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Abstract
Weprovide a versatile upper bound on the number ofmaximally entangled qubits, or private bits,
shared by two parties via a generic adaptive communication protocol over a quantumnetworkwhen
the use of classical communication is not restricted. Although our result follows the idea of Azuma
et al (2016Nat. Commun. 7 13523) of splitting the network into two parts, our approach relaxes their
strong restriction, consisting of the use of a single entanglementmeasure in the quantification of the
maximumamount of entanglement generated by the channels. In particular, in our bound the
measure can be chosen on a channel-by-channel basis, in order tomake it as tight as possible. This
enables us to apply the relative entropy of entanglement, which often gives a state-of-the-art upper
bound, on everyChoi-simulable channel in the network, evenwhen the other channels do not satisfy
this property.We also develop tools to compute, or bound, themax-relative entropy of entanglement
for channels that are invariant under phase rotations. In particular, we present an analytical formula
for themax-relative entropy of entanglement of the qubit amplitude damping channel.

1. Introduction

Whenever two parties, say Alice and Bob, want to communicate by using a quantum channel, its noise
unavoidably limits their communication efficiency [1]. In the limit ofmany channel uses, their asymptotic
optimal performance can be quantified by the channel capacity, which represents the supremumof the number
of qubits/bits that can be faithfully transmitted per channel use. Obtaining an exact expression for this quantity
is typically far from trivial. Indeed, in addition to the difficulty of studying the asymptotic behaviour of the
channel, the value of the capacity also depends on the task Alice and Bobwant to perform, aswell as on the free
resources available to them [1]. Two representative tasks, whichwill be considered in our paper, involve the
generation and distribution of a string of shared private bits (pbits) [2, 3] or ofmaximally entangled states (ebits)
[4]. These are known to be fundamental resources formore complex protocols, such as secure classsical
communication [5, 6], quantum teleportation [7], and quantum statemerging [8]. An example of free resource
involves the possibility of exchanging classical information over a public classical channel, such as a telephone
line or over the internet. Depending on the restrictions on this, the capacity is said to be assisted by zero, forward,
backward, or two-way classical communication [1]. In this paperwewill focus on the last option, that is, no
restrictionwill be imposed on the use of classical communication.

Although the capacity of a quantum channel is by definition an abstract and theoretical quantity, it is also
practically useful in that it can be comparedwith the performance of known transmission schemes. This
comparison could then give an indication on the extent of improvements that could be expected in the future.
From this perspective, similar conclusions could be obtained even by studying upper bounds on the channel
capacity itself, if they are close enough to its value. For example, with this approachTakeoka et al [9]provided
strong evidences for the need of quantum repeaters for long-distance quantumkey distribution (QKD) [10–12].
This reason, together with the fundamental appeal of characterising the ultimate transmission rate achievable by
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a channel, led to recent intensive research for computable and simple upper bounds on channel capacities,
preferably determined by a single use of the channel [9, 13–20].

The results in this direction have been obtained by considering themaximum entanglement that could be
shared through a single use of a channel A B  , which takes as input a quantum state onAlice’s side and yields an
output onBob’s one. Indeed, for any entanglementmeasure E across the bipartitionA:B, we can define the
entanglement of the channel as

E Emax , 1A B AA
AA

  rº
r

¢ ¢
¢

( ) ( [ ]) ( )

along the lines of [13–15, 17]. For some choices of A B  andE, this can be used to upper bound the private
capacity K ( ), assisted by two-way classical communication.Hence, E ( ) also acts as an upper bound on the
two-way quantum capacity Q ( ) of the channel, because Q K ( ) ( ) (since an ebit can be considered a
special case of pbit [2, 3]). By generically labellingwith C ( ) one of these two capacities, these upper bounds
can be compactly written as

C E . 2 ( ) ( ) ( )

A result of this formhas been proven in [9, 13] for any quantum channel by employing a particular entanglement
measure, the squashed entanglement Esq [21]. However, due to the difficulty of computing Esq ( ) exactly
[14, 16, 22], one often needs to resort to upper bounds on it, thus loosening the bound for the capacity. The
relative entropy of entanglement ER is also known to provide an upper bound on the capacity of Choi-simulable
quantum channels [14, 17], i.e., channels that can be simulated by performing LOCCs on their Choi–
Jamiołkowski states. Quantum channels with this property are also calledChoi-stretchable channels [14].
Remarkably, this upper bound often has no gapwith respect to the best known lower bound on the capacity, and
when this happens a single-letter formula for the capacity has been found.However, a drawback of the upper
bound based on the relative entropy of entanglement is that at themoment it is not knownwhether equation (2),
with E ER= , is validwhen applied on a generic, nonChoi-simulable, quantum channel. Another option is to
use in equation (2) themax-relative entropy of entanglement Emax [15]. The resulting bound is formally proven
only for quantum channels acting onfinite dimensional systems, but it is thought to hold in general (see [15] for
a short discussion). The set of pairs E, ( ) for which equation (2) is known to hold is the subject of ongoing
research, and its extension represents an interesting and challenging problem.

In the future, it is reasonable to expect that all the parties involved in a communication taskwill be located at
different nodes of a quantumnetwork. In this vision,multiple users will be interconnected by a network of
quantum channels, which can be utilisedwith the aimof transmitting or sharing quantum information. This
scenario represents the evolution of today’s internet in a quantum regime, and is therefore known as ‘quantum
internet’ [23–26]. Experimental demonstrations ofQKDovermetropolitan networks are currently underway
[27–31]. Similarly to the single-channel scenario, it is of fundamental and practical importance to seek upper
bounds on the rate at which ebits (or pbits) can be shared by two parties by using the channels of the network.
This issue has been addressed in [32] and [24], where the authors obtained network versions of equation (2), by
respectively using ER or Esq asmeasures of entanglement. The possibility of dealingwith quantumbroadcast
channels [33] has also been considered in [34–39].Whenmultiple channels are involved, a typical approach
consists in splitting thewhole network into two parts, and then in using themaximumamount of entanglement
generated by the channels connecting them in order to bound the number of ebits (pbits)produced by a
communication protocol. Thanks to the broad applicability of the single-channel bound given in equation (2)
for E Esq= , the result of [24] holds for arbitrary quantumnetworks. However, a non-vanishing gapwith the
optimal number of ebits (or pbits) generated by the network could exist, in analogywith the single-channel case
where the upper bounds on the capacity based on the squashed entanglement are typically not tight. It is thus
natural towonder whether different entanglementmeasures could improve this sort of network bound, and to
what extent the choice of entanglementmeasure could be tailored to the characteristics of the channels in the
network.

In this paper, we start by emphasising how a common strategy is adopted in all the known proofs of the
boundswith the formgiven in equation (2). This allows us to formally identify two sufficient properties that, if
satisfied by a given pair E, ( ), lead to a new instance of equation (2).We then show that those two properties
also allowus to generalise the result of [24] on quantumnetworks to different entanglementmeasures: ER when
the channels in the network are Choi-simulable, or Emax. Thefirst case is particularly interesting, because
equation (2) is often known to be tighter when stated in terms of ER, rather than in terms of Esq. The same
advantage is therefore expected to be inherited by the corresponding upper bounds on the performance of
quantumnetworks. However, notice that the ER-based bound cannot be applied to arbitrary quantum
networks. For example, even if a quantumnetwork is composed almost entirely byChoi-simulable channels that
arewell bounded by their relative entropy entanglement, the presence of a single channel that is not Choi-
simulable forces the use of aweaker entanglementmeasure (such as Esq) for thewhole network. This suggests
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that a better bound could be obtained if therewas the possibility of changing entanglementmeasures on a
channel-by-channel basis. Our second andmost important result goes exactly in this direction.We exploit an
intermediate step in the discussion byChristandl and collaborators in [15] in order to bound the performance of
a quantumnetwork bymeans of either ER or Emax. In particular, as Emax is always larger than ER, we use the
relative entropy of entanglement on theChoi-simulable channels of the network, and themax-relative entropy
of entanglement on the others. The resulting bound allows us tomaintain the precision guaranteed by the
relative entropy of entanglement, without the need to restrict its applicability toChoi-simulable networks. After
having presented this general result, wewill provide examples of networks where our bound yields an advantage
over its counterpart based on the squashed entanglement. In order to do this, wewill also evaluate themax-
relative entropy of entanglement for themost commonqubit channels, by exploiting their symmetry under
phase rotations and a recent semidefinite programming (SDP) formulation of Emax [40]. In particular, for the
qubit amplitude damping channel we are able to analytically solve the SDP optimisation, thusfinding the exact
expression for itsmax-relative entropy of entanglement. This quantity upper bounds the private and quantum
capacities of the channel assisted by unlimited classical communication, but is less tight than the best known
upper bound based on the squashed entanglement [14].

The remainder of this paper is organised as follows. In section 2we introduce our notation and some
preliminary notions that will be used in the following. In section 3we formally identify sufficient properties that,
if satisfied by a pair E, ( ), lead to an upper bound on the capacity of the channel as in equation (2).
Furthermore, along the lines of [24], we showhow the same properties are also sufficient to obtain an upper
bound on the number of ebits (or pbits) generated through a quantumnetwork. Ourmain result is presented in
section 4, wherewe derive a similar versatile upper bound, inwhich different entanglementmeasures are applied
to the channels of the network depending on their Choi-simulability. Analytical or numerical evaluations of the
max-relative entropy of entanglement for themost commonqubit channels can be found in section 5, while
examples of networks where our bound performs better than the one based on the squashed entanglement are
presented in section 6. Afinal discussion on our results can be found in section 7, together with our conclusions.
Technical details are left for the appendices.

2. Preliminaries

In this sectionwe introduce the basic concepts necessary to understand the remainder of the paper, andwe
describe the notationwewill use. In particular, we start by looking at the definitions and properties of the relative
andmax-relative entropy. Then, we introduce the notion of private states and of Choi-simulable channels.We
also formally describe the structure of a quantumnetwork and of themost general adaptive protocol, assisted by
free classical communication, that could be employed to share ebits (or pbits). At the end of the section, we
discuss thefigure ofmerit we use to quantify the performance of a given communication strategy, andwe
comment on its relation to the usual single-channel capacity.

2.1. Relative andmax-relative entropies
Given two quantum states ρ andσ, with supports satisfying Supp Suppr sÍ( ) ( ), their relative entropy [41] and
max-relative entropy [42] are respectively defined as

S Tr log log , 32 2r s r r s= -( ) [ ( )] ( )

D xinf 2 0 , 4x
max  r s s r= Î -( ) { ∣ } ( )

while their values are set to¥ if the condition on the supports is not satisfied. The relative andmax-relative
entropy of two states are related by

S D , 5maxr s r s ( ) ( ) ( )

they are also non-negative, equal to zero if and only if r s= , and invariant under joint unitary operations, that
is:

S U U U U S D U U U U D, , 6max maxr s r s r s r s= =   ( ) ( ) ( ) ( ) ( )† † † †

for any unitaryU.Moreover, the relative entropy is jointly convex in its arguments [43], whereas themax-
relative entropy is jointly quasi-convex:

S p p p S , 7
i

i i
i

i i
i

i i iå å år s r s 
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )
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D p p Dmax , 8
i

i i
i

i i
i

i imax maxå år s r s 
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

where i ir{ } and i is{ } are quantum states, and p 0i  with p 1i iå = .
The relative andmax-relative entropies can be used to define entanglementmeasures respectively known as

relative entropy of entanglement [44] andmax-relative entropy of entanglement [42]. For a given bipartite state

ABr , their values are obtained by optimising over all separable states as follows:

E Smin , 9A B
AB AB ABR

:

SEPAB

r r s=
s Î

( ) ( ) ( )

E Dmin . 10A B
AB AB ABmax

:

SEP
max

AB

r r s=
s Î

( ) ( ) ( )

In the followingwe do not explicitly write the bipartitionA:B in the symbols ER and Emax, unless needed to avoid
confusion. If the local quantum systems of Alice (or Bob) are divided into smaller subsystems, these will be
labelled for example as A A A, ,¢  (or B B B, ,¢ ). In this case, the default evaluation of an entanglementmeasure
has to be considered across the bipartitionAA′A″:BB′B″. As any good entanglementmeasure, ER and Emax are,
on average,monotonically non-increasing under local operations and classical communication (LOCC). For an
entanglementmeasureE, this property can be explicitly written as

p E E , 11
k

k AB
k

ABå r r( ) ( ) ( )( )

where k represents themeasurement outcome of the LOCCoperation applied on ABr , pk is the probability of
obtaining it, and AB

kr( ) is the output state of the systempost-selected on that result.Moreover, the ordering
relation in equation (5) can also be straightforwardly extended to the entanglementmeasures ER and Emax, as
well as to the entanglement of a channel  (see equation (1)):

E E E E, . 12AB ABR max R max  r r( ) ( ) ( ) ( ) ( )

Further details on Emax can be found in [45].
We stress that in the remainder of this paper any generic entanglementmeasure E satisfies equation (11), and

becomes zerowhen evaluated on any separable state.

2.2. Target states:maximally entangled or private states
The typical goal of two parties, say Alice and Bob, in a quantum communication protocol is to share one or
multiple copies of a d-dimensionalmaximally entangled state

d
d

ii jj
1

, 13AB
i j

d

AB
, 1
åy = ñ á
=

( ) ∣ ∣ ( )

where i A B iñ{∣ }( ) forms a local orthonormal basis. Any single copy of these states corresponds to dlog2 ebits,
whichAlice and Bob can use to performone ofmany possible tasks. For example, they can transmit any d-
dimensional state via the teleportation protocol, or they can perform a projectivemeasurement on it in order to
share a string of dlog2 bits of private randomness. Themaximally entangled state, however, is not the only
quantum state fromwhich a private key can be obtained by performing localmeasurements. It has been shown
that this is possible whenever Alice andBob are able to distil via LOCC a so-called ‘private state’ [2, 3], which has
the following form:

d U d U . 14ABA B ABA B AB A B ABA B
twist twistg y s= Ä¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢( ) ( ( ) ) ( )( ) ( ) †

The state A Bs ¢ ¢ is arbitrary and the controlled unitary

U i i j j U 15ABA B
i j

d

A B A B
ijtwist

, 1
å= ñ á Ä ñ á Ä¢ ¢
=

¢ ¢∣ ∣ ∣ ∣ ( )( ) ( )

is known as ‘twisting unitary’, with eachUA B
ij
¢ ¢

( ) a unitary operator. The local subsystemsA andB are called ‘key
systems’, whereas A¢ and B¢ are known as ‘shield systems’. The role of the latter is to prevent an eavesdropper
fromgetting access to the key component, and they could have any dimension.

2.3. Choi-simulable channels
The idea of using quantum teleportation in order to simplify the structure of a computation for communication
task has been used several times in the past [46–51, 51, 52]. Recently, a similar idea has been used in [14] and in
[17, 32] in order to obtain upper bounds on the capacities of quantum channels  such that their action on a
quantum state Ar ¢˜ can bewritten as
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. 16A B A A A B A A B: r r p= L Ä¢ ¢ ¢ ¢  ¢ ¢  ¢( ˜ ) ( ˜ ( )) ( )

Here A A B:L ¢  ¢ is a trace-preserving LOCCoperation and A B A B A A p y= ¢  ¢ ( ) ( )˜ ˜ represents the Choi–
Jamiołkowski state associatedwith the quantum channel  , with A Ay  ˜ amaximally entangled state.Wewill say
that channels satisfying equation (16) are Choi-simulable, as they can be simulated by applying LOCCs to their
Choi–Jamiołkowski state. This property can also go under the name of ‘Choi-stretchability’ [14, 32]. The
importance of equation (16) lies in the fact that it gives the possibility of reducing the effect of a quantum channel
to the presence of an initially sharedChoi state, up to some LOCC transformation. Equation (16)makes the
description of the quantum communicationmuch simpler, because the LOCC A A B:L ¢  ¢ can be included among
those freely performed by the parties. In the following, if a channel  is Choi-simulable wewill write  Î .

Remarkably, the relative entropy of entanglement of a Choi-simulable channel  , as defined in
equation (1), provides an upper bound on its capacity assisted by two-way classical communication [14, 17].
Moreover, ER ( ) exactly coincides with the capacity C ( ) on a particular subset of Choi-simulable channels,
whose capacities C ( ) can thus bewritten as single-letter formulas [14]. Channels for which this happens can
also be called ‘distillable’ [14, 32]. Among these, we can enumerate the erasure and dephasing channels infinite
dimensional systems, as well as the bosonic lossy channel. Interestingly, formanyChoi-simulable channels
(such as Pauli channels) ER ( ) turns out [14] to be a tighter upper bound on C ( ) than other knownupper
bounds based on the squashed entanglement [9, 13]. However, one should keep inmind that this is not always
the case, as can be seen by considering a channel having an antisymmetric Choi state. Indeed, the squashed
entanglement of this state, and thus of the associated quantum channel, can be arbitrarily small compared to its
relative entropy of entanglement [53, 54].

We now explicitly derive a property that the relative entropy of entanglement satisfies when applied on the
output of a Choi-simulable channel. Although it is obvious from the discussion in [14], it is beneficial to go
through its proof in detail, because it will play a central role in the remainder of this paper. In particular, we
prove that if AB Br ¢˜ is obtained as output of a Choi-simulable channel  Î as

, 17AB B A B AA Br r=¢ ¢ ¢ ¢˜ ( ) ( )

the following chain of inequalities holds:

E E

E E

E E . 18

AB B AA B A B

A B AA B

A B AA B

R R

R R

R R










r r p
p r

r

Ä
+

= +

¢ ¢  ¢

 ¢ ¢

¢ ¢ ¢

( ˜ ) ( ( ))
( ( )) ( )
( ) ( ) ( )

Thefirst inequality comes from equation (16) and from themonotonicity of ER under LOCC,while the second
one follows from its sub-additivity under tensor products. Thefinal equality can be proven by showing
inequalities in both directions. Indeed, the inequality ‘’ is obtained by noticing that amaximisation over all
input states would be needed in order to obtain the relative entropy of entanglement of a channel (see
equation (2)). The converse direction, instead, is once again a consequence of equation (16) and of the
monotonicity of ER under LOCC [14]:

E E E , 19A B AA A A B AA A B A BR R : R  r r p p= L Ä¢ ¢ ¢ ¢  ¢  ¢ ( [ ]) ( [ ( )]) ( ( )) ( )

which holds for any AAr ¢ and thus also for itsmaximumvalue E A BR  ¢ ¢( ). Hence, equation (18) shows that the
amount of entanglement which can be found in output of a Choi-simulable channel, asmeasured by ER, can be
upper bounded by the amount already present in input plus themaximumamount that can be created by the
channel itself. Up to date, it is not knownwhether the same conclusion could be obtained also for any quantum
channel.

2.4.Quantumnetworks as graphs
The simplest setup that allowsAlice and Bob to exchange quantum information is shown infigure 1(a), where a
quantum channel A B  connects Alice’s laboratorywith Bob’s.More generally, we can think of them as being
two local users having access to a quantumnetwork, as infigure 1(b). A quantumnetwork is composed of several
nodes, connected bymany quantum channels potentially different from each other.We can formally describe
this structure by a directed graph G V L,= ( ), whereV V V, , M0 1= ¼ +{ } is the set of nodes and L is the set of
directed edges, or links, between the nodes. For any edge l V V L,i j= Î( ) , there is a quantum channel l ( ) from
nodeVi to nodeVj.Without loss of generality, we can assume that nodes A V0= and B VM 1= + are respectively
controlled byAlice and Bob, whereas the remaining nodes Ci i

M
1={ } , withCi=Vi, are not.

In the followingwewill oftenmake use of the notion of ‘bipartition’ of a quantumnetwork. This is defined
by dividing the nodes Ci i{ } into two disjoint sets: CA i i Ì { } and CB i i A = { } ⧹ . Once a bipartition has been
chosen, the set of edges connecting the nodes in A AÈ{ } with those in BB È { }, or vice versa, will be labelled
as L L

A Ì .Moreover, in order to keep our notation simple, in the remainder of this paperwewill refer to the
subsets of nodes A AÈ{ } and BB È { }bywriting respectively A A and BB .
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2.5. Adaptive strategy over quantumnetworks
Weassume that full quantum control over the local systems is available on each node of the network, and that all
parties can freely exchange classical information at any stage of the protocol in order to coordinate their strategy.
Moreover, we also assume that every node in the networkwill collaborate withAlice and Bob in order to allow
them to achieve their goal. At the beginning of themost general adaptive communication protocol, the parties
initialise their systems in a separable state ABC C

1
M1

r ¼
( ) . Then, they iteratively exchange (part of) their systems via

the quantum channels, and performLOCCs on the obtained states, whichmay involvemeasurements. For this
reason, every choicemade by the parties at a certain stage of the protocolmay depend on all previously obtained
LOCCoutcomes. In the remainder of this sectionwe formally describe any protocol of this kind, similarly to
what has been done in [24, 32, 36]. For the sake of simplicity, wewill drop the subscript ABC CM1 ¼ from states
spread over thewhole network.

Between any two channel uses several LOCCmay be performed, but we can group them into a single ‘round
of LOCCs’ yielding an overallmulti-index outcome k. In this way, a single ‘round of the protocol’will be
composed by the application of a channel followed by a round of LOCCs. Let us groupwithin the vector
k k k k k, , , ,i i i0 1 1= ¼ -( ) the sequence of LOCCoutcomes obtained in the first i rounds, with k 10 º added for
convenience. In this way, the ith round of the protocol receives as input ki 1r - and transforms it into kir via the
following two steps.

• Depending on the previous LOCCoutcomes, groupedwithin ki 1- , the partiesmay use the channel lki 1 -( ) to
transmit a quantum state along the edge l Lki 1

Î- of the graphG characterising the network. The global state at
the end of this step is labelled by ;ki 1r -˜

• A round of LOCCs ki 1L -( ) is performed on ki 1r -˜ , with output ki obtainedwith probability kp ki i 1-( ∣ ). The
output quantum state kir will be used as input for the following round of the protocol.

When the protocol stops, say after n rounds, the final state Trk k
AB C C, ,

n
M

n
1

r r= ¼ [ ] shared byAlice and Bob has to
be ò-close in trace distance to an ideal target state dkAB n

f ( ), i.e., such that for any sequence of outcomes kn one
has

d , 20k
kAB AB 1

n
n r f- = ( ) ( )

where O O OTr1 º  [ ]† . The target state dkAB n
f ( ) can either be amaximally entangled state dkAB n

y ( ) (see
equation (13)) or a private state dkAB n

g ( ) (see equation (14)), depending on the task of Alice andBob.
All the details of the adaptive strategy leading to equation (20) are determined by the protocol n, that the

parties are following. These details include the error threshold ò, themaximumnumber of rounds n, the target
states dkAB n

f ( ), and the set of rules that, at any round of the protocol,map the vectors of previous outcomes
ki i

n
0
1

=
-{ } to the channel and LOCCoperations used in the following. In the remainder of this paper wewill often

have to average some function kF n( ) over all possible LOCCoutcomes kn{ }. It is thus convenient to introduce
the shorthand notation

Figure 1. (a) Single-channel communication scenario, whereA andB are connected through the channel A B  . (b)An example of
quantumnetwork, withM=6 additional nodes. Every arrow corresponds to a quantum channel. The bipartition

C C C, ,A 1 2 3 = { }, C C C, ,B 4 5 6 = { } is shown as an example, and the channels l ( ) with l L AÎ , which connect the twopartitions,
are coloured in red.
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k kF p F , 21
k

n nn

n

, åá ñ º ( ) ( ) ( )

where kp n( ) is the probability of obtaining this particular sequence of LOCCoutcomes according to the
protocol n, .

We point out that the number of channels used in the protocol will generally be smaller than n. This is
because in any round the partiesmay decide to use a channel of the network, but are not forced to do so.
However, without loss of generality we can assume that a channel is used in any round of the protocol up to a
certain point, after which the parties can only performLOCCs and the communication protocol is effectively
aborted. Indeed, if this were not the case, we could recover this situation simply bymerging all the LOCCs
performed between two channel uses into a single round of LOCCs.Notice that depending on the LOCC
outcomes already obtained, the parties can decide to effectively abort the communication after different
numbers of channel uses. In particular, for any edge l LÎ and vector kn, we can define as km l

n( )( ) the total
number of times channel l ( ) has been used in that particular realisation of outcomes. Formally, this can be
written as

km , 22l
n

i

n

l l
0

1

, kiå d=
=

-

( ) ( )( )

where the symbol δ represents the Kronecker delta, while the total number of channel uses is

k km m . 23n
l L

l
nå=

Î

( ) ( ) ( )( )

Avalue of km n( ) strictly smaller than nmeans that the protocol has been effectively interrupted after km n( )
rounds.

2.6.Quantifying the performance of a communication protocol
The quality of a point-to-point adaptive communication protocol n, can be quantified by its ability to produce
a large number of shared ebits (or pbits) betweenAlice and Bob. For any realisation kn of LOCCoutcomes, this
corresponds to the logarithmof the dimension dkn

that characterises the target state dkAB n
f ( ), ò-close to thefinal

state k
AB

nr produced by the protocol. Therefore, a good figure ofmerit for n, can be obtained by averaging this
quantity over all LOCCoutcomes. In our notation, this can bewritten as dlog2 n,á ñ .

This approach is particularly suitable to characterise the performance of protocols that use the channels of
the network afinite number of times, because it directly provides the length of ebits (pbits) that Alice and Bob
can expect to share at the end of the communication. However, the quantity dlog2 n,á ñ becomes unbounded
when the asymptotic limit of infinitelymany channel uses is considered. In a single-channel scenario, this issue
has been traditionally addressed by considering the communication rate, i.e., the number of bits produced per
channel use.We should point out that in this case one does not typically consider the possibility of interrupting
the protocol depending on previous LOCCoutcomes. This is because otherwisewith non-zero probability the
asymptotic regime of infinitelymany channel uses would not be reached. For this reason only protocols which
use the quantum channel after every round of LOCC are normally consideredwhen assessing its asymptotic
performance. In this paper, a protocol of this kindwill be labelled as N,̃ , where ò represents the error threshold
andN is the fixed number of channel uses.With this notation, the quantum (or private) capacity of a quantum
channel  assisted by two-way classical communication can be obtained as the limit

C
d

N
lim lim sup

log
. 24

N0

2

N

N

,

,
 





=
á ñ

 ¥
( ) ( )

˜

˜

For a generic quantumnetwork the situation ismore involved, and in the literature one can findmultiple
ways of assessing its communication performance in the asymptotic limit. For example, one can fix the
frequencywithwhich each channel is used, and divide dlog2 n,á ñ by the total number of channel uses [55]. Other
options, proposed in [32], consist in using each ‘path’ connecting Alice and Bobwith a certain probability, or in
using each channel of the network exactly once. Then, the number of produced ebits (pbits) is respectively
divided by the number of paths used, or by the total number of times the network has been accessed. Although
the details of characterising the considered figure ofmerit can change on a case-by-case basis, one typically has to
optimise dlog2 n,á ñ over a chosen class of protocols, and divide it by a quantity that counts howmany times a
basic operation has been repeated.

Similar to [24, 55], in the followingwe are able to provide an upper bound on dlog2 n,á ñ for a generic
adaptive protocol running on a quantumnetworkwith graphG. This bound only depends on themaximum
amount of entanglement that could be generated by the quantum channels composing the network, and on the
number of times each channel has been used. From the previous discussion, it should be clear that our bound
can be easily converted to a bound on a broad class offigures ofmerit, which could be chosen to quantify the
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performance of the network. For example, in the case of a single channel, our bound can be connected to an
upper bound on the capacity bymeans of equation (24).

3. Entanglement-based upper bounds

Asmentioned in the introduction, recently several authors provided bounds on the number of ebits (pbits)
shared by two parties at the end of a point-to-point communication protocol assisted by two-way classical
communication. Some studies deal with the capacity of a single quantum channel [9, 13–15, 17], whereas others
consider quantumnetworks with arbitrary topology [24, 32, 55]. However, they all share some common
features.Here we identify these, and showhow they can lead to known, new, or yet to be discovered
communication bounds.

We start by considering a single channel  and a generic entanglementmeasure E, andwe formally
summarise in theorem1 some important properties that have been used in the past in order to obtain upper
bounds on the channel capacity. One advantage of this abstract formulation is that it can ease the process of
identifying all the entanglementmeasures which can be used to bound the capacity of a given channel. By
comparing all these bounds, it would then be possible to select the onewith theminimumvalue, which
represents the best knownupper bound on the capacity C ( ). A second advantage of our abstract approach lies
in the possibility of easily extending previous results on quantumnetworks to other entanglementmeasures, not
explicitly studied in the original papers. This is because the same properties responsible for the upper bound on
the capacity of a single channel are also themain ingredients used in [24] to derive an upper bound for the
number of shared ebits (pbits) produced by a quantumnetwork. In this way, we are able to show that the same
bound of [24], originally expressed in terms of the squashed entanglement, is also valid for other entanglement
measures: Emax and ER, although the applicability of the latter is restricted to networks composed byChoi-
simulable channels. This original contributionwill be summarised as theorem2.

Havingmultiple upper bounds on the communication performance of a quantumnetwork, based on
different entanglementmeasures, there is the possibility of combining them together in order to obtain a bound
as tight as possible. An obvious option consists in evaluating each upper bound separately, and then selecting the
onewhich yields theminimumvalue. However, it is possible to do better than this, and in section 4we showhow
the bounds based on Emax and ER can be joined together to form a single tighter bound.

3.1. General framework
We start by discussing the case of a single channel  , and thenwemove to themore general situation of a
quantumnetworkwith arbitrary topology. The proofs for the theorems presented here can be found at the end
of the section.

Allmeasures of entanglement E known to yield a bound on the number of ebits (pbits) generated by a
communication protocol satisfy the following property:

P1. If a target state dABf ( ) is ò-close to a quantum state ABr , i.e., if dAB AB 1 r f- = ( ) , then there exist two
real functions fE and gE, with glim 1E0  = ( ) and flim 0E0  = ( ) , such that

E g d flog . 25AB E E2 r -( ) ( ) ( ) ( )

For amaximally entangled target state, this property can be easily proven for every asymptotically continuous [56]
measure E. On the contrary,more effort is usually required to prove it for private target states. The reason for this
is that the quantity d appearing on the right-hand side of equation (25)needs to be the dimension of the key
systems, rather than the dimension of thewhole key-shield systems. Nonetheless, property P1 has been proven
for Esq [57] and ER [3, 14, 17]. It can also be easily proven for Emax, by slightly varying the proof of lemma IV.2 in
[15] in order to obtain equation (25)with

g f1, and 2 log 1 2 . 26E E 2max max
= = - -( ) ( )

Another important property of a pair concerns the relation between the amount of entanglement in the input
and output states of the channel  , asmeasured by the entanglementmeasure E. A pair E, ( ) is said to satisfy
property P2 if for all states AA Br ¢ one has

P2. E E EAB B A B AA B AB B AA B r r r r= +¢ ¢ ¢ ¢ ¢ ¢˜ ( ) ⟹ (˜ ) ( ) ( ),

where E ( ) is themaximum entanglement shared through a single use of the channel (see equation (1)). This is
known to hold for any quantum channel when E Esq= [9, 13], and for anyChoi-simulable channel when
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E ER= (see equation (18)).Moreover, property P2 has been recently shown for themax-relative entropy of
entanglement for any channel acting onfinite-dimensional system, but it is conjectured to hold evenwithout
this assumption [15].

In order to ease the connectionwith quantumnetworks, we provide a bound on dlog2 n,á ñ also in the single-
channel scenario, fromwhich the usual bound on the capacity can be recovered as a corollary by using the
definition in equation (24). Furthermore, we can also provide conditions sufficient to prove the strong converse
property of an upper bound on the channel capacity. In particular, corollary 1 can be used together with
equation (26) in order to show that Emax provides a strong converse bound on the capacity of a single channel, as
originally proven in [15].

Theorem1. If E and  satisfy properties P1and P2, the average number of ebits (pbits) generated by an adaptive
protocol n, assisted by two-way classical communication can be upper bounded as

d
g

f m Elog
1

, 27
E

E2 n n, ,


   á ñ + á ñ
( )

[ ( ) ( )] ( )

where m
n,á ñ is the average number of times the channel has been used.

Corollary 1. If E and  satisfy properties P1and P2, the capacity of  assisted by two-way classical
communication can be upper bounded as

C E . 28 ( ) ( ) ( )

Furthermore, if g 1E  =( ) and f c logE 2
1

1 2



=

-
( ) , for c 0> , this is a strong converse bound.

Proof of corollary 1.By definition of capacity (see equation (24)), only protocols using the channel afixed
number of times should be considered. Equation (28) is thus a straightforward consequence of m N

N,á ñ =˜ ,
glim 1E0  = ( ) , and flim 0E0  = ( ) . In order to see the strong converse property, we need to express

equation (27) in terms of the error d 2 0, 1AB AB
1

2 1 r f- = Î ( ) [ ]. Namely

2 1 2 , 29d NElogc N
1

2 ,  - - á ñ - ( )[ ( )]˜

which tends to 1 exponentially fast in the numberN of channel uses as the rate dlog
N

1
2 N,á ñ ˜ exceeds E ( ). ,

As can be expected, a bipartite situationA:B is easier to study than a scenario inwhichAlice and Bob need to
cooperate with other nodes Ci i

N
1={ } in the network in order to achieve their communication task. Building on

this intuition, the authors of [24, 32] derived upper bounds on network capacities by considering a bipartition
AA:BB, and by extending the regions controlled byAlice and Bob so as to include in them also the remaining
nodes on their side. Intuitively, an upper bound can be obtained in thismanner because the achievable
communication rate between the ‘extended’ parties has to be larger than the one achievable by the realA andB.
In this framework, any given bipartition ,A B { }of the network leads to a different upper bound, inwhich only
the channels corresponding to the edges in L

A contribute. Although the proof that led to the result in [24] is
based on a particular choice of entanglementmeasure, we can see how the same reasoning applies to any
entanglementmeasure satisfying properties P1 andP2 for any channel connecting the two network partitions.
This is the result of the next theorem.

Theorem2.Consider a quantum network with an associated directed graphG. For a given bipartition ,A B { }of the
network nodes Ci i{ } , let L L

A Ì be the set of edges inG that connect a node in A A with one in BB . The average
number of ebits (or pbits) that Alice and Bob share at the end of a given adaptive protocol n, , assisted by unlimited
classical communication, can be upper bounded as

d
g

flog
1

, , 30
E

E E n A2 ,n,


    á ñ +
( )

[ ( ) ( )] ( )

where

m E, , 31E n A
l L

l l
,

A

n,    


åº á ñ
Î

( ) ( ) ( )( ) ( )

for any entanglementmeasure E satisfying hypotheses P1and P2 for any channel l ( ) with l L
AÎ .

At this point we canmake a few comments on this bound. In virtue of theorem 1,we point out that the
entanglement of the channel l ( ) has to be larger than the single-channel capacity C ( ). Therefore, the gap
between the two sides of equation (30) is reduced if a certainmeasure of entanglement can better approximate
the capacity of the channels in L

A . Furthermore, among the known entanglementmeasures satisfying P1 andP2
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for any channel l ( ) with l L
AÎ , the best choice is to choose the oneminimising ,E n A,  ( ). If we label by E

A∣
the set of entanglementmeasures satisfying properties P1 and P2 for the channels connecting the two partitions,
the following bound can be obtained:

d
g

flog min min
1

, , 32
E E

E E n A2 ,n
A A

,


   





á ñ +
( )

[ ( ) ( )] ( )
∣

wherewe also optimised over all possible choices for A .

3.2. Proofs for theorems 1 and 2
Any single channel can be interpreted as a simple quantumnetwork, hencewefirst showhow theorem 1 can be
derived from theorem2, and thenwe prove the latter. The ideas that will be used for these proofs are basically the
same as those used in [9, 13–15, 17, 24, 32, 55].

Proof of theorem1. For a single-channel scenario, the only possible bipartitionAA:BB of the network is the
trivial oneA:B.Moreover, at every round of the adaptive strategy the only channel Alice and Bob can use is

A B  , which is associatedwith the only edge l0 of the graph. Therefore, for all kn

k km m , 33l
n n

0 =( ) ( ) ( )( )

and the thesis of theorem 2 simplifies to:

d
g

f m Elog
1

. 34
E

E2 n n, ,


   á ñ + á ñ
( )

[ ( ) ( )] ( )

,

Proof of theorem2. In this proof wewillmake use of the notation introduced in section 2.5 to describe a generic
adaptive protocol n, . Property P1, together with equation (20), implies:

d
g

f Elog
1

. 35k
k

E
E

A B
AB2

:
n

n


 r+

( )
( ( ) ( )) ( )

By exploiting themonotonicity ofE under partial trace, and by averaging over all possible outcomes, we can
write for any bipartition ,A B { }of the set of nodes Ci i{ } :

k kd p d
g

f p Elog log
1

, 36
k

k
k

k
n

E
E n

A B
2 2

:
n

n

n

n

A B n
,


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 
 å å rá ñ = +

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )

( )
( ) ( ) ( ) ( )

where knr is the final state of the protocol, spread across thewhole network. The second termwritten between
square brackets on the right-hand side can be expanded into two terms as

k k kp E p E p E . 37
k

k

k

k

k
n

A B
n

A B
n

l L
l l

l:
1

:
, k

n

A B n

n

A B n

n A

n

1

1
1
   



å å å år r d+-
Î-

-
-

( ) ( ) ( ) ( ) ( ) [ ] ( )( )

The former is self-similar, but evaluated on the previous round of the protocol, while the latter characterises the
ability of the last channel used to create entanglement across the bipartitionAA:BB. In particular, the second
termdoes not always appear, because the channel lkn 1 -( ) might not connect A A with BB , or the partiesmay
have decided not to use a channel at all. This last case could be represented, for example, by any value of lkn 1- not
in the set L of graph edges. In order to prove equation (37), we can first expand the left-hand side as

k k kp E p p k E , 38
k

k

k

k
n

A B
n

k
n n

A B:
1 1

:

n

A B n

n n

A B n

1

   å å år r= - -

-

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( ) ( ∣ ) ( ) ( )

and then use the following chain of inequalities:

kp k E E E E , 39k k k

k
n n

A B A B A B

l L
l l

l
1

:
i

:
ii

:
, k

n

A B n A B n A B n

A

n
1 1

1
     



 å år r r d+-
Î

- -
-

( ∣ ) ( ) ( ˜ ) ( ) [ ] ( )
( ) ( )

( )

where i( ) is due to themonotonicity ofE under LOCCoperations, while ii( ) directly follows fromproperty P2.
After combining equations (38) and (39), we can recover equation (37) simply by noticing that the average over
kn 1- on the rightmost termof equation (39) can be freely changed into an average over kn. The same procedure
can be iteratively applied for every round of the protocol, so that at the endwe are left with
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k kp E E p E
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where the last equality is due to the separability of the initial state 1r( ) and to the definition of m lá ñ( ) given in
equation (22). At this point, the thesis of theorem2 follows directly from the inequality given in
equation (36). ,

4. Versatile upper bound for quantumnetworks

Aswe have seen, an entanglementmeasure E can lead to an upper bound on the capacity of a channel if it satisfies
a continuity inequality (property P1), and a recursive relation connecting the entanglement of the state before
and after the channel application (property P2). In the previous sectionwe discussed the possibility of changing
entanglementmeasures across different bipartitions. However, in doing sowe have to guarantee that, for each
bipartition A , the chosenmeasure satisfies property P2 for every channel l ( ) with l L

AÎ . This constraint
leads toweaker upper bounds thanwhatwould be obtained if we could change entanglementmeasure on a
channel-by-channel basis. For example, consider a situationwhere all the channels in a given bipartition are
Choi-simulable, with only one exception: the presence of this single unsimulable channel prevents us from
using ER in the bound of theorem 2. Instead, we are forced to use some broadly applicable entanglement
measure (as Esq or Emax) on every channel of the bipartition, thus loosening the bound.

In this sectionwe overcome this issue, by exploiting a recent result on sandwichedRényi entropies [15]. In
particular, we construct an upper bound on dlog2 n,á ñ that allows us to switch between ER and Emax, depending
on theChoi-simulability of each channel. To beginwith, in the followingwe describe the recent result obtained
in [15], which is the cornerstone of ourmethod. Then, we prove ourmain result.

4.1. Versatile property P2 for the relative andmax-relative entropy of entanglement
For any quantum channel A B ¢ ¢, and any real parameter 1  a < ¥, if

, 41AB B A B AA Br r=¢ ¢ ¢ ¢˜ ( ) ( )

one has [15]

E E E . 42AB B A B AA Bmax r r+a a¢ ¢ ¢ ¢( ˜ ) ( ) ( ) ( )

The quantityEα is defined in terms of the sandwichedRényi relative entropy Da˜ [58, 59]:
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1
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=
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s
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Î

Î

a
a

a
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- -



⎡
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⎤
⎦⎥( )

( ) ˜ ( )

( )

where ABs is optimised over all separable states. AsEα tends respectively to ER and Emax in the limits of 1a 
and a  ¥, by setting 1a = in equation (44)we obtain

E E E . 44AB B A B AA BR max Rr r+¢ ¢ ¢ ¢( ˜ ) ( ) ( ) ( )

This inequality closely resembles property P2 for ER, whichwas obtained in equation (18) for Choi-simulable
channels. However, thanks to the introduction of Emax on the right hand side, equation (44)nowholds even for
nonChoi-simulable channels. By combining equation (18)with equation (44), we can obtain a versatile property
P2 for the relative entropy of entanglement, inwhich the right-hand side changes according to theChoi-
simulability of A B ¢ ¢:

E E
E

E

, if ,

, otherwise,
45AB B AA BR R

R

max

  


r r +

Î
¢ ¢

⎧⎨⎩( ˜ ) ( ) ( )
( )

( )

where  is the set of Choi-simulable channels. Note that this is the best choice, as E ER max for all states (see
equation (12)).

4.2. Versatile upper bound for quantumnetworks
Wehave now all the tools to obtain a versatile upper bound on the length of ebit (or pbits) shared byAlice and
Bob at the end of a generic adaptive protocol n, , assisted by unlimited classical communication, over a
quantumnetwork.
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Theorem3.Consider a quantum network with an associated directed graphG. For a given bipartition ,A B { }of the
network nodes Ci i{ } , let L L

A Ì be the set of edges inG that connect a node in A A with one in BB . The average
number of ebits (or pbits) that Alice and Bob share at the end of a given adaptive communication protocol n, ,
assisted by unlimited classical communication, can be upper bounded as

d
g

flog
1

, , 46
E

E n A2 ,n,

R

R
    á ñ + ¢

( )
[ ( ) ( )] ( )

where

m E m E, , 47n A
l L

l l

l L

l l
,

:
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 



 

 

 

å å¢ º á ñ + á ñ
Î

Î

Î

Ï

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )

with f 2 log 1 log 1E 2 2R
    = - + - -( ) [ ( ) ( )]and g 1 8ER

 = -( ) .

Proof of theorem3.The proof follows closely the one provided for theorem2, with E ER= . The only difference
lies in equation (39), wherewe use the inequality in equation (45) instead of the original property P2. Therefore,
equation (39) has to be substitutedwith

E E E E , 48k kA B A B

l L
l l

l

l L
l l

l
R
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R

:

:
, R

:
, maxk k

A B n A B n

A
l

n

A
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1 1

1 1
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 å år r d d+ +
Î
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( ) ( )

wherewe split the sumover theChoi-simulable and non-Choi-simulable channels connecting the nodes on
different sides of the network partition. The remainder of the proof then follows the same steps used in the proof
of theorem2.We also explicitly provide the expressions for the functions fER

( ) and gER
( ) appearing in

property 1 (see e.g. [14]). ,

Thanks to this result, we havemanaged tomerge the upper bounds based on the quantities ER
 and Emax

 into
a single bound, which retains the advantages given by the two entanglementmeasures, i.e., tightness and broad
applicability. Therefore, in assessing the communication performance of an adaptive protocol n, over a
quantumnetwork, for any given bipartitionAA:BB one just needs to compare ¢with the bound Esq

 based
on the squashed entanglement [24]. This is because the dependence on fE and gE vanishes for small errors ò. In
particular, the advantage of using ¢ over Esq

 for the bipartitionAA:BB can be quantified by the parameter

, ,

, ,
, 49n

E n A n A

E n A n A
,

, ,

, ,
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
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

 

 
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- ¢

+ ¢
( )

( ) ( )
( ) ( )

( )

which is defined in the range 1, 1- +[ ]and is positive when the versatile bound ¢ is tighter than Esq
 . The sign

of n,A
m ( )will ultimately depend on the details of the bipartition and on the average number of times each

channel is used.However, we can expect ¢ to be tighter than Esq
 on bipartitionsmostly connected byChoi-

simulable channels, because themost commonof these channels satisfy E ER sq <( ) ( ). In contrast, when
there is a considerable amount of channels that are not Choi-simulable, the sign of n,A

m ( )will strongly depend
on the sign of E Esq max -( ) ( ): every nonChoi-simulable channel  for which this difference is positive
will enhance the usefulness of ¢ over Esq

 .
We should stress that ¢, Esq

 , and thus n,A
m ( )might not be easily evaluated, because the exact values of

Esq ( ) and Emax ( ) are not known formany channels.When evaluating communication bounds, in practice it

is common to consider the smallest knownupper bounds Esq ˜ ( ) and Emax ˜ ( ) on those unknown quantities,
rather than their exact values.When these approximations are introduced in equations (31) and (47)we are left
with slightly different quantities  ¢˜ and Esq

̃ , which if used instead of ¢ and Esq
 in equation (49) lead to a

modified parameter n,A
m̃ ( ). Then, we can say that currently our versatile upper bound yields a better result

than the network bound based on squashed entanglement when 0n,A
m >˜ ( ) .

Before discussing examples of networks where the bound provided by theorem3 becomes tighter than its
counterpart based on the squashed entanglement, wefirst need to evaluate Emax ( ) for some channels of
interest. In particular, in the next sectionwewill consider typical qubit quantum channels.

5.Max-relative entropy of entanglement of qubit channels

In this sectionwe develop amethod to obtain lower and upper bounds on themax-relative entropy of
entanglement of channels invariant under phase rotations, and to evaluate Emax itself for Choi-simulable
channels with the same symmetry. After that, we discuss the possibility of using SDP in order to evaluate the
max-relative entropy of entanglement of qubit channels, by using a formulation recently introduced in [40].
Interestingly, by combining these tools we are able to analytically obtain themax-relative entropy of
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entanglement of the qubit amplitude damping channel ad ( ). As this channel is notChoi-simulable its capacity is
still unknown, although several upper bounds on it havebeen recently derived [14, 16]. At the endof this sectionwe
also numerically evaluate themax-relative entropy of entanglement of other commonChoi-simulable qubit
channels: dephasing, erasure anddepolarising channels. Although the relative entropy of entanglement couldbe
used to bound the capacities of these channels, the purpose of this analysis is to see how far off the upper bound
basedonmax-relative entropy of entanglement is, comparedwith other bounds known in the literature.

In general, the calculation of themax-relative entropy of entanglement of a channel involves amax–min
optimisation (see equations (4) and (10)):

E xmax min inf 2 0 . 50
x

x
AB A B AAmax

SEPAA AB

  s r= Î -
r s Î

¢ ¢
¢

( ) { ∣ [ ] } ( )

In fact, themaximisation over AAr ¢ can be restricted to bipartite pure states with the dimension ofA equal to that
of A¢. This can be shown by purifying AAr ¢ and by applying the Schmidt decomposition and the date processing
inequality for the sandwichedRényi relative entropy [60]. Nonetheless, typically the optimisation leading to
Emax ( ) is still not trivial to perform.However, themax-relative entropy of entanglement of a channel can
always be bounded fromboth sides as stated in the following proposition, whose proof can be found in
appendix A. The upper bound is a re-elaborated version of the upper bound on themax-relative entropy of
entanglement of a channel studied in [15]. In order to explicitly perform the required optimisations, it is useful
to exploit asmuch as possible the symmetries of the considered channel  . In particular, in appendix Bwe
develop tools applicable to qubit channels invariant under phase rotations.

Proposition 1. Let A A B AA p y= Ä ¢ ¢[ ]be the Choi–Jamiołkowski state associated with the quantum channel
 with input dimension d, where AAy ¢ is amaximally entangled state. Then, we have

D E Dmin min . 51AB

d

AB
SEP

max max
SEP

Tr

max
AB AB

B AB A

  p s p s
s s

s
Î Î

=

 ( ) ( ) ( ) ( )
[ ]

Moreover, if  is Choi-simulable, the lower bound is equal to Emax ( ) itself.

An alternative expression for themax-relative entropy of a channel has been recently proposed in [40], and
can bewritten as

E log , 52max 2 = S( ) ( ) ( )

where

Y Y dmin Tr : 0 . 53
Y

B AB AB
SEPAB

  pS = -
Î
¾ ¥ ( ) { [ ] } ( )

Here d is the input dimension of the channel  , and SEP
¾

denotes the cone of (unnormalised) separable
operators, i.e., the set of all operatorsXAB that can be decomposed as X P QAB i

L
A
i

B
i

1= å Ä= for some positive

integer L and positive semidefinite operators PA
i andQB

i . Note that for qubit channels we can replace SEP
¾

by the
cone of all positive semidefinite operators that are PPT, thusmaking the evaluation of equation (53) efficiently
computable via SDP.

5.1. Amplitude damping channel
Webegin by studying themost important example among channels that are not Choi-simulable: the qubit
amplitude damping channel ad l

( ), which can bewritten as

M M , 54
i

i i
ad

1

2
ad ad  år r=l l l

=

( ) ( ) ( ) ( )( ) ( ) † ( )

in terms of theKraus operators:

M M0 0 1 1 1 , 0 1 . 551
ad

2
ad l l= ñ á + - ñ á = ñ ál l( ) ∣ ∣ ∣ ∣ ( ) ∣ ∣ ( )( ) ( )

Note that ad l
( ) reduces to the identity channel when 0l = . In particular, we analytically calculate the lower

and upper bounds on Emax
ad l( )( ) found in proposition 1:

F E E , 56max
ad

max
ad  l l l( ) ( ) ˜ ( ) ( )( ) ( )

where

F E
log 1 1 , if ,

log , if ,
and log 2 . 57

2
1

2
2 5 1

2

2
1

2

5 1

2

max
ad

2



l

l l

l
lº

+ -
º -

l
l

l

-

+ -

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦
( )

( )
( )

˜ ( ) ( ) ( )( )

The proofs for these inequalities can be found respectively in appendices C andD.

13

New J. Phys. 20 (2018) 013033 LRigovacca et al



We stress that Emax
ad l

˜ ( )( ) is also an upper bound on the capacity C ad l( )( ) , whereas F l( ) does not have any
known relationwith the capacity. Interestingly, the numerical evaluation of Emax  l( )( ) via the SDPprocedure
in equation (53) coincides with the upper bound in equation (56) up to numerical errors. This suggests that for
all 0, 1l Î [ ] themax-relative entropy of entanglement of the amplitude damping channel exactly coincides
with its upper bound found through proposition 1. Indeed, this is analytically proven in appendix E, andwe can
write it here as a proposition.

Proposition 2.Themax-relative entropy of entanglement of a qubit amplitude damping channel ad l
( ) is

E log 2 . 58max
ad

2 l= -l( ) ( ) ( )( )

The plot infigure 2 shows how Emax
ad l( )( ) , plotted as a black curve, can be comparedwith other bounds on

C ad l( )( ) known in the literature. In particular, it ismuch smaller than the upper bound on the capacity obtained
in [14], represented by the top blue solid curve infigure 2. The latter was obtained by decomposing the
amplitude damping channel as ad

1 2   =l ◦ ◦( ) , where  Î but 1 and 2 are not, and by considering

the bound C Ead
R l( ) ( )( ) . However, the upper bound on the capacity based on the squashed entanglement

[14] is smaller than our result obtained through Emax. For completeness, we also plotted the best known lower
bound on C ad l( )( ) , which narrows the regionwhere the capacity value could be [14, 16]. From this analysis, we
can conclude that at themoment the best knownupper bound on the capacity of the amplitude damping
channel remains based on its squashed entanglement.

5.2.Other Choi-simulable channels
Herewe numerically evaluate themax-relative entropy of entanglement of some commonqubit channels:
dephasing, erasure, and depolarising channels. Note that the capacities of the first two channels are given by
single-letter formulas, and are thus known exactly. In our numerical simulationswe perform the SDP
optimisation in equation (53), which yields the same results obtained by numerically evaluating the lower bound
in proposition 1.

The dephasing channel deph l
( ) and depolarising channel depo l

( ) can be respectively written in terms of a set
of 2 and 5Kraus operators:

M M1
2

,
2

, 59z1
deph

2
deph 

l l
s= - =l l( ) ( ) ( )( ) ( )

M M i j1 ,
2

, 60ij0
depo depo l

l
= - = ñ ál l( ) ( ) ∣ ∣ ( )( ) ( )

with i j, 0, 1= . The erasure channel er ( ), on the other hand, is characterised by theKraus operators

M M e i1 , , 61i2
er er l l= - = ñ ál l( ) ( ) ∣ ∣ ( )( ) ( )

where i= 0, 1, and eñ∣ is an error state orthogonal to both 0ñ∣ and 1ñ∣ . All these channels reduce to the identity
channel when 0l = .

Figure 2.Grey dashed line: best known lower bound on the capacity C ad( )( ) , corresponding to the reverse coherent information
[61] of the channel (see [14]). The remaining solid lines are all upper bounds on the capacity C ad( )( ) . In particular, the top blue line is
the bound based on the relative entropy of entanglement discussed in [14], the bottom red line is the best known bound based on the
squashed entanglement [14], and the black line in themiddle is Emax

ad( )( ) .
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Wepoint out that exact values for themax-relative entropy of entanglement of these channels are not needed
when evaluating the versatile network bound of theorem3. This is because they are all Choi-simulable, and the
entanglement generated by them can be quantified bymeans of ER. Nonetheless, we numerically evaluated
Emax ( ) for these channels in order to seewhether the obtained values could be smaller than their counterparts
based on the squashed entanglement. The results can be seen infigure 3. In all these cases ER yields the tighter
upper bound on the capacity, followed by the squashed entanglement, while Emax provides the loosest bound.

6. Examples

Aswe alreadymentioned in section 4.2, in order to assess whether theorem 3 leads to a tighter bound than the
version of theorem2based on the squashed entanglement, for any considered bipartition of the network one
should study the sign of the parameter

A
m̃ . This can be found as in equation (49), but substituting Esq ( )with

its best knownupper bound available in the literature. Inwhat followswe provide two examples where 0
A

m >˜ .

Atfirst, we should stress that there are quantum channels with Esq ( )much larger than Emax ( ). An
example are the ‘flower channels’ [62, 63] for which the gap between these two quantities can increase with the
dimension of the input system [15]. This is due to the fact that the squashed entanglement is ‘lockable’, which
means that by tracing out a subsystemof dimension d its value can change by an amountmore than logarithmic
in d. On the contrary, Emax is not lockable, and it does not suffer from this drawback. Therefore, ¢would be
much tighter than Esq

 when evaluated on bipartitionsmostly composed by flower channels, or composed by
flower channels andChoi-simulable channels with ER smaller than Esq, as the qubit channels studied in
section 5.2.However, it could be argued that this example is rather artificial, and it is not likely to appear in any
realistic communication scenario. For this reason, we also consider amore practical example where the two
components of a bipartitionAA:BB are connected by k dephasing channels x

deph ( ) and 1 amplitude damping
channel ad l

( ), as shown infigure 4.
If we assume that all channels are used the same average number of times, we can express

A
m̃ as a function of

k and of the parameters x, 0, 1l Î [ ]. In particular, we canwrite

k E E E E

k E E E E
, 62x x

x x

sq
deph

R
deph

sq
ad

max
ad

sq
deph

R
deph

sq
ad

max
adA

   

   
m =

- + -

+ + +
l l

l l

˜
[ ˜ ( ) ( )] [ ˜ ( ) ( )]
[ ˜ ( ) ( )] [ ˜ ( ) ( )]

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

where E xsq
deph˜ ( )( ) and Esq

ad l
˜ ( )( ) are respectively the best knownupper bounds on E xsq

deph( )( ) [13] and
Esq

ad l( )( ) [14], which have been plotted as red dotted–dashed curves infigures 3(a) and 2:

E h
x x

2
1

2

1

2
, 63xsq

deph = - +⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

˜ ( ) ( )( )

E h h
1

2 4
1

4
, 64sq

ad
l l

= - - -l ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠˜ ( ) ( )( )

where h y y y y ylog 1 log 12 2º - - - -( ) ( ) ( ).Moreover, the quantity Emax
ad l( )( ) has been shown to

coincidewith the upper bound obtained in proposition 1, whereas the quantity E xR
deph( )( ) is known to be equal

to h x1 2- ( ) [14]. The results obtained for
A

m̃ are plotted infigure 5 for k 1, 5, 10= and 50. As expected, we
can see that the region of parameters x, l( )with 0

A
m >˜ , i.e., inwhich our versatile bound is advantageous,

Figure 3.Bounds on the capacity of three Choi-simulable qubit channels. In each plot, the solid blue line represents ER l( ), and
coincides with the capacity C l( ) for the dephasing and erasure channel. For the depolarising channel, the capacity C depol( )( ) lies
between the blue solid line and the grey dashed line, which respectively represent its best known upper and lower bounds (see, e.g.,
[14]). The depolarising channel has zero capacity for 2 3l > , where it becomes entanglement breaking, so that region has not been
plotted. Red dotted–dashed lines: smallest knownupper bound on the squashed entanglement of the channels [13, 16]. In the specific
case of the erasure channel, one has E Esq

er
R

er =l l( ) ( )( ) ( ) [14, 16]. Black dots: numerical evaluations of Emax l( ), obtained via the
SDP optimisation in equation (53).
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becomes larger with k. However, even for k=1 there is a broad set of parameters for which our versatile bound
is tighter than the bound based on the squashed entanglement. In particular, this is the case when 1l  , because
the negative contribution in

A
m̃ from E Emax

ad
sq

ad l l( ) ˜ ( )( ) ( ) is close to zero. On the contrary, the bound

based on the squashed entanglement is preferable when x 1 , because E xsq
deph( )( ) is close to zero and

E xR
deph( )( ) cannot be significantly smaller. The peak that can be observed in

A
m̃ for x, 1l  is due to the fact

that the upper bounds on the number of ebits (pbits) produced by the network go to zero, and small differences
of one boundwith respect to the other become significant.

7.Discussion and conclusions

In this paper, we investigated the possibility of usingmultiple entanglementmeasures in order to upper bound
the number of ebits (or pbits) shared by two parties at the end of a communication protocol over a quantum
network, with no limit on their classical communication. In particular, we exploited the special relation between

Figure 4.Example of bipartitionAA:BB connected by k=4 dephasing channels (straight lines) and 1 amplitude damping channel
(wiggling line). Once a bipartition of the network has been selected, it is not necessary to keep track of the precise nodes connected by
the channels in order to apply theorem 3.

Figure 5.Relative advantage of the versatile upper bound ¢ over the upper bound Esq based on the squashed entanglement, as

measured by the parameter
A

m̃ , for a bipartition of the networkwhose components are connected by k dephasing channels x
deph ( )

and 1 amplitude damping channel ad l
( ). The set of points characterised by 0

A
m =˜ is highlighted on the plots by dashed black

curves. Our versatile bound is tighter than the best known upper bound based on the squashed entanglement on the regions where
0

A
m >˜ .
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the relative entropy and themax-relative entropy of entanglement, summarised by equation (44), in order to
jointly use them in a single bound, which retains the advantages of bothmeasures. For instance, it is possible to
take advantage from the presence of Choi-simulable channels in the network, without requiring this property
beforehand. From a theoretical perspective, our versatile bound performsmuch better than the previously
known bound, whichwas based on the squashed entanglement, on networks composed byflower channels and
Choi-simulable channels with ER smaller than Esq. Formore physically relevant quantumnetworks, in general
one should check on a case-by-case basis which upper bound yields the tightest result. However, we can expect
the versatile bound introduced in theorem 3 to be the best choice when the number of Choi-simulable channels
is larger than the number of channels not satisfying this property, at least as long as ER provides tighter bounds
than Esq on theChoi-simulable components of the network. This intuitionwas confirmed for a network
composed by k dephasing channels and one amplitude damping channel, where already for k=5 our versatile
bound performed better on a broad range of parameters.

We should also reiterate that, according to the authors of [15], equation (42) has been rigorously proven only
for channels acting onfinite dimensional systems. As theorem3 heavily relies upon that inequality, one should
pay special attentionwhen applying theorem 3 to infinite dimensional channels, as long as the proof of
equation (42)will not be suitably extended.Notice, however, that at least some bosonic channels (e.g., photon
losses) are Choi-simulable: in these cases we can safely upper bound the entanglement of their output state via
equation (18) [14] and theorem3 still holds.

The advantage provided by ourmethodwould be further increased ifmore entanglementmeasures could be
includedwithin the same framework. An obvious candidate would be the squashed entanglement, because it
typically provides tighter upper bounds on the capacity of a quantum channel than Emax, while being at the same
time broadly applicable. This research line could go together with the search for other entanglementmeasures
that can provide upper bounds on channel capacities. From this point of view, we feel that the schematic
framework provided by theorems 1 and 2 could act as a guideline for future investigations. It would also be
interesting to look into the possibility of extending this ‘versatile’ approach to amulti-user scenario, where the
network is composed by broadcast quantum channels [34–39].

As a final remark, notice that the idea behind our result can be appliedmore generally in order to bound the
rate at which a parallel composition of quantum channels can generate ebits (or pbits), when assisted by
unlimited classical communication. Furthermore, although this paper has been developed from the perspective
of quantum communication, it is worth stressing that the problemof quantifying the amount of bipartite, or
multipartite, entanglement shared among the nodes of a network is also relevant from the perspective of
quantum computation. In this paradigm, the quantum channels can be interpreted as noisy physical operations,
and the nodes could represent, for example, the components of a cluster state. As the possibility of performing
measurement-based universal quantum computation strongly depends on the entanglement of the initial
resource state [64], the ideas developed in this paper could also help in assessing the quality of entangled
resources [65], by considering n, as the sequence of operations generating them.
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AppendixA. Proof of proposition 1

The lower bound is simply obtained by using themaximally entangled state AAy ¢ as input in equation (50),
without optimising over all AAr ¢. Furthermore, its equality with Emax ( ) itself in the case of Choi-simulable
channels can be obtained as in the last step of equation (18). Indeed, that argument holds for any entanglement
measure and not only for ER.
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The upper bound, on the other hand, is a re-elaborated version of the upper bound on themax-relative
entropy of a channel studied in [15]. In order to obtain their result, the authors introduce a generic entanglement
breaking (EB) channel A B ¢ , and use the following chain of inequalities:

E x

x D

max min inf 2 0

min inf 2 0 min . A1

x

x
A B A B AA

x

x

max
EB

EB EB
max

AA A B

  



 


 

  

  

r

p p p p

Î -

Î - =
r Î

¢ ¢ ¢

Î Î

¢ ¢



( ) { ∣( )[ ] }

{ ∣ } ( ) ( )

Thefirst inequality is obtained by optimising over a smaller set of separable states, inwhich ABs is obtained as
output of entanglement-breaking channels acting on the same input state AAr ¢. The second inequality is then
obtained by noticing that 2 0x

A B A B AA  r-¢ ¢ ¢( )[ ] for any input AAr ¢ if the operator 2x
A B A B -¢ ¢( )

is completely positive, and that this last condition is implied by the positivity of its Choi–Jamiołkowski state. In
order to obtain the upper bound of proposition 1, we just need to show that the set of states p appearing in
equation (A1) corresponds to the set of separable densitymatrices ABs such that dTrB AB As =[ ] . One inclusion
is trivial, while the other follows from the fact that, for any such ABs , we can find a corresponding completely
positive and trace preserving (CPTP)map EBABt Îs( ) via the teleportation protocol:

d Tr , A2A B A A A A A A AB
2AB t y t s= Äs

¢ ¢ ¢ ¢ ¢( ) [ ( )] ( )( )

where A Ay ¢ is amaximally entangled state. Indeed, thismap is CPTP because from equation (A2)we obtain a
possible set of Kraus operators given by:

N d k h , A3A B
h k

A A AB A B
, y s= á ñ ñ¢ ¢ ∣ ∣ ∣ ( )( )

with N Nh k
d

A B
h k

A B
h k

A, 1
, , å == ¢ ¢ ¢( )( ) † ( ) , and a straightforward calculation shows that ABABp s=s )( , thus proving that

EBAB Îs( ) because of the separability of ABs .

Appendix B. Bounding themax-relative entropy of entanglement of qubit channels
invariant under phase rotations

Most of the typical qubit channels are invariant under rotations around the axis associatedwith the Paulimatrix
Diag 1, 1zs = + -( ), and it is thus interesting to study the consequences of this fact for the evaluation of the

upper and lower bounds identified in proposition 1. Let  be a quantum channel acting on a qubit, such that

e e e e , B1i i i iz z z z r r=qs qs qs qs- -( ) ( ) ( )

for all angles θ and input states ρ. As themaximally entangled state AAy ¢ is left invariant by the unitary operation

U e e , B2i iz
A

z
B

2 2= Äq
s s+ -q q ( )( ) ( )

we can conclude that its Choi state p is also invariant underUθ, for any 0, 2q pÎ [ ]. This immediately implies
that the average of p over all possible θ rotations coincides with p itself:

U U
d

2
. B3 òp

q
p

p= q q ( )†

This allows us to prove the following lemma, whose proof can be found at the end of this appendix.

Lemma1. Let p be a bipartite state invariant under the separable unitary evolutionUθ defined in equation (B2),
and AB*s be the state whichminimises D ABmax p s( ) among all separable states ABs . If AB*s is the averaged version
of AB*s ,

U U
d

2
, B4AB AB* *òs

q
p

sº q q ( )†

then AB*s is separable and

D D . B5AB ABmax max* * p s p s= ( ) ( ) ( )

Similarly, if AB*s is the state whichminimises D ABmax p s( ) over all separable states ABs with Tr 2B AB As =[ ] , the

same conclusion holds with Tr 2B AB A*s =[ ] .

As a corollary of lemma 1, we can restrict theminimisation over all separable states ABs in equation (51) to be
only over the states which are left unaltered by being averaged over all possible θ rotations. The densitymatrix
associatedwith these states in the basis 00 , 01 , 10 , 11ñ ñ ñ ñ{∣ ∣ ∣ ∣ }has the form
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with , , , , 0a b g d x , 2a b g d+ + + = , 0, 2f pÎ [ ] and 0 min , x ab gd{ }. Note that the last
inequality comes from the PPT criterion, whichworks for two-qubit states as a necessary and sufficient
condition for separability [66].When evaluating the upper bound in proposition 1, we simply need to add the
additional constraints 1g a= - and 1d b= - , in order to assure Tr 2B AB As =[ ] .

Proof of lemma 1.Themax-relative entropy Dmax r s( ) is invariant under joint unitary operations applied on
both ρ andσ, and is jointly quasi-convex. Both these properties have been previously introduced in section 2.1,
respectively in equation (6) and equation (8). Together with equation (B3), these facts lead to

D D U U U U

D U U U U D
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AB AB
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=

=

q q q q
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l l

 

 

⎜ ⎟⎛
⎝

⎞
⎠( )

( ) ( ) ( )

† †

† †

( ) ( )

( ) ( )

The converse inequality follows because AB*s is separable, due to the structure ofUq (see equation (B2)), and
because AB*s minimises D ABmax p s( ) over all separable states. Thefinal remark can be easily proven by noticing
that Tr 2B AB A*s =[ ] if Tr 2B AB A*s =[ ] . ,

AppendixC. Proof for the upper bound in equation (56)

In order to prove the desired result, we need to explicitly perform the optimisation appearing in the upper bound
of proposition 1, i.e.

E D xmin min inf 2 0 , C1AB
x

ABmax
ad

SEP
Tr 2

max
AB

B AB A
AB

ad ad



   p s s pº = Î -l s
s

sÎ
=

l l
˜ ( ) ( ) { ∣ } ( )( )

[ ]

( ) ( )

where thanks to lemma 1 on the rightmost termwe can consider only states ABs with the form given in
equation (B6), with 1g a= - and 1d b= - . Let us introduce the parameter y 2x= . By explicitly
computing theChoi–Jamiołkowski state ad

p l
( ), the condition y 0AB ad

 s p-
l
( ) can be rewritten as the system

of inequalities:

y

y

1 ,

0,
C2




b l
s p

-
- l

⎧⎨⎩
( )
˜ ˜ ( )

where s̃ and p̃ are 2×2matrices

e

e
,

1 1

1 1
. C3

i

i
s

a x
x b

p l
l l

= = -
- -

f

f l-

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟˜ ˜ ( )

Wenowdefine y , AB1 l s( ) and y , AB2 l s( ) as the smallest values of y that satisfy respectively the first and the
second inequalities appearing in equation (C2), andwe rewrite theminimisation leading to the upper bound on
Emax

ad l( )( ) as

E x y ymin inf 2 0 log min max , , , . C4x
AB AB ABmax

ad
2 1 2

AB AB

ad  s p l s l sº Î - =l
s sl

˜ ( ) { ∣ } { ( ) ( )} ( )( ) ( )

Wecan easily show that this quantity is smaller than or equal to log 22 l-( ) by providing amatrix ABs of the
desired form such that y ymax , , , 2AB AB1 2l s l s l= -{ ( ) ( )} . This can be achievedwith the choices:

1

2
, 1 , , 0, C5a

l
b a x ab f=

-
= - = = ( )

which yield y 21 l l= -( ) and y 22 l= - , as can be verified by directly substituting these values into

equation (C2). The converse inequality, i.e. E log 2max
ad

2  l-l
˜ ( ) ( )( ) , requires some additional work. Thanks

to themonotonicity of the logarithm and the trivial relation y y ymax ,1 2 2{ } , we can bound Emax
ad l

˜ ( )( ) from
below as

E ylog min , . C6ABmax
ad

2 2
AB

  l sl
s

˜ ( ) ( ) ( )( )

Hence, we are left with the task of showing that ymin , 2AB2AB
l s l-s ( ) , where the optimisation has to be

effectively performed over the parameters , , ,a b x f satisfying the conditions detailed after equation (B6), with
1g a= - and 1d b= - .
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The condition y 0s p- l˜ ˜ involves 2×2matrices, and can be rewritten using Paulimatrices
, ,x y zs s s s=

 { }as

y v n2 0, C7  a b s l s+ + - - +
  ( )( · ) ( )( ˆ · ) ( )
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This in turn reduces to

y
v

v
y

2 2 1 cos

1
, , C9AB2 2 l

a b
y

l s
-
+

-
-

º
( ) ( ) ( )

where v v 1=
∣ ∣ andψ is the angle between v


and n̂. Note that the second fraction appearing in equation (C9)

is always larger than 1, therefore, when 1a b+ the condition y , 2AB2 l s l-( ) holds.On the other hand,
if1 2 a b+ , we can use the parametrisation:

2 2 sin , 2 cos , C10x h a b z a b h a b z= - - - = - -( ) ( ) ( )

with 0, 1h Î [ ]and 0,z pÎ [ ]. This allows us to conclude because of the following chain of inequalities:

y , 2 2
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where arctan 2 1q l l= -( ) is the angle describing the direction of n̂.

AppendixD. Proof for the lower bound in equation (56)

The goal of this appendix is to provide a proof for the following lower bound on Emax
ad l( )( ) :

E Dmin
log 1 1 , if ,

log , if
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2
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Thanks to lemma 1, we can reduce the optimisation over all separable states ABs that are left unaltered under all
possible θ rotations, which can be parametrised as in equation (B6). The condition y 0AB ad

 s p-
l
( ) can be

explicitly rewritten as

y

y

,

,
D2

1 2 1 cos
2





l
d

a l b l x f
ab x

- + - -
-

⎧
⎨⎪
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so that

D log max
1 2 cos 1

, . D3ABmax 2 2
ad

p s
a l b x f l

ab x
l
d

=
- + - -

-l


⎧⎨⎩
⎫⎬⎭

˜ ( ) ( ) ( )( )

Inwhat follows, for any fixedλwewillminimise this quantity over the parameters , , , , ,a b g d x f, satisfying
the constraints detailed after equation (B6).

Theminimisation inf can be easily performed, with the optimal choice being 0f = .Moreover, for any
fixed , ,a b x , themaximum δ (and thus theminimum l d) is given by

1

2
2 2 4 , D4max

2 2d a b a b x= - - + - - -( ( ) ) ( )

that is, when d g> and gd equals the smallest allowed value 2x . Notice that this choice implies

2 2 2 . D5x gd g d a b= + = - - ( )
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At this stage, the optimisation problem (without the logarithm) has been reduced to:

D6

min max
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Nowwe introduce the parameters 2n a b= +( ) and 2m a b= -( ) . As a d> always yields a smaller value
than the converse choice, we can limit our study to 0m and rewrite the problem in the new parameters:

min max
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Wecannowminimise thefirst termoverμ. The value 0m for which the function

f , ,
2 2 1

D80 2 2 2
m l n x

n l lm x l
n x m

=
- - - -

- -
( ∣ ) ( ) ( )

becomes zero is always bigger than 2 2n x- in the considered region. Together with the asymptotic scaling
f , ,0 m l n x l m~( ∣ ) for 1m ∣ ∣ , this can be used to deduce the qualitative behaviour of f , ,0 m l n x( ∣ ), which is
shown infigure 6. Let , ,m l n x( ) be the zeros of f , ,0 m l n x¶m ( ∣ ), with m m- +, where

, ,
1

2 2 1
1

2 1 2 . D9m l n x
l

l n l x
l
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As f f, , , ,0 0m l n x m l n x- +( ∣ ) ( ∣ ), we canfind the desiredminimumof f , ,0 m l n x( ∣ ) in 0, 2 2m n xÎ -[ ] as
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It is worth substituting x y1 2n  +( ) and x y1 2x  -( ) . In terms of the new variables, the problem
after the optimisation inμ becomes

xy x x x xy

x
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min max
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whose form is suitable to perform theminimisation in y. Let us label the three function appearing between
square brackets in order as f f,1 2 and f3. Note that f1 and f3 are respectivelymonotonically decreasing and
increasingwith y, with only the first one diverging to infinity for y 0 . If the two functions do not cross each
other, i.e., if x x 1 1 2th lº - -( ) , theminimumover y is thus obtained by evaluating f1 in y=1,
otherwisewe need to pick their intersection point. Explicitly, this can bewritten as

f f
x x

f x x x
min ,

, if 0 ,

, , if 1,
D12

y
x

1 3

1 1
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4 th
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=
l- -⎪

⎪
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⎩
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( )

( )
( )

Figure 6.Typical plot of the function f , ,0 m l n x( ∣ ) defined in equation (D8).
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Finally, we can optimise over x. If x x th , we are left with:
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On the other hand, when x x th , we can apply the same reasoning used for theminimisation over y. In
particular, f2 and f4 are respectivelymonotonically decreasing and increasingwith x, f x f x2 th 4 th( ) ( ), and they
have a crossing point only when 5 1 2l -( ) . If there is no crossing, theminimumover x is given by
f x 1,2 l=( ), which is less than or equal to f x ,2 th l( ) of equation (D14). If there is a crossing, instead, the
minimumcorresponds to the value of the functions at the intersection, which is 1

2

l
l
+ . This concludes the proof.

Appendix E. Proof of proposition 2

Because of equation (52)weneed to show the relation 2ad lS = -l( )( ) , where adS l( )( ) has been defined in
equation (53). This is equivalent to showing that
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( ) is the normalisedChoi state of the amplitude damping channel,

which in basis 00 , 01 , 10 , 11ñ ñ ñ ñ{∣ ∣ ∣ ∣ }can bewritten as
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Furthermore, as already observed in themain text, for qubit channels we can replace the cone of separable

operators SEP
¾

with that of PPToperators

V V VPPT : 0 0 , E3PT ¾
≔ { } ( )

where the superscript PT represents partial transposition on the second qubit.
For the proof we exploit once again the symmetry of the channel under phase rotations, andwe define a

subset of PPT
¾

as
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†

whereUθ is the unitary rotation defined in equation (B2).We nowobtain a long sequence of equalities, which
will be commented in the following. In particular, one has
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Thefirst equality comes from the following two observations
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The second equality is just a rearrangement of the previous expression, whereas in the third equality we exploit
equation (E4). The fourth equality can be obtained by expanding thematrix inequality previously found, and in
thefifth equality we used the following relation
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which holds for 0x . In the sixth and seventh equalities we used respectively
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Finally, in order to obtain the last equality we observed that
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From this analysis it follows that equation (E1) is proven if we can show that A 1 1

2
l= - and B 1 1

2
 l- .

This is what we do in the following.
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The equality in equation (E16) follows from thedefinitionofA in equation (E6), by substituting a 1

2
a  + and

b 11

2
b l + -( ), and inorder to obtain the following inequalitywedrop a condition on the parameters
a b x, , . Then, the equality in equation (E18) canbeproven bydividing the parameter region into two sub-regions:
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The two equalities can be respectively shownby noticing that the quantity beingminimised is amonotonically
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wherewe further expandedA4 in terms ofA5 andA6, depending on the ordering between 11
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Overall, we have been able to show that A 11
1

2
l= - , and thatA2 can bewritten as theminimumamong

quantities larger than or equal to1 1
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l- . Therefore, from equation (E18) it follows that A 1 1

2
l= - , as

desired.
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E.2. Proof of B 1 1
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The inequalities appearing in the abovemanipulations are obtained by dropping conditions on a b x, , which
restrict theminimisation region.Moreover,B3 andB4 are obtained by splitting the parameter region into two
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In the third equality of themanipulations performed onB4 we changed variables as b y x y41
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is amonotonic function of ywhen y 0 . The seventh and eighth relations appearing in themanipulation ofB4,
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Overall, this shows that B 1 1
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 l- and the proof is concluded.
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