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a b s t r a c t

A systematic study of the hydrodynamicmechanisms governing the collision of a rising bubblewith a solid
wall in the creeping flow regime (Re < 1) is presented, using direct numerical simulation. The presented
results reveal self-similar aspects of the bubble–wall collision with respect to the capillary number, in
particular of the film between the bubble and the wall as well as of the deformation and shape of the
bubble. This similarity holds despite the extreme deformation of the bubble in some of the considered
cases and is shown to be independent of the approach velocity and the fluid properties, indicating that
the collision of a bubblewith a solidwall in the creeping flow regime is governed by the balance of viscous
stresses and surface tension, while the inertia of the bubble has a negligible influence. The timescale
associated with the drainage of the film separating the bubble surface and the wall is also related to the
viscocapillary balance, and is found to be independent of the size of the bubble. An empirical correlation
is proposed based on the presented results to a priori estimate the drainage time of this film. Because the
behaviour of a bubble during film drainage is quasi-stationary, the findings associated with film drainage
also apply to bubble–wall collisions outside the remit of the creeping flow regime (Re ≫ 1).

© 2018 The Author. Published by Elsevier Masson SAS. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The collision of bubbles with solid walls or particles plays an
important role in various natural phenomena and engineering
application, such as the formation of foams [1–3] (or similarly
emulsions), froth flotation [4] or the enhancement of convective
heat transfer [5,6]. In the past two decades a number of experi-
mental and numerical studies have unravelled some of the dom-
inating mechanisms and characterising parameters governing the
hydrodynamics of the collisions of bubbles with solid walls [6–16].
As a bubble approaches and collides with a wall, the kinetic energy
of the bubble has to be dissipated, a process which is dominated
by two hydrodynamic mechanisms [3,9]: (a) an increase in surface
energy due to deformation of the bubble, and (b) drainage of the
film separating the bubble surface and the wall.

If the kinetic energy of the bubble is sufficiently high, the
bubble bounces off the wall a number of times, indicating that
the energy transfer between surface energy and kinetic energy is
faster than the dissipation in the film between the bubble and the
wall [3,9,10]. The dissipation in this film becomes the dominant
hydrodynamic mechanism once the kinetic energy is sufficiently
low [1]. In experiments reported by Tsao andKoch [7], the collision
of a bubble with Re = 420 (the Reynolds number Re is formally
defined in Section 2) with a solid wall was found to be almost
fully elastic, with approximately 95% of the surface energy being
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transferred back into kinetic energy during the first bounce. Tsao
and Koch [7] further suggested that the dissipation of energy is
strongly influenced by a separation of the boundary layer from
the wall of impact when the bubble bounces off that wall as
well as by acoustic radiation due to high frequency oscillations
of the bubble. In fact, Krzan et al. [17] and Malysa et al. [8]
reported experimental measurements with bubbles oscillating at
a frequency of f > 1000 s−1 as the bubble moved away from the
wall after the first bounce. Numerical simulations by Albadawi et
al. [13] indicate that these oscillations are predominantly driven
by pressure fluctuations as a result of the rapid filling of the film
separating the bubble and thewall as the bubblemoves away from
the wall. Legendre et al. [18] and Zenit and Legendre [10] devised
a coefficient of restitution for bubbles bouncing off a wall using a
modified Stokes number, based on themass and addedmass of the
bubble during collision.

In cases where the kinetic energy of the bubble is too low,
the bubble is not bouncing off the wall [19] and the film drains
until rupture and the formation of triple phase contact. In special
cases, such as the collision of a bubble with a superhydrophilic
surface (i.e. contact angle of α → 0◦), the film can stabilise before
reaching its critical rupture thickness [12,13,15]. Rupture of this
film usually occurswhen the attractive forces due to van derWaals
interaction (typically described as a disjoining pressure) become
dominant, at a film thickness of h ≲ 10−7 m [11,20–23]. Ruck-
enstein and Sharma [24] highlighted the fact that surface waves
increase the drainage of the film for large film radii. Experimental
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results reported by Parkinson and Ralston [25] of an air bubble
rising in water with Re < 1 and colliding with a solid wall, for
which the deformation of the bubble is negligible even during wall
collision, showed the drainage time of the film to increase with
increasing bubble size as a result of the larger buoyancy force.
Even for cases with large bubble Reynolds number (Re ≫ 1),
the Reynolds number of the film is small, typically Ref ≪ 1.
The film drainage and its effect on the bubble has, hence, often
been studied using lubrication theory [11,14,16,26–30]. Zenit and
Legendre [10] proposed that the dominating mechanism for the
drainage of the film is the inertia of the fluid, with viscosity being
only important at very small film thickness. This stands somewhat
in contradiction to findings reported by Sanada et al. [1] that
showed a significant influence of viscosity on the film drainage
for the collision of bubbles with a free surface. Zawala et al. [3]
suggested that the radius of the film is the parameter dominating
the coalescence time, with a larger film radius resulting in a longer
time required for the film to drain. Similar conclusions have been
drawn in a number of other publications studying the collision of
a bubble with a solid wall [13,18], with a free surface [1] and with
another bubble [31].

Research efforts with respect to bubble–wall collisions have
so far focused predominantly on bubbles with moderate to high
Reynolds number (Re ≫ 1) and, in particular, on the dynamic
bouncing behaviour of bubbles colliding with solid walls and free
surfaces. Previous studies of the collision of bubbles with a solid
wall or a free surface in the creeping flow regime (Re < 1) have
typically assumed a negligible interface deformation [25,30,32],
which is a reasonable assumption for air bubbles in water [25,30]
and which simplifies the theoretical analysis. This assumption has
previously been utilised, for instance, by Parkinson and Ralston
[25] for bubble–wall collisions, Ascoli et al. [33] for the collision
of a drop with a rigid wall and by Abid and Chesters [32] for drop–
drop collisions. However, the collision of a bubble with a solid wall
in the creeping flow regime for two-phase systems that allow a
significant deformation of the bubble during collision, such as an
air bubble in glycerol, lubricant oil or molten glass as well as many
liquid–liquid flows, has not been considered to date. In such a case
the significant interface deformation (e.g. dimple formation) dur-
ing the collision of the bubble with a solid wall means the solution
is nonlinear [34] and, hence, complicates a theoretical analysis. For
oscillating drops, which hydrodynamically can be regarded as a
closely related problem, Becker et al. [35] observed that nonlinear
effects become important for an oscillation amplitude of > 10%.
Similarly, the dispersion and viscous attenuation of capillarywaves
becomes significantly affected by the wave amplitude if the initial
amplitude of the capillary wave is ≳ 5% of the wavelength [36].
Thus, the nonlinearity introduced by the interface deformation
cannot be neglected for an accurate determination and quantifica-
tion of the governing mechanisms of a bubble–wall collision when
the deformation of the bubble is significant, even in the creeping
flow regime.

In this article, a systematic numerical study of the collision of
a single gravity-driven bubble with a solid wall in the creeping
flow regime (Re < 1) is presented, based on direct numerical
simulations (DNS) that resolve all relevant length and time scales of
the entire two-phase system using a state-of-the-art finite volume
framework for interfacial flows [37,38]. The computational setup is
schematically shown in Fig. 1 and further discussed in Section 3.2.
The presented results reveal a self-similar temporal evolution of
the bubble–wall collision with respect to the capillary number Ca
(formally defined in Section 2), which compares viscous stresses to
surface tension, both for the film thickness separating the bubble
surface from the wall as well as the shape of the bubble. This self-
similarity is observed for all considered fluid properties, despite
the nonlinearity introduced by the considerable deformation of the

Fig. 1. Schematic two-dimensional illustration of a bubble colliding with a wall in
the considered three-dimensional domain (shown is a slice in the symmetry plane
with respect to the x and y coordinate axes), including relevant dimensions and
notations, with h being the thickness of the film between the bubble and the wall
and l being the distance between the centre of mass of the bubble and the wall.

fluid interface, and is shown to be independent of the approach ve-
locity of the bubble. Furthermore, the drainage of the film between
the bubble and the wall is also governed by the balance of viscous
stresses and surface tension, and a similar temporal evolution of
the film thickness with respect to the characteristic timescale of
the film drainage is observed for all considered cases. This allows
an a priori approximation of the time required for the film to drain
to its rupture thickness.

In Section 2 the parametrisation of the bubble and the bubble–
wall collision is devised. Subsequently, the applied numerical
methodology and the setup of the numerical experiments are
introduced in Section 3. The results are presented and analysed in
Section 4, and the findings of this study are summarised and the
article is concluded in Section 5.

2. Hydrodynamic parametrisation

The behaviour of bubbles is dominated by four physical mecha-
nisms: buoyancy, inertia, viscous stresses and surface tension. Each
of these four mechanisms can be quantified by their respective
pressure scales, namely the buoyancy pressure pb = g ∆ρ d0,
the dynamic pressure pdyn = ρc U2, the viscous pressure pµ =

µc U/d0, and the pressure due to surface tension pσ = σ/d0, where
ρ is the density,µ is the dynamic viscosity, σ is the surface tension
coefficient, subscript c denotes the continuous phase, subscript d
denotes the dispersed phase, ∆ρ = ρc − ρd, U is the charac-
teristic velocity and d0 is the initial diameter of the bubble. The
characteristic velocity U of a freely rising bubble is defined as the
terminal velocity of this bubble in an infinitely large domain under
the sole action of gravity. In the creeping flow regime (Re < 1)
the characteristic velocity U follows directly from the balance of
buoyancy and viscous stresses, given as [39]

U =
g ∆ρ d20
6µc Λ

, (1)

with g being the gravitational acceleration and Λ = (2+ 3λ)/(1+

λ), where λ = µd/µc is the viscosity ratio of the bulk phases.
The relative importance of the governing physical mechanisms

of interfacial flows is typically described by the Reynolds number

Re =
pdyn
pµ

=
ρc d0 U

µc
, (2)
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which compares inertia to viscous effects, the capillary number

Ca =
pµ

pσ

=
µc U
σ

(3)

which compares viscous forces and surface tension, and theWeber
number

We =
pdyn
pσ

=
ρc d0 U2

σ
(4)

which compares inertia and surface tension, withWe = ReCa. Cru-
cially, however, these three dimensionless groups neglect buoy-
ancy. Hence, the Eötvös number Eo and the Morton number Mo
are additionally used to parameterise the motion of bubbles. The
Eötvös number is defined as

Eo =
pb
pσ

=
g ∆ρ d20

σ
(5)

and compares the pressure scale of the bubble buoyancy to the
pressure due to surface tension. The Morton number, given as

Mo =
pb p4µ
p2dyn p3σ

=
g ∆ρ µ4

c

ρ2
c σ 3 , (6)

represents a ratio of the influencing fluid properties and, conve-
niently, is not dependent on the size or the velocity of the bubble.
As first demonstrated in the seminal work of Grace [40], the
motion of a buoyancy-driven, freely rising bubble can be fully pa-
rameterised using the Reynolds number Re, the Eötvös number Eo
and the Morton number Mo. Note that based on the characteristic
velocity defined in Eq. (1), the buoyancy pressure in the creeping
flow regime is pb = 6Λ pµ. Consequently, the Eötvös number in
the creeping flow regime also follows as

Eo = 6Λ
pµ

pσ

= 6Λ Ca. (7)

From the characteristic velocity U follows the characteristic
timescale (see e.g. [41])

tc =
r0
U

=
d0
2U

, (8)

where r0 = d0/2 is the initial radius of the bubble, and the
dimensionless time τ = t/tc. With respect to the drainage of the
film between the bubble and thewall, Chan et al. [27] proposed the
timescale

tf = d0

√
µc

σ U
= 2 tc

√
Ca, (9)

which suggests that the balance of viscous stresses and surface
tension is dominating the film drainage. A similar timescale for the
drainage of such a film was proposed by Klaseboer et al. [31].

3. Numerical methodology

DNS of the entire three-dimensional two-phase system, includ-
ing both bulk phases as well as the fluid interface, are conducted
by resolving all relevant length and time scales. The dynamic
behaviour of isothermal, Newtonian fluids in the incompressible
flow regime is governed by the momentum equations

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= −

∂p
∂xi

+
∂

∂xj

[
µ

(
∂ui

∂xj
+

∂uj

∂xi

)]
+ ρ gi + fσ,i

(10)

and the continuity equation
∂ui

∂xi
= 0, (11)

where x ≡ (x, y, z) denotes a Cartesian coordinate system, t
represents time, u is the velocity, p is the pressure, g is the gravity
vector and fσ is the force due to surface tension acting at the fluid
interface.

3.1. Numerical framework

The governing equations are solved numerically using a state-
of-the-art finite-volume framework with collocated variable ar-
rangement [37]. The momentum and continuity equations are
solved for the primitive variables in a single linear system of
equations, see Ref. [37] for details. The momentum equations,
Eq. (10), are discretised using a second-order backward Euler
scheme for the transient term, while the convection, diffusion and
pressure terms are discretised using a central differencing scheme.
The continuity equation, Eq. (11), is discretised using a balanced-
force implementation of the momentum-weighted interpolation
method, as proposed by Denner and van Wachem [37], which
couples pressure and velocity.

The Volume-of-Fluid (VOF) method [42] is adopted to capture
the interface between the immiscible fluids. The local volume
fraction of both phases in each mesh cell is represented by the
colour function γ , defined as γ = 0 in the continuous phase and
γ = 1 in the dispersed phase, with the interface located in mesh
cells with a colour function value of 0 < γ < 1. The local density
ρ and viscosity µ are defined as

ρ(x, t) = ρc [1 − γ (x, t)] + ρd γ (x, t) (12)

µ(x, t) = µc [1 − γ (x, t)] + µd γ (x, t), (13)

respectively. Based on the underlying flow with velocity u, the
colour function γ is advected by the linear advection equation
∂γ

∂t
+ ui

∂γ

∂xi
= 0, (14)

which is discretised using a compressive VOF method [38]. As-
suming the force due to surface tension can be represented as a
volume force acting in the interface region, the surface force per
unit volume is described by the CSF model [43] as fσ = σ κ ∇γ ,
where κ is the interface curvature.

Simulations conducted with this numerical framework for
the dynamic behaviour of bubbles [38,41], and interfacial
waves [36,44] have been shown to be in excellent agreement
with analytical solutions, experimental data and numerical results
reported in the relevant literature.

3.2. Setup of the numerical experiments

The collision of a single rising bubble with a solid wall is anal-
ysed using the DNS results of 18 different cases, the dimensionless
properties for which are given in Table 1. The considered cases
span awide range of capillary numbers, density ratios and viscosity
ratios for Re ≤ 0.933. For all presented results the reference
time t = 0 is defined as the time at which the film thickness is
h = d0/10.

The three-dimensional computational domain of size 6d0 ×

4d0 × 6d0, illustrated in Fig. 1, is represented by a Cartesian
mesh with 470,400 cells. The bubble with diameter d0 is initially
situated in the centre of the domain with respect to the x-axis
and the z-axis, at a distance 3d0 from the top wall, see Fig. 1. The
bubble motion is induced by buoyancy only, the surface tension
coefficient is assumed to be constant and mass transfer between
the bulk phases as well as molecular forces (e.g. van der Waals
forces) are neglected. At the top wall (i.e. the wall with which the
bubble collides) a no-penetration/no-slip boundary condition is
applied, and the computational mesh is gradually refined in the
vicinity of this wall, with the computational node closest to the
wall situated at a distance of 1.2 × 10−3d0 from the wall. The
computational mesh is gradually coarsened towards the bottom
and side walls, each of which is numerically treated as a free-slip
wall. The applied time-step ∆t corresponds to a Courant number
of Co = |u|∆t/∆x ≤ 0.18 and satisfies the capillary time-step
criterion [45].
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Table 1
Relevant dimensionless groups of the analysed bubbles colliding with a solid wall. A rising bubble is fully characterised
by Re, Eo, Mo and µd/µc [40]. The capillary number Ca and the density ratio ρd/ρc are given here to provide a better
overview of the considered parameter space.

Case Ca Re Eo Mo ρd/ρc µd/µc

A1 1 3.123 × 10−1 1.206 × 101 1.235 × 102 0.001 0.01
A2 0.5 1.106 × 10−1 6.033 × 100 1.235 × 102 0.001 0.01
A3 0.26 4.148 × 10−2 3.139 × 100 1.235 × 102 0.001 0.01

B1 20 5.084 × 10−2 2.412 × 102 3.732 × 107 0.99 0.01
B2 5 5.084 × 10−2 6.030 × 101 5.832 × 105 0.99 0.01
B3 1 5.084 × 10−2 1.206 × 101 4.665 × 103 0.99 0.01
B4 0.5 5.084 × 10−2 6.030 × 100 5.832 × 102 0.99 0.01
B5 0.2 5.084 × 10−2 2.412 × 100 3.732 × 101 0.99 0.01
B6 0.1 5.084 × 10−2 1.206 × 100 4.665 × 100 0.99 0.01

C1 20 3.704 × 10−1 2.457 × 102 7.164 × 105 0.1 0.05
C2 5 3.704 × 10−1 6.143 × 101 1.119 × 104 0.1 0.05
C3 2 3.704 × 10−1 2.457 × 101 7.164 × 102 0.1 0.05
C4 0.5 3.704 × 10−1 6.143 × 100 1.119 × 101 0.1 0.05
C5 0.2 3.704 × 10−1 2.457 × 100 7.164 × 10−1 0.1 0.05

D1 0.5 2.082 × 10−1 6.025 × 100 3.648 × 101 0.99 0.01
D2 0.5 2.603 × 10−2 6.025 × 100 2.220 × 103 0.99 0.01

E1 20 9.328 × 10−1 3.000 × 102 1.379 × 105 0.001 1.0
E2 0.2 9.328 × 10−1 3.000 × 100 1.379 × 10−1 0.001 1.0

4. Results

Fig. 2 shows the bubble of Case A2 (Ca = 0.5 and Re =

0.11) during its collision with the wall, along with contours of the
dimensionless flow velocity u/U in x-direction, for dimensionless
time τ ∈ {−2, 0, 5, 10}. After an initial deformation of the bubble,
a film starts to form between the bubble surface and the wall (see
Fig. 2b). Once the pressure in the film is sufficiently high, a char-
acteristic dimple forms at the top of the bubble (further discussed
in Section 4.2). As the bubble continues to approach the wall, the
drainage of this film becomes the dominant mechanism governing
the motion of the bubble, and the shape of the bubble does no
longer change noticeably. Hence, similar to the work of [3,9], two
distinct collision regimes can be identified: (a) the deformation
regime, where the deformation of the bubble dominates, and (b)
the drainage regime, in which the drainage of the film between
bubble and wall governs the bubble–wall collision. Note that the
drainage of the film is clearly visible in Fig. 2c and 2d by the velocity
directed tangential to the wall at the rim of the dimple. In Fig. 3a
considerably larger deformation is observed for the bubble with
Ca = 20 than for the bubble with Ca = 0.2, due to the dominance
of viscous pressure over capillary pressure in the former case. The
larger deformation of the bubble with higher Ca results in a thicker
film separating the bubble surface and the wall (as discussed in
Section 4.1) as well as in a larger radius of this film.

4.1. Bubble motion

Comparing bubbles with different fluid properties and different
initial diameter d0, a self-similar transient evolution (i.e. as a func-
tion of τ ) of the dimensionless film thickness ĥ = h/d0, shown
in Fig. 4, as well as the dimensionless distance between the wall
and the centre of mass of the bubble l̂ = l/d0, shown in Fig. 5,
is observed for bubbles with the same capillary number Ca. This
similarity is observed for all considered cases given in Table 1,
which includes cases in the parameter range Re = 0.026 − 0.933,
We = 5.084 × 10−3

− 18.656 and Mo = 0.138 − 3.732 × 107.
For instance, the capillary number of Cases D1 and D2 is Ca =

0.5 and both cases show a similar temporal evolution of ĥ and l̂,
despite a difference of factor 8 in Re and We, and factor 64 in Mo.
Furthermore, the similarity of the bubblemotion is independent of
the density and viscosity ratios, ranging fromρd/ρc = 0.001−0.99
and µd/µc = 0.01 − 1, respectively.

The collision of a bubble with a solid wall in the creeping flow
regime is, hence, governed by viscous stresses and surface tension,
whereas inertia aswell as theMorton numberMo have a negligible
influence. This is also indicated by the Eötvös number Eo, defined
in Eq. (5), which quantifies the ratio of buoyancy and surface
tension but reduces to a ratio of viscosity and surface tension in
the creeping flow regime, see Eq. (7). Furthermore, the observed
similarity confirms tc, Eq. (8), as the characteristic timescale of the
bubble–wall collision.

4.2. Bubble shape

The self-similarity of the temporal evolution of the film thick-
ness and the distance between the centre of mass of the bubble
and the wall, reported in the previous section, is also observed
for the shape of the bubble during the collision with a wall. For
instance, the cross-section of bubbles with Ca = 0.2 and Ca = 5
are shown in Figs. 6 and 7, respectively, at τ ∈ {0, 10, 20}. The
same bubble shape is observed for bubbles with the same capillary
number Ca. Thus, also considering the self-similarity discussed in
Section 4.1, bubbles with the same capillary number Ca exhibit the
same hydrodynamics irrespective of other parameters (e.g., den-
sity ratio ρd/ρc) of the two-fluid system. This is significant, for
instance, for the fluid selection in experimental studies, as it allows
to choose the properties of the bubble to attain a certain capillary
number (e.g. by manipulating the surface tension coefficient with
a surfactant) irrespective of other parameters.

With respect to the formation of the characteristic dimple,
previous studies [14,27–29] assumed that the dimple forms when
the film pressure is larger than the pressure in the bubble. Fig. 8
shows the bubble of Case A2 along with the contours of the hy-
drodynamic pressure ph = p − ps, where ps is the hydrostatic
pressure due to gravity, in an axisymmetric plane cutting through
the centre of the bubble at the timewhen the dimple forms. Dimple
formation is marked by a change in sign of the interface curvature
κtop at the top-side (i.e. facing the top wall) of the bubble surface.
The hydrodynamic pressure in the film between the bubble and
the wall is largest along the centreline of the bubble, see Fig. 8,
and is increasing as the bubble approaches the wall. The pressure
contours suggest that the dimple forms when the pressure in the
film becomes larger than the pressure inside the bubble at the top
surface of the bubble, confirming the findings and assumptions of
previous studies for bubbles at Re > 1 [14,27–29]. As observed
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(a) τ = −2. (b) τ = 0.

(c) τ = 5. (d) τ = 10.

Fig. 2. Bubble shape and contours of the dimensionless flow velocity u/U in x-direction in the x-y plane through the centre of the bubble for Case A2 (Ca = 0.5, Re = 0.11)
at different time instants τ . Note that not the entire computational domain is shown.

Fig. 3. Cross section of bubbles with Ca = 0.2 and Ca = 20 at dimensionless time
τ = 0.

in Fig. 9, the dimensionless film thickness ĥp at which the dimple
forms can be approximated for Ca ≤ 1 as

ĥp =
hp

d0
≈ 0.1 Ca1/2, (15)

whereas for Ca > 1 the function

ĥp ≈ 0.19 − 0.09 Ca−1/2 (16)

provides a good estimate.

4.3. Approach velocity

Previous studies (e.g. [3,10]) of bubble–wall and bubble-
interface collisions with Re ≫ 1 have reported a significant
influence of the approach velocity of the bubble on the temporal
evolution of the collision. Fig. 10 shows the dimensionless rise
velocity of the bubble ûr = ur/U (Fig. 10a) and the dimensionless
film thickness ĥ (Fig. 10b) as a function of dimensionless time τ

of two bubbles with Ca = 1. As a result of the different fluid
properties of the two considered cases, the bubble in Case A1 (pb =

96.89 Pa) accelerates considerably faster and, hence, approaches
the wall with a higher dimensionless velocity than Case B3 (pb =

49.05 Pa). Despite the clearly different velocity with which the
bubbles approach the wall, the rise velocity ûr as well as the film
thickness ĥ for both bubbles converge at τ ≈ 0 and the subsequent
hydrodynamics of the bubble as well as the film drainage are
identical in both cases.

In the creeping flow regime the bubble–wall collision is, thus,
independent of the approach velocity of the bubble and, conse-
quently, also at which initial distance to the wall the bubble is
released. This corresponds well with the role of inertia in the
creeping flow regime (i.e. being essentially negligible) but stands in
contrast to the significant influence of inertia for Re ≫ 1 reported
by Zenit and Legendre [10] and Zawala et al. [3]. The results also
suggest that the characteristic velocity, Eq. (1), can be regarded as a
measure of buoyancy acting on the bubble, irrespective of whether
or not the bubble is actually reaching its terminal velocity.

4.4. Film drainage

Fig. 11 shows the dimensionless minimum film thickness ĥ as a
function of dimensionless time τf = t/tf, where tf is the timescale
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(a) Ca = 0.2. (b) Ca = 0.5.

(c) Ca = 5. (d) Ca = 20.

Fig. 4. Temporal evolution of the dimensionless film thickness ĥ = h/d0 with respect to the dimensionless time τ = t/tc for cases with different capillary number Ca.

(a) Ca = 0.2. (b) Ca = 0.5.

(c) Ca = 5. (d) Ca = 20.

Fig. 5. Temporal evolution of the dimensionless distance between the centre of mass of the bubble and the wall l̂ = l/d0 with respect to the dimensionless time τ = t/tc
for cases with different capillary number Ca.
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(a) τ = 0. (b) τ = 10.

(c) τ = 20.

Fig. 6. Cross section of bubbles with Ca = 0.2 at different instants of dimensionless time τ = t/tc .

(a) τ = 0. (b) τ = 10.

(c) τ = 20.

Fig. 7. Cross section of bubbles with Ca = 5 at different instants of dimensionless time τ = t/tc .
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(a) κtop = 0.047 d−1
0 . (b) κtop = −0.056 d−1

0 .

Fig. 8. Contours of the hydrodynamic pressure ph in the x-y plane through the centre of the bubble of Case A2 (Ca = 0.5, Re = 0.11) for time instants just before and after
the formation of the dimple (where κtop = 0). Note that the plane is tilted to better visualise the pressure field and that not entire computational domain is shown.

Fig. 9. Dimensionless film thickness ĥ = h/d0 at which the formation of the dimple
is observed (i.e. κtop = 0) for all considered cases. Note that also the results of
additional cases are shown here which are not explicitly mentioned in Table 1 or
discussed in any of the previous sections.

of the filmdrainage proposed by Chan et al. [27], given in Eq. (9). All
considered cases follow the same trend and the temporal evolution
of the film thickness can be approximated as

ĥ ≈ A τ
−1/2
f + B τf, (17)

with A = 6 × 10−2 and B = −5 × 10−6 for the presented
results. Thus, the timescale tf provides a reference timescale of
the drainage time for the purpose of comparing the influence of
different fluid properties and bubble sizes. Inserting the equations
for the capillary number Ca, see Eq. (3), and the characteristic
velocity U , see Eq. (1), the timescale of the film drainage given by

Fig. 11. Temporal evolution of the dimensionless film thickness ĥ = h/d0 with
respect to the dimensionless drainage time τf = t/tf for cases with different
capillary number Ca, along with the function given in Eq. (17). The shaded region
for ĥ ≤ 0.006 illustrates the film thickness for which the simulation results become
unreliable, due to the available mesh resolution.

Eq. (9) becomes

tf = µc

√
6Λ

σ g ∆ρ
. (18)

Thus, the timescale of the film drainage is independent of the size
of the bubble and is only dependent on the fluid properties.

As seen in Fig. 3, the increase in Ca for a larger bubble results
in a larger deformation of the bubble and a thicker film, which
increases viscous dissipation in the film and leads to a longer
drainage time. However, the large size of the bubble also leads to
a larger buoyancy force, which causes an increase of the drainage

(a) Rise velocity ûr . (b) Film thickness ĥ.

Fig. 10. Temporal evolution of the dimensionless rise velocity of the bubble ûr = ur/U and the dimensionless film thickness ĥ = h/d0 with respect to the dimensionless
time τ = t/tc for cases with capillary number Ca = 1.
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rate of the film. Thus, the larger film radius and the increase in
buoyancy force are balancing each other and eliminate the influ-
ence of the size of the bubble on the drainage of the film for a
given set of fluid properties. This stands in contrast to bubble–
wall collisions in the creeping flow regime when the bubble de-
formation is negligible, such as the bubble–wall collision of an
air bubble in water in the creeping flow regime. Parkinson and
Ralston [25] reported experimental results of an air bubble rising
in water with Re < 1, where during the collision of that bubble
with a solidwall the drainage time of the filmwas found to increase
with increasing bubble size due to the increase in buoyancy force.
Hence, the deformation of the bubble during the collision has a
strong influence on the film drainage.

Since the bubble is moving at a significantly reduced speed
once it has transitioned into the drainage regime, it is expected
(althoughnot explicitly studied here) that the approximation given
in Eq. (17) also holds and the timescale of the film drainage is also
independent of the bubble size even for bubbles with Re > 1,
despite Eq. (3) for the characteristic velocity being strictly speaking
only valid in the creeping flow regime (Re < 1).

5. Conclusions

A systematic study of the collision of a gravity-driven bubble
with a horizontal wall in the creeping flow regime (Re < 1)
has been conducted. The analysis of the presented results for
bubbles spanning a wide range of relevant parameters unveils a
self-similarity with respect to the capillary number of the bubble
shape as well as the film thickness between the bubble and the
wall. This self-similarity has been shown to be independent of the
fluid properties of the two-phase system as well as independent
of the (terminal) Reynolds number or approach velocity of the
bubble. Interestingly, given the observed behaviour and similarity
is unaltered in the wide range of considered Morton numbers
(Mo = 10−1–107), suggests that the Morton number, one of the
dimensionless groups used to parameterise the buoyancy-driven
rise of a bubble [40], is irrelevant for the characterisation of the
bubble–wall collision.

When the pressure in the film between the bubble surface and
the wall becomes higher than the pressure inside the bubble, a
characteristic dimple forms at the top of the bubble. This is in
agreement with findings reported in previous studies related to
bubbles with Re ≫ 1. The film thickness at which this dimple
forms was found to be a function of the capillary number, as
dictated by the reported self-similarity of the bubble shape and the
film thickness.With regards to the drainage of the film, the dimen-
sionless film thickness was shown to correlate with the timescale
of the film drainage for the considered cases. Interestingly, this
timescale is independent of the size of the bubble and is only de-
pendent on the fluid properties. A correlation for the dimensionless
film thickness as a function of the timescale of the film drainage
has been proposed based on the simulation results, that allows an
a priori estimation of the drainage time of the bubble–wall collision
for a given two-phase system. Crucially, since theReynolds number
of the film drainage is typically Ref < 1 even for bubbles with
Re ≫ 1, the findings associated with the film drainage are also
expected to apply to bubbles outside the remit of the creeping flow
regime.

In summary, all studied aspects of the hydrodynamics of the
wall collision of a deformable bubble in the creeping flow regime
are correlated with the capillary number, revealing a dominant
influence of the viscocapillary balance on the bubble–wall colli-
sion. Inertia has a negligible influence on the bubble–wall collision,
which fits well into the general characteristics of the creeping
flow regime. The presented results extend the findings of Abid
and Chesters [32], who previously reported a similarity associated

with the capillary number for drop–drop collisions in the limit of
small interface deformation as well as assuming a plug velocity
profile in the film separating both drops and neglecting the effect
of the film drainage on the pressure field. It can, therefore, be
concluded that the nonlinearity introduced by the considerable
deformation of the fluid interface as well as the local velocity field
and pressure distribution have no discernible influence on the
scaling and similarity of the bubble–wall collision in the creeping
flow regime. The presented findings confirm that foams can form in
pure (uncontaminated) fluids, as previously observed experimen-
tally [1,46], contrary to the widely proclaimed notion that pure
liquids cannot foam [2]; in fact, whether a foam forms depends
on the observed timescale. In practice, this is particularly relevant
for very viscous fluids, such as lubricant oil or molten glass, for
which the bubble Reynolds numbers are small for a wide range
of bubble sizes and for which the film drainage occurs over a
practically significant timespan. To this end, the presented results,
and particularly the proposed correlation for the film drainage, can
be used to distinguish viscous drainage that occurs regardless of
the surface-active contamination of the interface.
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