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Metabolic phenotyping technologies based on Nuclear Magnetic Spectroscopy (NMR) and Mass
Spectrometry (MS) generate vast amounts of unrefined data from biological samples. Clustering strate-
gies are frequently employed to provide insight into patterns of relationships between samples and
metabolites. Here, we propose the use of a non-negative matrix factorization driven bi-clustering strategy
for metabolic phenotyping data in order to discover subsets of interrelated metabolites that exhibit sim-
ilar behaviour across subsets of samples. The proposed strategy incorporates bi-cross validation and sta-
tistical segmentation techniques to automatically determine the number and structure of bi-clusters. This
alternative approach is in contrast to the widely used conventional clustering approaches that incorpo-
rate all molecular peaks for clustering in metabolic studies and require a priori specification of the num-
ber of clusters. We perform the comparative analysis of the proposed strategy with other bi-clustering
approaches, which were developed in the context of genomics and transcriptomics research. We demon-
strate the superior performance of the proposed bi-clustering strategy on both simulated (NMR) and real
(MS) bacterial metabolic data.
� 2018 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Modern Nuclear Magnetic Resonance (NMR) spectroscopy and
Mass Spectrometry (MS) technologies generate vast amounts of
unrefined metabolic data in biomedical studies [1,2]. The meta-
bolic signature of a complex biological mixture (‘metabolic pro-
file’), such as that obtained from analysis of biofluids, consists of
overlapping signals of hundreds to thousands of distinct chemical
entities influenced by genes, treatment, gut microbiota and other
environmental factors. This myriad of factorial influences results
in complex inter-relationships between both spectral observations
and variables. The clustering and related unsupervised learning
tools are frequently used to discover patterns of relationships
between samples and metabolites [3,4].

Given a two-dimensional data matrix X with m rows (samples)
and n columns (variables), traditional clustering analysis aims to
identify groups of samples (or respectively variables) that exhibit
similar behaviour across all variables (or respectively samples).
This strategy is useful to perform global partitioning of the data
matrix. In ‘‘-omics” studies, molecules (e.g., genes or metabolites)
can be involved in one or more biological processes and exhibit
similar patterns of behaviour across a subset of samples (but not
necessarily all). The bi-clustering strategies are more suitable in
such cases. The objective of biclustering is to perform simultaneous
clustering of both rows and columns in the data matrix [5]. This
means that clustering derives a global model, while biclustering
produces a local model. Each row in a bicluster is selected using
only a subset of the columns and each column in a bicluster is
selected using only a subset of the rows.

In ‘‘omics” sciences, the (bi)clustering methods have been
widely applied to gene expression data matrix, where rows repre-
sent gene transcripts and column represent conditions/samples.
The data matrix element corresponds to the expression level of a
gene under a specific condition [6]. Unlike clustering algorithms,
the goal of the technique is to identify groups of genes that show
similar activity patterns under a specific subset of the experimen-
tal conditions. Such biclusters are biologically relevant since they
not only capture the correlated genes but also identify the genes
that do not behave similarly in all conditions [7]. Thus, the biclus-
tering algorithms have been shown to discover more biologically
relevant clusters, compared to conventional global clustering
techniques.

The biological application of biclustering algorithm was first
used by Cheng and Church (CC) [8] for gene expression data. After
this initial approach, a number of biclustering algorithms including
Spectral [9], Plaid [10], BiMax [11], Xmotifs [12], OPSM [13], ISA
[14], QUBIC [15] and FABIA [16] have been developed to identify
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various types of biclusters for gene expression data. A useful crite-
rion to evaluate a biclustering algorithm is based on the identifica-
tion of the type of biclusters the algorithm is able to find. In broad
terms, the types of biclusters can be divided into [5]:

1. Biclusters with constant values.
2. Biclusters with constant values on rows or columns.
3. Biclusters with coherent values (addictive model).
4. Biclusters with coherent values (multiplicative model).
5. Biclusters with coherent evolutions.

The spectroscopic data (NMR or MS), with rows representing
the samples and columns representing variables, can be considered
as a linear combination of metabolite peaks plus noise, which is
corresponding to the biclusters with constant values on columns
or overlapped. However, the aforementioned biclustering methods
with low anti-disturbing and fault tolerance are only suitable for
gene expression data; in this scenario, the rows (genes) and col-
umns (conditions) are fixed without overlapping partitions of con-
ditions from the experiment.

Matrix factorization is a decomposition of a data matrix into a
product of matrices, either for regularization or for interpretation.
A variety of matrix factorization methods by incorporating differ-
ent constraints, e.g. singular value decomposition (SVD) [17], prin-
cipal component analysis (PCA) [18], and non-negative matrix
factorization (NMF) [19], could be applied to minimise the dimen-
sionality of the data yielding a representation of conditions as a lin-
ear combination of a reduced set of factors [20]. The factor scores/
loadings represent sets of rows or columns that behave in a
strongly correlated manner with the original data. In the gene
expression data, various matrix factorization methods have been
used to cluster genes or conditions based on local patterns and pre-
dict functional relationships [21,22]. Apart from the genomic data-
sets, the matrix factorization tools could also be used for exploring
the spectroscopic datasets for their output matrices represent the
relevance of samples and compound variables simultaneously [23].

In this paper, we first present a biclustering technique based on
matrix factorization to identify subsets of correlated metabolites
exhibiting similar patterns of behaviour across a subset of samples
(but not necessarily all). The critical factor is how to select the
number of biclusters. We have thus incorporated the bi-cross val-
idation and statistical segmentation techniques to automatically
determine the number and structure of bi-clusters. This alternative
approach is in contrast to the widely used conventional clustering
approaches that use all molecular peaks for clustering in metabolic
studies and require a priori specification of the number of clusters.
Fig. 1. A simple example of simulation data matrix
We perform the comparative analysis of the proposed strategy
with other bi-clustering approaches, which were developed in
the context of genomics and transcriptomics research.
2. Materials and methods

2.1. Synthetic dataset

A bicluster is a subset of rows that exhibit similar behaviour
across a subset of columns, and vice versa. Given a data matrix A,
a bicluster AIJ(I,J) denotes the submatrix of A that contains only
the elements aij belonging to the submatrix with a set of rows I
and set of columns J.

There are two ways to generate synthetic NMR/MS datasets for
evaluating the algorithm performance of the metabolites bicluster-
ing. Considering the characteristic of NMR/MS spectroscopic data
matrix, the first way is to use biclusters with constant values on
columns to simulate the compound. Given the K bicluster, the
dataset of i rows and j columns can be built by the equation

Xij ¼ lþ
XK
k¼1

bjkqijjij þ eij ð1Þ

where Xij represents the element in the bicluster, l is the typi-
cal value and bjk is the value for column jwithin the within the k-th
bicluster. q and j are indicator variables for row i and column j
membership in the bicluster k. The noise e is generated from a
Gaussian distribution with zero mean and a varying standard devi-
ation, i.e. e 2 Nð0; dÞ, where d is the noise level. Fig. 1 provides a
simple example of 8 � 8 matrix with b = {1,2,3}. The typical value
l is set to 0 and the noise level d is set to 0.1.

Aside from the method mentioned above, the MetAssimulo [24]
is an important tool to simulate 1H NMR spectra of metabolic pro-
files. MetAssimulo is a package, which can create realistic meta-
bolic profiles containing large numbers of metabolites with a
range of user-defined properties based on the concentration infor-
mation input by the user or constructed automatically from the
Human Metabolome Database. For instance, if the concentration
information is in the custom mode, the user could set the concen-
tration information of ‘case’ samples by defining the fold-change of
the mean and standard deviation of corresponding concentration
in ‘control’ samples, which is constructed automatically from the
Human Metabolome Database. Furthermore, MetAssimulo is able
to simulate shifts in NMR peak positions that result from matrix
effects (e.g., pH variation), which are often observed in metabolic
NMR spectra.
with biclusters of constant values on columns.
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In detail, the schema of building 1H NMR synthetic data by
MetAssimulo is listed as follows:

Step1: Given the number of biclusters K � {1,2,. . .,k}, the num-
ber of samples in each biclusters M � {m1,m2,. . .,mk}, the number of
metabolites in each biclusters N � {n1,n2,. . .,nk}.

Step2: For k 2 K , m 2 M and n 2 N: set the fold-change of mean
and standard deviation of the concentration of nk –th metabolite in
mk ‘case’ samples.

Step3: Run the MetAssimulo package and simulate 1H NMR
spectra of metabolic profiles, get the data matrix A and the median
of the data matrix A1/2.

Step4: Align and normalize the data matrix.

Step5: Logarithm transfers the data matrix A0 ¼ A
A1=2

��� ��� for biclus-
tering analysis.

2.1.1. Non-negative matrix factorization
Non-negative matrix factorization, also known as the classical

NMFmodel is a useful algorithm in multivariate analysis and linear
algebra, which has been successfully applied in chemometrics [19].
The technique can be applied to the analysis of multidimensional
datasets to reduce the dimensionality, discover latent patterns
and aid in the interpretation of the data.

The main difference between NMF and other classical factoriza-
tion techniques such as SVD [17] and PCA [18] depends on the non-
negativity constraints imposed on both score and loading vectors.
In this way, output matrices can be interpreted as parts of the data
or as subsets of elements that tend to occur together in sub-
portions of the dataset [20]. Thus, the factor matrices produced
by NMF (i.e., factor scores and factor loadings) that lend them-
selves to a relatively easy contextual interpretation, while the fac-
tor matrices obtained by the other classical factorization
approaches, allow themselves to be of the arbitrary sign with no
obvious contextual meaning.

The NMF algorithm is described as follows:

Am�n ¼Wm�kHk�n ¼
Xk

a¼1
Wm�aHa�n ð2Þ

where A is the positive data matrix with m samples and n variables,
k is the number of components with k << min(m,n).

A solution to the NMF problem can be obtained by solving the
following optimization object function:

min
W;H

f ðW;HÞ ¼ 1
2

A�WHk k2F ð3Þ

whereW is a basis matrix, H is a coefficient matrix, �k kF is the Frobe-
nius norm and W, H � 0 means that all elements of W and H are
non-negative.

Considering the non-negativity of metabolites concentration in
NMR/MS spectra, we use the NMF method to find biclusters of
metabolites from NMR/MS spectra. As shown in the Eq. (2), under
the number of biclusters k, the classical NMF approximately repro-
duce a 1H NMR spectroscopic data matrix A of dimension m sam-
ples and n variables as a product of two non-negative constraint
matrices W and H. The W factor scores matrix has the dimension
of a single array (m samples) and k biclusters, while the columns
of factor loading matrix H are known as variable vectors and are
in one-to-one correspondence with the NMR/MS spectra data
matrix A.

2.1.2. Bi-cross-validation
Given a large dataset matrix A of dimension m� n, several use-

ful methods handle it to produce two matrices W and H, and the
cross-validation(CV) is a practical algorithm to determine the
number of rank of W and H, i.e. the number of component in the
large matrix [17]. However, the result is affected by the noise of
matrix and there is a risk of overfitting. Considering the noise
and complexity in spectroscopic data and the overlap between
metabolites, the cross-validation is not suitable for predicting the
number of biclusters in these data matrices.

As illustrated by Owen and Perry [17], bi-cross-validation algo-
rithm (BCV) is a useful tool that is generally applicable to outer
product approximations, just as CV is for independent and identi-
cally distributed random variables sampling. The performance
and robustness of BCV is better than CV, and is more suitable than
CV for the unsupervised learning (e.g. matrix factorization).

In the present study, we use BCV of matrix factorization to pre-
dict the number of the biclusters. The schema of algorithm is listed
as follows:

Step1: Given a data matrix A 2 ½0;1Þm�n, row and column hold-
out subset Il = {1,2, ,m}, Jl = {1,2,. . .,n}, for number of holdout l =
1,2,. . .,L, and list of ranks the number of metabolites in each biclus-
ters K = {1,2,. . .,min(m,n)}.

Step2: For k 2 K:BCVðkÞ  0
Step3: For l 2 f1;2; . . . ; Lg and k 2 K:I Il, and J  Jl, fit the

matrix factorization model: A�I;�J¼:W ðkÞ
�I;�JH

ðkÞ
�I;�J .

Step4: Reconstruct the matrix and get the confirming residual

matrix AI;J � A�ðkÞI;J

��� ���2

F
, where A�ðkÞI;J  AI;�JðHðkÞ�I;�JW ðkÞ

�I;�JÞ
þ
A�I;J .

Step5: Update the BCVðkÞ  BCVðkÞ þ AI;J � A�ðkÞI;J

��� ���2

F
.

2.1.3. Other methodologies
Apart from matrix factorization, a myriad of bicluster tech-

niques have been proposed for gene expression data [5,11]. In this
paper, the spectroscopic data (NMR or MS), rows represent the
samples while columns represent variables, can be considered as
a linear combination of metabolite peaks plus noise, which is cor-
responding to the biclusters with constant values on columns. For
this reason, we compared our methods with the other biclustering
techniques (e.g. Spectral [9], Plaid [10], BiMax [11], Xmotifs [12],
ISA [14] and FABIA [16]) aimed at identifying constant columns.

Among these methods, the algorithms required for rescaling or
iteration (e.g., Spectral and ISA) have longer running time on large
datasets; the algorithms with methodology based on the binary
value (e.g., BiMax, Xmotifs) are more sensitive to the noise of the
data. Besides ISA, the performance of these methods is likely
affected by the overlap of biclusters. Furthermore, Plaid, ISA and
FABIA are also suitable for other bicluster classes. Brief method-
ological overview and the references of these biclustering tech-
niques are listed in the Table 1.

2.1.4. Evaluating measurement
In this paper, we calculated the bicluster match score to evalu-

ate the performance of biclsutering method, which was proposed
by Prelic et al [11]. Without loss of generality, assume that s
assigns larger scores to similar biclusters and smaller scores to dis-
similar ones. M1;M2 are two sets of biclusters and the bicluster
match score of sample Ss can be calculated by the following
equation:

SsðM1;M2Þ ¼ 1
M1j j

X
b12M1

max
b22M2

b1 \ b2j j
b1 [ b2j j

� �
ð4Þ

where b1, b2 are biclusters in the set M1;M2 respectively, b1 \ b2j j is
the number of data elements in their intersection, and b1 [ b2j j is
the number in their union. Similarity, the bicluster match score of
variable Sv can be calculated as well. The overall bicluster match
score can be defined as S M1;M2ð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SsðM1;M2Þ � SvðM1;M2Þ
p

.
Let E denote the ground truth bicluster set and F denote the set

of found biclusters, the recovery score is S(E, F) and relevance score
is S(F, E). If the recovery score S is maximized, it represents that the



Table 1
The summary of methods for identifying biclusters with constant row or column on the gene expression datasets.

Algorithm Methodology Description

BiMax [11] Seeks the rectangles of ‘1’0s in a binary matrix Only suitable for the bicluster with constant up-regulated condition; sensitive
to the noise and number of biclusters; affected by the overlap

Plaid [10] Assume the bicluster is generated as the sum of a background effect,
cluster effects, row effects, column effects and random noise

Both suitable for conditions of the bicluster with constant value and constant
row/column; sensitive to the noise; affected by the overlap

Spectral [9] Advantages over SVD spectral analysis of the original or rescaling raw
data

Both suitable for conditions of the bicluster with constant up- or down-
regulated condition; not sensitive to the noise; not suitable for the discrete
datasets; limited in running speed on large datasets; affected by the overlap

Xmotifs [12] A nondeterministic greedy algorithm that seeks biclusters with
conserved rows/columns

Only suitable for conditions of the bicluster with constant row/column;
required for dataset discretized and more sensitive to the noise; affected by
the overlap limited in running speed on large datasets; affected by the overlap

FABIA [16] Analysis for bicluster acquisition models the data matrix as the sum of
biclusters plus additive noise, bicluster is the outer product of two
sparse vectors

Both suitable for conditions of the bicluster with constant value and constant
row/column; not sensitive to the noise and the number of biclusters; affected
by the overlap

ISA [14] A nondeterministic greedy algorithm that seeks biclusters from
starting with a seed bicluster and re-running the iteration steps

Both suitable for conditions of the bicluster with constant value and constant
row/column; not sensitive to the noise the number of biclusters, and the
overlaps; limited in running speed on large datasets
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algorithm is found in all the expected biclusters. Similarly, if the
relevance score S is maximized, all the found biclusters were
expected.

In this study, we develop a visualization graphical user interface
and work on the spectroscopic dataset. The graphical user interface
written in Matlab is available by contacting the corresponding
author.
Fig. 2. General schema of the method NMF approximates the synthetic data 1(noise leve
number of biclusters and thresholding algorithm is used for the identifying the indicato
3. Results and discussion

3.1. Evaluation of biclustering on the synthetic dataset

We explored the bicluster model on the synthetic datasets.
Firstly, we built a synthetic dataset with only 50 samples and
250 variables for observing the performance of biclustering meth-
l d = 0.25) as a product of two submatrices, W and H. BCV is used for predicted the
r of each bicluster.



Table 2
Metabolites implanted of each bicluster in synthetic data 2 (the metabolites have the
negative fold-change are in bold).

ID of
bicluster

Metabolites in the bicluster

1 Citric acid, Creatine, Succinic acid, Hippuric acid, Serine
2 Creatinine, Citric acid, Glycine, Formic acid, Trimethylamine,

Hippuric acid
3 Creatinine, Formic acid, Taurine, Betaine, Guanidoacetic acid,

Trimethylamine
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ods. From the Eq. (1), we set the number of biclsuter k = 3 with two
of them having overlap. The value in each bilcuster is set as
b 2 f1;2; . . . ;5g, the typical value is set as the l ¼ minðjXijjÞmean-
while the noise level is set as d 2 ½0;1�. Considering the random-
ness of the realistic datasets from experiment, we randomly
permuted the samples (rows) and variables (columns) of the data-
set and generated the synthetic dataset 1 (Fig. 2). The heatmap of
the original dataset before rows and columns randomly permu-
tated with the noise level d ¼ 0:25. After the permutation of the
rows and columns of the synthetic dataset, we calculated the aver-
Fig. 3. The bicluster model experiment on the synthetic datasets. (A) The relevance sco
level; (B) The relevance score of bicluster methods on synthetic gene expression data [7] o
synthetic spectroscopic data 1 (Fig. 2) with different noise level; (D) The average relevan
number of biclusters. The methods: NMF (red circle), PCA (blue circle), Sparse NMF(green
(blue triangle), Fabia(magenta triangle) and ISA(cyan triangle. (For interpretation of the r
this article.)
age bicluster match scores to evaluate the performance of different
biclustering models. The scheme of NMF model is shown in Fig. 2.

We also observed the performance of the bicluster algorithm on
a synthetic dataset (synthetic data 2) with 30 samples generated
by MetAssimulo. MetAssimulo can create realistic metabolic pro-
files containing large numbers of metabolites with a range of
user-defined properties based on the concentration information
input by the user or constructed automatically from the Human
Metabolome Database. In the present study, the overall number
of metabolites is 48, the number of biclusters is set to 3, and the
fold-change values of mean and standard deviation of the concen-
tration of metabolites are either positive or negative. Table 2 pro-
vides the metabolites implanted of each bicluster. Importantly,
considering the peak shift of the output of MetAssimulo, the spec-
troscopic data is required for alignment and normalization. Follow-
ing the recursive segment-wise peak alignment model [18] and
logarithm transfer, we generated the synthetic dataset 2. As shown
in the Fig. S1 (supplement file), the NMF model selects the correct
ID of samples and hippuric acid (positive fold change of mean NMR
spectra) within the bicluster 1 from the chemical shifts 1H ppm
7.50–7.90.
re of bicluster methods on synthetic gene expression data [7] with different noise
f the different number of biclusters; (C) The relevance score of bicluster methods on
ce score of bicluster methods on synthetic spectroscopic data 1 (Fig. 2) the different
circle), BiMax(red triangle), Plaid(green triangle), Spectral(yellow triangle), Xmotifs
eferences to colour in this figure legend, the reader is referred to the web version of
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Apart from our two synthetic datasets, we also used the simu-
lation dataset generated for gene expression by Eren et al. [7] to
validate the characteristics of the bicluster models. The matrix con-
tains 500 genes (rows), 200 conditions (columns), and each biclus-
ter with 50 rows and 50 without the overlap.

In this paper, we separately tested the performance of six clas-
sical biclustering models, i.e. Spectral [9], Plaid [10], BiMax [11],
Xmotifs [12], ISA [14] and FABIA [16], and three matrix factoriza-
tion algorithms, i.e. PCA, NMF and sparse NMF(SNMF) [25]. In
matrix factorization algorithms, the number of biclusters could
be predicted by BCV. Additionally, since the matrix factorization
algorithms could only generate score and loading matrices, thresh-
olding algorithms are utilized for selecting the samples and vari-
ables in each biclusters.

Fig. 3 summarises the relevance scores as a function of the
number of biclusters and varying noise levels of the simulated
datasets. We only represent the average relevance scores compar-
ison but not the recovery score due to the similarity of both scores
generated.
Fig. 4. The bicluster model experiment on the bacteria MS spectra[29]. (A) The 3-D PCA
(blue), S. aureus (magenta), S. pyogenes (yellow), E. coli (cyan), P. aeruginosa (black), S. a
bicluster match score of different bicluster methods. The methods: NMF (red circle), PC
Spectral(yellow triangle), Xmotifs(blue triangle), Fabia(magenta triangle) and ISA(cyan
peakpick dataset. (For interpretation of the references to colour in this figure legend, th
As expected, compared with six classical biclustering models,
the matrix factorization methods have better robustness on the
number of biclusters. It also validates the effectiveness of BCV pre-
diction on the number of biclusters, which is an essential prerequi-
site for high quality performance. We tested the performance of six
classical biclustering models and three matrix factorization algo-
rithms on the simulation dataset of gene expression. The results
of the average relevance scores for each bicluster model with dif-
ferent noise level and the number of biclusters are separately
shown in the Fig. 3A and B. NMF achieves the highest relevance
scores among the models, which validates the effectiveness of
NMF model to identify the biclusters on the gene expression data.
The methods Xmotif has the poorest performance on this dataset.
With regards to the other methods, the performance of Plaid and
FABIA is challenging as the number increased (Fig. 3B), whilst ISA
and Spectral are negatively affected by the noise (Fig. 3A). How-
ever, as shown in the Figures, the SNMF is more sensitive to the
noise than NMF. The reason is that the biclusters feature selection
in sparse NMF is not based on the thresholding algorithm but on
score plot of dataset. The species: C. koseri (red), K. pneumonia (green), P. mirabills
galactiae (brown), S. marcescens (orange); (B) The average recovery and relevance
A (blue circle), Sparse NMF(green circle), BiMax(red triangle), Plaid(green triangle),
triangle); (C) The running time of the algorithms running by 10 rounds on the

e reader is referred to the web version of this article.)
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the sparseness of loading or score values, which is not stable in
case of the overlap of the biclusters.

On the synthetic dataset 1 of spectroscopic data, we tested the
performance of the present nine algorithms as well. The plots of
the average relevance scores for each bicluster model with differ-
ent noise level and the number of biclusters are separately given
in the Fig. 3C and D.

As indicated in the Fig. 3C and D, the overall bicluster match
scores of NMF and PCA are obviously highest among all the models.
It indicates that the inherent clustering property of matrix factor-
ization is more suitable for the spectroscopic data. As shown in
the plot, the algorithms that seek local patterns (e.g., Xmotifs)
are more sensitive to the noise, while the algorithms which fit a
model of the entire dataset (e.g., ISA, Plaid) are less sensitive.
Bimax, which is required for pre-processing of the data matrix into
binary, has poor performance although it is effective on the gene
expression synthetic datasets. In general, NMF has the best perfor-
mance among all the algorithms on both synthetic datasets.
Fig. 5. The biclustering of bacteria MS peak-picked dataset using NMF: The right-bottom
with samples within the selected bicluster are separately marked with red. The left-top se
MS spectra. The left-bottom subplot represents the recovering of selected bicluster. The s
bar. The right-top section of the plot represents the score and loading of the dataset and th
MaxEn(yellow). The horizontal axis (i.e. m/z ratio) of the subplot keeps in consistent with
colour in this figure legend, the reader is referred to the web version of this article.)
3.2. Evaluation of biclustering on the biological dataset

We also explored the bicluster model on the MS dataset (nega-
tive ion) of nine bacterial species [29,30]. The clusters can be dis-
tinguished by the visualization of the first three principal
components in the PCA (Fig. 4A) belonging to Gram-positive Strep-
tococcus spp., Staphylococcus aureus, Gram-negative Pseudomonas
aeruginosa and a group consisting of five species that are not sep-
arated from each other and that all belong to the Enterobacteri-
aceae family (Escherichia coli, Citrobacter koseri, Klebsiella
pneumoniae, Serratia marcescens, and Proteus mirabilis). To observe
the performance of different algorithms, the MS dataset consisted
of 135 samples and 185,001m/z ratios that can be replaced by a
reduced dataset of peak-picked variables with 135 samples and
1964 variables. Fig. 5 provides the NMF biclustering on this
peak-picked dataset. If we reconstruct the selected bicluster, we
will identify the samples and variables that are both associated
in this bicluster.
subplot shows the median of the MS spectra. The variables (right-bottom) associated
ction of the plot indicates the log transform of fold change according to mean of the
amples within the selected bicluster are marked with the magenta in the left colour
e comparison of thresholding algorithms: OTSU(red), FCM(magenta), Iter(cyan) and
each other when selecting the compounds. (For interpretation of the references to



Table 3
The bicluster match score of matrix factorization by thresholding methods on the synthetic data1 (noise level d = 0.25), synthetic data 2 and bacteria MS peak-pick dataset.

PCA NMF

Thresholding Synthetic data1 Synthetic data2 Bacteria MS data Synthetic data1 Synthetic data2 Bacteria MS data

OTSU 0.72 0.61 0.36 0.91 0.79 0.99
FCM 0.65 0.53 0.44 0.62 0.61 0.87
Iter 0.72 0.61 0.28 0.85 0.77 0.99
MaxEn 0.57 0.59 0.23 0.61 0.60 0.47
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Fig. 4B provides the overall prediction result on this MS dataset.
It indicates that NMF achieves the highest bicluster match score on
the metabolic data among the various methods. Moreover, NMF
has the fastest speed among the various algorithms (Fig. 4C).

With a special focus on the thresholding algorithms, OTSU [26],
fuzzy c-means (FCM) [27], iterative selection (Iter) [28] and max-
ime entropy (MaxEn) [26] are utilized for finding the bicluster from
the score and loading generated by the matrix factorization meth-
ods. We compared the bicluster match score of these thresholding
methods on our synthetic datasets and the bacteria MS (peak-
picking) dataset. As shown in Table 3, the OTSU and Iter perform
better than FCM and MaxEn. The performance of OTSU/Iter thresh-
olding is still higher despite sparseness on the spectroscopic data,
which validates our method (NMF with thresholding) as superior
in recognizing the bicluster than SNMF.

The biclustering method is more useful on the MS dataset with
sharp peaks and big signal-to-noise ratio than NMR data. Here, the
bacterial dataset contains hundreds of unique spectral features
with the signal to noise ratios (SNR) in the order of 10,000 times.
High correlation between discriminating signals in each member
of the same group. Moreover, the bacterial dataset has a hierarchi-
cal structure with the difference between Gram positive and Gram-
negative bacteria (family level), representing where most the
variance in the global data lies. With NMF (as with k-means), the
number of output vectors (factors) is predefined, so the hierarchi-
cal nature is bypassed.

4. Conclusions

Spectroscopic data commonly contains around a thousand
peaks from possibly hundreds of metabolites, is widely used in
metabolomics to provide information on metabolite profiles of
complex biological mixtures. This work represents a matrix factor-
ization based biclustering model of spectroscopic data. In this
paper, we use a novel bi-cross validation to decide the number of
factors in the spectroscopic data matrix factorization tools. The
simple thresholding methods (e.g., NMF) are used to transfer the
spectroscopic data into two matrices. In this paper, we make the
comparison among the various bi-clustering schemes on the simu-
lation dataset, and the conclusion is that the simple matrix factor-
ization tool is superior. Moreover, we develop a visualization
graphical user interface and work on the bacterial dataset exam-
ples to test our biclustering model. The results demonstrate that
the proposed matrix factorization based method for biclustering
is useful for spectroscopic data. The future work would include
the application of the proposed biclustering method on other bio-
logical datasets such as gene expression datasets.
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