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Active suspensions for railway vehicles have been a topic of research for a number of decades
and while their applications in service operation are limited it seems clear that they will in due
course see widespread adoption. Railway suspension design is a problem of compromise on the
non-trivial trade-off of ride quality vs track following (guidance), and the skyhook damping
control approach has been paramount in illustrating the potential benefits. Since skyhook
damping control, various advanced control studies appeared contributing to redefine the
boundaries of the aforementioned trade-off. Yet there is no study on the impact of fractional
order methods in the context of skyhook railway active suspensions, and in particular related
to skyhook damping control. This is the area to which this paper strongly contributes.

We present findings from a current project on fractional order controllers for railway vehi-
cles active suspensions, in particular work on the effect of fractional order methods in basic
skyhook damping control schemes, i.e. pure and intuitively-based skyhook. Firstly we present
a brief review of conventional skyhook damping control and then proceed to a rigorous inves-
tigation of the impact of fractional order on the ride quality / track following trade-off. The
relevant benefits from fractional order methods are appraised and new insights highlighted.

Keywords: railway suspension; suspension control; ride comfort; fractional-order control;
active suspension; fractional skyhook damping

1. Introduction

Active suspensions for railway vehicles have been under consideration now for a number
of decades [1], although their applications in service operation are very limited [2]. Nev-
ertheless it seems clear that they will in due course see widespread adoption, and for this
reason on-going research studies are very appropriate. Control can be applied either to
improve the performance of the secondary suspension (carbody to bogie), generally to
give improved ride quality, or to the primary suspension (bogie to wheelsets), and can
in principle operate in any direction (lateral, vertical, roll, etc.).

This study is focussed upon solutions for secondary suspensions, for which the concept
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of absolute or Skyhook damping is well known [3]. This gives a profound improvement to
the ride quality for straight track operation, but creates large suspension deflections in
response to long wavelength, deterministic features such as curves and gradients, [4], a
characteristic that is not usually a significant design issue for passive suspensions using
conventional dampers. Although this can be accommodated in the control design, e.g.
by filtering out the low frequency components from the measurements which are largely
caused by track deterministic features [4], it is recognised that reducing the determinis-
tic deflections to an acceptable level will compromise the performance achievable with
“pure” skyhook damping. In fact the absolute velocity signal that is required for skyhook
damping will usually be produced by integrating the signal from an accelerometer, and
so in practice it will also be necessary to filter out the low frequency components in order
to avoid problems with thermal drift in the accelerometer.

Fractional order control has gained, especially recently, popularity in the control lit-
erature [5] and increasingly makes its way into industrial control applications such as in
the process control industry, electrical machines, robotics [6] [7] [8] [9] [10]. Fractional
control study growth is also seen in the automotive area albeit at a much slower rate.
In particular, [11] discussed fractional PID control for nonlinear vehicle suspensions via
evolutionary design methods, [12] presented a numerical scheme to design single frac-
tional order derivative skyhook damping controllers to deal with nonlinearities in the
suspensions on a quarter car vehicle (mainly touching ride comfort). Work in [13] pre-
sented FOPID design for a nonlinear suspension model with electro-hydraulic actuation,
while [14] and [15] presented active suspension control design that mainly illustrated
capabilities of the CRONE controller approach. There are resources dealing with semi-
active related fractional order control, i.e. for active passenger seat control design [16],
for a semi-active suspension [17], as well as smart-based isolated structures [18]. Not
addressing skyhook control principles, the nature of the aforementioned material is very
different to the work presented in this paper. A recent survey on conventional active and
semi-active control can be seen in [19].

From a historical perspective, fractional order calculus (the concept on which fractional
order control is based) dates back to the 17th century with a letter sent by L’Hôpital
to Leibniz on the topic of derivatives. This excited replies between the two men on the
concept of ‘non-integer’ order differentiation and/or integration. In particular, Leibniz
raised the following question to L’Hôpital: “Can the meaning of derivatives with integer
order be generalized to derivatives with non-integer orders?”. L‘Hôpital’s was rather
curious about it and his reply to Leibniz was a counter question, i.e. “What if the order
will be 1/2?”. In fact Leibniz, in a letter dated September 30th, 1695 essentially marks
the date considered the exact birthday of fractional calculus when he replied: “It will
lead to a paradox, from which one day useful consequences will be drawn” [20]. The work
presented in this paper falls exactly within the remit of Leibniz’s statement.

In the area of railway control applications (and especially those of a suspension design
nature) fractional control is still in its infancy. A rather substantial set of benefits from
using fractional order methods in the design of active tilt railway suspensions was recently
presented in seminal work in [21], [22]. These two papers and work presented in [4], which
forms a comprehensive study of conventional skyhook damping control achievement in
railway suspensions, motivated the work presented in this paper. In fact, to the best
of the authors’ knowledge, there is yet to appear a rigorous study on the impact of
fractional order methods in the context of skyhook damping control related railway
active suspensions. This is the area to which this paper strongly contributes. We present
fractional order design considerations within the remit of skyhook damping control for
the suspension deflection vs ride quality improvement trade-off.
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The paper is organised as follows: Section 2 presents a description summary of the
skyhook schemes listed in the paper. Section 3 introduces the vehicle model including
an insight into railtrack characteristics. Section 4 revisits basic (/practical) conventional
skyhook damping control schemes [4] and presents the related achievements in terms
of the ride quality and maximum suspension deflection trade-off including some opti-
mization related enhancement. Section 5 presents a brief intro to fractional calculus and
control, while Section 6 (lists the major contribution) rigorously discusses fractional or-
der skyhook (basic/practical) control schemes. Some basic robustness insights are offered
in Section 7, whereas conclusions and a list of the beneficial insights by use of fraction
skyhook schemes are drawn in Section 8.

2. Skyhook control cases listed in the paper

Table 1 lists the various cases (conventional and fractional) that are used for comparative
assessment in the following sections.

Table 1. Skyhook schemes listed in the paper

Type Abbrev. Description

Conventional
integer forms

Passive Passive suspension setup (incl. damping)

pCsky (orig.) Basic skyhook

pCsky (mod.) Basic skyhook (for max susp defl ≤ 60mm)

iCsky(man.)* Practical skyhook (manually designed; vary-
ing: high-pass filter (HPF) cut-off freq., while
HPF damping ratio = 0.707)

iCsky (optim.-A)* Practical skyhook (optimised; varying: HPF
cut-off freq., controller gain, and HPF damp-
ing ratio = 0.707)

iCsky (optim.-B)* Practical skyhook (optimised; varying: HPF
cut-off freq., HPF damping ratio, controller
gain)

Fractional
order forms

tpCsky Basic skyhook with only fractional-order inte-
grator (optimised; varying: controller gain)

tiCsky* Practical skyhook with fractional-order in-
tegrator and integer-order HPF (optimised;
varying: HPF cut-off freq., HPF damping ra-
tio, fractional integration order)

tifCsky* Practical skyhook with fractional-order self-
zero integrator (optimised; varying: the self-
zero integrator’s cut-off freq., its damping ra-
tio, and its fractional integration order)

* The high-pass filter is of 2nd order;
“Optimised”: Constrained optimization on minimizing ride quality subject to maintaining a 60mm max suspen-

sion deflection bound.
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3. Modeling and track profile characteristics

3.1. Vehicle model

A quarter-car model, typical representation of secondary suspension setup in railway
vehicles, is employed in this work for simplicity and ease of navigating through the new
insights via fractional order methods in skyhook control schemes. However the proposed
designs are applicable to more complex vehicle model classes (i.e. easily extendible to
sideview vehicle model etc.). The passive suspension quarter-car model is seen in Figure
1(a), where a damper end-stiffness is also included. The values chosen are typical for
high-speed trains nowadays and we opt to utilise the same set as the one used in [4] for
a fairer comparison between conventional control schemes (and the related achievements
shown in that paper) and the fractional-order approaches presented here. The parameters
are: vehicle body mass m = 30 tonnes, secondary suspension stiffness ks = 700 kN/m,
secondary suspension damper end-stiffness kd = 7 MN/m, and secondary suspension
damper cs = 50 kNs/m. A maximum suspension deflection limit of 60 mm is used in this
work. The passive system setup with the aforementioned values results in a ride quality
level of ≈ 3.37%g and maximum suspension deflection of 33.8mm.

3.2. Rail track profiles

As explained, the design trade-off is between the response to deterministic and random
track inputs. This sub-section quantifies inputs drawn from typical railway applications
practice.

For the deterministic input, a typical railway gradient of 1% is assumed with a super-
imposed acceleration limit of 0.5 m/s2 (i.e. 5% g), a value that is specified for passenger
comfort reasons and is used to determine the design alignment of the track. At a typical
top speed of 55 m/s this corresponds to an 1.1 sec transitional section (it is noted that
55 m/s is the train speed used throughout this work).

Random inputs represent the misalignment of the track compared with the intended
(deterministic) alignment, and these can be approximated by a power spectrum for the
track position given by Ar/f

2
t (m2/(cyclem-1)), in which fr is a spatial frequency (then

converted to a temporal frequency via use of the train forward speed). Ar is a track
roughness factor, commonly given a value of 2.5×10−7 for typical quality mainline track
[23].

The results will depend upon the track characteristics that are used, and usually is
necessary to recalculate as appropriate. In particular a route with less significant vertical
gradients would enable a greater benefit in terms of ride quality. This paper nevertheless
identifies the basic principles by which the trade-off can be determined.

4. Conventional skyhook damping control schemes

Seminal work in [4] has presented a rigorous study on the performance of linear and
nonlinear conventional skyhook damping schemes (studied pure skyhook, intuitive sky-
hook implementation, complementary filter and Kalman Filter approaches). That specific
study illustrated that the linear complementary filter scheme provided about 23% im-
provement in ride quality while maintaining a similar maximum suspension deflection
level as the one provided by the original passive suspension. In addition, the specific
non-linear Kalman filter methods provided nearly 50% ride quality improvement at the
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expense of larger maximum suspension deflection compared to the passive case. The
interested reader is referred to [4] for details in the aforementioned design aspects.
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(a) Passive setup (with damper end-
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implementation

Figure 1. Passive and skyhook damping control schemes

Here, we briefly revisit pure (basic) and intuitively (practical) implemented skyhook
damping designs with these serving as baseline cases prior to introducing the (non-
conventional) fractional order skyhook damping approaches. Figure 1(b) and Figure 1(c)
present the conventional basic and self-zero integrator (practical or sometimes referred
to as intuitively-based) skyhook damping control schemes, see [4]. The basic skyhook
concept is based on the assumption that the vehicle body vertical velocity can be mea-
sured, albeit normally this is obtained from an accelerometer via so-called “self-zero”
integration (i.e. a combined integrator and high-pass filter). The system’s damping is
introduced by the active element (actuator). Note that we refer to the practical conven-
tional skyhook implementation as iCsky, while the pure conventional skyhook is referred
to as pCsky.

“Conventional” in this context means the use of integer-order integration of the mea-
sured body acceleration signal. The controller gain is ct, and also an ideal force actuator
is assumed for this study.
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4.1. Basic (pure) skyhook damping control

The system’s equation of motion for pure skyhook damping, i.e. active force fa(t) =
−ctżm(t), is given by ((t) dropped for simplicity)

mz̈m + ctżm + ks(zm − zr) = 0 (1)

whereby the damping contribution of “skyhook” is seen in ctżm. Normally the (designed)
vehicle systems’s damping level is chosen to be around 65% to 70% [24], [25] (which dic-
tates the relevant skyhook damping value in the pure skyhook damping control scheme.).
Here, a value of ct = 190 kNs/m results in 66% damping.

Given the aforementioned values, pCsky (man.) provides ride quality level of 1.1%g
(based on single-sided spectrum) and a maximum suspension deflection of 156mm (see
Figure 4, which also includes the passive suspension response and the modified basic
skyhook damping scheme that adheres to 60mm maximum suspension deflection). The
unacceptable suspension deflection level can be clearly seen, as well as the effect of
skyhook damping on steady-state given the characteristics of the rail track profile used.

For completeness we also present the controller gain value which adheres to the limit
of 60 mm maximum suspension deflection, i.e. ct60 = 51.1 kNs/m (this gain results in
2.12%g ride quality and 17.7% minimum closed-loop damping), i.e. scheme pCsky (mod.).
A summary of relevant performance results is listed on Table 2.

4.2. Practical skyhook damping control

Figure 2 presents the feedback setup1 for iCsky. G(s) is the design transfer function, i.e.
actuator force input to measured body acceleration output, given by

G(s) =
z̈m
fa

(s) =
s2

ms2 + ks
(2)

It is worth noting that for conventional skyhook damping Li(s) := s−1 and LHP (s) is
of integer order (also ż∗m := żm), while for fractional order skyhook damping Li(s) =
s(−1/n) (the so called “tilted” integrator)2. Note that ż∗m, in the latter case is essentially
a fractional body velocity element. Just for purpose of notation (distinguishing between
conventional and fractional), the forward path controller gain is shown as Kt but we
refer to this as ct (for integer order skyhook damping schemes) or kt (for fractional
order skyhook damping). Tuning the controller gain will be further explained in the
optimization studies.

As mentioned previously, absolute vertical velocity of the body is a difficult signal to be
measured directly and it is obtained by the body’s measured vertical acceleration filtered
through “self-zero’ integrator (i.e. an integrator combined with a high-pass filter). This
attempts to provide a solution to both the integrator drift issue and to reducing the large,
low-frequency deflections. In fact, work in [4] presented 1st, 2nd and 3rd order high-pass
filters (HPF) with Butterworth response (with the latter two cases providing similar
performance results in that study). The design here actually involves a 2nd integer-order

1Similar feedback structure is used for both the integer order skyhook and fractional order skyhook schemes for
simplicity in diagram presentations. Note that the feedback setup is in the form of virtual “pure” skyhook damping

(or actual “pure” skyhook damping if both Li(s), LHP(s) are unity).
2The HP filter can be either of integer- or of fractional-order, or an overall fractional “self-zero” integrator can be
followed.
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ż∗m
Kt

fa

LHP(s)

G(s) Li(s)

z̈m

Figure 2. Feedback setup for implemented skyhook scheme

HPF (to avoid unnecessary increase in conventional controller order), see (A1), while
ct = 190000 Ns/m. The closed-loop transfer function, from Figure 2, for iCsky is

TiCsky(s) =
G(s)Kt

s+ LHP (s)G(s)Kt
(3)

In addition, high-pass filter’s frequency cut-off range that maintains closed-loop (abso-
lute) stability is investigated via the Routh-Hurwitz test (see Appendix A), i.e.

ωfc ∈

(
0,
−ct +

√
c2

t + 16 ksmξ2

4mξ

)
(in rad/s) (4)

Substituting for the parameter values used in this work, ωfc ∈ (0, 0.95π) rad/s. Note that
Kt := ct because of the conventional scheme studied here.

Figure 3. Deterministic/ Stochastic trade-off for iCsky (man.) (2nd order LHP )

With the aforementioned conditions for the filter cut-off frequency, a rather straight-
forward search is followed and results for the performance trade-off are obtained. The
trade-off curve (varying the HPF’s cut-off frequency ωfc) is shown on Figure 3, includ-
ing the point of minimum peak suspension deflection achieved (and accompanying ride
quality value). Still the maximum suspension deflection level is unacceptable (and the
only way to adhere to the 60mm max suspension limit is via gain variation as well). A
summary of the performance results can be seen in Table 3 (which also lists the sensi-
tivity peak of the designed closed-loop to overall changes in the plant transfer function,
i.e. ‖Spcl(jω)‖∞, which is inversely proportional to robustness and hence used as a basic
robustness index [26]). In fact, the results agree with the discussion in the earlier paper
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Figure 4. Suspension deflection conventional skyhook damping schemes (deterministic)

of Li and Goodall [4]For completeness, the deterministic suspension deflection response
is shown on Figure 4.

Table 2. Basic skyhook damping control schemes performance result

Scheme Filter ride qual. max susp. min{ζ} ‖Sp
cl(jω)‖∞

(%g)† delf. (mm) (%) (abs)

Passive - 3.37 33.8 17.3

pCsky(man.) - 1.10 156.0 66.0 1.00

pCsky(mod.) * - 2.12 60.0 17.7 1.00

tpCsky(optim.) * - 2.11 60.0 16.7 1.02

† Single-sided spectrum; ∗ Tuning of controller gain kt.

4.3. Optimised practical skyhook damping control

To impose the 60mm maximum suspension deflection limit while minimising the ride
quality level, the controller gain needs to be varied. Here we present two optimized
versions of iCsky, i.e. optim.-A and optim.-B (see Table 1). This is also performed to
enable appropriate comparison to the relevant fractional order schemes presented later
on. Hence, the formulated optimization problem3 is

minimize
ωfc,ωig,ξ

ride quality (active conv.)

s. t. max{|zr − zm|} ≤ 60mm
(5)

3An extra constraint on the system’s minimum closed-loop damping can be added, however it was not necessary

as the obtained damping level was acceptable.
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Remark. The variables used for the optimization process are: ωfc and ξ which are
the HPF cut-off frequency and damping ratio (this variable is varied in iCsky (optim.-
B)), while ωig is the integrator gain crossover frequency (i.e. ωig

s ). The latter variable is
selected, when controller gains is required to be also tuned, as an indirect way of tuning
the gain. Hence, all optimization variables are maintained at comparable magnitude
orders. The potential impact that the damping ratio of the 2nd order high-pass filter
will have on the system performance is acknowledged, however in this study -and for all
optimised schemes - we constrain its value to be no less than 0.55 (typically, for a 2nd
order HPF, its value will be chosen ≈ 0.707 i.e. the Butterworth response mentioned in
[4], [25]).
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For case iCsky (optim.-A) (recall that ξ = 0.707 here) the optimised parameters are4.

ωoptfc = 1.59 rad/s, coptt := c̄t × ωopt
ig = 190e3× 0.419 = 79610 N/m (6)

The obtained minimum closed-loop damping was 26.9%. In fact, the point values can be
visualised approximately on the intersection of the two isolines, i.e. of 60mm maximum
susp deflection and ≈ 0.269 min CL damping level, as well as 60mm maximum susp
deflection and ride quality level of ≈ 1.843%g (see Figures 5(a), 5(b)).

For case iCsky (optim.-B) the optimised parameters are:

ωoptfc = 1.87 rad/s, coptt := c̄t × ωopt
ig = 190e3× 0.417 = 79230 N/m, ξopt = 0.55 (7)

We do not present contour plots for the latter scheme as the concept is very similar.
Also, Figure 4 presents the suspension deflection time-domain response for the deter-
ministic track under identifiers iCsky (opt.-A), iCsky (opt.-B). The performance results
for the schemes can be seen on Table 3 that summarizes the practical skyhook damp-
ing related approaches. It is worth noting that reducing HPF damping ratio value (i.e.
lesser than a typical Butterworth response level [4]) contributes to improving ride quality
(while worsening, as expected, sensitivity peak).

5. A brief introduction to fractional calculus and control

Fractional order integration/differentiation relates to the concept of ‘non-integer’ order,
i.e. a more generalized version of integration/ differentiation. In fact, various definitions
for the general fractional differential/integral exist [27] (e.g. by Riemann-Liouville, by
Caputo etc.), with Caputo’s approach offering the advantage of relating fractional order
to physical realization.Caputo’s fractional derivative is given by

aD
x
t f(t) =

1

Γ(n− x)

∫ t

a

f (n)(τ)

(t− τ)x−n+1
dτ, (8)

where (n − 1 < x < n); Γ(.) the Gamma function and a, t the limits of operation of

aD
x
t f(t). In addition its Laplace transform (with non-zero initial condition) is [27]

∫ ∞
0

e−st {0Dx
t f(t)} dt = sxF (s)−

(n−1)∑
k=0

sx−k−1f (k)(0), (9)

where F (s) = L{f(t)}, (n− 1 < x ≤ n) and s is the Laplace operator. Note that in the
case of zero initial conditions (9) reduces to L{0Dx

t f(t)} = sxF (s) (with x < 0 then the
case of fractional integral of order −x is also handled). Fractional order calculus tends
to enable more flexibility in the analysis and design on dynamical systems and controller
solutions.

4Where contour plots are shown, these are done via grid search. Optimised results are found via a multi-start con-

strained optimization approach (i.e. a random multi-start using Matlab’s fmincon() function with a neighborhood
search on the selected best outcome). It was found that ten iterations, for the random multistart, were sufficient

for the purposes of this work. A heuristics approach is an alternative approach that can also be used.
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Figure 6 presents Bode plots for fractional integration, i.e. 1/s(1/n) where n ∈ R (frac-
tional integrators are also known as “tilted” integrators). The integration orders pre-
sented are: n = 0.8, 1.2 (with integrator gain crossover frequency at 1 rad/s). From

a loop shape viewpoint the magnitude slope, d log |Gi(jω)|
d logω for i = 0.8, 1.2, at the gain

crossover frequency is −0.8 and −1.2 (compared to a conventional integrator 1/s hav-
ing slope of −1). Their phase contribution is −72 deg and −108 deg (compared to 1/s
contributing −90 deg) respectively.

(a) For 1/s1.2 (b) For 1/s0.8

Figure 6. Fractional order integration and rational approximation examples (Bode plot)

The rational order (RO) approximation of the fractional order element is done via
Oustaloup’s recursive method [28], which is a popular approach in the fractional order
control community (basic information on this is presented in Appendix B). Figure 6
illustrates rational order approximation by different orders Oustaloup approximation, in
the frequency range of [10−2, 102] rad/s. The concept is the same if approximation is
required within different frequency regions. Note that rational approximations can also
be obtained via frequency domain identification tools as an alternative.

6. Fractional order skyhook damping formulation

6.1. Introducing fractional control to pure skyhook damping

Here the tilted integrator is introduced to the skyhook damping scheme, see Figure 7 (but

with no HP filter). The fractional integrator transfer function is It(s) :=
(

1
s

)1/n
(ωtig the

integrator gain crossover frequency is shown as unity). The frequency region employed
for approximation of all fractional order controllers in this work is actually {0.01, 100}
rad/s (as it offers sufficient detail for the designs involved). From a pure skyhook point
of view the above is mapped as feeding back either a deficient or an excess order of
absolute body velocity. Referring to (2) and Figure 2 (without considering the HP filter),
the loop transfer function for the ideal case with tilted integrator, and assuming no HP

11
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(s)(−1/n)

−kt

accelerometer

×LHP(s)

Figure 7. Practical skyhook damping scheme with fractional order (tilted) integrator

filter dynamics, is

L(s) = s(−1/n)G(s)kt = s(−1/n) kts
2

ms2 + ks
(10)

Given that (jω)ν can be represented by

(jω)ν = ωνe
jνπ

2 = ων
[
cos
(νπ

2

)
+ j sin

(νπ
2

)]
(11)

where j =
√
−1 , the magnitude and phase of L(jω) are

|L(jω)| = ω[2−(1/n)]kt
−ks +mω2

(12)

∠L(jω) =

π
(
1− 1

2n

)
, ω <

√
ks
m

− π
2n , ω >

√
ks
m

(13)

and the above could be used to design analytical compensated FO gain and phase
margins if needed. Then, the resulting closed-loop referring to Figure 2 (taking into
account fractional order conditions)

Tż∗m←ż∗ref (s) =
s(2−n−1)kt

kts(2−n−1) +ms2 + ks
(14)

It is rather straightforward to obtain the closed-loop relationship from track velocity
input to suspension deflection output for the above case, i.e.

(zr − zm)

żr
(s) =

kt s
(1−n−1) +ms

kt s(2−n−1) +ms2 + ks
(15)

Note that for n = 1, and kt := ct, the expression coincides with the one from the basic
pCsky scheme. Figure 8 illustrates the effect on suspension deflection response by varying
the fractional order n (the variables are varied manually in this case).

12
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(a) k̄t = 190000 N/m (ωtig = 1 rad/s), n varies (b) ωtig varies (i.e. k̄t), n−1 = 1.9

Figure 8. Effect of fractional integration on pCsky (fractional system simulation)

For fine tuning the fractional order related optimization problem (19) (without con-
sidering the variables linked to the High-Pass filter but tuning n and the controller gain
via ωtig) is followed, and the obtained optimised values are

nopt = 1.14, kopt
t = 42286.7 N/m (16)

Note that we again follow tuning the (now) fractional integrator gain crossover frequency

Figure 9. Suspension deflection response for tpCsky vs conv. skyhook schemes

ωtig to maintain variables of comparable order in the optimization process (i.e. kt :=

k̄t × ω
(1/n)
tig is the final controller gain whereby k̄t = 190 kNs/m). Figure 9 presents

the suspension deflection response (deterministic). The optimised values, to adhere to
maximum suspension deflection of 60 mm, provide ride quality level of 2.11%g with
imposed minimum closed-loop damping of ≈ 17%. The contour plot is presented on
Figures 5(c), 5(d) for completeness. It is seen that the simplest extension using fractional

13
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order integration on pure skyhook damping impacts the suspension deflection steady-
state response, essentially offering a response “between” those of pure and practical
skyhook damping schemes . Overall, the very simple fractional order scheme extension
offers minor improvement to the trade-off (see Figure 10(a)), with its main impact on
the steady-state response. But clearly it is a first indication that fractional order enables
further design flexibility.

It is worth mentioning that, for the schemes with multiple variable tuning, Figure 10
presents the trend in the maximum suspension deflection / ride quality trade-off with the
best ride quality chosen at each maximum suspension deflection point (to a 3 decimal
point resolution). For a more proper and detailed view one should actually refer to surface
plots (we present a couple of examples for later schemes).

For completeness, Table 2 presents the performance results for this scheme as well, and
it is worth noting that typically robustness concerns are raised with ‖Spcl(jω)‖∞ > 2,
whereas at a value of 2 the guaranteed gain margin is at least 2 (6 dB) and phase margin
of at least 30deg (with this metric used as a basic robustness indicator).

(a) Basic skyhook schemes (b) Intuitively-based skyhook

Figure 10. Ride quality (rq)/ max susp deflection (msd) trend (best rq per msd)

6.2. Extending to practical fractional order skyhook damping control

The introduction of a HPF in the feedback structure has a direct effect on system order,
which is illustrated in the transfer function relationship of track velocity input to suspen-
sion deflection output (see (17)). A 2nd order filter is still employed (for fair comparison
to the conventional schemes).

zr − zm
żr

(s) =
kts

(3−n−1) +ms3 + 2ξmωfcs
2 + mω2

fcs

kts(4−n−1) +ms4 + 2ξmωfcs3 + (ks + ω2
fcm) s2 + 2ξksωfcs + ksω2

fc

(17)

4Recall the modified pCsky adheres to 60mm maximum suspension deflection and used only for illustration.

14
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Table 3. Practical skyhook damping control schemes (conventional / fractional)

Scheme Info./ ride qual. max susp. min{ζ} ‖Sp
cl(jω)‖∞

tuned vars (%g)† defl. (mm) (%) (abs)

iCsky(man.) [conv.] ωfc 1.270 89.0 23.9 2.22

iCsky(optim.-A) [conv.] ωfc, ct 1.843 60.0 26.9 1.40

iCsky(optim.-B) [conv.] ωfc, ξ, ct 1.808 60.0 31.4 1.52

tiCsky [fractional] ] 1.733 60.0 24.3 1.65

tifCsky [fractional] § 1.706 60.0 25.6 1.84

† Single-sided spectrum; ] 2nd order HP filter, tuning ωfc, n, ξ in the optimization.
§ Overall fractional order “self zero integrator” (see (20)), tuning ωfc, ξ, n, in the optimization.

Figure 11. Surface plot for tiCsky (optim.)

which reduces to the equivalent TF in iCsky, if kt := ct Ns/m and n = 1, i.e.

zr − zm
żr

(s)

∣∣∣∣n =1
kt =ct

=
ms3 + (2ξmωfc + ct)s

2 + mω2
fcs

ms4 + (2ξmωfc + ct)s3 + (ks + ω2
fcm) s2 + 2ξksωfcs + ksω2

fc

(18)

optimisation problem: minimize
n,ωfc,ξ ∈R+

{ride quality (active fo)}

subject to max{|zr − zm|} ≤ 60mm
(19)

In (19), n−1, ωfc, ξ are the fractional order of the integrator, the HP filter cut-off frequency,
and the damping ratio for the HP filter (where required).

First a simple optimization is followed (based on (19)), i.e. by tuning the fractional

15
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order of the integrator and the (integer 2nd order) HP filter cut-off frequency and damp-
ing ratio, whereas the controller gain is fixed at 190 kNs/m. This represents a simple
extension to fractional order practical skyhook damping scheme (this optimization case
also serves are a fair or direct comparison with the conventional practical skyhook pre-
sented in [4] where only the HP filter cut-off frequency was tuned). The optimised values
for the fractional order scheme obtained are: for the HP integer-order filter ωopt

fc = 2.88
rad/s, ξopt = 0.552 and fractional order of integrator nopt = 0.69 (and it is interest-
ing to see that the process provides integration effort above first order integration i.e.
1/nopt ≈ 1.45). For completeness, we present the combined surface plot for ride quality
and maximum suspension deflection on Figure 115 (the trade-off is clearly seen). The
trend is also mapped onto a 2-D plot on Figure 10(b) (the best ride quality at each
maximum suspension deflection point selected) which illustrates the benefit of fractional
order control (also see Table 3).

Next we directly consider a fractional order “self-zero” integrator, (here we present one
with a 2nd order HP filter basis) i.e.

Hfsz2(s) := (Li(s)LHP(s))1/n =

(
s

s2 + 2ξωfc + ω2
fc

)1/n

(20)

The importance in using the fractional order self zero integrator is that the fractional
order reflects to the combined effort of integrator and HP filter (a.k.a. self-zero integra-
tion). Using a 2nd order HP filter (20) provides the opportunity of (refine) tuning the
filter damping (although it is seen that the procedure results to a damping factor within
12% different to the typical value of 0.707 chosen manually [4], [24],[25]). This scheme is
implemented by the feedback structure shown in Figure 12.

ż∗m

Kt

fa

(Li(s)LHP(s))
1/n

G(s)
z̈m

Figure 12. Skyhook feedback control scheme with FO “self-zero” integrator (tifCsky)

We present the optimized result for case tifCsky. A search bound between 0.55 and 0.875
was used for the HPF damping ratio. The optimised values (referring to optimization
problem (19)) obtained were: ωopt

fc = 2.02 rad/s, nopt = 0.71, ξopt = 0.62.
Note that in the optimization process no minimum closed-loop damping constraint is

imposed. The performance results are also summarised in Table 3.
We also illustrate surface plots (maximum suspension deflection and ride quality)for

tifCsky on Figure 136. Due to the three variables in the optimization process, the plots
are presented in the form of ternary diagram [29], with the axes representing normalized
variables. The plots are shown to illustrate the trade-off relationship between suspension
deflection and ride quality (clearly seen on the interchange of color shading in the plots).
For further details on ternary diagrams the interested reader can refer to [29]. From the
surface plots the presence of multiple local minima is also evident, hence the multi-start
optimization approach used in the paper.

5As this is a combined surface plot, both ride quality and maximum suspension deflection are normalised relative
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(a) Ride quality (b) Ride quality (zoomed region)

(c) Max susp defl (d) Max susp. defl. (zoomed region)

Figure 13. Ternary diagram surface plots for tifCsky

From a (basic) robustness viewpoint all fractional order schemes manage to maintain
a sensitivity peak value below 2, even if this constraint was not explicitly included in
the optimization process. In fact the worst case is 1.84 which typically refers to a gain
margin of at least 2.2 (6.85 dB) and a phase margin of at least 32 deg.

For completeness, the magnitude plot of the closed-loop system for ride quality is
presented in Figure 14 for the designs with results presented in the previous performance
tables (the cases listed are the iCsky (optim.-B), tiCsky and tifCsky). The improvement
of system performance offered by the fractional order schemes is clearly evident in this
plot as well. The time domain simulation for suspension deflection is shown on Figure
14(b).

Remark on comparisons to Complementary filter. We have presented an overall

to their maximum value.
6The unscaled variables range is: ωfc ∈ [1.25, 2.5] rad/s, ni ∈ [0.6, 1.1], ξ ∈ [0.55, 0.9] with only stable cases shown.
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Figure 14. Fractional order skyhook performance

performance trend mapped to the 2-D Figure 10. On Figure 10(b) a plot for the estab-
lished conventional Complementary Filter approach (as proposed in [4]) is also shown.
Note that we do not address complementary filter schemes in this paper, and the compar-
ison is primarily to illustrate where the basic/practical fractional order schemes proposed
here stand within the remit of skyhook control schemes. A note in the Conclusions section
is also included regarding the nature of this paper.

7. Discussion on robustness for the practical skyhook schemes

We present a first look at the robustness of the schemes, mainly stemming from the results
presented via the peak of the designed closed-loop sensitivity to plant variations. Note
that robustness was not directly tackled in the optimization problem but, intentionally,
explored the natural outcome of the process (i.e. referring to the sensitivity peak in the
relevant performance Tables). The uncertainty considered is 100 perturbed plant cases
based on the combination of vehicle mass uncertainty and stiffness uncertainty (±20%
parameter variation from their nominal values; note the absence of passive damping as
in the nominal case). Figure 15(a) presents the Bode plot of the perturbed plant cases
(with nominal plant highlighted).

The controllers for all cases are the ones design on the nominal model per scheme. Out
of the 101 (100 perturbations and the nominal case) plant cases, the following maintain
maximum suspension deflection below 60mm (in the closed-loop): 52 for tifCsky, 40 for
tiCsky, 48 for iCsky (optim.-B), and 51 for iCsky (optim.-A). In addition, and from
a statistical robustness point of view via the box-and-whisker plots on Figure 15, one
can see a rather consistent interquartile range in all cases for ride quality, Figure 15(c),
however the fractional order schemes offer smaller values of ride quality (under variation).
The maximum suspension deflection case is more “balanced” (Figure 15(b)) in terms of
the range of values, with the most schemes being balanced around 60mm (although
tiCsky has drifted a little higher) and the interquartile range trend tends to narrow
down as one moves from tifCsky to tiCsky, iCsky (optim.-B) and iCsky (optim.-A).
The sensitivity peak metric is a “deterministic” robustness metric, and given that the
“best” sensitivity peak value related to iCsky (optim.-A), what is shown in the latter
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Figure 15. Plant uncertainty and statistical robustness of practical skyhook schemes

plot is rather consistent with the indication on robustness level per scheme shown on
the relevant performance tables. Clearly, the fractional order schemes offered better ride
quality performance (for the same maximum suspension deflection levels) and maintained
comparable robustness to the conventional schemes.

8. Conclusions

A rigorous study on the impact of fractional order methods in the design of basic and
practical active secondary skyhook-type suspensions was presented. In particular the
trade-off between ride quality and suspension deflection offered by the fractional order
schemes have been considered and rigorously compared to established conventional in-
teger order controller approaches [4] (from which this work was partly motivated). It is
shown that fractional order methods offer an additional degree-of- freedom in the de-
sign process, and the basic principles examined in this work to provide a first insight
at the opportunities. The authors believe that fractional order methods will steadily
find their way into railway control applications. In fact, this paper represents a starting
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point for further study encompassing a wider range of control options. The study has
clearly identified the noticeable benefits in fractional order skyhook, typically offering
10-20% improvement in ride quality with the same maximum suspension deflection. The
following specific comments are highlighted for the proposed fractional order schemes:

(i) It is a linear-time invariant solution (see rational approximation) based on a single
measurement (feedback of acceleration utilised);

(ii) The pure integrator is essentially transformed (via its rational approximation ver-
sion and depending on its order) towards an extended “PID-type” controller;

(iii) Performance wise, fractional order skyhook schemes noticeably surpass the per-
formance of equivalent conventional skyhook schemes, while it is comparable to
the conventional complementary filter performance down to about 52.5m max susp
deflection level (for the case studied here).

Optimization tools were used extensively for the fractional order schemes, due to the
extra design parameters. Similar optimization approach has been followed for the conven-
tional controllers mainly for fair comparison between the two types of control schemes.
In addition, the paper presents some initial assessment of robustness. The authors are
currently extending the work via incorporation of advanced filtering schemes and de-
tailed robustness investigation, for further appraisal of conventional vs. fractional-order
methods in the aforementioned topic.
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Appendix A. Conventional rational order Skyhook stability

The high-pass filter used is a second (integer-)order filter (ξ the damping ratio), i.e.

LHP(s) =
(s/ωfc)

2

1 + 2ξ(s/ωfc) + (s/ωfc)2
=

s2

ω2
fc + 2ξωfcs+ s2

(A1)
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the Routh array for the CL system is:

s4: 1
mw2

fc+ks
m

ks w2
fc

m

s3: ct+2mξwfc

m
2 ks ξ wfc

m 0

s2:
2 ξ m2 w3

fc+ctmw2
fc+ct ks

m (ct+2mξwfc)
ks w2

fc

m 0

s1: − ct ks wfc (2mξw2
fc+ct wfc−2 ks ξ)

m (2 ξ m2 w3
fc+ctmw2

fc+ct ks)
0 0

s0:
ks w2

fc

m 0 0

(A2)

Appendix B. Rational order approximation of fractional system

The interested reader can find more details on fractional order system rational approxi-
mations in [28]. Here only the very basic information for Oustaloup’s recursive method is
presented. For D(s) := sµ, µ ∈ R+ its rational order approximation using Oustaloup’s
method is given by

D̂(s) = C
M∏

k=−M

1 + s/ωk
1 + s/ω′k

, (B1)

where C,M,ωk, ω
′
k are given by the theory of the approximation procedure (for details

see [28]). The approximation is performed in a given frequency range, e.g. the rational
approximation of 1/s1.14 (i.e. a single fractional integrator) by a 3rd order Oustaloup’s
approximant in the frequency range of [10−2, 102] rad/s is given by

D̂ti(s) =
0.017604(s+ 0.1784)(s+ 3.844)(s+ 82.82)

(s+ 0.01207)(s+ 0.2601)(s+ 5.605)

clearly noting the approximate integrator in the denominator. The approach can be
extended to more complex fractional order functions (approximation order increases with
a higher number of integro-differential terms).

Appendix C. A note on fractional system stability

In the main body of the paper conventional, rational-order, system’s stability and perfor-
mance tools are employed (via the rational approximation of the FO controllers). Here,
a brief note on fractional stability is presented. We refer to the tpCsky (no HP filter)
(14). The denominator of the closed-loop, with the optimised values, is

den{Ti(s)} = 30000s2 + 42287s1.1 + 700000 (C1)

with the fractional power of s being appropriately truncated to 1 decimal point7. System
designs presented in this paper involve both fractional and rational orders in the closed-

7(For the purpose of this work 1 decimal point is sufficient, however note that finer decimal point resolution may

shape the representation of fractional orders in forms of quotient of two integer numbers slightly different.)
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loop, hence the fractional order stability test of [30], [31] is used.
In brief, the characteristic equation of the LTI system in s is transformed to the w-

domain by an appropriate mapping s = wν (ν is integer); the roots of the transformed
characteristic equation in the w−domain are calculated and their absolute phase is ob-
tained, e.g. |φw|; then (for the physical region |φw| < π/ν) the stability condition for the
fractional system is

π

2ν
< |φw| <

π

ν
(C2)

In our case, the characteristic equation (C1) can be translated to the w−domain by

setting w = s
1

10 , i.e. 0.043w20 + 0.06w11 + 1 = 0. Figure C1 presents the stability results
for the aforementioned FO closed-loop and it can be seen that π

20 < |φw| < π
10 , hence

the fractional order closed-loop is stable (Figure C1(b)). Note that the roots in the

(a) Riemann surface of w = s
1
10 (10-

sheets)

(b) Poles location in w−plane (fractional)

(c) Poles location in s−plane (rational)

Figure C1. Stability of tpCsky (fractional and rational approximation)

first Riemann sheet are w19,20 = 1.149 ± 0.202j with | arg (w19,20)| = 0.174 satisfying
the above condition. For completeness, Figure C1(c) presents the conventional stability
result of the CL including the iso-damping line of minimum CL damping of 0.167.

Word count: approximately 7300 words.
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