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a b s t r a c t 

A number of recent publications have explored the crucial relationship between the length of a thin cylindrical 
shell and the influence of pre-buckling cross-sectional ovalisation on its nonlinear elastic buckling capacity under 
bending. However, the research thus far appears to have focused almost exclusively on uniform bending, with 
ovalisation under moment gradients largely neglected. 

This paper presents a comprehensive computational investigation into the nonlinear elastic buckling response 
of perfect and imperfect thin cantilever cylinders under global transverse shear. A complete range of practical 
lengths was investigated, from short cylinders which fail by shear buckling to very long ones which exhibit local 
meridional compression buckling with significant prior cross-section ovalisation. Two imperfection forms were 
applied depending on the length of the cylinder: the linear buckling eigenmode for short cylinders and a realistic 
weld depression imperfection for long cylinders. The weld depression imperfection was placed at the location 
where the cross-section of the perfect cylinder was found to undergo peak ovalisation under transverse shear, 
a location that approaches the base support with increasing length. Compact closed-form algebraic expressions 
are proposed to characterise the elastic buckling and ovalisation behaviour conservatively, suitable for direct 
application as design equations. 

This study contributes to complete the understanding of cylindrical structures of varying length where the 
dominant load case is global transverse shear, including multi-strake aerospace shells with short individual seg- 
ments between stiffeners and long near-cylindrical wind-turbine support towers and chimneys under wind or 
seismic action. 

© 2018 The Authors. Published by Elsevier Ltd. 
This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

A cylinder under global transverse shear is a classical structural sys-
em that finds application in containment vessels under seismic excita-
ion, aerospace fuselages under transverse vibrations and chimneys or
ind turbines under wind or seismic loads. Early algebraic treatments

uch those of Lu [1] and Schröder [2] demonstrated that the relative
roximity of the smooth circumferentially-sinusoidal membrane stress
tate under global transverse shear to the simple membrane stress states
f uniform torsion or uniform meridional compression allowed these
o be used to establish closed-form ‘first approximations ’ for the criti-
al buckling stress of short and long cylinders respectively. These have
erved as the basis for most design expressions ever since. However, the
nsymmetrical response makes more accurate investigations, such as
hose exploring the geometrically nonlinear phenomenon of ovalisation
n long cylinders, prohibitively complex to perform algebraically and
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ecourse must be made to computational methods. For example, the re-
ent computational study of Rotter et al. [3] on cylinders under uniform

ending confirmed and extended on earlier algebraic studies that ovali-
ation only begins to significantly reduce the nonlinear elastic buckling
esistance in cylinders longer than 𝜔 ≈ 0.5( r / t ) or Ω ≈ 0.5 [4] , where 𝜔
nd Ω are dimensionless length parameters defined by: 
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Ω (1)

Here L, r and t are the cylinder length, radius and thickness respec-
ively. These dimensionless groups will be used widely in what follows.
valisation was found to lead to a ‘fully-developed ’ reduction in the elas-

ic buckling strength of approximately 50% by Ω ≈ 5, becoming largely
nvariant with increases in length beyond Ω ≈ 7. The apparent ‘ovalisa-
ion boundary ’ of Ω ≈ 0.5 is probably a lower bound for cylinders under
ransverse shear, as the presence of a moment gradient will reduce the
ntensity of the bending along the cylinder length and attenuate the ex-
ent of pre-buckling flattening. 
18 

 the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.ijmecsci.2018.02.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmecsci
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2018.02.027&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:a.sadowski@imperial.ac.uk
https://doi.org/10.1016/j.ijmecsci.2018.02.027
http://creativecommons.org/licenses/by/4.0/


J. Wang, A.J. Sadowski International Journal of Mechanical Sciences 140 (2018) 200–210 

 

o  

f  

n  

p  

g  

w  

T  

1  

a  

p  

t  

1  

p  

t  

i  

q  

w  

c  

p
 

v  

t  

K  

e  

a  

v  

A  

p  

a  

w  

[  

t
1  

s  

n  

m  

o  

t  

m  

t  

t  

a  

u
 

i  

d  

s  

t  

t  

t  

d  

s  

i  

c  

S  

a

2

 

f  

p  

u  

f  

c  

a  

m  

a  

a  

i  

s  

m  

m  

a  

d

 

 

 

 

 

 

 

 

 

 

d  

t  

f  

s  

‘  

[  

c  

f  

l  

a  

R  

o  

t  

f  

c  

i  

s  

g  

a  

o  

f  

i  

o  

s  

l  

D  

d

3

3

 

e  

s  

o  

a  

l  

q  

i  

t  

s  
The focus in the literature on laboratory testing has historically been
n rather short shells (typical length to radius L/r ratio of 1) intended
or use as fuselages, reactors or containment structures in the aerospace,
uclear and civil engineering industries respectively. In the early ex-
eriments of Lundquist [5] on ∼100 aluminium alloy cylinders under
lobal transverse shear and bending, all specimens were of a length that
as within an approximate range 10 < 𝜔 < 50 or 0.025 < Ω < 0.12.
he polyester cylinders of Yamaki [6] also occupied a length range
0 < 𝜔 < 50 or 0.025 < Ω < 0.12, the mild steel specimens of Galletly
nd B ł achut [7] occupied 10 < 𝜔 < 15 or 0.05 < Ω < 0.11, the nickel-
lated shells of Michel et al. [8] all had 𝜔 ≈ 21.2 and Ω ≈ 0.05, while
he stainless-steel cylinders of Athiannan and Palaninathan [9] fell in
6 < 𝜔 < 21 or 0.048 < Ω < 0.06. Schmidt and Winterstetter [10] re-
orted on transverse shear tests performed on a cylinder composed of
hree laser-welded segments of different thickness. Each segment exhib-
ted a length of 𝜔 ≈ 40 or Ω ≈ 0.04, such that the full cylinder was still
uite short at 𝜔 ≈ 120 or Ω ≈ 0.12. Where a focus on imperfections
as part of the test programme, every study concluded that these short

ylinders under shear were relatively insensitive to them due to a stable
ost-buckling equilibrium path. 

Computational studies that were performed in cylinders under trans-
erse shear were done usually as a supplement to test programmes, and
hus they too focused on short cylinders that buckled into a shear mode.
okubo et al. [11] was perhaps the first to perform a parametric finite
lement study of this system, including both linear buckling eigenvalue
nd geometrically and materially nonlinear path-tracing analyses with
arious eigenmode-affine imperfections using custom-written software.
 significantly milder imperfection sensitivity was found when com-
ared to that of a cylinder under uniform meridional compression, with
 reduction in buckling load of ∼20% at an imperfection amplitude of 3
all thicknesses under shear (as opposed to ∼80% under compression

12] ). The more recent modelling of Gettel and Schneider [13] appears
o be one of the few to have investigated longer cylinders up to 𝜔 ≈
060 or Ω ≈ 2.1 computationally, also including an in-depth discus-
ion on the appropriate choice of suitable imperfections in light of the
ovel provisions of the then recently-published European Standard on
etal shells EN 1993-1-6 [14] . However, the paper does not discuss

valisation, which for cylinders of length Ω ≈ 2.1 would be expected
o cause up to a 30–40% reduction in the elastic critical buckling mo-
ent if subject to uniform bending [3] . The authors are aware only of

he earlier work of Schneider and Thiele [15] where ovalisation in long
ransversely-loaded cylinders (up to Ω ≈ 5.2) was illustrated explicitly,
nd it is telling that the title of their paper begins with the words ‘an
nexpected failure mode ’. 

The authors are not aware of any tests to investigate the elastic oval-
sation response of very long cylinders under global shear, presumably
ue to the expense and practicalities involved in handling tall vertical
pecimens in a laboratory. Yamaki’s [6] polyester specimens would have
o have been one metre tall to achieve Ω = 0.5, and over ten metres tall
o approach fully-developed ovalisation at Ω > 5. However, since struc-
ures such as slender metal wind turbine towers may routinely reach
imensions exceeding Ω = 6 [16] , it is important for this reference re-
ult to be part of modern engineering knowledge. The reader is warmly
nvited to consult the comprehensive reviews of historical literature on
ylindrical forms under global shear in Athiannan and Palaninathan [9] ,
chmidt and Winterstetter [10] and Michel et al. [17] for further valu-
ble background information. 

. Scope of the study 

A comprehensive parametric investigation into the influence of the
ull range of practical lengths, slendernesses and different types of im-
erfection form on the nonlinear elastic stability of cantilever cylinders
nder global transverse shear does not appear to have ever been per-
ormed. In the authors ’ opinion, this is likely due to restrictions in the
omputing power available to previous research programmes. Addition-
201 
lly, previous results were presented mostly in a graphical format which
akes them rather difficult to generalise, and a compact algebraic char-

cterisation in terms of appropriate dimensionless groups also does not
ppear to have been performed. This study exploits the great advances
n personal computing made in recent decades to conduct over one thou-
and finite element simulations in a relatively short timescale, approxi-
ately one month on a single workstation, aided by the model manage-
ent and automation methodology detailed in Sadowski et al. [18] . The

nalyses performed included (with computational analysis acronyms as
efined by EN 1993-1-6 [14] ): 

• Linear bifurcation analyses (LBAs) on ∼50 different lengths from
𝜔 = 3 (very short) to Ω = 10 (very long) for r/t ratios of 50, 100,
200, 300, 500 and 1000. 

• Geometrically nonlinear analyses of the perfect elastic cylinder
(GNAs) on ∼50 different lengths from 𝜔 = 3 to Ω = 50 for r/t ra-
tios of 50, 100, 200 and 500. 

• Geometrically nonlinear analyses of imperfect elastic cylinders
(GNIAs) on approximately 60 different lengths from 𝜔 = 3 to Ω = 20
for a single r/t of 100, divided between two qualitatively different
geometric imperfection forms (more details below). Equivalent total
geometric deviations 𝛿e / t of 0.1, 0.25, 0.5, 0.75, 1, 1.5 and 2 were
investigated for both forms. 

The parameter ranges given above were chosen with the intent of ad-
ressing the main practical applications, from short containment struc-
ures to long supporting structures. The choice of two different imper-
ection forms was made to relate them to the expected nonlinear re-
ponse of the shell in different length domains, similar in concept to
quasi-collapse-affine imperfections ’ discussed by Gettel and Schneider
13] . For shorter cylinders dominated by shear buckling, the computed
ritical linear bifurcation (LBA) eigenmode was used as an imperfection
orm due to its affinity with the nonlinear buckling mode. However, for
onger cylinders dominated by local meridional compression buckling
nd ovalisation, a single instance of the weld depression imperfection of
otter and Teng [12] was placed at the location of peak cross-sectional
valisation where the flattening of the wall (and thus the reduction in
he critical buckling stress) was found to be greatest. This imperfection
orm has been widely used in computational studies of cylinders under
ompression [19] and uniform bending [20,21] , and is considered a real-
stic representation of a common manufacturing defect in longer welded
hells [22] . The nominal imperfection amplitudes 𝛿0 for the above two
eometric forms were re-cast into ‘equivalent geometric deviations ’ 𝛿e to
ccount for the fact that the nominal amplitude of an eigenmode wave is
nly half of the total geometric deviation that the shell is subject to (see
urther details in Fajuyitan et al. [23] ). A corresponding investigation
nto the elastic-plastic response at varying lengths lies beyond the scope
f this paper and will be presented at a later time. The outcomes of the
imulations are presented here in terms of resistances at the buckling
imit state, intended for interpretation within the Reference Resistance
esign framework [18,24,25] . Further details of the modelling proce-
ure are given in the following section. 

. Computational modelling and validation 

.1. Mesh design 

The analyses were performed using the ABAQUS 6.14-2 [26] finite
lement software with special care paid to mesh design, as illustrated
chematically in Fig. 1 . The double-helix partitioning procedure of Sad-
wski and Rotter [27] was applied to generate inclined meshes for the
nalysis of short cylinders where the dominant failure mode was buck-
ing under shear. These authors had shown that a ‘regular ’ mesh of
uadrilateral shell elements aligned with the axis of the cylinder was
n conflict with the preferred orientation of a shear buckle under pure
orsion, leading to a slow rate of convergence and an overly stiff re-
ponse because the quadrilateral shell elements were themselves subject
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Fig. 1. Model partition design for ‘helical ’ and ‘regular ’ meshes: a) short cylin- 
ders buckling predominantly in shear; b) longer cylinders with interactive buck- 
ling modes and c) long cylinders exhibiting meridional compression buckling 
with ovalisation. 
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Fig. 2. Finite element predictions and test results for the elastic buckling of 
short polyester cylinders under transverse shear (test data for cylinder digi- 
tised from Fig. 5.38 of Yamaki [6] ), E = 5.56 GPa, 𝜈 = 0.3, r = 100 mm and 
t = 0.247 mm ( r / t ≈ 405). 
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o shear. However, a ‘helical ’ mesh inclined at close to 45° showed no
uch numerical penalty because the orientation of the mesh was aligned
ith that of the buckle and the elements were under biaxial action. 

A preliminary set of LBAs was performed in the range 3 ≤ 𝜔 ≤ 50
o establish an appropriate angle of inclination 𝜙 to the circumferential
xis ( Fig. 1 ) of the partition that would generate a ‘helical ’ mesh that
s sympathetic to the orientation of the buckling mode. Approximated
y Eq. (2) , this expression suggests that shear buckles are inclined at
lose to 45° for very short cylinders ( Fig. 1 a), akin to under pure torsion,
hereas they become increasingly vertical for longer cylinders ( 𝜙→0 as
 →∞; Fig. 1 b). For lengths beyond 𝜔 = 50, it will be shown that local
uckling near the base under meridional compression takes over as the
ritical mode (and for 𝜙< ∼15° a helical mesh anyway becomes oriented
ery closely to the cylinder axes), and a ‘regular ’ rectangular mesh was
pplied instead ( Fig. 1 c). This partitioning and meshing scheme was
sed for all analyses: LBAs, GNAs and GNIAs. The authors appear to
e the first to apply custom helical meshing for the accurate analysis of
hear buckling in short cylinders, with previous studies all using regular
ectangular meshing schemes [8,11,15,28,29] . 

≈

{ 

45 𝜔 ≤ 3 
45 

(
1 − 𝑒 −2 . 3 ( 𝜔 −5 ) 

−0 . 45 
)

3 < 𝜔 < 50 

( 

𝜙 in degrees → the 
cir cumfer ential axis 

) 

(2)

An element size of between 2% to 10% of the linear bending half-
avelength 𝜆 ≈ 2.44 

√
( rt ) was applied uniformly in ‘helical ’ meshes to

ccurately capture the large shear buckling modes. However, ‘regular ’
eshes were refined in regions within 2 𝜆 of the bottom and top cylin-
er boundaries to enable an accurate modelling of local compatibility
ending at these locations, and also within 2 𝜆 of the midline of a weld
epression imperfection, if applied ( Fig. 1 c). Between these regions,
 coarser but smoothly-graded mesh was used. The computationally-
fficient reduced-integration S4R thick shell element was used through-
ut, and a single plane of circumferential symmetry was exploited for
urther efficiency. A transverse force V was applied via a reference point
laced at the centroid of the loaded diametral plane, rigidly linked to
202 
he edge of the shell. Rotationally-clamped boundary conditions were
imulated at both ends, though the loaded end was free to displace trans-
ersely and meridionally. The material of the shell was taken as simple
sotropic steel with E = 200 GPa and 𝜈= 0.3 in the full parametric anal-
ses, and for GNAs and GNIAs the Riks modified arc-length algorithm
as used. 

.2. Validation against the test results of Yamaki (1984) 

A number of analyses were first performed to validate the helically-
eshed finite element model for short cylinders for which test data was

vailable. Yamaki [6] had performed a series of global transverse shear
ests on pressurised cylinders made of polyester film (Young’s modulus
 = 5.56 GPa and Poisson ratio 𝜈= 0.3) that were so thin ( r / t ≈ 405
ith t = 0.247 mm) as to buckle elastically. While cylinders of different

engths were tested by Yamaki, they all occupied a dimensionless length
ange of 10 < 𝜔< 50 or 0.025 < Ω< 0.12 and thus initially failed by shear
uckling, although an interaction with the local meridional compression
ode was found to emerge later in the equilibrium path ( Fig. 2 ). 

A finite element simulation of a near-perfect cylinder (including a
inor eigenmode-affine mesh perturbation of total amplitude 1% of the
all thickness) shows a very good agreement with Yamaki’s test result
 Fig. 2 ). The prediction is slightly stiffer than the test response due to
he tested cylinders being inevitably affected by minor geometric im-
erfections or other misalignments, which are unknowable at this time,
ut the modelled perturbation amplitude could always be fine-tuned to
btain a closer agreement. It is shown that some mesh perturbation is
rucial to enable the cylinder to pass smoothly into a deformed configu-
ation associated with a shear buckling mode, as otherwise the cylinder
roceeds along the linear fundamental path and significantly overesti-
ates the response. A similar conclusion was reached by Kokubo et al.

11] . Lastly, there are no tests known to the authors of cylinders under
ransverse shear that would be sufficiently long to fail by local merid-
onal compression buckling or to develop ovalisation, the predictions
n what follow for longer cylinders will wherever possible be compared
gainst known algebraic formulae for uniform bending. 

. Linear elastic buckling behaviour 

Cylinders under global transverse shear are prone to buckling into
ifferent modes depending on the length. Shear buckling dominates in
horter, while meridional buckling controls in longer ones, with a short
ransitional region in between. The linear elastic buckling behaviour is
xposed in detail in this section, first through a simple algebraic treat-
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Fig. 3. Comparison of finite element LBAs against algebraic eigenvalue predic- 
tions (data digitised from Fig. 3 of Schröder [2] ) of the linear elastic buckling 
of cylinders of varying length under transverse shear. 

Fig. 4. Computed LBAs vs dimensionless length 𝜔 with algebraic characterisa- 
tion. 

Fig. 5. Computed LBAs vs dimensionless length Ω with algebraic characterisa- 
tion. 
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ent using shell membrane theory and then by more accurate finite el-
ment LBAs. In what follows, V cl represents a reference classical elastic
ritical buckling load according to simple shell membrane theory while
 LBA represents a more accurate computational prediction of this resis-

ance. V cr is used to represent an algebraic approximation of V LBA and
ses the simple V cl expression as a ‘scaffold ’ upon which enhancements
re appended based on the computational results. 

.1. Reference resistance V cl from shell membrane theory 

Under a transverse shear force V [F] applied at the cylinder tip ( z = L ),
he membrane stress state in a cylindrical shell supported at z = 0 is given
y: 

 𝜃( 𝑧, 𝜃) = 0 (3)

 𝑧𝜃( 𝑧, 𝜃) = 𝑁 𝑧𝜃, max sin 𝜃 where 𝑁 𝑧𝜃, max = 𝜏max ⋅ 𝑡 = 

𝑉 

𝜋𝑟 
(4)

 𝑧 ( 𝑧, 𝜃) = 𝑁 𝑧, max cos 𝜃 where 𝑁 𝑧, max = 𝜎𝑧, max ⋅ 𝑡 = 

𝑉 ( 𝑧 − 𝐿 ) 
𝜋𝑟 2 

(5)

here N 𝜃 , N z 𝜃 and N z are the circumferential, shear and meridional
embrane stress resultants [F.L − 1 ] respectively ( 𝜎 and 𝜏 are the cor-

esponding stresses in [F.L − 2 ]), while z and 𝜃 are the meridional (base
upport at z = 0) and circumferential (compressed side at 𝜃= 0) coordi-
ates respectively. Ignoring boundary effects, the classical elastic critical
uckling values for these stress resultants, derived under the reference
onditions of uniform torsion and meridional compression respectively,
re [14] : 

 𝑧𝜃, cl = 0 . 75 𝐸𝑡 

(
𝑡 

𝑟 

)
4 

√ 

𝑟𝑡 

𝐿 

2 (6)

 𝑧 , cl = 0 . 605 𝐸𝑡 

(
𝑡 

𝑟 

)
(7)

The dimensionless length approximating the boundary between
he two buckling modes may be estimated by equating N z 𝜃,max 

 N z 𝜃, cl = N z,max / N z,cl as: 

 𝑧𝜃− 𝑧 ≈ 0 . 65 𝑟 
𝑡 
or Ω𝑧𝜃− 𝑧 ≈ 0 . 65 (8)

The reference classical elastic critical buckling resistance V cl for a
ylinder under global transverse shear is thus here taken as: 

 𝑐𝑙 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑉 𝑧𝜃,𝑐𝑙 = 0 . 75 𝜋𝐸 𝑡 2 4 

√ 

𝑟𝑡 

𝐿 

2 for 𝜔 ≤ 𝜔 𝑧𝜃− 𝑧 

𝑉 𝑧,𝑐𝑙 = 0 . 605 𝜋𝐸 𝑡 2 for 𝜔 > 𝜔 𝑧𝜃− 𝑧 

(9) 

It should be emphasised that these simple expressions naturally can-
ot account for the effects of boundary restraint on the buckling mode,
nteraction between buckling modes, geometric nonlinearity or imper-
ections. 

.2. Reference resistances V LBA and V cr from finite element analysis 

The first algebraic eigenvalue prediction of the elastic critical buck-
ing load for cylinders of varying length under transverse shear appears
o have been performed by Schröder [2] using Donnell shell theory
hich assumed a pure pre-buckling membrane stress state. His results
ere presented in the form N max / N z,cl vs L / r , where N max is the maxi-
um meridional membrane stress at the lowest eigenvalue, and as they
ave been reproduced elsewhere [10] they are compared here against
he nearest equivalent, V LBA / V z,cl , in Fig. 3 . The agreement is remark-
bly close for short cylinders, although the algebraic prediction some-
hat underestimates the buckling resistance in the shear mode. How-

ver, the rather approximate boundary between shear and meridional
ompression buckling suggested by Schröder [2] appears to be very
onservative and not at all accurate. The LBA predictions also suggest
hat there is a finite (although short-lived) length range over which the
203 
hell exhibits an interaction between shear and meridional compression
odes. 

A more complete picture is obtained by reformulating the LBA pre-
ictions separately in terms of both dimensionless length groups 𝜔 and
( Eq. (1 )), as shown in Figs. 4 and 5 respectively. It is stressed that in

oth figures, the normalisation of the vertical axis is done using V z 𝜃,cl 

ntil 𝜔 z 𝜃- z = 0.65 r / t or Ωz 𝜃- z = 0.65 and V z,cl for all lengths thereafter
 Eq. (9 )) to account for the qualitatively different buckling modes
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Fig. 6. Computed LBA modes at varying length for r/t = 100. 
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overning the behaviour in different length ranges. Four distinct length
omains may be identified. Cylinders shorter than 𝜔 ≈ 20 buckle at
n increasingly higher load V as 𝜔 →0 due to the increasing restraint
gainst shear buckling offered by the clamped boundary conditions. A
imilar effect was recently documented for very short cylinders under
lobal bending [3,23] . There is a slight dependency on the r / t ratio in
his length domain, with a thicker shell (lower r / t ) requiring a higher
uckling load to overcome the increasingly important through-thickness
hear deformations, an effect captured by the finite element calculation
ut naturally not by a simple algebraic analysis. Cylinders longer than
 ≈ 20 but shorter than 𝜔 ≈ 0.45 r / t or Ω ≈ 0.45 buckle into an in-
reasingly vertical shear mode ( Eq. (2 ) and Fig. 6 a–c) and see a modest
ise in the buckling load relative to V z 𝜃,cl with increasing length. This
imple algebraic expression ( Eq. (6 )) is derived from the condition of
niform torsion which assumes shear buckles at 45° to the horizontal.
uckling into steeper shear modes requires slightly more strain energy,
 constraint responsible for the small rise in V LBA relative to V z 𝜃,cl . 

Michel et al. [17] suggested that the following equation by Timo-
henko and Gere [30] , derived to account for boundary effects in short
ylinders under uniform torsion and yielding a very similar result to the
orresponding EN 1993-1-6 [14] equation, was an acceptable approxi-
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ation under transverse shear: 

𝑉 𝑐𝑟 

𝑉 𝑧𝜃,𝑐𝑙 
= 

𝜏𝑐𝑟 

𝜏𝑧𝜃,𝑐𝑙 
= 

𝑁 𝑧𝜃,𝑐𝑟 

𝑁 𝑧𝜃,𝑐𝑙 

= 6 . 427 
√ 

1 + 0 . 0239 𝜔 

3 

𝜔 

3 ≈
√ 

1 + 

42 
𝜔 

3 (10)

It is shown here that this equation in fact leads to a significant under-
stimate of the theoretical elastic buckling load under transverse shear,
s the V LBA predictions under transverse shear are all consistently above
ny V cl prediction established on the basis of the critical buckling stress
nder pure torsion, from a ∼5% excess at r / t = 1000 to ∼25% excess at
 / t = 50. Lundquist [5] had apparently recognised this as early as 1935,
uggesting a scaling factor of 1.25 on the prediction based on the critical
tress under uniform torsion, shown in Fig. 4 to be somewhat closer to
he more accurate LBA prediction. 

The length domain of interaction between the shear and meridional
ompression linear buckling modes is visible most clearly in terms of

in Fig. 5 , where a sudden drop in the buckling load relative to V z 𝜃,cl 

ccurs inside the range ∼0.45 < Ω < ∼0.65. Here, the LBA mode ex-
ibits features from both buckling forms ( Fig. 6 d), although the domain
s rather short-lived (i.e. d Ω = 0.65 – 0.45 = 0.2 corresponds to only 2
r 6.3 mm for a shell with r / t = 100 or 1000 respectively and t = 1 mm).
owever, the upper boundary of this interaction domain is in surpris-

ngly close agreement with the very simple prediction for Ωz, 𝜃- z = 0.65
n Eq. (8 ) established on the basis of simple membrane theory. This is
ecause the critical meridional buckling stress established under uni-
orm compression ( Eq. (7 )) is an accurate metric of buckling wherever a
egion of meridional compression is sufficiently wide to support a small
uckle [3,31] , regardless of the validity of using the critical shear buck-
ing stress established under uniform torsion ( Eq. (6 )) for transverse
hear. For all cylinders with Ω > 0.65, the base of the cylinder devel-
ps small and closely-spaced local meridional compression buckles and
 LBA →V z,cl as Ω→∞. The slight excess on V z,cl at the start of this ‘long ’
omain, higher for thicker shells, is largely due to the restraint against
uckling offered by the clamped conditions at the base of the cylinder. It
hould be stressed that the LBA prediction is unaffected by ovalisation,
nd it will always predict the compressed base of the cylinder as the
ritical location for buckling under transverse shear in long cylinders.
his observation will become significant in the GNIA calculations later.

The authors propose the following algebraic characterisation
 Eq. (11 )) for the complete linear elastic buckling behaviour of this sys-
em across the full practical range of lengths and r / t ratios, qualitatively
apturing shear, interactive and meridional compression buckling. It is
llustrated in grey dashed lines on Figs. 4 and 5 , where it may be seen
hat it offers a most accurate prediction relative to the LBAs as r / t →50
ut an increasingly conservative one as r / t →1000. The inconsistency
hould be understood in the context of the difficulty in condensing this
elationship into compact closed-form equations. 

 𝑐𝑟 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝐶 1 

√ 

1 + 

70 
𝜔 

3 ⋅ 𝑉 𝑧𝜃,𝑐𝑙 𝜔 < 20 ( 

1 . 87 
1 + 0 . 46 Ω−0 . 13 

) 

⋅ 𝑉 𝑧𝜃,𝑐𝑙 20 
(
𝑡 

𝑟 

)
≤ Ω < 0 . 45 

5(0 . 65 𝐶 2 − 0 . 45 𝐶 3 0 . 45 ≤ Ω < 0 . 65 

+ 

(
𝐶 3 − 𝐶 2 

)
Ω) ⋅ 𝑉 𝑧𝜃,𝑐𝑙 ⎛ ⎜ ⎜ ⎝ 1 . 22 − 0 . 22 𝑒 
− 
55 
𝜔 

⎞ ⎟ ⎟ ⎠ ⋅ 𝑉 𝑧,𝑐𝑙 𝜔 ≥ 0 . 65 
(
𝑟 

𝑡 

)
where 

𝐶 1 = 

( 

1 . 86 
1 + 0 . 46 ( 20 𝑡 ∕ 𝑟 ) −0 . 13 

) 

𝐶 2 = 

( 

1 . 87 
1 + 0 . 46 ( 0 . 45 ) −0 . 13 

) 

≈ 1 . 24 

𝐶 3 = 

⎛ ⎜ ⎜ 1 . 22 − 0 . 22 𝑒 
−85 

( 
𝑡 

𝑟 

) ⎞ ⎟ ⎟ (11) 
⎝ ⎠ 
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Fig. 7. Computed relationship between the critical transverse load V GNA / V LBA 

and the dimensionless lengths 𝜔 and Ω for a perfect cantilever cylinder with 
r/t = 100. 

Fig. 8. Dimensionless transverse load-tip displacement curves for cylinders of 
different lengths with r/t = 100 ( ‘D ’ and ‘I ’ represent a deformed shape and an 
incremental buckling mode respectively). 
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Fig. 9. Close-up of the relationship between the critical transverse V GNA / V LBA 

and the dimensionless cylinder length Ω for a perfect cylinder with r/t = 100 in 
the ‘medium-bending ’ length domain. The shapes shown are incremental buck- 
ling modes. 
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. Nonlinear behaviour of perfect elastic cantilever cylinders 

Under geometrically nonlinear conditions, elastic cylinders under
niform bending are known to experience a complex interaction be-
ween cross-sectional ovalisation, local buckling, boundary effects and
ength [3] . The moment gradient of a cantilever system inevitably adds
urther complexity, and this is explored here through a comprehensive
rogramme of GNAs. In what follows, V GNA represents the prediction
f the critical transverse shear buckling load from a GNA, while V k,per 

epresents an approximation to this obtained solely by means of closed-
orm algebraic equations proposed by the authors. V LBA , V cl and V cr have
he same meaning as before. While this choice of notation may perhaps
e disputed, it was chosen for clarity and convenience. 

The relationship between the computed normalised value
 GNA / V LBA and both dimensionless lengths 𝜔 and Ω is introduced in
ig. 7 for a perfect elastic cylinder with r / t = 100. A selection of corre-
ponding GNA equilibrium paths are shown in Fig. 8 , expressed as the
elationship between the applied transverse shear load V , normalised
y the LBA prediction V LBA , and the tip centroidal displacement 𝛿,
ormalised by its value at the LBA buckling load 𝛿LBA obtained using
imoshenko [32] beam theory ( Eq. (12 ); with shear coefficient taken
rom Cowper [33] ). The cylinder under global transverse shear appears
o exhibit six distinct domains of behaviour controlled by the cylinder
ength, in contrast to four domains for cylinders under uniform bending
3] and only three domains for cylinders under the fundamental load
ases of uniform meridional compression, external pressure or torsion
205 
34] . 

𝐿𝐵𝐴 = 

𝑉 𝐿𝐵𝐴 𝐿 

3 

3 𝐸𝐼 
+ 

𝑉 𝐿𝐵𝐴 𝐿 

𝜅𝐴𝐺 

where 𝜅 = 

2 ( 1 + 𝜈) 
4 + 3 𝜈

≈ 0 . 53 and 𝐺 = 

𝐸 

2 ( 1 + 𝜈) 
(12) 

When the shell is very short, the free development of the shear buck-
ing mode is restrained by the clamped edge boundaries and a transverse
oad significantly higher than V z 𝜃,cl is required to cause buckling. While
his effect was also seen under linear conditions ( Figs. 4 and 5 ), it is
ven more pronounced under geometrically nonlinear conditions with
he elastic shell able to sustain very large amplified displacements and
xcesses on V LBA prior to a buckling event at a load V GNA ( Fig. 8 ). In
act, although these very short shells develop significant deformations
ssociated with a shear mode they eventually undergo bifurcation buck-
ing into a local meridional compression mode, a behaviour that was
lso seen in Yamaki’s experiments ( Fig. 2 ). This domain is here termed
short ’, and appears to persist for shells up to a length of 𝜔 ≈ 20, con-
istent with the characterisation under geometrically linear conditions
 Fig. 4 ; Eq. (11) ). 

Cylinders longer than 𝜔 ≈ 20 but shorter than Ω ≈ 0.45 ( 𝜔 ≈ 0.45 r / t )
re free to buckle unhindered into a shear mode, as evident by V GNA 

V LBA in this length range (where V LBA also corresponds to a shear
uckling mode; Figs. 5 and 6 ), and this length domain is here termed

medium-shear ’. Longer cylinders in the range ∼0.45 < Ω < ∼0.65 (here
ermed the ‘medium-interaction ’ length domain) exhibit an interaction
etween the shear and local meridional compression buckling modes,
nd a slight reduction in V GNA relative to V LBA . By Ω ≈ 0.65, the shear
ode plays no further role in the buckling behaviour which is instead

nitially controlled by local buckling at the base of the compressed side
f the cylinder (the ‘medium-bending ’ length domain). This behaviour
s in close agreement qualitatively and quantitatively to the linear buck-
ing predictions from both LBA and classical algebraic analyses ( Fig. 5 ;
qs. (8 ) and ( 9 )). 

A detailed close-up of the behaviour in the ‘medium-bending ’ do-
ain is offered in Fig. 9 . Assumed here to occupy a length range of
0.65 < Ω < ∼1.6, this domain is long enough for ovalisation to po-

entially begin altering the behaviour (known to initiate at Ω > 0.5 for
niform bending [3] ). It may be seen in from the incremental buck-
ing modes in this length range (obtained by subtracting the set of com-
uted displacements immediately before the buckling event those im-
ediately after it [35] ) that flattening of the cylinder cross-section at

pproximately midspan begins to feature increasingly prominently as
→∼1.6. Simultaneously, the critical location for buckling gradually

eases to be the base of the most compressed side of the cylinder and
nstead shifts to the cylinder midspan where ovalisation is greatest. This
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Fig. 10. Computed relationship between the nonlinear elastic buckling re- 
sistance V GNA / V LBA of perfect cantilever cylinders and the dimensionless 
length 𝜔 . 

Fig. 11. Computed relationship between the nonlinear elastic buckling resis- 
tance V GNA / V LBA of perfect cantilever cylinders and the dimensionless length 
Ω. 
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Fig. 12. Moment at the most ovalised cross-section in cantilever cylinders, com- 
pared with those under uniform bending from Rotter et al. [3] . 
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nteraction appears to constrain the buckling mode slightly, as evident
y the transition being accompanied by a slight rise in V GNA / V LBA up to
 ratio of approximately 1.1 (note that, for Ω > ∼0.65, V LBA always cor-
esponds to a local meridional compression buckling mode at the base
f the cylinder; Figs. 5 and 6 ). 

For cylinders longer than Ω ≈ 1.6, buckling will always occur at the
ost flattened location (initially at midspan) and at a buckling load
 GNA / V LBA that now begins to significantly decrease with increasing

ength to a minimum ratio of approximately ∼0.55 at Ω ≈ 20 ( Fig. 7 )
s pre-buckling ovalisation becomes more severe. The corresponding
quilibrium paths in Fig. 8 show an increasingly nonlinear upper portion
f the curve preceding bifurcation buckling. This length domain is here
ermed the ‘transitional ’ one, in a direct parallel to the corresponding
ength domain under uniform bending [3] . This ‘transitional ’ domain
pans d Ω = 20 – 1.6 = 18.4, corresponding to a length range of 18.4 m
r 581.9 m for a shell with t = 1 mm and r / t = 100 and 1000 respectively,
nd is thus likely to encompass a wide range of practical applications.
antilever cylinders longer than Ω ≈ 20 are here classified as ‘long ’. The
receding relationships between V GNA / V LBA and length are illustrated
or a wider range of r / t = 50, 100, 200 and 500 in Figs. 10 and 11 in
erms of dimensionless groups 𝜔 and Ω respectively, showing that the
ength domains identified are qualitatively independent of the r / t ratio
hen the relationship is grouped in terms of 𝜔 and Ω as necessary. 

The behaviour of ‘long ’ cylinders ( Ω > ∼ 20) deserves further ex-
lanation. The computed relationships show a rise in the V GNA / V LBA 

atio with increasing length beyond Ω ≈ 20. This is because the lever
206 
rm of the transverse tip load becomes reduced as a very long cylin-
er undergoes significant tip deflections, and thus a higher load is re-
uired to achieve buckling at the fully-ovalised cross-section which in
act occurs at a moment very close to the Brazier [36] prediction M Braz 

 Eq. (12 )). This moment is itself only approximately 0.516 times the
lassical elastic critical buckling moment M cl ( Eq. (13 )) which assumes
ocal meridional compression buckling occurs when the stress resultant
t the most compressed fibre reaches the N z,cl value and an undeformed
eometry ( Eq. (7 )). This effect is illustrated in Fig. 12 where it may be
een that, although V GNA / V LBA increases for Ω > ∼ 20 without bound
such very long cylinders lead to ill-conditioned finite element models
hat are difficult to run successfully), the actual moment at the most
valised cross-section M GNA / M cl remains stable at a value approxi-
ately 5% below the M Braz due to local buckling on the compressed

ide always preceding limit point buckling due to ovalisation [31,37] .
valisation is explored further in the next section. 

 𝐵𝑟𝑎𝑧 = 

2 
√
2 

9 

( 

𝐸𝜋𝑟 𝑡 2 √
1 − 𝜈2 

) 

≈ 1 . 035 𝐸𝑟 𝑡 2 (12)

 𝑐𝑙 = 𝜋𝑟 2 𝑁 𝑧,𝑐𝑙 ≈ 1 . 901 𝐸𝑟 𝑡 2 (13)

The authors propose the following very simple but conservative alge-
raic characterisation of this complex nonlinear relationship, to be used
n tandem with the set of equations proposed for V cr (which approximate
 LBA ) in Eq. (11 ): 

𝑉 𝑘,𝑝𝑒𝑟 

𝑉 𝑐𝑟 
= 

{ 

0 . 92 Ω < 1 . 6 
0 . 92 𝑒 −0 . 42 ( Ω−1 . 6 ) 0 . 85 + 0 . 538 

(
1 − 𝑒 −0 . 42 ( Ω−1 . 6 ) 

0 . 85 
)

Ω ≥ 1 . 6 

(14) 

This relationship assigned a conservative ‘plateau ’ value of 0.92 for
he ‘short ’ and ‘medium ’ domains up to Ω = 1.6, neglecting the ben-
ficial restraining effect offered by the boundary condition. Cylinders
onger than Ω = 1.6 duly exhibit a reduction in the buckling load with
ength, attaining a ‘plateau ’ value of V GNA / V LBA ≈ 0.538 at Ω > 20
nd conservatively neglecting the rise in buckling load due to a reduc-
ng lever arm. The proposed functional form aims to strike a balance
etween usability and realism, and the numerical values may easily be
djusted if desired. 

. Quantification of ovalisation in cylinders under transverse 

hear 

Xu et al. [31] illustrated computationally that circular cylinders un-
er uniform bending develop peak cross-sectional ovalisation at or close
o midspan, and there is little ambiguity as to the critical location for
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Fig. 13. Variation of Ωoval,max / Ω, the ratio of the location of peak ovalisation 
to the total cylinder length. 
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Fig. 14. Distribution of the ‘out of roundness ’ parameter U at buckling with 
along the normalised cylinder length for cylinders of different length Ω but con- 
stant r / t = 100. 

Fig. 15. Variation of the max ‘out of roundness ’ parameter U max and the location 
of peak ovalisation Ωova with the total cylinder length (here termed Ωtot for 
clarity). 
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ocal meridional compression buckling. Under transverse shear, how-
ver, the moment gradient leads to a non-uniform distribution of flat-
ening along the length, and the critical location for buckling in cylinders
onger than the ‘medium-bending ’ domain ( Ω > ∼1.6) is no longer ob-
ious. The dimensionless location of the location of the most flattened
ross-section along the cylinder, here termed Ωoval,max , relative to the
otal cylinder length Ω is illustrated in Fig. 13 as function of Ω. Only
ylinders with Ω > 1 are shown, as those shorter than this experience
egligible ovalisation, even when buckling into a shear mode. While the
ost ovalised location is initially approximately at midspan ( Ωoval,max /
≈ 0.5), for longer cylinders this location approaches the base support

 Ωoval,max / Ω→0) as, consequently, does the critical location for local
eridional compression buckling. This phenomenon is characterised by

he simple relationship in Eq. (15 ) and will be invoked in the final part
f this paper in a study of imperfection sensitivity. 

Ω𝑜𝑣𝑎𝑙,𝑚𝑎𝑥 

Ω
= 

𝐿 𝑜𝑣𝑎𝑙, max 

𝐿 

≈

{ 

0 . 5 Ω < 1 
0 . 5 

(
1 − 𝑒 −2 . 7 ( Ω−1 ) 

0 . 86 
)

Ω ≥ 1 (15) 

A useful quantification of the ovalised geometry of a cylindrical shell
s offered by the ‘out-of-roundness ’ tolerance parameter U of EN 1993-
-6 [14] , defined as: 

 = 

𝐷 max − 𝐷 min 
𝐷 𝑛𝑜𝑚 

(15)

here D max and D min are the maximum and minimum deformed diam-
ters at the same cross-section in a cylinder, and D nom 

is the nominal
ndeformed diameter. Xu et al. (2017) invoked the original assump-
ions of Brazier [36] together with additional relationships from Kara-
anos [37] to show that cylinders under uniform bending attain a ‘fully-
eveloped ’ ovalisation of U max ≈ 0.34 at buckling, a result supported by
nite element analysis, and that this result is approximately stable for
ylinders longer than Ω > 5. The computed distributions of U at buck-
ing along cylinders of varying length Ω, presented in normalised form
rom 0 to 1 to allow cylinder of different length to be plotted on the
ame figure, are shown in Fig. 14 . This reflects the relationship shown
n Fig. 13 , with U peaking at approximately midspan until Ω ≈ 2 but be-
oming increasingly localised towards the base support with increasing
otal Ω. Further, the peak ovalisation parameter U max for cylinders under
ransverse shear does not stabilise as it did under uniform bending to be-
ome invariant with further increases in length, and in fact ever longer
ylinders appear to undergo increasingly severe pre-buckling ovalisa-
ion. However, even for a very long cylinder with Ω = 20, U max does
ot reach the ‘upper bound ’ of 0.34 suggested by Xu et al. [31] , sug-
esting that a cylinder under transverse shear does not need to develop
he same severity of cross-sectional distortion to support a moment at
pproximately the Brazier value ( Fig. 12 ). Fig. 14 also illustrates that
207 
ylinders in the ‘medium-bending ’ domain ( Ω ≤ 1.6) may also exhibit
nite peak ovalisation at midheight, although not sufficient to influence
he buckling behaviour. 

The above is explored further in Fig. 15 which suggests that the peak
valisation in fact tends to an asymptotic value of ∼0.28 under trans-
erse shear, somewhat below the value of ∼0.34 under uniform bend-
ng. Lastly, Fig. 15 also illustrates that although the relative location of
eak ovalisation Ωoval,max / Ω tends to zero with increasing total cylin-
er length, the absolute location appears to tend to an asymptotic value
f Ωoval,max ≈ 2.1. Thus, it may be anticipated that elastic buckling of
 long uniform-thickness cylinder under transverse shear should occur
ithin a length of ∼2.1 r 

√
( r / t ) of the base support. It did not prove fea-

ible to explore cylinders longer than Ω = 50 due to the increasingly
evere ill-conditioning of the finite element models and excessive run-
imes, and more accurate asymptotic values of U max or Ωoval,max are not
urrently available. 

. Imperfection sensitivity of cylinders under transverse shear 

A computational investigation of imperfection sensitivity in cylin-
ers under transverse poses a conceptual as well as computational chal-
enge because of the qualitative variation of the critical buckling mode
ith cylinder length. It has been documented that short cylinders buck-

ing into a shear mode are only mildly sensitive to eigenmode-affine
mperfections [11] . Here, a series of GNIAs were first performed for
ylinders with r / t = 100 of varying length with an imposed imperfec-
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Fig. 16. Computed relationship between the nonlinear elastic buckling resis- 
tance V GNIA / V LBA of imperfect cantilever cylinders and the dimensionless length 
Ω for the linear buckling eigenmode imperfection. 

Fig. 17. Computed imperfection sensitivity relationships V GNIA / V GNA at vari- 
ous cylinder lengths for r / t = 100 and both imperfection forms. 
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Fig. 18. Computed relationship between the nonlinear elastic buckling resis- 
tance V GNIA / V LBA of imperfect cantilever cylinders and the dimensionless length 
Ω for the weld depression imperfection placed at the location of peak ovalisation 
Ωoval,max . 
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ion in the form of the critical LBA eigenmode (see Fig. 6 for examples),
llustrated in Fig. 16 . Very short cylinders, where shear buckling is re-
trained by the end boundary condition, duly exhibit an almost total
nsensitivity to an eigenmode imperfection due to stable nature of the
ost-buckling equilibrium path ( Fig. 8 ). This is evident in the imperfec-
ion sensitivity relationship for 𝜔 = 3 in Fig. 17 which shows an approx-
mately stable reduction in buckling resistance of less than 5% across
he range of ‘equivalent geometric deviations ’ 𝛿e / t from 0.5 to 2, de-
pite an initial ‘dip ’ at small amplitudes. By 𝜔 ≈ 7, the beneficial effect
f the end restraint vanishes and the shell may buckle freely into a shear
ode, and imperfection sensitivity assumes a ‘classical ’ monotonically-
ecreasing relationship with 𝛿e / t . It also becomes more deleterious with
urther increases in length: the reduction over V GNA is 15%, 22% and
0% at 𝛿e / t = 2 for 𝜔 = 10, 20 and 45 respectively, although still less
evere than under uniform meridional compression. 

A rather ambiguous GNIA relationship is revealed in the ‘medium-
nteraction ’ length domain due to the transition from shear to bending-
ominated buckling, both in the LBA and GNA behaviour ( Figs. 6 and 9 ).
mperfection sensitivity in the ‘medium-bending ’ domain the relation-
hip is again relatively stable, as both the LBA and GNA buckling modes
ow coincide to occur at the base of the cylinder. However, the compu-
ation of GNIAs was discontinued shortly into the ‘transitional ’ domain
here it became evident that the LBA imperfection mode, which in the
resent system must always predict a localised buckle at the base of the
ylinder at lengths beyond Ωz, 𝜃- z = 0.65 (even for higher modes), be-
ame disjoint from the critical buckling location at the most ovalisation
ross-section ( Figs. 13 and 14 ) and had an almost entirely negligible
208 
ffect on the buckling resistance, even at very deep amplitudes. This
hould serve as a caution to structural analysts attempting to perform
MNIA calculations with only a naïve implementation of the critical

inear eigenmode as an imperfection form. The choice of a meaningful
mperfection should be made carefully so that it relates to the mechan-
cs of the nonlinear response of the system (see discussion in Sadowski
nd Rotter [38] ). 

A second set of GNIAs was performed with a single Rotter and
eng [12] Type ‘A ’ weld depression, defined by the functional form in
q. (16 ), placed at the most ovalised location L oval,max as predicted by Eq.
15 ) on the basis of GNAs. GNIAs with this imperfection form were not
erformed for cylinders shorter than Ω ≈ 0.5 controlled by shear buck-
ing and for which the eigenmode imperfection proved more critical at
he same value of the ‘equivalent geometric deviation ’ 𝛿e / t . Illustrated
n Fig. 18 , it is evident that when the weld depression is placed at the
ost-ovalised location that is critical for buckling in a GNA, its deleteri-

us effect is maximised and effectively invariant with further changes in
ength (see also the group of curves for 2.5 ≤ Ω ≤ 20 in Fig. 17 ). GNIAs
or very long cylinders with Ω > 20 were not performed. 

= 𝛿0 𝑒 
− 𝑤 ( 𝑧 ) ( cos 𝑤 ( 𝑧 ) + sin 𝑤 ( 𝑧 ) ) 𝑤ℎ𝑒𝑟𝑒 𝑤 ( 𝑧 ) 

= 

𝜋

𝜆
||𝑧 − 𝐿 𝑜𝑣𝑎𝑙, max || 𝑎𝑛𝑑 𝜆 ≈ 2 . 44 

√
𝑟𝑡 (16) 

The simple lower-bound relationship in Eq. (17 ) is offered to capture
he imperfection sensitivity of this system across domains governed by
ither shear or local meridional compression buckling, including the in-
eractive region in-between, aiming to strike a balance between ease of
se and realism. Together with the expressions for V cr (approximating
 LBA ) and V k,per (approximating V GNA ) in Eqs. (11 ) and (14) respectively,

hese permit a smooth, conservative and closed-form algebraic predic-
ion of the nonlinear global transverse shear resistance of an elastic im-
erfect uniform-thickness cylindrical shell. Illustrated in Fig. 19 , it may
e seen that the greatest source of ambiguity in this relationship is in
he ‘medium ’ domain due to a messy transition from shear-dominated
o bending-dominated behaviour. A synthetic GNIA data set is shown
ere, constructed by taking the lowest result from either imperfection
t the same length and 𝛿e / t (see Fajuyitan and Sadowski [21] for a sim-
lar approach applied to cylinders under uniform bending). The dashed
ines show the V k,imp / V LBA characterisation offered by Eq. (17 ) for var-
ous 𝛿e / t , where it is proposed that the imperfection sensitivity at 𝜔 = 20
e perpetuated ‘leftwards ’ for all shear-dominated behaviour in very
hort cylinders, while that at Ω = 20 be perpetuated ‘rightwards ’ for
ll bending-dominated behaviour in very long cylinders. An exponen-
ial decay is proposed for the ‘medium ’ domain, with an exponent p that
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Fig. 19. Computed relationship between the nonlinear elastic buckling resis- 
tance V GNIA / V LBA of imperfect cantilever cylinders and the dimensionless length 
Ω, including a lower-bound transition from between two imperfection forms and 
a proposed conservative characterisation of the length-dependent imperfection 
sensitivity. 
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ay be adjusted as desired. 

𝑉 𝑘,𝑖𝑚𝑝 

𝑉 𝑘,𝑝𝑒𝑟 
= 

1 
1 + 𝑥 1 

(
𝛿𝑒 ∕ 𝑡 

)𝑥 2 (17) 

here 

 𝑖 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝑎 𝑧𝜃,𝑖 Ω ≤ 20 𝑡 

𝑟 
(shear) 

𝑎 𝑧,𝑖 + ( 𝑎 𝑧𝜃,𝑖 − 𝑎 𝑧,𝑖 ) 𝑒 
− 𝑝 

( 
Ω−20 

𝑡 

𝑟 

) 
20 𝑡 

𝑟 
< Ω < 1 . 6( int eract ion ) 

𝑎 𝑧,𝑖 Ω ≥ 1 . 6 (bending) 

uch that ( a z 𝜃 ,1 , a z 𝜃 ,2 ) = (0.16, 0.9), ( a z ,1 , a z ,2 ) = (0.8, 0.5) and p = 10. 

. Conclusions 

This paper has presented a comprehensive computational investiga-
ion into the nonlinear elastic buckling response of both perfect and
mperfect clamped cantilever cylindrical shells under global transverse
hear. An exhaustive range of practical lengths and slendernesses was
overed, from short cylinders which fail by shear buckling to long
nes which exhibit local meridional compression buckling influenced
y cross-sectional ovalisation, as well as the transitions in-between. Both
he geometrically linear and nonlinear responses were studied, the lat-
er for both perfect and imperfect cylinders. It is thought that this paper
s the first ever to undertake such a detailed parametric study of this
biquitous structural system. 

Under geometrically linear conditions, the system exhibits four qual-
tatively distinct length domains, a consequence of the complex interac-
ion between two governing buckling modes and the effect of boundary
estraint at very short lengths. However, under geometrically nonlinear
onditions, the number of length domains rises to six due to the impor-
ant influence of pre-buckling ovalisation on longer cylinders dominated
y meridional compression buckling. The influence of ovalisation was
tudied in detail and it is shown that the long elastic cylinders effectively
uckle at just below the ‘Brazier ’ reference bending moment at the most
valised cross-section. 

A relatively mild sensitivity to eigenmode-affine imperfections was
evealed for short cylinders governed by shear buckling, consistent with
he findings of previous authors. However, longer cylinders proved very
ensitive to an axisymmetric ‘weld depression ’ imperfection placed at
he most ovalised location, also the critical location for meridional com-
ression buckling in the perfect shell. This careful placement has the
ffect of maximising the damaging effect of these imperfections in long
ylinders and making the imperfection sensitivity invariant with length.
209 
The authors have additionally distilled and characterised the phe-
omena into closed-form algebraic expressions suitable for direct use
s design equations. These make use of carefully-chosen dimensionless
roups from background theory to enable the relationship to be ex-
ressed independently of the slenderness, expressed by the radius to
hickness ratio. They have been designed to strike a balance between
ase of use and realism, and may be used to obtain a conservative but
easonably realistic estimate of the nonlinear resistance of an elastic
mperfect cantilever cylinder. The study forms part of a larger research
rogramme aiming to cover a wide range of classical shell systems and
haracterise their global behaviour within the framework of Reference
esistance Design [18,24,25] . Extension of the work to material nonlin-
arity is currently ongoing and will be presented at a later time. 
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