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Abstract 

Acute myeloid leukaemia (AML) and ovarian cancer (OVC) are two difficult to treat cancers. 

AML is often treatable however minimal residual disease (MRD) endures such that many 

patients who achieve remission eventually relapse and succumb to the disease. OVC affects 

approximately 7000 women in the U.K. every year. It can occur at any age but is most common 

after menopause. Diagnosis at an early stage of disease greatly improves the chances of survival 

however, patients tend to be diagnosed in the later stages of disease when treatment is often 

less effective. Immunotherapy has the potential to reduce MRD and delay or prevent relapse. 

In order for immunotherapy to work, tumour antigens need to be identified and characterised 

so they can be effectively targeted. Personalised treatments require the identification of 

biomarkers, for disease detection and confirmation, as well as to provide an indication of best 

treatment and the prediction of survival. 

PASD1 has been found to be frequently expressed in haematological malignancies and I 

wanted to determine if there was a correlation between the presence of antigen-specific T cells 

in the periphery of patients with AML and PASD1 protein expression in the leukaemic cells. 

The expression of other leukaemia antigens were concurrently examined as comparators. I 

performed RT-PCR on nine antigens and immunocytochemistry on PASD1 in 18 samples from 

AML patients. I found a correlation between PASD1 expression in AML samples and the 

presence of PASD1-specific T cells as detected on the pMHC array.  

OVC lacks suitable targets for immunotherapy with few CTAs having been identified. I 

examined the expression of SSX2IP and the CTAs PASD1 and SSX2 in OVC.  I compared the 

protein expression of these known tumour antigens to the “gold standard” biomarker for the 

diagnosis of OVC, CA125 and two other proteins known to be promising in the diagnosis of 

OVC, HE4 and WT1. I analysed commercially available paraffin-embedded OVC multiple 
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tissue arrays (MTAs) containing 191 samples, predominantly stage I (n= 166), II (n= 15) and 

III (n= 6) OVC as well as healthy donor (n= 8) and normal adjacent tissues (n= 8). Scoring was 

performed in a single blinded fashion. I found SSX2A to be expressed at a score level of 3 with 

a frequency (37/191) that exceeded that of CA125 (14/191), HE4 (14/191), WT1 (1//191) or 

PASD1 (0/191). To confirm this expression I used two additional commercially-available 

antibodies that recognise the region common to SSX2A and B, and an antibody specific for 

SSX2A. Using SSX2 peptides, I blocked the immunolabelling of SSX2 in SSX2-positive cell 

lines showing that the immunolabelling of SSX2 and SSX2A was specific. I demonstrated that 

the expression of SSX2 and specifically SSX2A was reproducible and restricted to ovarian 

cancer with little or no expression in endometrial tissues, or diseased or inflamed endometrial 

tissue.  

In summary, these studies demonstrated that PASD1 expression in leukaemia cells correlated 

with the presence of PASD1-specific T cells in the periphery of presentation AML patients. I 

have shown that PASD1 specific-T cells are present in AML patients at diagnosis and that 

immunotherapy targeting PASD1 could be used to break tolerance and clear residual leukaemia 

cells during first remission. Analysis of the expression of three antigens in OVC, identified the 

specific expression of SSX2, in particular SSX2A in OVC but not healthy or diseased 

endometrial tissues. The expression of SSX2A was more frequent and more specific to OVC, 

than HE4 and WT1, and more frequent at higher intensity, especially in early stage OVC, than 

CA125. SSX2 and explicitly SSX2A requires further investigation to determine whether the 

high level of background at score 2 can be reduced with better blocking of non-specific sites. 

This may require the use of different SSX2 antibodies or an improved staining protocol. 
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CHAPTER 1: INTRODUCTION 

1.1 Cancer and conventional therapy 

Cancer affects 338,623 people in the UK and is most frequent in patients over the age of 65 

peaking in incidence at the age of 85. The frequency of cancer in older individuals (≥ 65 years) 

is 2085.3/100,000 compared with those aged less than 65, which is 193.9 per 100,000 and more 

than half of all cancers diagnosed (58%) are found in the elderly (> 65) (Yancik & Ries, 1994). 

Overall cancer survival rates have been improving and have doubled in the last 40 years such 

that cancer survival is now measured in a 10-year time-frame, rather than 5 years, at around 

50% (Cancer Research UK, 2016).  The frequency of cancer in the population rises with age, 

due to environmental and genetic factors, mistakes by DNA polymerase during the division of 

cells and the copying of DNA leading to spontaneous mutations that can lead to cancer. There 

is also an increasingly obvious impact of diet on cancer incidence (25% of the British 

population is obese) and certain cancers occur more frequently and in more aggressive forms 

in overweight individuals (MacInnes et al, 2003; Panagopoulou et al, 2012). Breast cancer 

patients had an additional 45% of visceral fat, abdominal fat surrounding the internal organs, 

compared with healthy controls (Schapira et al, 1994) and a higher mortality rate was 

associated with body mass index ≥ 30 kg/m2 (considered obese) when compared to <25 kg/m2 

(Dal Maso et al, 2008). As the waist circumference increases there seems to be a correlation 

with increased risk of colon cancer (Larsson and Wolk, 2007). There are more than 200 

different cancers involving a range of cells from different body tissues, which behave in unique 

ways.  However, the focus of many researchers and clinicians is on early diagnosis and 

preferably prior to symptoms asserting themselves, which would lead to higher survival rates. 

For example, in ovarian cancer (OVC) survival rates are 90% at 5-years post diagnosis for 

those patients with stage I disease compared with <50% when OVC is diagnosis at the later 
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stages (III and IV) as is most commonly the case. Relative survival rates at 10 years post 

diagnosis are 84% and 59% for stage I and II disease, respectively, which reduces quite 

dramatically to 23% and 8% for stages III and IV, respectively (Baldwin et al, 2012). 

There are three types of conventional treatments for solid cancers; surgery, radiation and 

chemotherapy.  Many solid tumours will eventually require the use of surgery in order to aid 

their removal.  Surgery can be very effective in helping with the diagnosis via a biopsy and 

removing early stage tumours before metastatic cancers develop which become extremely 

difficult to treat. The main aim of surgical intervention is to resect the tumour and some of the 

surrounding healthy tissue along with some lymph nodes. Following surgery a combination of 

chemotherapeutic cytotoxic drugs are administered to kill any residual cancer cells. Cancerous 

cells are known to divide rapidly in comparison to normal cells which is the quality exploited 

by the drugs. However, some normal cells also divide constantly and these are also susceptible 

to damage by the chemotherapeutic drugs such as hair follicles, which is why hair loss is a 

common side effect of chemotherapy (Siegel et al, 2012).  

Radiotherapy comprises the use of high-energy X-rays targeted at the tumour using a linear 

accelerator (external) or injecting radioactive molecules at the site of the tumour (internal). An 

exact dose of X-rays are directed at the tumour causing DNA damage that the cancer cells are 

unable to recover from due to gene mutations, contrary to affected healthy cells which can 

survive due to DNA repair mechanisms.  Radiotherapy can be used in combinations with 

surgery or chemotherapy (Becker, 2012). 

Treatments for liquid tumours and particularly leukaemia differ in that the cancer originates in 

the bone marrow, is diagnosed by biopsy and often is disseminated throughout the body via the 

blood stream. In addition, leukaemic cells are often perturbed precursors of adaptive or innate 

immune cells and so the immune response is uniquely affected by the disease.  
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1.2 Leukaemia 

Leukaemia is a haematological malignancy arising from an accumulation of haematopoietic 

stem cells often referred to as blasts. The UK incidence is 1 in 100,000. Haematopoiesis 

describes the process which forms the myeloid and lymphoid cell lineages from stem cells 

which in turn produce blood cells such as granulocytes and lymphocytes. The classification of 

leukaemia is governed by the cells of the blood involved i.e. myeloid leukaemia if the initial 

transformed cell is a precursor to myeloid cells or if it is lymphoid then lymphocytic leukaemia 

is described. A genetic mutation causes a stem cell to undergo changes, which are passed on to 

its progeny and over the course of cell division the number of mutations accumulate leading to 

increasing numbers of leukemic cells in the bone marrow. The rapid increase in the numbers 

of these immature cells condenses the space available for healthy blood cells causing a 

reduction in immune cells produced to fight infections. Progression of leukaemia can vary with 

acute leukaemia occurring and advancing rapidly in weeks and requiring treatment promptly, 

whereas chronic leukaemia takes months to develop and often treatment can be delayed.  The 

four main types of leukaemia are acute myeloid leukaemia (AML), chronic myeloid leukaemia 

(CML), acute lymphocytic leukaemia (ALL) and chronic lymphocytic leukaemia (CLL) (Bain, 

2010). 

AML is rare in children but is commonly observed in adults over the age of 65. Typically at 

diagnoses, the bone marrow sample comprises of about 1012 blasts cells. Prognosis depends on 

the severity of the illness at the point of diagnosis. Patients with AML usually present because 

of complications of disordered haematopoiesis: bleeding, fatigue, refractory infections, or the 

clinical consequences of an extremely high white blood cell count: difficulty breathing, 

confusion, or other symptoms of organ failure (Showel and Levis, 2014). CML is commonly 

detected in older patients (50-60 years) and >95% of patients with CML have increased 

numbers of hematopoietic cells expressing the oncogenic BCR-ABL1 fusion gene.   The 
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translocation produces the Philadelphia chromosome (Ph) (Nowell and Hungerford, 1960), 

which encodes the constitutively active BCR-ABL1 protein tyrosine kinase (Faderl et al, 1999; 

Sawyers, 1999).  This constant activation of the oncogene causes unregulated proliferation of 

the transformed hematopoietic cells therefore reducing the numbers of normal white blood cells 

(Stein et al, 2013). More than half of the patients affected by ALL are children and treatment 

is very effective, leading to a 90% 5-year survival rate, however in adult ALL there are poor 

outcomes. A quarter of adults with ALL have the translocation t(9;22) while the most common 

translocation found in childhood ALL is t(12;21) which produces the TEL-AML1 gene. 

Common symptoms include anaemia and infection (Howard and Hamilton, 2008). CLL is most 

common in the elderly, the majority of patients are over 50 years of age and have poor 

prognosis. Chromosome deletions such as 11q, 13q and 17p are observed in CLL while CD38 

or ZAP70 expression and mutations in IGHV are indicators of poor survival (Puiggros et al, 

2014). 

1.2.1 Conventional treatment of acute leukaemia - AML 

Treatment of AML is usually comprised of two stages. induction therapy, which involves 

giving DNA-damaging agents such as cytarabine, a nucleoside analogue, in combination with 

an anthracycline (which among other actions, inhibits DNA and RNA synthesis) such as 

daunorubicin.  These drugs aim to cause disease remission by inducing the abnormal cells to 

undergo apoptosis as they predominantly affect rapidly dividing cells, such as leukemic cells, 

and most patients achieve a remission.  

Almost all AML patients will achieve first remission however many patients will relapse and 

require further treatment (Dores et al, 2012). Further treatment consists of additional 

chemotherapy or bone marrow stem cell transplantation (SCT). Around 70-80% of AML 

patients aged less than 65 achieve remission through chemotherapy treatment (Dohner et al, 

2010), but around half relapse without SCT. Even with SCT, over one third will relapse 
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(Cornelissen et al, 2007). Currently the median survival for AML is around one year; however 

there has been a steady increase in the overall survival in younger patients (Maynadie et al, 

2013). This can be explained, to some extent, as being due to improvements in palliative care 

and support (Showel and Levis, 2014).   

1.2.2 Conventional treatment of acute leukaemia - ALL 

Treatment of ALL usually includes chemotherapy and should be started as soon as possible 

after diagnosis. The first of the three phases of treatment is called remission induction. Once 

remission has been achieved consolidation therapy is given, this involves chemotherapy and 

sometimes a stem cell transplantation. The final stage is maintenance therapy, this involves 

low dose chemotherapy and steroids for up to 2 years. In contrast, Ph+ ALL is treated as 

detailed in Section 1.2.3. 

1.2.3 Conventional treatment for CML 

The tyrosine kinase inhibitor, imatinib (STI571, Gleevec; Novartis), is administered at 400 mg 

daily, and is the standard therapy for CML patients in chronic phase (Druker et al, 2001). 82% 

of patients have been found to achieve a complete cytogenetic response with imatinib (Jabbour 

et al, 2008) however some patients do not respond to imatinib, and even those that do, often 

develop resistance, therefore alternative treatment options are required. This has led to the 

development of second-generation tyrosine kinase inhibitors such as nilotinib, which is more 

potent than imatinib and is currently approved for the treatment of newly diagnosed, imatinib-

resistant or imatinib-intolerant CML and Ph+ ALL (Kantarjian et al, 2006).  Bone marrow or 

SCT are performed when patients become resistant to the drugs and maybe in combination 

with total body irradiation (TBI) (Thomas et al, 1976). Following chemotherapy, high energy 

rays (radiotherapy) are used on the whole body to kill off remaining bone marrow cells. Then 

the patient’s own bone marrow or stem cells, or donor cells are administered via drip. TBI 

treatment is carried out twice a day for 3 or 4 days (Cancer Research UK, 2015).  
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1.3 OVC 

Over 90% of OVC cases are malignant epithelial carcinomas (EOC). These can be further 

divided into five main types: (high-grade serous (70%), endometrioid (10%), clear cell (10%), 

mucinous (3%), and low grade serous carcinomas (<5%) according to histopathology and 

molecular genetic alterations (Prat, 2012). 

Around 225,500 women worldwide are diagnosed with OVC every year and there are about 

140,200 associated deaths (Jemal et al, 2011).  OVC is the fifth most common cancer in the 

UK, even more prevalent than cervical cancer (CC). Gradually, over the past decade, the 

incidence has been increasing and currently the lifetime risk is 1.8% (Stack and Fishman, 

2013). This may reflect an aging population caused by improved treatments for other diseases, 

improved standards of living and healthcare developments. Although OVC can occur at any 

age, more than 85% of women are over 50 years of age at diagnosis (Stack and Fishman, 2013). 

While the chances of developing OVC are increased in those with close relatives who have 

been affected, most individuals have no family history. 

The different types of OVC are classified by the type of cell from which the cancer originates 

from and include epithelial, germ cell and stromal OVC, the most common type being EOC.  

As the early stages of the disease is generally asymptomatic, over 75% of patients are diagnosed 

in the later stages of the disease (stage III and IV) (Rosen et al, 2005) when patients present 

with pelvic or abdominal pain, urinary frequency or urgency, increased abdominal size or 

bloating. The 5-year survival rate at this stage is 12-20% (Stack and Fishman, 2013).  However, 

if OVC is diagnosed in the early stages of disease (stage I) there is a 90% survival rate (Stack 

and Fishman, 2013). About 75% of patients with stage III cancer at presentation relapse after 

surgery and chemotherapy and 80-90% die of the disease (Prat, 2012).  Currently the marker 

CA125 is used as an aid in the detection of OVC, however CA125 is found in 75-90% of stage 

III and IV tumours, and/or serous tumours, but has a false positive rate of 80% (Moss et al, 
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2005). Serous tumours are likely to develop from serous tubal intraepithelial carcinoma (STIC) 

precursor lesions in the fallopian tubes (Dietl, 2014; Salvador et al, 2008) which then coat the 

ovary and may fall into the abdominal cavity making it difficult to detect them at the earliest 

stages of disease. In contrast clear cell/endometroid tumours arise in the ovary (McMeekin et 

al, 1995) and can be detected in the early stages of disease (Ledermann et al, 2013), although 

this is still rarely the case (Maringe et al, 2012).   

1.3.1 Types of OVC 

There are three main types of OVC depending on the cells of origin: 

1. EOC 

2. Germ cell tumours 

3. Sex cord stromal cell tumours 

EOC is the most common type of OVC (Figure 1.1). The epithelial cells which cover the 

surface of the ovaries is where the malignant transformation of the stem cell occurs. About 

90% of all OVCs are of epithelial derivation. These can be further sub-divided into the 

following types; serous, endometrioid, mucinous and clear cell tumours (George et al, 2016). 

EOC is associated with high mortality, due to its frequent diagnosis in the late stages of disease 

in 70% of women (George et al, 2016). Some EOC are called borderline tumours or tumours 

of low malignant potential (LMP). These tumours include those which cannot be clearly 

recognised as malignant cancer cells when viewed under the microscope because they appear 

similar to both aggressive and benign ovarian tumours (Fischerova et al, 2012) 
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Figure 1.1 Breakdown of the sub-types of OVC. 90% of tumour that affect the ovary are 

epithelial and 70% of these are serous accounting for the majority of diagnoses. It is believed 

that high grade serous OVC originate at the far end of the fallopian tube, rather than the surface 

of the ovary, and then spread to the ovary. Despite the variety of OVC the majority are still 

treated with chemotherapy and surgery.  

 

Germ cells in the ovaries are the cells which develop into ova. Many germ cell tumours are 

benign however approximately 5% of the cases are malignant (Low et al, 2000). Malignant 

tumours are subdivided into dysgerminomas and non-dysgerminomas. Dysgerminomas 

generally affects both ovaries whereas non-dysgerminomas tends to be restricted to only one. 
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Germ cell tumours of the malignant dysgerminous and non-dysgerminous type are both found 

in girls and young women. Types of non-dysgerminomas tumours include yolk sac tumours 

and immature teratoma. Dermoid cysts are benign tumours also known as mature teratomas. 

Many germ cell tumours (90%) are treatable even if detected at the later stages since they are 

mainly found in teenagers and young adults (Crowder, 2004).  

Sex cord stromal cell tumours originate from the gonadal stroma and sex cord cells of the ovary 

which include granulosa cells, theca cells, fibroblasts, Leydig cells and Sertoli cells. About 8% 

of OVCs are sex cord stromal cell tumours and can affect women of all ages. The more common 

types are granulosa cell tumours, fibrothecomas and Sertoli-Leydig cell tumours. These 

tumours are relatively rare and are usually considered to be low-grade cancers, with around 

70% of the cases at stage I at presentation. 

Another uncommon cancer but very similar to EOC is known as primary peritoneal carcinoma 

(PPC) which develops from the abdominal lining. This is due to the fact that the cells constitute 

the lining of the abdomen as the ovary surface. PPC is similar to OVC in its characteristics and 

development. 

1.3.2 Stages of OVC 

The International Federation of Gynecology and Obstetrics (FIGO) have updated their 

definition of the staging system for OVC in 2014 (Table 1.1). 
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Table 1.1. A concise summary of the stages of OVC according to FIGO 

Stage  Description 

Stage 1 One or both ovaries affected 

1a Cancer contained within one ovary, no external cancer cells present 

1b Cancer contained within both ovaries, no external cancer cells present 

1c As 1a and 1b and on the surface of one or both ovary or burst capsule(s) or 

cancer cells present in abdomen 

Stage 2 One or both ovaries affected and spread to further organs  

2a  Spread to the uterus and/or fallopian tubes 

2b Further spreading in pelvic tissue 

2c As 2a and 2b and on the surface of one or both ovary or burst capsule(s) or 

cancer cells present in abdomen 

Stage 3 One or both ovaries affected, or the peritoneum, and extended to the lining of the 

pelvis and abdomen and/or nearby lymph nodes 

3a Metastasis on the lining of abdomen beyond the pelvis microscopic only 

3b Visible peritoneal metastasis beyond the pelvis <2 cm 

3c Peritoneal metastasis beyond the pelvis >2 cm and/or regional lymph node 

metastasis 

Stage 4 Distant metastasis to other organs 

 

Stage I 

The cancer is contained inside the ovaries with no spreading. 

Stage IA; the cancer cells have developed in one ovary, and the tumour is limited to the inside 

of the ovary. Washings from the abdomen and pelvis (taken during surgery) have no cancer 

cells detected. 

Stage IB; the cancer is in both ovaries but still contained within, with no cancer cells on the 

surface of the ovary. Washings from the abdomen and pelvis show no cancer cells present. 

Stage IC; the cancer is present in one or both ovaries as well as any of the following: 

i. The tissue surrounding the tumour, known as the capsule ruptures due to surgery 

leading to cancer cells leaking into the abdomen and pelvis (surgical spill). This is 

stage IC1. 
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ii. Cancer is on the outer surface of at least one of the ovaries or the capsule ruptures 

prior to surgery leading to cancer cells leaking into the abdomen and pelvis. This is 

stage IC2. 

iii. Washings from the abdomen or pelvis show cancer cells present. 

Stage II 

The cancer is in one or both ovaries and has spread to other organs (such as the uterus, fallopian 

tubes, bladder, the sigmoid colon, or the rectum) within the pelvis. It has not spread to lymph 

nodes or distant sites. 

Stage IIA: the cancer has spread to the uterus and/or fallopian tubes, but has not spread to the 

pelvic lymph nodes or distant organs 

Stage IIB; the cancer has spread to more intraperitoneal tissues 

Stage III 

The tumour is in one or both ovaries, or the peritoneum, and has also extended to the lining of 

the pelvis and abdomen and/or nearby lymph nodes 

Stage IIIA1; cancer found in retroperitoneal lymph nodes only by cytological or histological 

examination 

Stage IIIA1(i); Positive retroperitoneal lymph nodes only, with metastasis up to 10 mm  

Stage IIIA1(ii); As StageIIIA1(i) however with metastasis greater that 10mm  

Stage IIIA2; tumours found external to the pelvis, with or without being present in 

retroperitoneal lymph nodes  

Stage IIIB; peritoneal metastasis beyond the pelvis of up to 2 cm diameter with or without 

metastasis to the retroperitoneal lymph nodes 
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Stage IIIC; metastasis of more than 2cm, with or without metastasis to the retroperitoneal 

lymph nodes and metastasis to the capsule of the liver and the spleen 

Stage IV 

Distant metastases, excluding peritoneal metastases 

Stage IVA; Distant metastases, excluding peritoneal metastases, with pleural effusion 

determined by cytology. 

Stage IVB; Distant metastases, excluding peritoneal metastases, including parenchymal 

metastases and metastases to organs beyond the abdominal (including inguinal (groin) lymph 

nodes and lymph nodes outside of the abdominal cavity).  

Currently in the UK there is no screening program for OVC therefore diagnosing it requires 

multiple platforms. 

1.3.3 Diagnosis of OVC 

In order to check for possible abnormalities in the ovaries, a pelvic examination is carried out 

by a doctor by inserting gloved fingers into the vagina while applying pressure on the abdomen 

to feel for any swellings and/or tenderness.  Another test known as transvaginal sonography 

applies sound waves to abdominal tissues using an ultrasound probe inserted into the vagina.  

This affords clear pictures of the ovaries to detect any masses. However, it is not possible to 

tell if a particular mass observed is benign or cancerous which can result in healthy women 

undergoing unnecessary operations.  The marker CA125 can be used to judge the efficacy of 

treatment but it not recommended as a method of screening since it can be increased in a variety 

of benign conditions such as menstruation or ovarian cysts (Koninckx et al, 1996).  All the 

above methods are non-specific for early stage OVC and if any abnormalities are discovered, 

further tests are required for confirmation.  A combination of CA125 and TVU (transvaginal 
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ultrasound) have been proven to be inefficient in detecting early stage OVC (Olivier et al, 2006; 

Woodward et al, 2007).      

1.3.4 Conventional treatment of OVC 

The highest survival rates for OVC patients are achieved by those who are diagnosed at the 

early stages of disease (Figure 1.2). There is a great impetus to develop early stage screening 

strategies which will increase the survival rates in patients with OVC.  

 

 

 

 

 

 

 

 

Figure 1.2. The relative survival of OVC patients depending on the stage of disease at 

detection and the frequency of detection. Graph modified from Cancer Research U.K. web 

site with data from (Berek and Hacker, 2010; Howlader et al, 2016). 

 

Currently the most common treatments are surgery and chemotherapy depending on the stage 

of disease at diagnosis. At the earliest stage, it may be possible to have only the one ovary 

removed to effectively eliminate all the cancer cells present. However, it is very rare for OVC 

to be detected at stage I or II, accounting for 25% and 10% of all diagnoses, respectively (Berek 

and Hacker, 2010) for OVCs. Early stage diagnosis will usually lead to surgery to remove the 

Frequency of detection 
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ovaries, the fallopian tubes and the womb in order to ensure that all the cancer is removed. 

Once the cancer has advanced and spread, surgical intervention can only attempt to reduce the 

bulk of the disease after which chemotherapy is used to destroy any remaining cancer cells. If 

the cancer load is too large then chemotherapeutic drugs will be used to reduce the tumour and 

then surgery is more effective at removing the cancer. Common chemotherapy drugs are 

carboplatin and paclitaxel (Bois et al, 2003). Olaparib, a poly(ADP-ribose) polymerase 

inhibitor, was approved by the FDA (Food and Drug Administration) for OVC patients 

harbouring BRCA mutations who have already undergone chemotherapeutic treatments 

(Bornstein and Jimeno, 2016). In a phase 3 trial cediranib, an angiogenesis inhibitor, was found 

to increase progression-free survival (PFS) in relapsed platinum-sensitive OVC, however a 

number of toxic effects were identified including diarrhoea and hypertension causing 

termination of the trial (Ledermann et al, 2016). A phase 2 trial studying the combination of 

olaparib and cediranib in recurrent platinum-sensitive OVC also found an improvement in PFS 

compared with olaparib alone however the combination was also found to have greater toxicity 

(Liu et al, 2014). 

The monoclonal antibody bevacizumab can be used along with chemotherapy that targets the 

vascular endothelial growth factor therefore blocking angiogenesis and this lack of blood 

supply restricts tumour growth (Garcia and Singh, 2013). 

To complement conventional therapies, cancer immunotherapy could be used to stimulate the 

body’s own immune system to lyse residual cancer cells post-surgery. 

1.4 Cancer and the immune system 

The role of the immune system in humans is multifaceted providing a coordinated series of 

reactions, referred to as immunity, formulated against foreign elements found in the body such 

as viruses and bacteria, which would otherwise have the ability to cause life-limiting disease. 
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Immunity can be subdivided into two separate branches that cooperate with each other; innate 

and acquired immunity.  Innate immunity is the first line of defence against all foreign 

pathogens that cross the skin barrier whereas acquired immunity is specifically targeted against 

antigens. The immune system is also able to eradicate cells of the human body, which can 

become cancerous due to genetic mutations or viral infections.  

Class I and II MHC (major histocompatibility complex) are present on the surface of nucleated 

cells and present processed peptides from proteins inside the cell to T cells. MHC molecules 

are membrane glycoprotein complexes, which have the ability to bind with specific antigenic 

peptides. Class I is expressed on all nucleated cells whereas class II is only on certain immune 

cells such as macrophages. Multiple alleles exist for the MHC gene, which guarantees a diverse 

range of peptides are able to be presented to T cells. T cells can destroy infected cells if peptides 

in the context of “danger” are detected (Matzinger, 2002).  MHC in humans is known as the 

human leukocyte antigen (HLA) system. MHC class I HLA molecules are highly polymorphic 

and generally stimulate T cells to provide the best defence against infections. 

1.4.1 T cell responses 

Mature T cells are able to travel in between the blood and lymphoid tissues prior to being 

activated and these are known as naïve T cells.  The T cells are stimulated for action when they 

come into contact with an antigen they can recognise, presented on the MHC class I molecules. 

In relation to the MHC class I pathway, endogenous proteins are fragmented and one of the 

smaller peptides is bound to the peptide binding site of the MHC class I molecule. This MHC 

class I-peptide complex travels to the surface of the cell via the Golgi body. T cells expressing 

a specific TCR (T cell receptor) for the antigen recognises it and forms a TCR: MHC class I-

peptide complex. CD8 is expressed on the surface of cytotoxic T lymphocytes (CTL), often 

referred to as CD8 T cells. The CD8 protein aids the pMHC:TCR interaction by binding to the 

MHCI molecule. Activation of T cells causes the T cell population to expand in order to mount 
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an immune response resulting in effector populations of CD8+ CTL and the release of cytotoxic 

cytokines such as TNF-α and IFN-γ and the granules perforin and granzymes (Mak and 

Saunders, 2005).     

1.4.2 B-cell responses 

B cells are part of the adaptive immune response known as humoral immunity.  The priming 

of B cells occurs when the B cell receptor binds a specific antigen on the surface of the B cell. 

The antigen is internalised by receptor-mediated endocytosis and is processed into smaller 

fragments of peptides.  A fragment is then bound to MHC class II and displayed on the surface 

of the B cell.  This peptide-MHC class II complex is recognised by helper T cells, which also 

express the CD4 molecule on their surface that is involved in the pMHC class II:TCR complex. 

Secondary binding of the CD40 receptor on the B cell with its ligand on the T helper cell 

additionally guides the amplitude of the response. This interaction causes the release of 

interleukin-2 (IL-2) thereby activating the B cells to mature into plasma cells and producing 

antibodies that are secreted from the cell against the antigen.       

1.4.3 Immune surveillance and immune evasion 

The link between immune responses and cancer is evident from findings such as patients with 

a compromised immune system having an increased tumour incidence (Penn et al, 1971) and 

cancer patient sera evidencing recognition of autologous cancer antigens (Sahin et al, 1995). 

Children who have previously been treated for cancer are 10-20 times more likely to develop 

a second tumour and patients suffering from autoimmune diseases have an increased risk of 

malignancy (Mueller and Pizzo, 1995). The risk of lymphomas for kidney transplant recipients 

were 11.8 times greater than healthy controls over a decade follow-up period (Opelz and 

Dohler, 2004) while HIV patients who have a low CD4+ count have an increased risk of virus 

causing cancers such as Hodgkin’s lymphoma (HL) caused by Epstein Barr Virus (EBV) 

(Corthay, 2014). 
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Immune surveillance describes the concept of the immune system being able to identify and 

eliminate foreign elements, which can cause infections such as bacteria, as well as being able 

to distinguish cancerous cells from normal cells. It is possible there are cancer cells developing 

in the body constantly but due to immune surveillance they are destroyed before a noticeable 

tumour develops.  

The immune surveillance principle has been further described by the updated concept of 

tumour immunoediting (Dunn et al, 2002). Tumour immunoediting is divided into three stages 

known as elimination, equilibrium and escape. At the elimination stage the immune system 

identifies and eradicates any precancerous cells which develop in the body.  This can lead to 

either all cancerous cells being destroyed or in some cases some residual cells remain evading 

the immune system by evolution, developing or having features that hide them from the 

immune system. Early genetic changes are not required to maintain the cancer phenotype but 

the tumour cell gathers more and more mutations, through genetic instability, as part of the 

tumourigenesis process (Roschke and Rozenblum, 2013). Residual tumour cells are involved 

in the second stage of immunoediting, where equilibrium is achieved because the number of 

cancer cells being destroyed by the immune system is equal to the number of new cancer cells 

being made. In this stage tumour cells continue to accrue additional genetic mutations which 

alters the gene expression profiles of these cells leading to some antigens being overexpressed 

compared to normal levels in the human body.  These mutations can provide tumour-specific 

antigens that can be ultimately used as biomarkers of disease and/or targets for immunotherapy.   

The equilibrium stage manages to control the growth of the tumour by still killing some tumour 

cells however the tumour will outgrow this stage as it acquires more mutations that help it 

circumvent the immune system. Immune editing describes the training of the immune system 

by the tumour, to recognise “were normal” cells as healthy and clonally delete immune cells 

that would otherwise kill the tumour cells (Chan et al, 2007). Eventually the acquisition of 
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mutations leads to multiple tumour cell populations (Figure 1.3) which can lead to multiple 

clones and eventually the immune system can no longer cope. Some of the cells can actively 

circumvent the immune system by suppression and in the final stage, escape is achieved and 

the tumour grows freely. Mechanisms of immune escape include absence of cancer antigens 

able to generate an immune response and/or decreased number of MHC class I molecules on 

the tumour cell surface by virtue of genetic mutation. Induction of T cell anergy, low tumour 

infiltrating lymphocyte (TIL) numbers and the release of immunosuppressive agents such as 

IL-10 (Kim and Chen, 2016) can also help tumour cells avoid immune surveillance. 

1.5 Immunotherapy 

Although conventional treatments can be successful for leukaemia and OVC, on the whole 

aggressive types and stages are still particularly challenging to diagnose and treat.  The future 

of cancer treatment is currently directed towards immunotherapy, which is seen as the best 

opportunity for personalised and more effective treatments that could significantly increase 

survival rates (Schadendorf et al, 2015). Immunotherapy allows the body’s own immune 

system to fight cancer cells and potentially protect against cancer development in the future 

(Ryan et al, 2016).   
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Figure 1.3. Accumulation of mutations generates multiple tumour stem cell derived 

populations. Different colours visually indicates the change a gene mutation (often caused by 

genomic instability during tumourigenesis) has on the clonality of the population. The figure 

shows how rapidly the population can expand within six generations from a single cancer stem 

cell. The tumour cells evade the immune system by virtue of their cloaking techniques (ie low 

MHC expression, low tumour antigen expression) and can overwhelm the immune system with 

their numbers once the tumour load is great enough. 

 

The ideal immunotherapy targets should play a role in tumour progression (Zhang et al, 

2009). To optimise the quest for tumour antigens and focus studies on a limited number of 

antigens, Cheever et al (2009) identified the nine characteristics of an ideal tumour antigen and 

listed them in order of importance (1 being the most important): (1) there should be some 

therapeutic benefit of the antigen compared to no antigen; (2) the antigen should be 

immunogenic i.e. be able to generate a response from immune cells; (3) the progression of the 

tumour should include a role for the antigen; (4) the antigen should be specific for the cancer 

and not be expressed in normal cells; (5) the antigen should have high expression levels in the 

positive cells; (6) be expressed in cancer stem cells; (7) tumours positive for the antigen should 

be in a significant number of patients; (8) availability of immunogenic epitopes and (9) 

intracellular location of antigen (Cheever et al, 2009). For example, p53 (Soussi, 2000) is one 

of the most desirable targets for immunotherapy – targeting p53 can kill both the evolving 

tumour cell population and any cancer “stem” cell which harbours this as an early 

tumourigenesis stage aberration. By targeting p53 you prevent its support of further tumour 

growth.  In addition, a number of tumour antigens have been shown to be useful biomarkers 

for cancer diagnosis (Haralambieva et al, 2000), disease stage (Guinn et al, 2007) and survival 

(Guinn et al, 2009). 

1.5.1 Strategies for immunotherapy 

One of the biggest debates in cancer immunotherapy remains which approach will be the most 

effective. Although a great deal of work takes place in research labs which generates promising 
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preclinical data, these data do not generally emulate the results obtained in clinical trials. Despite 

their common pre-clinical use, mouse models are not always able to elucidate possible side 

effects of the agents being tested, since the variability of the patient’s characteristics such as age 

and weight cannot all be mimicked in mice (Klevorn and Teague, 2016). In 1999 Jesse 

Gelsinger’s death led to a halt in many immunotherapy clinical trials in the US and led to an 

extensive review of practices in immunotherapy clinical trials. In 2004 Rosenberg et al 

(Rosenberg et al, 2004) surveyed the data collected from clinical trials on 440 patients with 

metastatic cancer, all of whom had been treated in the Surgery Branch of the National Cancer 

Institute. The study showed that only 2.6% of immunotherapy clinical trials had worked and 

this reflected the experiences of other similar Research Institutions.  

In 2005 Peng et al described the first immunotherapy clinical trial that used Ad (Adenovirus)-

p53 in China and its success renewed interest in immunotherapy. In 1995 Ad-p53 a clinical 

trial involved 135 head and neck squamous cell carcinoma patients. 75% of the participants 

had late stage disease and previous treatment had not been successful. Split into two groups the 

test group received Ad-p53 and radiotherapy while the control group only received 

radiotherapy. The test group had CR and PR rates of 64% and 29% respectively while the 

control group had 19% CR and 60% PR (p<0.01).  The data generated by this trial led to the 

approval of Ad-p53 under the commercial name of Gendicine by the China Food and Drug 

Administration for use in head and neck cancer patients (Peng, 2005; Roth, 2010).  A number 

of reviews now chart the development and exciting prospects of cancer immunotherapy 

(Devaud et al, 2013; Rosenberg, 2014; Schumacher and Schreiber, 2015; Yang, 2015) and in 

2013 Science named Cancer Immunotherapy the Breakthrough of the Year (Couzin-Frankel, 

2013). 

When T cells were found to be able to recognise and kill cancer cells (Wolfel et al, 1989), it 

was thought that T cell therapies would be the most effective form of immunotherapy. This is 
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due to our belief that T cells have an exquisite specificity for epitopes within tumour antigens 

and are able to effectively kill cancer cells in a controlled manner. CTLs can be stimulated in 

a number of ways such as through the use of dendritic cells (DCs) (Zizzari et al, 2011), peptide 

vaccines (Bae et al, 2012), DNA vaccines (Nguyen-Hoai et al, 2012) and natural killer cells 

(Anderson et al, 2012). 

DCs are APCs that are able to cross present by ingesting and processing extracellular antigens 

and presenting them on MHC class I molecules (Nierkens et al, 2013), therefore they have 

received a lot of attention for their potential use in cancer immunotherapy.  DC therapy 

involves extracting the patient’s own monocytes and activating them to DCs, a process of 

maturation that requires cytokine stimulation and the feeding of cancer antigens to the DCs. 

The DCs are then injected back into the body in order to stimulate the immune system to 

eliminate the antigen expressing cancer cells (Sabado and Bhardwaj, 2013). A patient who 

relapsed twice, was given DC therapy between January (when she relapsed for second time) 

and the following August during which time the disease remained stable (for 9 months) until 

further progression and death.  An advantage of DC therapy was that there were no adverse 

effects observed locally or generally (Massumoto et al, 2008). Alternatively, DCs pulsed by 

peptide and injected into the skin led to a response rate of 28% in patients.  This percentage 

increased to 35.7% when immature DCs are injected straight into the tumour and even higher 

to 40% for advanced pancreatic cancer (Nakamura et al, 2012). 

When a tumour antigen is secreted into the circulation in high levels, immune tolerance can be 

induced in the thymus. CD8α
−
Sirpα

+
, a subset of DCs, are able to capture tumour antigens in 

the blood, which can induce tolerance through a direct interaction with Tregs or negative 

selection. Tregs are cells which are part of the tolerance system which prevents   autoimmunity 

(Pacholczyk and Kern, 2008; Baba et al, 2012b). Simultaneous Treg depletions (using anti-
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CD25 antibodies for instance) may aid the effectiveness of immunotherapy in some cancer 

types where Treg infiltration into the tumour is rife (Jing et al, 2011; Baba et al, 2012a). 

Monoclonal antibodies are used to treat a number of cancers including low-grade or follicular 

non-Hodgkin's lymphoma (NHL) and CLL through treatment with rituximab, which is a CD20 

specific antibody. Rituximab targets CD20 present on the surface of the B cells including the 

malignant NHL and CLL cells (Yang et al, 1999). The VEGF inhibitor Bevacizumab is a 

humanised IgG1 antibody which blocks angiogenesis therefore restricting a tumours ability to 

gain a blood supply. It has been shown to be effective in a number of cancers including OVC, 

where 16–21% of patients with relapsed OVC responded (Garcia and Singh, 2013) while 

efficacy was shown in colorectal cancer (CRC) (McCormack and Keam, 2008) and 

glioblastoma (Carter et al, 2016). 

It is likely that the best strategy for the effective treatment of cancer, where antibody therapies 

are not the answer, may include a combination of conventional and immunotherapy techniques 

(Peng, 2005) or even a combination of immunotherapy techniques as demonstrated in 

increasing numbers of mouse models (Bose et al, 2012) and clinical trials (Karan and Van 

Veldhuizen, 2012; Ciccarese et al, 2016; Head et al, 2016). Subsequently adoptive T cell 

therapy has been shown to be very promising with the number of cells being returned to 

patients (Gattinoni et al, 2005) and their status – activated but not matured (Klebanoff et al, 

2011), being the main considerations. TIL therapy has been used to treat patients with stage 

IV melanoma.  TILs are obtained from the blood, lymph nodes or from a tumour tissue biopsy. 

TILs are isolated, activated and expanded using IL-2 in vitro.  The patient undergoes lympho-

depleting chemotherapy prior to the T cells being injected back in to the blood (Kvistborg et 

al, 2012). 

A recent and promising therapy approach has been in the area of checkpoint inhibitors. The 

immune checkpoints cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) and programmed 
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death 1 (PD-1) are on the surface of activated T cells and are negatively regulating receptors.  

CTLA4 diminishes the role of the receptor CD28 in the activation of  T cells by competing for 

its ligands (Rudd et al, 2009). PD-1 surface receptor moderates T cells in the periphery during 

an immune response and prevents response to self antigens. When it interacts with its ligand, 

PD-L1, it prevents T cell proliferation and cytokine release (Freeman et al, 2000). A significant 

rise in CD8+ TILs was observed when PD-1 was blocked by antibody with improved IFN-γ 

secretion  (Kodumudi et al, 2016).  

There are a number of excellent reviews in this area of research that aim to identify and discuss 

effective immunotherapy strategies for the future. These include cellular immunotherapy 

(Smits et al, 2011), whole cell vaccines (Keenan and Jaffee, 2012),  multidrug resistance 

(Curiel, 2012), DCs (Palucka and Banchereau, 2012), oncolytic viruses (Guo et al, 2015) and 

nanotechnology (Goldberg, 2015). Targeted therapeutic strategies along with ever improving 

designs in clinical trials pave the way for further success (Mellman et al, 2011). 

A combination therapeutic approach has for a long time been seen as the best line of attack 

against cancer, using conventional therapy to reduce the tumour load and immunotherapy to 

removal residual and at times, dissipated disease.  

In addition, combinations of immunotherapy could further enhance survival, reducing residual 

disease where there are escape variants and where the cancer is heterogeneous in its targets. 

Combining the antibodies anti-CTLA-4 and anti-4-1BB revealed CD8+ immune responses 

against advanced MC38 tumours as well as establishment of memory T cells. Combination 

treatments reduced autoimmunity in comparison to a single antibody therapy (Kocak et al, 

2006) and often offer an opportunity to eliminate escape variants. Combination therapy could 

be the answer for drug resistant tumours as the resistance mechanisms of the tumour can be 

identified and targeted alongside. Two cell lines (breast and gastric cancer) resistant to 
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sacituzumab govitecan became susceptible to it through the use of an ATP-binding cassette 

(ABC) transporter inhibitor used in combination with antibody treatment (Chang et al, 2016). 

ABC transporters can cause drug resistance by efflux-removal of the drug from the cell 

(Borges-Walmsley et al, 2003). 

Promising combination therapies utilising antibodies include Lapatinib with trastuzumab in 

Her2 positive breast cancer (Baselga et al, 2012), Dabrafenib and Trametinib in relapsed OVC 

(Robert et al, 2015), carboplatin and pemetrexed in advanced non-small cell lung (NSCL) 

cancer (Zukin et al, 2013), pidilizumab and rituximab in follicular lymphoma (Westin et al, 

2014), albumin-bound paclitaxel and gemcitabine in pancreatic cancer (Von Hoff et al, 2013), 

nivolumab and ipilimumab in untreated metastatic melanoma (Larkin et al, 2015), cisplatin and 

topotecan or cisplatin and gemcitabine in advanced CC (Leath et al, 2013) and bevacizumab 

plus oral capecitabine plus irinotecan in metastatic colon cancer (Ducreux et al, 2013). 

1.5.2 The role of immunotherapy to remove MRD from leukaemia patients in remission 

Minimal residual disease (MRD) refers to the number of cancer cells present in a patient’s 

body, particularly in leukaemia patients where MRD tends to be dissipated rather than 

discretely located. Treatment for leukaemia is often successful however, recurrence is seen in 

about 50% of younger patients and 90% of older AML patients (Schlenk and Döhner, 2013) 

and MRD provides a way to predict relapse 2-3 months prior to the development of symptoms 

(San Miguel et al, 1997). AML patients with cytogenetics abnormalities such as t(8;21) and 

t(15;17) are 80% more likely to relapse than those with normal karyotypes in their blasts 

(Savani, 2010) and patients with the translocation t(8;21) were found to relapse more than once 

while patients with the t(15;17) translocation showed only one relapse (Garson et al, 1989). 

Death of patients with leukaemia are generally due to disease relapse and patients in first 

complete remission who are positive for MRD prior to hematopoietic cell transplantation 
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(HCT) were more likely to die (2.61 times) or relapse (4.9 times) a second time than patients 

who were MRD negative (Walter et al, 2013).  

Immunotherapy, the stimulation of a patient’s immune system to kill diseased cells, provides 

a possible method to remove MRD from cancer patients in first remission, when the burden of 

disease is low. In addition, immunotherapy should be specific to the diseased cells unlike other 

conventional treatment options (Liu and Kline, 2013). 

1.5.2.1 Importance of T cell responses in controlling cancer 

In the 1890’s Dr William B Coley, the “Father of Cancer Immunotherapy”, realised that cancer 

patients who had contracted acute bacterial infections could concurrently have a reduction in 

their tumour size. Dr Coley went on to successfully treat a patient with an inoperable malignant 

tumour by injecting live bacteria into the mass thus establishing the field of cancer 

immunotherapy (Nauts et al, 1946).   It has been known that the immune system is able to fight 

against cancer with evidence for this from patients who are immunocompromised by 

transplantation, HIV and severe combined immunodeficiency syndrome, all of whom have an 

increased incidence of developing cancer (Penn, 1988). Expansion of tumour-specific T cells 

can be introduced into cancer patients in the form of vaccines targeting TAAs or by adoptive 

T cell therapy, thereby improving the eradication of cancer cells by the immune system 

(Dougan and Dranoff, 2009). Therefore, it is important to understand which TAAs are being 

expressed by tumour cells, and the TAA-specific T cells available within patients to respond 

to them, in order to determine if a particular immunotherapy treatment could reasonably be 

expected to be effective. Cancer immunology involves understanding the mechanisms of 

actions of the pathways that are important for immune surveillance and tumour rejection to get 

a better insight into how they can fail. To this end, immunotherapy, which boosts the patient’s 

own immune system to recognize and eradicate cancer cells, is believed to hold the most 

potential for a life-long cure (Finn, 2012). A number of leukaemia associated antigens (LAAs) 
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have been found in recent years including B melanoma antigen (BAGE) (Boel et al, 1995), 

Preferentially Expressed Antigen in Melanoma (PRAME) (Ikeda et al, 1997), Receptor for 

Hyaluronan Mediated Motility (RHAMM) (Greiner et al, 2002) and WT1 (Call et al, 1990). 

Some LAAs have been found to be recognised by antibodies in leukaemia patients at disease 

presentation such as PASD1, SSX2IP and Glutamate Receptor, Ionotropic, N-Methyl D-

Aspartate-Like 1A Combined Protein (GRINL1A) (Guinn et al, 2005) and RHAMM (Greiner 

et al, 2006). LAAs have been shown to be associated with clinical outcome in AML patients 

e.g. DNA microarray analysis of 116 AML patients showed that increased expression of G250 

mRNA was linked with longer overall survival (P = 0.022). LAAs such RHAMM and Survivin 

have been shown, in vitro, to be associated with an increase in the cellular proliferation of 

leukemic blasts. In contrast to this in vitro function, elevated expression of LAAs such as 

SSX2IP and PRAME were found to be associated with an improved clinical outcome in AML 

(Greiner et al, 2008). 

1.5.2.2 Antigen-specific T cells 

When a healthy cell starts to undergo the process of tumourigenesis it will express antigens, at 

levels or with mutations, which were not expressed previously (van Bruggen et al, 1991).  

These are known as TAAs. TAAs can be used as targets for immunotherapy, allowing scientists 

to stimulate the immune system to kill tumour cells (Khodadoust and Alizadeh, 2014). As 

conventional treatments can induce remission in many AML patients, then immunotherapy has 

the potential to kill residual tumour cells, MRD, and prevent or delay relapse (Barrett and Le 

Blanc, 2010). 

Since TAAs are self-antigens which are expressed abnormally in tumour cells they are targeted 

by the adaptive branch of the immune system. The idea that cancer cells express antigens that 

are specific to them has been known for many years starting with the work of the Boon group 

who identified the cancer-testis antigen (CTA) MAGE-1, a melanoma antigen (van Bruggen et 
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al, 1991).  Studies showed that T cells were able kill cancer cells. They showed that they could 

expand TILs using IL-2, inject the TILs into mice with metastatic tumours and they 

demonstrated that these TILs were up to 100 times more effective at killing cancer cells than 

lymphokine-activated killer (LAK) cells (Rosenberg et al, 1986). Indeed melanoma TILs were 

better at killing autologous tumour cells when compared to allogeneic TILs (Muul et al, 1987) 

and 6/13 melanoma patients who received TILs specific for the TAA MART-1 along with high 

dose of IL-2 were observed to achieve tumour regression of MART-1 positive tumours (Dudley 

et al, 2002).  

Tumour antigens provide a promising target for immunotherapy, as a strategy in the quest to 

fight cancer, and require further investigation since few antigens have been identified in some 

of the most difficult to treat cancers such as adult leukaemia and OVC. To date immunotherapy 

clinical trials have had a range of efficacy showing both potential and a need for further 

investigation to optimise treatments especially in combination with conventional therapies 

(Dudley et al, 2002; Khodadoust and Alizadeh, 2014; Sterman et al, 2015) and each other 

(recently reviewed in acute leukaemia by Ishii and Barett, 2016 and in OVC by Coukos et al, 

2016). 

Our interest is in identifying the tumour antigens targeted by T cells in acute leukaemia patients 

and novel antigenic targets for OVC where few immunotherapeutic targets have been found to 

date. 

1.5.3 The identification of tumour antigens as targets for immunotherapy 

SEREX (Sahin et al, 1995), SERPA (Klade et al, 2001) and peptide elution from MHC for 

mass spectrometry analysis (Castelli et al, 1995) are commonly used to identify antigenic 

targets in a cancer type. There are of course pros and cons to each including cost and labour 

intensity. Most of the focus concerns tumour types which lack suitable targets for 
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immunotherapy and for which conventional or current therapies still do not overcome poor 

survival rates (≤50% over 10-years post-diagnosis). An additional major benefit of new antigen 

identification is that such antigens can provide invaluable insight into disease mechanisms 

(Guinn et al, 2008), act as biomarkers of disease stage (Guinn et al, 2006) and predict survival 

rates at disease presentation (Greiner et al, 2006; Guinn et al, 2007b; 2009; Liberante et al, 

2013). 

The quest to identify novel antigens has been the focus of a number of studies over the last four 

decades (reviewed in Vigneron et al, 2013; Lu & Robbins, 2016). Autologous typing had been 

used to identify antigens including alpha fetoprotein in hepatoma and germ cell tumours, 

carcinoembryonic antigen (CEA) in gastrointestinal cancers, prostate-specific antigen in 

prostate cancer, cancer antigen 125 (CA-125) in OVC and AU in melanomas (reviewed in 

(Old, 1981; Thomas and Sweep, 2001). However this technique has limitations, including a 

requirement that the tumour cells under examination can be cultured ex vivo. The recognition 

of antigens by low titre antibodies in patients often prevents their further characterisation.  

1.5.4 The quest to identify CTAs 

Tumour antigens are classified into the following categories: CT, mutational, differentiation, 

amplified/overexpressed, splice variant and viral antigens (Tureci et al, 1999). CTAs show 

restrictive expression, their presence only in tumours and in testis rendering them very 

attractive therapeutic targets. The testis is an immunologically protected site i.e. lacking in 

MHC class I expression (Chen et al, 1997), therefore targeting CTAs should not lead to 

catastrophic auto-immune responses against healthy tissue (Scanlan et al, 2004). Few CTA 

have been identified in OVC, however I have reviewed the most notable relevant to OVC and 

acute leukaemia, and therefore this thesis, in Section 1.7. 
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The Boon group developed representational difference analysis and were successful in 

identifying a number CTAs predominantly in melanoma patient samples, including the MAGE 

family of CTAs, and one antigen from renal cancer, RAGE (Martelange et al, 2000; Tyson et 

al, 2002). In 1995 Sahin et al. (Sahin et al, 1995) described the use of the SEREX which could 

identify antigens in a range of cancer tissues (Sahin et al, 1995; Tureci et al, 1999). This 

technique uses patient immunoglobulins (IgG) from peripheral blood sera to immunoscreen 

cDNA from tumours, cell lines or normal testis tissues in the form of polypeptides on the capsid 

surface of the phage. There are over 2,000 tumour antigens detailed in the Cancer Immunome 

database (http://ludwig-sun5.unil.ch/CancerImmunomeDB) each identified using the SEREX 

technique (Tureci et al, 2005). SEREX was validated by the identification of known antigens 

such as synovial Sarcoma X2 (SSX2) (Tureci et al, 1996), mutated p53 (Scanlan et al, 1998) 

and the AKT oncogene (Obata et al, 2000).  

To maximise the likelihood of finding CTAs, cDNA libraries made from healthy testis cDNA, 

which also benefit from a wide range of gene expression due to global promoter 

hypomethylation and their rapid proliferation (compared to many other tissues), have been 

immunoscreened with patient sera. This has led to the identification of a number of CTAs 

including cTAGE-1, NY-ESO-1, SSX2 (Jager et al, 1999; Eichmuller et al, 2001) and PASD1 

(Liggins et al, 2004b; Guinn et al, 2005). One-third of all antigens identified by SEREX were 

found to be novel and many have progressed from bench-to-bedside as the focus of clinical 

trials, most notably those targeting NY-ESO-1 positive tumour cells (von Boehmer et al, 2013; 

Sonpavde et al, 2014).  

Other methods for the identification of tumour antigens, with relevance to this thesis include:- 
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1.5.4.1 The in silico identification of TAAs and the verification of their expression using  reverse 

transcription – polymerase chain reaction (RT-PCR) and real time PCR (RQ-PCR) 

The identification of tumour antigens through the mining of online data has provided a rich 

resource of known antigens. Their verification through RT-PCR and RQ-PCR has confirmed 

the expression of a number of previously identified TAAs in a range of solid and 

haematological malignancies (Adams et al, 2002; Forgber et al, 2009; Krackhardt et al, 2002; 

Qian et al, 2007; Wang et al, 2009). Although this has provided important antigen expression 

information and a good starting point to identify potential antigenic targets in a range of 

cancers, these studies are entirely limited to tumour antigens that had already been identified. 

1.5.4.2 cDNA microarrays  

The differential expression of tumour antigens and/or protein biomarkers between cell and 

disease subtypes have been directly compared on cDNA microarrays and has allowed our 

improved understanding of lymphomas (Nishiu et al, 2002) and aided our development of 

personalised therapies (Brennan et al, 2007).  Microarray technology is able to distinguish 

between different subtypes of a particular cancer as well as identify the expression of novel 

antigens (De Pitta et al, 2005).  Minimal residual disease is a very important tool in the 

detection of impending relapse in patients who have had some form of treatment.   Markers for 

minimal residual disease in acute lymphocytic leukaemia were identified by gene profiling 

(Chen et al, 2001b). cDNA microarray has been used to identify the frequency of elevated 

tumour antigen expression in AML (Guinn et al, 2005) and also associations between specific 

cytogenetic abnormalities and relative levels of tumour antigen expression (Guinn et al, 2008). 

Microarrays have also been used to elucidate the possible function of tumour antigens such as 

SSX breakpoint 2 Interacting Protein (SSX2IP) in a sub-group patients harbouring cytogenetic 

abnormalities such as t(8;21) associated with mitotic spindle failure and the association 

between the elevated expression of some tumour antigens (SSX2IP, RHAMM and 
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SURVIVIN) at disease presentation and patient survival (Guinn et al, 2009) in AML. 

1.5.4.3 Mass Spectrometry  

Mass spectrometry involves the analysis of peptides eluted from the MHC of antigen presenting 

cells (Dutoit et al, 2012; Knights et al, 2006; Stickel et al, 2009) or proteins in serum 

(Mohamedali et al, 2009). This area is reviewed more completely by Hillen and Stevanovic, 

2006 and Stern, 2007.   Mass spectrometry has demonstrated that as many as 10,000 different 

peptide species are presented by individual class I MHC alleles (Zarling et al, 2000). The 

technique, its strengths and limitations are extensively reviewed by Yates et al, 2009. 

1.5.4.4 Protein microarrays  

Protein microarrays involve the immunoscreening of protein arrays (approximately 9,000 full 

length proteins and functional domains) which may be purchased from companies such as 

Invitrogen, Functional Genomics or Cambridge Protein Arrays. Antibodies in sera from 

patients (Gunawardana and Diamandis, 2007; Chen and Snyder, 2010; Life Technologies, 

2014) can be detected using generic secondary antibodies (fluorescently conjugated anti-

human IgG) and visualised on microarray scanners. 

1.5.5 Have we identified enough tumour antigens? 

The debate now focusses on whether we have found enough tumour antigens. Supported by 

the National Cancer Institute, Cheever et al. (Cheever et al, 2009) reported a short-list of 

antigens which demonstrated properties and should be funded by agencies to ensure a limited 

number of the most promising targets were realised in immunotherapy clinical trials (detailed 

in Section 1.5). However in some cancers, and most notably haematological malignancies, few 

of the antigens on this short-list were expressed with a frequency that would justify targeting 

them in clinical trials (reviewed by Guinn, 2015). For some cancers, effective immunotherapy 

targets have not been identified (i.e. OVC and adult acute lymphocytic leukaemia) and better 
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targets that may also help us better understand the biology of the disease and provide 

biomarkers. The antigens that have already been identified in acute leukaemia and OVC and 

relevant to my studies are reviewed in Sections 1.6 and 1.7. 

1.6 Tumour associated antigens 

By definition tumour associated antigens are recognised by the immune system by virtue of 

their differential expression in cancer cells compared with healthy cells. They differ from CTAs 

in that CTAs have a unique property of expression, which is restricted to cancer cells and 

immunologically protected MHC class I negative tissues, such as the testes and placenta. Other 

healthy tissues show no or very little expression. This section describes the main tumour 

antigens I have investigated in the studies described in this thesis and provides background 

information as to why they were chosen for my studies.  

1.6.1 Proteinase 3 

Proteinase 3 (PR3) is a serine proteinase present in the primary granules of neutrophils and 

monocytes.  It has been found to be involved in Granulomatosis with polyangiitis, formerly 

called Wegener's granulomatosis, a vasculitis disease that causes inflammation of the blood 

vessels mainly affecting lungs, kidneys and sinuses (Niles et al, 1989).  Using 

immunocytochemistry (ICC) and flow cytometry PR3 was detected in AML and CML patient’s 

bone marrow but not in ALL or CML patient samples (Dengler et al, 1995). A PR3 HLA-A2-

restricted peptide was recognized by CTL that killed leukaemia cells from HLA-A2 patients 

(Molldrem et al, 1996) and a novel peptide derived from PR3, restricted to HLA-B*1510 

positive patients, was found in isolated leukocytes from a CML patient (Knights et al, 2006). 

1.6.2 SSX2IP 

SSX2IP was discovered using a yeast two-hybrid screening to identify proteins that may react 

with SSX2.  Using SSX2 as a probe, SSX2IP was revealed as a partner (de Bruijn et al, 2002).  
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It is thought that SSX2IP regulates the function of SSX2 in the testes and malignant cells (de 

Bruijn et al, 2002). 

The SSX2IP gene is located on chromosome 1p22.3 (Maglott et al, 2007) and includes over 46 

kb and consists of 14 exons however the first one is not translated (de Bruijn et al, 2002).  The 

gene contains 33 introns. 18 different mRNAs are produced; 17 spliced and 1 un-spliced form 

(Thierry-Mieg and Thierry-Mieg, 2006). SSX2IP in rodents is known as the afadin DIL 

domain-interacting protein (ADIP) (Asada et al, 2003) and in chickens is named light-inducible 

and clock-controlled gene (LCG) (Hatori et al, 2006). 

SSX2IP was identified as a leukaemia associated antigen through SEREX immunoscreening 

of a testes cDNA library and was shown to be preferentially recognized by sera from AML 

patients when compared to normal donor sera. RT-PCR showed that SSX2IP was expressed in 

33% of presentation AML patient samples, with no expression in normal donor haematopoietic 

samples (Breslin et al, 2007; Guinn et al, 2005).   In mice, ADIP has been shown to interact 

with afadin (Asada et al, 2003), the human equivalent of AF-6. AF-6 may be involved in signal 

transduction at special cell–cell junctions (Prasad et al, 1993). Microarray analysis indicated 

that SSX2IP was expressed at lower levels in AML patients harbouring a t(8;21) translocation.  

This translocation is linked with neutralizing the spindle checkpoint leading to the higher levels 

of aneuploidy seen in this sub-group of AML (M2) patients.  SSX2IP expression levels, and 

those of a number of genes involved in the cell cycle, were found to be concurrently elevated 

in acute promyelocytic leukaemia harbouring the t(15;17) translocation (Denniss et al, 2007). 

Dennis et al (2007) investigated whether the low frequency of SSX2IP-positive cells observed 

by ICC and ≤16% expression detected by surface staining in flow cytometry was due to a cell 

cycle-related expression. Human myeloid cells were blocked at G0 phase of the cell cycle and 

SSX2IP expression peaked at 24-26 hours after release. Blocking the same cells at the G1/S 
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interface showed expression peaked at 14-17 hours on the cell surface. This peak expression 

of SSX2IP during mitosis was confirmed by confocal microscopy (Denniss et al, 2007).   

1.6.3 Survivin 

Survivin is a member of inhibitor of apoptosis (IAP) family and is encoded by the Baculoviral 

IAP Repeat Containing 5 (BIRC5) gene.  The human survivin gene is located on chromosome 

17q25 and is 14.7 kb (Ambrosini et al, 1997). It has been found to be mainly expressed during 

fetal development in undifferentiated tissues, regulating the cell cycle by blocking apoptosis 

via caspase 9, which is activated in both extrinsic and intrinsic pathways (LaCasse et al, 1998). 

This implies survivin is erroneously activated in tumour cells. Survivin has also been observed 

in G2/M in a cell cycle-dependent manner and is capable of binding to mitotic spindle 

microtubules suggesting checkpoint regulation (Li et al, 1998).  

Survivin has been identified in a wide variety of cancers including lung adenocarcinoma, 

squamous lung cancer, breast, prostate, pancreatic and colon carcinomas (Ambrosini et al, 

1997), soft tissue sarcomas (Kappler et al, 1997) and malignant glioma (Chakravarti et al, 

2002). Analysis of NHL revealed 70-90% expression of survivin in 55% of high grade 

lymphomas while no expression was detected in low grade lymphomas (Ambrosini et al, 1997). 

Recent studies have suggested that survivin may not be specific to cancer cells but some normal 

cells may also express it at lower levels. Studies have detected survivin in normal adult cells, 

such as basal keratinocytes (Dallaglio et al, 2014), human cord blood cells CD34+, T cells 

(Fukuda et al, 2002), vascular endothelial cells (Mesri et al, 2001) and erythroid cells 

(Gurbuxani et al, 2005). Any disturbance in the expression of survivin could cause antagonistic 

effects on all or any of these cells. 
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1.6.4 Tyrosinase 

Tyrosinase was detected and identified in melanoma cells when CTLs that had been isolated 

from HLA-A2 patients were shown to recognise and lyse tyrosinase positive tumour cells 

(Brichard et al, 1993).  Tyrosinase is expressed in normal melanocytes such as skin and mucous 

membrane but not in other normal tissue (Jim'enze et al, 1988). CD4+ T cells obtained from the 

peripheral blood of a melanoma patient were found to be reactive to synthetic peptides derived 

from tyrosinase. Clones were able to recognize the tyrosinase peptide p386-406 when bound 

to the HLA-DR15 (DRB1*1501) molecule (Kobayashi et al, 1998). However tyrosinase 

expression was found to be lacking in melanoma metastases in comparison to gp100 and 

MART. This absence seems to be related to the amount of infiltrating CD8+ and CD4+ T cells 

implying that the immune cells mount a response against cells expressing tyrosinase (Bartlett 

et al, 2014). 

1.6.5 Wilms tumour 1 (WT1)  

A mutation in the WT1 tumour suppressor gene inactivates it, leading to the development of 

Wilms' tumour of the kidney (Haber et al, 1990). It encodes a protein with four C-terminal 

Zinc-fingers characteristically found in transcription factors (Hohenstein and Hastie, 2006). 

WT1 genetic mutations are found in many syndromes: Denys-Drash syndrome (Pelletier et al, 

1991), Frasier syndrome (Klamt et al, 1998) and WAGR (Wilms' tumour, aniridia, 

genitourinary malformations, mental retardation) syndrome (Gessler et al, 1990). In some 

malignancies the detection of minimal residual disease can be based on WT1 transcript levels, 

these include acute leukaemia (Inoue et al, 1994), desmoplastic small round cell tumours (Lae 

et al, 2002), breast cancer (Silberstein et al, 1997), de novo lung cancers (Oji et al, 2002), and 

the differentiation of retinoblastoma cells (Wagner et al, 2002). Due to post-transcriptional 

modifications there are 24 different isoforms of WT1 mRNA known, each with distinct 

functions (Wagner et al, 2003b). 
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Of a cohort of 73 patients, immunoglobulins IgM and IgG WT1 antibodies have been found in 

55% of haematological cancers and together were detected in 33%. While out of 43 healthy 

volunteers 16% had IgM, 5% IgG and none had both (Elisseeva et al, 2002). Patients who 

achieve greater overall survival and longer constant remission are observed to have a higher 

number of WT1-specific T cells compared to relapsed patients (Casalegno-Garduño et al, 

2016). T helper type 1 WT1 antibodies of the IgG1, IgG2, and IgG3 sub-classes were 

significantly higher in leukaemia and myelodysplastic syndrome patients’ blood than in healthy 

volunteers (Wu et al, 2005). 

1.7 CTAs  

The restricted expression of CT antigens to healthy MHC class I-deficient germline cells makes 

them appealing targets for immunotherapeutic strategies because they provide tumour-specific 

antigens for MHC class I-restricted CD8+ T cells (Smith and McNeel, 2010).  Developing 

immunogenic cancer vaccines that target these antigens has become a priority in how cancer is 

diagnosed and treated.  Boon and colleagues were the first to clone a human tumour antigen 

named melanoma antigen-1 or MAGE-1 (van der Bruggen et al, 1991).  Subsequently other 

CT antigens were discovered by the group namely BAGE and GAGE gene families.  Common 

characteristics to CT antigens include mostly being encoded by multigene families, often 

mapping to the X chromosome, having their expression level epigenetically regulated with 

drugs such as 5-aza-2-deoxycytidine and although the functions of many are still unidentified 

they are known to be involved in tumourigenesis (Smith and McNeel, 2010). 

1.7.1 HAGE 

In 2002 Adams et al investigated the expression of 10 CT antigens in presentation 26 AML 

and 42 CML. They found little or no expression of MAGE-A1, -A3, -A6, -A12, BAGE, GAGE, 

LAGE-1, NY-ESO-1 and RAGE. However, in contrast to previous studies (Martelange et al, 

2000) they found that HAGE was expressed in 57% of the CML patient samples examined and 
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23% of AML patient samples by RT-PCR, and confirmed by Q-PCR. HAGE was found to be 

induced in a dose dependent manner by 5-aza-2′-deoxycytidine (Stankovic et al, 2008) and 

detectable by qPCR in 14.8% (11/74) AML patients (Chen et al, 2011).  

TMAs with 16 different tumours on them exhibited expression of HAGE protein in 75% of 

cancerous tissues including liver, kidney and stomach, whereas no or very little expression was 

found in healthy tissues (Mathieu et al, 2010). Silencing the HAGE gene in melanoma 

decreases the RAS protein expression, which in turn leads to a reduction in the activation of 

the AKT and ERK signalling pathways, resulting in inhibition of tumour growth (Linley et al, 

2012). HAGE appears to be a marker for poor prognosis in breast cancer since high expression 

of HAGE was linked to aggressive disease (p<0.01) and poor survival (p<0.001) (Abdel-Fatah 

et al, 2014). HAGE is part of the DEAD-box RNA helicases which implies that its function 

may include RNA metabolism in malignant cells (Riley et al, 2009). 

1.7.2 MAGE family 

MAGE-A4 expression was studied in 74 patients with ovarian tumour, including 10 with serous 

cystadenomas, 11 with serous tumours of borderline malignancy and 53 with serous 

carcinomas. Fourteen patients were stage I or II and 39 were stages III or IV. Using 

immunohistochemistry (IHC) MAGE-A4 expression was found to be present in 30/53 (57 %) 

of the serous carcinomas and in 1/11 (9 %) of the serous tumours of borderline malignancy but 

no staining was detected in the normal ovary. Kaplan-Meier survival curves were constructed, 

followed by the log rank test to determine MAGE-A4 expression and survival. A significant 

inverse correlation was found between MAGE-A4 expression and patient survival. Advanced 

stage cases (stages III and IV) expressing MAGE-A4 exhibited the poorest prognosis 

(Yakirevich et al, 2003). MAGE-1 was found, by RT-PCR, to be expressed in 15/27 (56 %) 

malignant ovarian tissue specimens (Gillespie et al, 1998). Through enzyme-linked 

immunosorbent assay (ELISA), serum MAGE-4 protein was considered positive in 13/60 (22 
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%) of primary OVC patients and a predictor of poor survival following surgery (Kawagoe et 

al, 2000). RT-PCR was used to test 44 ascites specimens. BAGE mRNA was detected in 15/27 

samples (56 %), MAGE-1 mRNA was detectable in 2/27 samples (7 %), 8/27 samples (30 %) 

had detectable MAGE-3 mRNA, and 8/27 samples (30 %) had detectable GAGE1/2 mRNA 

(Hofmann and Ruschenburg, 2002; Zhang et al, 2010). Cox regression model showed the 

expression of MAGE-A3 as a marker of poor prognosis in non-small cell lung carcinoma 

(NSCLC) (Gure et al, 2005) and in pancreatic ductal adenocarcinoma by quantitative real-time 

RT-PCR assay (Kim et al, 2006). 

1.7.2.1 MAGE immune responses 

MAGE-A3 antigen was the first human TAA shown to be recognized by CD8+ T cells (Gaugler 

et al, 1994). Out of 122 patients with non-small cell lung carcinoma (NSCLC), 35 % developed 

recurrent disease following treatment with a recombinant MAGE-A3-based vaccine while in 

the placebo group numbering 60, 43 % of the patients relapsed (Brichard and Godechal, 2013). 

MAGE-A3 in combination with the immunostimulant AS15, produced a better antigen-specific 

response in NSCLC patients (Brichard and Godechal, 2013). T cells were observed to react 

against epitopes from MAGE-A1, MAGE-A2 and MAGE-A3 in multiple myeloma patients 

(Goodyear et al, 2005). Multiple myeloma patients with advanced disease produce an immune 

response against MAGE-C1/CT7 (Fontecedro et al, 2007). 

1.7.3 NY-ESO-1 

NY-ESO-1 is a 22 kDa protein located at Xq28 identified by SEREX in oesophageal squamous 

cell carcinoma patient serum (Chen et al, 1997) and mRNA was detected in 41/123 (33 %) 

oesophageal cancer patients (Fujita et al, 2004). mRNA has also been detected in a variety of 

other cancers; melanoma 23/67, breast cancer 10/33, prostate cancer 4/16 and bladder cancer 

4/5 (Chen et al, 1997). NY-ESO-1 protein was found by IHC in 4/11 metastatic melanoma, 

2/14 breast cancers, 2/9 bladder cancers and 2/3 synovial sarcomas but not in colon or renal 
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cancers (Jungbluth et al, 2001). Increased expression of NY-ESO-1 in melanoma samples was 

shown to lead to a decrease in the number of CD3+ tumour infiltrating lymphocytes (Giavina-

Bianchi et al, 2015). 

1.7.3.1 NY-ESO-1 in immunotherapy 

In clinical trials T cell responses were detected in 10/11 patients expressing NY-ESO-1 

antibody while no immune response was observed in NY-ESO-1 negative patients (Jager et al, 

2000). Using tetramers to HLA-A*0201/NY-ESO-1157-165, investigators found specific T 

cells in multiple myeloma patient samples, which when expanded were able to lyse primary 

tumour cells (Rhee et al, 2005). 

Clinical trial responses to NY-ESO-1 targeted therapy have been described by a number of 

studies in the last 15 years. These include CD4 responses to peptide vaccines administered with 

ISCOMATRIX to patients with advanced melanoma (Klein et all, 2015), antibody and T cell 

response following injection of overlapping long NY-ESO-1 peptides with adjuvants in 

patients with OVC (Sabbatini et al, 2012), and remissions in patients who have received 

adoptive therapy for melanoma and synovial cell sarcoma using lymphocytes with a modified 

TCR that recognises NY-ESO-1 (Robbins et al, 2011 and 2015). NY-ESO-1, including its 

targeting in clinical trials, has been recently reviewed by Esfandiary and Ghoafouri, 2015. 

1.7.4 PASD1  

The CTA per ARNT SIM (PAS) domain containing 1 (PASD1) gene was identified through 

the immunoscreening of testes cDNA libraries (Liggins et al, 2004b; Guinn et al, 2005) using 

the SEREX technique (Sahin et al, 1995). A full-length cDNA clone encoding the novel antigen 

OX-TES-1 was identified through the immunoscreening of a testis cDNA library with diffuse 

large B-cell lymphoma (DLBCL) sera (Liggins et al, 2004b). It was initially named OX-TES-

1 and subsequently given the HUGO approved name PASD1. Guinn et al, 2005 also identified 
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PASD1 through the immunoscreening of a testis cDNA library with presentation AML sera. 

The sequence was initially named GKT-AML-20. Further investigation of the structure of the 

PASD1 transcripts identified by the two groups indicated that OX-TES-1 encoded a different 

variant of PASD1 (named PASD1_v1) than GKT-AML20 (subsequently named PASD1_v2). 

Liggins et al, 2004a revealed that the longer PASD1_v2 sequence had retained intron 14 during 

alternative splicing such that the stop codon in intron 14 was read and led to the production of 

a shorter PASD1b protein (Figure 1.4). 

1.7.4.1 Expression of PASD1 mRNA variants in cell lines/tissues 

PASD1_v1 mRNA was detected by RT–PCR in seven DLBCL-derived cell lines. PASD1_v2 

mRNA appears to be preferentially expressed in cell lines derived from non-germinal centre 

DLBCL. A number of investigations have demonstrated PASD1 expression in haematological 

malignancies including 4/12 (33 %) AML samples and 1/6 (17 %) CML (Guinn et al, 2005) 

(Table 1.2). In addition, PASD1 expression was found at contrasting frequencies of 14/16 and 

<5 % in multiple myeloma (Sahota et al, 2006; van Duin et al, 2011) respectively. These data 

may reflect the differing techniques used for detection of PASD1 gene and protein expression 

and the site that probe sets bind in the 3’ region of the cDNAs. 

1.7.4.2 Expression of PASD1 protein variants in different cell lines and tissues 

Markers were used to determine the prognostic value of PASD1. Germinal markers CD10 and 

BCL-6 can indicate good prognosis whereas the non-germinal centre marker MUM1 is 

indicative of poor survival. The two de novo DLBCL patients’ who generated immune 

response to PASD1 were of a poor prognosis non-germinal centre subtype (Liggins et al, 

2004a). 
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Figure 1.4 Diagrammatic representation of the two known variants of PASD1. The longer PASD1_v1 transcript has a retained intron 14 which has a premature 

stop site. This is translated into a shorter PASD1a protein (LIggins et al, 2004a). The shorter PASD1_v2 transcript does not have a retained intron and is transcribed 

into the longer PASD1b protein. PASD1b is 134mino acids longer than PASD1b. 
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Table 1.2 PASD1 expression in human tissues (taken from Khan et al, 2014) 

 

In a cohort of haematological malignancy derived cell lines, the sub-cellular localisation of 

PASD1, as determined by immunostaining with monoclonal antibodies, was variable (Cooper 

et al, 2006). Cooper et al. showed that in the non-germinal centre DLBCL-derived cells OCI-

Ly3 (Yee et al, 1989), PASD1-1 strongly labelled the cell membrane and cytoplasm while there 

was no staining of these cells with PASD1-2. Expression of PASD1 was also demonstrated in 

the FEDP (ALK-negative anaplastic large-cell lymphoma) cell line in the cytoplasm. Strong 

Tissue Technique Reference 

Expression in 25 of 68 solid tumours  

Probing 

Northern blot 

arrays 

Liggins et al, 2004a    

A range of normal tissues including brain, liver, 

kidney, placenta, breast, uterus or ovary  

RT-PCR and 

ICC 

Cooper et al, 2006; 

Guinn et al, 2005 

4 of 12 AML patients, and 1 of 6 CML patients   
RT-PCR and 

RQ-PCR 
Guinn et al, 2005  

Normal testicular tissues expression was only found in 

the nuclei of a subpopulation of spermatogonia. 

Labelling intensity decreased with maturity of the 

spermatogoa. 

Immunostaining Cooper et al, 2006  

PASD1-1 expression in 21 of 51 DLBCL, 4 of 9 

mantle cell lymphoma, 4 of 15 follicular lymphomas, 

4 of 12 Burkitt’s lymphoma. PASD1-2: 11 of 52 

DLBCL, 2 of 4 MM, 4/10 peripheral T cell lymphoma 

and a range of other tumour cells from patients with 

haematological malignancies. 41 % overall. PASD1-1 

was mostly cytoplasmic and weak nuclear staining in 

DLBCL and MM. Stronger labelling towards the 

periphery of the tumour. PASD1-2 was nuclear 

staining. 

Immunostaining Cooper et al, 2006  

14 of 16 primary MM samples including 9 

presentation and 7 previously treated cases.  

Two of four primary MM tumour samples.  

RQ-PCR 

 

ICC 

Sahota et al, 2006 

PASD1 (22/25) cell lines derived from 21 B- and 4 T-

cell malignancies  
RT-PCR Liggins et al, 2010 

Not found in 78 basal cell carcinoma  RQ-PCR 
Ghafouri-Fard et al, 

2010 

3.4 % of 320 newly diagnosed and 264 relapse cases 

of MM  

Microarray using 

Affymetrix 

GeneChips 

van Duin et al, 2011  
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cytoplasmic labelling with PASD1-2 was also observed in a subpopulation of Granta519 cells. 

KM-H2, established from the pleural effusion of a patient with Hodgkin’s disease of mixed 

cellular type (Kamesaki et al, 1986) and the mantle cell lymphoma (MCL)-derived cell line 

Granta519 showed nuclear staining with PASD1-1 and PASD1-2 antibodies. K562 cells 

derived from a patient with myeloid leukaemia (Klein et al, 1976) and the Thiel multiple 

myeloma (MM) cell line all exhibited nuclear staining. The detection of nuclear staining was 

not unexpected and likely reflects the presence of a nuclear localisation signal in the common 

region of the PASD1-1 and PASD1-2 proteins and the role of PASD1 as a transcription factor 

(Xu et al, 2016) like many other SEREX-defined antigens (Chen, 2004).  

PASD1 has been shown to suppress circadian rhythms. The circadian clock regulates and 

responds to the physiological and environmental changes by regulating transcription in a 

roughly 24 h cycle. PASD1 through its interaction with CLOCK:BMAL1 reduces transcription 

regulation leading to transformation of cells (Michael et al, 2015).    

However, published studies to date have predominantly examined haematological 

malignancies with few studies indicating the finding of PASD1 in solid tumours (Table 1.2). 

This may reflect the fact that many studies do not publish negative data (discussed in Guinn, 

2014) or that the expression of PASD1 has not been examined in many solid tumours except 

basal cell carcinoma (Ghafouri-Fard et al, 2010). 

1.7.4.3 PASD1 in immune responses 

Humoral responses to PASD1 have been demonstrated through the use of SEREX (Guinn et 

al, 2005; Liggins et al, 2004b) that showed that at disease presentation 4 out of 10 patients with 

DLBCL, 6 out of 17 AML and 1 of 6 CML patients had already mounted humoral immune 

responses releasing antibodies into the peripheral blood volume of these patients. Similar 

antibody responses were not found in the periphery of 20 and 10 healthy donors in these studies, 
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respectively. SEREX is based on the existence of humoral immune responses but SEREX-

defined antigen are often also recognised by T cells, probably reflecting the dual role of CD4+ 

helper T cells in the elucidation of CD8+ and B cell responses (Lederman et al, 1992a; 1992b). 

The question remains why these humoral, and cellular, immune responses were insufficient to 

kill PASD1 positive tumour cells. One theory is that tumour cells may induce some immune 

response in the mid-stages of the cancers’ development, when there are enough tumour cells to 

be seen by the immune response, but as these tumour cells proliferate they downregulate the 

immune system of the patient and escape effective killing (Dunn et al, 2004). Many of the 

antigens recognised by SEREX are nuclear transcription factors with low immunogenicity. It 

is proposed that those antigens with high enough immunogenicity would have already induced 

tumour cell killing. Only antigens with poor immunogenicity would have escaped immune 

surveillance. Immunotherapy, therefore, offers a way to enhance immune recognition of CT 

and tumour-associated antigens by the immune system and induce effective residual tumour 

cell killing. Indeed the elevated expression of some tumour antigens at disease presentation has 

been shown to be associated with enhanced patient survival (Greiner et al, 2006; Guinn et al, 

2009; Liberante et al, 2013). It is proposed that during conventional therapy, the resulting 

tumour lysis leads to inflammation and provide the requisite “danger signals” (Matzinger, 

1994) which could cause the induction of effective anti-tumour immune responses. Cancer 

cells with elevated antigen expression would be better able to induce immune responses, when 

killed by chemo/radiotherapy, antigen would spill out, be mopped up by APCs, presented to 

the cellular immune system, that would lead to the killing of antigen positive tumour cells and 

subsequent epitope spreading (Chen et al, 2005; Dai et al, 2005). To support this there is 

increasing evidence that chemotherapy may have a synergistic effect with the immune response 

to support this possibility (Szczepanski et al, 2013). 
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T-cell immunogenic epitopes within PASD1a and PASD1b (Ait-Tahar et al, 2009; Hardwick 

et al, 2013) were identified using the TEPITOPE (Sturniolo et al, 1999), SYFPEITHI 

(Rammensee et al, 1999) and Bioinformatics and Molecular Analysis Section  (BIMAS) 

(Parker et al, 1994) prediction programmes. The capacity of the MHC class I epitopes to bind 

HLA-A2 were confirmed using T2 assays (assay detailed in (Alexander et al, 1989)) which can 

predict A2-peptide off-rates. MHC class I antigen presentation and cell surface expression 

depends on the peptide travelling into the endoplasmic reticulum or Golgi by the MHC encoded 

transporters TAP-1 and TAP-2.  T2 cells are TAP-deficient but do express MHC class I on 

their surface which is only stabilised when binding a peptide. The T2 binding assay can be used 

to determine how well a peptide can stabilise HLA-A*0201 MHC allele (Wang et al, 2002). 

The avidity and half-life of peptide binding to MHC were detected by fluorescent activated 

cells (FACs) analysis using anti-HLA-A2. In each case the criteria used required that the 

epitopes under investigation should not be similar to epitopes from other known human 

proteins. Hardwick et al, 2013 utilised a cut-off of similarity to known proteins across the 9 

a.a. peptides examined was ≥ 40 % when compared to other known human proteins. In addition, 

the group favoured the utilisation of SYFPEITHI predicted epitopes in favour of BIMAS ones 

(Hardwick et al, 2013). None of the seven MHC class I binding nonamers (named sequentially 

Pw4 through to Pw10) identified using predictive programmes were able to stabilise HLA-

A*0201 in T2 assays and all had poor SYFPEITHI scores (Hardwick et al, 2013). However, 

modification of one of the anchor residues at a.a. 2 or 9 (to a lysine, valine or isoleucine) did 

lead to epitopes with improved SYFPEITHI scores and enhanced and/or extended periods of 

binding to HLA-A*0201 in T2 assays. One of these modified peptides, named Pa14, was shown 

to be able to stimulate patient T cells. This caused a very limited expansion in CD8+ T cell 

numbers from two of three HLA-A*0201 positive, PASD1-positive AML patient samples. This 

corresponds with the findings of others (Rezvani et al, 2009) who also found limitations in the 
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expansion that can be achieved with AML T cells ex vivo. A 2-3 week limited expansion is the 

maximum that has been achieved prior to AML T cell death. Reasons for the limited responses 

may be due to the presence of myeloid suppressor cells in mixed lymphocyte assays 

(Mougiakakos et al, 2013), interleukin-6 (IL-6) secretion by myeloid leukaemia cells (Buggins 

et al, 2008) and/or defects in T cell populations in myeloid leukaemia patients (Wendelbo et 

al, 2004). However, stimulation of T cells from a single colon cancer patient, in this study, led 

to a substantial increase in the number of Pa14-specific T cells to 13.6 % of the CD8+ cell 

population after four rounds of weekly Pa14 stimulation, with Pa14- specific IFNγ responses 

being evidenced (Hardwick et al, 2013). 

CTL responses to PASD1 were also detected in DLBCL patients (Ait-Tahar et al, 2009). IFNγ 

release was detected in 21 out of 29 HLA-A*0201-positive DLBCL patients following short-

term culture of their peripheral blood mononuclear cells stimulated with five HLA-A*0201-

restricted PASD1 peptides. However, there was no response in the 21 patients who were HLA-

A*0201-negative. IFNγ is a cytokine released mainly by natural killer and natural killer T cells 

and is a component of innate immunity. It can also be released by Th1 CD4 and CD8 T cells 

subsequent to acquired immunity to a specific antigen. IFNγ can activate macrophages and 

induces class II MHC molecule expression (Schoenborn and Wilson, 2007). 

CD4 T helper cells are known to promote immunity in a number of ways such as stimulating 

the production of antibodies. CD4 responses against PASD1 epitopes were investigated by Ait-

Tahar et al. (Ait-Tahar et al, 2011) in patients with DLBCL. They showed that immunogenic 

PASD1 epitopes predicted to bind several class II DR beta 1 alleles were able to induce CD4+ 

T helper responses to PASD1-positive cells from patients with DLBCL. Two of the five 

peptides (PASD1(6) and PASD1(7)) were shown to be immunogenic in 14 of the 32 patients 

tested and T-helper cell lines generated from two patients were able to lyse PASD1 positive 

cell lines derived from haematological malignancies. CD4+ T helper cell lines raised from two 
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patients were able to lyse PASD1-positive tumour cell lines corroborating that these T cells 

recognized intracellular expressed PASD1. The PASD1-negative cell line was not lysed. 

A new PASD1 immune response has been described in a melanoma patient as they achieved 

complete remission after initial detection of autoantibodies against melanoma antigen A3 

(MAGEA3) (Stamell et al, 2013).   

1.7.5 SSX2 

SSX2 was identified due to the translocation t(X;18) found to be common in synovial sarcoma 

tumours (Smith et al, 1987).  Synovial sarcoma is a soft tissue tumour predominantly affecting 

children and young adults. It was found that as a result of this translocation the SYT gene on 

chromosome 18 is fused together with SSX genes, SSX1 or SSX2, on the X chromosome 

leading to the production of a SYT-SSX fusion protein (Clark et al, 1994). The gene was first 

identified using SEREX on melanoma patient samples as the CTA, HOM-MEL-40 (Tureci et 

al, 1996).  Using SEREX it was found that melanoma patients exhibited immune responses to 

SSX2, however healthy controls showed no response. SSX2 belongs to a family of SSX genes 

(Figure 1.5), all five members share strong sequence homology, act as transcriptional 

repressors (Lim et al, 1998) and are associated with several Polycomb group proteins (Soulez 

et al, 1999).  Dos Santos et al (dos Santos et al, 2000) demonstrated that SSX nuclear expression 

in the testis was found to be restricted to spermatogenic cells, mainly spermatogonia with some 

expression in the healthy thyroid (Tureci et al, 1996). Treatment of an SSX-negative cell line 

with 5-aza-2’-deoxycytidine, a demethylating agent, led to SSX RNA and protein expression, 

indicating a role for methylation in transcription regulation. SSX2 transcripts have been 

identified in a number of cell lines most notably leukaemia (Hoffman et al, 2014), myeloma 

(Atanackovic et al, 2007) and melanoma (dos Santos et al, 2000). In addition, transcripts were 

detected by RT-PCR in a significant proportion of human melanomas (50 %), 

hepatocarcinomas (50 %), thyroid cancer (50 %), colon cancer (26 %), prostate cancer (20 %) 
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and breast carcinoma (19 %) as well as in haematological cancers (11 %), brain tumour (9 %) 

and stomach cancer (8 %) (Tureci et al, 1996). SSX2 expression has been demonstrated by RT-

PCR in 13% of endometrial cancers (Tureci et al, 1998) and 3-10 % of OVCs (Hasegawa et al, 

2004; Valmori et al, 2006), but 26 % of OVCs if you score SSX1, 2 and 4 together (Valmori 

et al, 2006). The presence of SSX2 expression in so many tumour types suggested that this 

antigen is upregulated in cancer independently from fusion events (Smith and McNeel, 2010). 

Although examining mRNA indicates the expression of a gene and can be a very useful and 

sensitive tool, it does not always predict protein abundance nor does it give insight into the 

sub-cellular localisation of a protein which can indicate a normal or altered function (Guo et 

al, 2008). Taylor et al (Taylor et al, 2005) found that SSX1, SSX2, SSX4, and SSX5 were all 

expressed in 20 % of patients with multiple myeloma (MM), and this expression was found to 

correlate with adverse prognosis and reduced survival. Analysis of heterogeneous SSX protein 

expression in patient samples have indicated expression in 34 % of primary and metastatic 

melanoma patients (dos Santos et al, 2000), 26 % of high-grade prostatic intraepithelial 

neoplasia (HGPIN) (Smith et al, 2011), 23 % of prostate metastatic lesions but not primary 

lesions. In malignant bone and soft tissue tumours there was significantly higher expression 

than in benign tumours (P<0.0001), expression in stage III tumours was significantly higher 

than that in stage I or II tumours (P<0.005) (Naka et al, 2005) indicating that expression of 

SSX2 protein appeared to increase with disease grade at least in these cancers.  
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SSX1  mngddtfakr prddakasek rskafddiat yfskkewkkm kysekisyvy mkrnykamtk 

SSX2A mngddafarr ptvgaqipek iqkafddiak yfskeewekm kasekifyvy mkrkyeamtk 

SSX2B mngddafarr ptvgaqipek iqkafddiak yfskeewekm kasekifyvy mkrkyeamtk 

SSX3  mngddtfarr ptvgaqipek iqkafddiak yfskeewekm kvsekivyvy mkrkyeamtk 

SSX4  mngddafarr prddaqisek lrkafddiak yfskkewekm kssekivyvy mklnyevmtk 

SSX5  mngddafvrr prvgsqipqk mqkafddiak yfsekewekm kasekiiyvy mkrkyeamtk 

SSX6  mngddafakr prddakasek rskafddiak yfskeewekm kfsekiscvh mkrkyeamtk 

 

SSX1  lgfkvtlppf mcnkqatdfq gndfdndhnr riqvehpqmt fgrlhriipk impkkpaede 

SSX2A lgfkatlppf mcnkraedfq gndldndpnr gnqverpqmt fgrlqgispk impkkpaeeg 

SSX2B lgfkatlppf mcnkraedfq gndldndpnr gnqverpqmt fgrlqgispk impkkpaeeg 

SSX3  lgfkailpsf mrnkrvtdfq gndfdndpnr gnqvqrpqmt fgrlqgifpk impkkpaeeg 

SSX4  lgfkvtlppf mrskraadfh gndfgndrnh rnqverpqmt fgslqrifpk impkkpaeee 

SSX5  lgfkatlppf mrnkrvadfq gndfdndpnr gnqvehpqmt fgrlqgifpk itpekpaeeg 

SSX6  lgfnvtlslf mrnkratdsq rndsdndrnr gneverpqmt fgrlqriipk impekpaeeg 

 

SSX1  ndskgvseas gpqndgkqlh ppgkanisek inkrsgpkrg khawthrlre rkqlviyeei 

SSX2A ndseevpeas gpqndgkelc ppgkpttsek ihersgnrea qekeerrgta hrwssqnthn 

SSX2B ndseevpeas gpqndgkelc ppgkpttsek ihersgpkrg ehawthrlre rkqlviyeei 

SSX3  nvskevpeas gpqndgkqlc ppgkpttsek inmisgpkrg ehawthrlre rkqlviyeei 

SSX4  nglkevpeas gpqndgkqlc ppgnpstlek inktsgpkrg khawthrlre rkqlvvyeei 

SSX5  ndskgvpeas gpqnngkqlr psgklntsek vnktsgpkrg khawthrvre rkqlviyeei 

SSX6  sdskgvpeas gpqndgkklc ppgkasssek ihersgpkrg khawthrlre rkqlviyeei 

 

SSX1  sdpeedde 

SSX2A igrfslstsm gavhgtpkti thnrdpkggn mpgptdcvre nsw 

SSX2B sdpeedde 

SSX3  sdpeedde 

SSX4  sdpeedde 

SSX5  sdppedde 

SSX6  sdpeeddk 

 

Figure 1.5 SSX family members showing the C terminal region unique to SSX2A. The 

differences in the amino acid sequence between the six SSX family members compared to 

SSX1 are shown in red font.  

1.7.5.1 SSX2 immune responses 

Anti-SSX2 antibodies have also been found in 11 % of melanoma patients (Tureci et al, 1996) 

and 3 % of colon cancer patients (Scanlan et al, 2002) but rarely in other cancers. Similarly 

studies of OVC patients have demonstrated the absence of detectable anti-SSX2 in plasma in 

OVC patients (Lu et al, 2011).  However Taylor et al found that reactivities with 

nucelophosmin, cathepsin D, p53 and SSX common antigen were significantly higher in 

patients with all stages of OVC compared with controls and women with benign ovarian 

disease (Taylor et al, 2009). Sera from a subgroup of the patients were tested for SSX2 and 

SSX4 antibody by ELISA and recombinant antigen expression on yeast surface (RAYS). 
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Aberrant expression of these antigens was found in 31/120 (26 %) of ovarian tumours. 

Antibodies to SSX2 and SSX4 were detectable in two patients (2 %) (Valmori et al, 2006).  

There has been little demonstration of SSX2 antibodies in patient plasma. In 194 multiple 

myeloma (MM) plasma samples, 3.1 % of patients were found to have SSX2 specific 

antibodies. SSX2 antibodies were able to activate complement and increase CTA uptake by 

antigen presenting cells. SSX2 antibodies were restricted to IgG3 (Luetkens et al, 2014). 

1.7.5.2 SSX2 as a target for immunotherapy – evidence of naturally occurring T cell responses in 

patients 

In metastatic melanoma the peptide SSX2 (41-49) was identified as an HLA-A2-restricted 

epitope (Table 1.3). CD8+ T cells specific for SSX2(41-49) were present in the tumour-

infiltrated lymph node population by multimer staining, and isolated CTL clones were able to 

lyse HLA-A2+ tumour cells expressing SSX2 (Ayyoub et al, 2002). SSX2–derived T cell 

epitope, mapping to the 37–58 region and surrounding the SSX2 41–49 epitope, was 

recognized by CD4+ T cells from melanoma patients (Abate-Daga et al, 2014; Ayyoub et al, 

2004). 

In a hepatocellular carcinoma (HCC) patient, SSX2-specific CD8+ T cells were detected in 

tumour infiltrating lymphocytes but not in the normal lymphocytes of patients or in the 

peripheral blood mononuclear cell samples taken on the day of surgery (Bricard et al, 2005). 

In two of six HLA-A2+ HCC patients, the group found that MAGE-A10 and/or SSX2-specific 

CD8+ T cells naturally responded to the disease, because they were enriched in tumour lesions 

but not in non-tumoural liver (Bricard et al, 2005). Isolated T cells specifically and efficiently 

killed tumour cells in vitro, providing evidence that these CTL were selected in vivo for high 

avidity Ag recognition. Therefore, besides melanoma, HCC is the second solid human tumour 
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with clear evidence for in vivo tumour recognition by T cells, providing the rational for specific 

immunotherapy, based on immunization with CT Ags such as MAGE-A10 and SSX2. 

Table 1.3 SSX2 epitopes identified to date 

SSX2 epitopes Cancer and detectable immune response Publication 

SSX2p37–58 specific CD4+ T cells were found in 11 of 19 

melanoma patients 

Ayyoub et al, 2004 

SSX2p41-49 Identified in metastatic melanoma Ayyoub et al, 2002 

SSX2p45-59 3/6 breast cancer patients, 1/5 healthy controls Neumann et al, 2004 

SSX2p103-111 5/7 breast cancers samples showed immune 

response 

Wagner et al, 2003a 

 

SSX4-specific CD4+ T cells were found to recognise two novel SSX4-derived T-cell epitopes 

in association with HLA-DR (human leukocyte antigen) (Valmori et al, 2006). In 2011, Smith 

et al (Smith et al, 2011) described a single HLA-A2–restricted epitope, SSX2 p103-111 

RLQGISPKI with a SYFPEITHI score of 23 and a BIMAS score of 10.433.  

Using the SYFPEITHI algorithm Wagner et al (Wagner et al, 2003a) identified a HOM-MEL-

40/SSX2-derived epitope with high binding affinity for HLA-A*0201. Stimulation with p103-

111 induced HOM-MEL-40-specific CTLs in five out of seven patients with HOM-MEL-

40/SSX2 positive breast cancers and in six of eleven healthy controls. HLA-A*0201 specificity 

for p103-111 was shown by blocking with specific antibodies. Prestimulated p103-111 specific 

CD8+ T cells reacted with SSX2-transfected COS7/A2 cells as well as with the HLA-A*0201 

positive cell line SK-MEL-37 that is known to express HOM-MEL-40/SSX2. The same CD8+ 

cells did not lyse negative controls. p103-111 peptide vaccine could be applied to a large 

number of cancers which are HOM-MEL-40/SSX2 (Wagner et al, 2003a). 
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Side population (SP) cells are progenitor cells from normal and malignant tissues which have 

increased resistance to chemotherapy and radiotherapy. HL SP cells express higher levels of 

the TAAs MAGEA4, SSX2, survivin, and NY-ESO-1, which allowed them to be specifically 

recognized and killed by TAA-specific CTLs (Shafer et al, 2010). The expression of SSX2 in 

SP cells suggests that SSX2 may be expressed in tumour stem cells and that this should be 

explored further in OVC. 

A DNA vaccine encoding altered peptide ligand (APL) was developed in which the anchor 

residues of the p41-49 and p103-111 epitopes were changed. Investigations of how these 

changes affected epitope binding, generated increased numbers of CD8+ T cells specific for 

SSX2 and led to the production of epitope-specific Th1 cytokines (Smith et al, 2014). 

1.8 Measuring the immune responses to tumour antigens  – with a focus on pMHC 

arrays  

Once a tumour antigen has been identified it is important to investigate how capable it is of 

stimulating an immune response compared with other antigens. Therefore assays are used to 

determine T cell responses against the antigen of interest.  These assays usually involve the 

measurement of lymphocyte proliferation in response to exposure to antigen such as 

carboxyfluorescein diacetate succinimidyl ester dye, lymphocyte proliferation assays and [3H]-

thymidine incorporation assay; assays that measure cytokine production such as enzyme-linked 

immunosorbent spot assay (ELIspot) and flow cytometry (intracellular and secreted cytokine) 

or killing assays such as chromium-release CTL assays. These will not be discussed in detail 

here but can be found in Immunology Methods Manual, 1997. More recently methods have 

been developed that can simultaneously detect the specificity of T cells for epitopes within 

antigens. These include flow cytometry using pMHCs, including the “combinatorial encoding” 

approach (Hadrup et al, 2009; Newell et al, 2009) reviewed in Hadrup and Schumacher, 2010. 
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1.8.1 Peptide-MHC (pMHCs)  

pMHC based assays circumvent the issues caused by measuring T cell proliferation. T cell 

proliferation assays can provide information on whether an immune response can be generated 

but will not determine which T cells, if they are indeed T cells, have been activated, unless a 

single population has been purified.  pMHCs, often referred to as tetramers, can be used to 

identify antigen specific T cells.  They are produced through the refolding of 2-microglobulin 

and heavy chains in MHC molecules with the appropriate epitope of interest. The pMHC is 

then labelled with biotin using BirA enzyme. A streptavidin molecule conjugated to a 

fluorescent detector binds to four pMHCs to make tetramers or other multimers of pMHC (for 

example dimers, pentamers or dextramers) courtesy of the biotin-avidin interface (Sims et al, 

2010).  T cell populations are added to this mixture and T cells with the specific receptor for 

the epitope of interest will bind and be measureable by flow cytometry (Shen et al, 2010). Shen 

et al (Shen et al, 2010) have found that cross-reactive T cells i.e. T cells that recognise two 

different antigens can be identified providing an extra tool in vaccine development.  In some 

cases, antigen specific T cells may not bind tetramers due to being undifferentiated and unable 

to accumulate TCR molecules close to the antigen.  Another reason could be low affinity 

between TCR and MHC (Khan et al, 2010). Techniques based on the use of pMHCs include 

pMHC arrays (Chen et al, 2005), NACS (Kwong et al, 2009) and the combinatorial approach 

(Hadrup and Schumacher, 2010; Newell et al, 2009). Each provide high throughput analysis 

of multiple T cell populations with a variety of pros and cons to each technique including 

issues with background, specificity/binding capacity of individual pMHC complexes, 

activated induced cell death of pMHC bound T cells, internalisation of pMHCs following T 

cell binding (Whelan et al, 1999), cost and labour intensity. Sequencing of TCRs (2-3 million 

every 2-3 days) by companies such as TRON gGmbH (Johannes Gutenberg University Mainz, 

Germany) and Adaptive Biotechnologies (Seattle, USA) will provide a new way of analysing 
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T cell populations which will be informative with regards to which TCRs are present but not 

necessarily whether they are present on mature, anergic, activated or functional T cells nor 

which sub-group of T cells are harbouring them [helper T cells, C T L s, Th17 cells or indeed 

regulatory T cells (Tregs)]. This technology allows the first opportunity to examine an 

extremely large number of TCRs in a very short time and will revolutionise how we examine 

T cell responses in patients in the future. 

1.8.2 pMHC arrays  

pMHC arrays were first described by (Soen et al, 2003), to examine which specific T cell 

populations were present in the periphery of patients with cancer. Similar tests are often 

performed with flow cytometry (Jung et al, 1993; Picker et al, 1995) which is time limited, 

expensive and can be difficult to perform and exclude debris and cell clumps. To examine 

multiple specific T cell populations by flow cytometry, groups have used methods such as 

polychromatic flow cytometry (PFC) (Estes et al, 2010) and multiparametric flow cytometry 

analysis (FCM) (Camisaschi et al, 2014). Flow cytometry has many advantages such as 

enabling the analysis of multiple parameters at the single cell level thus identifying 

immunoreactive subset populations and antigens to many diseases including cancer. Much data 

can be generated with relatively small cell numbers. However interpreting such a large amount 

of data can become a very complex and laborious task (Lugli et al, 2009).   

pMHC arrays (Chen et al, 2005; Soen et al, 2003) (Figure 1.6) provide a strategy to determine 

which specific CD8
+ 

T cell populations are present in the peripheral blood of patients without 

a pre-stimulation/expansion step. Antigens identified by the techniques described already can 

be used to help expand the pMHC array for future studies. 
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Figure 1.6 Diagrammatic representation of the pMHC array. Lipophilically dyed CD8+ T 

cells (0.8-1.2 x 106 per microarray) were incubated at 37°C in warm colourless X-VIVO 15 

media with the pMHC array.  Each pMHC spot contains 1ng of tetramer and each slide can 

hold up to 1,000 spots of pMHC. Taken from Brooks et al, 2015. PASD1 epitopes are 

frequently recognised by “untouched” CD8+ T cells from presentation myeloid leukaemia 

patients.  

The pMHC array provides a means to investigate epitope spreading and changes in T cell 

specificities with disease progression. The technique benefits from the low number of purified 

CD8+ T cells required for each array (0.5-2 x 106/array), which can be purified from 20 ml of 

patient peripheral blood using StemCell CD8+ negative isolation beads providing “untouched” 

T cells (Bonney et al, 2015). The purified CD8+ T cells are then lipophyllically dyed with DiD 

(Molecular Probes), washed and incubated with the pMHC array. The pMHC array has a 

detection limit of 0.02 % matching the sensitivity we can reproducibly achieve with flow 

cytometry when analysing patient samples. Where sample availability permits pMHC array 

data should be validated by flow cytometry (Dittmann et al, 2005) using the same pMHC 
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tetramers as used in the pMHC array. The pMHC array has the added advantage that it can be 

used for the initial screening of a relatively small number of CD8+ T cells against a large 

number of pMHCs on the array, and a short-list of T cell populations which are shown to exist 

on the pMHC array can then be quantitated by flow cytometry (limiting the amount of sample 

required in subsequent studies). The pMHC array can be used to analyse patient samples at a 

number of disease time-points (presentation, post- treatment (surgery and/or radiotherapy) and 

with disease progression) to examine how T cell responses to tumour antigens change with 

treatment, to examine epitope spreading (where those epitopes are present on the array) and 

to correlate changing immune responses with clinical responses. 

1.9 Biomarkers in cancer 

The National Cancer Institute described biomarkers as “a biological molecule found in blood, 

other body fluids, or tissues that is a sign of a normal or abnormal process, or of a condition or 

disease.” Biomarkers are self-proteins or metabolites whose levels of expression or mutation 

can suggest the presence of a tumour or tumour progression as well as a marker that enables 

the monitoring of tumour destruction in response to treatment. Ideally biomarkers should be 

obtained from blood and/or urine making access easier and any analysis cost effective.   They 

can include transcription factors, cell surface markers or secreted proteins. Good biomarkers 

have the ability to allow the diagnosis of cancer in its earliest stage thereby reducing the number 

of cancer deaths by helping to enable accurate diagnoses and early appropriate treatment. Early 

treatment occurs at a stage when it is most effective and enables the effective utilisation of 

individualised treatments – saving patients unnecessary side effects and the health care system 

the unnecessary cost of treatments that will not help treat patients. The ongoing improvements 

in our understanding of tumourigenesis has aided the identification of better biomarkers and 

along with more sensitive methods, it is increasingly likely that in the future biomarkers will 

be used more effectively. 
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In cancer research, biomarkers are employed in a number of ways.  A biomarker can be used 

to identify the type of cancer present (diagnostic), a prognostic biomarker can determine the 

probable progression of disease if left untreated and whether recurrence of the cancer is likely 

and a predictive biomarker assess how a cancer patient may respond to a particular treatment 

(Figure 1.7). 

1.9.1 Biomarkers in OVC 

The effectiveness of a particular therapeutic vaccine depends on the TAA targeted. In an ideal 

model the best antigen should have the following characteristics: non-self or differentially 

expressed in a disease state, be specific to the tumour cells, detectable in a large number of 

patients, involved in tumour progression, immunogenic and preferably be on the cell surface 

so it is easily accessible by an antibody (Hung et al, 2008). 

In OVC serous carcinomas are uncommon at FIGO stage I and are usually part of progressive 

disease, while 95 % of FIGO stage III and IV patients have the serous type of OVC (Colombo 

et al, 2010). Even though early stage OVC tends to have a less aggressive histotype, it is still 

difficult to diagnose. It may be possible to treat aggressive (later stage) OVC following surgery 

and chemotherapy which is used to reduce the disease load. Then immunotherapy can be used 

to target minimal residual disease and deliver a more effective overall treatment (Hung et al, 

2008).  
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Figure 1.7. The characteristics of an ideal biomarker and their uses in cancer therapy 

and diagnosis. Few biomarkers have all of the ideal characteristics indicated in (A) but the 

more they have the better they usually are. The uses of biomarkers shown in (B) demonstrate 

their scope for improving cancer detection and cancer care, impacting on outcomes and 

minimising unnecessary treatments and side effects.  

The Ideal Biomarker 

Sensitive: should be easy to quantify 

Specific: ideally should be detected only in the tumour  

Predictive: should provide data on patient outcome  

Constant: remain at steady levels  

Non-invasive: easily accessible by blood or urine 

Economical: cheap and rapid analysis 
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1.9.1.1 CA125 

CA125 was first identified by the monoclonal antibody OC125 that was detected in mice in 

response to being vaccinated with EOC cell lines (Bast et al, 1981). An assay was developed 

which could detect CA125 in patient sera where 82 % (83/101) of OVC patients were found to 

have higher levels of CA125. Levels were also correlated with progression or regression of 

disease by rising or falling. Notably only 1 % in a cohort of 888 healthy people and 6 % (of 

143) with non-malignant disease had high CA125 levels (Bast et al, 1983). However, CA125 

is unsuitable in the early stages of EOC when it is known to be elevated in a number of benign 

conditions such as pregnancy and tuberculosis (Meden and Fattahi-Meibodi, 1998) with 

variable expression between patients [recently reviewed in (Su et al, 2013)]. CA125 is used to 

investigate a wide spectrum of symptoms attributed to a number of benign and malignant 

gynaecological conditions and not only for OVC (Moss et al, 2004). It also appears to work 

better as part of a panel to improve specificity, sensitivity (100 %) and differentiation of OVC 

from endometriosis (Bandiera et al, 2013; Jiang et al, 2013). In one study, CA125 demonstrated 

better sensitivity and specificity when used with three other biomarkers (apolipoprotein, a 

truncated form of transthyretin and a cleavage fragment of inter-α-trypsin inhibitor heavy chain 

H4) than alone in early stage OVC (Zhang et al, 2004). A combination of CA125 with TVU 

only managed to detect OVC at an advanced stage, and 3/4 early stage tumour patients screened 

had normal results preceding the diagnosis (Olivier et al, 2006). Due to its poor sensitivity and 

specificity, CA125 was not recommended for use in screening asymptomatic women by the 

National Academy of Clinical Biochemistry (NACB) Panel (Sturgeon et al, 2008). There still 

remains a need to identify singularly good biomarkers which could positively influence disease 

outcome by enabling the early detection and therefore treatment of patients with OVC. 
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1.9.1.2 Human epididymis protein 4 (HE4) 

HE4, also called whey-acidic-protein (WAP) four-disulfide core domain protein 2 (WFDC2) 

was originally demonstrated to have tissue specific expression in the epididymis (Kirchhoff et 

al, 1991) and is expressed in normal tissues of the reproductive and respiratory tract in multiple 

isoforms (Bingle et al, 2002), where it may play a role in the innate immunity (Bingle et al, 

2006). Using comparative hybridization of cDNA arrays, the gene human epididymis secretory 

protein 4 (HE4) was found to be overexpressed in OVC (Schummer et al, 1999). Further studies 

exhibited a possible role in OVC cell line adhesion and motility (Lu et al, 2012). HE4 was also 

up-regulated in renal disease in a mouse model with fibrosis of the kidney due to a halt in the 

degradation of type I collagen and subsequent neutralising of HE4 inhibited fibrosis and 

resumed collagen degradation (LeBleu et al, 2013). In lung cancer HE4 may also be abnormally 

expressed (Molina et al, 2011). In human OVC cells HE4 is produced as a protein with a size 

of about 13 kDa and converted to a 25 kDa secreted glycosylated protein (Moore et al, 2014). 

It was found to be overexpressed in EOC in comparison to normal ovarian epithelium 

(Hellstrom et al, 2003), especially in serous and endometrioid histotype (Drapkin et al, 2005) 

and the serum HE4 levels in women with EOC were shown to be clinically relevant (Moore et 

al, 2014). However, HE4 does not seem to be specific for OVC as expression has also been 

found in other cancers such as pulmonary and endometrial adenocarcinomas (Moore et al, 

2008a). Although HE4 may have better specificity than CA125, the performance of both 

improves when they are used in combination and not as singular detection markers (Escudero 

et al, 2011; Moore et al, 2008b). 

1.9.1.3 NY-ESO-1 

LAGE-1 and NY-ESO-1 are 94 % homologous and therefore often investigated together. 

Odunsi et al, (Odunsi et al, 2003) evaluated a total of 190 patients by RT-PCR and/or IHC, 

21/190 (11 %) were at tumour stages IA-IIC and 169/190 (89 %) were at stages IIIA-IV. NY-
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ESO-1 expression was detected in 82/190 samples (43 %) and out of 107 tumour samples 

investigated for LAGE-1 mRNA expression 22 (21 %) were positive. NY-ESO-1 and LAGE-

1 mRNA coexpression was seen in 12/107 (11 %) specimens. The expression of either NY-

ESO-1 or LAGE-1 mRNA was present in 42/107 (40 %) EOC specimens. NY-ESO-1/LAGE-

1 antibodies were present in 11/37 (30 %) of patients with NY-ESO-1- and LAGE-1-positive 

tumours, and only one patient with an NY-ESO-1- and LAGE-1-negative tumour had NY-

ESO-1 antibody. NY-ESO-1 expression also correlated with advanced stage EOC (Odunsi et 

al, 2003). Yakirevich et al (Yakirevich et al, 2003), found that 10/53 (19 %) of serous 

carcinoma patient samples were positive for NY-ESO-1. Levels of antibodies to NY-ESO-1 

were studied in type I and II OVC patients. Antibodies to NY-ESO-1 were detected in high 

levels in the plasma of patients with type II tumour however this was significance in only one 

of the two statistical tests performed. NY-ESO-1 antibodies were not observed in the plasma 

of type I OVC patients (Lu et al, 2011). NY-ESO-1 mRNA was detected in 2/8 OVC samples 

however transcripts were also found in normal ovary (Chen et al, 1997).  NY-ESO-1 was found 

to be able to distinguish between early stage disease and Stage III/IV (late stage) OVC as higher 

expression was found in later stages (Taylor et al, 2009). 

1.9.1.4 WT1 

WT1 is commonly expressed in ovarian serous carcinomas and is considered to be a diagnostic 

marker of these tumours, however 34/77 (44 %) of endometrial serous carcinoma that 

expressed WT1 also had a decreased disease-free survival rate (Hedley et al, 2014). WT1 can 

be used in a panel with oestrogen receptor and progesterone receptor to distinguish between 

endometrial serous carcinoma (ESC) and ovarian serous carcinoma (OSC) but alone neither of 

these antigens were capable of doing so. WT1 was detected in 81 % OSC and 36 % of ESC 

(Fadare et al, 2013) however the OSC samples examined were all late stage.  
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Low levels of WT1 antibodies in the plasma of patients diagnosed at stages III-IV and grade 3 

carcinomas were related to improved survival in patients and patients with high WT1 

antibodies in plasma as well as positive staining in cancer tissues had shorter survival 

(Andersson et al, 2014). It is interesting that WT1, as with a number of other tumour antigens, 

is also a biomarker for cancer.  

1.9.2 The dual role of tumour antigens as biomarkers for cancer 

Although tumour antigens were often investigated for their potential as targets for 

immunotherapy first, a growing body of work suggests that some can also act as biomarkers of 

disease (Schumacher & Schreiber 2015).  Elevated expression of the CTA PRAME has been 

an indicator for poor survival and a reduced disease-free survival rate in solid tumours (Yao et 

al, 2014). In myelodysplastic syndrome very high and very low levels of PRAME were found 

to be related to poor survival (Liberante et al 2013). In acute promyelocytic leukaemia patients 

who harbour the t(15;17) translocation, decreased expression of PRAME correlated with 

shortened overall survival (Santamaria et al, 2008) whereas the typically favourable t(8;21) 

translocation was associated with a higher level of PRAME in AML M2 patients (van Baren 

et al, 1998). 

The LAA SSX2IP has been found to be a marker of improved survival rates in AML patients 

who have no cytogenetic aberrations (Guinn et al, 2009). While high transcripts of G250/CA9 

and RHAMM are associated with longer overall survival (Greiner et al, 2006). Humoral 

responses against NY-ESO-1 may correlate with poor survival in hormone refractory prostate 

cancer (Fosså et al, 2004). 

1.9.3 Validation of biomarkers  

Validation of biomarkers involves the development of assays that have to be optimised for 

testing the expression of the biomarker robustly. Firstly an analytical validation step determines 
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the ability of the assay to accurately measure the biomarker in patient samples and a second 

clinical validation step ensures that the data generated is reliable as an indicator of the desired 

outcome. The assay used for validation can include RT-PCR and qPCR (genetic analysis), IHC 

(protein detection and locale in tissues), fluorescent in situ hybridization (cytogenetic analysis) 

(Marchiò et al, 2011;Goossens et al, 2015). Clinical evaluations should show clear advantages 

of using the biomarker in comparison to current best practise, be economically viable and have 

high bioavailability (Goossens et al, 2015).   

1.10 Hypothesis and Aims of study 

1.10.1 Hypothesis 

I hypothesised that the cancer-testis antigens, PASD1 and SSX2, and the SSX2 interacting 

protein SSX2IP, would make promising targets for the immunotherapy of acute myeloid 

leukaemia and ovarian cancer in the early stages of disease. To test this hypothesis I examined 

the expression of the antigens in these two forms of cancer and compared their expression to 

the existence of PASD1-specific T cell responses in AML and to other proteins 

(immunotherapeutic targets and biomarkers) known to be expressed in OVC. 

1.10.2 Aims of the study 

1. To investigate whether there is a correlation between the expression of the tumour antigen, 

PASD1, in leukaemia cells and antigen-specific T cell responses in the periphery; 

2. To examine the expression of known tumour associated and cancer-testis antigens in OVC; 

3. To determine whether a cancer-testis antigen expressed in OVC can also act as a biomarker 

for the disease. 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Tissue Culture 

2.1.1 Cell lines 

All cell lines were obtained from ATCC except for A2780 (Sigma-Aldrich Co. Ltd), KM-H2 

and KYO-1 (The Leibniz Institute DSMZ - German Collection of Microorganisms and Cell 

Cultures GmbH). Cells are grown in RPMI 1640 media (Sigma-Aldrich Company Ltd., Dorset, 

U.K.) containing 10 % foetal bovine serum (FBS)(Thermo Fisher Scientific, Leicestershire, 

UK) and 1 % penicillin and streptomycin (Thermo Fisher Scientific), in a humidified incubator 

at 37°C with 5 % CO2 (Table 2.1).   

 

Table 2.1 Cell lines, disease and original source details. 

Cell lines Cancer type Species Adherence Original reference 

A2780 Ovarian adenocarcinoma (OVC) Human Adherent Hamilton et al, 1984 

HCT116 Colorectal carcinoma Human Adherent Brattain et al, 1981 

HeLa CC Human Adherent Scherer et al, 1953 

HL60 AML Human Non-adherent Collins et al, 1977 

Jurkats Acute T cell leukaemia Human Non-adherent Schneider et al, 1977 

K562 CML Human Non-adherent Lozzio and Lozzio, 1975 

KM- H2 HL Human Non-adherent Kamesaki et al, 1986 

KYO-1 CML Human Non-adherent Ohkubo et al, 1985 

OVCAR3 Ovarian adenocarcinoma (OVC) Human Adherent Hamilton et al, 1983 

SK-MEL 28 Melanoma Human Adherent Carey et al, 1976 

SKOV3 Ovarian adenocarcinoma (OVC) Human Adherent Fogh et al, 1977 

SW480 CRC Human Adherent Leibovitz et al., 1976 

THIEL Multiple myeloma (MM) Human Adherent Chi et al, 2011 

 

2.1.2 Varying CO2 levels 

To determine whether tumour antigen protein expression was affected by differing levels of 

CO2 (covering a range from 3.5 - 6 %), K562 cells were incubated in one CO2 level for 7 days 

prior to being harvested. 
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2.2 Human samples 

2.2.1 Colon cancer patient samples 

The TMAs were a kind gift from Dr Alex Mirnezami, University of Southampton. There were 

between 80-100 colon cancer samples on each array but no further clinical information was 

available. 

2.2.2 Leukaemia patient samples 

All patient samples (Appendix I) were collected following informed consent in accordance 

with the Declaration of Helsinki following Local Research Ethics Committee approval (NREC 

No. 06/H0606/88) and University Research Ethics Committee Approval.  

2.2.3 OVC patient samples 

All Tumour Microarrays (TMAs) were prepared by US Biomax, Inc. (Rockwille, United 

States). Patient information for these samples is available in Appendix II. 

2.2.4 Healthy donor samples 

Healthy donor blood samples were obtained from the Department of Haematology, 

Southampton General Hospital following informed consent (Local Research Ethics 

Committee, Southampton University Hospitals NHS Trust, Southampton U.K., LREC 

submission number 228/02/T). 

2.2.5 Processing leukaemia patient samples for analyses 

2.2.5.1 Health and safety considerations around the use of patient samples 

Processing of patients samples was carried out in consideration of health and safety 

requirements. All samples were processed within containment level 2 laminar flow hoods. 

Personal safety equipment, lab coat and gloves were worn at all times. All waste was disposed 

of in containers with 5 % fresh Virkon for 4-16 h and then autoclaved.  
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2.2.5.2 Bone marrow and peripheral blood 

The bone marrow or peripheral blood samples were aliquoted at 5 ml per 50 ml universal 

container (UC) (Fisher Scientific) and 45 ml of 1 X red blood cell lysis buffer (155 mM 

(ammonium chloride (NH4Cl), 12 mM sodium bicarbonate (NaHCO3) and 0.1 mM 

ethylenediaminetetraacetic acid (EDTA) (all from Sigma) added. The samples were placed at 

room temperature (RT) for 30 min and subsequently centrifuged at 530 x g for 5 min. The 

supernatant was discarded and where multiple tubes of blood from the same individual had 

been lysed the white cell pellets were pooled together. 1 ml of X-VIVO-15 media (Lonza, 

Slough, UK) was added and the cells were counted using a disposable haemacytometer 

(Immune Systems Ltd, Devon, UK). Cells were diluted to 4-8 x 106/ml in X-VIVO-15, 1 %  

human AB sera (Sigma) and 10 % DMSO (Thermo Fisher Scientific), 1 ml aliquoted per 

cryovial (Thermo Fisher Scientific) and placed in the -80 °C freezer for a minimum of 4 h, then 

transferred to a liquid nitrogen tank (Locator® 4 Cryo Biological Storage System, 

Barnstead/ThermoLyne®, Sigman-Aldrich Co. Ltd.) for longer term storage. 

2.2.5.3 Isolation of serum from clotted blood 

Blood collected in the absence of anti-coagulant contained a solid clot that was removed using 

tweezers and discarded in an autoclavable bin bag, and following autoclaving was finally 

disposed of by incineration. The remaining blood was transferred to 15 ml UC and centrifuged 

at 800 x g for 8 min. The straw coloured yellow serum was harvested, mixed in a 15 ml UC 

and split equally between ten 1.5 ml eppendorfs for long term storage in the -80 °C (Thermo 

FisherFisher Revco® ExF -86C ULT Upright Freezer).   
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2.3 Counting cells 

To count cells, 10 µl of the cell suspension was mixed with 10 µl of Trypan blue solution 

(Sigma). 10 µl of this mixture was applied to the edge of the coverslip of the disposable 

haemocytometer (FastRead 102 Disposable Counting Slides, Immune Systems Ltd, UK) and 

moved into the void by capillary action. The haemocytometer has grid lines which form 

different sized squares when viewed under the microscope at x 10 objective (Figure 2.1). 

Sixteen of the smallest squares make up one large square.  

 

Figure 2.1 Visual of the grids on the disposable haemacytometer viewed under the 

microscope. The haemacytometer used contained six large squares each made up of 16 smaller 

squares. Cells in one of the larger squares, in a known volume are counted to determine the 

number of cells per ml.  

 

Cells were counted in one large square (as indicated by a red circle in Figure 2.1). Each of the 

large squares were 1 mm x 1 mm, and the area between the slide and the coverslip was 0.1 mm, 

therefore the volume was 0.1 mm3. To determine the total cells per ml the number of cells 

counted was multiplied by the dilution factor (X 2) and the resulting number was further 

multiplied by 104/ ml. 
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2.4 Freezing cell lines and patient samples in liquid nitrogen 

Adherent cells were washed with sterile 1 x PBS (bought as 10 x PBS tablets from Sigma 

Aldrich Co Ltd, Gillingham, UK) and detached using 1 ml of trypsin and placing the flask in 

the incubator at 37 °C for 1 min. Then 9 ml of RPMI media including 10 % FBS was added to 

achieve a final volume of 10 ml total. For non-adherent cells the previous step was missed.  

10 µl of the cell suspension was used for the counting of cells as described in section 2.3 and 

the remaining cell suspension was centrifuged at 530 x g for 5 min.  The cells were resuspended 

in RPMI media to achieve a cell concentration of 8-16 x106 cells/ml and an equal volume of 

freezing media (80 % FBS and 20 % Dimethyl sulfoxide (DMSO) (both from Thermo Fisher 

Scientific) was added to achieve a final cell concentration of 4-8 x 106/ml. A 1 ml volume of 

cells were placed in cryovials and into Mr FrostyTM Freezing Containers with isopropanol (both 

Thermo Fisher Scientific) at -80 °C for 4-16 h prior to transfer to liquid nitrogen storage.   

2.5 Defrosting cell lines and patient samples stored in liquid nitrogen 

Cell lines were taken from liquid nitrogen and placed in a preheated water bath at 37 °C for 1 

min and gently agitated. Once partially (approximately 40 %) defrosted, the cells were added 

into 20 ml of RPMI media and allowed to recover overnight in a tissue culture incubator before 

passaging was considered.   

2.6 RT-PCR 

2.6.1 RNA extraction 

RNeasy mini Kit (Bioline) was used to extract mRNA and the manufacturer’s instructions were 

followed. In brief, 350 µl buffer RW1 was added to RNeasy column and centrifuged for 15 sec 

at 8000 x g, and the flow-through discarded.  10 µl DNase 1 stock solution was added to 70 µl 

of RDD Buffer and gently mixed.  80 µl of DNase 1 incubation mix was added to the RNeasy 

column membrane and placed at room temp for 15 min.  350 µl of Buffer RW1 was added to 
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the RNeasy column and the column centrifuged for 15 sec at 8000 x g.  The flow-through was 

discarded and 500 µl of Buffer RPE was added to the RNeasy spin column and centrifuged for 

15 sec at 8000 x g to wash the membrane. The tube was left open for up to 2 min to dry. 35 µl 

of DEPC water, pre-warmed to 37 oC was added to the column membrane and incubated for 

60 sec, then the mRNA eluted by centrifugation for 1 min at 8000 x g. The mRNA was stored 

at 4 oC for immediate use or aliquoted and stored at -20 oC for up to 6 months or -80 oC if 

storage for a longer period was required. 

2.6.2 1st strand synthesis 

RevertAid 1st strand synthesis on RNA (Thermo Fisher Scientific U.K) was used to prepare 

cDNA. The protocol was as manufacturer’s instructions as follows: 11 µl of total RNA (from 

Section 2.6.1) was added at a concentration of 300 ng to 1 µl of random hexamer primer.  

Diethylpyrocarbonate (DEPC) treated water was added to increase the volume to 12 µl and the 

mixture is incubated at 70 ºC for 1 h in a heating block.  The following components were added 

in the order given; 5X Reaction buffer, RiboLock RNase Inhibitor, 10 mM dNTP Mix and 

RevertAid M-MuLV Reverse Transcriptase (all Thermo Fisher Scientific). The tube of 

reactants were vortexed and then microfuged to bring the reactants to the bottom of the tube.  

The reaction was then incubated for 5 min at 25 ºC followed by 60 min at 42 ºC.  The reaction 

was terminated by incubation for 5 min at 70 ºC, aliquoted and stored at 4 ºC for use within 6 

months, or stored at -20 ºC for the longer term. 1st strand cDNA products were used directly in 

polymerase chain reactions (PCR) (Section 2.6.3). 

2.6.3 RT-PCR 

The following components were added to PCR tubes in the following order; 12.5 µl of ready 

mix (20 mM Tris-HCl, pH 8.3, 100 mM KCl, 3 mM MgCl2, 0.002 % gelatin, 0.4 mM dNTP 

mix (dATP, dCTP, dGTP, TTP), stabilizers, 0.06 units Taq DNA Polymerase/ml), 1 µl of each 

primer (4 µM) (Sigma) (Table 2.2), 1 µl of cDNA (300 ng/ul) and sterile water to a final 
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volume of 25 µl.  The tubes were placed into a Thermo Fisher™ Applied Biosystems™ 2720 

Thermal Cycler and a programme called GAPDH.cyc provided the following PCR conditions; 

94 °C for 2 min, 30 cycles of [94 °C for 30 sec, 50 °C for 40 sec, and 72 °C for 40 sec], followed 

by 72 °C for 7 min and 4 °C overnight.  The reactions were analysed on a 1 % agarose gel 

(Section 2.6.4). 

2.6.3.1 Optimisation of the RT-PCR technique for each antigen 

All primers used were from previous publications (Table 2.2), except p68 and SSX2, which I 

designed using a primer designing tool from NCBI called Primer-BLAST: 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/. I chose primers based on experience of use 

in the lab by my colleagues or recent publications. I mapped every primer onto genomic and 

transcribed sequences using the NCBI database to check that primers mapped solely to the 

gDNA of interest and that they flanked an intron. The latter ensured I would see a different 

PCR product size if the amplicon was primed from cDNA or contaminating gDNA (Table 2.2). 

I used GAPDH to demonstrate my capacity to amplify PCR products from the cDNA and the 

integrity of the cDNA for PCR amplification. All mRNA was treated with DNase before 

transcription to cDNA as part of the RNA extraction kit. PCR amplification of mRNA (50 µl), 

in which PCR reactions were set up replacing cDNA as template with mRNA, demonstrated 

the absence of gDNA contamination prior to synthesis to produce cDNA. In every experiment, 

one tube (the “blank”) contained all of the reagents (ReadyMix, primers and water) except the 

template which was volume to volume replaced with sterile water. Using the NanoDrop 2000, 

mRNA and cDNA used in all experiments had 260/280 of ~2 and 1.7-1.9 respectively. 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 2.2 Primers used for PCR analysis of cell lines and patient samples. 

Primers Sequence 

 

Tm (oC) Reference Expected band 

size (bp) 

Band size from 

gDNA (bp) 

GAPDH  

 

Forward: 5’-ACCCACTCCTCCACCTTTG-3’ 64.0 
Dotzlaw et al., 1997 

178 648 

Reverse: 5’-CTCTTGTGCTCTTGCTGGG-3’ 63.8 

SSX2 Forward: 5’-AGTGTATATGAGGCAGGCCG-3' 60.7 Khan et al, unpublished 

 

954* 

 

44,374 

Reverse: 5’-TGTACGGACCCTTTTTGGGG-3' 70 

SSX2IP Forward: 5' TGAATGAGCTGCTTGTGCTT 3' 63.7 Guinn et al., 2005b 207 3,615 

Reverse: 5' GCTGATGCAAATTCCTGTTCT 3' 63.1 

MelanA  Forward: 5' ACTGCTCATCGGCTGTTG 3' 62.8 
Coulie et al., 1994 

268 11,145 

Reverse: 5' TCAGCCATGTCTCAGGTG 3' 61.1 

G250  Forward: 5' GTCTCGCTTGGAAGAAATCG 3' 63.8 
Liu et al., 2012a 

200 2,038 

Reverse: 5' AGAGGGTGTGGAGCTGCTTA 3' 63.9 

CEACAM5  Forward: 5' CGCATACAGTGGTCGAGAGA 3' 64.1 
Liebig et al., 2005 

362 5,292 

Reverse: 5' TGTAGCTTGCTGTGTCATTT 3' 58.5 

MUC1  Forward: 5' CGTCGTGGACATTGATGGTACC 3' 68.4 
Brossart et al., 2001 

287 1,093 

Reverse: 5' GGTACCTCCTCTCACCTCCTCCAA3' 69.5 

NY-ESO-1 Forward: 5' CCCCACCGCTTCCCGTG 3' 72.6 
Ries et al, 2009 

275 513 

Reverse: 5' CTGGCCACTCGTGCTGGGA 3' 72.4 

PASD1  Forward: 5’-AGCCACCTCTGTGCTGACTT-3’ 64.1 
Guinn et al., 2005b 

233 25,699 

Reverse: 5’-GGTTCAACGTACACGGCTTT-3’ 63.8 

p68  Forward: 5’-CTCAGGGCCCATAGTGCAA-3’ 65.0 
Khan et al unpublished 

655 1,144 

Reverse: 5’-ACCCGCGTGTCTGATAATCC-3’ 66.0 

Survivin Forward: 5-GATGACGACCCCATAGAGGAAC-3' 65.6 
Johnen et al, 2012 

85 1,958 

Reverse: 5'- GGGTTAATTCTTCAAACTGCTTCT-3' 62.5 

Tyrosinase  Forward: 5'-ACAACAGCCATCAGTCT-3' 53.3 
Abrahamsen et al., 2005 

291 36,694 

Reverse: 5'-CCTGTACCTGGGACATT-3' 55.4 

WT1  Forward: 5’-GGCATCTGAGACCAGTGAGAA-3’ 64.4 
Cilloni et al., 2002 

483 7,376 

Reverse: 5'-GAGAGTCAGACTTGAAAGCAGT-3' 59.3 

*I did try Tureci et al, 1998 SSX2 primers but they did not work in my hands and so I used new primers I designed.



 

 
72 

To demonstrate that the RT-PCR experiments worked as expected I extracted mRNA from cell 

lines that were known to express the antigen of interest (Table 2.3) based on data from previous 

studies and showed transcription of the genes of interest in the cell lines I had.  

Table 2.3 Known transcript expression of antigens in human cell lines  

Cell line Antigens 

expressed 

Method References 

KG1 SSX2IP IHC Denniss et al, 2007 

K562† SSX2IP 

SSX 

PASD1 

WT1 

MUC1 

P68 

Survivin  

IHC 

RT-PCR 

RT-PCR, qPCR, IHC 

RT-PCR  

Immunoblotting 

Western Blot 

RT-PCR & Western Blot 

Denniss et al, 2007 

dos Santos et al, 2000 

Hardwick et al, 2013 

Inoue et al, 1994 

Kawano et al, 2007 

Yang et al, 2005 

Schmidt et al, 2003 

HeLa PASD1 MTAs Liggins et al, 2004a 

Sk-mel-28 MelanA RT-PCR Chen et al, 1996 

SW480 G250 Real-time PCR Lal et al, 2001 

Jurkats PASD1 RT-PCR Guinn et al, 2005 
†CEACAM5, NY-ESO-1 and Tyrosinase, expression was found in K562 cells but had not been previously 

reported.  

2.6.4 Agarose gel electrophoresis 

To make a 1 % agarose gel, 1 g of agarose powder was dissolved in 100 ml of 1 x Tris-acetate-

EDTA (TAE) (40Tris, 20 mM acetic acid, 1 mM EDTA) buffer by placing it in the microwave. 

Once dissolved the agarose solution is cooled by running under the cold tap. Once sufficiently 

cooled, ethidium bromide was added and the whole mixture was poured into a gel mould with 

a comb to make wells. After 15 min the gel had solidified and was placed into an 

electrophoresis tank with TAE buffer. 3 µl of loading buffer was mixed with 12 µl of the PCR 

reaction and added to the wells. 5 µl of the DNA HyperLadder™ 50 bp (Bioline U.K) was used 

as a marker.    
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2.7 IHC 

2.7.1 Preparation of samples for IHC 

Cells were counted and resuspended at 5 x 106/ ml in sterile PBS. Glass slides (Fisher 

Scientific) were cleaned with pure methanol and 10 μl of cell solution was spotted on each 

microscope slide at two independent sites.  The slides are air dried 4-6 h, double wrapped in 

saran wrap and stored at -20 °C. 

2.7.2 Antibodies 

Antibodies were used are described in Table 2.4. 

We used two PASD1 mouse anti-human monoclonal antibodies which were a kind gift from 

Professor Alison Banham, (John Radcliffe Hospital, University of Oxford, UK). Both variants 

of the PASD1 protein, PASD1a and PASD1b, are detected by the antibody PASD1-1 which 

binds between a.a. 195-474, while PASD1-2 binds the PASD1b protein in a region between 

a.a. 540-773 (Cooper et al, 2006; Figure 2.2). PASD1 has previously been shown to be 

expressed in primary spermatagonia with expression decreasing with sperm maturation. 

I used three independently derived antibodies (all Abcam) to identify SSX2 protein expression 

during my studies (Figure 2.3). A pSSX2 antibody that bound to SSX2 in the N’ terminus 

between a.a. 21-70, was renamed pSSX2 (N) for clarity. I also used two antibodies that were 

specific for SSX2A. These were named mSSX2A (clone 4D10) a mouse monoclonal antibody, 

and pSSX2A, a rabbit polyclonal that each recognise SSX2A between a.a. 176-223.  
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Table 2.4 Antibodies used for ICC 

Antibodies Antibody 

clone name 

Type (Isotype) Source (product 

number) 

Species Dilution Stock 

[conc] 

(µg/ml) 

Actin ACTN05(C4) Monoclonal (IgG1) Abcam (ab3280) Mouse anti-human  1/100 2 

mSSX2A 4D10 Monoclonal (IgG1) Abcam (ab117972) Mouse anti-human 1/100 6.7 

pSSX2(N) N/A Polyclonal (IgG) Abcam ab182361 Rabbit anti-human 1/100 10 

pSSX2A N/A Polyclonal, IgG Abcam ab48571 Rabbit anti-human 1.100 10 

CA125 OC125 Monoclonal, IgG1 AbD Serotec 

MCA1914H 

Mouse anti-human 1/100 90 

Anti-HE4 EPR4743 Monoclonal, IgG Abcam ab109298 Rabbit anti-human 1/100 17.18 

Anti-WT1 1E9 Monoclonal, IgG2a Abcam ab118873  Mouse anti-human 1/100 5 

SSX2IP N/A Polyclonal, IgG Abcam ab10256 Goat anti-human 1/100 5 

PASD1-1: reacts with PASD1a and PASD1b  2ALCC136 N/A University of Oxford  Mouse anti-human 1/250 NK 

PASD1-2:  recognises PASD1b 2ALCC128 N/A University of Oxford    Mouse anti-human 1/50 NK 

Isotype control for actin, mSSX2A and 

PASD1 Abs 

MOPC-21 Monoclonal, IgG1 Abcam  ab18443 Mouse anti-human 1/100 5 

Isotype control for pSSX2(N), pSSX2A and 

HE4 Abs  

N/A Polyclonal, IgG Abcam ab37416 Mouse anti-human 1/100 50 

Isotype control for SSX2IP Ab   Polyclonal, IgG Abcam ab79108 Goat anti-human 1/100 5 

Secondary Ab for actin, mSSX2A, CA125, 

WT1 and PASD1 

N/A N/A Envision kit, Dako HRP anti-mouse N/A N/A 

Secondary Ab for pSSX2(N), pSSX2A and 

HE4  

N/A Polyclonal, IgG Abcam ab6721 Goat anti-rabbit 1/100 20 

Interlinking Ab for SSX2IP GT175 N/A University of Oxford Mouse anti-goat 1/100 NK 

Ab: antibody; HRP: Horseradish peroxidase; M: monoclonal; NK: not known; N/A: not applicable; N: N’ terminal; p: polyclonal 



 

 
75 

 

 

 

 

Figure 2.2 Schematic diagram indicating the location that each of the PASD1 monoclonal 

antibodies bind to on the PASD1 variant. It has been suggested that there are a number of 

PASD1 variants but only the two indicated have been characterised (Cooper et al, 2006). 

Although binding of PASD1-2 indicates the expression of PASD1b in cells, the PASD1-1 

antibody does not distinguish between PASD1a and b expression, but when used in 

combination with PASD1-2, PASD1b expression can be discounted. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Schematic of the SSX family of variants and the location of antibody binding. 

SSX2A has a unique carboxy region only bound by the mSSX2A and pSSX2A antibodies. The 

third antibody used in these studies bound to a region common to both SSX2A and SSX2B 

referred to as pSSX2(N). 

SSX2B 

SSX3 

SSX4 

SSX5 

SSX6 

SSX1 

                    SSX2A        

mSSX2A and pSSX2A 

 176 - 223 

   Blocking peptide 

      binding region 

pSSX2(N) 

21 - 70  

1 188  

¬¬ 
PASD1a 

PASD1b PASD1-2 (clone 2ALCC128) 
a.a. 540 - 773  

PASD1-1 (clone 2ALCC136)  
a.a. 195-474 

1 693 
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2.7.3 ICC on frozen samples 

Slides were taken from storage at -20 ºC, and defrosted for 20 min at RT before removing the 

saran wrap. A diamond pen (Fisher Scientific) was used to mark around the area of the slide to 

be stained (the ‘button’).  The cells were fixed by inserting the slides into a coplin jar containing 

50 ml of 100 % cold methanol (Fisher Scientific) on ice for 15 min.  When analysing leukaemia 

samples an additional 1 ml of H202 was added to the methanol. The slides were removed from 

the fixative and placed horizontally into a moisture chamber face up.  They were washed three 

times in Tris-buffered saline (TBS) (0.15 M sodium chloride; 0.05 M TRIS-HCl buffer; pH 

7.6) (Sigma) and the excess TBS was carefully removed from the periphery of each of the 

buttons using dry white tissue.  A peroxidase block from the Envision Kit (Dako) was added 

to the cells for 5 min. The appropriate primary antibodies were diluted in TBS (Table 2.4), and 

40 µl of the antibody solution was added to each button. Anti-actin was used as a positive 

control.  The slides were incubated with primary antibody for 1 h at RT then washed three 

times with TBS.  Only SSX2IP antibody was produced in goat, therefore an intermediary 

antibody called GT175 (kind gift from Professor Alison Banham, University of Oxford) was 

added after the primary for 1 h at RT as a linker to the secondary antibody. The secondary 

antibody was supplied as part of the Envision+ System which is horseradish peroxidase (HRP) 

based and includes 3,3'-diaminobenzidine (DAB) as the detector reagent in the kit (Dako). HRP 

conjugated anti-mouse IgG antibody which was added and incubated for 30 min at RT.  

Following washes with TBS, 20-30 µl of DAB substrate from the Envision kit was added to 

each cell button, incubated for 5 min then washed gently with water. 40 µl of 1:5 dilution 

Mayer’s haematoxylin: Lillie’s modification (Dako) was added to each button as a 

counterstain, and washed with copious amounts of tap water to remove all excess stain.  Slides 

were mounted in DPX mountant (VWR) and imaged using the virtual microscopy system 
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Olympus Dotslide (University of Southampton) at 40 X magnification at the University of 

Southampton. 

2.7.4 IHC on TMAs 

Using a method shared by Linden Lyne in the laboratory of Professor Alison Banham (Liggins 

et al, 2004a) paraffin-embedded ovarian TMAs containing 208 samples (product no.OV2084) 

(Biomax U.S) and endometrial TMAs with 80 samples (product no.UT801) (Biomax) were de 

waxed in citroclear (TCS Biosciences U.K) twice for 5 min. The slides were then placed in 100 

% ethanol twice for 5 min (air drying in the interval for a few seconds) and then once in 50 % 

ethanol for 5 min.  The arrays were washed with tap water and antigen retrieval was performed 

in Tris/EDTA buffer pH9 (Sigma) in the microwave (800W) for 11 min of full power. 

Following cooling, the arrays were washed in TBS. Peroxide block (Dako) was added for 5 

min and the tissue arrays washed again in TBS. From this point staining was carried out as per 

ICC on frozen samples (Section 2.7.2). Scoring was performed in a single blinded fashion by 

Dr Barbara Guinn. Patient information and tumour characteristics are available in appendix II.   

2.7.5 Blocking protocol 

To establish the specificity of the SSX2 antibodies being used, antibody blocking was 

performed.  Blocking peptides for all SSX2 antibodies tested were purchased from Abcam 

(Table 2.5). All three antibodies which recognised SSX2 named mSSX2A, pSSX2(N) and 

pSSX2A, were diluted in TBS along with the blocking peptide. The peptide was 20 X the 

concentration of the antibodies (1 µM Ab:20 µM peptide) which had been previously used 

successfully to block antigens (Professor JoAnne McLaurin, University of Toronto, Canada, 

personal communication). The mixture was placed at 4 °C overnight in a rotator and ICC was 

performed as described in section 2.7.2 using the blocked antibodies in direct comparison to 

the same antibodies incubated overnight with an equal volume of TBS to show the specificity 

of the antibodies for the target peptide.  
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Table 2.5 Sequences of peptides used to block antibodies in ICC 

Peptide Source & 

catalogue 

number 

Antibodies 

the peptide 

blocks 

Sequence a.a. 

N’ terminal 

SSX2 

Abcam 

Ab192644 

pSSX2(N) IQKAFDDIAKYFSKEEWEKMKASEKI

FYVYMKRKYEAMTKLGFKATLPPF 

21-70 

C’ terminal 

SSX2  

Abcam 

Ab182921 

mSSX2A and 

pSSX2A (both 

C-terminal) 

QNTHNIGRFSLSTSMGAVHGTPKTIT

HNRDPKGGNMPGPTDCVRENSW 

176-223 

2.7.6 Scoring of samples following ICC/IHC 

Staining intensity was classified on a scale of 0 to 3 (0: no staining; 1: background; 2: weak 

staining; 3: moderate staining; 4: strong staining) based on the system described by Biesterfeld 

et al, 1996. The percentage of positively stained cells in cell lines and leukaemia patient 

samples were scored by cell count on a scale of 0 to 4 (0: 0 %; 1: 1-10 %; 2: 11-50 %; 3: 51-

80 %; 4: > 80 %) as well as the number of stained cells (% in 200 cells where available) and 

sub-location (nuclear, surface, cytoplasmic). The immunoreactivity score was achieved by the 

multiplication of the intensity score with the percentage of positive cells (% in counts of 200 

cells) (Deng et al, 2014). Immunoreactivity scores of 0= negative, 1-29= weak, 30-143= 

moderate, 144-228= high and >228= very high staining. 

2.8 Statistical Analyses 

The statistical analysis was performed by Professor Ken Mills at the CCRB. It was carried out 

using Partek Genomic Suite that has statistical analysis capability. A 2-tailed paired t-test was 

used to see if there was a difference in both directions. A significance level of 0.05 allows 0.25 

in each tail of the distribution. A paired T-test compares the same samples in different 

conditions to see whether the differences between them are significant. In this project, the same 

samples were subject to different antigens and the subsequent labelling was analysed.  
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CHAPTER 3: EXPRESSION OF TUMOUR ANTIGENS IN HUMAN 

LEUKAEMIA PATIENT SAMPLES AND CORRELATION WITH 

ANTIGEN RECOGNITION BY SPECIFIC CD8+ T CELLS 

3.1 Introduction 

Dr Guinn’s group had previously shown that the CTA, PASD1 was recognised by antibodies 

in the sera of presentation AML patients (Guinn et al, 2005) and that it was the most frequently 

expressed CT antigen in presentation AML samples. Subsequently Brooks et al, (2015) used 

the pMHC array to determine the frequency with which “untouched” CD8+ T cells from 

presentation AML patients recognised different antigens and the epitopes therein that were 

relevant to AML. I played a small part in this study (that was funded by a Cancer Research 

U.K. Discovery Committee Award; C1510/A11926). The primary aim of the study was to 

prioritise the PASD1 epitopes identified by Ait-Tahar et al, 2010 called PASD1(1), PASD1(2) 

and PASD1(5) in comparison to an analogue peptide, Pa14, identified by Hardwick et al, 2013, 

using the pMHC array. My role was to determine whether patients’ whose CD8+ T cells 

recognised PASD1 epitopes also had PASD1 transcripts and/or protein expression in their 

leukaemia cells. The T cell specificities examined by the pMHC array included antigens and 

epitopes therein that had been identified, predominantly in myeloid leukaemia, by other 

investigators (Table 3.1). These additional LAAs provided comparators for T cell recognition 

by CD8+ cells from leukaemia patients with T-cell specificity for the PASD1 epitopes. 
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Table 3.1 Frequency of expression of the antigens on the pMHC array in haematological 

malignancies, with a focus on myeloid leukaemias. 

LAA Frequency of expression in AML References 

G250 60 % of myeloid leukaemia patients showed T cell responses Greiner et al, 2006 

Gp100 80/853 leukaemia patients were positive  Greaves et al, 1983 

HAGE 57 % of CML and 23 % of AML patients samples Adams et al, 2002 

MelanA  3/26 AML patients had specific T cells Brooks et al, 2015 

MUC1 67 % of AML and 92 % of myeloma patients Brossart et al, 2001 

PASD1 33 % of AML and 17 % of CML patient samples Guinn et al, 2005 

Proteinase 3 Antibody detection 2-5 times greater in AML and CML than in 

healthy samples 

Dengler et al, 1995 

p68 RNA-

helicase 

Detected in 2/3 myeloid leukaemia cell lines K562 and KG1 

but not in HL60  

Lin et al, 2012 

Survivin detected in 75/125 of de novo AML cases  Adida et al, 2000 

Tyrosinase 3/26 AML patients had specific T cells Brooks et al, 2015 

WT1 Transcripts detected in 73 % of patients Schmid et al, 1997 

P53 Mutations found in 1/39 de novo AML patients  Fenaux et al, 1991 

In order to correlate the T cell recognition of HLA-A2 restricted PASD1 epitopes identified by 

previous investigators (Ait-Tahar et al, 2009; Hardwick et al, 2013) with the expression of 

PASD1 in the leukaemia cells, the same patient samples were used for both analyses where 

possible.  The leukaemia samples I chose to study for PASD1 expression were HLA-A2 

positive, while some were positive for the presence of PASD1-specific T cells and some were 

not. Some of the HLA-A2 patients had T cells that bound to the HLA-A2 positive pMHCs 

which may have been due to the promiscuity of the TCR which only recognises one or two 

amino acids in an epitope and as such one TCR can recognize numerous pMHC. As the pMHC 

array analyses had included other leukaemia associated antigens and their epitopes, I also chose 

to study these antigens alongside PASD1. The pMHCs on the array were determined by 

availability from Professor Hans-Georg Rammensee’s group at the University of Tubingen and 

relevance, where possible, to AML. All had been tested by the investigators who had requested 

they were made as part of collaborations with the Rammensee group prior to our studies. The 

exception to this were five HLA-A2 restricted PASD1 epitopes, made for the pMHC array 

study as part of a collaboration with Dr Barbara Guinn (Table 3.2). 
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Table 3.2. pMHCs used on the array to detect virus and LAA-specific T cell populations 

within the peripheral blood CD8+ population of leukaemia patients.  

aOriginal reference for the epitope, b245V mutation of MHC class I as described by (Goa et 

al, 2000); ca random selection of 6,000 peptides, generated as described in reference 

(Arnold et al, 1997). 

HLA: human leukocyte antigen; Mod: modified; Mut: mutated; NK: not known. 
 

I examined PASD1 expression in samples from the leukaemia patients whose T cells were 

examined on the pMHC array by immunolabelling and for completeness RT-PCR.  

Epitope HLA type Amino acid sequence Refa 

ALK-SLA human HLA-A*0201       SLAMLDLLHV Passoni et al, 2002 

CMV pp65 HLA-A*0201 NLVPMVATV Wills et al, 1996 

Flu M1 HLA-A*0201 GILGFVFTL Bodmer et al, 1989 

G250 HLA-A*0201 HLSTAFARV Vissers et al, 1999 

Gp100 HLA-A*0201 KTWGQYWQV Skipper et al, 1999 

HAGE HLA-A*0201 DLILGNISV Mathieu et al, 2007 

HBV HLA-A*0201 FLLTRILTI Rehermann et al, 1996 

HPV16 E7 HLA-A*0201 YMLDLQPETT Kast et al, 1994 

HPV16 L1 HLA-A*0201 ICWGNQLFV Voss et al, 1997 

Library HLA-A*0201 c Arnold et al, 1997 

MelanA mod HLA-A*0201 ELAGIGILTV Valmori et al, 1998 

MUC1 HLA-A*0201 NLTISDVSV Carmon et al, 2000 

Muc1 mod HLA-A*0201 KLLLTVLTV Hoff et al, 2010 

MUC-1 tandem repeat HLA-A*0201 STAPPVHNV Brossart et al, 1999 

MUC1_HUMAN mod HLA-A*0201 SLAPPVHNV Rodulf, 2008 

PASD1(1) HLA-A*0201 QLLDGFMITL Cooper et al, 2006 

PASD1(2) HLA-A*0201 YLVGNVCIL Cooper et al, 2006 

PASD1 (Pa14) HLA-A*0201       RLWQELSDI Hardwick et al, 2013 

PASD1(5) HLA-A*0201 ELSDSLGPV Cooper et al, 2006 

Proteinase 3  HLA-A*0201       VLQELNVTV  Molldrem et al, 1996 

p68 RNA-helicase HLA-A*0201       YLLPAIVHI Verma et al, 2010 

Survivin5-11 HLA-A*0201 TLPPAWQPL Schmitz et al, 2000 

Survivin96-104 HLA-A*0201       LTTLGEFLKL Schmitz et al, 2000 

Tyrosinase  HLA-A*0201 YMDGTMSQV  Skipper et al, 1999 

VMSA_HPBV HLA-A*0201 WLSLLVPFV Nayersina et al, 1993 

WT137-45 HLA-A*0201       VLDFAPPGA Smithgall et al, 2001 

WT1126-134 HLA-A*0201 RMFPNAPYL    Goa et al, 2000 

EBV_BMRF1105-114 HLA-A*0101 mut AVEQASLQFY NK 

EBV_BZLF340-348 HLA-A*0101 mut VVETLSSSY NK 

EBV BZLF HLA-A*0101 245Vb DSELEIKRY NK 

LMP2_EBV410-420 HLA-A*0101 mut LTEWGSGNRTY NK 

MAGE 1161-169 HLA-A*0101 EADPTGHSY Mukherji et al, 1995 

EBV BMLF1298-306 HLA A*0301 mut SLSKVILTLK NK 

EBV BRLF1148-156 HLA-A*0301 mut RVRAYTYSK Benninger-Doring, et al, 1999 

EBV EBNA3471-479  HLA-A*0301 RLRAEAQVK Hill et al, 1995 

LMP1_EBV mod.  HLA-A*0301 ALFLGIVLK NK 

p53 HLA-A*0301 RVRAMAIYK Zhang et al, 1996 

p53321-330 HLA-B*0702 KPLDGEYFTL Gnjatic et al, 1995 

EBV BZLF1 HLA-B*0801 RAKFKQLL Steven et al, 1997 

EBV EBNA3325-333 HLA-B*0801 wt FLRGRAYGL Misko et al, 1990 
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As positive controls for the effective amplification of cDNA by each primer pair, a number of 

cells lines were used; K562, KG1, Jurkats, HeLa, SW480 and SK Mel 28. These cell lines were 

chosen on the basis that they had either previously been shown to express the antigen under 

investigation or when I tested them acted as suitable controls for the amplification of the gene 

transcripts in question (Table 2.3). The leukaemia cell line K562 provided a suitable positive 

control for many of the LAAs but where it wasn’t suitable other cell lines were found. 

To optimise ICC for the PASD1 antibodies, a number of leukaemia cell lines including K562 

and solid tumour cell lines including SW480 were used. K562 and SW480 had been shown to 

express the PASD1 protein previously (Cooper et al, 2006; Hardwick et al, 2013). An 

embryonic kidney cell line (HEK 293) was used as a definitive negative control as PASD1 has 

been shown to be absent from kidney tissue (Cooper et al, 2006) previously. 

For the pMHC array study CD8+ T cells were negatively isolated from the peripheral blood of 

patients with leukaemia or from healthy donors, and were referred to as “untouched” as they 

were not expanded or stimulated with peptide ex vivo prior to their analyses on the array. These 

“untouched” T cells were dyed with the lipophilic tracer, DiD, and incubated with 

polyacrylamide arrays printed with pMHCs from more than 50 tumour-associated antigen and 

viral epitopes (including HLA-A*0201/ CMV and Flu controls) (Table 3.2). The pMHC array 

study does not detect the functionality of the T cells and although some groups have shown the 

pMHC array can be modified to detect cytokines (Chen et al, 2005), Hans Vergauwen while 

studying with the Guinn group did not find this to be possible (Vergauwen, 2011, MSc by 

Research thesis). 

I investigated a cohort of leukaemia patient samples (some of whom had T cells that bound to 

pMHCs on the array and some that did not), depending on the samples available in storage and 

the previous data obtained, which numbered 18 and three normal donor controls (PBMNCs) to 
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determine whether there was a correlation between the presence of LAA-specific T cells in the 

peripheral blood of these patients (Table 3.3) and expression of the genes (transcripts and 

protein) in the leucocytes from the same patients.    

The pMHC array study showed that PASD1 epitopes were the most frequently recognised. Of 

the 26 AML patients whose CD8+ T cells were analysed eight had T cells that recognised one 

or more of the LAA epitopes and while four of these patients had T cells that recognised 

PASD1(2), three patients had T cells that recognised PASD1 Pa14 and one patient had T cells 

that recognised the PASD1(5) epitope. The cut-off point for a positive result was that at least 

50 % of the six spots on the pMHC in each of the two areas had to have a detectable number 

of T cells attached (approximately 40). For this reason ALL003 and AML001 were not 

identified as scoring positive for T cell recognition. Patient ALL003 was positive in two of six 

spots in total and AML001 was positive for two of six spots in one area. 

I then examined a small subset of AML patients to determine whether their leukaemia cells 

expressed PASD1 protein and whether this correlated with the presence of PASD1-specific 

CD8+ T cells in their periphery. For completeness I also examined whether PASD1 transcripts 

were detectable in the patients’ leukaemia cells along with the other LAAs used in the pMHC 

study. 
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Table 3.3 Binding of virus and LAA-specific pMHCs by “untouched” CD8+ T cells purified from AML, ALL and CML patients (data 

taken from Brooks et al, 2015).  The table shows the results from patient samples that were analysed on the pMHC array and were subsequently 

analysed by RT-PCR for tumour antigen expression and for PASD1 expression by ICC. 

 

nk: not known 

 

 

 

 

 

 
Patient 

ID 

 
HLA-A2/CMV 

status 

HLA-A2 - pMHC Molecules 

CMV CMV Flu CEAM G250 MelanA MUC1 PASD1 PASD1(1) PASD1(2) PASD1(5) p68 RNA Tyrosin- WT1 

IE1 pp65 M1 5   950-958 Pa14    Helicase ase 126-134 

AML001 +/-               

AML003 +/+               

AML004 +/+ + +      +     + + 

AML006 - a /+               

AML008 +/+  +      +       

AML009 -/nk               

AML013 +/nk               

AML014 +/nk          +     

AML015 +/nk               

AML018 -/nk               

AML019 + a /nk               

AML021 - a /nk    +           

AML023 +/nk               

AML024 Nk/nk               

ALL001 +/+ + +             

ALL002 +/nk               

CML001 +/nk               

CML002 -/nk               
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3.2 Aims  

 To correlate the detection of PASD1 specific T cells on the pMHC array with PASD1 

gene transcripts and protein expression in leukaemia cells from the same patient 

samples.  

 To investigate whether patients with T cells that bound to pMHCs encoding epitopes 

expressed the same antigen (by virtue of gene transcripts) in their tumour cells. 

3.3 Results 

3.3.1 Detection of TAA transcription in cell lines 

I wanted to determine which of the leukaemia patient samples expressed transcripts of the 

tumour antigens being studied on the pMHC array, and investigate whether patients that had 

LAA-specific T cells, as detected by the pMHC array, also expressed transcripts for the same 

antigens being expressed in their malignant cells. I limited my study to the tumour antigens 

that were also investigated on the pMHC array and that were recognised by patient T cells with 

some samples that were HLA-A2 negative or CD8+ T cell negative to act as negative controls. 

I optimised RT-PCR analysis using a panel of cell lines, at least one of which was known to 

express the antigen of interest (Table 2.3). The primers used for RT-PCR are detailed and 

referenced in Table 2.2. I found expression of each LAA in at least one of the cell lines, in 

agreement with already published data, where available (Table 3.4; Figure 3.1). K562 

provided a positive control for the expression of most of the LAAs under test except G250, 

MelanA and SSX2. 
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Table 3.4 Expression of PCR transcripts in human cancer cell lines. 

 CEACAM5 G250 GAPDH* MelanA MUC1 NY-ESO-1 P68 PASD1a+b SSX2# SSX2IP# Survivin Tyrosinase WT1 

K562 + - + - + + + + - + + + + 

KG1   +     - - +   - 

HeLa   +      + +    

SW480  + + -     - +   - 

Jurkats   +           

SKMel28   + +          

*GAPDH was used as a positive control for the competency of the cDNA for amplification. 

#SSX2 and SSX2IP pMHCs were not available for array analysis but were examined by RT-PCR in the human cancer cell lines due to our groups 

prior interest in these antigens 

Cells that are empty on the table indicate that this PCR analysis was not done. Data is representative of at least two independent experiments in 

which mRNA was extracted from cells, used to produce mRNA, transcribed into cDNA and used for PCR analysis. 
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Figure 3.1 Optimisation of the RT-PCR analysis of tumour antigen expression in cell 

lines. PCR conditions (primers, MgCl2 concentration and annealing temperature) were 

optimised to ensure products were made from cDNA from at least one of the cell lines under 

test for each antigen. 1 % agarose gel electrophoresis was used to separate PCR products for 

analysis. Ladder is HyperLadder II with the brightest band indicated as being 300bp, sizes of 

bands are shown in red in bp. 

 

3.3.2 Transcription of LAAs in leukaemia patient samples 

Transcriptional expression was carried out as an extra comparator as these LAAs were used in 

detecting T cells on the pMHC array beside PASD1. Eight LAAs (CEACAM5, G250, MelanA, 

MUC1, P68, PASD1, Tyrosinase and WT1) were investigated by RT-PCR in 18 leukaemia 

patient samples (14 AML, 2 CML, 2 ALL) (Figure 3.2), all of whom had LAA-specific-T cells 

for these antigens when examined on the pMHC array. In addition I examined three samples 

of PBMNCs from healthy donors. Surprisingly healthy donor PBMNCs were found to express 

(A)K562 

(B) HeLa 

300bp 

300bp 

300bp 

178bp 

233bp 
1Kb 

300bp 

1Kb 
207bp 

(C) SW480 

300bp 

(D) SK-mel 28 

268bp 

300bp 
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six of the eight antigens examined (CEACAM5, G250, MUC1, P68, Tyrosinase and WT1), the 

exceptions being PASD1 or MelanA. Each experiment was repeated at least twice and included 

a no template control, colloquially referred to as a “blank” and a positive control for PCR 

amplification, GAPDH. 

I found that only four of the eighteen leukaemia samples analysed on the pMHC array had 

LAA-specific T cells that recognised an epitope from an LAA. However all 18 samples 

produced transcripts detectable for at least one of the LAAs as determined by RT-PCR. G250, 

MUC1, p68, tyrosinase and WT1 transcripts were found in samples that did not have detectable 

LAA-specific T cells in their periphery, against these antigens however in one patient sample 

(AML004), had WT1 transcripts in the tumour cells and WT1-specific T cells were detected 

on the pMHC array (Table 3.5). 

A PASD1 amplification product was detected in the following patient samples; AML006, 

AML013, AML015, AML018 and AML026. This equates to 28 % (5/18) of patient samples, 

similar to previous findings by Guinn et al, 2005. However, with the exception of AML006, 

the PASD1 amplicon detected in the patient samples was not the 233bp band expected based 

on the findings from previous publications (Guinn et al, 2005b)(Table 2.4; Figure 3.3). Cooper 

et al, (Cooper et al, 2006) also described the finding of additional PASD1 variants in their 

studies as determined by expected protein weights when Western blotting DLBCL cell lines.   
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Figure 3.2 RT-PCR analysis of antigen expression in leukaemia patient samples. The LAAs tested 

were variably expressed by patient samples as indicated in Table 3.4. GAPDH was used as a 

positive control for the competency of the PCR amplification process. Healthy volunteer 

(PBMNCs) were used as controls, the ladder was HyperLadder II. Data is representative of at least 

two independent experiments.  
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Table 3.5 Detection of LAA transcription in patient samples and normal donors analysed 

on the pMHC array. 

†: Housekeeping gene used to show that the cDNA template was intact and could be amplified; 

+: band of the expected size;  +: band not of the expected size for amplification from cDNA or  

gDNA. ND: normal donor PBMNC 

. 

 

 
Figure 3.3 Detection of PASD1 transcripts in leukaemia patient samples. The amplification 

of a PASD1 PCR product was detected in samples AML006, AML013, AML015, AML018 

and AML026, however only AML006 cells produced a transcript of the expected size (233bp). 

The other PASD1 PCR products were transcripts each of the same greater size (approximately 

1600bp). 

 

 GAPDH CEACAM5 G250 MelanA MUC1 PASD1 P68 Tyrosinase WT1 

AML001 + - - - - - + - - 

AML003 - - - - - - + - - 

AML004 + - - - - - + - + 

AML006 + - + - + + + - + 

AML008 + - + - - - + - + 

AML009 + - - - - - + - - 

AML013 + - + - - + + + - 

AML014 + - - - - - + - - 

AML015 + - - - - + + - - 

AML018 + - - - + + + + + 

AML019 + - + - - - + - - 

AML021 + - + - + - + + - 

AML023 + - - - - - + - - 

AML024 + - + - + + + - + 

ALL001 + - + - + - + - + 

ALL002 + - + - + - + + + 

CML001 + - - - - - + - + 

CML002 + - - - - - + - - 

ND1 + - - - + - + - - 

ND2 + + + - + - + - + 

ND3 + - - - - - + + - 
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3.3.3 Detection of PASD1 protein expression in cell lines  

PASD1 was the most frequently recognised tumour antigen by T cells from AML patients on 

the pMHC array. To achieve my aim of confirming whether PASD1 protein was being 

translated, the expression of PASD1 protein in AML patient samples was investigated using 

ICC. I optimised the immunolabelling assay using cancer cell lines that were known to be 

positive such as K562, or as one of the controls, negative (HEK 293), for PASD1 protein 

expression (Figure 3.4). Two anti-PASD1 antibodies were used as described previously 

(Section 2.7.2). PASD1a and PASD1b, were detectable using the PASD1-1 antibody which 

bound between a.a. 195-474, PASD1b alone was detected through the use of the PASD1-2 

antibody that binds the PASD1b protein in a region between a.a. 540-773 (Cooper et al, 2006). 

Using PASD1-1 antibody, PASD1a and b were detected in K562, THIEL and SW480 while 

PASD1-2 also immunolabelled PASD1b in the same cell lines (Table 3.6). This confirms 

previous data that demonstrated PASD1 expression in K562, SW480 and G361 cell lines, with 

the highest expression being in SW480 and G361 (Liggins et al, 2004a; summarised in Table 

2.1). The staining, with both PASD1-1 and PASD1-2 antibodies was seen to be cytoplasmic 

and nuclear, as described previously (Cooper et al, 2006). Immunolabelling of PASD1 protein 

in SK-Mel-28 was only successful when using the PASD1-2 antibody that recognises PASD1b 

only, and indicating that this cell line only produces the shorter PASD1_v2 transcript that is 

translated into the longer PASD1b protein. There was no detectable PASD1 protein in KM-

H2.  
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Table 3.6 PASD1 protein expression in human cancer cell lines. 

 

 

 

 

 

 

 

 

3.3.4 Detection of PASD1 protein expression in AML patient samples 

As my aim was to correlate the PASD1 T cells detection with PASD1 protein expression, AML 

samples were labelled with PASD1 antibodies by ICC.  PASD1a + b protein expression were 

detected in the following three patient samples: AML004, AML008 and AML014 (Figure 3.5; 

Table 3.7). The other 12 samples tested for PASD1 expression were found to be negative. In 

the patients who were positive for PASD1 protein expression, the expression was in a mixture 

of all possible sub-cellular localisations in each patient (Table 3.8).  

 

 

 

 

 

 

 

 

 

 

 

 

Cell line Cells only Actin Isotype control PASD1 a & b PASD1 b 

K562 - + - + + 
KM-H2 - + - - - 
Thiel - + - + + 

SW480 - + - + + 
HEK 293 - + - - - 

Sk-Mel-28 - + - - + 
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Figure 3.4 Optimisation for ICC showing expression of PASD1 protein in human cell 

lines. PASD1 was found to be expressed in the following cell lines: K562, THIEL, SW480, 

Sk-Mel-28 but not in KM-H2. Black boxes contain enlarged images of positively staining cells. 

Cells only and isotype antibodies were used as negative controls while no primary (replaced 

by TBS alone) was used to determine background staining. Actin was used as a positive control 

to demonstrate the ICC was working as it should be. All magnification is x400 and images are 

representative of at least two independent experiments. 

 

Cells only           Isotype          No primary           Actin             PASD1a+b          PASD1b 

K562 

THIEL 

SW480 

SK-mel-28 

Ovcar3 

Skov3 

A2780 

KM-H2 
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Figure 3.5. Expression of PASD1 in AML patient samples. Both variants of PASD1 were 

expressed in the cells from AML004, AML008 and AML014. All other samples were negative. 

No primary (replaced by TBS) was used as a negative control and actin was used as a positive 

control. X400 magnification with at least two independent experiments. 
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Table 3.7 PASD1 protein expression as detected by immunolabelling in leukaemia patient 

samples. Representative of at least two independent experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples Actin No primary PASD1 136 (PASD1a + b) PASD1 128 (PASD1b) 

AML001 + - - - 
AML003 + - - - 
AML004 + - + + 
AML006 + - - - 
AML008 + - + + 
AML009 + - - - 
AML014 + - + + 
AML018 + - - - 
AML019 + - - - 
AML021 + - - - 
AML023 + - - - 
AML026 + - - - 
ALL001 + - - - 
ALL002 + - - - 
CML002 + - - - 
Total 15/15 0/15 3/15 3/15 
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Table 3.8 Frequency of cells that are positive for PASD1a and b, intensity and sub-cellular localisation of staining. Data is representative 

of at least two independent experiments. 

 

 

 

 

PASD1a + b 

 

PASD1b 

 

Frequency of 

expression 

/200 cells (%) 

Intensity of 

staining 

Subcellular 

localisation 

Immunoreactivity  

score  

Frequency of 

expression 

/200 cells (%) 

Intensity 

of staining 

Subcellular 

localisation 

Immunoreactivity  

score 

AML004 

 

8/200 (4) 

 

1 

 

Cytoplasmic  

 

4 

 

79/200 (40) 

 

2 

Surface, 

nuclear, 

cytoplasmic 

 

80 

AML008 
 

48/200 (24) 

 

3 

Nuclear, 

cytoplasmic 

 

72 

 

26/200 (13) 

 

1 

 

Nuclear 

 

13 

AML014 

 

85/200 (43) 

 

 

2 

 

Nuclear,  

cytoplasmic 

 

86 

 

34/200 (17) 

 

 

2 

 

Surface 

 

34 
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PASD1-specific CD8+ T cells were identified in the peripheral blood of AML004, AML008 

and AML014 through the use of pMHC arrays (Table 3.9; Brooks et al, 2015). My studies 

found that every patient who had CD8+ T cells that recognised PASD1 also had PASD1 

expression as detected by ICC. PASD1 protein expression was found in AML004, AML008 

and AML014 while data for AML013, AML015 and CML001 was discarded due to non-

specific immunolabelling of the cells in these samples with isotype control antibody. 

Table 3.9 Direct comparison of the antigens detected by RT-PCR, ICC and the LAA-specific 

CD8+ T cells detected on the pMHC array, from each patient.  

Sample id RT-PCR (antigens detected) ICC for 
PASD1 

LAA-specific T cells detected on 
the pMHC array 

AML001 P68 Negative Non detected 
AML003 P68 Negative Non detected 
AML004 P68 & WT1 Positive PASD1, Tyrosinase & WT1 
AML006 G250, MUC1, p68, PASD1 & WT1 Negative Non detected 
AML008 G250, p68 & WT1 Positive PASD1 
AML009 P68 Negative Non detected 
AML013 P68, G250, PASD1 & tyrosinase - Non detected 
AML014 P68 Positive PASD1 
AML015 P68 & PASD1 - Non detected 
AML018 MUC1, p68, PASD1, tyrosinase & WT1 Negative Non detected 
AML019 G250 & p68 Negative Non detected 
AML021 G250, MUC1, p68 & tyrosinase Negative CEACAM5 
AML023 P68 Negative Non detected 
AML026 G250, MUC1, p68, PASD1 & WT1 Negative Non detected 
ALL001 G250, MUC1, p68 & WT1 Negative Non detected 
ALL002 G250, MUC1, p68, tyrosinase & WT1 Negative Non detected 
CML001 P68 & WT1 - Non detected 
CML002 P68 Negative Non detected 

HV1 MUC1, p68 - Non detected 
HV2 CEACAM5, G250, MUC1, p68, WT1 - Non detected 
HV3 P68, tyrosinase - Non detected 

-: not done. 

None of the samples with detectable PASD1 transcripts had detectable PASD1 protein or 

PASD1-specific T cells in their periphery, although the number of PASD1-positive samples by 

any of the three techniques was low. 
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3.3.5 Correlation between PASD1 transcription, protein expression and survival in AML 

patients. 

Professor Ken Mills, Centre for Cancer Research and Cell Biology, Queen’s University Belfast 

kindly performed statistical analysis to determine whether the expression of PASD1 as 

determined by RT-PCR and/or the presence of PASD1 specific T cells correlated with survival 

in the AML patients analysed (Table 3.10). A 2-tailed paired T test was carried out using the 

Partek Genomic Suite with the significance level of 0.05. Professor Mills did not examine 

whether the expression of PASD1 as detected by ICC correlated with survival as the number 

of patients positive for PASD1 protein expression were so small (n=3). In addition there was 

no significant correlation between PASD1 detected by RT-PCR (n=5) and overall survival 

(OS) (Figure 3.6A) and event free survival (EFS) (Figure 3.6B) (p values were 0.589 and 

0.357, respectively). The presence of PASD1 specific T cells detected on the pMHC array 

(n=12) and OS (Figure 3.6C) and EFS (Figure 3.6D) had p values of 0.836 and 0.605, 

respectively, indicating there was no significant correlation. It was noted that the number of 

patients who were positive for PASD1 by RT-PCR were very small and that statistical analyses 

may be worth revisiting when I have a larger number of patients who are positive for PASD1 

by RT-PCR, and/or were positive for PASD1-specific T cells on the pMHC array. 
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Table 3.10 Summary of the data for PASD1 expression detected with each of the three 

techniques, pMHC arrays, ICC and RT-PCR. Each of the samples were given a score of 1 

(negative) or 2 (positive) for each of the techniques used. 

A= alive; D = dead; NK: not known; -: not done. 
 

 

 

Patient ID Agea Diseaseb 
Survival in months 

(status) 
Presence of PASD1-

specific T cells  ICC positivity   
RT-PCR 

positivity  

AML001 59 AML (M2) 59 (D) 1 1 1 

AML002 65 AML 29 (D) 2 - - 

AML003 48 AML 49 (A) 1 1 1 

AML004 46 AML 14 (A) 2 2 1 

AML005 62 AML 4 (D) 1 - - 

AML006 68 AML (M4) 2 (D) 1 1 2 

AML007 64 AML 2 (D) 1 - - 

AML008 50 AML 42 (D) 2 2 1 

AML009 30 AML (M4) 66 (A) 1 1 1 

AML010 30 AML 83 (A) 2 - - 

AML011 63 AML 20 (A) 1 - - 

AML012 71 AML 50 (A) 2 - - 

AML013 45 AML 43 (A) 2 - 2 

AML014 57 MDS/AML 8 (D) 2 2 1 

AML015 19 AML 51 (A) 1 - 2 

AML016 26 AML 25 (D) 2 - - 

AML017 59 AML 50 (A) 2 - - 

AML018 NK AML 64 (A) 1 1 2 

AML019 65 AML 49 (A) 1 1 1 

AML020 54 AML 23 (D) 2 - - 

AML021 82 AML 4 (D) 1 1 1 

AML022 64 AML 7 (D) 2 - - 

AML023 54 MDS 7 (D) 1 1 1 

AML024 62 AML/MDS 6 (D) 1 - - 

AML025 77 AML 34 (D) 1 - - 

AML026 62 AML 41 (A) 1 1 2 

ALL001 22 ALL 38 (A) 1 1 1 

ALL002 65 ALL 3 (D) 1 1 1 

ALL003 NK ALL NK 2 - - 

ALL004 NK ALL NK 1 - - 

ALL005 22 T-ALL 2 (A) 1 - - 

ALL006 50 cALL 17 (A) 1 - - 

ALL007 26 cALL 16 (A) 1 - - 

CML001 67 CML 41 (A) 1 - 1 

CML002 21 CML 16 (A) 1 1 1 

CML003 63 CML 23 (A) 1 - - 

CML004 32 CML 27 (A) 1 - - 

CML005 61 CML-CD2d 48 (A) 1  - 

Total 12/38 3/15 5/18 
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(a) RT-PCR positivity for PASD1 and EFS (p=0.59)      (b) RT-PCR positivity for PASD1 and OS (p=0.36) 

 

(c) pMHC array positivity and EFS (p=0.84)         (d) pMHC array positivity and OS (p=0.6) 

   
 

Figure 3.6 Kaplan-Meier survival curves based on the (a+b) expression of PASD1 as 

determined by RT-PCR or (c+d) the binding of PASD1-specific T cells to pMHC spots on 

an array. The relationship between PASD1 expression by RT-PCR (n=5, brown line) or the 

presence of PASD1-specific T cells (n=12, brown line), or not (blue line) and (a+c) EFS or 

(b+d) OS was not found to be statistically significant (shown in parenthesis following the graph 

title). 
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3.4 Discussion 

To help complete a study for publication (Brooks et al, 2015) which investigated the presence 

of LAA-specific CD8+ T cells in the periphery of leukaemia patients, I examined the 

expression of LAAs that were available on the pMHC array and were recognised by CD8+ T 

cells from some leukaemia patients for their expression in leukaemia cells. To do this I used 

RT-PCR to investigate whether LAA transcripts were present in the leukemic cells and ICC to 

examine protein levels in the cells. I was particularly keen to determine whether LAA 

transcripts and specifically PASD1 protein in the leukaemia cells correlated with the presence 

of PASD1-specific CD8+ specific T cells in the periphery. 

RT-PCR transcripts for p68 (18/18), G250 (8/18) and WT1 (7/18) were frequently detected in 

the leukaemia samples examined. This did not correlate with the findings of LAA-specific T 

cells in these patients. For some patients this may reflect the fact that the HLA-restriction of 

the pMHCs did not match the patients’ haplotype. Many of the pMHCs on the array were HLA-

A*0201 restricted reflecting the high frequency of this gene in Caucasian populations 

(Browning and Krausa, 1996). When researchers in Western Europe examine T cell responses 

they often chose HLA-A*0201 restricted epitopes because of the predominance of HLA-A2 as 

a haplotype in approximately 40% of the Caucasian population. Thus the pMHCs on the array, 

were chosen based of their availability in Professor Hans-Georg Rammensee’s group, and their 

relevance to leukaemia. HLA-A2 negative patients were used as controls. The pMHC array 

could have been less haplotype restricted but reflected the pMHCs that have been requested by 

Professor Rammensee’s collaborators and our interest in LAAs. Some LAAs fail to elicit a T 

cell response in patients due to immune editing by the tumour (discussed in section 1.4.3) and 

some T cells may be anergic, at the very least contributing to poor responses to antigen and 

their infrequent presence in individuals. In addition the pMHC array is likely to underestimate 

the number of patients with LAA-specific T cell responses (Brooks et al, 2015) as the scoring 
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criteria was very strict. For a positive score LAA-specific T cells had to bind to four of six 

pMHC spots at two independent sites on the array. 

The pMHC only harboured one HLA-restricted epitope for p68 and G250, and two WT1 

epitopes. G250 and WT1 have previously been shown to be highly expressed in AML patients 

where 67 % (40/60) and 51 % (18/35) patient samples were shown to express WT1 and G250 

transcripts respectively (Greiner et al, 2004). AML is dependent on p68, inhibiting p68 

expression inhibits AML cell proliferation in vitro and AML progression in vivo. However 

inhibiting p68 expression is not toxic to healthy bone marrow cells (Mazurek et al, 2014).  

The most frequent LAA-specific pMHCs on the array were the five epitopes belonging to 

PASD1. This may have skewed the data towards the detection of PASD1-specific T cells more 

than those from other LAAs. However the frequency of detection of PASD1-specific T cells 

was close to the expected frequency of PASD1 expression in diagnosis AML patients (33 %; 

Guinn et al, 2005) especially when considering the frequency of HLA-A2 restricted individuals 

in the Caucasian population. 

My data showed 5/18 (28 %) patient samples were positive for PASD1 by RT-PCR which 

correlates with previous data (Guinn et al, 2005). However the five AML patient samples 

(AML006, AML013, AML015, AML018 and AML026) that had detectable PASD1 transcripts 

by RT-PCR were negative for the presence of PASD1-specific T cells on the pMHC array. 

AML006 and AML018 were HLA-A2 negative and AML026 had a unknown haplotype. The 

presence of PASD1 transcripts in the tumour but the failure of detection of PASD1-specific T 

cells may reflect the absence of the correct haplotype in the patient, T cell anergy, under-

detection of T cell responses due to the high criteria for the scoring of positivity when using 

the pMHC array, the falling off of T cells from the pMHC array that was shown by electron-

microscopy to cause pitting in the gel (Hardwick et al, 2013) or the fact that PASD1 may have 
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already led to the tumour editing the immune system and the thymic deletion of any PASD1-

specific T cells (reviewed in Chan et al, 2006) as part of the early development of the tumour. 

To date PASD1 expression has been anecdotally related to later stage and more aggressive 

disease in DLBCL (Liggins et al, 2004b) and diagnosis AML (Guinn et al, 2005). The tumour 

may have mutated antigen (relatively rarely detected in tumour antigens, to date and not yet 

found with PASD1) or the APC may not have been presenting the LAA and its epitopes in the 

context of “danger” (Matzinger, 1998) leading to anergy and/or clonal deletion. In addition I 

may have detected PASD1 transcription less frequently in AML patients as I used a one stage 

PCR amplification protocol (Guinn et al, 2005) in contrast to Liggins et al, 2004a who used 

two stage PCR (where PCR products from the first stage are used to provide template for a 

second round of PCR amplifications) to detect PASD1 transcripts in DLBCL patient samples. 

Although two stage PCR increases sensitivity it can also increase the rate of false positives and 

with my primers and reagents was not found to be required.   

AML006 was used as a negative control for the pMHC study for PASD1-specific CD8+ T 

cells. However AML006 was the only patient sample that expressed a PASD1 transcript of the 

expected size of 233bp (as detected by RT-PCR analysis).  Four of the five patient samples 

(AML013, AML015, AML018 and AML026) who had PASD1 transcripts detectable by RT-

PCR had transcripts that were approximately 1600bp in length. As the PASD1 primers used 

were exon-exon, and intron junction spanning, it is likely that the large transcripts were not the 

products of genomic contamination. This was confirmed by the fact that the predicted genomic 

DNA transcript should have been many thousands of bp in length, if it could have been 

amplified by the PCR program. In addition I cleaned all extracted mRNA to remove any 

contaminating gDNA using ISOLATE II RNA Mini kit (Bioline BIO-52072). I performed PCR 

on an aliquot of mRNA (which had not been reverse transcribed to cDNA) to check that there 

was no contaminating gDNA in the template. Amplification products were only obtained from 
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cDNA, and not from mRNA when it was used as a template, and the 1600bp product sizes were 

too small to be amplified from the gDNA (see Table 2.2). Hence the longer PCR product 

obtained from the AML patients may have been a transcript variant. Liggins et al have also 

described the presence of multiple transcripts from PASD1 including PASD1_v1 originally 

identified through the immunoscreening of a testes cDNA library with DLBCL sera (Liggins 

et al, 2004a) and PASD1_v2 that is a shorter transcript than PASD1_v1 and was identified 

through the immunoscreening of a testes cDNA library with AML sera (Guinn et al, 2005). 

PASD1_v1 has a retained intron between exons 14 and 15 and produces a shorter PASD1a 

protein due to the premature stop site retained in the intron (Liggins et al, 2004a). Cooper et al 

(2006) have also described the possible existence of multiple variants of PASD1 by the ICC 

technique. However I did not sequence the larger amplicons I obtained by RT-PCR due to the 

low copy number of the template and difficulties in repeating the PCR amplification due to 

template decline over time. Real time qPCR would have been an alternative method to utilise 

as it is able quantitate the actual DNA copy number which unfortunately was not possible 

onsite.  

Of the patients who had an amplifiable PASD1 PCR product (AML006, AML013, AML015, 

AML018 and AML026) at diagnosis, four of the five patients (AML013, AML015, AML018 

and AML026) were in complete remission for up to 2 years after diagnosis. There are some 

antigens which are observed to be markers for survival but PASD1 has not been found to fall 

into this category to date (Guinn & Mills, unpublished data). However there has been one 

indication that PASD1 may play a role in patient survival. Three DLBCL patients who were 

found to respond to PASD1 at a year post diagnosis were still in remission at the conclusion of 

the study (Ait-Tahar et al, 2009). In addition, ten of the fifteen patients who elicited a CD4 Th 

response to a PASD1 peptide (DGFMITLSTDGVIICVAENI) continued to be in complete 

remission for the duration of another study by the same group (Ait-Tahar et al, 2011).  
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The presence of PASD1-specific T cells did not prevent the cancer from developing or 

successfully help the immune system to destroy the leukaemia cells in the patients I studied. It 

was recently established that PASD1 blocks circadian rhythms (Michael et al, 2015) and 

therefore would not be expressed in all cells all of the time therefore allowing some cells to 

evade the immune system and develop into cancer. This may show that although the patient’s 

cancer cells are expressing PASD1, and PASD1-specific T cells are present in the periphery, 

they may be anergic. It is also possible that while there are transcripts of PASD1 in patient’s 

samples, they may not necessarily be being translated into protein. T cell anergy can lead to 

immunologic self-tolerance where T cells are functionally inactivated. Other studies have 

described how immunotherapy can break tolerance (Rice et al, 2008) and it may be that patients 

who express tumour antigens respond better to chemotherapy (by achieving a more durable 

remission) because of the “danger” signals that the chemotherapy-induced cell death of cancer 

cells causes (Matzinger et al, 1994). It is proposed that tumour antigen in dead or dying targeted 

tumour cells are mopped up by the immune system in the presence of inflammation (danger) 

stimulating immune “effector” cells to kill more tumour. 

The pMHC array was not a functional study and so the existence of T cells would not indicate 

their capacity to recognise and kill tumour cells that express that antigen. Brooks et al, 2015 

found that the T cells that bound to the pMHC array died quickly (within 20 minutes) perhaps 

reflecting the toxic environment of the polyacrylamide gel that provided a bed for pMHCs 

and/or the high concentration of pMHCs presented to T cells on a flat surface leading to the 

induction of activation induced cell death. Previous investigators have also shown that T cells 

internalise pMHCs (Whelan et al, 1999) and pits were found on the pMHC array suggesting 

we are underestimating the amount of T cells that can recognise pMHCs on the array (Brooks 

et al, 2015). 
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In addition to PASD1, another seven LAAs were investigated by RT-PCR in order to compare 

LAA-specific T cell detection on the pMHC array with LAA gene transcript expression by RT-

PCR. However even in the patients samples in which LAA transcripts were seen, no 

corresponding LAA-specific T cells were detected. This could be due to having T cell deletion 

as part of the education of the immune system by the tumour cells or insufficient T cell 

responses against the auto-antigens in the tumour so there is too low a frequency of LAA 

specific-T cells for the artificially high detection limits of the pMHC array. 

RT-PCR has many advantages such as being expeditious, it has relatively fewer steps compared 

to other techniques such as Northern Blot, and it remains the most effective technique in 

detecting rare or low abundance mRNAs (Bustin and Nolan, 2004). However there are also 

limitations to the RT-PCR method since its success depends a lot on the extraction method, the 

number of tumour cells in a given samples and the stability of the RNA extracted (Bustin and 

Nolan, 2004; Ko et al, 1998). However it’s most notable limitation is that unlike RQ-PCR 

(Muller et al, 2002) it is not quantitative. There are a number of mechanisms that leukaemia 

cells can exploit in order to evade an anti-tumour immune response. For a successful immune 

response to occur the TCR must bind a specific antigen peptide presented on the MHC 

molecule, on an APC, and for leukaemia patients this is often the leukaemia cell itself. For 

effective T cell stimulation, co-stimulatory CD28 receptors on the T cells must bind B7 ligands 

(CD80/CD86) expressed on the leukaemia cell or anergy is induced (Leung and Suh, 2014). 

AML cells show a number of features that can allow them to avoid an immune attack. CD80 

is rarely expressed on AML blasts and where it is the level of expression is very low (Whiteway 

et al, 2003). Patients who express both CD80 and CD86 ligands remain in remission for a 

longer period of time (Whiteway et al, 2003). CD80 and CD86 can also bind to CTLA-4, a 

member of the CD28 family, and generate inhibitory signals (Parry et al, 2005) limiting the 

extent of an immune response. Programmed death-1 (PD-1) is the specific receptor for B7-H1 
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and B7-DC, members of the B7 family, and is involved in terminating immune responses and 

inducing tolerance by triggering the production of the anti-inflammatory IL-10 (Dong et al, 

1999). However AML cells can shed ligands for co-stimulatory molecules such as the 4-1BB 

ligand, which may allow the leukaemia to circumvent T cell attack by the binding of soluble 

ligand to the T cell. LAAs may also be expressed in normal tissues, including the thymus, 

consequently the T cells detect the antigen with lower potency, the response generated will be 

weaker (Teague and Kline, 2013) and thus the T cells are potentially clonally deleted. 

As PASD1 is being investigated as a potential target for immunotherapy, it is important to 

correlate the detection of CD8+ T cells with protein expression in cancer cells to determine if 

this is viable option (Ait-Tahar et al, 2009; Brooks et al, 2015). Two antibodies (Table 2.4) 

were used by ICC to detect expression of PASD1 in cell lines and patient samples that had 

been spotted on to glass slides. As I was interested in the determine sub-cellular localisation of 

PASD1, which may be indicative of normal or abnormal function, the cells were air dried to 

ensure I don’t cause artefacts due to cytospinning the cell contents to the wall of the cell. 

PASD1 is a transcription factor, related closely to the CLOCK gene in mice (Michael et al, 

2015) and is generally undetectable in healthy cells except the most immature spermatogonia 

(Cooper et al, 2006). 

The cell lines K562, THIEL, SW480, KM-H2, Sk-Mel-28 were used to optimise the ICC 

protocol and HEK293 cell line was used as negative control. K562, THIEL, SW480 were found 

to be positive with both PASD1 variants (PASD1a and b) as found previously (Liggins et al, 

2004a; Guinn et al, 2005; Sahota et al, 2006; Ait-Tahar et al, 2011). Sk-Mel-28 was positive 

with only PASD1b antibody which is a novel finding but melanoma cells have been found to 

express PASD1 previously, for example G361 (Liggins et al, 2004a). KM-H2 did not have 

detectable PASD1 expression but protein expression had been described previously by Cooper 

et al (2006). This may reflect a different source for the KM-H2 cells, mine were from a lab at 
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the University of Wales, College of Medicine in Cardiff in the early 1990s. There have been 

some previous descriptions of cell lines being contaminated by other cell lines, such as HeLa 

(Coriell et al, 1958) or being mis-labelled over time, or being grown in ways that lead to 

competition and change, especially with many passages. The best way to investigate the lack 

of PASD1 expression in our KM-H2 cells may have been to perform two rounds of PCR using 

the same primers as used by Cooper et al (2006), to have my KM-H2 cells haplotyped to check 

they appear to be the same haplotype as described in the original manuscript describing their 

derivation (Kamesaki et al, 1986) or to ask Professor Banham for some of their KM-H2 cells 

and directly compare the PASD1 expression to determine whether the issue was my 

performance of the technique. 

For ICC actin was used as a positive control and no primary was used as a negative control – 

to detect the background levels of staining by non-specific sources. In three samples (AML013, 

AML015 and CML001) the no primary was positive due to the non-specific staining seen on 

primary tissue samples which can be “sticky” and provide false positives (Fritschy, 2008), 

therefore these samples and the data obtained from them was rejected. In order to avoid 

background staining a number of approaches were used; peroxidase block was used as part of 

the Envision kit, the DAB incubation time was reduced from 5 min to 1-2 min and aggressive 

washing (increased volume and frequency) was applied to remove unbound reagents.  

The pMHC array may allow us to ascertain whether a patient’s immune system is likely to 

respond well to an immunotherapy treatment i.e. to a vaccine which stimulates a certain 

population of T cells. It is known leukaemia patients with elevated LAA levels (such as 

SSX2IP) at diagnosis have a better prognosis (Guinn et al, 2009) and I think that this is because 

when tumour cells are lysed by conventional therapy the LAAs spill out, causes inflammation 

and attracts an effective immune response. pMHC array data may indicate whether specific 
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CD8+ populations are present in the periphery and whether they influence the response patients 

have to chemotherapy and OS and EFS. 

In this study I found that when PASD1 specific T cells were detected, PASD1 protein was also 

present in the patients’ leukaemia cells. Sub-cellular localisation can indicate function and so 

changes in sub-cellular localisation can indicate when mutations that have occurred (Hung and 

Link, 2011) or novel isoforms created (Cooper et al, 2006). Expression as detected by both 

PASD1 antibodies was found to be nuclear, cytoplasmic and surface which correlates with the 

findings of Cooper et al (2006). Although ICC is able to show localisation of proteins it can be 

difficult to ascertain surface expression and this could have been achieved with other methods 

such as fluorescent staining or in situ hybridisation. Two antibodies were used (Cooper et al, 

2006), ACCL 136 which detects both PASD1a and PASD1b isoforms and ACCL 128 detects 

just the PASD1b isoform as far as I am aware, and using these antibodies it was possible to 

determine which isoform (PASD1a and b) were being expressed in patients samples. In the 

patient’s samples that were positive for PASD1 expression (AML004, AML008 and AML014) 

stained with both anti-PASD1 antibodies, so we are unable to determine whether PASD1a is 

expressed as well as PASD1b. This result correlates with the pMHC array data where in the 

same AML samples PASD1-specific T cells were detected to the analogue peptides Pa14 which 

are located at 691-699 a.a (Hardwick et al., 2013). As Pa14 is located in the carboxy end of 

PASD1 it confirms not only the expression of PASD1b by ICC but the recognition of the part 

of the PASD1 protein unique to PASD1b. PASD1 activates the transcription factor STAT3 in 

the nucleus leading to cell proliferation and migration evidencing PASD1 localisation and 

function (Xu et al, 2016). 

The circadian clock is the internal biological clock which oversees the cellular activity of all 

cells in a 24 h cycle regulating processes such as gene transcription, translation and cell 

division. The CLOCK:BMAL1 complex ensures that the relevant clock factors (Period and 
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Cryptochrome) are activated at the right time which in turn deactivate CLOCK:BMAL1 when 

they are no longer needed in a negative feedback loop safeguarding normalcy. PASD1 is able 

to disrupt this complex due to its similarity to CLOCK, thereby effectively switching off the 

circadian rhythms leading to diseases such as diabetes and cancer (Michael et al, 2015).  

The data obtained by ICC did not correlate with the RT-PCR data. Inconsistencies in PASD1 

expression have been found in earlier studies within and between tumour cells (Cooper et al, 

2006; Sahota et al, 2006) signifying further novel isoforms and its role in circadian rhythms. 

This observation is common with other CTAs for example NY-ESO-1 (Jungbluth et al, 2005) 

and MAGE (Dhodapkar et al, 2003). The detection of a transcript does not always lead to the 

detection of the protein. There are multiple processes which regulate transcription and 

translation that effects gene and protein expression; post-transcriptional modifications such as 

splicing, mRNA degradation and half-life, protein regulation and stability and different 

characteristics that can typify each isoform (Vogel and Marcotte, 2012).   My data indicated 

the percentage expression of PASD1 in cells ranged between 4-43 % and this is similar range 

to previous studies showing expression of PASD1 in up to 40 % but not in all cells (Sahota et 

al, 2006; Hardwick et al, 2015) possibly do due its role in circadian rhythms which are 

individual to each cell and independent of surrounding cells (Nagoshi et al, 2004). 

Statistical analysis was performed by calculating the paired T test p value for 0.05 significance 

and returned non-significant p values for EFS and OS in relation to RT-PCR positivity but no 

real conclusions can be made due to the low number of patients. When looking at pMHC 

positivity the trend showed that PASD1 positive patients had worse EFS and OS however again 

the p values were not significant. Looking at cytogenetics all five leukaemia patients who were 

positive for PASD1 expression by RT-PCR had normal genetics, while in the cohort of twelve 

patients examined only six had normal cytogenetics. Patient AML008 for whom the results of 

their karyotyping was not available is not included. Possibly the fact that these five patients 
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had no additional chromosomal abnormalities meant they also had a longer OS but not all 

cytogenetic abberrations found in AML are detrimental with regards to survival (Grimwade et 

al, 1998), including t(8;12), t(15;17) and inv(16). Previously 75 % of AML patients who were 

positive for PASD1 gene expression by RT-PCR, also had a normal karyotype, while 58 % of 

patients who were negative for PASD1 had a normal karyotype, however this was not 

statistically significant (Baghdady et al, 2013). 

Two of the three patients who were ICC positive for PASD1 expression, had cytogenetics 

abnormalities; these were AML004 (del7q) and AML014 (trisomy 8, abnormal 13) and the 

third patient’s cytogenetics were not known (AML008). Four of the twelve patients who were 

PASD1 negative by immunolabelling had an abnormal karyotype.   However the numbers of 

patients in any one group are too small to draw any conclusions and no correlations between 

PASD1 expression and the presence or absence of cytogenetic abnormalities have been 

described previously probably due to the relatively small number of AML patients with PASD1 

positivity that have been studied to date.  

There are a number of strategies to target PASD1 for immunotherapy. Joseph-Pietras et al. 

(Joseph-Pietras et al, 2010) used the pDOM-epitope DNA vaccine design (Rice et al, 2008) to 

compare the efficacy of the whole PASD1_v1 cDNA (FL) in vaccination studies compared 

with the CTL PASD1(1)38–47 and PASD1(2)167-175 epitopes (Ait-Tahar et al, 2009). The 

group found a greater T-cell response in HHD mice (Firat et al, 1999) to PASD1(1) than 

PASD1(2) in IFNγ ELISpot assays and significant CTL killing of loaded and endogenously 

PASD1 positive myeloma cell lines. Vaccines containing the FL PASD1 induced greater anti-

PASD1(1) responses compared with anti-PASD1(2) suggesting immunodominance. In 

addition the FL PASD1 vaccine could induce CTL that were capable of killing MM cells. The 

DNA fusion gene vaccine has also been used to assess PASD1 analogue peptides in HHD 

humanized mice (Hardwick et al, 2013). One of the epitopes, Pa14, is an analogue of the wild 
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type Pw8 peptide. The group showed that immunising mice with Pa14, induced immune 

responses against the modified (Pa14) and wild type (Pw8) peptides in studies using mixed 

lymphocyte reaction (MLR), ELISpot and CTL assays. Splenocytes from vaccinated mice 

demonstrated in vitro cytotoxicity against myeloid leukaemia tumour cells, which were either 

exogenously loaded with the corresponding wild type peptide (Pw8) or presented 

endogenously processed PASD1 peptides. Of note mice immunised with a pDOM-Pw8 DNA 

vaccine were unable to mount a significant immune response but mice immunised with the 

modified peptide pDOM-Pa14 killed Pw8 loaded and endogenously PASD1 expressing targets. 

Further epitopes could be identified through the immunoscreening of short overlapping peptide 

libraries (Komatsu et al, 2013; Lewinsohn et al, 2013) although some of the already predicted 

PASD1 epitopes (Ait-Tahar et al, 2011; Ait-Tahar et al, 2009; Hardwick et al, 2013) remain to 

be more thoroughly studied in vivo. 

The expression of PASD1 in a range of tumour types, especially haematological malignancies, 

suggests that PASD1 specifically has potential as a target for the immunotherapy of these 

difficult to treat haematological malignancies that do not respond well to conventional therapy 

and frequently lack a more suitable and targeted therapy for the removal of minimal residual 

disease when their immune systems are recovering from conventional treatment. 
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CHAPTER 4: TUMOUR ANTIGEN EXPRESSION IN CANCER CELLS 

4.1 Introduction 

Finding antigens for immunotherapy in OVC and indeed cancer in general, I believe to be the 

most vital direction to take in order to combat the disease and since early detection is seen as 

the best chance a patient has of successful treatment antigens that can also act as biomarkers 

would provide much improvement on current practice. Therefore, I looked at antigens which 

had not been investigated thoroughly in OVC previously. Initially I examined antigens that my 

supervisor had found to be important in AML. The reason being that the expression of SSX2IP 

had been shown to be on the surface of leukaemia cells during mitosis (Denniss et al, 2007). I 

wanted to determine whether this was the case in other cancers as this would make SSX2IP a 

promising target for antibody therapies in other tumour types. I also wanted to determine 

whether SSX2, a CT antigen, co-localised with SSX2IP in its expression on the surface of 

cancer cells. 

The expression of PASD1 has not previously been examined OVC and my supervisor had  

found PASD1 expression was limited to a sub-population of cells in the K562 cell line 

(Hardwick et al, 2013) but it’s expression was not found to be cell cycle related (Denniss & 

Guinn, unpublished data). When I couldn’t replicate the expression of SSX2IP in K562 I 

wanted to determine whether it was due to a difference in CO2 levels between the incubators 

and whether hypoxia, known to play a role in tumour growth and resistance (Wilson and Hay, 

2011), was playing a role in the expression of the tumour antigens in my hands.  

As controls for my study I also investigated the presence of antigens known to be expressed in 

OVC (HE4, CA125 and WT1) (Bast et al, 1981; Kirchhoff et al, 1991; Hwang et al, 2004) to 

see how PASD1, SSX2IP and SSX2 compared to the current “gold standard” and popular 

biomarkers for OVC.   
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To investigate antigens in OVC, TMAs were purchased from Biomax, US which contained 

mostly early stage OVC samples with a few late stage as well as normal tissue (NT) and normal 

adjacent ovarian tissue (NAT). 

4.2 Aims 

 To determine whether PASD1, SSX2 and SSX2IP expression suggests they would 

make promising targets for the immunotherapy of OVC. 

 To determine whether SSX2IP, and its partner protein SSX2, are expressed on the 

surface of solid tumour cancer cells 

 To investigate the impact of different CO2 levels on PASD1, SSX2 and SSX2IP 

expression in tumour cells 

 

Antibodies to the antigens of interest (PASD1, SSX2IP and SSX2) were optimised on the OVC 

cell lines (Ovcar3, Skov3 and A2780) as well as on other haematological cell lines where their 

expression had been shown previously or to provide negative controls had not. As SSX2IP is 

an LAA, K562 (leukaemia cell line) was used as a positive control and HL60 was used as a 

negative control (Denniss et al, 2007). Other solid tumour cell lines (HeLa and SW480) were 

also used for SSX2IP as well as the OVC cell lines Ovcar3, Skov3 and A2780. A second solid 

tumour control was used in HCT116 (colon cancer). PASD1 and SSX2 antibodies were tested 

on OVC cell lines Ovcar3, Skov3 and A2780.  

Initially SSX2IP, which was known to be positive in K562 (Denniss et al, 2007), could not be 

immunolabelled with the same antibody clone from Abcam. I used K562 cells that had been 

grown at various levels of CO2 (3.5-6 %) in an incubator in Southampton to see whether a 

difference in CO2 levels was causing the lack of reproducibility. 
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Following optimisation of antibodies on cell lines, FFPE colon cancer TMAs were used to 

optimise IHC protocol. These were provided by Dr Alex Mirnezami and were used to 

immunolabel the samples for PASD1, SSX2IP and SSX2 expression.  

OVC TMAs were purchased to compare the expression of PASD1, SSX2IP and SSX2 with the 

current “gold” standard for OVC diagnosis, CA125 (Bast et al, 1981), as well as the most 

promising other antigens for the detection of OVC, HE4 and WT1 (Hellstrom et al, 2003; 

Fadare et al, 2013). Cells only and isotype were used as negative controls and actin as a positive 

control. 

4.3 Results 

4.3.1 Expression of tumour antigens in cell lines (ICC) 

Before staining TMAs to test the labelling in OVC samples each antigen was tested and 

optimised on cells lines. Each ICC experiment was performed at least twice and the results 

were reproducible. Immunolabelling of actin was used as a positive control to demonstrate that 

all of the components for ICC were working properly. 

4.3.1.1 Expression of SSX2IP in cancer cell lines 

To determine whether I could detect SSX2IP antigen expression in OVC samples and to 

investigate if SSX2IP is found on the surface of cancer cells, I initially examined the expression 

of SSX2IP in a number of human cancer cell lines (Figure 4.1; Table 4.1). I showed in 

reproducible experiments that the antibodies were all working using the cell lines K562, KM-

H2, HeLa, SW480, HL60, Ovcar3, Skov3 and A2780 (Section 3.3.3). K562 was previously 

shown to express SSX2IP (Denniss et al, 2007). Prior to the studies described in this chapter, 

SSX2IP had been shown to be a leukaemia antigen and had not investigated in solid tumours. 

It has also not been looked at in KM-H2, HeLa and SW480 previously, although HL60 has 

been shown to be negative for SSX2IP by Denniss et al (2007).  



  
116 

Figure 4.1 Expression of SSX2IP in solid tumour and leukaemia cell lines. SSX2IP was 

detected in all cell lines tested: K562, KM-H2, HeLa SW480, HL60, including the ovarian cell 

lines Skov3, Ovcar3 and A2780. HCT116 was found to be negative for SSX2IP. Cells only, 

isotype and no primary were used as negative controls and -actin was used as a positive 

control. Magnification was x400 except column SSX2IP (b) where a separate images have been 

enlarged to try to show detail.  

SSX2IP (b) 
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Table 4.1 Expression and sub-cellular localisation of SSX2IP in human cancer cell lines 

 Cell line Cells only Actin Isotype 
control 

SSX2IP Percentage 
expression 

Sub-cellular 
localisation 

Staining 
intensity¶ 

Immunoreactivity 
score 

AML K562 - + - + 81  Surface 3 243 

HL60 - + - + 47  Surface, Nuclear 2 94  

MM Thiel - + - - - - 0 0 

HL KM-H2 - + - + 77  Surface 2 144 

CRC SW480 - + - + 92  Surface, Cytoplasm 3 276 

HCT116 wt - + - - - - 0 0 

CC HeLa - + - + 24  Surface, Nuclear 3 72 

OVC Ovcar3 - + - + 11  Cytoplasm 1 11 

A2780 - + - + 23  Surface, Nuclear 1 23 

Skov3 - + - + 20  Cytoplasm, Nuclear 1 20 
¶staining intensity for SSX2IP 
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4.3.1.2a CTA expression in OVC cell lines - PASD1 

PASD1 expression was examined in several human cancer cell lines to perfect the ICC protocol 

prior to labelling OVC patients samples, as detailed in Table 3.6. In addition I examined its 

expression in a further three OVC cell lines as part of this study. By ICC PASD1a and b, and 

PASD1b alone, were not detected in Ovcar3, Skov3 and A2780 (Figure 4.2; Table 4.2). 

PASD1a and b proteins were not detected in HeLa, while PASD1b alone as detected by the 

PASD1-128 antibody was detectable in HeLa.  

4.3.1.2b CT antigen expression in OVC cell lines - SSX2A 

SSX2A protein was found in a number of solid and haematological malignancies cell lines 

which included OVC cell lines. In haematological cell lines the mSSX2A antibody detected 

SSX2A expression in the following cells lines; K562, KYO-1, KM-H2 and Thiel (Table 4.3). 

SSX2A immunolabelling by mSSX2A was found in THIEL but not HL60. SSX2A was also 

detected in the three OVC cell lines. Sk-Mel-28 (melanoma) was positively stained with 

mSSX2A (Figure 4.3) which correlates with a previous study (dos Santos et al, 2000). 

 

 

 

 

 

 

 

 

Figure 4.2 PASD1a and b expression in OVC cell lines. PASD1b was found to be expressed 

in the CC cell line, HeLa, but not in the three OVC cell lines. All pictures taken as 

magnification x400.

Cells only           isotype             No primary            Actin              PASD1a+b          PASD1b 
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Table 4.2 PASD1 expression in OVC cell lines.      

 

 

 

  

Cell line Cells 

only 

Actin Isotype 

control 

PASD1 a & b PASD1 b Percentage 

expression 

Sub-cellular 

localisation 

Immunoreactivity score 

Ovcar3 - + - - - - - 0 

Skov3 - + - - - - - 0 

A2780 - + - - - - - 0 

HeLa - + - - + 5 % Surface 5 
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Figure 4.3 Expression of SSX2A in OVC cell lines. SSX2A was detected in the cytoplasm 

of all three OVC cell lines tested (red arrows). Black boxes contain enlarged images of 

positively staining cells. A2780 and Skov3 cell lines had higher intensity staining than Ovcar3. 

Cells only, isotype and no primary were all negative and actin was used as a positive control.  

Magnification is x400 and data is representative of at least two replicates. The black boxes 

contain an enlarged image of cells to show more detail.
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Table 4.3. ICC analysis of SSX2A expression in the human cancer cell lines.  

 Cell line Cells 
only 

Actin Isotype 
control 

SSX2A 
 

Percentage 
expression 

Staining 
intensity 

Sub-cellular 
localisation 

Immunoreactivity 
score 

AML K562 - + - + 85  3 Surface, 
cytoplasm 

255 

HL60 - + - - - 0 - 0 

Multiple myeloma Thiel - + - + 10  2 Nuclear, 
Cytoplasm 

20 

Hodgkin’s 
Lymphoma 

KM-H2 - + - + 60  3 Nuclear, surface 180 

CRC SW480 - + - - - 0 - 0 

HCT116 
wt 

- + - - - 0 - 0 

Cervical cancer HeLa - + - - - 0 - 0 

OVC Ovcar3 - + - + 6  1 Cytoplasm 6 

A2780 - + - + 30  1 Surface, 
Cytoplasm 

30 

Skov3 - + - + 5  1 Surface, 
Cytoplasm 

5 
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4.3.1.3 Impact of CO2 levels on PASD1 and SSX2A expression  

I was concerned as to why I could not duplicate previous findings with regards to SSX2IP 

expression on K562. One suggestion was a difference in CO2 in the humid chambers of the 

incubators despite them being calibrated at both sites (Southampton and King’s College 

London) and so I investigated the effect of varying CO2 levels on the expression of the antigens.  

I examined a range of CO2 levels from 3.5 - 6 % including 5 % the normal level in a humidified 

chamber. I found both forms of PASD1, SSX2A and SSX2IP were each expressed at 5 % and 

5.5 % CO2 levels (Table 4.4; Figure 4.4) but these antigens were not expressed in CO2 levels 

above or below this. The percentage expression of each antigen (SSX2A and PASD1a and 

PASD1a+b) was conistent at 5% and 5.5% CO2 levels. However it was interesting to note that 

PASD1 expression was only found on the surface of K562 cells at 5.5% CO2 levels. 

Unfortunately I did not get SSX2IP expression on the cell lines in the varied CO2 levels, even 

at 5% CO2, but I now believe that was caused by a defunct, but in-date, SSX2IP antibody that 

was subsequently replaced with a new vial and staining of SSX2IP again worked on K562 as 

expected in all subsequent studies shown in this thesis. 
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Figure 4.4 The effect of varying CO2 levels on the expression of PASD1 and SSX2A in K562 cells. The expression of both antigens was 

restricted to 5 and 5.5 % CO2 but no expression was seen at 3.5, 4.5 and 6 % CO2 following a 2-week incubation. All images were taken at a 

magnification of x400. The image within the black box is an enlarged section to show more detail.

A
ct

in
 

CO2 levels 

4.5% 5% 5.5% 6% 

P
A
S
D
1
a
+
b

 
P
A
S
D
1
b

 

3.5% 3.5% 

- + - - 

- - - 

+ 

+ + 

+ 

+ 
S
S
X
2
A

 

+ + + - - - 



 
124 

Table 4.4 Effect of CO2 levels on (a) PASD1 and (b) SSX2A expression in K562 cells.  

CO2 level 

(%) 

Cells 

only 

Isotype 

control 

Actin

* 

PASD1 

a+b 

PASD1b Percentage 

expression (%) 

Subcellular localisation Immunoreactivity 

score 

a+b b a+b b a+b b 

3.5 - - + - - - - - - 0 0 

4.5  - - + - - - - - - 0 0 

5  - - + 3 3 21 18 Nuclear, 

Cytoplasm 

Nuclear, 

Cytoplasm 

63 54 

5.5  - - + 3 3 17 20 Nuclear, 

cytoplasm, 

surface 

Nuclear, 

Surface 

51 60 

6  - - + - - - - - - 0 0 

 

CO2 level 

(%) 

Cells only Isotype control Actin* SSX2A Percentage 

expression 

Subcellular 

localisation 

Immunoreactivity 

score 

3.5 - - + - - - 0 

4.5  - - + - - - 0 

5  - - + 3 95 Nuclear, 

cytoplasm 

285 

5.5  - - + 3 80 Cytoplasm, 

surface 

240 

6  - - + - - - 0 

+: positive result following immunolabelling of protein with antibody; -: negative result, no immunolabelling  
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4.3.2 Expression of tumour antigens in CRC TMAs – optimisation of immunolabelling on 

paraffin-embedded tissue  

I stained seven TMAs of CRC patient material, which were a gift from Dr Alex Mirnezami 

(Southampton University Hospital Trust) (Table 4.5; Figure 4.5) to ensure the 

immunolabelling method I was planning to use worked in my hands. It had been hoped this 

would form part of a study of TAA expression in CRC to complement work performed by 

Viktoriya Boncheva as part of her MPhil studies (V. Boncheva, MPhil, 2014). Although no 

further slides were received, this work did provide an opportunity to practise my IHC technique 

on paraffin-embedded TMAs using my antigens of interest: SSX2, SSX2IP and PASD1.  Two 

separate TMAs were analysed and were designated 1A (seven slides) and 1B (six slides). 

PASD1 was not significantly expressed, no samples were positive for PASD1b and 5/88 were 

positive for PASD1a+b however these were not above the background levels. Sample 1A had 

no expression of SSX2IP above background however sample 1B had SSX2IP expression in 15 

% of the CRC tissues above the background level of staining. SSX2A was found in 21 % of 

the samples on slide 1A and 10 % of the sample on slide 1B, both above background levels. 

The commercially available isotype control led to unsatisfactorily high levels of background 

staining. Colleagues at the LRF monoclonal antibody facility, University of Oxford 

recommended I use TBS as our control for background staining. However the low levels of 

immunolabelling achieved with PASD1 led me to choose this as a monoclonal antibody control 

for non-specific antibody labelling on the tissue arrays. 

4.3.3 Scoring of samples 

Antigen expression was examined in NT, NAT and stage I, Ia, Ib, Ic, II, III and IV OVC and 

skin cancer tissues. CA125 was used as an industry standard comparator. Staining intensity 

was indicated by the immunolabelling intensity on the cells as follows:- 0 and 1: negative and 

background staining, respectively; 2–4 was considered to be positive with 2 being moderate, 3 
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high and 4 very high levels of immunolabelling by antibody (Figure 4.6). Actin was used as 

the positive control to confirm the immunostaining protocol was working and provide a 

staining intensity comparator and cells only provided a control for background staining with or 

without haematoxylin as a differential stain. A small number of tissue cores were missing from 

the TMAs following immunolabelling and so data on these samples are absent from the figures. 

Melanoma (skin cancer) tissue on each TMA was used as a positive control for PASD1 

immunolabelling which was often negative otherwise. 

4.3.4 Expression of TAA/CTAs in OVC 

SSX2, SSX2IP and PASD1 staining in OVC was compared to the well-known CA125. CA125 

expression was used as the standard marker for OVC although it is widely regarded as poor 

detector of OVC. Only scores of ≥2 were considered positive and I found many of the scores 

for CA125 to be 0 and 1. At stage I positivity was 14 % (23/165, 1 missing), stage II it was 7 

% (1/14, 1 missing), with no samples scoring 2 or above at stage III and IV (Figure 4.7).  

Although immunolabelling that scored 2 and 3 was considered higher than the negative and 

background levels, it occurred infrequently within the tissues. 
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Table 4.5 Analysis of tumour antigen expression in CRC TMAs.  

 

Antigens Cells only Actin Isotype Control SSX2A SSX2IP PASD1a+b PASD1b 

Slide id 1A 1B 1A 1B 1A 1B 1A 1B 1A 1B 1A 1B 1A 1B 

No. of positive patient 

samples 

0/81 0/89 82/82 90/90 35/81 38/91 54/84 52/100 20/81 52/92 5/88 - 0/80 0/92 

Frequency of TAA 

expression (%) 

0 0 100 100 43 42 64 52 25 57 6 - 0 0 

Percentage of positive cells 

above the staining achieved 

with isotype control (%) 

- - 57 58 - - 21 10 0 15 - - - - 

 

 

 

 

 

 

 

 

 

Figure 4.5 Expression of SSX2A, SSX2IP and PASD1 in FFPE-CRC samples as detected by immunolabelling. Image shows the 

immunolabelling of two samples, labelled Sample 1 and 2 for ease, as representative of the staining observed. Neither PASD1a and b, nor PASD1b, 

were expressed above background levels in the samples assessed while SSX2A and SSX2IP were expressed in up to 21 % of the samples examined. 

These experiments were not repeated but within each slide (1A and 1B) there was a range of 81-92 independent tissues. Magnification: x400  
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Figure 4.6. Representative scoring of the immunolabelled tumour antigens in OVC 

TMAs. Blank areas of the figure are due to a lack of immunolabelling at this level. Scores of 

0–1 was considered to be negative or background staining respectively, 2–4 was considered to 

be positive with 2 being moderate, 3 high and 4 very high levels of immunolabelling. Scoring 

was performed with no knowledge of which tissue section were in which positions on the TMA. 

Magnification was x400. 
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4.3.4.1 PASD1  

PASD1 is a CTA in blood cancer and therefore I wanted study it in OVC. When examining the 

immunolabelling of PASD1 in OVC tissue samples, the skin cancer tissue acted as a positive 

control for successful immunolabelling within those slides. Actin demonstrated that all tissues 

could be stained while PASD1 immunolabelling had also been demonstrated on human cancer 

cell lines (Section 3.3.3). Both of the PASD1 variants, identified by the PASD1-1 and PASD1-

2 antibodies, scored as negative and at back ground levels, 0 and 1 respectively, in 188/189 

OVC tissues and only one sample achieved a score of 2 for both.  There was very little 

background staining following immunolabelling with antibody to either PASD1 variant 

(PASD1-1 or PASD1-2).  PASD1a+b scored only 0 in NAT and 0-1 in NT, whereas PASD1b 

had scores ranging 0-1 for NT and only 1/8 sample scored 2 with the remaining 7 scoring 0-1 

for NAT (Table 4.6; Figure 4.7).    

4.3.4.2 SSX2IP 

I found no significant expression of SSX2IP in the OVC tissue samples (Table 4.6; Figure 

4.8).  181 of the 188 OVC samples achieved a background score of 0 or 1, and only 7/188 

scored 2 with no samples scoring any higher. All eight of the NAT scored 0 and 1 for SSX2IP 

while two of eight NT scored 2 and the rest scored 0 or 1. 

4.3.4.3 SSX2A  

SSX2 has not been extensively looked at in OVC and so it was used to label OVC samples to 

determine if it is detectable. Expression of SSX2A was detected in a large number of patient 

samples at all stages of OVC including stage I and II. SSX2A was detected in 39 % (64/165, 1 

missing) of stage I and 21 % (3/14, 1 missing) of stage II, which is higher than PASD1, SSX2IP 

and CA125 in the same stages (Figure 4.8). SSX2A was also found in a number of later stage 

tissues (stage III and IV) on the TMAs. SSX2A was found in 33 % (2/6) of stage III and 60 % 

(3/4) of stage IV samples and this was a higher frequency than PASD1, SSX2IP or CA125. 
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CA125 has been described in later stages of OVC but not consistently (Moss et al, 2005). There 

was staining seen in NT (50 %) and in NAT (13 %) (Figure 4.9) which has been seen 

previously with PASD1 in pre-malignant cells (Cooper et al, 2006). This frequency of 

expression in NT exceeded the frequency of SSX2A immunolabelling in OVC stage I, II and 

III but may be explained by the fact that DAB precipitate is not chemically bound to the 

substrate at the site of its’ oxidation (Figure 4.10) which means that it may have washed over the 

site of the NT and become ensnared. On further analysis it appeared that the staining of NT by 

DAB was non-specific, when compared to the cell specific immunolabelling seen within the 

ovarian tissues (Figure 4.11). However this does not explain why the NAT was not also stained 

non-specifically at the level the NT were. TMAs from Biomax US used by collaborators 

previously were found to be inaccurate where healthy tissues on the slides were found to be in 

fact premalignant (Banham group, University of Oxford, UK personal communication).  The 

other option would be to have a pathologist determine whether the SSX2 staining was specific 

in health tissues and NAT compared with OVC tissues. 
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Figure 4.7 Expression of TAA/CTAs in OVC TMAs. Images show the tumour antigen 

immunolabelling of OVC at stages Ia-III. PASD1 and SSX2IP were predominantly negative in 

OVC with very few samples scoring above 1 - background. SSX2A was frequently positive for 

immunolabelling, scoring 2 and above. CA125 was used as a comparator as it is one of the 

currently used proteins to confirm a diagnosis of OVC. Cells only and isotype were used as 

negative controls and actin as a positive control. Skin tumour tissue, already on the TMAs, was 

used as a further control for the test antibodies. Skin tumour tissue showed high expression of 

actin, CA125, SSX2IP, SSX2A and PASD1 (3 and above) but no immunolabelling with the 

negative controls (cells only and isotype). NAT and NT were also tested and mostly achieved 

a score of 2 or above when immunolabelled with actin with only two NT scoring 1.  
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Figure 4.8. Frequency of tumour antigen immunolabelling of OVC tissues on the TMA. CA125 was used as a comparator to the other TAAs 

as it is currently used to confirm the diagnosis of OVC in clinical practice (Moss et al, 2005). Actin was used as the positive control to confirm the 

immunostaining protocol was working and cells only provided a control for “non-specific” background staining. Very little antigen expression 

was observed with CA125, PASD1 and SSX2IP but promising levels of SSX2A were detected at all OVC disease stages. The levels of staining 

shown here encompasses scores of 2 and above. Although there was staining of NT and NAT tissue this appeared to be non-specific compared to 

tumour tissue.  
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Table 4.6 Frequency of immunolabelling of antigens in OVC tissues.   

 Frequency of antigen expression in tissues* (%) 

 

Cells 
only CA125 PASD1a+b PASD1b SSX2IP SSX2A Actin 

NT 0.00 0.00 0.00 0.00 25.00 50.00 75.00 

NAT  0.00 0.00 13.00 13.00 0.00 13.00 100.00 

OVC stage I 0.00 14.00 1.00 1.00 4.00 39.00 39.00 

OVC stage II 0.00 7.00 0.00 0.00 7.00 21.00 57.00 

OVC stage III 0.00 0.00 0.00 0.00 0.00 33.00 67.00 

OVC stage IV 0.00 0.00 0.00 0.00 0.00 75.00 25.00 

*The scores included in this study were those of 2 and above. 
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 (a) SSX2A          (b) CA125 

 

(c) SSX2IP         (d) SSX2A, CA125 and SSX2IP immunolabelling at level 2 and above 

 

Figure 4.9. Immunolabelling of antigens at score level 2 and above in OVC and normal tissues. I have examined the intensity of staining, at 

level 2 and above (a) SSX2, (b) CA125, and (c) SSX2. Blue bars are indicative of level 2 immunolabelling and orange of level 3. In addition I 

directly compared (d) staining at level 2 and above for each antigen with SSX2A in red, CA125 in green and SSX2IP in purple. Y-axis shows 

percentage of tissue cores immunolabelled. 
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Figure 4.10. Diagrammatical representation of the immunohistochemistry technique 

indicating the deposition of DAB near the site of the peroxidase conjugated secondary 

antibody. Figure is based on a similar image depicted by BiteSizeBio.  
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4.4 Discussion 

The aim of this project was to identify antigens for immunotherapy for early stage OVC which 

could subsequently be potential biomarkers of disease (SSX2, SSX2IP and PASD1). A variety 

of cell lines, haematological and solid cancers including OVC, were used since both SSX2IP 

and PASD1 are known as leukaemia antigens. All antigens were expressed in a number of the 

cells lines used, but SSX2A and SSX2IP only were expressed in OVC cell lines, PASD1 was 

negative. Of note, only PASD1b was detected in HeLa cells and appeared to be on the surface 

suggesting a possible surface antigen in cervical cancer.  

PASD1 expression has previously been demonstrated in some more advanced tumour stages, 

and in some solid tumour cell lines such as Hn5 (head and neck)(Guinn et al, 2005b), SW480 

(Liggins et al, 2004a) and H1299 (lung cancer)(Hardwick et al, 2013).  25 of 68 solid tumour 

tissue expressed PASD1 (Liggins et al, 2004a). PASD1 has also been found to be expressed in 

22/25 cell lines derived from 21 B- and 4 T-cell malignancies by RT-PCR (Liggins et al, 2010). 

I now add to this knowledge showing that PASD1 is not frequently expressed in OVC 

particularly at the early stages of disease (which I recently published in Khan et al, 2015). This 

adds to a growing list of solid tumours (including bladder and basal cell carcinoma (Ghafouri-

Fard et al, 2010)) which do not appear to express PASD1 at notable levels. Perhaps the biggest 

indication of the lack of PASD1 expression in solid tumours comes from the lack of 

publications. This is disappointing as PASD1 has one of the most restricted expressions of any 

CTA in healthy tissue having been found to be expressed in only the most immature 

spermatogonia at very high levels (Chen, G-Y. 2011, Cancer Research Institute Annual 

Meeting, personal communication). If found its expression in solid tumours would make it a 

very attractive CTA for immunotherapy targeting. 

Since one of my initial projects was looking at SSX2IP in solid tumours I started by trying to 

repeat the studies of my predecessors (Denniss et al, 2007). I tried immunolabelling the cell 
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line K562 which was known to express SSX2IP on its surface. However I was unable to 

immunolabel this cell line and get the same results. Knowing that incubators can vary in their 

levels of CO2 and that this can impact antigen expression (Section 1.8), I examined antigen 

expression in a range of different CO2 levels. Unfortunately this did not yield any SSX2IP 

immunolabelling in K562 cells. Subsequently a new batch of SSX2IP antibody was purchased 

and I could detect SSX2IP on K562, and other cell lines, replicating work that had been 

described previously.  

I also examined whether PASD1 and SSX2A expression was affected by CO2 levels as at that 

time I was hoping to perform studies to examine SSX2IP expression and its’ sub-cellular 

localisation in other cancer cells. Despite numerous attempts I found little positive impact of 

increased or decreased CO2 levels on PASD1 or SSX2A expression in K562. Both PASD1-1 

and PASD1-2 antibodies stained K562 at the 5% and 5.5% CO2 levels but not 3.5 %, 4.5 % or 

6 %. Since PASD1 seems to be a predominately a haematological antigen its’ expression may 

not be subverted by CO2 levels in the same way as antigens associated with solid tumour might 

be. A solid tumour is a mass of cells with, at the later stages, a hollow centre whereas liquid 

cancers diffuse throughout the body therefore they will not be subject to the same stressors 

provided by altered O2 levels. However what was interesting was that at 5.5% CO2 there was 

surface expression of PASD1 on the K562 cells suggesting that increased CO2 levels may 

impact on the sub-cellular localisation of this antigens’ expression and this observation requires 

further investigation outside the scope of the studies described here. SSX2A was also only 

expressed at 5 and 5.5 % CO2, but with an impact on its’ sub-cellular localisation at 5.5% CO2. 

There appeared to be surface expression at 5.5 % but not 5 % suggesting some process in work 

at higher CO2 however this cannot be confirmed just by visualising but would require another 

technique such as fluorescence microscopy. I only used 6 % CO2 as the highest levels of CO2 
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and may have seen greater effects from actually altering O2 levels to induce create hypoxic and 

anoxic conditions rather than just altering CO2 levels in a tissue culture incubator.  

Liggins et al (Liggins et al, 2004a) had previous analysed the expression of PASD1 in three 

OVC tissues samples by dot blotting (based on the Western blotting technique). The PASD1 

expression was negative to extremely weak and required a long exposure time in order to be 

detectable when compared to the other solid tumour tissues tested such as kidney and prostate.  

It is not clear what stages the OVC tissue samples they analysed were but it matches my 

findings of very low level of expression of PASD1 in OVC.  

I was gifted seven TMAs labelled 1A and six TMAs labelled 1B, harbouring ≤88 and ≤100 

tissue cores respectively. These tissues were paraffin-embedded unlike the cell lines and 

leukaemia cells I had analysed by ICC previously. I used these FFPE tissues as an opportunity 

to optimise the IHC protocol for subsequent immunolabelling of PASD1, SSX2IP and SSX2 

in OVC TMAs. SSX2A and SSX2IP were both detected in colon cancer samples. SSX2 has 

been previously found in 25 % of colon cancer samples (Tureci et al, 1996). This was further 

verified by my colleague (Payalben Savaliya, personal communication) who found SSX2 to be 

an important indicator for survival in colon cancer using microarray datasets. This study is now 

being prepared for publication (Boncheva, Mills and Guinn, in preparation). 

One NAT tissue achieved a score of 2 for PASD1b (1/8) but there is some evidence that PASD1 

mRNA may be present in histologically normal tissues signalling the potential of the cells to 

become cancerous (Liggins et al, 2004a; Ait-Tahar et al, 2009). The immunolabelling of 

PASD1 was seen to fade over time probably due to the dissolution of DAB precipitate into the 

faramount aqueous mounting media (Espada et al, 2005; Soini et al, 2002). When I realised 

this was the cause of the loss of DAB precipitate I changed practise to use DPX, a synthetic 

resin mounting media, instead.  Indifferently, and on repeat experiments, PASD1 was not found 
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to be frequently or highly expressed - only one OVC stage 2 sample had expression at a score 

of 2.  PASD1 expression has previously been shown to be associated with the more aggressive 

forms of lymphoma (Liggins et al, 2004b) and it may be that if I had analysed more later stage 

III and IV OVC samples we may have found more samples immunolabelling at a score of 2 or 

above for PASD1 expression. The TMA had only six OVC stage III and four stage IV samples. 

In cell lines investigators have found a range of frequencies of PASD1 expression from 

17.6±3.6 % in K562 to >99% in H1299 (Hardwick et al, 2013) and recently PASD1 function 

has been linked with circadian rhythms (Michael et al, 2015). PASD1 was found to suppress 

the 24 h biological clock which controls the physiological and chemical processes of all cells 

in a 24 h period. This implies that PASD1 would not be expressed in all cells at all times and 

therefore would not make a suitable biomarker as it would need to be expressed in a large 

number of tumour cells and be visible at any time the test is performed.  

CA125 and HE4 were expressed more frequently than PASD1 in my study of OVC samples 

however CA125 has been proven to have low specificity and sensitivity, and inconsistent 

expression patterns amongst OVC patients. Therefore CA125 is mainly used as a marker to 

detect disease relapse and for monitoring treatment efficacy rather than confirming the 

diagnosis of primary OVC (Zhen et al, 2014). There are also suggestions that CA125 may be 

more effective as a marker for predicting advanced stage disease (Kim et al, 2015). CA125 and 

HE4 would not make optimal tumour antigens for immunotherapy because they are expressed 

in normal cells and benign conditions, making it difficult to break tolerance against them and 

maintain specificity for cancerous cells and not healthy or inflamed/damaged tissues. In fact 

using irradiated immune cells from patient themselves, a donor or tumour lysates were found 

to be ineffective against CA125 expression (Dranoff et al, 1993).  

In a literature review, serum CA125 levels have been found to be a good prognostic indicator 

for patients with OVC (Gupta and Lis, 2009) while three months post-surgery serum CA125 
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levels can provide an independent prognostic marker, identifying high risk patients for whom 

further treatment may be beneficial (Sevelda et al, 1989). In contrast CA125 has also been 

found in EOC where raised CA125 correlated with a poorer overall disease-specific survival 

(66.1 vs 87.8 months, p = 0.021) (Myriokefalitaki et al, 2015). These manuscripts demonstrate 

both the value of CA125 as a marker of late stage OVC and the confusing picture around its 

value in early stage OVC. 

SSX2IP is an LAA which was identified as an interacting partner to SSX2 (Section 1.6.2). It 

has been investigated in a number of haematological malignancies (Breslin et al, 2007) but 

infrequently in solid tumours, with the exception of cell lines. I wanted to look at its expression 

in OVC due its interesting expression on the surface of AML cells during mitosis (Denniss et 

al, 2007). Although both SSX2A and SSX2IP were visually appeared to be labelled on the 

surface of cells, further studies would be required to find if they co-localise such as 

fluorescence resonance energy transfer (FRET). Elevated expression of SSX2IP has been 

shown to lead to an increase in tumour size and thrombus (P < 0.05) and significantly shorter 

survival time (P = 0.004) in patients with hepatocellular carcinoma (HCC).  SSX2IP was also 

found to promote peritoneal spreading and liver metastasis of HCC cells in nude mouse model 

and appears to augment drug resistance (Li et al, 2013b). In gastric cancer (GC), 43/66 (65 %) 

of tumour tissues demonstrated elevated expression of SSX2IP protein in comparison to 

matched healthy tissues. Tumour suppressor miR-338-3p (micro-RNA) functions by inhibiting 

cell proliferation, migration, invasion and apoptosis in GC and raised levels of SSX2IP to some 

extent reverses the inhibitory effect of miR-338-3p in GC cells without altering its expression. 

This suggests SSX2IP is a functional target of miR-338-3p in GC (Li et al, 2013a) and plays a 

functional role in a number of cancer types. 

Guinn et al, 2008 showed an association between mitotic spindle failure in patients with AML 

M2, associated with a t(8;21) translocation and SSX2IP expression. Subsequently other 
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investigators have shown that SSX2IP accrues at spindle poles and interacts with the γ-tubulin 

ring complex (γ-TuRC) and the centriolar satellite protein PCM-1. Reduction in SSX2IP levels 

hampered the γ-TuRC loading onto centrosomes leading to failure of spindle formation (Barenz 

et al, 2013) and the human mitotic spindle disanchored 1 (hMsd1)/SSX2IP is thought to be a 

novel microtubule-anchoring factor (Hori et al, 2014). I found SSX2IP to be expressed in a 

very small number of OVC samples, showing some expression in NT (25% of eight) and 4 % 

of 166 stage I and 7 % of 15 stage II OVC. Thus SSX2IP offers no advantage over existing 

biomarkers for OVC.  I believe the search for its expression on the surface of other malignant 

cells may determine its’ value as an immunotherapeutic target for antibody therapies. 

SSX2 has been found to be expressed in a number of cancers including breast and 

hepatocarcarcinoma (Tureci et al, 1996)(reviewed in Section 1.7.4). SSX24 expression as 

detected by immunostaining showed that five of 143 early-stage non-small cell lung cancers 

(NSCLCs) (Greve et al, 2014) and seven of eight prostate cancer cell lines transcribed SSX2 

at varying levels (Smith et al, 2011). In contrast early studies of the expression of the SSX2 

gene indicated it was not found OVC (none of three) by RT-PCR (Tureci et al, 1996) however 

SSX4, by the same method was detected in 6/12 (50 %) OVC tissues (Tureci et al, 1998). 

Subsequent studies using RT-PCR examined the expression of the SSX genes in 

gynaecological cancers. Hasegawa et al (2004a) showed that 2/50 (4 %) of endometrial and 

1/25 (4 %) of CC (Hasegawa et al, 2004a) expressed SSX2 while Valmori et al, (2006) 

demonstrated SSX2 expression in 10 % of EOC patient samples (Valmori et al, 2006). Of all 

the positive tumours identified, one of two SSX1 and all four SSX2 mRNA positive tumours 

were found to co-express SSX4 mRNA (Hasegawa et al, 2004a). SSX4 mRNA expression has 

been observed in 5/40 (13 %) OVCs as well as in endometrial cancers in 12/50 (24 %), and in 

5/25 (20 %) CC (Hasegawa et al, 2004a). Other members of the SSX family have been detected 

in various cancers. Expression of SSX1 (3/118; 2.5 %) and SSX4 (19/120; 16 %) was detected 
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in EOC specimens using RT-PCR (Valmori et al, 2006).  This contradicts the findings of 

another study where no expression of SSX1 was found in OVC but was found in a very small 

number of endometrial cancer (1/50; 2 %) and CC samples  (1/25;4 %)(Hasegawa et al, 2004a). 

Actin was found to be expressed in almost all of the samples analysed and showed that the IHC 

assay and all of its composite reagents were working appropriately. Isotype control were 

predominantly negative but can score positive at low levels (1 and rarely 2) on primary tissues 

due to non-specific binding. Other investigators have shown that IgGs can bind with low 

affinity to many tissue components producing false positives (Fritschy, 2008). 

SSX2 has been found to have very restricted expression in previous studies (Tureci et al, 1996), 

being found in tumour cells and immunologically protected sites such as the testes with very 

weak expression if the thyroid (Tureci et al, 1998; Lim et al, 2011). As such SSX2 would make 

a very specific target for cancer immunotherapies (Tureci et al, 1996). However I did detect a 

lot of staining in NT (50% of eight tissues at level 2) and (13% of eight at level 2) NAT. The 

staining pattern appeared to be non-specific in the NT and NAT. All of the NT and NAT 

samples were located along one edge of the TMA slide and I noticed that samples at the edge 

of the arrays tended to capture more background staining. However this does not explain why 

the NAT did not stain non-specifically as frequently as the NT did. Further analysis by a 

pathologist would have provided a more definitive answer regarding the specificity of the 

staining, which unfortunately I was not able to arrange. This reflects the time constraints on 

pathologists and our need to collaborate with clinicians to facilitate professional scoring of 

primary samples. A pathologist could also pinpoint accurately the location of the antigens 

within the tissue bed and help determine whether there was specific staining of certain types of 

cells within OVC samples. 
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This part of my studies had aimed to determine whether PASD1, SSX2 and SSX2IP could 

make promising targets for the immunotherapy of OVC. PASD1 and SSX2IP had low 

expression in OVC suggesting they would be poor targets for the immunotherapy of OVC. 

Initially I was unable to replicate the work of my predecessors and show that SSX2IP was 

expressed on the surface of K562 cells, but experiments that involved altering CO2 levels 

during cell growth led to my finding that PASD1 is expressed on the surface of K562 when 

CO2 levels are slightly elevated (5.5%). This suggests that further investigations, on whether 

the sub-cellular localisation of the expression of TAAs, such as SSX2IP and PASD1, are 

changed by slight changes in CO2 level are worthy of future consideration. Analysis of SSX2A 

in OVC samples showed consistent expression at all stages including stage 1 and II suggesting 

that it required further investigation.   
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CHAPTER 5: VALIDATION OF SSX2 AS A BIOMARKER FOR EARLY 
STAGE OVC 

5.1 Introduction 

SSX2 has been shown to be a CTA with restricted expression in healthy tissues (reviewed in 

Section 1.7.4). This does not rule out the possibility that SSX2 is expressed in NT although 

CTAs are often found to have low level expression in few healthy tissues, usually the 

pancreas or brain, and high levels of expression in immunologically protected sites such as 

the testes and placenta. However my analyses of NT had shown high levels of, what appeared 

to be non-specific staining, with only OVC stage IV exceeding the frequency of staining of 

tissues in NT (Chapter 4). Few investigations have examined SSX2 expression in solid 

tumours and so I extended my investigations to determine whether the expression of SSX2 

was specific to OVC and whether the staining of ovarian healthy tissues could be 

differentiated. I also wanted to determine whether SSX2 was expressed in related 

inflammatory diseases and healthy tissues. There are two variants of SSX2, although they are 

rarely discerned in the scientific literature and so I investigated their expression 

independently to see whether I could see which were being expressed in OVC.  

I chose two additional, commercially available SSX2 antibodies for further analysis to 

determine whether the issue with background could be reduced by the use of alternative 

antibodies and whether I could differentiate between SSX2 and SSX2A immunolabelling. 

One of the commercial antibodies bound solely to the C’ terminal of SSX2, and this was 

specific for SSX2A and referred to as pSSX2A. This overlapped with the recognition of 

SSX2A achieved by the monoclonal antibody mSSX2A (Chapter 4) and should have 

generated similar results. The third antibody I chose bound to the region of SSX2 common to 

both SSX2A and SSX2B, referred to as pSSX2(N)(discussed in detail in Section 2.7.2). Each 

SSX2 antibody was tested on the following cell lines, K562, HL60, HeLa and SW480, to 
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optimise the protocol for ICC for each new antibody to include haematological and solid 

tumour cells lines. Cell lines that were positive for SSX2 (K562 and Skov3) were used to test 

the specificity of the antibodies for SSX2 through the use of peptide blocking.   

All three SSX2 antibodies were used to immunolabel SSX2A (pSSX2A and mSSX2A), and 

SSX2 (pSSX2(N)), in patient samples on MTAs and directly compared to HE4 and WT1 

immunolabelling which have recently been investigated for their usefulness as OVC 

biomarkers (described in Section 1.9.1.2 and 1.9.1.4 respectively). HE4 was chosen in place 

of CA125 for the experiment where pSSX2A was analysed. This was to determine whether 

HE4 was a better biomarker in my hands than CA125.  

5.2 Aims 

 To confirm the frequency of expression of SSX2 and specifically SSX2A in OVC 

using three independent antibodies 

 To determine whether SSX2 and specifically SSX2A are expressed in OVC, healthy 

and diseased related tissues 

5.3 Results 

5.3.1 Optimisation of SSX2 and SSX2A immunolabelling using commercially available 

antibodies  

Both SSX2 and specifically SSX2A were found to be expressed in the K562, KM-H2, KY0-

1, HL60, HeLa and SW480 (Figures 5.1 & 5.2) cell lines. This confirms the data from 

previous studies where each of these cell lines including K562 (dos Santos et al, 2000), KM-

H2 (Colleoni et al, 2002), HL60 (Hoffman et al, 2014) and HeLa (The Human Protein Atlas) 

were shown to express SSX2. The exception was SW480 where we found SSX2 and SSX2A 

expression although it had not previously been reported. 
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5.3.2 Blocking SSX2 and SSX2A antibodies using specific peptides 

To show that the commercial antibodies were specific for SSX2, and SSX2A, I incubated the 

antibodies with their respective SSX2 peptides prior to immunolabelling (Section 2.7.4). Two 

cell lines (K562 and Skov3) were found to immunolabel with all three antibodies, and these 

were used to demonstrate whether we could block SSX2 and SSX2A immunolabelling with 

the SSX2 and SSX2A specific peptides (Section 2.7.5). All three antibodies were 

successfully blocked by their respective peptides, suggesting that these antibodies were 

specific for SSX2 and SSX2A as described by the manufacturer (Figure 5.3). 

 

 

 

 

 

 

 

 

Figure 5.3 Demonstrable blocking of SSX2 antibodies by SSX2 peptides. To examine the 

specificity of the SSX2 antibodies, blocking peptides were used. K562 and Skov3 cell lines 

were used. All three commercially obtained SSX2 antibodies were successfully blocked from 

immunolabellng SSX2 in the human cancer cell lines. Magnification x 400. Images are 

representative of 3 repeats of this experiment. 
 

5.3.3 Analysis of SSX2A and HE4 expression in OVC tumour samples  

A new SSX2A antibody was used to further analyse if SSX2A is consistent in labelling OVC. 

Expression of SSX2A was detected through the use of the pSSX2A antibody on OVC TMAs 

containing samples from various stages of disease. Using the pSSX2A antibody I found that 

SSX2A protein was expressed in all stages of OVC; 21 % (34/165, 1 missing) in stage I, 40 

% (6/15) in stage II, 17 % (1/6) in stage III and 50 % (2/4) in stage IV (Figure 5.4). There 

was no immunolabelling of SSX2A in NT or NAT when using the pSSX2A antibody. Due to 

Cells only         Actin           mSSX2A      mSSX2A       pSSX2(N)      pSSX2(N)      pSSX2A       pSSX2A 
                                                                   blocking                             blocking                            blocking 
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the poor results I obtained with CA125 (Section 4.XX) I compared SSX2 staining to the 

relatively recently investigated biomarker, HE4 (Section 1.9.1.2). SSX2A immunolabelling 

with pSSX2A antibody exceeded the level and frequency of expression of HE4, in the same 

patient samples. HE4 was positive in 8 % (13/165, 1 missing) stage I, 13 % (2/15) of stage II 

OVC while no expression was found in stage III and IV OVC samples. There was also no 

immunolabelling of HE4 in the NT or NAT and there was no background staining of the 

tissues obtained when using the isotype control. 

  

Figure 5.4 Frequency of expression of SSX2A in comparison to HE4. HE4 was also used 

as a positive control as it is known to be expressed in OVC. In this study there was minimal 

expression found of HE4 in the early stage samples and none in the later stages. SSX2A was 

detected in 20 % of stage I, 40 % stage II, 20 % stage III and 50 % stage IV OVC patient 

samples. Both SSX2A and HE4 were not found in NAT or NT. This experiment was 

performed only once for each antibody although each slide tested had 208 samples on it, 

acting as 208 independent experiments. 

 

  

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

NT NAT Ovarian Cancer
stage I

Ovarian Cancer
stage II

Ovarian Cancer
stage III

Ovarian Cancer
stage IV

Expression of SSX2A and HE4 in OVC with scores of 2 or above

Cells only Isotype HE4 pSSX2A



 
152 

5.3.4 Specificity of the expression of tumour antigens in endometrial tissue 

A potential biomarker should ideally be specific to the disease state it identifies to avoid 

unnecessary procedures. To determine whether the SSX2A expression I had detected using 

pSSX2A and mSSX2A was specific to OVC or could also be found in healthy and diseased 

endometrial tissue, as is the case for HE4 (Section 1.9.1.2), I examined the expression of 

SSX2A on endometrial disease spectrum TMAs. The TMAs included normal endometrial 

tissue, malignancy of the uterus, endometrial hyperplasia, as well as metastasis – endometrial 

adenocarcinoma. The highest expression in malignant endometrial tumours with scores of 2 

and above was observed with HE4 with 27/30 (90 %) samples while immunolabelling 

SSX2A with pSSX2A occurred in 15/30 samples (50 %) (Figures 5.5 and 5.6). CA125 was 

immunolabelled to a lesser extent in 9/30 (30 %) samples. However immunolabelling with 

the mSSX2A antibody indicated there was very little expression of SSX2A in endometrial 

cancer samples where no samples had a score of 2 or above. HE4 and pSSX2A were found to 

immunolabel normal endometrial tissues with the majority of samples, 9/16 scoring 3-4 for 

HE4 and 13/16 scoring 2-3 with pSSX2A. CA125 was positive in 6/16 NT scoring 2-3. 

However SSX2A, when immunolabelled with mSSX2A, was only positive in 2 out of 16 

malignant uterus samples each achieving a score of 2. Cells only and isotype were negative as 

expected. Scores for each sample are provided in appendix II. The endometrial TMAs 

contained endometrial cancer which had metastasised (n=6). These included single samples 

of fibrofatty tissue, lymph node, pelvic cavity, ovary and two samples of abdominal cavity. 

mSSX2 had a score of 1 on the single fibrofatty tissues sample, pSSX2A achieved a score of 

2 on all metastatic tissues apart from in one of the abdominal samples where the score was 1. 

CA125 had score of 1 in the ovary, 2 in fibrofatty tissue, pelvic tissue and 1 out of 2 of the 

abdominal cavity and 3 in the lymph node while CA125 was negative in the remaining 

abdominal cavity tissue. HE4 had a score of 1 in 3 tissues (1/2 abdominal cavity, fibrofatty 
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tissue, lymph node) and 2 in 3 tissue (1/2 abdominal cavity, pelvic cavity, ovary) (Figure 

5.7). 

     

 

 

 

Figure 5.5 TMAs of 

endometrial cancer enabled the 

analysis of CA125, HE4, and 

SSX2A expression. 

Immunolabelling of HE4 and 

pSSX2A was found with a score 

of 2 in most samples, while 

CA125 immunolabelling achieved 

a score of 1 in most samples. 

Very little staining was observed 

with mSSX2A (seen with a score 

of zero in the image). Cells only 

and isotype control were also 

negative. In order to clearly 

observe the absence of 

immunolabelling no counterstain 

was used. 
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Figure 5.6 Immunolabelling of various endometrial tissues on TMAs. (a) Malignant endometrial cancer: only labelling with pSSX2A, 

CA125 and HE4 succeeded in scoring 2 and above while labelling with mSSX2A was found to be the background level of 0-1, (b) endometrial 

hyperplasia: mSSX2A staining scored mainly background of 0-1 while pSSX2A, CA125 and HE4 all scored 2 and above with the highest 

labelling being by pSSX2A, (c) in inflammation tissues mSSX2A staining was found to be negative only scoring 0 and similarly CA125 only 

scored 0-1 while pSSX2A and HE4 both labelled with scores of 2 and above, and (d) weak expression was seen with mSSX2A in normal 

endometrial tissue (2/16) whereas pSSX2A, CA125 and HE4 show much higher labelling with HE4 reaching up to 50%. 



 
156 

 

Figure 5.7: Labelling of endometrial metastatic tissue on TMAs. Endometrial metastatic 

tissue at a variety of secondary locations appeared to label with pSSX2A and HE4 highly, 

with CA125 having lower expression while mSSX2A shows virtually no staining apart from 

in the fibrofatty sample with a score of 1. 

 

5.3.5 Analysis of SSX2 and SSX2A expression in OVC 

To discern whether SSX2 and SSX2A are both expressed in OVC and to repeat the most 

promising of my findings I examined the expression of SSX2A in OVC using mSSX2A 

(used to immunolabel SSX2A in Chapter 4) and the pSSX2 (N) antibody. I didn’t used the 

pSSX2A antibody as it was found to label endometrial tissue. Scores of 2 and above were 

considered positive. I found expression of SSX2 in OVC patient samples at almost every 

stage of OVC (Figures 5.8, 5.9 and 5.10). mSSX2A immunolabelled SSX2A in 54 % 

(88/162, 4 missing) of samples from stage I, 50 % (7/14, 1 missing) from stage II, 17 % (1/6) 

of samples from stage III and 25 % (1/4) from stage IV patients, whereas the pSSX2 (N) 

immunolabelled SSX2 in 33 % (54/162, 4 missing) of samples from stage I, 50 % (7/14, 1 

missing) from stage II and 25 % (1/4) from stage IV while no SSX2 protein was detected 

with this antibody in any stage III samples. In comparison, CA125 was found in 32 % 

(52/164, 2 missing) of stage I, 36 % (5/14, 1 missing) of stage II and 20 % (1/5, 1 missing) 

stage III and 75 % (3/4, 1 missing) of stage IV patient samples. HE4 was expressed in 32 % 
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(52/164, 2 missing) of samples from stage I, 50 % (7/14, 1 missing) of stage II, 20 % (1/5, 1 

missing) of stage III and 75 % (3/4) of stage IV patient samples.  WT1 was found in 22 % 

(35/162, 4 missing) of stage I, 29 % (4/14, 1 missing) of stage II with no detection in stage III 

and stage IV OVC samples. HE4, WT1 and both the SSX2 (mSSX2A and pSSX2 (N)) 

antibodies led to positive scoring in NT and NAT although SSX2 was found at slightly lower 

levels in NT (29 % (2/7, 1 missing) and 50 % (4/8) with mSSX2A and 20% (1/5, 3 missing) 

and 38 % (3/8) with pSSX2 (N)) compared with HE4 (50 % (4/8) and 38 % (3/8) and WT1 

(38 % (3/8) and 25 % 2/8), respectively.  CA125 was not immunolabelled in the NT or NAT 

(Figure 5.10c). Positive samples were taken as 2 and above however when scores 3 and 

above are analysed it appears that mSSX2A is labelled exceedingly better at the higher 

intensity than pSSX2A, CA125, HE4 and WT1 (Figure 5.11a and b). CA125 has been 

previously known to have little or weak expression in normal ovarian epithelium (Rosen et al, 

2005) although some studies do show that CA125 may be positive as 4 out of 11 epithelial 

cell samples obtained from normal ovaries and fallopian tubes had CA125 expression 

(Neunteufel & Breitenecker, 1989). While HE4 has not been found in normal ovaries, it is 

highly expressed in benign OVC cancers and other ovarian disease such as ovarian surface 

cysts (Georgakopoulos et al, 2012).  
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Figure 5.8 Immunolabelling of SSX2A and SSX2 in stage I OVC tissues with mSSX2A 

and pSSX2 (N) antibodies, respectively. SSX2 antigen immunolabelling was visible by 

virtue of a brown deposition. Actin was used as a positive control to demonstrate that IHC 

staining was working properly and cells only and isotype were used as negative controls to 

indicate the background staining that occurred in the absence of specific antibody-antigen 

binding.  CA125 was used as a comparator to SSX2A and SSX2 immunolabelling as it is the 

current NHS “gold standard” indicator for the presence of OVC cells. Expression of SSX2A 

is seen in the early stages of OVC and is more convincing than CA125. WTI, HE4 and SSX2 

(labelled by pSSX2(N) antibody) are also expressed but not as intensely as SSX2A. 

Magnification was 400x except for immunolabelling of small areas of tissue with the SSX2A 

shown in black boxes and enlarged to aid visualisation of the immunolabelling. Images 

represent results from a single experiment in which MTAs which included XX stage I OVC 

samples, immunolabelled with each antibody or control. 
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(e) 

  

Figure 5.10 Percentage of samples which scored 2 or 3 for each biomarkers being investigated. (a) SSX2A, staining is seen at score 2 in 

every stage of OVC except for stage III. Immunolabelling is seen in normal tissues at the score of 2, while SSX2A is the only biomarker 

labelling at the higher intensity score of 3 solely in OVC at the earlier stages, with no normal tissue staining, (b) SSX2 staining is also observed 

in all stages including NT and NAT at score 2 however at score 3 it is only expressed in stages I and II with no expression in normal tissue, (c) 

CA125 is not found to be in normal tissues but is found at all stages of OVC however at the higher intensity score of 3 it has very weak 

expression in stages I and II with a slight improvement at stage IV, (d) WT1 was labelled highly in normal tissues and at lower levels at stages I 

and II but very little expression is found at score 3 and  (e) HE4 has similar expression in normal tissues, stage I, II and III but is seen highly 

labelled at stage IV. Very little expression is found at score 3. 
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Figure 5.11 Percentage expression of SSX2, 

SSX2A, CA125, WT1 and HE4 at scores of (a) 

2 and above and (b) 3 and above. Higher 

expression is seen with SSX2A than the other 

biomarkers in stage I OVC samples at scores of 2 

and above. However there is labelling of NT and 

NAT by all biomarkers except CA125. At scores 

of 3 and above SSX2A labelling exceeds that of 

others at stages I and II with NT and NAT 

showing no staining apart for HE4. 
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5.3.6 Comparison of SSX2A expression between serous and non-serous OVC 

All subtypes of ovarian tumours can be classified into serous and non-serous subtypes. More 

of the non-serous subtypes are early stage. SSX2A was seen to be expressed uniformly in all 

types of early stage OVC (76 - 77 %) (Table 5.1) whereas CA125, HE4 and WT1 were 

slightly more likely to be expressed in serous subtypes of OVC, at frequencies of 56 %, 57 % 

and 58 % respectively, when compared to non-serous subtypes (42 %, 49 % and 49 %, 

respectively).  

Table 5.1 Number of positively scoring OVC samples differentiated into serous and 

non-serous tumour types. 
 

Total positive OVC samples by immunolabelling  

 Non-serous Serous P value* 

CA125 23/55 (42 %) 76/136 (56 %) 0.0782 

HE4 27/55 (49 %) 78/136 (57 %) 0.299 

WT1 27/55 (49 %) 79/136 (58 %) 0.257 

SSX2A 42/55 (76 %) 105/136 (77 %) 0.9 

*P value is the result of a paired t-test.  

5.3.7 Statistical analysis to determine whether SSX2A immunolabelling occurs 

significantly more frequently than labelling with other known biomarkers 

A paired T-test was used to analyse the results from the patient samples analysed in Section 

5.3.2. Early stage samples (stage I) which scored 2 and above were compared for each 

antigen (Table 5.2) however the data was not found to be statistically significant as p values 

were all higher than 0.05. Samples that scored 2 or above when immunolabelled with each 

antigen were also compared between patients with serous cancer (n=136) with those with 

non-serous cancer (n=55). There was a significant difference between the expression of 

SSX2A and all other markers (CA125, HE4 and WT1) in serous and non-serous OVC (Table 



 
165 

5.3). In contrast, no difference was observed when comparing antigen expression between 

CA125, HE4 and WT1 in serous or non-serous samples. 

Table 5.2 Statistical analysis showing the difference (p values) between the scores of 

SSX2, SSX2A, CA125, WT1 and HE4 in early stage OVC samples (stage I). No data 

extended to a significant level of p<0.05. P values were generated by a paired t-test.  

 SSX2A SSX2 CA125 WT1 HE4 

SSX2A - 0.095254 0.122898 0.531248 0.115526 

SSX2 - - 0.5 0.152234 0.5 

CA125 - - - 0.318755 0.5 

WT1 - - - - 0.28258 

HE4 - - - - - 

 

Table 5.3 Comparisons of the expression of CA125, HE4, WT1 and SSX2A in (a) non-

serous and b) serous OVC samples. P values are achieved through the use of a paired t-test. 
a 

Non-
serous 

CA125 HE4 WT1 SSX2A 

CA125 - 0.444 0.444 0.000023 

HE4   - 1 0.003098 

WT1     - 0.003098 

SSX2A       - 

 

b 

Serous CA125 HE4 WT1 SSX2A 

CA125 - 0.807 0.713 0.00019 

HE4   - 0.902 0.000484 

WT1     - 0.000752 

SSX2A       - 

Data highlighted in yellow has reached statistical significance.  
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5.4 Discussion 

The biomarkers which have been identified to date (Section 1.10.1) show limitations in their 

usefulness caused by imperfect specificity or reproducibility with regards to the 

immunolabelling of OVC samples. Most biomarkers work best in combination, such as HE4 

and CA125, and therefore I had hoped to identify one marker that could indicate the presence 

of OVC cells in tissues. This would be economical, require less controls and be potentially 

more sensitive as there is less risk of false negative results through background/non-specific 

staining. Treatment is known to be most effective when OVC is diagnosed early, and so the 

ideal biomarker would also be one that recognised OVC in the early stages, especially as this 

correlates very significantly with early interventions and long term survival. 

It is widely accepted that CA125 is not a very good biomarker for OVC (Section 1.9.1.1) 

therefore for an antigen to be better than CA125 does not equate with it being satisfactory and 

I wanted to find a biomarker that is an improvement compared to current best practise for the 

confirmation of an OVC diagnosis, such as HE4 and WT1. If I was able to identify a more 

robust biomarker (with regards to sensitivity and specificity) there is an increased likelihood 

it would reach the clinic and impact on patient care. However it is acknowledged that in the 

absence of a better biomarker CA125 needs to be a reference point.   

My data suggested that SSX2 may have potential as a single early stage biomarker for OVC.  

SSX2 immunolabelling was found at the highest frequency with high intensity (score 3 and 

above) in early stage OVC patient samples. This contrasted starkly with the current “gold 

standard” biomarker used to confirm a diagnosis of OVC, CA125. pSSX2 (N) antibody was 

able to widely label OVC, however it was also detected at low levels in endometrial cancer. 

As a polyclonal antibody it is prone to non-specific binding especially on tissues and so some 

level of non-specific/background staining was expected. The specificity of the 

immunolabelling by pSSX2A will need to be interpreted by a pathologist to determine 
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whether the staining in endometrial tissue was specific or non-specific.  However mSSX2A 

was found to immunolabel almost as many samples as the pSSX2A antibody, with little 

immunolabelling in endometrial tissues, showing it to be a specific and sensitive detector of 

OVC.  Since both of these antibodies were blocked by the SSX2 peptide on cell lines, 

mSSX2A was taken as the most appropriate for further studies. In NAT and NT samples 

some expression was seen with all antibodies (HE4, WT1, pSSX2 (N), mSSX2A and 

pSSX2A) with the exception of CA125. CA125 for the main part seems undetectable in 

normal ovarian epithelium (Kobayashi et al, 1993; De los Frailes et al, 1993) however due to 

the inconsistent nature of CA125 some studies have found expression (reviewed in Felder et 

al, 2014). Out of the three SSX2 antibodies, the highest scores in terms of immunolabelling 

OVC samples were observed with the two polyclonal antibodies (pSSX2A and pSSX2 (N)). 

As previously described, the staining seen in normal tissue did not appear to be specific. 

There was no detailed information about how the normal donor samples were collected so it 

is possible some of these samples could have in fact been pre-cancerous. All staining does 

require a pathologists critical and highly trained skills to establish true positivity but as a 

preliminary dataset the data suggests that immunolabelling SSX2 may provide a more 

specific and sensitive label for early stage OVC then current best practise. At the higher 

intensities (3 and above) mSSX2A labelling was found to be elevated compared to the other 

biomarkers at OVC stages I-III. This indicates that SSX2A could detect early stage OVC  

cells more accurately. There is some evidence that CTAs may be detectable in pre-cancerous 

cells (Liggins et al., 2004a) which may otherwise seem healthy, therefore the TMAs should 

be examined by a pathologist to determine whether the tissues labelled normal adjacent and 

normal tissues were indeed healthy and not in fact early stage pre-cancerous. CA125 is 

already known to have a variable expression in OVC samples and alters with the stage of 

EOC.  It can be detected in 80 - 90 % of late stage OVC but only about 50 % of early stage 
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EOC may express CA125 (Jacobs and Menon, 2004). It has previously been shown that the 

presentation of advanced stage disease is more likely to be of the serous subtype as 82 % of 

stage III patients are serous while non-serous subtype are more likely to occur in early stage 

(over 90 % of cases) (Gilks et al, 2008) thus taking subtypes into consideration when looking 

at biomarker expression is very important. SSX2A expression was found to be consistent in 

both non-serous and serous OVC. However CA125, HE4 and WT1 were found to be more 

frequently expressed in serous concurring with previous data where 75 % of serous 

carcinoma cases were positive for CA125 and WT1 (Drapkin et al, 2005; Kobel et al, 2008). 

This implies that SSX2A may be an important biomarker for both the serous and non-serous 

types of early stage OVC, and SSX2 has previously been suggested to play a role in the 

development of tumours (Tureci et al, 1996) making it a particularly appealing antigen to act 

as a target for immunotherapy (Cheever et al, 2009). HE4 showed no positive labelling in NT 

when used alongside pSSX2A antibody but higher staining was observed when used with all 

other possible biomarkers, suggesting that more aggressive washing could be one of the 

potential solutions as only four TMAs were used earlier while seven were used at once the 

second time around. Ovarian cancer tissues however were labelled similarly both times.     

To further establish whether SSX2A would be specific to OVC as a diagnostic biomarker, 

immunolabelling of SSX2A was carried out on endometrial cancer TMAs. Endometrial 

tumours showed expression of CA125, HE4 and SSX2A (when immunolabelled with 

pSSX2A) but very little immunolabelling of SSX2A with mSSX2A. I believe that the 

expression seen with pSSX2A was due to it being polyclonal and more likely to bind tissues 

non-specifically.  SSX2, also referred to as HOM-MEL-40 (Tureci et al, 1996), has already 

been examined in a range of healthy tissues including the ovary, colon and breast. No 

expression of SSX2 has been found except in the testis with weak expression in the thyroid 

gland (Tureci et al, 1996) making this a particularly promising biomarker if background 
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levels can be shown to be low in NT and NAT, and a very specific target for immunotherapy. 

Although SSX2 expression in thyroid tissue is present, albeit at low levels, autoimmunity that 

could destroy the thyroid following immunotherapy targeting SSX2, can be controlled for, 

and would be balanced out by the removal of OVC cells that could lead to patient death.   

Despite its use as a biomarker for the diagnosis of OVC, CA125 is not very specific to OVC 

and can be detected in a number of benign and malignant conditions such as menstruation, 

pregnancy, benign pelvic tumours, pelvic inflammatory diseases and peritonitis (Daoud and 

Bodor, 1991). However recent studies in which the levels of 14 currently promising OVC-

related biomarkers, including CA125 and SSX protein, were measured through detectable 

antibodies in the plasma of 151 OVC patients, 23 with borderline ovarian tumours, 55 with 

benign tumours and 75 healthy controls and showed that CA125 exhibited the greatest power 

to discriminate the plasma samples of type II cancer patients from normal volunteers. The 

potential of CA125 to act as a biomarker for stage II OVC is improved when it is used in 

combination with the detection of auto-antibodies to p53 (Lu et al, 2011). HE4 and WT1 

have more recently been identified as possible biomarkers in OVC however they also work 

best as part of panels (Van Gorp et al, 2011) and are more frequently expressed in the 

advanced stage disease (Olivier et al, 2006). Median CA125 and HE4 levels were elevated in 

stage III and IV endometrial tumours (p<0.001) (Brennan et al, 2014). WT1 has been known 

to be an oncogene and highly expressed in a number of leukaemia types; it was expressed in 

7/16 cases of ALL, 15/22 of AML and 8/10 of blast crisis CML (Miwa et al, 1992). CA125 

has been shown to be sensitive in the detection of more than 90% of cases of OVC recurrence 

post-chemotherapy leading the US Food and Drug Administration (FDA) to endorse its use to 

determine residual disease (Simmons et al, 2013). 

Statistical analysis showed a difference in the expression of SSX2A and other antigens tested 

between serous and non-serous OVC. When looking at non-serous OVC samples, there was a 
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statistically significant different between SSX2A and CA125 (p= 0.000023), HE4 (p= 

0.003098) and WT1 (p= 0.003098). Similarly in serous samples the same trend is observed 

between SSX2A (when immunolabelled with mSSX2A) and CA125 (p= 0.00019), HE4 p= 

0.000484) and WT1 (p= 0.000752). This implies that SSX2A offers an improvement on the 

current biomarkers, could be used to confirm an OVC diagnosis in the early stages of OVC 

and is not limited to serous or non-serous types. 

SSX2A expression was higher when considering scores of highest intensity in OVC samples 

at every stage compared with CA125 and PASD1. The expression of SSX2A was not more 

predominant in serous compared with non-serous OVC. This contrasts with CA125, PASD1 

and SSX2IP both in expression frequency, levels (2 and above) and the predominant 

expression in early stage disease. SSX2 has great potential as a target for cancer 

immunotherapy due to its previous findings of restricted expression in healthy tissues and 

frequent expression in early stage OVC. SSX2 epitopes have already been identified and 

investigated in melanoma, HCC, and breast cancer (reviewed in Section 1.7.4.1) but its’ 

possible role as a biomarker for OVC has yet to be explored however that may be change. 
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CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS 

The aim of this study was to identify and characterise antigens that were frequently expressed in two 

cancers that the research team I worked with and I were interested in (myeloid leukaemia and 

OVC). Frequently expressed antigens may provide novel targets for immunotherapy, if their 

expression is limited to cancer cells and immunologically protected sites. By virtue of their 

restricted expression some antigens have also been found to have a dual role as biomarkers for 

disease and in this regard I identified a CTA that was frequently expressed in the early stages of 

OVC. My studies have successfully identified targets for immunotherapy in leukaemia and OVC 

(Chapter 3 and 4) and an antigen that may act as a diagnostic biomarker for OVC (Chapter 5).  

PASD1 was found to be present in leukaemia cells which correlated with the presence of PASD1-

specific T cells being detected in the periphery of the same patients using the pMHC array.  

With the help of Professor Ken Mills, I investigated whether patients who had PASD1 transcripts as 

detected by RT-PCR and PASD1-specific T cells as detected by pMHC array had longer survival 

rates however there was no significant correlation although the number of samples analysed was 

very low. To progress this study I would investigate a much larger population of AML patients in 

order to determine if there was a correlation between PASD1 transcripts and/or the presence of 

PASD1-specific T cells and survival. Further statistical analysis does not provide any more 

information since the number of patients was so low and contradictory conclusions are obtained, for 

example Kaplan Mieier curves show that having detectable PASD1 transcripts improves EFS but 

OS is found to be greatly reduced. This could be because the PASD1 transcipts detected were not 

the correct size and would therefore require sequencing which could not be carried out due to the 

small amount of product detected. This could also mean that PASD1 may play a dual role where it 

prevents or deters cancer early on but then encourages cancer progression at a late stage such as 

TGFβ (Lebrun, 2012).   
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I found some data which suggested that the presence of PASD1 is linked with normal karyotype 

which is supported by previous studies (Baghdady et al, 2013). Again a larger number of patient’s 

samples will be required to investigate this further.   This could be achieved through the analysis of 

data from studies by Guinn et al, 2015, Baghdady et al, 2013 and chapter 4 in this thesis. Microarray 

data which examined a correlation between the levels of PASD1 expression (above and below 

median) with survival and/or cytogenetic abnormalities (or not) could provide insight into the role of 

PASD1 in AML. Similar studies with SSX2IP elucidated its role in mitosis (Denniss et al, 2007).   

The transcripts obtained for PASD1 were of a much larger product size than expected from the 

primers and our knowledge of the intron-inton boundaries that these span. There is evidence that 

more that the two PASD1 transcripts described to date (Liggins et al, 2004a) do exist (Cooper et al, 

2006). As the product initially did not seem correct it was not considered for sequencing but using 

newly acquired AML patient samples would allow the same RT-PCR analysis to be performed and 

the PASD1 products sequenced to determine whether these are the products of novel PASD1 

transcripts could be informative.  

The pMHC array technique (Soen et al, 2003b) enables analyses of specific T cell populations by 

virtue of their recognition of pMHCs. This analysis allows the simultaneous analysis of many T cell 

populations thereby showing if a patient’s immune system has the correct armoury to target an 

expressed TAA. Bonney et al demonstrated that pMHC arrays are capable of detecting around 40 

independent but TAA specific-CD8+ T cells and could identify up to 40 specific T cell populations 

in a small sample size without haplotype restriction. pMHC arrays can be used to look for longer 

and overlapping epitopes and other antigens important in solid tumours as well. This information 

can lead to targeted immunotherapeutic treatment which may be more effective at breaking 

tolerance and instigating an effective T cell response. In addition my group hope to examine 

whether the presence of specific T cell populations can predict response to chemotherapy in terms of 

survival and achievement of first remission. In addition the pMHC array can be used to follow 
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specific T cell populations and determine which immunotherapy strategies should be used (i.e. 

which antigens/epitopes therein should be targeted). The group would like to extend the pMHC 

array used in the studies described in chapter 4 to encompass a wider range of class I and potentially 

class II epitopes, and develop solid tumour specific pMHC arrays in the future. The pMHC array is 

restricted only by the pMHCs available already.  

The pMHC array (Soen et al, 2003) only measures presence of antigen-specific T cells and does not 

measure T cell functionality. However the pMHC array does allow the analysis of a small number of 

negatively purified CD8+ T cells (from 20 ml of peripheral blood) that are “untouched”. This 

enables the short-listing of which antigen-specific T cell populations are present in patients and 

enable their further analysis through sampling of an additional volume of blood. Such experiments 

could then include intracellular cytokine assays, ELISAs, ELISpot assays and CTL assays to further 

assess T cell functionality in a limited number of relevant T cell populations. Previously Vergauwen 

(2011) tried to detect which cytokines were being secreted by T cells bound to pMHCs on the array, 

however unlike other groups (Chen et al, 2005), Vergauwen did not find this to be possible. The 

Davis group are now focussing on using flow cytomtery based methods, rather than pMHC arrays, 

with a number of investigators describing difficulties with the background sticking of T cells to the 

pMHC array. 

Assays such as the combinatorial approach described by Hadrup et al, 2009, again detects specific T 

cell populations but not functionality. However flow cytometry based methods can be adapted to 

examine T cell responses and cytokine secretion, indicating the functionality of the T cells. To 

prevent the cytokine from exiting the cell a transport inhibitor is added e.g. brefeldin A. The cells 

are then fixed in paraformaldehyde and permeabilized to allow the anti-cytokine antibody to bind.   

The use of an intracellular cytokine staining assay to detect the cytokine IFNγ shows high 

reproducibility and linearity with little background (Flesch et al, 2012).  Duration of culture prior to 

antigen stimulation, as well as the cytokine accumulation period, are the critical parameters of these 
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methods.  In both murine and cattle models, following 2-6 hours in culture, T cells are shown to 

produce a mixture of cytokines IFNγ, IL-2 and tumour necrosis factor-α, however following 6-16 

hours of culture only IFN-γ cytokine was found (Kaveh et al, 2012). 

Other assays that can detected T cell responses to antigen include ELISpot assays where T cells are 

plated with the antigen and the production of cytokine is measured through cytokine production.  

When considering the best method for immunotherapy the use of multiple peptides from distinct 

TAAs to stimulate immune cells have been shown to be very effective.  A cocktail of four multiple 

myeloma antigen peptides were used to stimulate T lymphocytes from HLA-A2 positive people 

induced IFNγ production, cell proliferation and cytotoxicity against HLA-A2 positive multiple 

myeloma patients' cells (Bae et al, 2012). Indeed long peptides may offer the advantage of allowing 

the immune system to choose the epitope(s) it can best process and present from a peptide sequence 

and induce an effective cytotoxic T cell response in the presence of longer CD4+ helper motifs 

(Zwaveling et al, 2002).  Conversely sometimes longer proteins can inhibit CD8+ T cells responses 

(Rice et al, 2002) but this may vary depending on the constituents of individual protein sequences. 

PASD1 remains a promising target for immunotherapy approaches especially in haematological 

malignancies.  The work in chapter 4 supports previous evidence that patient leukaemia cells 

express PASD1 and our colleagues have shown that AML patients have detectable CD8+ T cells 

specific to PASD1 epitopes. In some cases there may not be PASD1-specific T cells present even 

though PASD1 seems to be expressed by RT-PCR, however it is possible that there are more 

epitopes of PASD1 yet to be identified, that a different isoform of PASD1 is playing a role in 

tumour development or that the PASD1 mRNA may not be translated into protein in these patients. I 

found PASD1 protein expression varied from 4 – 43 % of the cells in each of the AML patients 

tested and this is consistent with previous studies (Hardwick et al, 2013) and likely reflects PASD1 

function in circadian rhythms (Michael et al, 2015). The frequency of PASD1 expression in OVC 

was found to be varied. Variation in frequencies within the same cancer may also occur due to 
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differences in primers, PCR cycles and machines or patient selection (i.e. patient numbers, 

geography, age, disease stage, underlying factors). For example SSX2 expression frequencies have 

been found to range from 10-46.7% in HCC (Chen et al, 2001a; Luo et al, 2002; Peng et al, 2005; 

Tureci et al., 1996) and 2-25% in colon cancer (Mashino et al, 2001; Tureci et al, 1998; Tureci et al, 

1996). Screening peptide libraries would likely identify additional PASD1 targets for 

immunotherapy. 

Recently PASD1 been found to suppress circadian rhythms (Michael et al, 2015) implying it will 

not be expressed in all cells at all times. It would be of interest to investigate this further. 

Investigating PASD1 at various time points would give a better understanding of when PASD1 is 

detected in the cell cycle and antigen specific treatments can be applied at the optimal time in the 

future to be more effective.   

My failure to find PASD1 in OVC adds to a growing body of evidence which suggests that unlike 

many other CT antigens, PASD1 is found predominantly in haematological malignancies. Further 

studies which also find PASD1 is not expressed in solid tumours may not be published as null data 

is invariably not.  However to date PASD1 expression has not been found in bladder cancer (G-Y 

Chen, CRI annual meeting, 2011), basal cell carcinoma (Ghafouri-Fard et al, 2010) and now in 

OVC (Khan et al, 2015).  

SSX2IP expression previously shown to interact with SSX2 but this does not seem to be the case on 

OVC. This may reflect the fact that when first identified a YAC system was used and only part of 

SSX to identify its interacting partner. SSX2IP expression has been described in leukaemia (Guinn 

et al, 2005) but was not found to be expressed in OVC in my study. 

OVC effects increasing number of people every year, however it is very difficult to diagnose. Early 

diagnosis significantly increases the chance of survival, but the majority of cases are diagnosed at a 

late stage. Therefore identifying novel biomarkers is imperative to improve survival rates. To that 

end, using OVC TMAs, I have identified a potential early stage biomarker for OVC named SSX2, 



 

176 

more specifically the variant SSX2A. Further work needs to be carried out in order to establish the 

specificity of the SSX2 antibodies for early stage OVC and why there was so much background 

staining of NT and NAT. Although I did my best to analyse the staining patterns, the stained TMAs 

should be analysed by a qualified pathologist to determine why there was such high levels of 

background staining of the NT and NAT. I believe the staining of normal tissue was not as specific 

as the immunolabelling of tumour tissue and a pathologist would be able to confirm this belief. Also 

the ICC staining was only analysed by looking down a light microscope to see where the antigen 

location appeared to be i.e surface, nuclear etc but further techniques can be applied such as 

fluorescence microscopy for endorsement. Further studies on samples from patients attending local 

hospitals would provide tissues from gynaecological cancers, normal/healthy tissues and disease 

(endometriosis and inflammation) allowing the optimisation of the immunolabelling techniques on 

locally handled frozen tissues aiding our interpretation of results through help from clinical 

colleagues. This may also help by allowing the reduction in background staining of healthy tissues 

as the samples would be processed and prepared by the team rather than a company in the US. 

Further work should be carried out on SSX2 such as plasmid constructs can be used to further 

investigate the effect of SSX2, SSX2A and other isoforms expression on transformed cells. Clones 

can be isolated with varying levels of mRNA expression and investigated to determine the effect of 

SSX2 protein expression on transformed cells. Similar studies have been performed to investigate 

the function of PASD1 (Liggins et al, 2004a) SSX2 (Abate-Daga et al, 2014). Differing levels of 

SSX2 and knockdown studies would show us how the cells are affected and the possible function of 

the antigen that can be exploited in the future. Knock out of SSX2 with siRNA can show impact on 

cell behaviour. Mass spec quantitative analyses can be used to detect SSX2 in OVC patient’s 

samples. 

There is some evidence that SSX2 protein may be secreted into urine, due to its small size, and if 

this is the case it would make an easily detected biomarker for early OVC diagnosis, using lateral 



 

177 

flow assays in well-woman clinics. SSX2 is expressed in Pichia pastoris as a means to produce a 

delayed-type hypersensitivity skin test reagent for monitoring SSX2-specific anti-cancer immune 

responses. SSX2 was detected intracellularly in P. pastoris despite the addition of the 

Saccharomyces cerevisiae alpha-mating factor secretion signal. Increasing the SSX2 gene copy 

number did not improve its secretion but did enhance intracellular SSX2 levels. SSX2 with its C-

terminal nuclear localization signal (NLS) deleted (SSX2NORD), however, was secreted. Indirect 

immunofluorescence indicated that SSX2 containing the NLS did not translocate to the nucleus but 

accumulated in the endoplasmic reticulum (ER). Experimental results further suggested that SSX2 

containing the NLS was misfolded in the ER, while deletion of the NLS facilitated correct folding of 

SSX2 inside the ER and improved its secretion. Production of SSX2NORD was scaled-up to a 2 L 

fermentor using a fed-batch protocol to maintain methanol at a concentration of 1 g/L. Decreasing 

the cultivation temperature from 25 °C to 16 °C improved protein stability in the culture 

supernatant. In this process, after 120 h cultivation, the wet cell weight of P. pastoris reached 280 

mg/ml, and the yield of SSX2NORD was 21.6 mg/l (Huang et al, 2010). 

To determine whether I could detect SSX2 and SSX2A in urine I could perform a sandwich ELISA. 

This would allow me to quantitate the amount of SSX2 in the urine. I would need to analyse the 

presence of SSX2 secretion in age and sex-matched healthy donor urine to ascertain baseline levels 

and how they are affected by time of day, sample collection and storage. To this end we have 

already obtained UREC approval and collected 48 healthy donor urine samples (Andrew Mead, 

personal communication), predominantly from women over 40 years of age, which were aliquoted 

and stored in -80 oC. Dr Guinn has recently started a collaboration with Professor Anthony 

Maraveyas, Hull and East Yorkshire Hospitals NHS Trust, which would enable the collection of 

OVC patient samples for the detection and characterisation of TAAs in body fluids and tissues. 

Recent studies have demonstrated that HE4 is secreted into the urine of OVC patients (Liao et al, 

2015) and it would be interesting to determine whether this form of detection has circumvented 
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issues with HE4 and its detection in other diseases such as endometriosis which makes it less 

specific for OVC. I would be interested in developing a lateral flow assay that could be used to 

detect SSX2 in patient urine as a screening assay, ideally for us in GP-led well woman clinics for 

people aged over 50.  

Three SSX2 antibodies were used to investigate SSX2 and SSX2A expression and its’ potential as a 

biomarker in OVC. All were able to immunolabel OVC patient samples in MTAs and provide us 

with a better understanding as to whether SSX2A could be a biomarker. Data also showed some 

staining in NT and NAT with mSSX2A (Chapter 4 and 5) and pSSX2(N) (Chapter 5). This contrasts 

with what I had expected from the existing published literature but could be explained as follows. It 

has been previously reported that some CTAs have been found to be present in normal adjacent 

tissue, such as PASD1, which has been detected in premalignant surrounding cells which may at 

first appear normal (Cooper et al, 2006). In previous studies SSX2 has been notably absent from 

healthy tissues except in the testes (Tureci et al, 1996) which is why it has been named a CTA. 

However Tureci et al, looked for transcripts whereas I was looking for protein since that would be 

more important to its role as a biomarker. It is also possible the healthy tissues were not as healthy 

as hoped and in fact were premalignant, depending on how and from where they were collected. 

mSSX2A antibody did not label the endometrial cancer samples while pSSX2A did and this could 

be because polyclonal antibodies tend to bind multiple epitopes and are not generally as specific as 

monoclonal antibodies which only bind to one epitope leading to a “dirtier” staining pattern.    

An alternative option, to get away from the issues around using IHC in PPFE tissue arrays would be 

to identify novel urine proteins that can differentiate early stage OVC samples from healthy donor 

sera using protein arrays or 2D gel electrophoresis. These proteins would need to be validated for 

their potential as biomarkers as described already (Section 1.10.3).  

Usually investigators look for antibodies against the antigen of interest in patient sera. SSX2-

specific antibodies have been shown to activate complement and increase the CTA uptake by 
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antigen presenting cells. SSX2-specific antibodies were mainly confined to the subclass IgG3 

(Luetkens et al, 2014). Sahin et al (Sahin et al, 1995) identified the HOM-MEL-40 antigen by 

SEREX immunoscreening of a melanoma cDNA library with autologous sera. In 194 MM plasma 

samples, 3.1% of patients were determined to have SSX2 specific antibodies. Anti-SSX2 antibodies 

have also been found in 11% of melanoma patients (Tureci et al, 1996) and 3% of colon cancer 

patients (Scanlan et al, 2002). Aberrant expression of the combined SSX antigens (SSX1, SSX2, and 

SSX4) was found in 31/120 (26%) of ovarian tumours (Valmori et al, 2006). Sera from a subgroup 

of the patients were tested for SSX2 and SSX4 antibody by ELISA and recombinant antigen 

expression on yeast surface (RAYS). Antibodies to SSX2 and SSX4 were detectable in two patients 

(2%) (Valmori et al, 2006). Another study of 151 OVC patients plasma showed that there were no 

common SSX antibodies but this may reflect the use of 293T cells to produce tagged-SSX2 protein 

for the study (Lu et al, 2011).  However Taylor et al found immune reactions against 

nucelophosmin, cathepsin D, p53 and SSX common antigen at all stages of OVC which were higher 

than benign disease and healthy controls (Taylor et al, 2009).  

SSX2 epitopes have been identified as part of a strategy for targeting cancer cells that present SSX2, 

using immunotherapy. In metastatic melanoma the peptide SSX2 (41-49) was identified as an HLA-

A2-restricted epitope. CD8+ T cells specific for SSX2 (41-49) were present in the tumour-infiltrated 

lymph node population by multimer staining, and isolated CTL clones were able to lyse HLA-A2+ 

tumour cells expressing SSX2 (Ayyoub et al, 2002). SSX2–derived T cell epitope, mapping to the 

37–58 region and surrounding the SSX2 41–49 epitope, was recognized by CD4+ T cells from 

melanoma patients (Ayyoub et al, 2004; Abate-Daga et al, 2014). 

In a HCC patient, SSX2-specific CD8+ T cells were detected in tumour infiltrating lymphocytes but 

not in normal lymphocytes of patient and in peripheral blood mononuclear cell samples taken on the 

day of surgery (Bricard et al, 2005). In two of six HLA-A2+ HCC patients, it was found that 

MAGE-A10- and/or SSX2-specific CD8+ T cells naturally responded to the disease, because they 
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were enriched in tumour lesions but not in non-tumoral liver (Bricard et al, 2005). Isolated T cells 

specifically and highly killed tumour cells in vitro, providing evidence that these CTL were selected 

in vivo for high avidity Ag recognition. Therefore, besides melanoma, HCC is the second solid 

human tumour with clear evidence for in vivo tumour recognition by T cells, providing the rational 

for specific immunotherapy, based on immunization with CT Ags such as MAGE-A10 and SSX2. 

SSX4-specific CD4+ T cells which were found to recognise two novel SSX4-derived T-cell epitopes 

in association with HLA-DR (human leukocyte antigen) were identified (Valmori et al, 2006). 

Smith et al (Smith et al, 2011) analysed a single HLA-A2–restricted epitope, SSX2 p103-111 

RLQGISPKI (Gure et al, 2002) with a SYFPEITHI score of 23 and a BIMAS score of 10.433.  

Using the SYFPEITHI algorithm Wagner et al (Wagner et al, 2003a) identified a HOM-MEL-

40/SSX2-derived epitope with high binding affinity for HLA-A*0201. Stimulation with p103-111 

induced HOM-MEL-40-specific CTLs in 5/7 patients with HOM-MEL-40/SSX2 positive breast 

cancers and in 6/11 healthy controls. HLA-A*0201 specificity for p103-111 was shown by blocking 

with specific antibodies. Prestimulated p103-111 specific CD8+ T cells reacted with SSX2-

transfected COS7/A2 cells as well as with the HLA-A*0201 positive cell line SK-MEL-37 that is 

known to express HOM-MEL-40/SSX2 but not with the negative controls. p103-111 peptide 

vaccine could be applied to a large number of cancers which are HOM-MEL-40/SSX2 (Wagner et 

al, 2003a). 

Side population (SP) cells are progenitor cells from normal and malignant tissues which have 

increased resistance to chemotherapy and radiotherapy. Hodgkin lymphoma (HL) SP cells expressed 

higher levels of the TAAs MAGEA4, SSX2, survivin, and NY-ESO-1, which allowed them to be 

specifically recognized and killed by TAA-specific cytotoxic T lymphocytes (Shafer et al, 2010). 

The expression of SSX2 in SP cells suggests it may be expressed in tumour stem cells and this 

should be explored further in OVC. 
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A DNA vaccine encoding altered peptide ligand (APL) in which the anchor residues of the p41-49 

and p103-111 epitopes were changed in order to investigate how these changes effected epitope 

binding, generated increased numbers of CD8+ T cells specific for SSX2 and producing epitope-

specific Th1 cytokines (Smith et al, 2014). 

Alternatively, if SSX2 and SSX2A does not provide a good target for immunotherapy I could 

immunoscreen testes cDNA library with sera from OVC patients, although other groups have 

performed SEREX on OVC patient samples (Ishida et al, 2008; Kim et al, 2012). These groups did 

not immunoscreen OVC sera on a healthy donor testes cDNA library which would maximise their 

ability to find CT antigens.  

In summary, I investigated whether there is a correlation between the expression of the tumour 

antigen, PASD1, in leukaemia cells and antigen-specific T cell responses in the periphery (Aim 1; 

Chapter 3) and found that the presence of PASD1-specific T cells in the periphery closely 

correlated with PASD1 protein expression in leukaemic cells. I wanted to investigate the expression 

of a number of known tumour associated and cancer-testis antigens in OVC (Aim 2; Chapter 4) 

and to this end I found that PASD1 and SSX2IP were infrequently expressed in OVC but SSX2A 

was expressed. At a score of 2 I found expression of SSX2A expression in NT and NAT at a 

frequency that was almost as high as in OVC stage IV and exceded OVC stage I, II and III. 

However the staining of SSX2A in NT and NAT did not look specific, unlike the immunolabelling 

of patient samples with mSSX2A anibody and required further investigation. I obtained two 

additional commercially available antibodies that could bind SSX2A (pSSX2A) and the core region 

of SSX2 (pSSX2(N)) and used them to immunolabel OVC tissues. It was clear that the antibodies 

that labelled SSX2 (pSSX2(N)) and SSX2A (mSSX2A) were specific for OVC at score levels of 3 

and above.  To determine whether the cancer-testis antigen, SSX2 and/or SSX2A could also act as a 

biomarker for OVC (Aim 3; Chapter 5) I examined their expression in healthy and diseased 

endometrial tissue. I found that SSX2 and SSX2A were only expressed in OVC and hope that in the 
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future the expression of SSX2 in OVC can be discerned from its perceived expression in NT and 

NAT. 
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Patient information from leukaemia patient samples used in Chapter 3. 

Patient ID Agea 

 

Diseaseb Comments Full Haplotype WBC 

count
c  

Cytogenetics FLT3 

and 

NPM 

status 

Survival 

in 

months 

(status) 

Positive for 

TAA-specific 

T cells on the 

pMHC array 

(& detection 

of PASD1 by 

ICC) 

AML001 59 AML 

(M2) 

initial chem, failed to achieve CR with induction 

VUD allo; ATRA chemotherapy initially, as suspicion of APML; 

Admitted for ADE chemotherapy x 1 cycle; Admitted for Salvage 

Chemotherapy : FLA-IDA 

Allo tx 

A*02, B*08;40, Cw*03,07 

DRB1*0401, 0301, 

DQB1*0301, 0201/02 

30.4 Normal FLT3 

and 

NPM1 wt 

59 (D) -(-) 

AML002 65 AML chemotherapy x? CR; Cycle 1 & 2 of DA chemotherapy;  4 cycles 

of MIDAC chemotherapy; Relapsed. Treated with DA 3+10. 

Followed by TaNK trial at Royal Free Hospital. Further relapse. 

A2 12.0 Not tested NK 29 (D) + (ND) 

AML003 48 AML chemotherapy x4 CR; AML15 trial patient randomized to: 2 x DA 

cycle ; High dose Ara-C & Mylotarg:  

HDAC cycle 4 

A2 2.4 46, XX, many cells 

showed chromosome 

damage, ?artefact 

FLT3 wt 49 (A) -(-) 

AML004 46 AML chemotherapy x4 CR; AML15 trial patient randomized to: 

2 x DA cycle:; MACE cycle 3: MIDAC cycle 4. 

A2 6.0 Del 7q FLT3 wt 14 (A) +(+) 

AML005 62 AML chemotherapy x4 CR; AML 16 patient; DA 3+10 Cycle 1; DA 

3+8 Cycle 2; MIDAC (modified) Cycle 3; MIDAC (modified) 

cycle 4; Completed. 

A3 19.2 At diagnosis:  

12p minus 

NK 4 (D) -(ND) 

AML006 68 AML 

(M4) 

chemotherapy x1 ; PR ; DA 1 x cycle  ND 176.1 Normal ND 2 (D) -(-) 

AML007 64 AML preceding MDS (CMML); chemotherapy x1 PR; DA & 

Cytarabine; Palliative chemotherapy : FLA  

A3 31.8 ND NK 2 (D) -(ND) 

AML008 50 AML HDAC chemotherapy A02,02;B*07,37;Cw*06,07 

DRB1*0802,1501;DQB1*0

302,0602 

0.6 ND NK 42 (D) +(+) 

 

AML009 

30 AML 

(M4 

FAB) 

3xcycles ; DA & Ara-C 2 cycles ; cycle 3 : FLA-IDA 

Sib-allo 

 

A1,24;B*08,15;C*03,07 

DRB1*0301;DQB10603,02

01 

5.8 Other CG normal FLT3 

ITD 

Positive 

66(A)  -(-) 

AML010 30 AML Idarubicin & ATRA  

ATRA maintenance  

chemotherapy only 

A*24,*26;B*13,*38; 

Cw*06,*12 

DRB1*04,*07;DQB1*02,*

03 

 

2.9 t(15;17) AML M3 

with 

PML-

RARA 

translocat

ion 

83 (A) +(ND) 

AML011 63 AML AML 16 (2 cycles ofDA+ATRA) NK NK Trisomy 13 NK 20 (A) -(ND) 
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AML012 71 AML Low dose cytarabine NK NK NK NK 50 (A) +(ND) 

AML013 45 AML AML 17 (2 cycles of ADE, 2 cycles of HDAC) A*02, 03 NK Normal NK 43 (A)  +(-) 

AML014 57 MDS/

AML 

ADE & mylotarg 

MUD allo (Flu/Bu/Campath) 

GvHD 

A*02,03, B*38, 40, 

Cw*03,12, DRB1*03;01, 

13:01, DQB1*02:01, 06:03 

NK Trisomy 8 

Abnomal 13 

NK 8 (D) +(+) 

AML015 19 AML AML 17 A*01,02 NK Normal FLT3 wt 51 (A) -(-) 

AML016 26 AML Chemotherapy and then sibling allograft A*11;30 NK NK MLL 

rearrange

ment 

25 (D) +(ND) 

AML017 59 AML AML17 (2 cycles of Dax, MiDAC) A*01,24 NK NK FLT3 wt 50 (A) +(ND) 

AML018 NK AML VR 

2 x allotransplants, alive 100d after the 2nd transplant 

A*11, B*07, 35, Cw*04,07, 

DRB1*01:01, 15:01; 

DQB1*05:01, 06;02 

NK Normal NK 64 (A) -(-) 

AML019 65 AML AML 16 (3 cycles DA) NK NK Normal NPM1 49 (A) -(-) 

AML020 54 AML Dax2, HDAC, MiDAC A*01:01; B*08:01:01; 

C*07:01, DRB1*03:01, 

DQB1*02:01 

NK Normal FLT3 + 

NPM1+ 

23 (D) +(ND) 

AML021 82 AML Low dose cytarabine NK NK Normal  4 (D) -(-) 

AML022 64 AML DA x2 A*03;11 NK Normal FLT3 

ITD + 

7 (D) +(ND) 

AML023 54 MDS VUD allo A*02;03 NK Normal NK 7 (D) +(-) 

AML024 62 AML/

MDS 

AML 16 trial (3 cycles DA,& 1 cycle Mylotarg) NK NK 46, XX NK 6 (D) -(ND) 

AML025 77 AML LDAC NK NK Normal NK 34 (D) -(ND) 

AML026 62 AML AML 16 (3 cycles DA) NK NK 46 XX FLT3 wt 

NPM1+ 

41 (A) -(-) 

ALL001 22 ALL Chemotherapy (UKALL 2003) A2 50.4 46XY 

 

(SET/CA

N fusion 

transcript

) 

38 (A) -(-) 

ALL002 65 ALL Chemotherapy A2 230.0 t(4;11) NK 3 (D) -(-) 

ALL003 NK ALL NK NK NK ND NK NK +(ND) 

ALL004 NK ALL NK NK NK ND NK NK -(ND) 

ALL005 22 T-ALL UKALL 2003 A*02,03; B*35, 44; 

C*04,05; DRB1*14,15, 

DQB1*05, 06 

NK t(1;7) NK 2 (A) -(ND) 

ALL006 50 cALL UKALL XII; VUD allo A*02 B*15, 57 Cw*03, 06: 

DRB1*01:01, 14:01, 

DQB1*05:01, 0503 

NK Normal None 17 (A) -(ND) 
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aAge at diagnosis  
bDiagnosis at time of sampling  

cWhite blood cell count at time of sampling x 109/L 
dMyeloid blast transformation 
ADE: induction therapy consisting of cytarabine, daunorubicin and etoposide; ALL: acute lymphocytic leukaemia; allo: allograft; AML: acute myeloid 

leukaemia; APML: acute promyelocytic leukaemia; Ara-C: Arabinosylcytosine; ATRA: all trans retinoic acid; CML: chronic myeloid leukaemia, CMML: 

chronic myelomonocytic leukaemia; CP: chronic phase; CR: complete remission; DA: daunorubicin and Arabinosylcytosine; FLA: chemotherapy using  

fludarabine and cytarabine; HDAC: histone deacetylase inhibitors; IDA: chemotherapy protocol using  idarubicin; FLT3-ITD: FLT3 – internal tandem repeat; 

Glivec: contains imatinib and inhibits tyrosine kinases which contribute to disease, in this case inhibiting BCR-ABL activity in CML; LDAC: low dose 

cytarabine; MACE: chemotherapy consisting of amsacrine, cytarabine and etoposide; MDS: myelodysplastic syndrome; MIDAC: chemotherapy consisting 

of mitoxantrone and cytarabine; MUD: matched unrelated donor; ND: not done; NK: not known; NPM1: Nucleophosmin  gene; PR: partial remission; TKI: 

tyrosine kinase inhibitors; transl: translocation; VUD: Volunteer unrelated donor; wt: wild type. 

ALL007 26 cALL UKALL XII A*01,02; B*07, 13;Cw*06, 

07 DRB1*15:01, 07:01; 

DQB1*06:02, 02;02 

NK t(1;19) NK 16 (A) -(ND) 

CML001 67 CML CP on Glivec, MMR A2 (by FACs) 150.0 t(9;22) NK 41 (A) -(-) 

CML002 21 CML Imatinib, MMR NK NK t(9;22) NK 16 (A) -(-) 

CML003 63 CML VUD allograft (poorly responsive to TKIs) A*24, 31 B*40, 57 Cw*03, 

06 DRB1*04:04, 07:01 

DQB1*03:03, 03:02 

NK t(9;22) NK 23 (A) -(ND) 

CML004 32 CML Imatinib, MMR NK NK t(9;22) NK 27 (A) -(ND) 

CML005 61 CML – 

CP2d 

 

Glivec ; Myeloid transformation; chemotherapy x 2 followed by 

an allo-transplant 

A*03,11;B*15,44;Cw*03,0

5DRB1*0101,0401;DQB10

302,0501 

210.0 t(9;22) NK 48 (A) -(ND) 
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Appendix II. Scoring for each OVC and endometrial sample on the TMAs
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Scoring for each endometrial cancer sample on the TMAs 

Pos    No.    Sex    Age    Organ    Pathology diagnosis    

Grade 
   

Type †    Cells 
only 

Isotype CA125 HE4 pSSX2 mSSX2 

A1 1 F 60 Uterus Endometrial adenocarcinoma 1 Malignant 0 0 2 2 1 0 

A2 2 F 55 Uterus Endometrial adenocarcinoma 1 Malignant 0 0 0 3 1 0 

A3 3 F 62 Uterus Endometrial adenocarcinoma 1 Malignant 0 0 1 2 2 1 

A4 4 F 58 Uterus Endometrial adenocarcinoma 1 Malignant 0 0 1 2 1 0 

A5 5 F 61 Uterus Endometrial adenocarcinoma 1 Malignant 0 0 0 2 2 0 

A6 6 F 73 Uterus Endometrial adenocarcinoma 1 Malignant 0 0 0 3 3 1 

A7 7 F 51 Uterus Endometrial adenocarcinoma 1 – 2 Malignant 0 0 0 3 2 0 

A8 8 F 44 Uterus Endometrial adenocarcinoma 1 – 2 Malignant 0 0 0 2 2 0 

A9 9 F 48 Uterus Endometrial adenocarcinoma 1 Malignant 0 0 2 3 3 0 

A10 10 F 58 Uterus Endometrial adenocarcinoma 1 – 2 Malignant 0 0 0 2 2 0 

B1 11 F 60 Uterus Endometrial adenocarcinoma (sparse) 1 Malignant 0 0 0 1 1 0 

B2 12 F 49 Uterus Endometrial adenocarcinoma 1 Malignant 0 0 0 2 1 1 

B3 13 F 43 Uterus Endometrial adenocarcinoma 1 Malignant 0 0 1 2 1 0 

B4 14 F 51 Uterus Endometrial adenocarcinoma 1 Malignant 0 0 1 2 1 0 

B5 15 F 62 Uterus Endometrial adenocarcinoma 1 Malignant 0 0 2 2 1 1 

B6 16 F 62 Uterus Endometrial adenocarcinoma 2 Malignant 0 0 2 2 1 0 

B7 17 F 54 Uterus Endometrial adenocarcinoma 1 Malignant 0 0 2 2 1 0 

B8 18 F 52 Uterus Endometrial adenocarcinoma 2 Malignant 0 0 2 2 2 0 

B9 19 F 70 Uterus Endometrial adenocarcinoma 2 Malignant 0 0 2 2 2 0 

B10 20 F 56 Uterus Endometrial adenocarcinoma 2 – 3 Malignant 0 0 0 3 1 1 

C1 21 F 63 Uterus Endometrial adenocarcinoma 3 Malignant 0 0 0 1 2 0 

C2 22 F 58 Uterus Endometrial adenocarcinoma 3 Malignant 0 0 0 2 2 1 

C3 23 F 54 Uterus Endometrial adenocarcinoma 3 Malignant 0 0 0 3 2 1 

C4 24 F 63 Uterus Endometrial adenocarcinoma 3 Malignant 0 0 0 2 1 0 

C5 25 F 44 Uterus Endometrial adenocarcinoma 3 Malignant 0 0 0 3 1 0 

C6 26 F 53 Uterus Squamous cell carcinoma 1 Malignant 0 0 0 2 1 0 

C7 27 F 60 Uterus Squamous cell carcinoma 2 Malignant 0 0 0 2 2 0 

C8 28 F 45 Uterus Squamous cell carcinoma 2 – 3 Malignant 0 0 2 2 2 0 

C9 29 F 39 Uterus Squamous cell carcinoma 3 Malignant 0 0 0 1 2 0 

C10 30 F 44 Uterus Squamous cell carcinoma 2 Malignant 0 0 2 2 1 0 

http://www.biomax.us/
http://www.biomax.us/
http://www.biomax.us/
http://www.biomax.us/
http://www.biomax.us/
http://www.biomax.us/
http://www.biomax.us/
http://www.biomax.us/
http://www.biomax.us/
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D1 31 F 39 
Abdominal 
cavity 

Metastatic endometrial adenocarcinoma 2 Metastasis 
0 0 2 1 2 0 

D2 32 F 63 
Fibrofatty 
tissue 

Metastatic endometrial adenocarcinoma 
(fibrofatty tissue) 

– Metastasis 
0 0 2 1 2 1 

D3 33 F 70 Lymph node Metastatic endometrial adenocarcinoma 2 Metastasis 0 0 3 1 2 0 

D4 34 F 69 Pelvic cavity Metastatic endometrial adenocarcinoma 3 Metastasis 0 0 2 2 2 0 

D5 35 F 51 Ovary Metastatic endometrial adenocarcinoma 3 Metastasis 0 0 1 2 2 0 

D6 36 F 40 
Abdominal 

cavity 

Metastatic dedifferentiated endometrial 

adenosquamous carcinoma 
– Metastasis 

0 0 0 2 1 0 

D7 37 F 37 Uterus Endometrial polyp – Hyperplasia 0 0 2 1 2 0 

D8 38 F 57 Uterus Endometrial polyp – Hyperplasia 0 0 2 0 2 0 

D9 39 F 69 Uterus Endometrial polyp – Hyperplasia 0 0 1 1 2 0 

D10 40 F 47 Uterus Endometrial simple hyperplasia – Hyperplasia 0 0 2 1 2 0 

E1 41 F 51 Uterus Hyperplasia of endometrium (sparse) – Hyperplasia 0 0 2 2 1 0 

E2 42 F 52 Uterus Endometrial simple hyperplasia – Hyperplasia 0 0 2 2 2 1 

E3 43 F 65 Uterus Endometrial simple hyperplasia – Hyperplasia 0 0 2 1 1 0 

E4 44 F 40 Uterus Endometrial simple hyperplasia – Hyperplasia 0 0 1 1 2 0 

E5 45 F 43 Uterus Endometrial simple hyperplasia – Hyperplasia 0 0 2 1 2 0 

E6 46 F 37 Uterus Endometrial simple hyperplasia – Hyperplasia 0 0 1 1 2 0 

E7 47 F 49 Uterus Endometrial simple hyperplasia – Hyperplasia 0 0 1 1 1 0 

E8 48 F 70 Uterus Endometrial simple hyperplasia – Hyperplasia 0 0 1 1 2 1 

E9 49 F 51 Uterus Hyperplasia (smooth muscle tissue) – Hyperplasia 0 0 1 2 1 1 

E10 50 F 43 Uterus Hyperplasia (smooth muscle tissue) – Hyperplasia 0 0 2 1 2 0 

F1 51 F 50 Uterus Endometrial simple hyperplasia – Hyperplasia 0 0 0 1 1 1 

F2 52 F 52 Uterus Endometrial glandular cystic hyperplasia – Hyperplasia 0 0 2 2 2 0 

F3 53 F 64 Uterus Endometrial simple hyperplasia – Hyperplasia 0 0 1 1 2 1 

F4 54 F 69 Uterus Endometrial glandular cystic hyperplasia – Hyperplasia 0 0 1 1 2 0 

F5 55 F 41 Uterus Endometrial glandular cystic hyperplasia – Hyperplasia 0 0 2 4 2 0 

F6 56 F 50 Uterus Endometrial adenomatous hyperplasia – Hyperplasia 0 0 2 4 3 0 

F7 57 F 69 Uterus Moderate atypical hyperplasia of endometrium – Hyperplasia 0 0 1 4 2 0 

F8 58 F 44 Uterus 
Severe atypical hyperplasia of endometrium, 
focal canceration 

– Hyperplasia 
0 0 1 3 2 0 

F9 59 F 48 Uterus Endometrial glandular cystic hyperplasia – Hyperplasia 0 0 1 3 3 0 

F10 60 F 48 Uterus Chronic endometritis – Inflammation 0 0 1 3 2 0 
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G1 61 F 63 Uterus Chronic endometritis – Inflammation 0 0 0 2 2 0 

G2 62 F 63 Uterus Chronic endometritis (sparse) – Inflammation 0 0 0 2 2 0 

G3 63 F 65 Uterus Chronic endometritis – Inflammation 0 0 0 2 2 0 

G4 64 F 51 Uterus Acute endometritis – Inflammation 0 0 0 2 1 0 

G5 65 F 46 Uterus 
Cancer adjacent normal late proliferative 

endometrium tissue 
– Normal 

0 0 2 2 2 0 

G6 66 F 43 Uterus 
Cancer adjacent normal endometrial tissue 

(smooth muscle) 
– Normal 

0 0 2 3 3 0 

G7 67 F 37 Uterus 
Cancer adjacent normal proliferative 
endometrium tissue 

– Normal 
0 0 1 3 2 0 

G8 68 F 40 Uterus Cancer adjacent normal endometrial tissue – Normal 0 0 3 3 3 0 

G9 69 F 49 Uterus 
Cancer adjacent normal proliferative 

endometrium tissue 
– Normal 

0 0 2 2 3 0 

G10 70 F 39 Uterus Cancer adjacent normal endometrial tissue – Normal 0 0 2 3 3 0 

H1 71 F 36 Uterus 
Cancer adjacent normal proliferative 

endometrium tissue 
– Normal 

0 0 0 1 2 2 

H2 72 F 43 Uterus 
Cancer adjacent normal proliferative 

endometrium tissue 
– Normal 

0 0 0 2 1 2 

H3 73 F 46 Uterus 
Cancer adjacent normal proliferative 
endometrium tissue 

– Normal 
0 0 0 1 2 1 

H4 74 F 34 Uterus Cancer adjacent normal endometrial tissue – Normal 0 0 0 1 1 1 

H5 75 F 40 Uterus Normal proliferative endometrium tissue – Normal 0 0 0 3 2 1 

H6 76 F 21 Uterus Normal proliferative endometrium tissue – Normal 0 0 0 4 2 1 

H7 77 F 15 Uterus Normal secretory endometrium tissue – Normal 0 0 0 3 1 1 

H8 78 F 18 Uterus Normal secretory endometrium tissue – Normal 0 0 1 3 2 1 

H9 79 F 21 Uterus Normal proliferative endometrium tissue – Normal 0 0 0 3 3 1 

H10 80 F 21 Uterus Normal secretory endometrium tissue – Normal 0 0 3 2 3 1 

– – M 58 Skin Malignant melanoma (tissue marker) – Malignant 3 3 3 3 3 3 
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Heatmap to show the scoring for PASD1 in OVC  
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Heatmap showing the scoring for SSX2 in OVC 
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Heatmap showing scoring for SSX2 in endometrial cancer 
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