceivedTimeStamp()
)<0)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 }
 else
if(node.get(j).getStartTime().get(k).compareTo(startTime)==0 &&
node.get(j).getEndTime().get(k).compareTo(endTime)==0)
 {

 nodesReceivedUpdatedReplica.add(j);
 replicaReceivedTimeStamp =
new DateTime(node.get(j).getStartTime().get(k));

 if(node.get(j).getUpdatedReplicaReceivedTimeStamp()==null)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 else
if(replicaReceivedTimeStamp.compareTo(node.get(j).getUpdatedReplicaReceivedTimeStamp()
)<0)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 }
 else
if(node.get(j).getStartTime().get(k).compareTo(startTime)<0 &&
node.get(j).getEndTime().get(k).compareTo(endTime)==0)
 {

 nodesReceivedUpdatedReplica.add(j);
 replicaReceivedTimeStamp =
new DateTime(startTime);

 if(node.get(j).getUpdatedReplicaReceivedTimeStamp()==null)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 else
if(replicaReceivedTimeStamp.compareTo(node.get(j).getUpdatedReplicaReceivedTimeStamp()
)<0)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 }
 else
if(node.get(j).getStartTime().get(k).compareTo(startTime)<0 &&
node.get(j).getEndTime().get(k).compareTo(endTime)<0)
 {

 nodesReceivedUpdatedReplica.add(j);
 replicaReceivedTimeStamp =
new DateTime(startTime);

 86

 if(node.get(j).getUpdatedReplicaReceivedTimeStamp()==null)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 else
if(replicaReceivedTimeStamp.compareTo(node.get(j).getUpdatedReplicaReceivedTimeStamp()
)<0)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 }
 /* 7*/ else
if(node.get(j).getStartTime().get(k).compareTo(startTime)<0 &&
node.get(j).getEndTime().get(k).compareTo(endTime)>0)
 {
 replicaReceivedStartTime =
endTime;
 replicaReceivedEndTime=
node.get(j).getEndTime().get(k);

 replicaAvailabilityTimeLineStartTime.add(replicaReceivedStartTime);

 replicaAvailabilityTimeLineEndTime.add(replicaReceivedEndTime);

 nodesReceivedUpdatedReplica.add(j);
 replicaReceivedTimeStamp =
new DateTime(startTime);

 if(node.get(j).getUpdatedReplicaReceivedTimeStamp()==null)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 else
if(replicaReceivedTimeStamp.compareTo(node.get(j).getUpdatedReplicaReceivedTimeStamp()
)<0)
 {

 node.get(j).setUpdatedReplicaReceivedTimeStamp(replicaReceivedTimeStamp);
 }
 }

 for(int l=(k+1); l<node.get(j).getStartTime().size(); l++)
 {

 replicaAvailabilityTimeLineStartTime.add(node.get(j).getStartTime().get(l));

 replicaAvailabilityTimeLineEndTime.add(node.get(j).getEndTime().get(l));
 }
 }
 }
 }
 }

 for(int i=0; i<node.size(); i++)
 {
 if(node.get(i).getUpdatedReplicaReceivedTimeStamp()!=null)
 {
 numberOfNodesReceivedUpdatedReplica++;
 System.out.println("[new Date(" + year + "," + month + "," + day + ","
+ node.get(i).getUpdatedReplicaReceivedTimeStamp().getHourOfDay()+","+
node.get(i).getUpdatedReplicaReceivedTimeStamp().getMinuteOfHour() + ",0),"+i+"],");

nodesReceivedUpdatedReplicaByHour[node.get(i).getUpdatedReplicaReceivedTimeStamp().get
HourOfDay()] =
nodesReceivedUpdatedReplicaByHour[node.get(i).getUpdatedReplicaReceivedTimeStamp().get
HourOfDay()] + 1;
 }
 }
 System.out.println(numberOfNodesReceivedUpdatedReplica + " nodes received core
node\'s replica.");
 System.out.println();
 double total = 0;

 87

 for(int i=0; i<nodesReceivedUpdatedReplicaByHour.length; i++)
 {
 total = DoubleStream.of(nodesReceivedUpdatedReplicaByHour).sum();

 if(nodesReceivedUpdatedReplicaByHour[i]!=0)
 System.out.println("[\'Hour: \t"+ i +"\t\'" + ",\t" +
nodesReceivedUpdatedReplicaByHour[i]+"\t],");

 }
 if(total < numberOfNodes)
 {
 System.out.println("[\'Number of replicas unable to receive
core node\'s updated profile: " +"\'" + "," + (numberOfNodes-total)+"],");
 }
 }
}

package com.adilhassan.mphil.availability;

import java.util.ArrayList;
import java.util.Random;
import org.joda.time.DateTime;
import org.joda.time.Interval;

public class Node {

 private int id;
 private ArrayList<DateTime> startTime = null;
 private ArrayList<DateTime> endTime = null;
 long uniqueTime = 0;
 private int numberOfSessions;
 private int eachSessionDuration;
 private int lowerBound;
 private int upperBound;
 private DateTime dateTime;
 private boolean updatedReplica = false;
 private DateTime updatedReplicaReceivedTimeStamp;
 private Random random = new Random();
 private boolean geographicalDistribution;

 Node(int id)
 {
 this.id = id;
 startTime = new ArrayList<>(1440);
 endTime = new ArrayList<>(1440);

 }
 public void setLowerBound(int lowerBound)
 {
 this.lowerBound = lowerBound;
 }
 public int getLowerBound()
 {
 return this.lowerBound;
 }
 public void setUpperBound(int upperBound)
 {
 this.upperBound = upperBound;
 }
 public int getUpperBound()
 {
 return this.upperBound;
 }
 public void setGeographicalDistribution(boolean b)
 {
 this.geographicalDistribution = b;
 }
 public boolean getGeographicalDistribution()
 {
 return geographicalDistribution;
 }
 public int getId() {
 return id;
 }
 public void setId(int id) {
 this.id = id;

 88

 }
 public boolean hasUpdatedReplica() {
 return updatedReplica;
 }
 public void setUpdatedReplica(boolean updatedReplica) {
 this.updatedReplica = updatedReplica;
 }
 public DateTime getUpdatedReplicaReceivedTimeStamp() {
 return updatedReplicaReceivedTimeStamp;
 }
 public void setUpdatedReplicaReceivedTimeStamp(DateTime
updatedReplicateReceivedTimeStamp) {
 this.updatedReplicaReceivedTimeStamp =
updatedReplicateReceivedTimeStamp;
 }
 public ArrayList<DateTime> getStartTime() {
 return startTime;
 }
 public int getNumberOfSessions() {
 return numberOfSessions;
 }
 public void setNumberOfSessions(int numberOfSessions) {
 this.numberOfSessions = numberOfSessions;
 }

 public int getEachSessionDuration() {
 return eachSessionDuration;
 }
 public void setEachSessionDuration(int eachSessionDuration) {
 this.eachSessionDuration = eachSessionDuration;
 }

 public void addUniqueTime(long time)
 {
 uniqueTime = uniqueTime + time;
 }
 public void setUniqueTime(long time)
 {
 uniqueTime = time;
 }
 public long getUniqueTime()
 {
 return uniqueTime;
 }
 public ArrayList<DateTime> getEndTime() {
 return endTime;
 }
 public void setStartTime(int year, int month, int date, int hour, int min, int
sec, int milliSecond) {
 dateTime = new DateTime(year, month, date, hour, min, sec,
milliSecond);
 boolean overlappingFlag = false;
 Interval i1 = new
Interval(dateTime,dateTime.plusMinutes(this.eachSessionDuration));
 for(int i =0; i<startTime.size(); i++)
 {
 Interval i2 = new Interval(startTime.get(i), endTime.get(i));
 if(i1.overlaps(i2))
 {
 overlappingFlag = true;
 }
 }
 if(!overlappingFlag)
 {
 if(!(this.startTime.contains(dateTime)))
 {
 this.startTime.add(dateTime);
 setEndTime(year, month, date, hour,
(min+this.eachSessionDuration), sec, milliSecond);
 }
 }
 else
 {
 int sh = random.nextInt(this.upperBound) + this.lowerBound;
 setStartTime(year, month, date, sh, random.nextInt(60), 0, 0);
 }
 }

 89

 public void setEndTime(int year, int month, int date, int hour, int min, int
sec, int milliSecond) {
 if(min<60){
 dateTime = new DateTime(year, month, date, hour, min, sec,
milliSecond);
 }
 else
 {
 int h = min/60;
 min = min % 60;
 hour = hour + h;
 if(hour >= 24)
 {
 dateTime = new DateTime(year, month, (date+1), (0), 0,
sec, milliSecond);
 }
 else
 {
 dateTime = new DateTime(year, month, date, (hour), min,
sec, milliSecond);
 }
 }
 this.endTime.add(dateTime);
 }
}

Appendix 6 – Code: Availability on Demand
package com.adilhassan.mphil.availability.history;

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Random;
import org.joda.time.DateTime;
import org.joda.time.Duration;

public class App {

 //Availability on demand - Section 3.3.4 - Appendix 4
 private static int year = 2015;
 private static int month = 1;
 private static ArrayList<Node> node = new ArrayList<>();
 private static int numberOfDays = 3;
 private static int numberOfNodes = 6;
 private static int[] nodes = {3, 2, 1};
 private static int[][] numberOfSessions = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
 private static int[][] sessionDuration = {{2, 4, 6}, {8, 10, 12}, {14, 16,
18}};
 private static int[][] lowerBound = {{0, 0, 0}, {4, 5, 6}, {7, 10, 13}};
//from - Time
 private static int[][] upperBound = {{24, 24, 24}, {4, 4, 4}, {5, 5, 5}};
//to - Time
 private static Random random = new Random();

 public static void main(String[] args) throws FileNotFoundException
 {
 System.setOut(new PrintStream(new
FileOutputStream("availabilityHistoryThisIsBinIt1001010.txt")));

 int nodeCounter = 0;
 for(int i=0; i<nodes.length; i++)
 {
 for(int j =0; j<nodes[i]; j++)
 {
 node.add(new Node(nodeCounter));
 nodeCounter++;
 }
 }
 generateDaysOfData();

 90

 }

 public static void generateDaysOfData()
 {
 int counter = 0;
 for(int n=0; n<nodes.length; n++)
 {
 for(int i=0; i<nodes[n]; i++)
 {
 for(int day=1; day<=numberOfDays; day++)
 {

node.get(counter).setEachSessionDuration(sessionDuration[n][((day-1))]);

node.get(counter).setNumberOfSessions(numberOfSessions[n][((day-1))]);
 node.get(counter).setLowerBound(lowerBound[n][((day-1))]);
 node.get(counter).setUpperBound(upperBound[n][((day-1))]);

 for(int j=0;
j<node.get(counter).getNumberOfSessions(); j++)
 {
 node.get(counter).setStartTime(year,
month, day, (random.nextInt(upperBound[n][((day-1))])+lowerBound[n][((day-1))]),
random.nextInt(60), 0, 0);
 }

 Collections.sort(node.get(counter).getStartTime());

 Collections.sort(node.get(counter).getEndTime());
 }
 counter++;
 }
 }

 for(int i=0; i<node.size(); i++)
 {
 nodesOnlineTimeByHour(i);
 }
 }

 public static void nodesOnlineTimeByHour(int n)
 {
 int[][] availibility = new int[24][numberOfDays];
 System.out.println();
 int startYear, startMonth, startDay, startHour, startMinute,
startSecond = 0;
 int endYear, endMonth, endDay, endHour, endMinute, endSecond = 0;
 DateTime start, end, start2, end2 = null;
 Duration duration = null;

 for(int i=0; i<node.get(n).getStartTime().size(); i++)
 {
 startYear = node.get(n).getStartTime().get(i).getYear();
 startMonth =
node.get(n).getStartTime().get(i).getMonthOfYear();
 startDay = node.get(n).getStartTime().get(i).getDayOfMonth();
 startHour = node.get(n).getStartTime().get(i).getHourOfDay();
 startMinute =
node.get(n).getStartTime().get(i).getMinuteOfHour();
 startSecond = 0;

 endYear = node.get(n).getEndTime().get(i).getYear();
 endMonth = node.get(n).getEndTime().get(i).getMonthOfYear();
 endDay = node.get(n).getEndTime().get(i).getDayOfMonth();
 endHour = node.get(n).getEndTime().get(i).getHourOfDay();
 endMinute = node.get(n).getEndTime().get(i).getMinuteOfHour();
 endSecond = 0;

 start = new DateTime(startYear, startMonth, startDay,
startHour, startMinute, startSecond);
 end = new DateTime(endYear, endMonth, endDay, endHour,
endMinute, endSecond);

 start2 = new DateTime(startYear, startMonth, startDay,
startHour, 0, startSecond);
 end2 = new DateTime(endYear, endMonth, endDay, endHour, 59,
endSecond);

 91

 if(startHour > endHour)
 {
 while(startHour > endHour && startHour < 24)
 {
 start = new DateTime(startYear, startMonth,
startDay, startHour, startMinute, startSecond);
 end = new DateTime(endYear, endMonth, startDay,
startHour, 59, endSecond);
 duration = new Duration(start, end);
 availibility[startHour][startDay-1] =
availibility[startHour][startDay-1] + ((int)duration.getStandardMinutes()+1);
 startMinute = 0;
 startHour++;
 }
 }
 if(startHour < endHour)
 {
 while(startHour <= endHour)
 {
 if(startHour < endHour)
 {
 start = new DateTime(startYear,
startMonth, startDay, startHour, startMinute, startSecond);
 end = new DateTime(endYear, endMonth,
endDay, startHour, 59, endSecond);
 duration = new Duration(start, end);
 availibility[startHour][startDay-1] =
availibility[startHour][startDay-1] + ((int)duration.getStandardMinutes()+1);
 startMinute = 0;
 }
 else if(startHour == endHour)
 {
 startMinute = 0;
 start = new DateTime(startYear,
startMonth, startDay, startHour, startMinute, startSecond);
 end2 = new DateTime(endYear, endMonth,
endDay, endHour, endMinute, endSecond);
 duration = new Duration(start, end2);
 availibility[startHour][startDay-1] =
availibility[startHour][startDay-1] + (int)duration.getStandardMinutes();
 }
 startHour++;
 }
 }
 else if (startHour == endHour)
 {
 duration = new Duration(start, end);
 availibility[startHour][startDay-1] =
availibility[startHour][startDay-1] + (int)duration.getStandardMinutes();
 }
 }
 print(numberOfDays+1,availibility, n);
 }

 public static void print(int b, int[][] availibility, int node)
 {
 System.out.print("[\'Day\',");
 double totalDailyAvailability=0;
 double maxMinutes=0;
 int hour = 0;
 for(int d=0; d<numberOfDays; d++)
 {
 System.out.print("\t\t\t\'Day "+ (d+1) + "\',");
 }
 System.out.println("\t\t\'Average\'],");

 int sum = 0;
 for(int i=0; i<availibility.length; i++)
 {
 System.out.print("[["+i+", 0, 0],");

 for(int j=0; j<b; j++)
 {
 if(j==b-1)
 {

 92

 System.out.print("\t\t"+sum/(double)numberOfDays);
 totalDailyAvailability = totalDailyAvailability
+ (sum/(double)numberOfDays);
 if(sum/(double)numberOfDays > maxMinutes)
 {
 maxMinutes = sum/(double)numberOfDays;
 hour = i;
 }
 }
 else
 {
 sum = sum + availibility[i][j];

 System.out.print("\t\t\t"+availibility[i][j]+",");
 }
 }
 sum = 0;
 System.out.println("],");
 }
 System.out.println("On average node " + node + "'s daily availability
is " + totalDailyAvailability + " mins");
 System.out.println("Node " + node + "'s maximum availability is during
" + hour + ":00 - " + (hour+1) + ":00 " + "for " + maxMinutes + " mins");
 System.out.println("[{row: " + (hour) + ", column: " + (numberOfDays+1)
+"}]");
 }
}

package com.adilhassan.mphil.availability.history;

import java.util.ArrayList;
import java.util.Random;
import org.joda.time.DateTime;
import org.joda.time.Interval;

public class Node {

 private int id;
 private ArrayList<DateTime> startTime = null;
 private ArrayList<DateTime> endTime = null;
 long uniqueTime = 0;
 private int numberOfSessions;
 private int eachSessionDuration;
 private int lowerBound;
 private int upperBound;
 private DateTime dateTime;
 private boolean updatedReplica = false;
 private DateTime updatedReplicaReceivedTimeStamp;
 private Random random = new Random();
 private boolean geographicalDistribution;

 Node(int id)
 {
 this.id = id;
 startTime = new ArrayList<>(1440);
 endTime = new ArrayList<>(1440);
 }
 public void setLowerBound(int lowerBound)
 {
 this.lowerBound = lowerBound;
 }
 public int getLowerBound()
 {
 return this.lowerBound;
 }
 public void setUpperBound(int upperBound)
 {
 this.upperBound = upperBound;
 }
 public int getUpperBound()
 {
 return this.upperBound;
 }
 public void setGeographicalDistribution(boolean b)
 {
 this.geographicalDistribution = b;
 }

 93

 public boolean getGeographicalDistribution()
 {
 return geographicalDistribution;
 }
 public int getId() {
 return id;
 }
 public void setId(int id) {
 this.id = id;
 }
 public boolean hasUpdatedReplica() {
 return updatedReplica;
 }
 public void setUpdatedReplica(boolean updatedReplica) {
 this.updatedReplica = updatedReplica;
 }
 public DateTime getUpdatedReplicaReceivedTimeStamp() {
 return updatedReplicaReceivedTimeStamp;
 }
 public void setUpdatedReplicaReceivedTimeStamp(DateTime
updatedReplicateReceivedTimeStamp) {
 this.updatedReplicaReceivedTimeStamp =
updatedReplicateReceivedTimeStamp;
 }
 public ArrayList<DateTime> getStartTime() {
 return startTime;
 }
 public int getNumberOfSessions() {
 return numberOfSessions;
 }
 public void setNumberOfSessions(int numberOfSessions) {
 this.numberOfSessions = numberOfSessions;
 }

 public int getEachSessionDuration() {
 return eachSessionDuration;
 }
 public void setEachSessionDuration(int eachSessionDuration) {
 this.eachSessionDuration = eachSessionDuration;
 }

 public void addUniqueTime(long time)
 {
 uniqueTime = uniqueTime + time;
 }
 public void setUniqueTime(long time)
 {
 uniqueTime = time;
 }
 public long getUniqueTime()
 {
 return uniqueTime;
 }
 public ArrayList<DateTime> getEndTime() {
 return endTime;
 }
 public void setStartTime(int year, int month, int date, int hour, int min, int
sec, int milliSecond) {
 dateTime = new DateTime(year, month, date, hour, min, sec,
milliSecond);
 boolean overlappingFlag = false;
 Interval i1 = new
Interval(dateTime,dateTime.plusMinutes(this.eachSessionDuration));
 for(int i =0; i<startTime.size(); i++)
 {
 Interval i2 = new Interval(startTime.get(i), endTime.get(i));
 if(i1.overlaps(i2))
 {
 overlappingFlag = true;
 }
 }
 if(!overlappingFlag)
 {
 if(!(this.startTime.contains(dateTime)))
 {
 this.startTime.add(dateTime);
 setEndTime(year, month, date, hour,

 94

(min+this.eachSessionDuration), sec, milliSecond);
 }
 }
 else
 {
 int sh = random.nextInt(this.upperBound) + this.lowerBound;
 setStartTime(year, month, date, sh, random.nextInt(60), 0, 0);
 }
 }

 public void setEndTime(int year, int month, int date, int hour, int min, int
sec, int milliSecond) {
 if(min<60){
 dateTime = new DateTime(year, month, date, hour, min, sec,
milliSecond);
 }
 else
 {
 int h = min/60;
 min = min % 60;
 hour = hour + h;
 if(hour >= 24)
 {
 dateTime = new DateTime(year, month, (date+1), (0), 0,
sec, milliSecond);
 }
 else
 {
 dateTime = new DateTime(year, month, date, (hour), min,
sec, milliSecond);
 }
 }
 this.endTime.add(dateTime);
 }
}

	hassancover
	0809978_Thesis
	LIST OF TABLES
	LIST OF FIGURES
	Dedication
	Acknowledgements
	CHAPTER 1: INTRODUCTION
	1.1 Background and History of Online Social Networks
	1.2 The Problem
	1.3 Aim
	1.4 Research Objectives
	1.5 Hypothesis
	1.6 Research Questions
	1.7 Structure of the Thesis

	CHAPTER 2: LITERATURE REVIEW
	2.1 Centralised Online Social Networks
	2.2 Decentralised Online Social Networks
	2.3 Challenges and Opportunities
	2.3.1 Storage and Data Availability
	2.3.2 Overhead
	2.3.3 Leverage Social Relationships

	2.4 Related Work
	2.4.1 PeerSon
	2.4.2 Safebook
	2.4.3 SuperNova
	2.4.4 DECENT
	2.4.5 Cachet
	2.4.6 Vis-à-Vis
	2.4.7 FOAF
	2.4.8 Diaspora

	2.5 Research Gap Analysis
	2.6 Requirements
	2.6.1 Functional Requirements
	2.6.2 Non-Functional Requirements

	CHAPTER 3: RESEARCH METHODOLOGY AND SYSTEM DESIGN
	3.1 Research
	3.2 Research Methodologies
	3.2.1 Quantitative Research Methodology
	3.2.1.1 Descriptive
	i) Surveys
	ii) Longitudinal
	iii) Cross-Sectional

	3.2.1.2 Correlational design
	3.2.1.3 Group Comparison
	i) Ex Post Facto Design
	ii) True-Experimental Design

	3.2.2 Qualitative Research Methodology
	3.2.2.1 Action Research
	3.2.2.2 Case Study
	3.2.2.3 Grounded Theory

	3.2.3 Design Science Research Methodology
	3.2.3.1 Problem Awareness
	3.2.3.2 Objective Setting
	3.2.3.3 Design and Development
	3.2.3.4 Demonstration
	3.2.3.5 Evaluation
	3.2.3.6 Communication

	3.2.4 Conclusion

	3.3 System Design
	3.3.1 Availability
	3.3.2 Update Propagation Delay
	3.3.3 Replication Degree
	3.3.4 Availability on Demand

	3.4 Conclusion

	CHAPTER 4: RESULTS AND DISCUSSION
	4.1 The Context
	4.2 Model
	4.3 Simulation
	4.4 Availability (Objective 2)
	4.5 Update Propagation Delay (Objective 3)
	4.6 Replication Degree (Objective 4)
	4.7 Availability on Demand (Objective 5)
	4.8 Conclusion

	CHAPTER 5: CONCLUSION AND FUTURE WORK
	5.1 Conclusion
	5.2 Limitations and Future Work

	GLOSSARY OF TERMS
	PUBLICATION
	REFERENCES
	Appendix 1 – Availability Algorithm
	Appendix 2 – Update Propagation Delay Algorithm
	Appendix 3 – Replication Degree Algorithm
	Appendix 4 – Availability on Demand Algorithm
	Appendix 5 – Code: Availability, Update Propagation Delay, Replication Degree
	Appendix 6 – Code: Availability on Demand

