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Abstract

Introduction: For making reliable decisions, practitioners need to estimate un-
certainties that exist in data and decision models. In this paper we analyse
uncertainties of predicting survival probability for patients in trauma care. The
existing prediction methodology employs logistic regression modelling of Trauma
and Injury Severity Score (TRISS), which is based on theoretical assumptions.
These assumptions limit the capability of TRISS methodology to provide accu-
rate and reliable predictions.
Methods: We adopt the methodology of Bayesian model averaging and show
how this methodology can be applied to Decision Trees in order to provide
practitioners with new insights into the uncertainty. The proposed method has
been validated on a large set of 447,176 cases registered in the US National
Trauma Data Bank in terms of discrimination ability evaluated with Receiver
Operating Characteristic (ROC) and Precision-Recall (PRC) Curves.
Results: Areas under curves were improved for ROC from 0.951 to 0.956 (p =
3.89 · 10−18) and for PRC from 0.564 to 0.605 (p = 3.89 · 10−18). The new
model has significantly better calibration in terms of the Hosmer-Lemeshow Ĥ
statistic, showing an improvement from 223.14 (the standard method) to 11.59
(p = 2.31 · 10−18).
Conclusion: The proposed Bayesian method is capable of improving the ac-
curacy and reliability of survival prediction. The new method has been made
available for evaluation purposes as a web application.

Keywords: Bayesian Model Averaging, Decision Tree, Predictive posterior
distribution, Trauma and Injury Severity Scoring, TRISS
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1. Introduction

Decision making in health care is subject to uncertainties that exist in data
and decision models. In this regard Machine Learning (ML) methods have been
intensively developed over the last decade to provide practitioners with reliable
estimates of uncertainties in decisions and predictions, see e.g. [1]. Using ML5

methods, predictions of functional recovery and mortality after traumatic brain
injury were considered in [2, 3]. The combination of Glasgow Coma Scale scores
with clinical and laboratory parameters of patients has provided a high predic-
tion accuracy. Prediction of burn patient survival was undertaken in [4] using
models that were developed on patient data. The data included information10

about the patient’s age, sex, and percentage of burns in eight parts of the body.
In trauma care the evaluation of injury severity of patients has a long history

of using logistic regression modelling known as the Trauma and Injury Severity
Score (TRISS) [5, 6, 7, 8]. The TRISS model allows practitioners to predict the
probability of survival for a patient on arrival at a hospital. The predictions15

are based on screening tests which are recorded at an accident scene. Screening
tests are evaluated by a trained scorer for injuries which a patient can obtain in
the following six regions of the body: head, face, chest, abdomen, extremities,
and external (skin, subcutaneous tissue and burns).

Estimates of survival probabilities of patients enable practitioners to identify20

cases for peer review and compare the survival rates of different patient groups.
TRISS estimates are also used for benchmarking and monitoring of patient
outcomes over time and between hospitals [9, 10].

Uncertainties that exist in data as well as in the prediction model affect the
results and might lead to misleading decisions. For this reason, practitioners25

have raised a concern about the ability of TRISS to provide reliable predictions
and estimates of uncertainty [9, 6, 11].

The accuracy of predictions is compared against actual survival during de-
velopment of prediction models. The relationship between predicted and actual
probabilities can be visualised as a calibration curve [12, 13]. Trauma care prac-30

titioners have found that the TRISS calibration curve is not ideal [14, 7, 11].
It has been found that the accuracy of TRISS predictions is acceptable when

the types and severities of patient injuries are typical [6]. However, for patients
with four or more injuries as well as those with atypical combinations of in-
juries, the accuracy has to be improved. In practice, it is critically important to35

reliably estimate the uncertainty in a predicted survival probability. The uncer-
tainty estimates are required in order to minimise risks of misleading decisions.
Uncertainty can be represented by confidence intervals. These intervals are re-
liably estimated when the density of predicted probabilities is fully tractable,
which is achievable only in trivial cases. Thus TRISS methodology that is based40

on theoretical assumptions cannot realistically estimate the uncertainty.

∗Corresponding author
Email address: v.schetinin@beds.ac.uk (V. Schetinin)

2



To tackle such problems, we adopt the methodology of Bayesian learning of
models, which in theory provides reliable estimation of uncertainty intervals [15,
16, 17]. This approach, however, requires intensive computations, as discussed
in [18, 19].45

The learning methodology is based on Bayesian Model Averaging (BMA)
which defines a prediction model with parameters that determine the predic-
tion ability. We use the Bayesian method for averaging over Decision Tree (DT)
models which are known for their ability to select input variables that are rele-
vant to the problem, as discussed in [20, 21, 22]. The given data are recursively50

split along input variables into reasonably small subsets. Splits made along
variables are easy-to-interpret, and thus DT models built on the given data are
able to assist practitioners with new insights [23].

In most practical cases, any given model is incapable of fully explaining the
real-world data, which means that a single “true” model does not exist. The55

BMA methodology, adopted in our study, assumes that different models can be
mixed together so that their average under certain conditions will approximate
the true model of interest. The averaging strategy is often more efficient than
model selection in real-world applications when the predictive ability (or fitness
function) is not unimodal [24, 25].60

The trauma injury severity scoring problems have been considered in the
Bayesian context. The study described in [26, 27, 28] has been undertaken with
the main focus on the Receiver Operating Characteristic (ROC) curve [29],
following the standard practice in diagnostic test evaluation. This evaluation,
however, is insufficient in the case of imbalanced patient data with a low rate65

of positive outcomes (e.g. mortality), see e.g. [30, 31].
In this paper we propose a new approach to estimating the predictive pos-

terior probability densities of injured patients and examine the accuracy and
reliability of predictions on the patient data with low mortality rate. The pro-
posed method is examined on the cases which were registered in the US National70

Trauma Data Bank (NTDB) [32] with multiple injuries. We also describe a web
application [33] which has been developed and made available for evaluation
by trauma care practitioners. The application assists practitioners to deliver
reliable estimates of uncertainty intervals within which predicted survival prob-
abilities are expected for a patient. Finally we discuss the main results, and75

draw conclusions.

2. Material and methods

2.1. Data
Our study is conducted on cases from the US NTDB, the major source of

data about injured patients admitted to hospitals and emergency units [32].80

The data include patient age, gender, type and regions of injuries along with
some clinical and background information about patient state. The NTDB also
includes the TRISS prediction and the outcome of care, alive or died, for each
patient.

3



Table 1: Screening tests.

# Notation Name min max

1 A Age 0 100
2 G Gender 0 female 1 male
3 T Injury type 0 penetrating 1 blunt
4 B Blood pressure 0 300
5 R Respiration rate 0 200
6 GE GCS Eye 1 4
7 GV GCS Verbal 1 5
8 GM GCS Motor 1 6
9 HS Head severity 0 6

10 FS Face severity 0 4
11 NS Neck severity 0 6
12 TS Thorax severity 0 6
13 AS Abdomen severity 0 6
14 SS Spine severity 0 6
15 US Upper extremity severity 0 6
16 LS Lower extremity severity 0 6
17 ES External severity 0 6

Table 1 shows the screening tests (or predictors) that are used by the TRISS85

method. The variables Age, Blood pressure, and Respiration rate are continuous,
and the remaining variables are ordinal. The patient outcome is the discharge
status: 0 is alive, and 1 is died. The table also shows the minimal and maximal
values of each test.

For our study, we selected patient records which do not contain missing90

values in the above predictors. The maximal number of injuries in these records
was 48. The number of these cases was 571,775, including 384,876 cases with
1-3 injuries and 186,899 with 4-48 injures. As we discussed in Section 1, the
TRISS model has a limited ability to predict outcomes of patients with more
than three injuries.95

The injuries in NTDB are recorded using to the Abbreviated Injury Scale
(AIS) codes, which assign a severity score to each injury. The AIS severity scores
are based on mortality risk and range from 1, minor injuries including wounds
to skin or subcutaneous tissue or closed fractures [34], to six, considered fatal
[35]. However, it has been recently found that about 48.6% of patients with an100

injury severity of 6 survive [36].
Table 2 shows statistics of the screening tests A to ES listed in Table 1 in

the above groups of patients. The statistics are represented by values of the
mean, standard deviation, median, and quartiles.
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2.2. Logistic regression model105

The use of logistic regression is a conventional way of predicting survival
probabilities [5, 13]. In trauma injury severity scoring, the logistic regression
includes screening tests which are ordinal and continuous predictors. The or-
dinal variables represent severity scores of injuries obtained by a patient, the
Glasgow Coma Scale (GCS), and the injury type. The continuous variables110

include age, systolic blood pressure, and respiratory rate.
The TRISS model is based on the above screening tests in Table 1, which are

represented by the following two aggregated scores: Injury Severity Score (ISS),
and Revised Trauma Score (RTS) [5, 37]. A side effect of using the aggregated
scores is unexplained fluctuations in the calculated survival probabilities, which115

affect the prediction accuracy, as discussed in [6, 38].
The TRISS model determines the probability of survival, P , in the following

logistic regression form:

P = 1
1 + e−b

, (1)

where b = b0 + b1 ×RTS + b2 × ISS + b3 ×A.
Here b0, . . . , b3 are the regression parameters, and A is the dichotomised age:120

A = 0, if age < 55, and A = 1, otherwise. The parameters b were separately
determined for blunt and penetrating types of injuries. As discussed in Section 1,
the above TRISS model can consider only up to three of the most severe injuries
which a patient can obtain.

The TRISS model assumes that the density of predicted values is Gaussian,125

N(µ, σ2), where µ and σ2 are the mean and standard deviation. This assump-
tion, however, is often unrealistic, as discussed in [39, 40, 41]. This issue has
been examined in the previous work [42] in which we found that the calculated
uncertainty intervals can be biased.

The above TRISS model, described by Eq. 1, has been made available online130

for calculating survival probabilities [43]. The TRISS calculator allows practi-
tioners to calculate the survival probability for a given patient test.

2.3. Bayesian model averaging
In practice, the probability distributions of data and model parameters can-

not be specified so as to meet the full requirements of Bayesian methodology.135

Except for trivial cases, the BMA can be practically implemented with Markov
chain Monte Carlo (MCMC) methods, as described in [24]. Bayesian averaging
over DT models can be also efficiently implemented with MCMC [44, 18]. In
our previous study, however, we have found that the MCMC can make excessive
samples of oversized DT models, which degrade the approximation, as discussed140

in [42, 45, 46].
To outline the MCMC approximation let a predictive model have parameter

vector Θ, input vectors x = (x1, . . . , xm), and outcomes y, where m is the
dimensionality of x. The training data D = {x(i), y(i)}n

i=1 include n instances.
According to this notation an input vector x is assigned to one of the given145
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classes, y ∈ {1, C}. In our case, there are C = 2 classes, y = 0 if a patient
survived, and y = 1 if died.

The predictive posterior distribution of interest, p(y|x,D), is calculated as
an integral over model parameters Θ as follows:

p(y|x,D) =
∫

Θ
p(y|x,Θ)p(Θ|D)dΘ, (2)

where p(y|x,Θ) is the posterior predictive density given input x and model150

parameters Θ, and p(Θ|D) is the posterior density of Θ given data D.
The MCMC algorithm generatesN samples,

{
Θ(i)}N

i=1, which are distributed
with a density function p̂(Θ|D):

Θ(i) ∼ p̂(Θ|D). (3)
The desired approximation is achieved when the MCMC algorithm generates

a random sequence with a stationary probability distribution. Thus we can draw
samples Θ(i) defined in Eq. 3 and then calculate the predictive density of interest
as follows:

p(y|x,D) ≈
N∑

i=1
p(y|x,Θ(i),D)p(Θ(i)|D) = 1

N

N∑
i=1

p(y|x,Θ(i),D). (4)

From Eq. 3, the required model parameters Θ(i) are drawn from a poste-
rior distribution simulated by MCMC. The collected samples are then used in155

Eq. 4 to calculate the posterior predictive probabilities. Details of the MCMC
algorithm for sampling DT models are given in the Appendix.

2.4. Validation of prediction model
In our approach to developing a new prediction model we use two groups of

patients registered in the NTDB without missing values described in Section 2.1160

above. Group 1 includes 186,899 records with four and more injuries, mortality
in which was 7.78%. The cases of this group are used for developing a model
within a 3-fold cross-validation. Group 2 includes 384,876 patients with three
and fewer injuries, mortality in which was 2.7%. The model which is developed
on 124,598 cases from the first group is then validated on 447,176 cases of both165

groups. The average mortality of patients included in the validation data was
3.38%. Table 3 shows how the data are used within the 3-fold cross-validation.
Here V and D stand for validation and development of model, respectively. The
table shows that at each fold a model is developed on 124,598 cases of the Group
1 and then validated on a mix of 62,300 cases of Group 1 and all cases of Group170

2.
Diagnostic and discrimination ability of models is evaluated in terms of AUC,

the Area Under the Receiver Operating Characteristic (ROC), curve, which is
a summary measure of the accuracy of a quantitative diagnostic test, see e.g.
[29, 40]. For cases with a low rate of positive cases, P (Y = 1), the use of the175

Precision-Recall Curve (PRC) is more informative than AUC. PRC shows a rate

7



Table 3: Use of patient groups within 3-fold cross-validation. D and V denote subsets for
development and validation of model, respectively.

Group 1 Group 2
# fold 1 2 3

1 V D D V
2 D V D V
3 D D V V

of true positive cases among predicted positive, P (Ŷ = 1|Y = 1), versus a rate
of true positive cases among positive cases, P (Y = 1|Ŷ = 1), where P (Ŷ = 1)
are the rate of positive predictions. PRC thus reflects the ability of a decision
model to identify positive cases for a given rate of positive predictions [30, 31].180

The accuracy of predictions which are made by a model is evaluated by
goodness-of-fit tests on the validation data. When cases have binary outcomes,
Y ∈ {0, 1}, goodness-of-fit is estimated as an agreement between observed out-
comes (mortality rate) and predicted probabilities. A plot which shows pre-
dicted probabilities along x-axis and the mortality rate along y-axis is defined185

as a calibration curve. The ideal predictions lie on the 45° line. The calibration
curve shows the observed mortality rates for cases which are grouped by values
of predicted probabilities, see e.g. [40].

For trauma survival prediction, calibration is typically evaluated by the
Hosmer-Lemeshow (HL) statistic which is normally calculated for 10 intervals190

(deciles) of predicted values [12]. Under certain conditions the larger the HL
statistic, the worse is the calibration. The HL-test, however, is dependent on
sample size and becomes statistically significant when the number of cases ex-
ceeds 10,000 [47, 48]. Therefore, the HL-test has to be analysed along with the
overall number of cases and results of other tests. In our experiments with large195

patient groups, the HL statistic was significant (p = 10−8) and thus we use
sensitivity and specificity along with Brier score to provide additional evidence,
as discussed in [40].

There are two ways to arrange patients by values of predicted probabilities,
which are namely Ĉ and Ĥ-statistics [12]. The Ĉ-statistic divides patients into200

groups with an equal number of cases arranged in ascending order of predicted
probabilities. The predicted mortality within each group is determined by the
cases in the group. In contrast, the Ĥ-statistic forms groups of cases with
predicted probabilities lying within equal ranges, making the numbers of cases
in each group variable.205

It has been shown that when a rate of positive outcomes is less than 5%,
the Ĉ statistic fails to detect significant deviations of observed and predicted
values, whilst the Ĥ-statistic can detect such deviations [49]. For this reason in
our experiments we use the Ĥ-statistic.

We use a simulation (bootstrap) strategy for evaluating significance of tests,210

which is based on applying a test to a smaller set of random samples of the
original data [50, 48]. Such a strategy has been recently used for evaluating the
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HL-statistic of calibration for a trauma survival prediction model, described in
[51]. The Brier score has been also tested within the similar simulation strategy
described in [52, 41, 53].215

The above simulation technique is adopted for our experiments. The exper-
iments as well as the proposed method were implemented in MATLAB. The
next section describes the results of the experiments.

3. Results

In this section we describe the main results which were obtained by the220

proposed and TRISS methods on the NTDB benchmark outlined in Section
2.1. The results are compared in terms of the PRC, AUC, HL-statistic and
Brier score, as discussed in Section 2.4.

3.1. Calibration curves
According to the HL test discussed in Section 2, the calibration curves were225

calculated by using the HL Ĥ-statistic for intervals which are equidistantly
distributed over survival probabilities. Fig. 1 shows the calibration curves for
the TRISS (Blue line) and BDT (Red line) models. The curves were calculated
for 10 intervals (the left side plot) as well as for 20 intervals (the right side
plot) to estimate the influence of interval ranges. We can observe that the230

BDT model is significantly better fitted to the ideal calibration shown as the
45°dashed line in both cases of 10 and 20 intervals. Table 4 shows the significant
(p = 2.31 · 10−18) improvement of calibration, which is evaluated by the Ĥ-
statistic and Brier score. The significance was estimated by simulation according
to the methodology described in Section 2. Note that the smaller the statistic235

or score, the better the calibration.

3.2. Discrimination abilities of TRISS and BDT models
According to the adopted methodology, the proposed BDT and TRISS mod-

els were compared in terms of discrimination ability estimated by ROC and
PRC. Table 5 shows the AUC values estimated for ROC and PRC calculated for240

the TRISS and BDT models. The simulation of the AUC characteristics shows
that the discrimination ability of the BDT model is significantly (p = 3.9·10−18)
higher than that provided by the TRISS model.

Fig. 2 shows both the ROC and PRC calculated for the TRISS and BDT
models. The plotted curves show areas where the BDT model outperforms the245

TRISS model in terms of recall, precision, or specificity.

Table 4: Significance of Ĥ-statistic and Brier scores for TRISS and BDT methods.
TRISS BDT p-value

Ĥ-statistic 223.14 11.59 2.31 · 10−18

Brier score 0.025 0.023 3.89 · 10−18

9
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Figure 1: Calibration curves for TRISS (Blue line) and proposed BDT (Red line) models.
The curves calculated for 10 (the left plot) and 20 (the right plot) intervals.

Table 5: Significance of AUC characteristics of ROC and PRC calculated for the TRISS and
BDT models.

AUC TRISS BDT p-value
ROC 0.951 0.956 3.89 · 10−18

PRC 0.564 0.605 3.89 · 10−18

Table 6 shows how the recall, precision, F1, and specificity are dependent
on thresholds Q. Here F1 is the score showing a balance between precision and
recall of a model. In particular, the BDT model for Q = 0.375 has the maximum
F1 value of 0.63, at which both the recall and precision are higher than those250

provided by the TRISS model. The indicators IR and IP included in Table 6
show the other areas of Q where the BDT model outperforms the TRISS model
in terms of recall or precision. The areas where the BDT model has improved
both these characteristics are shown in bold.
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Table 6: Recall, Precision, F1, and Specificity over thresholds Q for the TRISS (TRS) and
BDT models.

Recall Precision F1 Specificity
Q IR IP TRS BDT TRS BDT TRS BDT TRS BDT

0.025 0 1 0.918 0.931 0.153 0.149 0.262 0.257 0.821 0.813
0.050 0 1 0.820 0.889 0.296 0.195 0.435 0.320 0.932 0.870
0.075 0 1 0.768 0.842 0.394 0.257 0.521 0.393 0.958 0.914
0.100 0 1 0.753 0.794 0.432 0.341 0.549 0.477 0.965 0.946
0.125 0 1 0.706 0.754 0.483 0.406 0.574 0.527 0.973 0.961
0.150 0 1 0.692 0.733 0.510 0.438 0.587 0.548 0.977 0.967
0.175 0 1 0.684 0.712 0.527 0.473 0.595 0.568 0.978 0.972
0.200 0 1 0.664 0.686 0.551 0.526 0.602 0.595 0.981 0.978
0.225 0 1 0.642 0.671 0.579 0.550 0.609 0.605 0.984 0.981
0.250 0 1 0.631 0.648 0.595 0.586 0.613 0.616 0.985 0.984
0.275 1 1 0.625 0.629 0.606 0.613 0.615 0.620 0.986 0.986
0.300 1 0 0.618 0.615 0.621 0.631 0.620 0.623 0.987 0.987
0.325 1 1 0.606 0.608 0.637 0.642 0.621 0.624 0.988 0.988
0.350 1 1 0.570 0.596 0.659 0.660 0.611 0.626 0.990 0.989
0.375 1 1 0.558 0.571 0.672 0.703 0.610 0.630 0.990 0.991
0.400 1 0 0.554 0.548 0.679 0.728 0.610 0.624 0.991 0.993
0.425 1 0 0.545 0.531 0.698 0.744 0.612 0.619 0.992 0.994
0.450 1 0 0.540 0.517 0.707 0.759 0.612 0.615 0.992 0.994
0.475 1 0 0.532 0.499 0.710 0.785 0.609 0.610 0.992 0.995
0.500 1 0 0.511 0.488 0.726 0.796 0.599 0.604 0.993 0.996
0.525 1 0 0.475 0.474 0.741 0.809 0.579 0.597 0.994 0.996
0.550 1 1 0.461 0.464 0.754 0.819 0.573 0.591 0.995 0.996
0.575 1 0 0.452 0.419 0.761 0.861 0.567 0.563 0.995 0.998
0.600 1 0 0.441 0.402 0.771 0.880 0.561 0.552 0.995 0.998
0.625 1 0 0.437 0.387 0.775 0.892 0.559 0.540 0.996 0.998
0.650 1 0 0.424 0.373 0.792 0.904 0.552 0.528 0.996 0.999
0.675 1 0 0.398 0.373 0.798 0.904 0.531 0.528 0.996 0.999
0.700 1 1 0.359 0.366 0.812 0.908 0.498 0.522 0.997 0.999
0.725 1 1 0.347 0.362 0.825 0.911 0.489 0.517 0.997 0.999
0.750 1 1 0.341 0.344 0.834 0.920 0.484 0.500 0.998 0.999
0.775 1 0 0.335 0.329 0.838 0.923 0.478 0.485 0.998 0.999
0.800 1 1 0.297 0.299 0.862 0.933 0.442 0.452 0.998 0.999
0.825 1 0 0.286 0.261 0.869 0.944 0.431 0.408 0.998 0.999
0.850 1 0 0.274 0.261 0.881 0.944 0.418 0.408 0.999 0.999
0.875 1 1 0.256 0.260 0.888 0.944 0.398 0.408 0.999 0.999
0.900 1 1 0.205 0.221 0.898 0.944 0.334 0.356 0.999 1.000
0.925 1 1 0.190 0.201 0.908 0.946 0.315 0.331 0.999 1.000
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Figure 2: ROC (on the left side) and PRC (on the right side) for the TRISS (Blue line)
and BDT (Red line) models. AUC1 and AUC2 are shown for the TRISS and BDT models,
respectively.

3.3. Single DT model with MAP255

Fig. 3 shows the Maximum A-Posteriori (MAP) DT that was found in the
DT models collected for the Bayesian averaging. The DT model shows the
recursive partitions of the labelled data set represented by the screening tests
listed in Table 1. The DT model built on these data was pruned to 36 terminal
nodes. Each splitting node in the DT model examines a screening test xi ∈260

{x1, x17}. The examination starts at the root node with a test, GM (GCS
Motor) and then it is continued into one of two branches, left or right, that
connect the other nodes. The connected nodes are recursively examined until
arrival at a terminal node that will finally assign a survival probability to the
patient. For example, consider a case with the following test readings: GM = 4265

(GCS Motor), T = 0 (Injury type), and B = 19 (Blood pressure). For this case,
the MAP DT predicts a low survival probability 0.01.
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3.4. Web Application
The proposed method has been implemented as a web application www.

TraumaCalc.org with an interface shown in Fig. 4. The left-hand interface270

panel shows fields from 1 to 17 with the patient’s data filled in according to the
screening tests in Table 1. The fields are shown with their names and permitted
ranges. On the right-hand panel there is a plot of the Predicted probability dis-
tribution that displays a histogram calculated for survival probabilities of the
given patient. The histogram shows an interval within which the probabilities275

are most frequently distributed. The interval represents the prediction uncer-
tainty that is associated with risk of making a misleading decision. The larger
the interval, the greater is the uncertainty and higher the risk for a patient. The
estimate of the predictive density is delivered for the given tests of the patient’s
condition. The density (bars in Blue) is shown along with the average predicted280

probability. The predicted probability places the given patient within the high-
est density interval (0.65,0.95) indicating that this patient will most probably
survive.

The button Calculate shown in the Fig. 4 initiates the calculation of the
probability distribution for a given patient’s data. The data are transferred285

onto the server to be processed by the Bayesian model described in Section
2.3. Because of heavy computations, a high performance implementation of this
model was developed.

The application can be run in a web browser on a user’s device. Intensive
computations are made on the server, and so large computation power is not290

required on the user’s side.
Finally it is important to note that the proposed Bayesian method delivers

estimates of uncertainty intervals which are individual for a patient. The TRISS
method can only provide estimates of uncertainty intervals, which have been
calculated on a patient population selected for developing the prediction model,295

reflecting the variability of predicted outcomes in the given population.
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Figure 4: Web-based application for estimating the predictive probability distribution of sur-
vival.

15



4. Discussion and Conclusion

4.1. Contribution
TRISS is the current standard for evaluating injury severity and predicting

outcomes of patients on arrival at a hospital. The screening tests conducted by a300

scorer are analysed by the TRISS method based on logistic regression described
in Section 2.2.

The TRISS evaluations are affected by uncertainties that exist in both data
and prediction model. These uncertainties increase risks of making misleading
decisions. Practitioners may not be satisfied with the ability of TRISS to make305

reliable predictions when errors in the tests affect patient outcomes. They may
be concerned that the goodness-of-fit of the TRISS model is not ideal. It has
also been suggested that the accuracy of TRISS predictions for patients with
four or more injuries as well as with atypical injuries needs to be improved
[11, 6].310

It is known that uncertainty intervals within which predictions are dis-
tributed can be reliably estimated in an analytical form if the distribution
function of predicted probabilities is known. However, the TRISS methodol-
ogy is based on theoretical assumptions about probability distributions, and so
cannot provide reliable estimates of the uncertainty intervals [6].315

To address the above problems we have proposed a Bayesian approach.
Bayesian model averaging is well known for reliable modelling and estimation of
uncertainty, which however require intensive computations. The methodology
applied to DT models is made feasible with MCMC, which under certain condi-
tions can accurately approximate a probability distribution of interest [24, 18].320

We developed a new model which in our experiments was validated on the US
NTDB, as described in Section 3. We found that the new model has significantly
better calibration in terms of the Hosmer-Lemeshow Ĥ statistic, showing an im-
provement from 223.14 (TRISS model) to 11.59 (p = 2.31 · 10−18). Moreover,
the Brier score, which is also used for evaluating goodness-of-fit of models, was325

improved from 0.025 to 0.023 (p = 3.89 · 10−18).
The new model has outperformed TRISS in terms of discrimination ability

evaluated with ROC and PRC. Areas under curves were improved for ROC
from 0.951 to 0.956 (p = 3.89 · 10−18) and for PRC from 0.564 to 0.605 (p =
3.89 · 10−18). We found that the new model has outperformed TRISS in terms330

of precision and recall providing a higher F1 score, 0.63.
In summary, our contributions are as follows.
(1) It is evident that the accuracy of the TRISS model has to be improved

for patients who obtained four and more injuries, and so have a high risk of
death. The TRISS methodology cannot handle interactions between multiple335

predictors, which limits the accuracy of predicting cases with atypical injuries.
To approach this problem, we have proposed a new method for developing a
model capable of handling the interactions in cases with multiple injuries.

(2) The proposed method of Bayesian averaging over DT models has out-
performed the standard TRISS in terms of accuracy of predictions and has340
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provided reliable estimates of the predictive posterior distribution for patients
who obtained multiple injuries.

(3) The Maximum a Posterior DT model has been found and described for
purposes of interpenetration of predictions.

(4) A web-based application for trauma care practitioners has been devel-345

oped and made available for evaluation.

4.2. Weaknesses
As discussed in Section 1, the accuracy of the TRISS model is acceptable

when the types and severities of patient injuries are typical, and the number of
most severe injuries is up to three. For patients with a larger number of injuries,350

the accuracy has to be improved. Along with other reasons, this motivated us
to develop a new model capable of predicting outcomes of patients with multiple
injuries more accurately.

To achieve this aim, the new model was developed on records of patients in
Group 1, as described in Section 2. These patients were registered with four355

and more injuries, and so the mortality in this group was 7.78%. Mortality
of patients in Group 2, who obtained up to three injuries, was 2.69% which is
significantly lower.

Within this approach, it is not surprising to see that the developed model
outperforms the TRISS model for patients at a high risk of death, and vice360

versa the TRISS outperforms the new model for patients at a low risk. The
calibration curves calculated for the TRISS and proposed BDT models plotted
on Fig. 1 show that the TRISS model has a better calibration for the predicted
probabilities between 0 to 0.1. The TRISS predicts mortality 0.0128 against
the observed mortality 0.0102, having a difference of 0.0026. At the same time,365

the BDT model predicts a probability 0.0130 for the observed mortality 0.0093,
having a higher difference of 0.0037. Thus in this patient group both models
overestimate the risk of death, and BDT predicts a higher probability. This
problem however cannot be resolved by direct mixing of cases from Groups 1
and 2 without affecting precision. Therefore ways of improving the accuracy of370

predicting patients at low risk have to be further investigated in future work.

4.3. Conclusion and future work
There exist unexplained deviations in the TRISS calibration curve, which

affect accuracy and reliability of predictions. Trauma care practitioners have
also found that the prediction of outcomes for patients with multiple injuries is375

not reliable and has to be improved.
For improving the accuracy and reliability of predictions we have proposed

a Bayesian method which was compared with TRISS an a data set including
447,176 cases from the US NTDB, the main data repository in trauma care
research. We compared the goodness-of-fit of the proposed and TRISS models380

and found a significant improvement. The proposed method has improved the
prediction accuracy in terms of AUC (p = 3.89 · 10−18).

The proposed Bayesian method has been implemented as a web application
to support trauma care practitioners. The web application is accessible from the
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user’s device. Further improvements of prediction accuracy could be achieved385

with new variables which can be added to the screening tests described in Sec-
tion 2.1. An improvement of the proposed method can be focused on a group
of patients with low mortality where risks are overestimated.

Appendix A. An MCMC sampler

In practice, the dimensionality of models is typically unknown and can390

largely vary, so the desired approximation of p(Θ|D) is achieved with the Re-
versible Jump (RJ) extension of MCMC [54]. DT models are grown on given
data by the RJ MCMC sampler according to the strategy proposed in [42]. The
sampler aims to search model parameters Θ by making the following types of
moves:395

1. Birth. To randomly split the data points falling in one of the terminal
nodes by adding a new splitting node with a variable and rule drawn from
a given prior.

2. Death. To randomly pick a DT splitting node with two terminal nodes to
be assigned a single terminal node with the merged data points.400

3. Change-split. To randomly pick a splitting node and assign it a new
splitting variable and rule drawn from a given prior.

4. Change-rule. To randomly pick a splitting node and assign it a new rule
drawn from a given prior.

Making the birth and death moves the sampler can change the dimensionality405

of Θ, and so these moves have to be reversible. The change moves are made in
order to search the parameters Θ within the current dimensionality of the DT
model.
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Hernández, M. N. Moreno-Garćıa, Multiclassifier systems for predicting
neurological outcome of patients with severe trauma and polytrauma in425

intensive care units, Journal of Medical Systems 41 (9) (2017) 136. doi:
10.1007/s10916-017-0789-1.

[4] B. M. Patil, R. C. Joshi, D. Toshniwal, S. Biradar, A new approach: Role
of data mining in prediction of survival of burn patients, Journal of Medical
Systems 35 (6) (2011) 1531–1542. doi:10.1007/s10916-010-9430-2.430

[5] C. R. Boyd, M. A. Tolson, W. S. Copes, Evaluating trauma care: The
TRISS method, Journal of Trauma 27 (1984) 370–378.

[6] P. Kilgo, J. Meredith, T. Osler, Injury severity scoring and outcomes re-
search, in: D. V. Feliciano, K. L. Mattox, E. E. Moore (Eds.), Trauma (6th
ed), New York, McGraw-Hill, 2008, pp. 223–230.435

[7] O. Bouamra, A. Wrotchford, S. Hollis, A. Vail, M. Woodford, F. Lecky,
A new approach to outcome prediction in trauma: A comparison with the
TRISS model, Journal of Trauma 61 (3) (2006) 701–710. doi:10.1097/
01.ta.0000197175.91116.10.

[8] R. Lefering, S. Huber-Wagner, U. Nienaber, M. Maegele, B. Bouillon, Up-440

date of the trauma risk adjustment model of the traumaregister dgu™: the
revised injury severity classification, version ii, Critical Care 18 (5) (2014)
476. doi:10.1186/s13054-014-0476-2.

[9] B. J. Gabbe, P. A. Cameron, R. Wolfe, TRISS: Does It Get Better than
This?, Academic Emergency Medicine 11 (2) (2004) 181–186. doi:10.445

1197/j.aem.2003.08.019.

[10] P. J. Schluter, A. Nathens, M. L. Neal, S. Goble, C. M. Cameron, T. M.
Davey, R. J. McClure, Trauma and injury severity score (TRISS) coeffi-
cients 2009 revision, Journal of Trauma-Injury Infection & Critical Care
68 (4) (2017) 761–770. doi:10.1097/TA.0b013e3181d3223b.450

[11] F. Rogers, T. Osler, M. Krasne, A. Rogers, E. Bradburn, J. Lee, D. Wu,
N. McWilliams, M. Horst, Has TRISS become an anachronism? A com-
parison of mortality between the National Trauma Data Bank and ma-
jor trauma outcome study databases, Journal of Trauma and Acute Care
Surgery 73 (2) (2012) 326–331. doi:10.1097/TA.0b013e31825a7758.455

[12] D. W. Hosmer, T. Hosmer, S. Le Cessie, S. Lemeshow, A comparison of
goodness-of-fit tests for the logistic regression model, Statistics in Medicine
16 (9) (1997) 965–980.

[13] E. Steyerberg, A. Vickers, N. Cook, T. Gerds, M. Gonen, N. Obuchowski,
M. Pencina, M. Kattan, Assessing the performance of prediction models: A460

framework for traditional and novel measures, Epidemiology 21 (1) (2010)
128–138. doi:10.1097/EDE.0b013e3181c30fb2.

19

http://dx.doi.org/10.1007/s10916-017-0789-1
http://dx.doi.org/10.1007/s10916-017-0789-1
http://dx.doi.org/10.1007/s10916-017-0789-1
http://dx.doi.org/10.1007/s10916-010-9430-2
http://dx.doi.org/10.1097/01.ta.0000197175.91116.10
http://dx.doi.org/10.1097/01.ta.0000197175.91116.10
http://dx.doi.org/10.1097/01.ta.0000197175.91116.10
http://dx.doi.org/10.1186/s13054-014-0476-2
http://dx.doi.org/10.1197/j.aem.2003.08.019
http://dx.doi.org/10.1197/j.aem.2003.08.019
http://dx.doi.org/10.1197/j.aem.2003.08.019
http://dx.doi.org/10.1097/TA.0b013e3181d3223b
http://dx.doi.org/10.1097/TA.0b013e31825a7758
http://dx.doi.org/10.1097/EDE.0b013e3181c30fb2


[14] D. Becalick, T. Coats, Comparison of artificial intelligence techniques with
UKTRISS for estimating probability of survival after trauma. UK Trauma
and Injury Severity Score, Journal of Trauma 51 (1) (2001) 123–133.465

[15] P. Magni, G. Sparacino, R. Bellazzi, G. M. Toffolo, C. Cobelli, Insulin
minimal model indexes and secretion: Proper handling of uncertainty by a
Bayesian approach, Annals of Biomedical Engineering 32 (7) (2004) 1027–
1037. doi:10.1023/B:ABME.0000032465.75888.91.

[16] W. J. Krzanowski, T. C. Bailey, D. Partridge, J. E. Fieldsend, R. M.470

Everson, V. Schetinin, Confidence in classification: A Bayesian ap-
proach, Journal of Classification 23 (2) (2006) 199–220. doi:10.1007/
s00357-006-0013-3.

[17] A. Achilleos, C. Loizides, M. Hadjiandreou, T. Stylianopoulos, G. D. Mitsis,
Multiprocess dynamic modeling of tumor evolution with Bayesian tumor-475

specific predictions, Annals of Biomedical Engineering 42 (5) (2014) 1095–
1111. doi:10.1007/s10439-014-0975-y.

[18] D. Denison, C. Holmes, B. Mallick, A. Smith, Bayesian Methods for Non-
linear Classification and Regression, Wiley, 2002.

[19] M. A. Negrin, J. Nam, A. H. Briggs, Bayesian solutions for handling un-480

certainty in survival extrapolation, Medical Decision Making 37 (4) (2016)
367–376. doi:10.1177/0272989X16650669.

[20] V. Schetinin, C. Maple, A Bayesian model averaging methodology for de-
tecting EEG artifacts, in: 2007 15th International Conference on Digital
Signal Processing, Cardiff, 2007, pp. 499–502. doi:10.1109/ICDSP.2007.485

4288628.

[21] L. Jakaite, V. Schetinin, Feature selection for Bayesian evaluation of
trauma death risk, in: The 14th Nordic-Baltic Conference on Biomedical
Engineering and Medical Physics, Springer, 2008, pp. 123–126.

[22] V. Schetinin, L. Jakaite, Extraction of features from sleep eeg for Bayesian490

assessment of brain development, PLoS ONE 2 (3). doi:10.1371/
journal.pone.0174027.

[23] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regres-
sion Trees, Chapman and Hall, 1984.

[24] C. Robert, G. Casella, Monte Carlo Statistical Methods, Springer Texts in495

Statistics, Springer, 2004.

[25] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and
Techniques - Adaptive Computation and Machine Learning, The MIT
Press, 2009.

20

http://dx.doi.org/10.1023/B:ABME.0000032465.75888.91
http://dx.doi.org/10.1007/s00357-006-0013-3
http://dx.doi.org/10.1007/s00357-006-0013-3
http://dx.doi.org/10.1007/s00357-006-0013-3
http://dx.doi.org/10.1007/s10439-014-0975-y
http://dx.doi.org/10.1177/0272989X16650669
http://dx.doi.org/10.1109/ICDSP.2007.4288628
http://dx.doi.org/10.1109/ICDSP.2007.4288628
http://dx.doi.org/10.1109/ICDSP.2007.4288628
http://dx.doi.org/10.1371/journal.pone.0174027
http://dx.doi.org/10.1371/journal.pone.0174027
http://dx.doi.org/10.1371/journal.pone.0174027


[26] V. Schetinin, L. Jakaite, J. Jakaitis, W. Krzanowski, Bayesian decision trees500

for predicting survival of patients: a study on the US National Trauma
Data Bank, Computer Methods and Programs in Biomedicine 111 (3).
doi:10.1016/j.cmpb.2013.05.015.

[27] V. Schetinin, L. Jakaite, W. J. Krzanowski, Prediction of survival prob-
abilities with Bayesian decision trees, Expert Systems with Applications505

40 (14) (2013) 5466 – 5476. doi:10.1016/j.eswa.2013.04.009.

[28] V. Schetinin, L. Jakaite, W. Krzanowski, Bayesian averaging over decision
tree models for trauma severity scoring, Artificial Intelligence in Medicine
(2017) –doi:10.1016/j.artmed.2017.12.003.

[29] W. J. Krzanowski, D. J. Hand, ROC Curves for Continuous Data, 1st510

Edition, Chapman & Hall/CRC, 2009.

[30] B. Ozenne, F. Subtil, D. Maucort-Boulch, The precision-recall curve over-
came the optimism of the receiver operating characteristic curve in rare
diseases, Journal of Clinical Epidemiology 68 (8) (2015) 855–859. doi:
10.1016/j.jclinepi.2015.02.010.515

[31] T. Saito, M. Rehmsmeier, The precision-recall plot is more informative than
the ROC plot when evaluating binary classifiers on imbalanced datasets,
PLOS ONE 10 (3) (2015) 1–21. doi:10.1371/journal.pone.0118432.

[32] The American College of Surgeons, National Trauma Data Bank, accessed:
04/01/2018 (2014).520

URL http://www.facs.org/quality-programs/trauma/ntdb

[33] TraumaCalc: Bayesian prediction of trauma survival, accessed: 04/01/2018
(2016).
URL http://www.traumacalc.org/traumacalc/

[34] The American Association for the Surgery of Trauma, Injury scoring scale:525

A resource for trauma care professionals, accessed: 22/10/2017.
URL http://www.aast.org

[35] T. A. Gennarelli, E. Wodzin, Ais 2005: A contemporary injury scale, Injury
37 (12) (2006) 1083 – 1091, special Issue: Trauma Outcomes. doi:10.
1016/j.injury.2006.07.009.530

[36] J. Peng, K. Wheeler, J. Shi, J. I. Groner, K. J. Haley, H. Xiang, Trauma
with injury severity score of 75: Are these unsurvivable injuries?, PLOS
ONE 10 (7) (2015) 1–11. doi:10.1371/journal.pone.0134821.

[37] H. R. Champion, W. J. Sacco, W. S. Copes, D. S. Gann, T. a. Gennarelli,
M. E. Flanagan, A revision of the Trauma Score, The Journal of trauma535

29 (5) (1989) 623–629. doi:10.1097/00005373-198905000-00017.

21

http://dx.doi.org/10.1016/j.cmpb.2013.05.015
http://dx.doi.org/10.1016/j.eswa.2013.04.009
http://dx.doi.org/10.1016/j.artmed.2017.12.003
http://dx.doi.org/10.1016/j.jclinepi.2015.02.010
http://dx.doi.org/10.1016/j.jclinepi.2015.02.010
http://dx.doi.org/10.1016/j.jclinepi.2015.02.010
http://dx.doi.org/10.1371/journal.pone.0118432
http://www.facs.org/quality-programs/trauma/ntdb
http://www.facs.org/quality-programs/trauma/ntdb
http://www.traumacalc.org/traumacalc/
http://www.traumacalc.org/traumacalc/
http://www.aast.org
http://www.aast.org
http://www.aast.org
http://www.aast.org
http://dx.doi.org/10.1016/j.injury.2006.07.009
http://dx.doi.org/10.1016/j.injury.2006.07.009
http://dx.doi.org/10.1016/j.injury.2006.07.009
http://dx.doi.org/10.1371/journal.pone.0134821
http://dx.doi.org/10.1097/00005373-198905000-00017


[38] T. Osler, L. Glance, J. Buzas, D. Mukamel, J. Wagner, A. Dick, A trauma
mortality prediction model based on the anatomic injury scale, Annals of
Surgery 247 (6) (2008) 1041–1048. doi:10.1097/SLA.0b013e31816ffb3f.

[39] V. Schetinin, J. Schult, Learning polynomial networks for classification540

of clinical electroencephalograms, Soft Computing 10 (4) (2006) 397–403.
doi:10.1007/s00500-005-0499-3.

[40] E. Steyerberg, Clinical Prediction Models: A Practical Approach to De-
velopment, Validation, and Updating, Statistics for Biology and Health,
Springer New York, 2010.545
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