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Abstract

We provide a versatile upper bound on the number of maximally entangled qubits, or private bits,
shared by two parties via a generic adaptive communication protocol over a quantum network when
the use of classical communication is not restricted. Although our result follows the idea of Azuma
etal (2016 Nat. Commun. 7 13523 ) of splitting the network into two parts, our approach relaxes their
strong restriction, consisting of the use of a single entanglement measure in the quantification of the
maximum amount of entanglement generated by the channels. In particular, in our bound the
measure can be chosen on a channel-by-channel basis, in order to make it as tight as possible. This
enables us to apply the relative entropy of entanglement, which often gives a state-of-the-art upper
bound, on every Choi-simulable channel in the network, even when the other channels do not satisfy
this property. We also develop tools to compute, or bound, the max-relative entropy of entanglement
for channels that are invariant under phase rotations. In particular, we present an analytical formula
for the max-relative entropy of entanglement of the qubit amplitude damping channel.

1. Introduction

Whenever two parties, say Alice and Bob, want to communicate by using a quantum channel, its noise
unavoidably limits their communication efficiency [1]. In the limit of many channel uses, their asymptotic
optimal performance can be quantified by the channel capacity, which represents the supremum of the number
of qubits/bits that can be faithfully transmitted per channel use. Obtaining an exact expression for this quantity
is typically far from trivial. Indeed, in addition to the difficulty of studying the asymptotic behaviour of the
channel, the value of the capacity also depends on the task Alice and Bob want to perform, as well as on the free
resources available to them [1]. Two representative tasks, which will be considered in our paper, involve the
generation and distribution of a string of shared private bits (pbits) [2, 3] or of maximally entangled states (ebits)
[4]. These are known to be fundamental resources for more complex protocols, such as secure classsical
communication [5, 6], quantum teleportation [7], and quantum state merging [8]. An example of free resource
involves the possibility of exchanging classical information over a public classical channel, such as a telephone
line or over the internet. Depending on the restrictions on this, the capacity is said to be assisted by zero, forward,
backward, or two-way classical communication [1]. In this paper we will focus on the last option, that is, no
restriction will be imposed on the use of classical communication.

Although the capacity of a quantum channel is by definition an abstract and theoretical quantity, it is also
practically useful in that it can be compared with the performance of known transmission schemes. This
comparison could then give an indication on the extent of improvements that could be expected in the future.
From this perspective, similar conclusions could be obtained even by studying upper bounds on the channel
capacity itself, if they are close enough to its value. For example, with this approach Takeoka et al [9] provided
strong evidences for the need of quantum repeaters for long-distance quantum key distribution (QKD) [10-12].
This reason, together with the fundamental appeal of characterising the ultimate transmission rate achievable by
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achannel, led to recent intensive research for computable and simple upper bounds on channel capacities,
preferably determined by a single use of the channel [9, 13-20].

The results in this direction have been obtained by considering the maximum entanglement that could be
shared through a single use of a channel NV}, g, which takes as input a quantum state on Alice’s side and yields an
output on Bob’s one. Indeed, for any entanglement measure E across the bipartition A:B, we can define the
entanglement of the channel as

E(WN) = max EWNu—p[p 40> &

Pan

along the lines of [13—15, 17]. For some choices of 4, g and E, this can be used to upper bound the private
capacity K (\), assisted by two-way classical communication. Hence, E () also acts as an upper bound on the
two-way quantum capacity Q (N\) of the channel, because Q(N') < K (N) (since an ebit can be considered a
special case of pbit [2, 3]). By generically labelling with C (') one of these two capacities, these upper bounds
can be compactly written as

CWN) < EWN). 2

A result of this form has been proven in [9, 13] for any quantum channel by employing a particular entanglement
measure, the squashed entanglement Egq [21]. However, due to the difficulty of computing Ey; (N') exactly

[14, 16, 22], one often needs to resort to upper bounds on it, thus loosening the bound for the capacity. The
relative entropy of entanglement Ey, is also known to provide an upper bound on the capacity of Choi-simulable
quantum channels [14, 17], i.e., channels that can be simulated by performing LOCCs on their Choi-
Jamiotkowski states. Quantum channels with this property are also called Choi-stretchable channels [14].
Remarkably, this upper bound often has no gap with respect to the best known lower bound on the capacity, and
when this happens a single-letter formula for the capacity has been found. However, a drawback of the upper
bound based on the relative entropy of entanglement is that at the moment it is not known whether equation (2),
with E = Eg, is valid when applied on a generic, non Choi-simulable, quantum channel. Another option is to
use in equation (2) the max-relative entropy of entanglement E,x [15]. The resulting bound is formally proven
only for quantum channels acting on finite dimensional systems, but it is thought to hold in general (see [15] for
ashort discussion). The set of pairs (E, A) for which equation (2) is known to hold is the subject of ongoing
research, and its extension represents an interesting and challenging problem.

In the future, it is reasonable to expect that all the parties involved in a communication task will be located at
different nodes of a quantum network. In this vision, multiple users will be interconnected by a network of
quantum channels, which can be utilised with the aim of transmitting or sharing quantum information. This
scenario represents the evolution of today’s internet in a quantum regime, and is therefore known as ‘quantum
internet’ [23-26]. Experimental demonstrations of QKD over metropolitan networks are currently under way
[27-31]. Similarly to the single-channel scenario, it is of fundamental and practical importance to seek upper
bounds on the rate at which ebits (or pbits) can be shared by two parties by using the channels of the network.
This issue has been addressed in [32] and [24], where the authors obtained network versions of equation (2), by
respectively using E or Eq as measures of entanglement. The possibility of dealing with quantum broadcast
channels [33] has also been considered in [34—39]. When multiple channels are involved, a typical approach
consists in splitting the whole network into two parts, and then in using the maximum amount of entanglement
generated by the channels connecting them in order to bound the number of ebits (pbits) produced by a
communication protocol. Thanks to the broad applicability of the single-channel bound given in equation (2)
for E = E, theresult of [24] holds for arbitrary quantum networks. However, a non-vanishing gap with the
optimal number of ebits (or pbits) generated by the network could exist, in analogy with the single-channel case
where the upper bounds on the capacity based on the squashed entanglement are typically not tight. It is thus
natural to wonder whether different entanglement measures could improve this sort of network bound, and to
what extent the choice of entanglement measure could be tailored to the characteristics of the channels in the
network.

In this paper, we start by emphasising how a common strategy is adopted in all the known proofs of the
bounds with the form given in equation (2). This allows us to formally identify two sufficient properties that, if
satisfied by a given pair (E, ), lead to a new instance of equation (2). We then show that those two properties
also allow us to generalise the result of [24] on quantum networks to different entanglement measures: Egx when
the channels in the network are Choi-simulable, or E,,. The first case is particularly interesting, because
equation (2) is often known to be tighter when stated in terms of Eg, rather than in terms of Eq. The same
advantage is therefore expected to be inherited by the corresponding upper bounds on the performance of
quantum networks. However, notice that the Eg-based bound cannot be applied to arbitrary quantum
networks. For example, even if a quantum network is composed almost entirely by Choi-simulable channels that
are well bounded by their relative entropy entanglement, the presence of a single channel that is not Choi-
simulable forces the use of a weaker entanglement measure (such as E,q) for the whole network. This suggests
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that a better bound could be obtained if there was the possibility of changing entanglement measures on a
channel-by-channel basis. Our second and most important result goes exactly in this direction. We exploit an
intermediate step in the discussion by Christandl and collaborators in [15] in order to bound the performance of
aquantum network by means of either E or E,,. In particular, as E,x is always larger than Eg, we use the
relative entropy of entanglement on the Choi-simulable channels of the network, and the max-relative entropy
of entanglement on the others. The resulting bound allows us to maintain the precision guaranteed by the
relative entropy of entanglement, without the need to restrict its applicability to Choi-simulable networks. After
having presented this general result, we will provide examples of networks where our bound yields an advantage
over its counterpart based on the squashed entanglement. In order to do this, we will also evaluate the max-
relative entropy of entanglement for the most common qubit channels, by exploiting their symmetry under
phase rotations and a recent semidefinite programming (SDP) formulation of E,x [40]. In particular, for the
qubitamplitude damping channel we are able to analytically solve the SDP optimisation, thus finding the exact
expression for its max-relative entropy of entanglement. This quantity upper bounds the private and quantum
capacities of the channel assisted by unlimited classical communication, but is less tight than the best known
upper bound based on the squashed entanglement [14].

The remainder of this paper is organised as follows. In section 2 we introduce our notation and some
preliminary notions that will be used in the following. In section 3 we formally identify sufficient properties that,
if satisfied by a pair (E, V), lead to an upper bound on the capacity of the channel as in equation (2).
Furthermore, along the lines of [24], we show how the same properties are also sufficient to obtain an upper
bound on the number of ebits (or pbits) generated through a quantum network. Our main result is presented in
section 4, where we derive a similar versatile upper bound, in which different entanglement measures are applied
to the channels of the network depending on their Choi-simulability. Analytical or numerical evaluations of the
max-relative entropy of entanglement for the most common qubit channels can be found in section 5, while
examples of networks where our bound performs better than the one based on the squashed entanglement are
presented in section 6. A final discussion on our results can be found in section 7, together with our conclusions.
Technical details are left for the appendices.

2. Preliminaries

In this section we introduce the basic concepts necessary to understand the remainder of the paper, and we
describe the notation we will use. In particular, we start by looking at the definitions and properties of the relative
and max-relative entropy. Then, we introduce the notion of private states and of Choi-simulable channels. We
also formally describe the structure of a quantum network and of the most general adaptive protocol, assisted by
free classical communication, that could be employed to share ebits (or pbits). At the end of the section, we
discuss the figure of merit we use to quantify the performance of a given communication strategy, and we
comment on its relation to the usual single-channel capacity.

2.1. Relative and max-relative entropies
Given two quantum states p and o, with supports satisfying Supp(p) C Supp(o), their relative entropy [41] and
max-relative entropy [42] are respectively defined as

S(pllo) = Tr[p(log, p — log,0)], 3)
Dmax(p||0) = 1nf{x € Rlsz' - p = O}) (4)

while their values are set to o if the condition on the supports is not satisfied. The relative and max-relative
entropy of two states are related by

S(pllo) < Drmax(pl0), (€)

they are also non-negative, equal to zero ifand only if p = ¢, and invariant under joint unitary operations, that
is:

SWUpUHUsU") = S(pl|0),  Danax(UpUT|UoU™) = Dynas (plf0)s ©)

for any unitary U. Moreover, the relative entropy is jointly convex in its arguments [43], whereas the max-
relative entropy is jointly quasi-convex:

S(ZPiPiIIZP,»Ui) < 2208l @)
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Dinax (Z AN P,'Ui) < max Dax (p;|07)s ®)

where { p;}; and { 5;}; are quantum states,and p, > Owith 3", p, = 1.

The relative and max-relative entropies can be used to define entanglement measures respectively known as
relative entropy of entanglement [44] and max-relative entropy of entanglement [42]. For a given bipartite state
P> their values are obtained by optimising over all separable states as follows:

EZP (pup) = meisr]liPS(PABHUAB% )
OAB
ELE (pap) = _minDinax (015 llo4n)- (10)
'AB

In the following we do not explicitly write the bipartition A:B in the symbols Eg and E.,y, unless needed to avoid
confusion. If the local quantum systems of Alice (or Bob) are divided into smaller subsystems, these will be
labelled for example as A, A, A” (or B, B/, B"). In this case, the default evaluation of an entanglement measure
has to be considered across the bipartition AA’A”:BB'B”. As any good entanglement measure, Eg and Ej,, are,
on average, monotonically non-increasing under local operations and classical communication (LOCC). For an
entanglement measure E, this property can be explicitly written as

S DEW) < E(pap), (11)
k

where k represents the measurement outcome of the LOCC operation applied on p, , pi is the probability of
obtaining it, and p(:; is the output state of the system post-selected on that result. Moreover, the ordering
relation in equation (5) can also be straightforwardly extended to the entanglement measures Eg and E ., as
well as to the entanglement of a channel A/ (see equation (1)):

ER(pAB) g Emax(pAB)) ER(N) < Emax(N)- (12)

Further details on E,,, can be found in [45].
We stress that in the remainder of this paper any generic entanglement measure E satisfies equation (11), and
becomes zero when evaluated on any separable state.

2.2. Target states: maximally entangled or private states
The typical goal of two parties, say Alice and Bob, in a quantum communication protocol is to share one or
multiple copies of a d-dimensional maximally entangled state

d

D) = §|ii> Gilas» (13)

ij=1

where {|i)4 g, }i forms alocal orthonormal basis. Any single copy of these states corresponds to log, d ebits,
which Alice and Bob can use to perform one of many possible tasks. For example, they can transmit any d-
dimensional state via the teleportation protocol, or they can perform a projective measurement on it in order to
share a string of log, d bits of private randomness. The maximally entangled state, however, is not the only
quantum state from which a private key can be obtained by performing local measurements. It has been shown
that this is possible whenever Alice and Bob are able to distil via LOCC a so-called ‘private state’ [2, 3], which has
the following form:

Y app (d) = USS(up(d) @ oup)Ulpea. (14)

The state o yp is arbitrary and the controlled unitary

d
Ul = 2 1) (ila @ 1) (jls @ Ul (15)
ij=1
is known as ‘twisting unitary’, with each UX/;, aunitary operator. The local subsystems A and B are called ‘key
systems’, whereas A’ and B’ are known as ‘shield systems’. The role of the latter is to prevent an eavesdropper
from getting access to the key component, and they could have any dimension.

2.3. Choi-simulable channels

The idea of using quantum teleportation in order to simplify the structure of a computation for communication
task has been used several times in the past [46-51, 51, 52]. Recently, a similar idea has been used in [14] and in
[17,32] in order to obtain upper bounds on the capacities of quantum channels N such that their action ona
quantum state p , can be written as
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Naop(P ) = Aaap(Py @ Tap (N)). (16)

Here A y4.p is a trace-preserving LOCC operation and 7 415 (N) = Nj_ /(¥ 47) represents the Choi—
Jamiotkowski state associated with the quantum channel A/, with 1) 44 a maximally entangled state. We will say
that channels satisfying equation (16) are Choi-simulable, as they can be simulated by applying LOCCs to their
Choi-Jamiotkowski state. This property can also go under the name of ‘Choi-stretchability’ [14, 32]. The
importance of equation (16) lies in the fact that it gives the possibility of reducing the effect of a quantum channel
to the presence of an initially shared Choi state, up to some LOCC transformation. Equation (16) makes the
description of the quantum communication much simpler, because the LOCC A 4 4.5 can be included among
those freely performed by the parties. In the following, if a channel N is Choi-simulable we will write N € S.

Remarkably, the relative entropy of entanglement of a Choi-simulable channel A, as defined in
equation (1), provides an upper bound on its capacity assisted by two-way classical communication [14, 17].
Moreover, Eg (N) exactly coincides with the capacity C () on a particular subset of Choi-simulable channels,
whose capacities C (N) can thus be written as single-letter formulas [14]. Channels for which this happens can
also be called ‘distillable’ [ 14, 32]. Among these, we can enumerate the erasure and dephasing channels in finite
dimensional systems, as well as the bosonic lossy channel. Interestingly, for many Choi-simulable channels
(such as Pauli channels) Eg (NV) turns out [14] to be a tighter upper bound on C (/) than other known upper
bounds based on the squashed entanglement [9, 13]. However, one should keep in mind that this is not always
the case, as can be seen by considering a channel having an antisymmetric Choi state. Indeed, the squashed
entanglement of this state, and thus of the associated quantum channel, can be arbitrarily small compared to its
relative entropy of entanglement [53, 54].

We now explicitly derive a property that the relative entropy of entanglement satisfies when applied on the
output of a Choi-simulable channel. Although it is obvious from the discussion in [14], it is beneficial to go
through its proofin detail, because it will play a central role in the remainder of this paper. In particular, we
prove thatif p , /. is obtained as output of a Choi-simulable channel N € S as

ﬁAB’B = NA’—»B’(/)AA’B)’ (17)
the following chain of inequalities holds:
Er (PAA/B @ Tap (N))

<
< ER(WA”B’(N)) + ER(pAA’B)
Er(Nu—p) + Er(p oxp)- (18)

ER(pAB’B)

The first inequality comes from equation (16) and from the monotonicity of Egx under LOCC, while the second
one follows from its sub-additivity under tensor products. The final equality can be proven by showing
inequalities in both directions. Indeed, the inequality ‘< is obtained by noticing that a maximisation over all
input states would be needed in order to obtain the relative entropy of entanglement of a channel (see

equation (2)). The converse direction, instead, is once again a consequence of equation (16) and of the
monotonicity of Eg under LOCC [14]:

ERWNy—plpax]) = ER(Aparplpan ® mag(N)]) < Er(marg(N)), (19)

which holds for any p , , and thus also for its maximum value Ex (Vy _ /). Hence, equation (18) shows that the
amount of entanglement which can be found in output of a Choi-simulable channel, as measured by Eg, canbe
upper bounded by the amount already present in input plus the maximum amount that can be created by the
channel itself. Up to date, it is not known whether the same conclusion could be obtained also for any quantum
channel.

2.4. Quantum networks as graphs

The simplest setup that allows Alice and Bob to exchange quantum information is shown in figure 1(a), where a
quantum channel A,_, 3 connects Alice’s laboratory with Bob’s. More generally, we can think of them as being
two local users having access to a quantum network;, as in figure 1(b). A quantum network is composed of several
nodes, connected by many quantum channels potentially different from each other. We can formally describe
this structure by a directed graph G = (V, L), where V.= {V,..., V14 1} is the set of nodes and L is the set of
directed edges, or links, between the nodes. For any edge I = (V;, V) €L, there is a quantum channel A'® from
node V;to node V;. Withoutloss of generality, we can assume that nodes A = Vpand B = V) are respectively
controlled by Alice and Bob, whereas the remaining nodes { C;} |, with C;= V;, are not.

In the following we will often make use of the notion of ‘bipartition’ of a quantum network. This is defined
by dividing the nodes { C;}; into two disjoint sets: Cy C {C;};and Cg = {C;};\ Cs. Once a bipartition has been
chosen, the set of edges connecting the nodes in {A} U C4 with thosein Cg U {B}, or vice versa, will be labelled
as L¢, C L. Moreover, in order to keep our notation simple, in the remainder of this paper we will refer to the
subsets of nodes {A} U C4 and Cg U {B} by writing respectively AC4 and CgB.
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NA—>B
A B

(a) Single channel.

AC4' CpB

——

(b) Quantum network.

Figure 1. (a) Single-channel communication scenario, where A and Bare connected through the channel NV} _ 5. (b) An example of
quantum network, with M = 6 additional nodes. Every arrow corresponds to a quantum channel. The bipartition

Cy = {C}, Cy, G5}, Cg = {Cy, Cs, C4} is shown as an example, and the channels N'® with I € L¢,,which connect the two partitions,
are coloured in red.

2.5. Adaptive strategy over quantum networks

We assume that full quantum control over the local systems is available on each node of the network, and that all
parties can freely exchange classical information at any stage of the protocol in order to coordinate their strategy.
Moreover, we also assume that every node in the network will collaborate with Alice and Bob in order to allow
them to achieve their goal. At the beginning of the most general adaptive communication protocol, the parties
initialise their systems in a separable state p%q .., Then, they iteratively exchange (part of) their systems via
the quantum channels, and perform LOCCs on the obtained states, which may involve measurements. For this
reason, every choice made by the parties at a certain stage of the protocol may depend on all previously obtained
LOCC outcomes. In the remainder of this section we formally describe any protocol of this kind, similarly to
what has been done in [24, 32, 36]. For the sake of simplicity, we will drop the subscript ABC, ... Cy from states
spread over the whole network.

Between any two channel uses several LOCC may be performed, but we can group them into a single ‘round
of LOCCs’ yielding an overall multi-index outcome k. In this way, a single ‘round of the protocol’ will be
composed by the application of a channel followed by a round of LOCC:s. Let us group within the vector
k; = (ko, ky,....ki_1, k;) the sequence of LOCC outcomes obtained in the first i rounds, with ko = 1added for
convenience. In this way, the ith round of the protocol receives as input pki-1 and transforms it into pki via the
following two steps.

+ Depending on the previous LOCC outcomes, grouped within k;_, the parties may use the channel A/ to
transmit a quantum state along the edge Iy, | € L of the graph G characterising the network. The global state at
the end of this step is labelled by pki-1;

+ Around of LOCCs A%V is performed on pki-1, with output k; obtained with probability p(k;|k;_,). The
output quantum state p* will be used as input for the following round of the protocol.

When the protocol stops, say after n rounds, the final state p’XB = Trg, ..., [p*] shared by Alice and Bob has to
be e-close in trace distance to an ideal target state ¢, ;(dg, ), i.e., such that for any sequence of outcomes k,, one
has

leng - ¢AB(dkn)||1 =6 (20)

where ||O||; = Tr[V O'O]. The target state ¢, (dj,) can either be a maximally entangled state 5 (dy,) (see
equation (13)) or a private state -, ;(d,) (see equation (14)), depending on the task of Alice and Bob.

All the details of the adaptive strategy leading to equation (20) are determined by the protocol 7. ,, that the
parties are following. These details include the error threshold ¢, the maximum number of rounds 7, the target
states ¢, (dy,), and the set of rules that, at any round of the protocol, map the vectors of previous outcomes
{k;}!~ to the channel and LOCC operations used in the following. In the remainder of this paper we will often
have to average some function F (k,,) over all possible LOCC outcomes {k,}. It is thus convenient to introduce
the shorthand notation




10P Publishing

NewJ. Phys. 20 (2018) 013033 L Rigovaccaet al

(F)p, =Y pkn)F(ky), Q1)

k

n

where p(k,) is the probability of obtaining this particular sequence of LOCC outcomes according to the
protocol 7, ..

We point out that the number of channels used in the protocol will generally be smaller than n. This is
because in any round the parties may decide to use a channel of the network, but are not forced to do so.
However, without loss of generality we can assume that a channel is used in any round of the protocol up to a
certain point, after which the parties can only perform LOCCs and the communication protocol is effectively
aborted. Indeed, if this were not the case, we could recover this situation simply by merging all the LOCCs
performed between two channel uses into a single round of LOCCs. Notice that depending on the LOCC
outcomes already obtained, the parties can decide to effectively abort the communication after different
numbers of channel uses. In particular, for any edge € L and vector k,,, we can define as m) (k,,) the total
number of times channel A/ has been used in that particular realisation of outcomes. Formally, this can be
written as

n—1
mO(k,) =" 614, (22)

i=0

where the symbol 6 represents the Kronecker delta, while the total number of channel uses is

m(k,) = m(k,). (23)

leL

Avalue of m (k,,) strictly smaller than n means that the protocol has been effectively interrupted after m (k,,)
rounds.

2.6. Quantifying the performance of a communication protocol

The quality of a point-to-point adaptive communication protocol 7. , can be quantified by its ability to produce
alarge number of shared ebits (or pbits) between Alice and Bob. For any realisation k,, of LOCC outcomes, this
corresponds to the logarithm of the dimension dy, that characterises the target state ¢, 5 (dg, ), e-close to the final
state p'j{b produced by the protocol. Therefore, a good figure of merit for 7. , can be obtained by averaging this
quantity over all LOCC outcomes. In our notation, this can be written as (log, d)p, ,..

This approach is particularly suitable to characterise the performance of protocols that use the channels of
the network a finite number of times, because it directly provides the length of ebits (pbits) that Alice and Bob
can expect to share at the end of the communication. However, the quantity (log, d), , becomes unbounded
when the asymptotic limit of infinitely many channel uses is considered. In a single-channel scenario, this issue
hasbeen traditionally addressed by considering the communication rate, i.e., the number of bits produced per
channel use. We should point out that in this case one does not typically consider the possibility of interrupting
the protocol depending on previous LOCC outcomes. This is because otherwise with non-zero probability the
asymptotic regime of infinitely many channel uses would not be reached. For this reason only protocols which
use the quantum channel after every round of LOCC are normally considered when assessing its asymptotic
performance. In this paper, a protocol of this kind will be labelled as 7.y, where € represents the error threshold
and Nis the fixed number of channel uses. With this notation, the quantum (or private) capacity of a quantum
channel  assisted by two-way classical communication can be obtained as the limit

log, d)#
C(N\) = lim lim sup M.

e—0N—00 p N
“

24

For a generic quantum network the situation is more involved, and in the literature one can find multiple
ways of assessing its communication performance in the asymptotic limit. For example, one can fix the
frequency with which each channel is used, and divide (log, d)5, , by the total number of channel uses [55]. Other
options, proposed in [32], consist in using each ‘path’ connecting Alice and Bob with a certain probability, or in
using each channel of the network exactly once. Then, the number of produced ebits (pbits) is respectively
divided by the number of paths used, or by the total number of times the network has been accessed. Although
the details of characterising the considered figure of merit can change on a case-by-case basis, one typically has to
optimise (log, d)p , over a chosen class of protocols, and divide it by a quantity that counts how many times a
basic operation has been repeated.

Similar to [24, 55], in the following we are able to provide an upper bound on (log, d)p , for a generic
adaptive protocol running on a quantum network with graph G. This bound only depends on the maximum
amount of entanglement that could be generated by the quantum channels composing the network, and on the
number of times each channel has been used. From the previous discussion, it should be clear that our bound
can be easily converted to a bound on a broad class of figures of merit, which could be chosen to quantify the
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performance of the network. For example, in the case of a single channel, our bound can be connected to an
upper bound on the capacity by means of equation (24).

3. Entanglement-based upper bounds

As mentioned in the introduction, recently several authors provided bounds on the number of ebits (pbits)
shared by two parties at the end of a point-to-point communication protocol assisted by two-way classical
communication. Some studies deal with the capacity of a single quantum channel [9, 13—15, 17], whereas others
consider quantum networks with arbitrary topology [24, 32, 55]. However, they all share some common
features. Here we identify these, and show how they can lead to known, new, or yet to be discovered
communication bounds.

We start by considering a single channel A/ and a generic entanglement measure E, and we formally
summarise in theorem 1 some important properties that have been used in the past in order to obtain upper
bounds on the channel capacity. One advantage of this abstract formulation is that it can ease the process of
identifying all the entanglement measures which can be used to bound the capacity of a given channel. By
comparing all these bounds, it would then be possible to select the one with the minimum value, which
represents the best known upper bound on the capacity C (NV). A second advantage of our abstract approach lies
in the possibility of easily extending previous results on quantum networks to other entanglement measures, not
explicitly studied in the original papers. This is because the same properties responsible for the upper bound on
the capacity of a single channel are also the main ingredients used in [24] to derive an upper bound for the
number of shared ebits (pbits) produced by a quantum network. In this way, we are able to show that the same
bound of [24], originally expressed in terms of the squashed entanglement, is also valid for other entanglement
measures: E ., and Eg, although the applicability of the latter is restricted to networks composed by Choi-
simulable channels. This original contribution will be summarised as theorem 2.

Having multiple upper bounds on the communication performance of a quantum network, based on
different entanglement measures, there is the possibility of combining them together in order to obtain abound
as tight as possible. An obvious option consists in evaluating each upper bound separately, and then selecting the
one which yields the minimum value. However, it is possible to do better than this, and in section 4 we show how
the bounds based on E,,,x and E can be joined together to form a single tighter bound.

3.1. General framework
We start by discussing the case of a single channel N, and then we move to the more general situation of a
quantum network with arbitrary topology. The proofs for the theorems presented here can be found at the end
of the section.

All measures of entanglement E known to yield a bound on the number of ebits (pbits) generated by a
communication protocol satisfy the following property:

P1. Ifatargetstate ¢,;(d)is e-close to a quantum state p, 5, i.e., if || o, — P45(d)| = €, then there exist two
real functions fyand gg, with lim,_,g;(¢) = land lim._,f;(¢) = 0,such that

E(pap) = gp(e)log,d — fi.(e). (25)

For a maximally entangled target state, this property can be easily proven for every asymptotically continuous [56]
measure E. On the contrary, more effort is usually required to prove it for private target states. The reason for this
is that the quantity d appearing on the right-hand side of equation (25) needs to be the dimension of the key
systems, rather than the dimension of the whole key-shield systems. Nonetheless, property P1 has been proven
for Eyq [57]and Eg [3, 14, 17]. It can also be easily proven for E,,y, by slightly varying the proof of lemmaIV.2 in
[15]in order to obtain equation (25) with

8. =1L and fe. = —2log,(1 — ¢/2). (26)

Another important property of a pair concerns the relation between the amount of entanglement in the input
and output states of the channel NV, as measured by the entanglement measure E. A pair (E, V) is said to satisfy
property P2 if for all states p , ,, one has

P2. Dapp = Nu—p(panp) =  E@app) < EWN) + E(pyup)

where E(N) is the maximum entanglement shared through a single use of the channel (see equation (1)). This is
known to hold for any quantum channel when E = E [9, 13], and for any Choi-simulable channel when
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E = Eg (see equation (18)). Moreover, property P2 has been recently shown for the max-relative entropy of
entanglement for any channel acting on finite-dimensional system, but it is conjectured to hold even without
this assumption [15].

In order to ease the connection with quantum networks, we provide a bound on (log, d)7, , also in the single-
channel scenario, from which the usual bound on the capacity can be recovered as a corollary by using the
definition in equation (24). Furthermore, we can also provide conditions sufficient to prove the strong converse
property of an upper bound on the channel capacity. In particular, corollary 1 can be used together with
equation (26) in order to show that E,,,, provides a strong converse bound on the capacity of a single channel, as
originally provenin [15].

Theorem 1. If E and N satisfy properties P1 and P2, the average number of ebits (pbits) generated by an adaptive
protocol T, assisted by two-way classical communication can be upper bounded as

(logyd)p, < ——1[fy(e) + (m)p, EA], @)
g:(e)

where (m)p, , is the average number of times the channel has been used.

Corollary 1. If E and N satisfy properties P1 and P2, the capacity of N assisted by two-way classical
communication can be upper bounded as

CW\) < EW). (28)

Furthermore, if g.(¢) = land f;(¢) = clog, ﬁ,for ¢ > 0, thisis a strong converse bound.

Proof of corollary 1. By definition of capacity (see equation (24)), only protocols using the channel a fixed
number of times should be considered. Equation (28) is thus a straightforward consequence of (m)5 , = N,
lim,_,og:(¢) = 1,and lim,_,of; (¢) = 0.In order to see the strong converse property, we need to express

equation (27) in terms of the error%HpAB — S| = 6/2 € [0, 1]. Namely
€/2 > 1 — 2 ¢lllogyd)n y ~NEW)], (29)

which tends to 1 exponentially fast in the number N of channel uses as the rate % (log,d),  exceeds E(N).

As can be expected, a bipartite situation A:B s easier to study than a scenario in which Alice and Bob need to
cooperate with other nodes { C;}Y , in the network in order to achieve their communication task. Building on
this intuition, the authors of [24, 32] derived upper bounds on network capacities by considering a bipartition
AC 4:BCpg, and by extending the regions controlled by Alice and Bob so as to include in them also the remaining
nodes on their side. Intuitively, an upper bound can be obtained in this manner because the achievable
communication rate between the ‘extended’ parties has to be larger than the one achievable by the real A and B.
In this framework, any given bipartition {Cs, Cp} of the network leads to a different upper bound, in which only
the channels corresponding to the edges in L, contribute. Although the proof thatled to the result in [24] is
based on a particular choice of entanglement measure, we can see how the same reasoning applies to any
entanglement measure satisfying properties P1 and P2 for any channel connecting the two network partitions.
This is the result of the next theorem.

Theorem 2. Consider a quantum network with an associated directed graph G. For a given bipartition {C, Cg} of the
network nodes { C;};, let L¢, C L be the set of edges in G that connect a node in ACy with one in CgB. The average
number of ebits (or pbits) that Alice and Bob share at the end of a given adaptive protocol F. ,, assisted by unlimited
classical communication, can be upper bounded as

1

<log2d>7jf,n g [fE(f) + gE(,]Df,m CA)]) (30)
8k €)
where
SE(R,n) CA) = Z <m(l)>72—,y,E(N(l))a (31)
ZELCA

for any entanglement measure E satisfying hypotheses P1 and P2 for any channel N D with1 € Le,.

At this point we can make a few comments on this bound. In virtue of theorem 1, we point out that the
entanglement of the channel ') has to be larger than the single-channel capacity C (\). Therefore, the gap
between the two sides of equation (30) is reduced if a certain measure of entanglement can better approximate
the capacity of the channels in L¢,. Furthermore, among the known entanglement measures satisfying P1 and P2
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for any channel N’ with I € L¢,, the best choice is to choose the one minimising E(F. ,, Ca). If we label by E|c,
the set of entanglement measures satisfying properties P1 and P2 for the channels connecting the two partitions,
the following bound can be obtained:

1
log,d < min min
( 82 >Pe,n e Eey g,(0)

[fe () + E(F i Ca)s (32)

where we also optimised over all possible choices for Cy.

3.2.Proofs for theorems 1 and 2

Any single channel can be interpreted as a simple quantum network, hence we first show how theorem 1 can be
derived from theorem 2, and then we prove the latter. The ideas that will be used for these proofs are basically the
same as those used in [9, 13-15, 17, 24, 32, 55].

Proof of theorem 1. For a single-channel scenario, the only possible bipartition AC 4:C 3B of the network is the
trivial one A:B. Moreover, at every round of the adaptive strategy the only channel Alice and Bob can use is
N, _p, which is associated with the only edge I, of the graph. Therefore, for all k,,

mb)(k,) = m(k,), (33)
and the thesis of theorem 2 simplifies to:

1
8p(€)

(log,d)p,, < [fe(€) + (m)p , EN)]. (34)

O

Proof of theorem 2. In this proof we will make use of the notation introduced in section 2.5 to describe a generic
adaptive protocol P. ,,. Property P1, together with equation (20), implies:

1

p 6)(f5(6) + EAB(pkny). (35)
E

log, d, <

By exploiting the monotonicity of E under partial trace, and by averaging over all possible outcomes, we can
write for any bipartition {C,, Cz} of the set of nodes { C;};:

1 .
(logyd)n,, = >~ plkwlogydi, < ——| fr(e) + 3 phy) EACEHE(pny |, (36)

k, g (€) k,

where pk» is the final state of the protocol, spread across the whole network. The second term written between
square brackets on the right-hand side can be expanded into two terms as

> pk) EACHCB (pkny <5 7 p(ky ) EACCB (pkot) 3 " p(ky) D b, EINO). (37)

ky, Ky k, leLe,

The former is self-similar, but evaluated on the previous round of the protocol, while the latter characterises the
ability of the last channel used to create entanglement across the bipartition AC 4:CB. In particular, the second
term does not always appear, because the channel AV - might not connect AC, with CzB, or the parties may
have decided not to use a channel at all. This last case could be represented, for example, by any value of [, , not
in the set L of graph edges. In order to prove equation (37), we can first expand the left-hand side as

> plky) EACHCB(pkny =57 (k)| Y plkalk, 1) EACHGB (pkny |, (33)
k

n kn—l kn

and then use the following chain of inequalities:

> pkalky— 1) EACKCEB (pkn) 2 EACKCHB (p-1) (\<) EACCB (pkut) + 3™ 6y, EINY, (39)
k, leLe,

where (i) is due to the monotonicity of E under LOCC operations, while (ii) directly follows from property P2.
After combining equations (38) and (39), we can recover equation (37) simply by noticing that the average over
k,—1 on the rightmost term of equation (39) can be freely changed into an average over k,,. The same procedure
can be iteratively applied for every round of the protocol, so that at the end we are left with
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n—1
> Pk EACKGB (pke) < EACXGB (p) + 5 75 " p(k) - 814, EINY]
k, j=0 k, IeLe,
= Z <m(1)>E[N(’)], (40)

leLe,

where the last equality is due to the separability of the initial state p") and to the definition of (m") given in
equation (22). At this point, the thesis of theorem 2 follows directly from the inequality given in
equation (36). O

4. Versatile upper bound for quantum networks

As we have seen, an entanglement measure E can lead to an upper bound on the capacity of a channel if it satisfies
a continuity inequality (property P1), and a recursive relation connecting the entanglement of the state before
and after the channel application (property P2). In the previous section we discussed the possibility of changing
entanglement measures across different bipartitions. However, in doing so we have to guarantee that, for each
bipartition C4, the chosen measure satisfies property P2 for every channel NP with I € Le,. This constraint
leads to weaker upper bounds than what would be obtained if we could change entanglement measure on a
channel-by-channel basis. For example, consider a situation where all the channels in a given bipartition are
Choi-simulable, with only one exception: the presence of this single unsimulable channel prevents us from
using Eg in the bound of theorem 2. Instead, we are forced to use some broadly applicable entanglement
measure (as Egq or Ep,y) on every channel of the bipartition, thus loosening the bound.

In this section we overcome this issue, by exploiting a recent result on sandwiched Rényi entropies [15]. In
particular, we construct an upper bound on (log, d)p, , that allows us to switch between Eg and Ey.y, depending
on the Choi-simulability of each channel. To begin with, in the following we describe the recent result obtained
in [15], which is the cornerstone of our method. Then, we prove our main result.

4.1. Versatile property P2 for the relative and max-relative entropy of entanglement
For any quantum channel Ay _, , and any real parameter 1 < a < oo, if

Paps = Na—p(panp)s (41)
one has [15]

Ea(pAB’B) < Emax(NA'HB’) + Ea(pAA’B)- (42)

The quantity E,, is defined in terms of the sandwiched Rényi relative entropy D, [58, 59]:

Ea(pAB): min Da(pAB||UAB)
oap€SEP

. 1
= min
oap€SEP v — 1

log, Tr [(a§ Pap O'Azgﬂ) ], (43)

where 0,5 is optimised over all separable states. As E,, tends respectively to Eg and E,,x in the limitsof o« — 1
and @ — 00, bysetting a = 1in equation (44) we obtain

Er(D app) < Emax(Na—p) + Er(p gup)- (44)

This inequality closely resembles property P2 for Eg, which was obtained in equation (18) for Choi-simulable
channels. However, thanks to the introduction of E,,, on the right hand side, equation (44) now holds even for
non Choi-simulable channels. By combining equation (18) with equation (44), we can obtain a versatile property
P2 for the relative entropy of entanglement, in which the right-hand side changes according to the Choi-
simulability of Ny _p:

ERWN), ifNeS,

Ba (5 1) < B , 45
R(Papp) < Er(Paup) + {Emax(N)’ otherwise, “

where S is the set of Choi-simulable channels. Note that this is the best choice, as Eg < E.« for all states (see
equation (12)).

4.2. Versatile upper bound for quantum networks

We have now all the tools to obtain a versatile upper bound on the length of ebit (or pbits) shared by Alice and
Bob at the end of a generic adaptive protocol 7, ,,, assisted by unlimited classical communication, over a
quantum network.
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Theorem 3. Consider a quantum network with an associated directed graph G. For a given bipartition {Cy, Cg} of the
network nodes { C;};, let Le, C L be the set of edges in G that connect a node in ACy with onein CgB. The average
number of ebits (or pbits) that Alice and Bob share at the end of a given adaptive communication protocol P ,,,
assisted by unlimited classical communication, can be upper bounded as

1
<10g2d>R,rx < —[fER(G) + g/(,]Df,m CA)]) (46)
gER(f)
where
8/(736,713 CA) = Z <m(l)>72,nER(N(l)) + Z <m(l)>R,nEmax(N(l))a (47)
l€Lcy: leLey:
NOes NOgS

with fER(f) = —2[elog,e + (1 — €)log,(1 — G)JandgER(g) =1 — 8e.

Proof of theorem 3. The proof follows closely the one provided for theorem 2, with E = Eg. The only difference
lies in equation (39), where we use the inequality in equation (45) instead of the original property P2. Therefore,
equation (39) has to be substituted with

EIz{‘\CA:CBB(f)k,,q) < EI?CA:CBB(pk”’l) + IEL: 5len71ER(N(l)) + IEL: 61,1k,,,1Emax(N(l))) (48)
€Lc,: €Lle,:
o o

where we split the sum over the Choi-simulable and non-Choi-simulable channels connecting the nodes on
different sides of the network partition. The remainder of the proof then follows the same steps used in the proof
of theorem 2. We also explicitly provide the expressions for the functions f; (¢)and g (€) appearingin
property 1 (see e.g. [14]). U

Thanks to this result, we have managed to merge the upper bounds based on the quantities £g, and £ into
asingle bound, which retains the advantages given by the two entanglement measures, i.e., tightness and broad
applicability. Therefore, in assessing the communication performance of an adaptive protocol 7. , over a
quantum network, for any given bipartition AC 4:C gB one just needs to compare &’ with the bound g, based
on the squashed entanglement [24]. This is because the dependence on fz and gg vanishes for small errors €. In

particular, the advantage of using £ over &g, for the bipartition AC 4:C B can be quantified by the parameter
Ep (R Ca) — E'(Pews Ca)

P = ,
re EraPom Ca) + £ Py Ca)

(49)

which is defined in the range [ 1, +1]and is positive when the versatile bound £’ is tighter than Eg_. The sign
of pu, (F.,») will ultimately depend on the details of the bipartition and on the average number of times each
channelis used. However, we can expect &' to be tighter than £, on bipartitions mostly connected by Choi-
simulable channels, because the most common of these channels satisfy Er (N') < Esq(N). In contrast, when
there is a considerable amount of channels that are not Choi-simulable, the sign of 1., (72, ) will strongly depend
on the sign of Eqq(N') — Epax (NV): every non Choi-simulable channel AV for which this difference is positive
will enhance the usefulness of £’ over &, .

We should stress that £, £ Eup and thus pi, (F.,,) might not be easily evaluated, because the exact values of
Eyq(N) and E,p, . (N) are not known for many channels. When evaluating communication bounds, in practice it
is common to consider the smallest known upper bounds Esq (NV)and E ., (NV) on those unknown quantities,
rather than their exact values. When these approximations are introduced in equations (31) and (47) we are left
with slightly different quantities Eand & £ Whichif used instead of £’ and £, in equation (49) lead toa
modified parameter fi., (). Then, we can say that currently our versatile upper bound yields a better result
than the network bound based on squashed entanglement when fi. (7,,) > 0.

Before discussing examples of networks where the bound provided by theorem 3 becomes tighter than its
counterpart based on the squashed entanglement, we first need to evaluate E,,, (\) for some channels of
interest. In particular, in the next section we will consider typical qubit quantum channels.

5. Max-relative entropy of entanglement of qubit channels

In this section we develop a method to obtain lower and upper bounds on the max-relative entropy of
entanglement of channels invariant under phase rotations, and to evaluate E,;,, itself for Choi-simulable
channels with the same symmetry. After that, we discuss the possibility of using SDP in order to evaluate the
max-relative entropy of entanglement of qubit channels, by using a formulation recently introduced in [40].
Interestingly, by combining these tools we are able to analytically obtain the max-relative entropy of
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entanglement of the qubit amplitude damping channel A/@?. As this channel is not Choi-simulable its capacity is
still unknown, although several upper bounds on it have been recently derived [ 14, 16]. At the end of this section we
also numerically evaluate the max-relative entropy of entanglement of other common Choi-simulable qubit
channels: dephasing, erasure and depolarising channels. Although the relative entropy of entanglement could be
used to bound the capacities of these channels, the purpose of this analysis is to see how far off the upper bound
based on max-relative entropy of entanglement is, compared with other bounds known in the literature.

In general, the calculation of the max-relative entropy of entanglement of a channel involves a max—min
optimisation (see equations (4) and (10)):

Emax(N) = max min inf{x € R|2%045 — Ny_plpx] = 0}. (50)

pax OABESEP x

In fact, the maximisation over p , , can be restricted to bipartite pure states with the dimension of A equal to that
of A'. This can be shown by purifying p , , and by applying the Schmidt decomposition and the date processing
inequality for the sandwiched Rényi relative entropy [60]. Nonetheless, typically the optimisation leading to
Emax (N) is still not trivial to perform. However, the max-relative entropy of entanglement of a channel can
always be bounded from both sides as stated in the following proposition, whose proof can be found in
appendix A. The upper bound is a re-elaborated version of the upper bound on the max-relative entropy of
entanglement of a channel studied in [15]. In order to explicitly perform the required optimisations, it is useful
to exploit as much as possible the symmetries of the considered channel A/. In particular, in appendix B we
develop tools applicable to qubit channels invariant under phase rotations.

Proposition 1. Let my = Iy ® Ny _ g[w ax] be the Choi—Jamiotkowski state associated with the quantum channel
N with input dimension d, where 1) oy is a maximally entangled state. Then, we have

min Dmax(WN||O'AB) < Emax(N) < min Dmax(WNHUAB)- (51)
045E€SEP oap€SEP
Trploapl=14/d

Moreover, if N is Choi-simulable, the lower bound is equal to E . (N) itself.

An alternative expression for the max-relative entropy of a channel has been recently proposed in [40], and
can be written as

Emax(N) = 10822(-/\/), (52)
where
YWN) = min_{|| Tra[Yapl|lo: Yap — d myv > 0}. (53)
Ypp€ SEP

Here dis the input dimension of the channel V', and SEP denotes the cone of (unnormalised) separable
operators, i.e., the set of all operators X, 5 that can be decomposed as X3 = 3., Py ® Qj for some positive

integer L and positive semidefinite operators P’y and Q. Note that for qubit channels we can replace SEP by the
cone of all positive semidefinite operators that are PPT, thus making the evaluation of equation (53) efficiently
computable via SDP.

5.1. Amplitude damping channel
We begin by studying the most important example among channels that are not Choi-simulable: the qubit
amplitude damping channel A/{9, which can be written as

2
NGO (p) = 37 MiN§D) oM (NV§Y), (54)
i=1
in terms of the Kraus operators:
MNED) =10) (0] + VT = X[1) (1, MWD = YA0) (1]. (55)

Note that (;d) reduces to the identity channel when A = 0. In particular, we analytically calculate the lower
and upper bounds on E ., (N f\ad)) found in proposition 1:

F(N) < Emax (W) < Enax WD), (56)
where
log [ 2(1 + VT= 2] if A < 2, ~
FO\) = _ and Ermax WED) = log,(2 — N). (57)
log,(152) i) >t ’
gZ 22 > = 5 >

The proofs for these inequalities can be found respectively in appendices C and D.
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Figure 2. Grey dashed line: best known lower bound on the capacity C (N @), corresponding to the reverse coherent information
[61] of the channel (see [14]). The remaining solid lines are all upper bounds on the capacity C (N @), In particular, the top blue line is
the bound based on the relative entropy of entanglement discussed in [14], the bottom red line is the best known bound based on the
squashed entanglement [14], and the black line in the middle is Eppqy (N @),

Wesstress that E, ., (N (Aad)) is also an upper bound on the capacity C (N (Aad)), whereas F () does not have any
known relation with the capacity. Interestingly, the numerical evaluation of E,,, (N'V) via the SDP procedure
in equation (53) coincides with the upper bound in equation (56) up to numerical errors. This suggests that for
all A € [0, 1]the max-relative entropy of entanglement of the amplitude damping channel exactly coincides
with its upper bound found through proposition 1. Indeed, this is analytically proven in appendix E, and we can
write it here as a proposition.

Proposition 2. The max-relative entropy of entanglement of a qubit amplitude damping channel N'¢9 is
Emax W) = log,(2 — \). (58)

The plot in figure 2 shows how E . (N (Aad)), plotted as a black curve, can be compared with other bounds on
CWNV E\ad)) known in the literature. In particular, it is much smaller than the upper bound on the capacity obtained
in [14], represented by the top blue solid curve in figure 2. The latter was obtained by decomposing the
amplitude damping channel as V'Y = AjoLoNj, where £ € S but A; and A are not, and by considering
the bound C(N &ad)) < Er(L). However, the upper bound on the capacity based on the squashed entanglement
[14] is smaller than our result obtained through E.,,«. For completeness, we also plotted the best known lower
bound on C(N f\ad)), which narrows the region where the capacity value could be [ 14, 16]. From this analysis, we
can conclude that at the moment the best known upper bound on the capacity of the amplitude damping
channel remains based on its squashed entanglement.

5.2. Other Choi-simulable channels
Here we numerically evaluate the max-relative entropy of entanglement of some common qubit channels:
dephasing, erasure, and depolarising channels. Note that the capacities of the first two channels are given by
single-letter formulas, and are thus known exactly. In our numerical simulations we perform the SDP
optimisation in equation (53), which yields the same results obtained by numerically evaluating the lower bound
in proposition 1.

The dephasing channel A"*"™ and depolarising channel A
of 2 and 5 Kraus operators:

MNPy = 1 — %u, My (N Py = P o, (59)

2
My = JT— X1, MyNP) = \E li) (j, (60)

(4¢Po) can be respectively written in terms of a set

with 7, j = 0, 1. The erasure channel A/©?, on the other hand, is characterised by the Kraus operators
MW = VT = AL M) = JVXle) (il, (61)

wherei=0, 1,and |e) is an error state orthogonal to both |0) and |1). All these channels reduce to the identity
channel when A = 0.
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Figure 3. Bounds on the capacity of three Choi-simulable qubit channels. In each plot, the solid blue line represents Eg (&), and
coincides with the capacity C(€)) for the dephasing and erasure channel. For the depolarising channel, the capacity C (€ &dCP ) lies
between the blue solid line and the grey dashed line, which respectively represent its best known upper and lower bounds (see, e.g.,
[14]). The depolarising channel has zero capacity for A > 2/3, where it becomes entanglement breaking, so that region has not been
plotted. Red dotted—dashed lines: smallest known upper bound on the squashed entanglement of the channels [ 13, 16]. In the specific
case of the erasure channel, one has Eqq (€ (fr)) = Er (& (fr)) [14, 16]. Black dots: numerical evaluations of E,,,, (V}), obtained via the
SDP optimisation in equation (53).

We point out that exact values for the max-relative entropy of entanglement of these channels are not needed
when evaluating the versatile network bound of theorem 3. This is because they are all Choi-simulable, and the
entanglement generated by them can be quantified by means of Er. Nonetheless, we numerically evaluated
Eax (W) for these channels in order to see whether the obtained values could be smaller than their counterparts
based on the squashed entanglement. The results can be seen in figure 3. In all these cases Ey vields the tighter
upper bound on the capacity, followed by the squashed entanglement, while E,,, provides the loosest bound.

6. Examples

As we already mentioned in section 4.2, in order to assess whether theorem 3 leads to a tighter bound than the
version of theorem 2 based on the squashed entanglement, for any considered bipartition of the network one
should study the sign of the parameter /i, . This can be found as in equation (49), but substituting Ey, (N') with
its best known upper bound available in the literature. In what follows we provide two examples where fi,, > 0.

At first, we should stress that there are quantum channels with Eyq (N) much larger than E, ., (N). An
example are the ‘flower channels’ [62, 63] for which the gap between these two quantities can increase with the
dimension of the input system [15]. This is due to the fact that the squashed entanglement is lockable’, which
means that by tracing out a subsystem of dimension d its value can change by an amount more than logarithmic
ind. On the contrary, E,,y is notlockable, and it does not suffer from this drawback. Therefore, £ would be
much tighter than &g, when evaluated on bipartitions mostly composed by flower channels, or composed by
flower channels and Choi-simulable channels with Er smaller than Eqg, as the qubit channels studied in
section 5.2. However, it could be argued that this example is rather artificial, and it is not likely to appear in any
realistic communication scenario. For this reason, we also consider a more practical example where the two
components of a bipartition AC 4:C zB are connected by k dephasing channels A"4"™ and 1 amplitude damping
channel N'¢9, as shown in figure 4.

If we assume that all channels are used the same average number of times, we can express fi, asa function of
kand of the parameters x, A € [0, 1]. In particular, we can write

_ KEqWEP) — BR(WV )] + [Eq(VEY) — B W)

— — , (62)
1O T KBGOV ) § BV EPD] 4 (Brg WD) + B M5
where Esq W Ecdeph)) and Esq W\ E\ad)) are respectively the best known upper bounds on Eqq N Ecdeph)) [13]and
Ey W E\ad)) [14], which have been plotted as red dotted—dashed curves in figures 3(a) and 2:
- 1
BV ) — 5(1 - f) + =, 63
- 1 A A
Eq(W§D) = h(— — —) —~ h(l — —), 64
qNVYY) > 2 2 (64)

where h(y) = —ylog,y — (1 — y)log,(1 — y). Moreover, the quantity Eyx (N (j‘d)) has been shown to
coincide with the upper bound obtained in proposition 1, whereas the quantity Eg (NV4PM) is known to be equal
tol — h(x/2)[14]. Theresults obtained for fi areplottedin figure5 for k = 1, 5, 10 and 50. As expected, we
can see that the region of parameters (x, \) with fi e, >0, i.e., in which our versatile bound is advantageous,
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Nédeph) ® Nz(deph)

AC. Mo CuB

Nz(deph) ® Nz(deph)

Figure 4. Example of bipartition AC 4: C gB connected by k = 4 dephasing channels (straight lines) and 1 amplitude damping channel
(wiggling line). Once a bipartition of the network has been selected, it is not necessary to keep track of the precise nodes connected by
the channels in order to apply theorem 3.

0.0 0.5 1.0 0.0 0.5 1.0
X X
() k = 10. (d) k = 50.

Figure 5. Relative advantage of the versatile upper bound &’ over the upper bound £ based on the squashed entanglement, as
measured by the parameter i, , for abipartition of the network whose components are connected by k dephasing channels N (deph)
and 1 amplitude damping channel A/, The set of points characterised by fi . = 0ishighlighted on the plots by dashed black
curves. Our versatile bound is tighter than the best known upper bound based on the squashed entanglement on the regions where
fic, > 0.

becomes larger with k. However, even for k = 1 there is abroad set of parameters for which our versatile bound
is tighter than the bound based on the squashed entanglement. In particular, this is the case when A ~ 1, because
the negative contributionin fi¢, from Epayx W E\ad)) > Esq W E\ad)) is close to zero. On the contrary, the bound
based on the squashed entanglement is preferable when x =~ 1, because Eqq (N ;depm) is close to zero and

Er (V9P cannot be significantly smaller. The peak that can be observed in /i ¢, for x, A — lisdueto thefact
that the upper bounds on the number of ebits (pbits) produced by the network go to zero, and small differences
of one bound with respect to the other become significant.

7. Discussion and conclusions

In this paper, we investigated the possibility of using multiple entanglement measures in order to upper bound
the number of ebits (or pbits) shared by two parties at the end of a communication protocol over a quantum
network, with no limit on their classical communication. In particular, we exploited the special relation between
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the relative entropy and the max-relative entropy of entanglement, summarised by equation (44), in order to
jointly use them in a single bound, which retains the advantages of both measures. For instance, it is possible to
take advantage from the presence of Choi-simulable channels in the network, without requiring this property
beforehand. From a theoretical perspective, our versatile bound performs much better than the previously
known bound, which was based on the squashed entanglement, on networks composed by flower channels and
Choi-simulable channels with Eg smaller than Egq. For more physically relevant quantum networks, in general
one should check on a case-by-case basis which upper bound yields the tightest result. However, we can expect
the versatile bound introduced in theorem 3 to be the best choice when the number of Choi-simulable channels
is larger than the number of channels not satisfying this property, at least aslong as Er provides tighter bounds
than Eq on the Choi-simulable components of the network. This intuition was confirmed for a network
composed by k dephasing channels and one amplitude damping channel, where already for k = 5 our versatile
bound performed better on a broad range of parameters.

We should also reiterate that, according to the authors of [ 15], equation (42) has been rigorously proven only
for channels acting on finite dimensional systems. As theorem 3 heavily relies upon that inequality, one should
pay special attention when applying theorem 3 to infinite dimensional channels, as long as the proof of
equation (42) will not be suitably extended. Notice, however, that at least some bosonic channels (e.g., photon
losses) are Choi-simulable: in these cases we can safely upper bound the entanglement of their output state via
equation (18) [14] and theorem 3 still holds.

The advantage provided by our method would be further increased if more entanglement measures could be
included within the same framework. An obvious candidate would be the squashed entanglement, because it
typically provides tighter upper bounds on the capacity of a quantum channel than E.,y, while being at the same
time broadly applicable. This research line could go together with the search for other entanglement measures
that can provide upper bounds on channel capacities. From this point of view, we feel that the schematic
framework provided by theorems 1 and 2 could act as a guideline for future investigations. It would also be
interesting to look into the possibility of extending this ‘versatile” approach to a multi-user scenario, where the
network is composed by broadcast quantum channels [34-39].

As a final remark, notice that the idea behind our result can be applied more generally in order to bound the
rate at which a parallel composition of quantum channels can generate ebits (or pbits), when assisted by
unlimited classical communication. Furthermore, although this paper has been developed from the perspective
of quantum communication, it is worth stressing that the problem of quantifying the amount of bipartite, or
multipartite, entanglement shared among the nodes of a network is also relevant from the perspective of
quantum computation. In this paradigm, the quantum channels can be interpreted as noisy physical operations,
and the nodes could represent, for example, the components of a cluster state. As the possibility of performing
measurement-based universal quantum computation strongly depends on the entanglement of the initial
resource state [64], the ideas developed in this paper could also help in assessing the quality of entangled
resources [65], by considering 7. ,, as the sequence of operations generating them.
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Appendix A. Proof of proposition 1

The lower bound is simply obtained by using the maximally entangled state 1 44’ as input in equation (50),
without optimising over all p , . Furthermore, its equality with Ey,,, (\) itselfin the case of Choi-simulable
channels can be obtained as in the last step of equation (18). Indeed, that argument holds for any entanglement
measure and not only for Eg.
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The upper bound, on the other hand, is a re-elaborated version of the upper bound on the max-relative
entropy of a channel studied in [15]. In order to obtain their result, the authors introduce a generic entanglement
breaking (EB) channel 7y _. 5, and use the following chain of inequalities:

Emax(V) <max_min_inf{x € R|(2*Ty_p — Na—p)[pau] = 0}
Pan TAIA.I;GEB X
< min inf {x € R|2*mr — my = 0} = min Dy (1 || 7o7). (AD)
T€EB x TcEB

The first inequality is obtained by optimising over a smaller set of separable states, in which o4p is obtained as
output of entanglement-breaking channels acting on the same input state p , . The second inequality is then
obtained by noticing that (2*Ty_.5 — Ny_p)[p4x] = Oforanyinput p , , if the operator 2*7Ty_,5 — Ny _p)
is completely positive, and that this last condition is implied by the positivity of its Choi—Jamiotkowski state. In
order to obtain the upper bound of proposition 1, we just need to show that the set of states 77 appearing in
equation (A1) corresponds to the set of separable density matrices o4p such that Trz[o45] = 14/d. One inclusion
is trivial, while the other follows from the fact that, for any such o4, we can find a corresponding completely
positive and trace preserving (CPTP) map 7(?4#) € EB via the teleportation protocol:

TG ) = A Traalthaa(Ta @ 0ap)l, (42)

where 1) 44 is a maximally entangled state. Indeed, this map is CPTP because from equation (A2) we obtain a
possible set of Kraus operators given by:

N(;,’ﬁ)B =d xa(Y| Jous lk)alh)s, (A3)

with Z‘,i e I(Ngifﬁ)B)"'N/gf‘f)B = ly,and astraightforward calculation shows that w7, = op, thus proving that
T s ¢ EB because of the separability of 4.

Appendix B. Bounding the max-relative entropy of entanglement of qubit channels
invariant under phase rotations

Most of the typical qubit channels are invariant under rotations around the axis associated with the Pauli matrix
o, = Diag(+1, —1), and itis thus interesting to study the consequences of this fact for the evaluation of the
upper and lower bounds identified in proposition 1. Let A" be a quantum channel acting on a qubit, such that

N(eiéazpe—ieaz) — ei&az_/\/‘(p)e—i%z) (Bl)
for all angles # and input states p. As the maximally entangled state 1) 4 v is left invariant by the unitary operation

0 (B
702",

Uy = etiso © e~ (B2)

we can conclude that its Choi state 7y is also invariant under Uy, forany 6 € [0, 27]. This immediately implies
that the average of my, over all possible 0 rotations coincides with my itself:

0
T = f EUMWUJ. (B3)

This allows us to prove the following lemma, whose proof can be found at the end of this appendix.

Lemma 1. Let my be a bipartite state invariant under the separable unitary evolution Uy defined in equation (B2),
and o, be the state which minimises Dyqy (Tpr ||oaB) among all separable states op. If o* Ap is the averaged version

of UjB’
— do
o 45 = f L st U, (B4)
2T
then o* g is separable and

Dinax (7 || 35 ) = Dinax (v || 0% 4B ). (B5)

Similarly, if o’  is the state which minimises Dy (7 ||0ap) over all separable states oxp with Trg[oag] = 1,/2, the
same conclusion holds with Trg[ 0¥ 45] = 14/2.

Asa corollary of lemma 1, we can restrict the minimisation over all separable states 0,5 in equation (51) to be
only over the states which are left unaltered by being averaged over all possible 6 rotations. The density matrix
associated with these states in the basis {|00), |01), |10), |11)} has the form
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1
oAB = > 5 , (B6)
LeTio B

witha, 8,7, 6,620, a4+ B8+~v+6=2,¢0€[0,2r]and 0 < £ < min{\/a_ﬂ, \/%}.Notethatthelast
inequality comes from the PPT criterion, which works for two-qubit states as a necessary and sufficient
condition for separability [66]. When evaluating the upper bound in proposition 1, we simply need to add the
additional constraints y = 1 — aand § = 1 — 3, inorder to assure Trz[oap] = 14/2.

Proof oflemma 1. The max-relative entropy Dp.x (p||o) is invariant under joint unitary operations applied on
both pand o, and is jointly quasi-convex. Both these properties have been previously introduced in section 2.1,
respectively in equation (6) and equation (8). Together with equation (B3), these facts lead to

— de de
| G*AB ) = Dmax (f EUQWN()\M) UHTH f EUQU;‘;BUJ)

< meaXDmax(UH,]Tj\/’(;d) UJ || U90—>I,ZBU§) = Dmax('ﬂ-/\[g\“d)

Dmax (77./\/(;‘{)

k). (B7)

The converse inequality follows because 0% s separable, due to the structure of U (see equation (B2)), and
because @ minimises Dy (my ||0ap) over all separable states. The final remark can be easily proven by noticing
that TrB[ O'*AB] = JlA/Z ile”B[O'j;B] = JIA/Z O

Appendix C. Proof for the upper bound in equation (56)

In order to prove the desired result, we need to explicitly perform the optimisation appearing in the upper bound
of proposition 1, i.e.

9 (ad)y — .
Enae WXD =gy DTy

Trploapl=1a/2

|oap) = min inf{x € R|2*04p — o0 > 0}, (C1

TAB

where thanks to lemma 1 on the rightmost term we can consider only states o5 with the form given in

equation (B6),withy =1 — cwand 6 = 1 — . Letusintroduce the parameter y = 2*. By explicitly
computing the Choi-Jamiotkowskistate /w0, the condition youp — 7 \,e0 2> 0 can be rewritten as the system
of inequalities:

yd =06) = A
A, @
where & and 7 are2 x 2 matrices
y a  Eeld y 11—\
o= ) , ™= . (C3)
e 3 NI=A 1=

We now define y, (A, oap) and , (A, o4p) as the smallest values of y that satisfy respectively the first and the
second inequalities appearing in equation (C2), and we rewrite the minimisation leading to the upper bound on
Enmax(N'§) as

Emax(/\/'(;d)) = min inf{x € R|2%04p — T G > 0} = log,min max{y, (X, oug), »,(A, 0ap)}. (C4)
(V]

4B

We can easily show that this quantity is smaller than or equal to log,(2 — ) by providing a matrix o, of the
desired form such that max{y, (A, gap), 35 (X, 0up)} = 2 — A.This can be achieved with the choices:

a:zl/\, B=1-a  t=JaB, =0, (C5)

whichyield y = A(2 — A)and y, = 2 — ), as can be verified by directly substituting these values into

equation (C2). The converse inequality, i.e. E (N &ad)) > log,(2 — M), requires some additional work. Thanks
to the monotonicity of the logarithm and the trivial relation max{y,, y,} > y,, we canbound E . (N E\ad)) from
below as

Emax (W) > log,min y, (X, oap). (C6)
Hence, we are left with the task of showing that min,, 3, (A, 0ag) > 2 — A, where the optimisation has to be

effectively performed over the parameters a,, 3, &, ¢ satistying the conditions detailed after equation (B6), with
vy=1—-—aandd=1— (.
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The condition yo — 7y > Oinvolves2 X 2 matrices, and can be rewritten using Pauli matrices
7 = {0 0y, 0;} as

ya+HA+v-3) -2 —-MNA+17A-7) =0, (%)
where
o [Fee) [ .
V= —2€sing |, = 0 .
a+ 0 a-3 2—A A\
This in turn reduces to
S 2— X 2(1 — vcost) = 1, (\ oun), (C9)

T a+8 1 — 2

where v = |[V| < land ) is the angle between ¥ and 7. Note that the second fraction appearing in equation (C9)
is always larger than 1, therefore, when o + 3 < 1the condition y, (), o4p) > 2 — A holds. On the other hand,
if1 < a 4+ B < 2,wecan use the parametrisation:

26 =12 — o — PB)sing, a—B=n2—a— [)cos(, (C10)
with 7 € [0, 1]and ¢ € [0, 7]. This allows us to conclude because of the following chain of inequalities:

)(a +08)—n2 —a— B)cos(@ — ¢) — sinfsin((1 — cos )]
(a+B)? =12 —a-p)>
(a+ P -—n2—-—a-0p
(a+ B’ =12 —a-p)>
2
=2 =\ >2 - N, Cl1
VT a e 4T 1y

where 6 = arctan(2+/1 — A /) is the angle describing the direction of 7.

V(A oup) =22 — A

>202 -\

Appendix D. Proof for the lower bound in equation (56)

The goal of this appendix is to provide a proof for the following lower bound on Ey, (N (Aad)):
log,(2(1 + VT = X)), if A <21,

2
O4B) = S5 -1 (D)

logz(%), if A > T

d . ~
Emax (NE\a )) = mlsr]liP Dinax (7TN(;d)

OABE

Thanks to lemma 1, we can reduce the optimisation over all separable states o that are left unaltered under all
possible 6 rotations, which can be parametrised as in equation (B6). The condition youp — 7 A0 = 0can be
explicitly rewritten as

A
}’ > g)
a(l— X))+ [5—2/1—X{coso (DZ)
yz : ,
af—¢§
so that
Den (7 0 | o5) = 10g2max{ al = \) + fﬁ—_zzcos VTN % } 03)

In what follows, for any fixed A we will minimise this quantity over the parameters «, 3, v, 6, &, ¢, satisfying
the constraints detailed after equation (B6).

The minimisation in ¢ can be easily performed, with the optimal choice being ¢ = 0. Moreover, for any
fixed «, 8, &, the maximum 6 (and thus the minimum A/§) is given by

1
brun = 2@ =@ = B+ Y@ —a - B - 48), (D4)
thatis, when § > ~ and 78 equals the smallest allowed value £2. Notice that this choice implies
26=2/10 <7+6=2—a— 4 (D5)
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fo(UIA,v.§)

Figure 6. Typical plot of the function f, (1A, v, £) defined in equation (D8).

At this stage, the optimisation problem (without the logarithm) has been reduced to:

. al = N + 8- 26JT - A 22
min { max R
a8, Oéﬁ—gz 2_a_ﬂ+\/(2_a_6)2_4§2

ANa+ B+26<2

a, B,6E>0 A §2<aﬁ}

(D6)

Now we introduce the parameters v = (o + )/2and u = (o — ) /2. As o > 6 alwaysyields a smaller value
than the converse choice, we can limit our studyto ¢ > 0 and rewrite the problem in the new parameters:

) — _ 261 — 2 _ o2
min 4 max v(2 — ) — Ap— 28641 )\) A 0< p<AJvr—¢ .
v vi— & — i l—v+Jd—vP—g||0<e<v Av+e<t
(D7)
We can now minimise the first term over p. The value 11, for which the function
v(2—A) — A\ — 281 — A
fyul, v, € = LEZ N Z A 3¢ (D8)

22
. . 73 . . . . . .
becomes zero is always bigger than /> — & in the considered region. Together with the asymptotic scaling

To(uls vy &) ~ A/pfor |u| > 1, this can be used to deduce the qualitative behaviour of f, (|, v, £), whichis
shown in figure 6. Let 11, (A, v, &) bethezeros of 9, f, (u| A, v, &), with 1. < fy > where

O\ v, €) = %[(2 - 2T =N+ §|z\/1 T — 2 - Nl (DY)

As (|, v, &) = fy (X, v, §), we can find the desired minimum of f;(u| A, v, §)in pu € [0, \Jv* — &]as

(1—JT?XV(1+JT?XY} D10

2w -6 2w+ 9

Itis worth substituting v — x(1 4+ y)/2and £ — x(1 — y)/2.Interms of the new variables, the problem
after the optimisation in p becomes

, (1 -Vv1-=X)? (14J1-)N)? A 0sx<1
min 4 max > >

xy 2xy 2x l—x@—k 1 — 0 — x) o<y<1[

min f, (|, v, §) = max{f, (1), fo(n)} = maX{
n

(D11)

whose form is suitable to perform the minimisation in y. Let us label the three function appearing between
square bracketsin order as f, f, and f;. Note that f; and f; are respectively monotonically decreasing and
increasing with y, with only the first one diverging to infinity for y — 0. If the two functions do not cross each
other,ie.,if x < xp = (1 — /1 — A)/2,the minimum over y is thus obtained by evaluating f; iny = 1,
otherwise we need to pick their intersection point. Explicitly, this can be written as

-T2

mmmng{ T
y £, A, ifxg <

(D12)
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where

filx, \) = i 8 + xl(% VIAA] — 4] — 4\/(1 — x)[4 + x(% “i’\) ] ) (D13)

Finally, we can optimise over x. If x < xy,, we are left with:

. {(1—\/1—)\)2 (1+\/1—>\)2} (1+ V1= N2
min max s =

= f,(Xm ). (D14)

x<xep 2x 2x 2Xth

On the other hand, when x > xy,, we can apply the same reasoning used for the minimisation over y. In
particular, f, and f, are respectively monotonically decreasing and increasing with x, f, (x@) > f, (xw), and they
have a crossing point onlywhen A > (+/5 — 1) /2. Ifthereis no crossing, the minimum over x is given by

f,(x = 1, M), whichisless than or equal to f, (x,, A) of equation (D14). If there is a crossing, instead, the

minimum corresponds to the value of the functions at the intersection, which is ,\2_?1 This concludes the proof.

Appendix E. Proof of proposition 2

Because of equation (52) we need to show the relation (N f\ad)) = 2 — A\, where (N (A"‘d)) has been defined in
equation (53). This is equivalent to showing that

. 1
min_{|| Trg Yag|loo: Yap — mp00 = 0} =1 — =), (E1)
Ys€ SEP A 2

where ||Wlls = max|4)(¢| W|¢),and 7 .o is the normalised Choi state of the amplitude damping channel,

which in basis {|00), |01), |10), |11)} can be written as

1
T prGd = 3 (E2)

SO -
o O O O

T

Furthermore, as already observed in the main text, for qubit channels we can replace the cone of separable
—
operators SEP with that of PPT operators

—_—

PPT = {V: VZO/\VPT}O}’ (E3)

where the superscript PT represents partial transposition on the second qubit.
For the proof we exploit once again the symmetry of the channel under phase rotations, and we define a

—_—
subset of PPT as

g 4 _—
PPT’ := {V: V€ PPT A UpVU, = V V0 € R}

a 0 0 &7
Aa, By, 6,E20 A ¢gel0,2r] A 0<E<min{ /a3, ¥} ¢,

(E4)

where Upis the unitary rotation defined in equation (B2). We now obtain a long sequence of equalities, which
will be commented in the following. In particular, one has
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Yag€ PPT
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= 0}

= mm {”TrBYAB”oo YABfﬂ'N(wd) 2 0}

Yas€ PPT'

= min{|| Trp V]j: V — 7 00

:min{max{a—f—%é—i—ﬁ}:(
1
/\575)\20 A a, B,

1
/\6—5/\20 AN a, 3,7, 6

R —
> 0 A Ve PPT'}

a &) 11 VT=A)
geo g 2\yi=x 1-x)

§>0 A ¢el0,2r] A ogggmin{m,ﬁ}}
:min{max{a—l—%&—i—ﬁ}:a—i—ﬁ}l—%)\ A (a—%)[ﬁ——(l—)\)] ‘gm_%/l_)\

>0 A ¢el0,2n] AO< ggmln{m,ﬁ}}

— min{ max(a + 7, 6 + 8): +ﬁ>1—lAA( —l)[,a—la—x)] (g——m)z
= min< max{a + 7, e > 5 Q 5 5

1

/\(5—5/\20/\04,6,7,6

=20 A

0<§<min{Ja_ﬁ,W}}

:min{max{a+'y,6+ﬁ}:a+ﬁ>1—%)\ A 6—%>\>0 A By 830

Ma-3)o-3a-»]=

:min{max{a—&—%é—i—ﬁ}:é—%)\}O A

o ot

= min{A, B},

where

o Dot

B:= min{,@’ + %)\: a+

Bl &

(min{min{\/a_ﬁ, J) — %\/1 — ), 0})2}

a>%Aﬁ>%U—MA7ﬁ>O

(min{min{\/a_ﬁ, J) — %\/1 -\, 0})2}

The first equality comes from the following two observations

and from the inequality || Tr V]| >

ail dp
a1 dx
asy adsp

2

(E5)
1 1
—mln{ (o + B+ J(a — B)? + 4x?): a+— ﬁ+% A oz>5 ANB=Z=0-XN)ANx=20
(mm{mm{«/ , X} — —\/1 — 0}) }
(E6)
2x? A 1 1
— <P+t =—Na=2=—ANB=>2=(10-XN) ANx=0
S B 5 5 B 2( )
2
1— )\)] (min{min{ﬂlaﬁ, x} — %\/1 - A, 0}) } (E7)
—_— —_—

Ve PPT = V' € PPT/, (E8)
V= Tt 2 0=V — 00, (E9)
|| Ttg V||, where V, V' are generic matrices of the form
a3 diy a; 0 0 ay
ay3  dpg ;) 0 (253} 0 0
ass as | Vi= 0 0 a3 O (E10)
a43 Q44 ag 0 0 am

a4 aq

The second equality is just a rearrangement of the previous expression, whereas in the third equality we exploit
equation (E4). The fourth equality can be obtained by expanding the matrix inequality previously found, and in
the fifth equality we used the following relation
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g (g - %\/1 - A)Z, (E11)

. 1
min | {e'? — —J1 — A
$€R 2

which holds for £ > 0. In the sixth and seventh equalities we used respectively

x, ¥y 2 0= min (£ — y)> = min{x — y, 0}?, (E12)
0<E<x
and
at+BZzx+tyN(@—x)B-—y) 20 azxNB2>y. (E13)

Finally, in order to obtain the last equality we observed that

{ 2 } %(a—l—ﬁ—i—v(a—ﬁ)z—kz}xz), foroz—i—sz2

min max
6=

a+? B+06 (E14)

~|> N|>/

B+
1 e
ﬂ+5>\, fOrO[+T<6

From this analysis it follows that equation (E1) is proven if we can show that A = 1 — %A andB > 1 — %)\.
This is what we do in the following.

E.1.Proofof A =1 — %)\

Note that the choices o = %, 0= %(1 — A),and x = %«/1 — ) satisfy the conditions appearing in
equation (E6), providing

%(a + 08+ -0 +4xH)=1— %/\, (E15)

sothat A <1 — %)\.
In order to derive the converse inequality, we first rewrite A as

)1 1 1.\ 5 2x?
A = min Ea—i—b—&-l—;)\—i— a_b+5/\ + 4x :a—|—72b/\a,b,x>0

2
Aab > [min{min{\/(a + %)[b + %(1 — /\)], x} — %\/1 — A, 0}] (E16)
, {1[ 1 \/( 1 )2 2}
>mind—|la+b+1— =X X+ Jla—b+ =A\| +4x*|:a, b, x
2 2 2
2
Aab > [min{min{\/(a + %)[b + %(1 — )\)], x} — %\/1 -\, 0}] (E17)

=min {Al) Az}, (E18)

WV

0

where

A, := min {%[ +b+1——)\+\/(a—b+% ) +4x%|:a, b, x>0

/\mm{\/ a+ %)[b + %(1 — )\)], x} = %\/1 — )\}, (E19)

A2:=min{l[a+b+l—l/\+\/(a—b—l—l)\)z—i—élx ta,b,x>0
2 2 2
2
[mm{\/(a 4 l)[b + —(1 - A)] } L A]
2 2
A min{\/(a + %)[b + %(1 — )\)], x} < %\/1 — )\}. (E20)

The equality in equation (E16) follows from the definition of A in equation (E6), by substituting « — a + % and

86— b+ %( 1 — A),and in order to obtain the following inequality we drop a condition on the parameters
a, b, x. Then, the equality in equation (E18) can be proven by dividing the parameter region into two sub-regions:
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one such that min { \/<a + %)(b + %(1 — /\)) , x} > %\/ 1 — A, and one such that the converse inequality

holds.
As next step, we show thatboth A; and A, are larger than 1 — %)\. In particular, we can explicitly evaluate A,

2
A= m1n{%[a+b+l——)\+\/(a—b+%>\) +(1—/\)):

\/(a+%)[b+%(l—)\)] 2%\/1—>\ A a,b>0}

2
:min{l[a+b+l—l)\+\/(a—b+l)\) +(1—A)):
2 2 2

\/(a+%)[b+%(l—)\)]>%\/l—)\ Na = b — O}:l—%)\. (E21)

as

The two equalities can be respectively shown by noticing that the quantity being minimised is a monotonically
increasing function of x > 0Oandofa, b > 0.Inorder toshowthat Ay > 1 — %)\, it is convenient to write

Ay = min{A;, Ay}, (E22)
where we divide the parameter region into two sub-regions, depending on the ordering between

\/(a + %)[b + %(1 — )\)] and x, thatis:

2
A3==min{%la+b+l%)\+\/(ab+%/\)+4x2]:a,b,x>0
1 2 1 1 1
Aab?(\/(wg)[ﬂ—(lm ] A\/(a+5)[b+5(1»]<5m
A \/(a + l)[b + l(1 - A) }
2 2
X o1 1
= min 2 1——/\—|— I+4x :E\/I—)\gx/\x>0 :1—5)\,

(E23)
and
. J1 1Y .
A4 = min Ea+b+17—/\+ afb+5)\ +4x?ia, b,x >0
1 2 1
Aab > xfz 1— A /\xéE\/lf)\/\ a-+ b+ —-1-MX
)1 1.\
> min E +b+17—/\+ afb+5)\ + 4x b, x>0
1 2 1
Aab > 5\/1—)\—x /\xéz 1— A
1 2
= min 5a+b+17—/\+ (afb+—)\) +4x?|ia, b, x>0
ALTS fﬁgxgl\/lfA}
= min{A5> AG}: (E24)
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where we further expanded A, in terms of A5 and A¢, depending on the ordering between %\/ 1 — X and ab:

2
Ay:min{%lu—l—b—l—l—%)\—i—\/(a—b—i—%)\) —|—4x2]:a,b,x20

J?—J_ <x < 21—/\/\ 1i=—>s J_b}

_ . .
min{% a+b+1%/\+\/(ab+%)\) + (T =X —24ab)? |:

LA X>Vab A ab >0}

_ . .
>min{%a+b+1—%/\+\/(a—b+%>\) + (V1= X = 2Jab)? :a,b>o}

2
x+1-— %/\ + \/(1 - %/\) +x2 4+ x(yA — 241 — A1 —yZ)}:

—1 A x>0}

WV

[
2.
=)

Il
2.
=
—s
1

N|>—ﬂ \V; N | =

x+1——)\+|1——)\—x| O} - =\ (E25)

Iy
2
1 1
A6:=m1n{2la+b+1——)\+\/a—b+2)\) +4x] a, b, x>
< ab

/\%\/1— —Jab <x< ;\/1—/\ A

—_— |~
l\)lr—t

:min{;a—f—b—i—l——)\—i—la—b—i— LT <Vab A ab> }
:min{% 1/4x2—|—y2—|—1—5/\—|—| y+ )\l] \/I—Agx/\x>0}

:min{% N —l—l—%)ﬂ—ly—&-zx\l]}:l—%)\. (E26)

In order to manipulate the expression of A3, we first used the fact that

\/(a-l-%)[b—i—%(l—)\)] <%\/1—)\/\a,b>0©a:0/\b20, (E27)

and then we exploited the monotonicity of %(1 — %)\ + 4/ ’\IZ + 4x? ) inxfor x > 0. The inequalities appearing

in the manipulations of A, and As are obtained by dropping a condition on a, b, x which restricts the
minimisation region. In the first equalities written for As and As we used the monotonicity in x of the function

2
%[a+b+1—%A+\/(a—b+%A) +4x2:|, (E28)

which is minimised for x = 0. In the third relation appearing in the manipulation of A5 we changed variables as
a— %(x + xy)and b — %(x — xy), whereas in the second relation appearing in the manipulation of As we

parametrised a, basa — %(y + J4x* + y*)and b — %(—y + \/4x% + y?). Finally, the last equalities
leading to the evaluation of As and A¢ in equations (E25) and (E26) are respectively due to

min [yA — 241 — AJ1 —p2] = -2 = V), (E29)

—1<y<1
and

min[1/1A+y2+’y+%A‘]1%)\. (E30)

y

Overall, we have been able to show that A} = 1 — %)\, and that A, can be written as the minimum among

quantities larger than orequalto 1 — %)\. Therefore, from equation (E18) it follows that A = 1 — %)\, as
desired.
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E.2.Proofof B > 1 — %)\
We start by writing the values of & and Fappearing in the definition of Bin equation (E7)as @ — a + % and

80— b+ %(1 — ). Then, we divide the parameter region into two sub-regions depending on the ordering

between min{\/(a + %)[b + %(1 — /\)], x}and%x/l — M. Thisleaves us with

2
B=min<b + %: ab > [min{min{\/(a + %)[b + %(1 — )\)], x} — %\/1 — A, 0}]

22
/\a+%<b/\a,b,x>0}

= min{Bl, Bz}, (E31)
where
. 1 . 1 1 1
Blzzmln{b—&——:ab}O A mln{\/(a—i——)[b—i——(l - A)],x}} —+1 =X
2 2 2 2
2
/\a+2%<bAa,b,x>0}
. 1 1 1 1
:mln{b + = \/(a—|— —)[b+ -1 - )\)] > —J1 =X
2 2 2 2
2%\/ — /\a—|— b/\a,b,x}O}
/min{b % \/17 /\Ll+ )\ b/\a,b,x}O}
:min{b+l:a+l_/\ b/\a}O}
2 A
:min{b-i-l: - A < b} :—(1 — —)\) 1— —>\ (E32)
2 A
and
1 1 1 1 ’
B, = min{b + E: ab > (min{\/(a + E)[b + E(l — )\)],x} - Exll — )\]
) 1 2x2
/\mm{\/(a—kz)[b—k—(l—)\) } /\a+7<b/\a,b,x>0}
_min{b+%:@>%\/ )\—mm{\/ b+—(1—)\)] }
. 1 2x2
/A min a+5 b+—(17)\) /\a+T§b/\a,b,x20
2min{b+%:@>%\/ )\mm{ b+—(17)\)] }
2
/\a+2%<b/\a,b,x>0}
:min{b+%:@>%\/ “ A —x A Vab > %\/1— —\/(a—&—%)[b—&-%(l—/\)]
2
Aa+%<bAa,b,x>o}
2
m1n{b+—\/_b>%\/1—)\—x/\a—l—%éb/\a,b,x}O}
= min{Bs;, B,}. (E33)

27



10P Publishing

NewJ. Phys. 20 (2018) 013033 L Rigovaccaet al

The inequalities appearing in the above manipulations are obtained by dropping conditions on a, b, x which
restrict the minimisation region. Moreover, B; and B, are obtained by splitting the parameter region into two
sub-regions, defined according to the ordering between +/ ab and %x/ 1 — A.More precisely, we can write

2
B; = min{b % \/1— —Jab A Jab > \/1—/\/\a+2%<b/\a,b,x>0}
= min{b—l—%\/_ —J1 — A a< b/\a,b>0}
:mm{b+l —«/1—)\/\b}O}:l\/l—)\+l>1—l)\,
2 2 2 2 2
(E34)
and
2
B, := min b+%: 25\/1— —@A@g%#l—/\/\a—l—%gb/\a,b,x}O}

)

<bAab>0
A

= min b—i—%:@é%\/l—)\ A a+
= min b—i—%:@g%\/l—/\ /\%\/1— —x/%é\/gx/b—a Ab>aAa>o}

|
|
|
=
-
-
{
{

%(1+y+m)x Jl—Almxé\EyAx,y>0}
= §(1+y + 4+ ) x < JTAEJ—A—x—\EMx }
1 1—A
— S0+ y? +JWT=X = V2P + 7410 <y < M}
>ryrélﬂr£ %1+)’ +\/(m—\/_)’)2+)’]}
= min

zeR

1y l(1 — )\)/\lz2 + /4(1_—>\Z)2 + 24]}
2 4 (1= XN
1

= —+1(1—A)A[1+ M—&-l]:l—l)\.
2 4 (1— N 2

(E35)
In the third equality of the manipulations performed on B, we changed variablesas b — %( 2+ J4x2 + yt)
anda — %(—y2 + \/4x* + y*), whereas in the fourth equality we used the fact that %(l +yr + Jaxr 4+ )

is amonotonic function of ywhen y > 0. The seventh and eighth relations appearing in the manipulation of By,

a-MA )\)A

instead, are respectively obtained by changing variable as y — z and by exploiting the fact that

4(1 Az)?
- )N

Overall, thisshowsthat B > 1 — %)\ and the proofis concluded.

z2 + + z*isminimisedatz = 1for0 < A < 1.
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