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cDépartement Osiris, EDF Research and Development, 7 Boulevard Gaspard Monge, 91120 Palaiseau,

France

Abstract

We introduce a three-factor model of electricity spot prices, consisting of a determinis-

tic seasonality and trend function as well as short- and long-term stochastic components,

and derive a formula for futures prices. The long-term component is modelled as a Lévy

process with increments belonging to the class of generalised hyperbolic distributions. We de-

scribe the short-term factor by Lévy semistationary processes: we start from a CARMA(2,1),

i.e. a continous-time ARMA model, and generalise it by adding a short-memory stochastic

volatility. We further modify the model by including the information about the wind energy

production as an exogenous variable. We fit our models to German and Austrian data in-

cluding spot and futures prices as well as the wind energy production and total load data.

Empirical studies reveal that taking into account the impact of the wind energy generation on

the prices improves the goodness of fit.

Keywords: CARMA model, Electricity spot prices, Electricity futures prices, Lévy process, Lévy

semistationary process, Wind energy
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1 Introduction

One of the main challenges of the 21st century is reinforcing sustainable economic growth in order

to tackle climate change. An important part of this task is a more effective use of renewable energy

1



sources, such as the wind power. From the economical point of view, these sources are notorious

for being risky to invest in because of their unpredictable influence on the electricity prices. This is

due to their high dependence on the weather – and weather forecasts still do not reach the desirable

level of accuracy.

As energy markets were liberalised only in last decades, modelling electricity prices is a relatively

new topic in mathematics and economics. Electricity is considered a commodity with unique fu-

tures ([Haar, 2010]) that make the use of standard tools of financial mathematics difficult or even

impossible. First, the storage of large volumes of energy to date is either impossible or very ex-

pensive, so supply and demand must match at all times. Over time the prices tend to a long-term

average determined by this balance, so they exhibit a mean reversion. Any disturbances of this

equilibrium can result in significant spikes in the electricity spot (day-ahead) market, which leads

to a strong and heteroscedastic (time-varying) volatility of electricity (especially spot) prices. Fur-

thermore, electricity prices are seasonal. The demand is much higher in winter months (due to the

need of heating and longer use of lights) as well as during hot summer months (due to the use of

air conditioning). Because prices are inelastic of demand, very cold or very warm weather usually

results in more expensive electricity. The periodic behaviour can also be observed at a smaller,

weekly scale, namely the demand is higher in the peak time, i.e. Monday to Friday between 8 am

and 8 pm, when people need electricity for their activities at work and home.

In the literature one can find a variety of electricity prices models: for spot and futures via a spot

model (e.g. [Carmona et al., 2013], [Cartea et al., 2009], [Benth et al., 2014]) and for futures di-

rectly (e.g. [Benth and Paraschiv, 2016], [Barndorff-Nielsen et al., 2011], [Borovkova and Geman, 2006]).

However, most of them do not take into account the increasing role of renewables, in particular wind

power, in energy markets. Few exeptions include [Elberg and Hagspiel, 2015] (copula model for the

spatial dependence structure of wind power in Germany), [Veraart, 2016] (impact of wind power

generation on German spot prices modelled by regime-switching Lévy semistationary processes),

[Ketterer, 2014] (GARCH model of wind power’s impact on the electricity price level and volatility

in Germany, taking into account changes in market regulations) or [Deschatre and Veraart, 2017]

(the impact of wind energy production on the spikes in the spot prices). In this paper we attempt

to fill this research gap by introducing a model for both spot and futures prices with wind energy

production as an exogenous variable. Our work builds upon the paper by [Benth et al., 2014], who

proposed an arithmetic model for spot prices with three factors: a deterministic seasonality and

trend function as well as short- and long-term stochastic parts (details in Section 2). We generalised

this model by: (a) considering a short-term process more general than CARMA(2,1) proposed by

[Benth et al., 2014], i.e. a Lévy semistationary (LSS ) process ([Barndorff-Nielsen et al., 2013]) with

a stochastic volatility; (b) modelling the dependence of the short-term process on the wind energy

production. We fitted the model to spot and futures data from the European Energy Exchange
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(EEX) as well as the wind production data from Germany and Austria. Finally, we defined a

moment-based metric to compare different models and found that the inclusion of wind energy

production data improved the model fit.

The paper is structured as follows. In Section 2 we introduce a three-factor arithmetic model for

spot prices and derive a formula for futures prices. In Section 3 we describe how we fitted the

model to empirical data and study all model terms in detail. We also present numerical results.

In the last subsection of Section 3 we discuss the necessity of adding stochastic volatility to the

model. Section 4 includes the description of wind production data, possible modifications of the

basic model, numerical results and comparison of different models. Finally in Section 5 we present

the conclusions of our research.

2 The arithmetic model

2.1 Assumptions

We work on a probability space (Ω,F , {Ft}t∈R,P) satisfying the usual conditions, i.e. the right-

continuity of the filtration {Ft}t∈R and completeness. Let S(t) be the spot price. Following

[Benth et al., 2014], we propose an arithmetic model S(t) = Λ(t) + Z(t) + Y (t), where Z(t) is the

long-term factor, while Y (t) describes the short-term behaviour. Precisely, Λ(t) denotes a determin-

istic seasonality and trend function, Z(t) is a Lévy process with zero mean (under the physical mea-

sure) and Y (t) =
∫ t
−∞ g(t−s)σs−dLs with a deterministic kernel g(t−s) such that lim

t→∞
g(t−s) = 0.

For the integrability conditions we refer the reader to Appendix A. The short-term process belongs

to a class of Lévy semistationary (LSS ) processes ([Barndorff-Nielsen et al., 2013]), so Y (t) is sta-

tionary if and only if σt and the increments of L(t) are jointly stationary. Note that integrating

from −∞ does not correspond to the real world, where t ≥ 0. However, we need such an integral to

obtain a stationary model. Therefore, similarily to [Barndorff-Nielsen et al., 2013], we assume that

S(0) is a realisation of a random variable Λ(0)+Z(0)+Y (0). Here σt is a càdlàg stochastic process

describing the volatility of Y (t). The empirical studies (Section 3) indicate that σt has a rather

short memory. Therefore we can restrict ourselves to a (stationary) Ornstein-Uhlenbeck process,

i.e. σt =
∫ t
−∞ e−δ(t−x)dVx with a constant δ > 0 and a Lévy subordinator V (t), independent from

the driving Lévy process L(t).

2.2 Change of measure

In the traditional finance theory, one requires a probability measure Q equivalent to the physical

measure P that transforms the discounted price dynamics into a (local) Q-martingale. However,

in the electricity markets not all the assets are tradeable, so Q can denote any probability measure
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equivalent to P. As suggested by [Barndorff-Nielsen et al., 2013], we decided to use the generalised

Esscher transforms; details are described in Appendix C.

2.3 Futures contracts

If we assume no arbitrage, the price ft(T ) at the time t ≥ 0 for a futures contract with maturity

T ≥ t can be expressed as

ft(T ) = EQ [S(T )|Ft] = EQ[Λ(T ) + Z(T ) + Y (T )|Ft] = Λ(T ) + Z(t) + (T − t)EQ [Z(1)]

+

∫ t

−∞
g(T − s)σs−dLs + EQ [L1]

∫ T

t

g(T − s)EQ [σs|Ft] ds.
(2.1)

Due to its nonstorability electricity is delivered over a time period rather than at one specific

moment. Thus we define the price of a futures contract with a delivery period [T1, T2] as

Ft(T1, T2) := EQ

[
1

T2 − T1

∫ T2

T1

S(T )dT

∣∣∣∣Ft
]
, (2.2)

for all 0 ≤ t ≤ T1 < T2. If following [Benth et al., 2014] we define time to maturity as u :=

1
2 (T1 + T2)− t, then Equation 2.2 becomes

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

Λ(T )dT + Z(t) + uEQ [Z(1)]

+
1

T2 − T1

(∫ T2

T1

∫ t

−∞
g(T − s)σs− dLs dT + EQ [L1]

∫ T2

T1

∫ T

t

g(T − s)EQ [σs|Ft] ds dT

)
.

(2.3)

Proposition 2.1. Assume that δ > 0, lim
x→∞

∫ x
0
g(y)e−

δ
2 (x−y)dy = 0 and σ2

t =
∫ t
−∞ e−δ(t−x)dVx.

Then for τ > 0 and fixed t > 0,

lim
T1→∞

1

τ

(∫ T1+τ

T1

∫ t

−∞
g(T − s)σs− dLs dT + EQ [L1]

∫ T1+τ

T1

∫ T

t

g(T − s)EQ [σs|Ft] ds dT

)
= EQ [L1]C,

(2.4)

where

C := EQ [σ0]

∫ ∞
0

g(y)dy (2.5)

and the limit is in the L2−sense.

For the proof we refer the reader to Appendix B. Proposition 2.1 allows us to conclude that in the

long end, i.e. for t� T1, the deseasonalised futures price can be approximated by

F̃t(T1, T2) := Ft(T1, T2)− 1

T2 − T1

∫ T2

T1

Λ(T )dT ≈ Z(t) + uEQ [Z(1)] + EQ [L1]C. (2.6)
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3 Empirical studies

We fitted the proposed model to two sets of German data: daily averages of hourly spot prices

(available on the EPEX SPOT website 1) and monthly (one month ahead, 1MAH, up to six

months ahead, 6MAH) base load futures prices, (available on the EEX website 2), traded between

1 January 2013 and 3 August 2015. In order to split spot prices into S(t) = Λ(t) +Z(t) +Y (t), we

modified the algorithm proposed by [Benth et al., 2014, pp. 398-9]. It requires a choice of threshold

u? such that deseasonalised prices of contracts with times to maturity u ≥ u? are described

approximately by Z(t) alone; recall that we defined ’time to maturity’ as u = 1
2 (T1 + T2)− t. We

decided to fix u? equal to 16 days, because the results do not seem to be sensitive to the choice of

a particular threshold. The algorithm can be summarised as follows.

1. Estimate Λ(·) from spot prices and subtract from S(·) (Subsection 3.1).

2. Filter out a realisation of Z(t) (Subsection 3.2).

3. Model Y (t) = S(t)− Λ(t)− Z(t) (Subsection 3.3) as a CARMA(2,1) process.

4. Add stochastic volatility to the model of Y (t) (Subsection 3.4).

3.1 Deterministic seasonality and trend function Λ(t)

The exact form of the seasonality function is not obvious and in the literature it appears in

different forms, usually as a combination of trigonometric functions (see e.g. [Benth et al., 2014])

or polynomials. We decided to use the following function, which works well with our data set:

Λ(t) = c1 + c2t+ c3h(t) +

9∑
i=4

cid(t) +

13∑
i=10

cim(t). (3.1)

It consists of a linear trend as well as dummy variables for days of the week d(t) and statistically

significant months m(t): April, May, June and August. We also took into account rapid downward

movements of prices during the main holidays, Christmas (24, 25, 26 December) and New Year

(1 January), by introducing a dummy variable

h(t) =

 0 for holidays,

1 otherwise.
(3.2)

We fitted Λ(t) using linear regression. The estimated coefficients are presented in Table 1. Figure 1

shows the autocorrelation plot of deseasonalised spot prices. It seems that we managed to remove

most of the periodic behaviour, although some seasonal effects might be still present.

1https://www.epexspot.com/en/market-data/dayaheadauction (accessed 10.11.2017)
2https://www.eex.com/en/market-data/power/futures (accessed 10.11.2017)
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Estimate Std. Error t value Pr(> |t|)

(Intercept) 5.3119 2.6300 2.02 0.0437

t -0.0095 0.0009 -10.59 0.0000

Holiday 22.8892 2.5195 9.08 0.0000

Apr -3.4478 0.8444 -4.08 0.0000

May -6.5892 0.8332 -7.91 0.0000

Jun -5.6228 0.8465 -6.64 0.0000

Aug -3.5180 0.9759 -3.60 0.0003

Mon 14.1859 0.9089 15.61 0.0000

Tue 17.0706 0.9098 18.76 0.0000

Wed 17.2351 0.9108 18.92 0.0000

Thu 16.7177 0.9107 18.36 0.0000

Fri 15.0050 0.9092 16.50 0.0000

Sat 7.3066 0.9089 8.04 0.0000

Table 1: Estimated coefficients of the seasonality function Λ(·).

3.2 Non-stationary long-term factor Z(t)

Let us denote the empirical mean (i.e. the averaged data) by Ê[·]. For u ≥ u?, using Proposition 2.1

and E [Z(t)] = 0, we can approximate

µF̃ (u) := Ê
[
F̃t(T1, T2)

]
= uÊQ [Z(1)] + ÊQ [L1]C (3.3)

and by linear regression estimate ÊQ [L1]C and ÊQ [Z(1)], as presented in Figure 2. These param-

eters together allow us to recover a realisation of Z(t):

Ẑ(t) = Ẑ

(
1

2
(T1 + T2)− u

)
=

1

cardU(t, u?)

∑
(u,T1,T2)∈U(t,u?)

[
F̃t(T1, T2)− ÊQ [L1] Ĉ − uÊQ [Z(1)]

]
,

(3.4)

where

U(t, u?) := {(u, T1, T2) ∈ R3 : u ≥ u?and ∃Ft(T1, T2) :
1

2
(T1 + T2)− t = u}. (3.5)

Estimated Z(t) is plotted in Figure 3. It might seem to exhibit annual seasonality, but we fitted

an ETS (Error-Trend-Seasonality) model using the R package forecast and the best fit does not

have a seasonal component.

Because futures contracts are traded only from Monday to Friday, Z(t) does not include the

weekend data. Following [Benth et al., 2014], on the weekends we set this process to be constant

and equal to the Friday price. The process Z(t) is clearly non-stationary, therefore we focused our
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Figure 1: ACF of deseasonalised spot prices. Figure 2: Plot of µF̃ (u).

Figure 3: Estimated Z(t). Figure 4: The increments of Z(t).
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attention on its increments, plotted in Figure 4. At first glance Z(t) has stationary increments, as

confirmed at 0.01 significance level by the augmented Dickey-Fuller (ADF) test. It is important

to note that the estimated Z(t) has uncorrelated increments and squared increments, as shown

in Figure 5 and Figure 6. This motivated us to model Z(t) by a Lévy process with increments

described by a suitable infinitely divisible distribution. Inspired by [Barndorff-Nielsen et al., 2013],

Figure 5: ACF of the increments of Z(t). Figure 6: ACF of the squared increments of Z(t).

we fitted 11 distributions from a class of generalised hyperbolic distributions, defined e.g. by

[Breymann, 2011]. This class of distributions has some desirable properties, such as fat tails and

skewness.

Definition 3.1. A random vector X is said to have a multivariate generalised hyperbolic (GH)

distribution if

X
law
= µ+Wγ +

√
WAZ, (3.6)

where Z ∼ N(0, Ik), A ∈ Rd×k, µ,γ ∈ Rd and W is a scalar-valued random variable, independent

of Z, whose distribution is Generalised Inverse Gaussian GIG(λ, χ, ψ) with parameters satisfying

one of the following: χ > 0, ψ ≥ 0, λ < 0 or χ > 0, ψ > 0, λ = 0 or χ ≥ 0, ψ > 0, λ > 0. The

density of W is given by

fGIG(x) =

(
ψ

χ

)λ
2 xλ−1

2Kλ

(√
χψ
) exp

(
−1

2

(χ
x

+ ψx
))

, (3.7)

where Kλ denotes the modified Bessel function of the third kind.

Observe that there exist different ways of parametrising generalised hyperbolic distributions

and in our analysis we used the (λ, ᾱ, µ,Σ, γ) parametrisation. One can easily switch from
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(λ, χ, ψ, µ,Σ, γ) to (λ, ᾱ, µ,Σ, γ) by setting k =
√

χ
ψ

Kλ+1(
√
χψ)

Kλ(
√
χψ)

, ᾱ =
√
χψ, Σ = kΣ and γ = kγ.

The reparametrisation in the opposite direction can be done by setting ψ = ᾱKλ+1(ᾱ)
Kλ(ᾱ) and χ = ᾱ2

ψ ,

while the remaining parameters stay the same.

We used the R package ghyp provided by [Breymann, 2011]. We ranked distributions according

to the Akaike information criterion (AIC) in ascending order, so the first one gives the best fit. In

Table 2 we can see that the increments of Z(t) are best described by a symmetric Normal-inverse

Gaussian (NIG) distribution. The fit is satisfactory, as shown in Figure 7. The QQ-plot presented

in Figure 8 also proves a reasonably good fit. Therefore we can model Z(t) by a Lévy process Z̄(t)

such that Z̄(1) ∼ NIG(λ = −0.500, ᾱ = 0.405, µ = −0.002,Σ = 0.396, γ = 0.000).

Figure 7: Histogram of the increments of Z(t)

with a fitted NIG distribution.

Figure 8: Symmetric generalised hyperbolic QQ-

plot.

3.3 Stationary short-term factor Y (t)

We obtained a realisation of Y (t) by subtracting Z(t) from the deseasonalised spot prices. Figure 9

shows the resulting process. At first glance the plot of Y (t) does not indicate if the series is

stationary. However, the augmented Dickey-Fuller (ADF) test suggested that Y (t) is stationary

(at the significance level 0.01). Figure 10 and Figure 11 show the autocorrelation functions of Y (t)

and its increments, respectively.
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Figure 9: Estimated Y (t). Figure 10: ACF of Y (t).

Figure 11: ACF of the increments of Y (t). Figure 12: ARMA(2,1) fit against Y (t).
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model symmetric λ ᾱ µ Σ γ AIC log-lik. converged? number of iter.

8 NIG TRUE -0.50 0.40 0.00 0.40 0.00 469.53 -231.76 TRUE 82.00

10 t TRUE -1.32 0.00 0.00 0.47 0.00 470.78 -232.39 TRUE 92.00

6 ghyp TRUE -0.88 0.33 0.00 0.40 0.00 470.85 -231.43 TRUE 207.00

3 NIG FALSE -0.50 0.41 0.00 0.40 -0.00 471.51 -231.75 TRUE 155.00

5 t FALSE -1.32 0.00 0.00 0.47 -0.00 472.75 -232.37 TRUE 171.00

1 ghyp FALSE -0.88 0.33 0.00 0.40 -0.00 472.82 -231.41 TRUE 322.00

7 hyp TRUE 1.00 0.14 -0.00 0.37 0.00 483.31 -238.65 TRUE 98.00

9 VG TRUE 0.95 0.00 -0.01 0.38 0.00 484.08 -239.04 TRUE 116.00

2 hyp FALSE 1.00 0.14 -0.00 0.37 0.00 485.26 -238.63 TRUE 251.00

4 VG FALSE 0.94 0.00 -0.01 0.38 0.01 485.76 -238.88 TRUE 185.00

11 gauss TRUE Inf 0.00 0.40 0.00 651.23 -323.62 TRUE 0.00

Table 2: Generalised hyperbolic distributions fitted to the increments of Z(t) with parametrisation

(λ, ᾱ, µ,Σ, γ).

3.3.1 CARMA processes

Inspired by [Benth et al., 2014], as a first step we decided to model Y (t) by a special case of an LSS

process, i.e. a CARMA (continuous-time ARMA) process. This class of processes was described for

example by [Brockwell et al., 2011]. We focus on a particular case, i.e. the CARMA(2,1) model.

Definition 3.2. Assume that L(t) is a Lévy process whose second moment is finite (i.e. E
[
L(1)2

]
<

∞). Furthermore, b(z) = b0 + z, a(z) = z2 + a1z + a2 = (z − λ1)(z − λ2), roots of a(z) = 0 are

distinct and their real parts are negative as well as a(z) and b(z) have no common roots. The L-

driven CARMA(2,1) process is defined as the strictly stationary solution to the system of stochastic

differential equations

a(D)Y (t) = b(D)DL(t), (3.8)

where t ∈ R and D denotes differentiation with respect to t (in a formal sense).

We can represent Y (t) as

Y (t) = α1

∫ t

−∞
eλ1(t−s)dL(s) + α2

∫ t

−∞
eλ2(t−s)dL(s), (3.9)

where α1 = b0+λ1

λ1−λ2
and α2 = b0+λ2

λ2−λ1
. For u ≥ 0 we define the kernel of Y (t) as g(u) = α1e

λ1u +

α2e
λ2u.

Equation 3.8 should be interpreted as its state-space representation, i.e.

Y (t) = bTX(t), (3.10)

dX(t) = AX(t)dt+ edL(t), (3.11)
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where

A =

 0 1

−a2 −a1

 , e =

0

1

 , b =

b0
1

 (3.12)

and X(0) is independent of {L(t), t ≥ 0}.

Remark 3.1. Note that the CARMA(2,1) kernel satisfies the assumptions of Proposition 2.1, as

long as λi 6= − δ2 for i = 1, 2. This follows from

lim
x→∞

∫ x

0

g(y)e−
δ
2 (x−y)dy = lim

x→∞

2∑
i=1

αi

∫ x

0

eλiye−
δ
2 (x−y)dy = lim

x→∞

2∑
i=1

αi

λi + δ
2

(
eλix − e− δ2x

)
= 0,

(3.13)

as δ > 0 and λi < 0 for i = 1, 2.

3.3.2 Numerical results

We implemented the algorithm from Appendix E to fit a CARMA(2,1) model to our process Y (t).

First we used the function arima from the R package stats to fit an ARMA(2,1) process, whose

estimated parameters are shown in Table 3. In Figure 12 we can see that the estimated discrete

model describes Y (t) quite accurately, although it cannot capture extreme values.

φ1 φ2 θ

Estimate 1.347 -0.428 -0.765

Standard error 0.196 0.127 0.188

Relative error 0.145 0.296 0.246

Table 3: Estimated ARMA(2,1) parameters.

Proceeding as described in Appendix E, we estimated CARMA(2,1) parameters presented in

Table 4. The calculations of standard and relative errors as well as biases are based on the

parametric bootstrapping with 1000 Monte Carlo simulations (performed using the R package

yuima) from the estimated CARMA(2,1) process, i.e. (D2 + 0.847D + 0.122)Y (t) = (0.269 +

D)DL(t). Observe that parameters were estimated with small errors, but a relatively large bias,

which we further discuss in Remark 3.2.

We estimated the autoregressive roots as λ1 = −0.184 and λ2 = −0.663. Because |λ1| < |λ2|,

we used λ1 to recover the background driving Lévy process L(t), as suggested in Appendix E.

The resulting process is presented in Figure 13, while its increments in Figure 14. Figure 15 and

Figure 16 indicate that the increments of L(t) are not independent, so the model would probably

benefit from including a stochastic volatility in the definition of Y (t), at least with a short memory

(see Subsection 3.4).

Similarly to the case of Z(t), we fitted 11 GH distributions to the increments of L(t), as presented

in Table 5. The best fit was given by the asymmetric NIG distribution.
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a1 a2 b0

Estimates 0.847 0.122 0.269

Standard error 0.034 0.006 0.016

Relative error 0.019 0.015 0.031

Bias 0.639 0.211 0.096

Table 4: Estimated CARMA(2,1) parameters.

Figure 13: Background driving Lévy process L(t).
Figure 14: The increments of the background

driving Lévy process L(t).

Figure 15: ACF of the increments of L(t). Figure 16: ACF of the squared increments of L(t).
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model symmetric λ ᾱ µ Σ γ AIC log-lik. converged? number of iter.

3 NIG FALSE -0.50 1.96 2.81 7.26 -2.79 6413.04 -3202.52 TRUE 129.00

5 t FALSE -3.36 0.00 2.68 7.28 -2.67 6413.61 -3202.81 TRUE 209.00

2 hyp FALSE 1.00 1.71 2.90 7.24 -2.88 6413.83 -3202.92 TRUE 237.00

4 VG FALSE 2.37 0.00 2.87 7.25 -2.85 6415.10 -3203.55 TRUE 203.00

1 ghyp FALSE 2.37 0.06 2.87 7.25 -2.85 6417.10 -3203.55 TRUE 288.00

10 t TRUE -3.00 0.00 0.35 7.55 0.00 6424.96 -3209.48 TRUE 82.00

8 NIG TRUE -0.50 1.79 0.36 7.51 0.00 6426.36 -3210.18 TRUE 84.00

6 ghyp TRUE -2.89 0.47 0.35 7.54 0.00 6426.96 -3209.48 TRUE 401.00

7 hyp TRUE 1.00 1.62 0.35 7.48 0.00 6427.82 -3210.91 TRUE 104.00

9 VG TRUE 2.37 0.00 0.36 7.48 0.00 6429.70 -3211.85 TRUE 100.00

11 gauss TRUE Inf 0.02 7.54 0.00 6475.14 -3235.57 TRUE 0.00

Table 5: Generalised hyperbolic distributions fitted to the increments of L(t).

Remark 3.2. In our numerical studies we followed an estimation procedure of CARMA(2,1) mod-

els used in numerous studies, e.g. by [Garćıa et al., 2011] or [Brockwell et al., 2011]. However, we

detected problems connected to this method which, as far as we know, have not been discussed

in the literature. We decided to investigate why the bias of estimated CARMA(2,1) parameters

presented in Table 4 is so large.

First, standard R functions such as arima from the package stats fit an ARMA(2, 1) model with

a high level of variability, as shown in Figure 17 and Figure 18 (results obtained via bootstrap-

ping). Therefore we tried to estimate the autoregressive roots λ1 and λ2 (details in Appendix E)

directly by matching the first six lags of empirical and theoretical autocorrelation functions of

our CARMA(2,1) process. Observe that it is equivalent to fitting a sum of two exponentials, as

argued in Equation 3.9. However, this problem has been identified as ill-conditioned by many re-

searchers, see e.g. [Kaufmann, 2003] or [Smith, Lyle B. (Computation Group, 1969]. [Acton, 1990]

even pointed out that ”. . . an exponential equation of this type [a weighted sum of two exponen-

tials] in which all four parameters are to be fitted is extremely ill conditioned” (p. 253).

We conducted a number of numerical experiments which confirmed that in our case the estimation

of the autoregressive roots is extremely difficult, if not impossible. It is probably caused by the

fact that the values of roots are quite close to each other, which means that the algorithm is unable

to successfully identify them, even though the fit of the full autocorrelation function is satisfactory

(Figure 19). It seems that [Garćıa et al., 2011] were more lucky as the difference between their

estimated roots (λ1 = −0.0465 and λ2 = −1.9181) is larger. We repeated our experiments using

these values (in the Gaussian case) and obtained much more optimistic estimation results, with the

relative bias as small as 0.056 for λ1 and 0.067 for λ2. Our experiments suggest that even though

the algorithm of fitting CARMA(2,1) described in Appendix E is widely used in the literature, it

requires more attention.
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Figure 17: Estimated autoregressive parameters:

φ1.

Figure 18: Estimated autoregressive parameters:

φ2.

Figure 19: Autocorrelation functions of Y (t): empirical (blue) and theoretical with parameters

estimated from 1000 Monte Carlo simulations (red).
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3.4 Stochastic volatility

As mentioned in Section 3.3.2, we should investigate if adding a stochastic volatility of Y (t) would

improve the model. Thus in this section again we assume that Y (t) =
∫ t
−∞ g(t − s)σsdBs, where

σ2
t =

∫ t
−∞ e−δ(t−s)dVs, Bt is a standard Brownian motion, g(·) – the CARMA kernel and Vt –

a Lévy subordinator independent of Bt.

The driving Lévy process estimated in Section 3.3.2 is now replaced by a volatility modulated

Brownian motion, so dLt = σtdBt. Therefore the estimated realised variance converges uniformly

on compact sets in probability to Ct, where Ct :=
∫ t

0
σ2
sds and Ct−Ct−1 =

∫ t
t−1

σ2
sds. We compute:

• κ1 := EQ
[
σ2
t

]
= EQ [V1]

∫∞
0
e−δxdx = EQ[V1]

δ ;

• κ2 := VarQ
[
σ2
t

]
= VarQ [V1]

∫∞
0
e−2δxdx = VarQ[V1]

2δ ;

• CovQ
(
σ2
t+h, σ

2
t

)
= VarQ [V1]

∫∞
0
e−δ(x+h)e−δxdx = VarQ[V1]

2δ e−δh = κ2e
−δh.

Thus

•EQ [Ct − Ct−1] = κ1;

•CovQ (Ct+h − Ct+h−1, Ct − Ct−1) = EQ

[∫ t+h

t+h−1

σ2
sds

∫ t

t−1

σ2
udu

]
− κ2

1 =

∫ t+h

t+h−1

∫ t

t−1

EQ
[
σ2
sσ

2
u

]
dsdu− κ2

1

= κ2

∫ t+h

t+h−1

∫ t

t−1

e−δ|s−u|dsdu+ κ2
1 − κ2

1 = κ2

∫ t+h

t+h−1

e−δudu

∫ t

t−1

eδsds =
κ2

δ2

(
e
δ
2 − e− δ2

)2

e−δh

•VarQ [Ct − Ct−1] =
κ2

δ2

(
e
δ
2 − e− δ2

)2

.

Therefore the theoretical autocorrelation function is given by ACF(h) = e−δh. In order to estimate

the memory parameter δ, we need to match this theoretical function with its empirical counterpart,

both computed for
∑N
t=1 (Lt − Lt−1)

2
, where N denotes the number of observations. We decided

to use the first six lags and proceed via standard linear regression, which gave us a rough estimate of

δ̂ = 1.82, at significance level 0.01. The true and estimated autocorrelation functions are presented

in Figure 20. The remaining parameters were already estimated in Section 3. We conclude that

including a stochastic volatility in the model for Y (t) improves the model quality, as indicated by

correlated squared increments of the driving process Lt as well as by the presence of a statistically

significant Ornstein-Uhlenbeck memory parameter. However, in the remaining sections we will

return to the model without stochastic volatility and propose a different modification so that we

can identify the impact of different modifications on the model quality.

Remark 3.3. The CARMA(2,1) process is just one example of a kernel function g(·) fulfilling our

assumptions. Following [Barndorff-Nielsen et al., 2013] one could investigate the class of gamma

kernels.

If Y (t) has a symmetric distribution, which can be obtained using a Box-Cox transformation (in
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Figure 20: True and estimated ACF of the squared increments of L(t).

our case with the parameter λ = 1.4), we can assume that

Y (t) = µ+ c

∫ t

−∞
g(t− s)σ(s)dB(s), (3.14)

where c ∈ R is a constant, σ is a stationary process and B denotes a standard Brownian motion

independent of σ. We denote the gamma density with parameters ν̄ > 0 and λ̄ > 0 by

ḡ
(
t; ν̄, λ̄

)
=

λ̄ν̄

Γ(ν̄)
tν̄−1e−λ̄t. (3.15)

Let us assume that 1
2 < ν̄ < 1. We define the gamma kernel

g (t) =
λ̄ν̄−

1
2√

Γ(2ν̄ − 1)
tν̄−1 exp

(
− λ̄

2
t

)
. (3.16)

We also assume that for some subordinator z(t)

σ2(t) =

∫ t

−∞
i?(t− s)dz(s) (3.17)

with

i?(t) =
1

λ̄
ḡ
(
t; 2− 2ν̄, λ̄

)
(3.18)

Simple calculations show that

Y (t)|σ ∼ N
(
µ, c2ω2(t)

)
, (3.19)
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where

ω2(t) =

∫ t

−∞
e−λ̄(t−s)dz(s). (3.20)

[Barndorff-Nielsen et al., 2013] argue that if ω2(t) is a generalised inverse Gaussian processGIG(λ, χ, ψ),

then Y (t) has a generalised hyperbolic distributionGH(λ, χ, ψ, µ, c2, 0). [Barndorff-Nielsen et al., 2013]

provide an explicit formula for the autocorrelation function of Y (t)

Cor (Y (t), Y (t+ h)) =
1

Γ(ν̄ − 1
2 )

22−2ν̄(hλ̄)ν̄−
1
2Kν̄− 1

2

(
hλ̄

2

)
, (3.21)

where Kν̄ (x) denotes the modified Bessel function of the third kind. Therefore we can estimate

parameters ν̄ and λ̄ by matching the first lags of the empirical and theoretical autocorrelation

functions of Y (t). The least square estimation using the first six lags resulted in the estimated

ˆ̄ν = 0.889 and λ̄ = 0.845. The empirical and estimated autocorrelation functions are presented

in Figure 21. We note that for the first lags the match is very accurate, therefore this approach

might be worth further investigation (for more details see for example [Bennedsen et al., 2017]).

Figure 21: The empirical and estimated (based on the first six lags) autocorrelation functions of

Y (t) with the gamma kernel.

4 Influence of wind energy production on electricity prices

4.1 Data description

Our set of wind production data corresponds to the spot and futures prices data, i.e. we used the

data from five energy providers (four from Germany and one from Austria) between 1 January 2013
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and 3 August 2015. The data were obtained from the websites: German Netztransparentz 3 and

Austrian Power Grid 4. We were interested only in the global production, so we aggregated energy

generated on- and off-shore as well as by all five providers. We also needed the global volumes

of produced electricity, available on the EPEX SPOT website. All data were aggregated to daily

values. In Table 6 we present summary statistics of the global daily wind energy production.

Min. 1st Qu. Median Mean 3rd Qu. Max.

10816.30 67597.79 123276.52 162900.17 214119.19 766291.29

Table 6: Summary statistics of global daily wind energy generation (in MW).

4.2 Wind penetration index (WPI)

Inspired by [Veraart, 2016], we looked at the wind penetration index (WPI). We define the WPI on

day t as the ratio between the day-ahead forecasted wind energy generation (WGt) and the actual

volume (Vt), i.e. WPIt = WGt
Vt

. Since we have access only to the actual wind energy generation,

we simulated its forecasts as

WGt = AWGt + εt, (4.1)

where AWGt denotes actual wind energy generation on day t and εt ∼ N
(
0, σ2

ε

)
with σε equal 2%

of the mean volume, as suggested by [Jónsson et al., 2013]. Adding a Gaussian perturbation with

a relatively small standard deviation does not change the analysis much, which justifies working

with simulated rather than empirical data.

In Table 7 we present summary statistics of the wind penetration index, while its time series plot

and histogram are shown in Figure 22 and Figure 23, respectively. The plot indicates that the

WPI behaves seasonally, in particular it is higher during windy winters than less windy summers.

From the histogram we can see that WPI is relatively low, in particular the wind energy very rarely

exceeds half of the total generation.

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.02 0.10 0.18 0.22 0.29 0.77

Table 7: Summary statistics of the wind penetration index.

4.3 Relationship between wind energy production and spot prices

Recall that our main research goal was to determine whether (and in what way) wind energy pro-

duction influences electricity prices. Figure 24 and Figure 25 present plots of the (deseasonalised)

3https://www.netztransparenz.de/Erneuerbare-Energien-Gesetz/Marktpraemie (accessed 10.11.2017)
4https://www.apg.at/en/market/Markttransparenz/generation (accessed 10.11.2017)
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Figure 22: Wind penetration index.
Figure 23: Histogram of the wind penetration in-

dex.

spot prices against WPI with fitted linear regression lines. There is a clear negative correlation

in both cases, which means that lower spot prices (both raw and deseasonalised) correspond to

high share of wind energy in total generation. The correlation coefficients equal −0.51 and −0.61

for raw and deseasonalised prices, respectively. This analysis does not tell us anything about the

causation. However, since wind energy is very cheap to produce, we can expect that a high wind

penetration index lowers electricity prices.

Figure 24: Spot prices vs. WPI. Figure 25: Deseasonalised spot prices vs. WPI.
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4.4 Modified models

In this section we describe modifications of the model presented in Subsection 2.3 (without stochas-

tic volatility) that take into account the relationship between the wind energy production and spot

prices. Because long-term weather forecasts are unreliable, we assume that wind energy pro-

duction influences only the short-term factor, i.e. Y (t). Therefore Λ(t) and Z(t) introduced in

Subsection 2.3 remain unchanged.

It is not obvious how to represent wind energy in the model. We looked at three variables: wind

energy forecast Ft, wind penetration index WPIt defined in Subsection 4.2 and the residual demand

RDt defined as the difference between the total load and the forecasted wind energy production

(motivated by [Elberg and Hagspiel, 2015]). We fitted linear and quadratic models involving differ-

ent linear combinations of these variables. The residuals were modelled by a CARMA(2,1) process.

A similar approach was proposed by [Elberg and Hagspiel, 2015]; however, instead of parametric

regression models they used spline fits, which makes simulating from the model difficult.

4.5 Comparison of models

Measuring the model performance is a difficult task. We decided to compare the model without

wind energy production data (Section 3) with different variations of the model including renewables

data. We defined the distance between ”true” (so resulting from the split described in Section 3)

and simulated processes Y (t) as a sum of squared differences between first ”true” moments and

moments averaged from 1000 Monte Carlo simulations performed using the R package yuima

(distance 1 ). We used different numbers of moments, from 3 to 20. Note that this definition

closely resembles squared maximum mean discrepancy (see e.g. [Gretton, 2012]) with the feature

map φ(x) =
(
x, x2, . . . , xk

)
, where k denotes the number of the highest moment, and a radial

kernel. The squared differences were further normalised by the value of the appropriate ”true”

moment to reduce the influence of the large variability of higher moments on the total distance

(distance 2 ). For each distance and each number of moments we defined the best model as the

model minimizing the distance and the worst as the one maximizing the distance. The best and

worst models are presented in Table 8. The last two columns indicate that including the wind

energy production data improved the original model proposed in Subsection 2.3. The linear model

with residual demand appears as the best model in Table 8 more often than any other, thus we

suggest modelling the short-term process as Yt = a+ b · RDt + CARMAt.
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Best models Worst models

Highest moment Distance 1 Distance 2 Distance 1 Distance 2

3 1 2 7 5

4 5 4 8 7

5 2 5 8 8

6 5 5 1 8

7 5 5 1 8

8 5 5 1 1

9 5 5 1 1

10 5 5 1 1

11 5 5 1 1

12 9 9 1 1

13 5 5 1 1

14 5 5 1 1

15 9 6 1 1

16 5 5 7 7

17 5 5 1 1

18 9 9 1 1

19 5 5 1 1

20 6 6 1 1

Table 8: Best and worst models: models minimising and maximising distances between empirical

and simulated data, for each number of moments used to calculate the metric. Models are described

in Table 9.
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WPIt RDt Ft WPI2
t RD2

t F2
t intercept

1 0 0 0 0 0 0 0

2 -1.828e+00 -7.559e-06 -3.544e-05 0 0 0 1.032e+01

3 0 -6.885e-06 -3.714e-05 0 0 0 9.825e+00

4 -28.3714 0 0 0 0 0 6.2516

5 0 3.989e-05 0 0 0 0 -2.163e+01

6 0 0 -3.334e-05 0 0 0 5.468e+00

7 -14.1499 0 0 -23.1762 0 0 4.7982

8 0 1.538e-04 0 0 -1.127e-10 0 -4.938e+01

9 0 0 -3.147e-05 0 0 -3.422e-12 5.316e+00

Table 9: The description of linear parts of all nine models Yt = a1 + a2 ·WPIt + a3 · RDt + a4 ·

Ft + a5 ·WPI2
t + a6 · RD2

t + a7 · F2
t , where RDt, WPIt and Ft denote the residual demand, the

wind penetration index and the forecasted wind production, respectively. Coefficients in bold were

estimated at a significance level at least 0.001, while those in italics at a significance level at least

0.01.

5 Conclusions

In this paper we proposed a three-factor arithmetic model for electricity spot prices inspired by

[Benth et al., 2014] and on this basis derived a formula for futures prices. It consists of: (a) a de-

terministic function representing a trend, weekly and monthly seasonalities and holiday effects,

(b) a long-term factor modelled by a generalised hyperbolic Lévy process and (c) a short-term

factor represented by a Lévy semistationary process. Empirical studies of German and Austrian

data provided an evidence that this model is able to capture the complex behaviour of electric-

ity prices. We generalised the model described by [Benth et al., 2014] by including a stochastic

volatility in the short-term factor, as the data suggested its presence. We contributed to the field

mainly by including the influence of wind energy production on the studied prices. Simulations

indicated that this step significantly improved the arithmetic model which did not consider the

impact of renewables. This approach seems to be very promising and further studies should be

conducted. In particular, the question of how exactly to include the wind energy production data in

the model is still open, even though we provided some recommendations. Furthermore, one could

model the wind energy generation directly instead of treating it as an exogenous variable. Also,

it would be beneficial to study other types of renewables, such as solar or hydro power, together

with wind energy and traditional energy sources. Additionally one could propose different kernels

of the Lévy semistationary process defining the short-term factor. Finally, the algorithm of fitting
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CARMA(2,1) models should be investigated in more detail, as it definitely leaves some room for

improvement.
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A Integrability conditions

We defined the short-term process as a stochastic integral Y (t) =
∫ t
−∞ g(t− s)σs−dLs, so we need

to state some additional conditions under which this integral exists. We base our discussion on the

work by [Barndorff-Nielsen et al., 2013] and [Basse-O’Connor et al., 2014].

We denote the Lévy triplet of L(t) associated with a truncation function h(z) = 1{|z|≤1} by

(d, b, lL), where d denotes the drift, b the variance of the Gaussian component and lL the Lévy

measure. Let us define φt(s) := g(t− s)σs−. Then the process (φt(s))s≤t is integrable with respect

to L if and only if (φt(s))s≤t is F-predictable and these three conditions hold almost surely:

b

∫ t

−∞
(φt(s))

2
ds <∞, (A.1)∫ t

−∞

∫ ∞
−∞

(
1 ∧ |φt(s)z|2

)
lL(dz)ds <∞, (A.2)∫ t

−∞

∣∣∣∣dφt(s) +

∫ ∞
−∞

(h (zφt(s))− φt(s)h(z)) lL(dz)

∣∣∣∣ <∞. (A.3)

To ensure the square integrability, we assume that L(t) has a finite second moment and replace

Equation A.1 by
∫ t
−∞ E

[
φt(s)

2
]
ds =

∫ t
−∞ g(t − s)2E

[
σ2
s

]
ds < ∞ and E

[
(g(t− s)σsds)2

]
< ∞.

For the latter condition is is enough to ensure that for some a ∈ (0, 1),
∫∞

0
g2a(x)dx < ∞ and∫ t

−∞ g2(1−a)(t− s)E
[
σ2
s

]
.

B Proof of Proposition 2.1

Lemma B.1. If H̃ := lim
T→∞

H(T ) exists in the L2−sense, then for a fixed period τ > 0 the

L2−limit lim
T1→∞

1
τ

∫ T1+τ

T1
H(T )dT also exists and equals H̃.

Proof of Lemma B.1. Our assumption says that lim
T→∞

EQ

[
(H(T )− H̃)2

]
= 0, so that for all ε > 0

there exists T̃ such that for all T > T̃ we have EQ

[(
H(T )− H̃

)2
]
< ε. Thus if T1 > T̃ , then

EQ

(1

τ

∫ T1+τ

T1

H(T )dT − H̃

)2
 ≤ max

T1≤T≤T1+τ
EQ

[(
H(T )− H̃

)2
]
< ε, (B.1)

which was to be proven.

Proof of Proposition 2.1. First we will show that lim
T1→∞

1
τ

∫ T1+τ

T1

∫ t
−∞ g(T − s)σs− dLs dT = 0 in

the L2−sense. As all considered functions are measurable and non-negative, we can use Tonelli’s

theorem to compute

lim
T→∞

EQ

[(∫ t

−∞
g(T − s)σs−dLs

)2
]

= EQ
[
L2

1

]
EQ
[
σ2

0

] ∫ t

−∞
lim
T→∞

g(T − s)2ds = 0, (B.2)

which by Lemma B.1 proves this statement.

Now we need to prove that lim
T1→∞

∫ T1+τ

T1

∫ T
t
g(T − s)EQ [σs|Ft] ds dT = C in the L2−sense. By
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Lemma B.1 it is enough to prove that lim
T→∞

EQ

[(∫ T
t
g(T − s)EQ [σs|Ft] ds− C

)2
]

= 0. We observe

that

EQ

(∫ T

t

g(T − s)EQ [σs|Ft] ds− C

)2
 = EQ

(∫ T

t

g(T − s)EQ [σs|Ft] ds

)2


− 2CEQ

[∫ T

t

g(T − s)EQ [σs|Ft] ds

]
+ C2.

(B.3)

Using Jensen’s inequality and Tonelli’s theorem, we can estimate

lim
T→∞

EQ

(∫ T

t

g(T − s)EQ [σs|Ft] ds

)2
 ≥ lim

T→∞

(
EQ

[∫ T

t

g(T − s)EQ [σs|Ft] ds

])2

= lim
T→∞

(∫ T

t

g(T − s)EQ [EQ [σs|Ft]] ds

)2

=

(
EQ [σ0] lim

T→∞

∫ T−t

0

g(y)dy

)2

= C2.

(B.4)

On the other hand,

EQ [σs|Ft] = EQ

[√∫ s

−∞
e−δ(s−x)dVx

∣∣∣∣Ft
]
≤ EQ

[√∫ t

−∞
e−δ(s−x)dVx +

√∫ s

t

e−δ(s−x)dVx

∣∣∣∣Ft
]

=

√∫ t

−∞
e−δ(s−x)dVx + EQ

[√∫ s

t

e−δ(s−x)dVx

]
= σte

− δ2 (s−t) + EQ

[√∫ s

t

e−δ(s−x)dVx

]
,

(B.5)

where we applied the inequality
√
a+ b ≤

√
a+
√
b to non-negative processes as well as the identity∫ t

−∞ e−δ(s−x)dVx = e−δ(s−t)
∫ t
−∞ e−δ(t−x)dVx = σ2

t e
−δ(s−t). We remark that σs is stationary in

mean, i.e. for all s ∈ R, EQ [σs] = EQ [σ0]. Furthermore,

EQ

[√∫ s

t

e−δ(s−x)dVx

]
= EQ

√∫ s−t

0

e−δudVu

 ≤ EQ

[√∫ ∞
0

e−δudVu

]
= EQ [σ0] , (B.6)

as we integrate a non-negative function over a smaller domain. Therefore

EQ [EQ [σs|Ft]EQ [σu|Ft]] ≤ EQ
[
σ2

0

]
e−

δ
2 (s−t)e−

δ
2 (u−t)

+ EQ [σ0]

(
e−

δ
2 (u−t)EQ

[√∫ s

t

e−δ(s−x)dVx

]
+ e−

δ
2 (s−t)EQ

[√∫ u

t

e−δ(u−x)dVx

])

+ EQ

[√∫ s

t

e−δ(s−x)dVx

]
EQ

[√∫ u

t

e−δ(u−x)dVx

]
≤ EQ

[
σ2

0

]
e−

δ
2 (s−t)e−

δ
2 (u−t)

+ EQ [σ0]
2
(
e−

δ
2 (s−t) + e−

δ
2 (u−t) + 1

)
,

(B.7)
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where the first inequality follows from Equation B.5 and the second one from Equation B.6. This

implies that

lim
T→∞

EQ

(∫ T

t

g(T − s)EQ [σs|Ft] ds

)2


= lim
T→∞

∫ T

t

∫ T

t

g(T − s)g(T − u)EQ [EQ [σs|Ft]EQ [σu|Ft]] dsdu

≤ EQ
[
σ2

0

](
lim
T→∞

∫ T

t

g(T − s)e− δ2 (s−t)ds

)2

+ 2EQ [σ0]
2

lim
T→∞

(∫ T

t

g(T − s)ds
∫ T

t

g(T − s)e− δ2 (s−t)ds

)

+ EQ [σ0]
2

(
lim
T→∞

∫ T

t

g(T − s)ds

)2

= EQ
[
σ2

0

](
lim
T→∞

e−
δ
2 (T−t)

∫ T−t

0

g(y)e
δ
2ydy

)2

+ 2EQ [σ0]
2

lim
T→∞

∫ T−t

0

g(y)dy lim
T→∞

(
e−

δ
2 (T−t)

∫ T−t

0

g(y)e
δ
2ydy

)

+ EQ [σ0]
2

lim
T→∞

∫ T−t

0

g(y)dy = C2,

(B.8)

where we used Tonelli’s theorem and assumptions of Proposition 2.1. By Equation B.4 and Equa-

tion B.8 we deduce that

lim
T→∞

EQ

(∫ T

t

g(T − s)EQ [σs|Ft] ds

)2
 = C2. (B.9)

Because also by Tonelli’s theorem

lim
T→∞

EQ

[∫ T

t

g(T − s)EQ [σs|Ft] ds

]
= EQ [σ0] lim

T→∞

∫ T

t

g(T − s)ds = C, (B.10)

Equation B.3 implies that lim
T1,→∞

∫ T1+τ

T1

∫ T
t
g(T − s)EQ [σs|Ft] ds dT = C in the L2−sense.

C Change of measure continued

We used the generalised Esscher transform of L(t) with parameter θ(t), a Borel measurable func-

tion. One defines QθL via the Radon-Nikodym density process

dQθL
dP

∣∣∣∣
FT

= exp

(∫ t

0

θ(s)dLs −
∫ t

0

φL (θ(s)) ds

)
, (C.1)

where θ(·) is a real-valued function integrable with respect to L(t) and φL(·) = log (E[exp(xL1)])

is the log-moment generating function of L1 (if it exists).

By analogy, we define QηV as

dQηV
dP

∣∣∣∣
FT

= exp

(∫ t

0

η(s)dVs −
∫ t

0

φV (η(s)) ds

)
; (C.2)
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Then we get a new probability measure for Y (t): QY := QL × QV . We define a measure change

for Z(t) in a similar way, i.e.

dQκZ
dP

∣∣∣∣
FT

= exp

(∫ t

0

κ(s)dZs −
∫ t

0

φZ (κ(s)) ds

)
. (C.3)

Finally we define the probability measure Q := QY × QZ . If we choose θ(t), η(t) and κ(t) to be

constant, then the change of measure will preserve the desirable Lévy property.

D The sampled CARMA process

Even though we assume that Y (t) is a continuous process, we observe it only in discrete time.

More precisely, we denote by {Yn := Y (nh), n = 0, 1, . . . , N} the sampled process, where N is

the number of available observations and h > 0 is a small, fixed interval between the consecutive

observations.

Theorem D.1 ([Brockwell et al., 2011, Proposition 3]). Under the assumptions of Definition 3.2

(where we replace CARMA(2,1) by a general CARMA(p,q) process) the following hold.

1. The sampled process {Yn := Y (nh), n = 0, 1, . . . , N}, with a fixed h > 0, can be represented

as Yn =
∑p
r=1 Y

(r)
n , where n ∈ Z. For each r = 1, . . . , p, the discrete-time process {Y (r)

n } is

obtained by sampling the component CAR(1) process {Y (r)(t)} at spacing h > 0. As Y is

strictly stationary,

∀n ∈ Z Y (r)
n = eλrY

(r)
n−1 + Z(r)

n , (D.1)

with the iid noise

∀n ∈ Z Z(r)
n = αr

∫ nh

(n−1)h

eλr(nh−s)dL(s). (D.2)

2. The sampled process {Yn := Y (nh), n = 0, 1, . . . , N} satisfies

φ(B)Yn =

p∑
r=1

V rn−r+1 =: Un, (D.3)

where

φ(z) :=

p∏
r=1

(
1− eλrhz

)
= 1−

p∑
r=1

φrz
r (D.4)

and B denotes the backshift operator, i.e. BjYn := Yn−j. For each r = 1, . . . , p, we define

the iid sequence {V (r)
n } as

V (r)
n :=

∫ nh

(n−1)h

p∑
k=1

αk

e(r−1)hλk −
r−1∑
j=1

φje
(r−1−j)hλk

× e(nh−s)λkdL(s). (D.5)

3. We can represent the right-hand side of Equation D.3 as an invertible moving average

θ(B)Wn := Wn + θ1Wn−1 + · · ·+ θp−1Wn−p+1, (D.6)
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where {Wn} is a sequence of white noise (possibly not iid) and θ1, . . . , θq are moving average

constants depending on the CARMA process. Therefore {Yn} can be represented as a weak

ARMA(p,p-1) process, so an ARMA(p,p-1) process allowing for not iid driving white noise,

such that

φ(B)Yn = θ(B)Wn (D.7)

and

Wn = θ(B)−1

p∑
r=1

V pn−r+1. (D.8)

Proof. For the proof we refer the reader to [Brockwell et al., 2011].

E Estimation of CARMA(2,1) model

We estimated CARMA parameters using the algorithm described by [Garćıa et al., 2011]. Since

we are interested in CARMA(2,1), we will specify the procedure for this particular process.

1. Estimate ARMA(2,1) parameters β = (φ1, φ2, θ)
T , using the maximum likelihood approach.

For simplicity we use the same notation for parameters and their estimators.

2. In CARMA(2,1) case Equation D.3 has the form

Yn − φ1Yn−1 − φ2Yn−2 =
(
1− eλ1hB

) (
1− eλ2hB

)
Yn. (E.1)

By multiplying through and matching coefficients, we obtain

φ1 = eλ1h + eλ2h, φ2 = −e(λ1+λ2)h. (E.2)

This gives us a nonlinear system of two equations for the estimators of λ1 and λ2, whose

solutions are

λ1 = log

φ1

2
+

√(
φ1

2

)2

+ φ2

 , (E.3)

λ2 = log

φ1

2
−

√(
φ1

2

)2

+ φ2

 . (E.4)

From there we immediately calculate a1 = − (λ1 + λ2) and a2 = λ1λ2.

3. The right-hand side of Equation D.3 implies that the autocovariances of the process φ(B)Yn

∀k ∈ Z γU (k) = Cov (φ(B)Yn, φ(B)Yn−k) . (E.5)

Furthermore, using Corollary 3 by [Barndorff-Nielsen et al., 2013], we calculate the autoco-

variance of Y (t), i.e.

∀k ∈ Z γY (k) = Cov (Y (t+ k), Y (t)) =

∫ ∞
0

g(x)g(x+ k)dx = w1e
λ1k + w2e

λ2k, (E.6)
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where

w1 =
α2

1λ1λ2 + α1
2λ2

2 + 2λ1λ2α1α2

2λ1λ2 (λ1 + λ2)
, (E.7)

w2 =
α2

2λ1λ2 + α2
2λ2

1 + 2λ1λ2α1α2

2λ1λ2 (λ1 + λ2)
. (E.8)

Thus the autocorrelation of Y (t) equals

∀k ∈ Z δY (k) =
γY (k)

γY (0)
=
w1e

λ1k + w2e
λ2k

w1 + w2
. (E.9)

For CARMA(2,1) Equation E.5 can be written as

γU (0) = (1 + φ2
1 + φ2

2)γY (0) + (2φ2φ2 − 2φ1)γY (1)− 2φ2γY (2), (E.10)

γU (1) = −φ2γY (3) + φ1(φ2 − 1)γY (2) + (1 + φ2
1 + φ2

2 − φ2)γY (1) + φ1(φ2 − 1)γY (0),

(E.11)

where we can use explicit formulae for γY (·) given by Equation E.6. Since they depend on

a1, a2 and b0, we plug in the estimates of the first two parameters.

On the other hand, the autocorrelation function at lag 1 of a moving average process with

coefficient θ can be expressed as

δU (1) =
γU (1)

γU (0)
=

θ

1 + θ2
. (E.12)

Now we can replace the left-hand side of Equation E.12 by expressions from Equation E.10

to get a non-linear equation for b0, which we solve numerically.

4. Having estimated the parameters of CARMA(2,1), we need to recover the background driving

Lévy process L(t). We will use results from Section 5 of [Brockwell et al., 2011].

X(0)(t) = X(0)(0)e−b0t +

∫ t

0

e−b0(t−s)Y (s)ds, (E.13)

X(1)(t) = DX(0)(t) = −b0X(0)(t) + Y (t). (E.14)

The canonical state vector Y(t) is given byY (1)(t)

Y (2)(t)

 =
1

λ1 − λ2

−λ2(b0 + λ1) (b0 + λ1)

λ1(b0 + λ2) −b0 + λ2

X(0)(t)

X(1)(t)

 . (E.15)

To recover the background driving Lévy process L(t) we can choose one of two equations,

either with r = 1 or r = 2:

L(t) =
1

αr

[
Y (r)(t)− Y (r)(0)− λr

∫ t

0

Y (r)(s)ds

]
. (E.16)

The recommended choice is r such that |λr| is minimal, which minimizes the contribution

of λr
∫ t

0
Y (r)(s)ds compared to Y (r)(t) − Y (r)(0), as discussed by [Brockwell et al., 2011,

Example 4].
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