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The application of the Factorization Method to the
subsurface imaging of surface-breaking cracks

Chao Zhang, Peter Huthwaite, and Michael Lowe

Abstract—A common location for cracks to appear is at
the surface of a component; at the near surface, many non-
destructive evaluation (NDE) techniques are available to inspect
for these, but at the far surface this is much more challenging.
Ultrasonic imaging is proposed to enable far surface defect
detection, location and characterisation. One specific challenge
here is the presence of a strong reflection from the backwall,
which can often mask the relatively small response from a defect.
In this paper, the Factorization Method (FM) is explored for
the application of subsurface imaging of the surface-breaking
cracks. In this application, the component has two parallel
surfaces, the crack is initiated from the far side and the phased
array is attached on the near side. Ideally, the pure scattered
field from a defect is needed for the correct estimation of the
scatterer through the FM algorithm. However, the presence of
the backwall will introduce a strong specular reflection into the
measured data which should be removed before applying the FM
algorithm. A novel subtraction method was developed to remove
the backwall reflection. The performance of the FM algorithm
and this subtraction method were tested with the simulated
and experimental data. The experimental results showed a good
consistency with the simulated results. It is shown that the FM
algorithm can generate high quality images to provide a good
detection of the crack and an accurate sizing of the crack length.
The subtraction method was able to provide a good backwall
reflection removal in the case of small cracks (1-3 wavelengths).

Index Terms—Factorization Method, Crack sizing, Phased
array imaging, Backwall Subtraction.

I. INTRODUCTION

DRIVEN by safety and economic interests, industry sec-
tors including nuclear power generation and aerospace

are seeking more accurate technologies for sizing surface-
breaking cracks. This is because the length of the crack is the
main input in fracture mechanics to calculate the remaining
safe life of a component. With a more accurate sizing of the
crack, the industries can obtain more accurate life estimates
for a component, which can help them to achieve a more
cost-efficient schedule for replacing structural components.
Generally, the crucial parts which need accurate NDE to size
the depth of the crack include nozzles, piping components and
vessel welds [1]. These components will have liquid or gas
with high temperature and pressure inside during operation.
As a result, if surface breaking cracks exist at the internal
surface, it is normally only possible to attach the transducers
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to the remote side to conduct subsurface detection and sizing
of the surface breaking cracks.

Among established NDE techniques, there are only two
practical modalities for this challenge in subsurface NDE
inspections, ultrasonic and radiography [2]. Radiography is
a NDE technique based on measuring x-ray radiation having
been transmitted through a component, effectively recording
the cumulative attenuation experienced along each ray path.
This can provide an indication of any subsurface defects.
Because of the principle of this technique, any defect must
be well aligned with the ray paths for maximum detectability,
thus a thin crack with unfavourable orientation will be hard
to be detected through radiography [3]. Another big issue of
radiography is the use of ionising radiation, which is harmful
to humans in even small doses. For the purposes of safety, a
large exclusion zone must be cordoned off around the inspec-
tion location to prevent any significant human exposure [4].
Compared to radiography, ultrasonic testing is more suitable
for routine detection of near backwall surface-breaking cracks
as it is safer and much easier to be implemented [5]. A
direct idea of sizing the surface-breaking crack in ultrasonic
testing is to measure the flight time of the diffracted echoes
and calculate the crack depth with the knowledge of the
geometry of the component, this has led to the development
of the Impulse-Echo-Technique (IET) and the Time of Flight
Diffraction Technique (TOFD). Shiuh-Chuan Her et al. [6],
[7] applied the IET to conduct the through-wall detection of
the surface-breaking cracks, while Baby et al. [8] evaluated
the depth of the surface-breaking crack on the far surface
using the TOFD. The results of their work showed that these
methods can achieve a good accuracy for a crack larger than
one wavelength but have a poor performance for the cracks
smaller than one wavelength [6], [8].

Ultrasonic phased array imaging is an alternative for the
reliable sizing of the near backwall surface-breaking cracks
[9]. The approach is as follows. Firstly, the Full Matrix Capture
(FMC) is acquired; in this, each transducer transmits a signal
in turn, which is then measured by all of the transducers
in the array. Ultimately this produces a set of signals for
all send-receive combinations in the array, giving a complete
data set of the scattering problem. From this data set, it is
possible to perform a number of different imaging algorithms
to generate an image of the area under inspection as a post-
processing stage. The Total Focusing Method (TFM) is one
of the most widely used post processing methods and it is
implemented by focusing a sound beam to each point in the
region of interest and assessing the reflections from these
points [10]. As the standard TFM only considers the direct ray
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path of the ultrasound, it is not developed for near backwall
defects where there is additional complexity from the wave
reflecting from the backwall. In response, Felice et al. [11]
developed the Half-Skip Total Focusing Method (HSTFM) to
measure the depth of the surface-breaking crack which is near
the backwall. The results showed that the HSTFM has the
ability to size a 1.5 wavelength surface-breaking crack that
is impossible to be measured through the conventional TFM,
however, the HSTFM still had a poor accuracy for the cracks
smaller than 1.5 wavelength [12]. As the TFM and the HSTFM
is based on the weak scattering approximation (e.g., the Born
approximation), there is a resolution limit called the Rayleigh
limit (0.5 wavelength) that will limit the application of these
methods in high resolution imaging [13].

Qualitative inverse scattering methods, which were de-
veloped recently, are also post-processing techniques which
can be used for ultrasonic phased array imaging [13]. The
approach is a non-iterative method for obstacle reconstruction
with the knowledge of the measured data of the far/near
scattered field. The qualitative methods do not resort to the
weak scattering approximation (i.e. Born approximation) and
are established to reconstruct the shape of the inhomogeneities
inside the material rather than the quantitative values of the ob-
ject function. The recent development in the qualitative method
has led to the establishment of the Factorization Method (FM)
by Kirsch [14]. Since being established, the FM has attracted
much research consideration and has already been successfully
applied to different inverse scattering problems [15], [16], [17].
Recently, the application of the FM in ultrasonic testing to
achieve super resolution imaging (i.e. beyond the Rayleigh
limit) has become a focus. For example, Simonetti [18] has
proved that the Linear Sampling Method (LSM) and FM
can achieve a super resolution imaging and the feasibility
of the super resolution was validated through a limited view
experiment performed on a metallic plate. A similar result
was obtained by Hutt [19] that the FM is able to achieve
a resolution better than the Rayleigh limit in the application
of ultrasonic phased array imaging. Because of the attractive
potential of the FM in defect detection and shape construction,
we have attempted to use the FM in the problem of the
subsurface imaging of surface-breaking cracks. As mentioned
before, only one side (near side) is accessible in the situation of
subsurface imaging and the back wall of the component can be
regarded as a strong reflector that would bring strong specular
reflection. A practical consideration of applying the FM for
subsurface imaging is that the FM ideally requires the data
of the scattered field purely from the defect itself, rather than
the total field (i.e. including the backwall), but the measured
field of a phased array is always the total field. As the scattered
signal is weak compared to the incident wave and the specular
reflection, the imaging result will be strongly influenced by the
incident wave and specular reflection. As a result, in order to
ensure an accurate image of the scatterer, we must extract the
scattered field from the recorded signal. To solve this problem,
we have proposed a method that extracts the scattered field
from the measured data captured on a component contained
the defect. In some cases [12] the removal of the specular
component is achieved by angling the incoming beam such that

the specular reflection does not return to the array. The issue
is that this generally requires the use of wedges, restricts the
illumination angle and makes longer path lengths, increasing
attenuation, and therefore this approach is not pursued in this
paper.

The remainder of the paper is organised as follows. Firstly,
we introduce the formulation of the inverse scattering problem,
briefly review the FM, and introduce the classical implemen-
tation of the FM in section 2. In section 3, the subtraction
method which removes the incident wave and specular re-
flection is introduced in detail. Then, the results based on
the simulated data are shown and the effectiveness of the
FM is discussed in section 4. In section 5, experimental
data were captured through the FMC and processed by the
subtraction method which is described in section 3 to extract
the scattered field, then, the results based on the TFM and FM
are compared. Finally, we provide the conclusions in section
6.

II. BACKGROUND THEORY

A. Direct scattering

The direct scattering problem is that of calculating the scat-
tered field when an incident field interacts with the scatterers,
according to the physical properties of scatterers and physical
model. The formulation is here based on [20] and considers
the acoustic equations in 2D. In the frequency domain, the
propagation of a time harmonic acoustic wave with a wave
number k > 0 is governed by the Helmholtz equation

∆u+ k2u = 0, (1)

where u is the scalar field potential. We define an object
function in R2 as

O(r) = [(
c0
c(r)

)2 − 1], (2)

where c(r) is the sound speed at a point r and c0 is sound
speed in the background. We define D̄ ⊂ R2 as the support
of the object function, and D̄ has a smooth boundary ∂D. We
consider a planar incident wave with an incident direction r̂0

ui = eikr̂0·r, (3)

where r̂0 = r0

|r0| . This denotes a planar wave field at point
r due to an illumination from the direction r0. Taking the
object function into account, we derive the solution of this 2D
scattering problem

(∆ + k2)u(r) = −Ou(r), (4)
u = eikr̂0·r + us, (5)

where us represents the scattered field. For the scattered field,
the Sommerfeld radiation condition should be satisfied to
ensure all energy is radiated outwards towards infinity

lim
r→∞

√
r(
∂us
∂r
− ikus) = 0 for r = |r|. (6)

Also, the Sommerfeld radiation condition must be understood
to hold uniformly in all directions. It has been proven in [21]
that solving the Eqs. (4)-(5) is a well-posed problem. As a
result of the Sommerfeld radiation condition, for large |r|,
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the scattered field us can be asymptotically formed in the
expansion

us(r) =
eikr√
r
u∞(r̂) +O(r−

3
2 ), (7)

where r̂ is the observation direction and u∞(r̂) is the far-field
pattern of the scattered field. It has already been proven [22]
that solving Eqs. (2-6) is equivalent to solving the Lippmann-
Schwinger integral equation

u(r, r̂0) = eikr̂0·r − k2

∫
D

O(r′)u(r′, r̂0)G(r, r′)dr′. (8)

The G(r, r′) in Eq. (8) is the free space Green’s function
which is used to describe how a wave field propagates from
an excitation point r to an observation point r′. In 2D, the
G(r, r′) is given by:

G(r, r′) = − i
4
H0

(1)(k|r − r′|), (9)

where |r− r′| is the distance between the measurement point
and the excitation point and H0

(1) is a zero order Hankel
function of the first kind. As |r − r′| → ∞, the G(r, r′) has
the asymptotic form in 2D

G∞ = −e
i(π4 +kr)

√
8πkr

e−ikr·r
′
. (10)

Eq. (8) indicates the dependence of the total field on the
incident field and its own value within D. The integration of
the total field in Eq. (8) makes the forward scattering problem
to be non-linear. For the far field (r → ∞), Eq. (8) can be
written as

u(r, r̂0) = eikr̂0·r + Πf(r̂, r̂0)
eikr√
r
, (11)

where

Π =
k2e

iπ
4

√
8πk0

, (12)

f(r̂, r̂0) =

∫
D

O(r′)u(r′, r̂0)e−ikr̂·r
′
dr′. (13)

The term f(k0r̂, k0r̂0) refers to the scattering amplitude in
some of the literature [13]. Eqs (5), (7), (8-10) leads to

us(r̂) = −k2

∫
D

O(r′)u(r′, r̂0)G(r̂, r′)dr′, (14)

u∞(r̂) = −k2 eiπ/4√
8πk0

∫
D

O(r′)u(r′, r̂0)e−ikr̂·r
′
dr′. (15)

Eq. (14) implies that the ideal imaging of the scatterers
needs the knowledge of the pure scattered field from the
scatterers, rather than the total field. In the case of subsurface
imaging of the surface-breaking cracks, effectively we want
the scattered component from the defect, but not from the
backwall, however, in real inspections, it is the total field,
which contains the scattered components from the defect and
from the backwall, that will be recorded by the phased array.
In response, we proposed a method to extract the scattered
field from the total field in section 3 for the phased array
subsurface imaging.

B. Inverse scatering

1) The Born approximation: The Born approximation is
a linear scattering approximation which aims to simplify the
scattering problem and make non-iterative imaging possible. It
can be used directly for Diffraction Tomography (DT), and is
also implied in other algorithms, such as the TFM. The Born
approximation is valid when the medium is weakly scattering,
i.e. the size of the object is comparable to the wavelength and
the contrast between the background and the inhomogeneities
is small. Using the Born approximation is fast and robust for
imaging problems, this is because it allows a direct mapping
from the scattering amplitude to the spatial Fourier transform
of the object function:

f(r̂, r̂0) ∝ O(k(r̂0 − r̂)). (16)

The right hand side term of Eq. (16) is also called the K space,
and the definition of it is given by

O(R) = F [O](r), (17)

where F means the Fourier transform and R is the spatial
frequency. It can be seen from Eq. (16) that by varying r and
r̂0 around all the possible angles, the value of every spatial
frequency in the Ewald disk [13] can be measured. However,
the spatial frequency outside the circle (greater than 2k) can
not be measured; thus, the highest resolution that the imaging
methods based on the Born approximation can achieve is λ

2 .
2) Factorization Method: The Factorization Method is a

recent algorithm for the reconstruction of a scatterer [23],
[24], [25]. It is developed as an alternative to the Linear
Sampling Method. Although a comprehensive overview of the
Linear Sampling Method is beyond the scope of this article,
a brief introduction of LSM is helpful to understand the FM
(Factorization Method). To start the derivation of the LSM,
we shall first introduce an incident field vg , which is defined
as

vg(r) =

∫
S2
eikr·r̂0g(r̂0)ds(r̂0), (18)

where g is called the Herglotz density, physically correspond-
ing to the amplitude of plane waves in each direction r0 which
are superposed to form the incident field, and vg is also called
the Herglotz wavefunction. Here, S2 denotes the unit sphere
in R3. The Eq. (18) also leads to the definition of the Herglotz
operator H : L2(S2)→ L2(∂D), given by

(Hg)(r) =

∫
S2
eikr·r̂0g(r̂0)ds(r̂0). (19)

Then, an operator F : L2(S2)→ L2(S2) based on the far-field
pattern u∞ is denoted by

(Fg)(r̂) =

∫
S2
u∞(r̂, r̂0)g(r̂0)ds(r̂0). (20)

where r̂ = r
|r| . Here, u∞(r̂, r̂0) is the far-field pattern of

the scattered field for incident plane waves from all possible
directions r̂0 and observed at all the possible directions r̂. The
left hand term, Fg, is actually equivalent to the far-field pattern
of the scattered field created by the incident field vg defined
in Eq. (18). This compact operator F is of great importance
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as it forms the basis of the LSM and the FM. For a sampling
point at z ∈ Ω, the far-field operator is defined as

Fgz = Φ∞(r̂, z, k), (21)

where Φ∞ is the far-field pattern of the Green’s function,
namely

Φ∞(r̂, z, k) =
1

4π
e−ikr̂·z. (22)

It has been proven (see [26]) that

z ∈ D ⇐⇒ Φ∞(·, z, k) ∈ R(F ), (23)

where R(F ) denotes the range of the operator F . With these
premises, according to [21], the theorem that is usually given
to describe the approximate solution of the Eq. (21) is as
follows.
• if z ∈ D, then for every ε > 0, there exists a solution gεz

that
||Fgεz(·)− Φ∞(·, z, k)||L2(Ω) < ε; (24)

and

lim
z→∂D

||gεz||L2(Ω) =∞, (25)

lim
z→∂D

||vgεz ||H1(D) =∞, (26)

where vgεz is the Herglotz wavefunction with density gεz .
• if z ∈ R2\D̄, then for every ε > 0 and δ > 0, there exists

a solution gεz that

||Fgε,δz (·)− Φ∞(·, z, k)||L2(Ω) < ε+ δ; (27)

and

lim
δ→0
||gε,δz ||L2(Ω) =∞, (28)

lim
δ→0
||vgε,δz ||H1(D) =∞, (29)

where vgε,δz is the Herglotz wavefunction with density
gε,δz .

After obtaining the above results, it is clear that the be-
haviour of the ||gz||L2(Ω) can be used to reconstruct the
support of the object D. The common method is to solve
the far-field equation Fgz = Φ∞(r̂, z, k) by applying a
proper regularized technique at first, and then, using I(z) =
1/||gz||L2(Ω) as an indicator function to reconstruct the support
of the object D.

The Linear Sampling Method offers a non-iterative method
for fast and accurate reconstruction of the shape of an ob-
stacle. One significant challenge with the LSM is that the
regularized results of the far-field equation does not converge
when the noise in the data approaches zero. The motivation
of the introduction of the Factorization Method by Kirsch
is to modify the far-field equation to avoid the convergence
problem. According to [14], a factorization of the Operator F
can be derived in the form

F = H∗SH, (30)

where H is the the Herglotz operator, H∗ is the adjoint
operator of H and S : L2(∂D) → L2(∂D) is the interaction

operator that transforms the incident field inside the object
into a source distribution that characterizes the perturbation
to the incident field. This factorization is the basis of the
Factorization Method and is responsible for its name. Based
on this factorization, it has been proven in [26] that instead
of interrogating the range of F , a higher quality image can be
formed by interrogating the range of H . In particular, Kirsh
[27] has demonstrated that the range of H coincides with the
range of (F ∗F )

1
4 . Therefore, the FM replaces the far-field

operator F in the Eq. (21) by the operator (F ∗F )
1
4 , and then,

the far-field equation becomes

(F ∗F )
1
4 g = Φ∞. (31)

It can be shown that the Eq. (31) has a solution if and only if
z ∈ D, see Kirsch et al [14] for a detailed derivation. Further,
z ∈ R2 belongs to D if and only if

∞∑
i=1

1

|σi|
|〈Φ∞(r̂, z), ψi〉L2 |2 <∞, (32)

where {σi, ψi, ψ̂i}∞1 is the singular system of F . Eq. (32) is
also called the Picard’s criterion. By utilizing the behaviour of
the Picard’s criterion, an indicator function can be yielded as

FM(z) =
1

∞∑
i=1

1

|σi|
|〈Φ∞(r̂, z), ψi〉L2 |2

. (33)

As a result, if a point z belongs to D, the value of Eq. (33) will
be non-zero but will be zero otherwise [14]. After applying
the indicator function through the whole grid of the target
region, a scalar image can be reconstructed and the object is
represented by non-zero points.

In this paper, the FM is implemented in the frequency
domain, and the spectral data F (w) of the far-field operator,
which is also called the multistatic response matrix, is used
for the calculation of the FM. The multistatic response matrix
F (w) is actually built from the recorded FMC data using
fast Fourier transforms (FFTs) at the angular frequency, w
[26]. By assuming a linear array containing N elements, the
calculation process of the multistatic response matrix in this
paper is as follows: Firstly, after the acquisition of the FMC
data, an N ×N matrix is provided, whose (m,n)th element is
actually the recorded time-domain signal from mth transmitter
to nth receiver, where 1 6 m 6 N and 1 6 n 6 N ; then,
the FFT of each element in this N ×N matrix is calculated;
after that, the complex value of the FFT result at frequency
w of (m,n)th element is used as the (m,n)th entry of the
F (w). For other time domain implementations of the related
sampling methods the reader is referred to [28], [29], [30],
[25] for details.

III. ELIMINATING THE INCIDENT WAVE AND THE
BACKWALL REFLECTION

A. Imaging for surface-breaking cracks

In this article, we focus on the problem of subsurface
imaging of the surface-breaking cracks. Consider a sample
which has two flat parallel surfaces, a thickness of h and a
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h
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d
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Fig. 1. Schematic showing the inspection of a sample containing a surface-
breaking crack.

surface-breaking crack located at the lower surface, as shown
in Fig. 1. The array is attached to the remote side to perform
the subsurface imaging. The direction that the crack grows out
is demonstrated as θtilt with the vertical. The depth d of the
crack is the vertical distance between the crack tip and the
backwall. The line joining the centre of the array to the point
where the crack connects to the backwall makes an angle of
θtest with the vertical. Thus, the horizontal distance between
the point that the crack initiates and the centre of the array
can be calculated by h ∗ tan θtest.
Actually, the angle θtest not only relates to the relative
position between the crack and the array, but also to the
available viewing aperture. Ideally, the Factorization Method
needs the measured data of the scattered field of all possible
directions of excitation and all possible data of observation, i.e.
measurements from a circular array completely surrounding
the scatterer. In the case of limited view, according to the
work done by T. D. Hutt, a small reduction in the aperture
will dramatically degrade the image reconstructed by the FM
[31]. As a result, the first priority for the application of
the FM imaging in the case of subsurface imaging is to
make the the available viewing aperture as big as possible.
In the configuration shown in Fig. 1, the biggest aperture is
achieved by setting θtest to zero. This also has the advan-
tage of minimising the propagation path length, and hence
improving signal strength. However, this brings another big
problem for imaging. The backwall of the object can be
regarded as a strong reflector that would bring a strong
specular reflection. Conventionally, this problem is solved by
detecting the crack at an oblique incident angle (for example
θtest = 45◦), the resulting measured signals will only contain
the tip diffraction and the echoes from the root corner since the
specular backwall reflection will not be measured by the array
[12]. However, with longer propagation distance there will
be greater attenuation, reducing signal-to-noise, and similarly
coherent noise from grain scattering will also be worse for
longer path lengths. The (often necessary) introduction of
wedges introduces complexities of its own. In order to ensure
the biggest aperture and also improve the signal strength, the
zero incident angle (θtest = 0◦) is chosen, that means the
strong specular reflection will be recorded together with the
scattered signals during recording. When a small crack is being
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Fig. 2. (a) TFM and (b) FM images obtained using simulated array data
for the configuration in Fig. 1 when h=60mm, d=6mm, θtest = 0◦ and
θtilt = 0◦.

detected at θtest = 0◦, as the scattered waves from the crack
are much weaker than the backwall reflection, the indication of
the crack will be totally masked by the strong indications of the
backwall and artefacts introduced by the backwall reflection
(Fig. 2a and Fig. 2b).
As a result, when detecting at θtest = 0◦, in order to ensure
a good imaging result which contains clear indications of the
crack, the backwall reflection should be removed from the
recorded signal before imaging.

B. Removing backwall reflection from the measured data

One possible way of the extracting the scattered field is
by measuring the total field of a defect-free copy of the
component which contains the defect; this method is referred
to as baseline subtraction in this paper. However, this method
is not practical in real inspection as it is not possible to
achieve a defect-free copy of the component. Another com-
monly used method is gating, that is to calculate the arrival
time of the backwall reflection and set the corresponding
sections of the measured signals to zero at these locations.
Due to the complexity of the elasticity and the geometry,
the arrival time is actually hard to accurately calculate in
practical applications and an accurate calculation still needs
a defect-free component to calibrate. The main disadvantage
of a simple gating is that scattered signals which overlap with
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the backwall reflection will be lost. In the subsurface imaging
of the surface-breaking cracks, the amplitude of the backwall
reflection is much larger than the scattered signal and the
signals commonly overlap with each other, as shown in Fig.
3. As many imaging algorithms (e.g. FM) are sensitive to the
entirety of the scattered field, the loss of the information will
strongly influence the image result and will typically introduce
artefacts or shadows. Thus, gating is not the best solution for
the removal of backwall reflection here.
For an array with N elements, after the acquisition of FMC,
the recorded data contains N ×N time traces. We denote the
measured data with the ith element used as transmitter and
the jth element used as receiver by I(i, j), where i = 1 · · ·N
and j = 1 · · ·N . We can arrange the measured data into
N different series based on |i − j|, i.e. the absolute differ-
ence between the sender and receiver element number. Each
series{k} contains N − k time traces:

series{k} = {I(l, l + k), 1 ≤ l ≤ N − k}
∪ {I(l + k, l), 1 ≤ l ≤ N − k}, (34)

where k = 0 · · ·N − 1. By assuming that the upper and lower
surfaces of the component are flat and parallel and the material
is homogeneous, for the transmitter and receiver pairs with the
same |i− j| (element i used as transmitter and element j used
as receiver), the ray paths of the backwall reflection will be
the same while the ray paths of the scattered signal will be
different(Fig. 4a). In other words, for element pairs of the
same lateral separation, the length of ray paths of backwall
reflections are identical for the case of two planar surfaces.
That means these signals will have the same arrival time and
amplitude of the backwall reflection but different arrival time
and amplitude of the scattered signal (Fig. 4b).
As the backwall reflection behaves in a well-defined manner,
but the signal scattered from the defect is much less correlated
(Fig. 4b), the scattered signal can be regarded as the incoherent
noise to the backwall reflection for this series of data. As a

result, the backwall reflection B(k) for serires{k} can be
estimated:

B(k) =
1

2(N − k)

N−k∑
i=1

(I(i, i+ k) + I(i+ k, i)), (35)

where i = 1 · · ·N and k = 0 · · ·N − 1, i.e. by averaging
the matched signals together to minimise the scattered com-
ponents present. In this paper, if not otherwise specified, the
summation and averaging in Eq. (35) is implemented over the
full time duration. Having obtained the backwall reflection of
each series of data, the scattered signal can be extracted by
subtracting this estimated backwall reflection from the total
field.

S(i, j) = I(i, j)−B(|i− j|), (36)

where i = 1 · · ·N and j = 1 · · ·N . This method for
removing the backwall reflection works for the components
with flat, parallel surfaces, and homogeneous material. In
theory it may be possible to achieve the same approach with
more complex geometries, provided enough averages of each
distinct backwall component can be obtained. In practice it
is likely that the case considered here is the only one where
this is possible. This method is called the FMC subtraction
in this paper. One problem for this method is that with the
bigger k, the series{k} will have fewer time traces, which
will influence the averaging in Eq. (35). This will result in
an inaccurate estimation of the backwall reflection, so some
residue of the backwall reflection will remain in S(i, j) after
subtraction. Actually, for real inspections, even using baseline
subtraction to remove the backwall reflection will introduce
some residue as small difference in phase and amplitude will
always exist between the measured data. In this paper, we
use the method above to extract the scattered signal from the
experimentally measured signals.

IV. IMAGING STUDIES USING FINITE ELEMENT
SIMULATIONS

A. FE model description

In this paper, Finite Element (FE) modelling has been used
to compare the performances of the TFM and the FM on
imaging the surface-breaking crack and to study the effects
of the FMC subtraction mentioned in the previous section.

Fig. 5 shows a schematic diagram of the FE model used
to simulate the phased array imaging of the surface-breaking
crack. This model has been run using the commercial FE
package ABAQUS/Explict [32]. The input source was intro-
duced by exciting a concentrated force with a time-varying
amplitude on the source point. The input force signal was a
5-cycle tone burst with a centre frequency of 2MHz. We have
defined 64 source points distributed uniformly on the upper
surface to represent a 64 element phased array. Every source
point was also set as a monitoring point as every element of
a phased array can be used as a transmitter and a receiver.
The material used for simulation was steel with a density of
7700kg/m3, a Young’s modulus of 195GPa and a Poisson
ratio of 0.28. Thus, the wavelength λ of the longitudinal wave
was about 3mm. To simplify the problem, the material was
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isotropic throughout. The sample had a thickness of h=60mm
and a surface-breaking crack of θtilt = 0◦, while the phased
array was placed at θtest = 0◦ to ensure the largest angle of
view. The 4 node bilinear plane strain quadrilateral elements
with a length of 0.1mm were utilised in this model. For
simplification, only the longitudinal wave was excited and
recorded at monitoring points [33]. The shear waves and mode
conversions between the longitudinal and shear waves are not
considered in this paper, this is because these waves always
arrive later than the longitudinal waves used for imaging and
the derivation of the FM is based on the acoustic waves which
are a type of longitudinal wave. Absorbing layers [34] were
attached to the model to absorb any wave entering them, acting
as ‘reflectionless boundaries’, to effectively model a small
section of an infinite region. In order to simulate the working
process of phased array imaging, the 64 source elements
were fired successively while all the monitoring points were
working simultaneously, which was described as the FMC
in the previous section. As the purpose of the simulation
is to compare the performance of the imaging algorithms
and the backwall subtraction methods, simulation results from
different crack depths are necessary. As a result, 6 models with
the same material and array parameters but different crack
depths were created and the crack depths were 0.5λ, 1λ, 2λ,
3λ, 4λ and 5λ, respectively.

B. FM vs TFM

In this section, the performance of the TFM and the FM
were compared directly by using them to image the same
surface-breaking cracks. For the comparison between the TFM
and the FM, the backwall reflections were subtracted by
using the baseline subtraction as the baseline subtraction is
easy to be realized with numerical data, and will enable the
backwall reflections to be removed clearly. In the following
numerical examples, if not otherwise specified, the TFM is

performed in the time domain, i.e. using the full frequency
spectrum of the recorded signals, and the FM is performed
using the central frequency component of the recorded signal.
In addition, all of the eigenvalues at the central frequency are
used to generate the FM images. Thus, the TFM uses all the
available information in the signals while for the FM, some
part of the information contained in the measured signals is
discarded. Actually, it is still an open question exactly how
much more information there is in the full spectrum vs just at
a single frequency.

The TFM algorithm and the FM algorithm were applied
to the simulated FMC data and the resulting images based
on the data from the model with a crack depth of 4λ are
shown in Fig. 6a and Fig. 6b, respectively. From Fig. 6a, it
is clear that the conventional TFM successfully reconstructed
the crack tip and the crack root to indicate the presence of the
crack. However, the intensity of the indication of the crack tip
was much smaller than the indication of the crack root as the
energy of the tip diffraction is weak. At the same time, the tip
is not as obvious as the root and the intensity of the artefacts
in the image are comparable to the crack tip. As a result, if
the TFM is used in practical application of imaging surface-
braking cracks, the tip indication may not be distinguishable
from the artefacts so the crack will be hard to size. From Fig.
6b, we can see that both the location and the shape of the
crack has been reconstructed correctly by the FM. Because
of the advantage in resolution, the image reconstructed by the
FM is sharper and clearer than the image reconstructed by
TFM, additionally, as the FM attempts to directly reconstruct
the shape of the object, the defect in the resulting FM image
is easier to identify as a crack than the TFM image.

The principal objective of subsurface imaging is to have
an accurate sizing of the surface-breaking crack. As the
indications of the crack are different between the TFM image
and the FM image, the sizing methods used for the FM image
are quite different from the TFM image. For the FM, the sizing
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method is shown in Fig. 6d. In this, the centre of the crack, xc,
is determined at the position where the pixel has the maximum
amplitude in the image, then the image value at x = xc is
plotted against vertical distance, z, after that, the z values of
the two points on the plot whose amplitude are equal to the
sizing criteria are measured, where the sizing criterion is a
manually set number used for sizing, e.g. -6dB or -12dB, and
finally, the crack depth is equal to half of the difference of the
two measured z values, due to the mirroring effect. For the
TFM image of the same crack, the image value at the same
xc is plotted, but the crack depth is determined by measuring
the distance between the peak of the root indication and the
peak of the tip indication (Fig. 6c).
In the FM image, it can be noticed that half of the indication
of the crack is just above the location of the backwall and
half of the indication is beneath the backwall, i.e. the imaging
algorithm reconstructed a mirrored crack in the image. That is
because for a point P along the crack above the backwall, there
are different ray paths of the ultrasound from the transmitter
to the point P and back to the receiver. One travels directly
from the transmitter to P and back to the receiver, while
another one is reflected in the backwall at each interaction.
There are also other ‘half skip’ paths which are reflected on
the backwall once, either before or after interacting with the
defect. The length of the pre-defect reflection half-skip path is
that of a path from the mirrored array to the mirrored point Pm
beneath the backwall and then directly back to the real array,
as shown in Fig. 7. It is noted that the same is true for a post-
defect reflection by reciprocity. For the FM imaging algorithm,
when the position of the real array is used for imaging, the
ultrasound waves that underwent the direct ray path gave the
intensity to the point P above the backwall and the waves
that underwent the half-skip reflection gave the intensity of
the point Pm beneath the backwall.

Z
X

P(x,z)

z=0

z=h

Array

Pm(x,2h‐z)

z=0

z=h

Array

Mirrored 
Array

Fig. 7. Schematic of the wave undergoing the half-skip reflection, which
causes mirror effect in the FM images.

The noise and the depth of the crack were not considered
in the previous comparison. From Eq. (33), we can notice
that the FM uses all the eigenvalues including those with
very small amplitudes. Those small eigenvalues contain the
information of the object and are crucial for achieving super
resolution, however, those eigenvalues are easy to be lost or
corrupted with the presence of the noise. The TFM method is
essentially a beamforming algorithm which mainly depends
on the large eigenvalues [31], that is the reason why the
TFM is more noise robust than FM. Typically, the imaging
algorithms will experience various levels of noise, and be
used with a variety of crack sizes. In order to compare the
TFM algorithm and the FM algorithm in a more direct way
and explore the limitations of each imaging algorithm, the two
algorithms were applied to simulated data with different crack
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depths and noise levels, as shown in Fig. 8. Various levels of
additive white Gaussian noise were added to the simulated
signals. The noise was scaled relative to the root-mean-square
(RMS) magnitude of the simulated signal, for example, 20dB
SNR corresponds to noise with a RMS magnitude of 10%
of the RMS magnitude of the simulated signal. As the TFM
is noise robust, only two extreme noise levels (50dB and
5dB) are considered here. For the TFM images, with the
smaller crack depth, the indication of the crack tip is closer
to the indication of the crack root, as the energy of the tip
diffraction is much weaker than the energy reflected by the
root corner, the indication of the crack tip is much weaker
than the root, which causes the tip to be masked by the
root in the TFM image of the 1λ deep crack. The smallest
crack that TFM can successfully reconstruct is about 2λ,
which shows good consistency with other research focused
on imaging small cracks [12]. The TFM algorithm shows
excellent robustness to noise as the addition of the noise does
not affect the TFM images. When the backwall reflection is
removed clearly, the FM algorithm shows good robustness to
the reduction of the crack depth and the addition of the noise,
but one trend is also very clear: with an increase in noise,
more artefacts are introduced around the reconstructed cracks
in the images. As the indication of the crack shape is much
more robust than the artefacts introduced by the noise in

the FM image, the judgement and sizing of the crack would
not be influenced by the addition of the noise when a pure
scattered field is used for imaging. The FM has an advantage
in imaging resolution [35] and it directly estimates the crack
shape rather than estimating the indication of crack tip and
root, thus, it can reconstruct a small crack that can not be
successfully reconstructed by TFM, for example a 1λ deep
crack.
Fig. 9 shows the sizing results of the TFM and the FM
methods with different crack depths and noise levels. The
TFM shows a very accurate estimation of the crack depth
with an error smaller than 5%. The TFM also shows excellent
noise robustness as the sizing results stay the same when the
noise level varies. However, for the TFM, cracks which are
smaller than 2λ are neither detectable nor measurable. Fig.
9. shows the sizing results of the FM under two different
sizing criteria, e.g. -6dB and -12dB. Using the different
sizing criteria, the sizing results of the FM are also different.
By using the -6dB as the criterion, the crack depths were
undersized; while using the -12dB criterion, the FM is able
to accurately size the crack from 1λ and the sizing results
show a good consistency to the sizing results of TFM. For
the cracks larger than 1λ, the FM can provide an accurate
sizing even for a large noise level (SNR = 5dB) with an
error smaller than 7.5%. The noise level will affect the sizing
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results of the FM algorithm, especially for the small cracks, as
the sizing error for the 1λ crack is 5% when SNR = 50dB
but 20% when SNR = 5dB, however, for the cracks larger
than 1λ, the influence of the noise level is negligible.

C. The effect of subtraction methods

In this section, the effects of two different methods to
remove the backwall reflections to enhance the reconstruc-
tion of near-backwall defects are compared. Among the two
methods, one is the baseline subtraction and the other one is
the FMC subtraction, and the definition for each of these can
be found in previous sections. The removal of the backwall
reflections of measured data is based on subtraction of the
pure backwall reflection when the crack is absent. For the
baseline subtraction, the pure backwall reflection is obtained
through measuring the data from a defect-free copy of the
component under inspection, while for the FMC subtraction,
the pure backwall reflection is reconstructed based on the
FMC data obtained through the component under inspection.
Taking the simulation model with a crack depth of 2λ as an
instance, we denote the measured data with the ith element
used as transmitter and the jth element used as receiver by
I(i, j), where i = 1 · · · 64 and j = 1 · · · 64, then part of the
estimated backwall reflections used in the baseline subtraction
and the FMC subtraction are plotted in Fig. 10. By observing
the plots carefully, we can find that for the FMC subtraction
method, the reconstructed pure backwall reflections are quite
close to the pure backwall reflection obtained through the
defect-free model, especially when the number difference
between the transmitter and receiver, i.e. |i − j|, is small.
With the |i − j| becoming larger, the FMC subtraction starts
to underestimate the amplitude of the pure backwall reflection
although the phases are correctly estimated. This is because
the reconstruction of the backwall reflection from the FMC
data based on the averaging of different time traces with
the same |i − j|, and for large |i − j| there are fewer time
traces in the FMC data compared to the small |i − j|. As an
example, for |i − j| = 1, there are 126 time traces in FMC
data, e.g. I(1, 2), I(2, 1), · · · , I(63, 64), I(64, 63). However,
for |i−j| = 63, there are only two time traces contained in the
FMC data: I(1, 64) and I(64, 1). As a result, with large |i−j| ,
there are only a few time traces that can be used for averaging,
then the backwall reflection estimate is likely to be of limited
accuracy. For all of the estimated backwall reflections obtained
by the Eq. 35, the biggest error is 45% and the smallest error
is 1.8% when compared to the backwall reflection used in the
baseline subtraction. Because of the presence of the errors,
there are some residual components of backwall reflection
after FMC subtraction, which will influence the quality of
the images generated. As the error varies for different time
traces and there are huge numbers of time traces contained
in the FMC data, it is hard to study the effects of the FMC
subtraction directly. A possible way is to compare the imaging
results using different subtraction methods.
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Fig. 10. Plots of the pure backwall reflections used in the baseline subtraction
(blue) and the FMC subtraction (red). Note that the array element 1 is used
as the transmitter while all the elements used as receivers.

Fig. 11(a) is the TFM image of a 2λ crack without
removing the backwall reflection. This image contains a very
strong indication of the backwall which masks the indication
of the crack root. As a result, it is hard to judge the type of
the defect, thus the sizing of the crack will be impossible.
Fig. 11(b) is the TFM image after the backwall reflection
was clearly removed by the baseline subtraction. This image
shows a clear indication of the crack root and the crack
tip, and according to the previous section, will provide an
accurate estimation of the crack depth. Fig. 11(c) is the
TFM image after the backwall reflection was removed by
the FMC subtraction. This image provides a good indication
of the crack root and crack tip and is quite close to Fig.
11(b). It indicates that the FMC subtraction can remove
the most part of the backwall reflection and the effect of
this method is roughly equal to the baseline subtraction
for the TFM algorithm. Additionally, the FMC subtraction
also showed good noise robustness for the TFM algorithm
as the TFM images were generated at a high noise level,
i.e. SNR = 5dB. It should be noted that FMC subtraction
approach suppresses the backwall more effectively away from
the defect location, since the defect itself can introduce some
coherent components which are not removed by averaging.
Fig. 12(a) and Fig. 12(b) are the FM images of a 2λ crack
without removing the backwall reflection at SNR = 50dB
and SNR = 5dB, respectively. From these two images, we
can see that the strong indication introduced by the backwall
reflection totally masked the indication of the crack. Fig. 12(c)
and Fig. 12(d) are the FM images of a 2λ crack with baseline
subtraction at SNR = 50dB and SNR = 5dB, respectively.
It is clear that the removal of the backwall reflection can
significantly improve the quality of the FM images, both in
the defect judgement and crack sizing. Additionally, after
the baseline subtraction, the FM gave good noise robustness
as when the noise level became larger, the indication of
the crack kept sharp and stable. Fig. 12(e) and Fig. 12(f)
are the FM images of a 2λ crack with FMC subtraction at
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Fig. 11. The TFM images of a 2λ crack when SNR = 5dB: (a) Without removing the backwall reflection; (b) The backwall reflection was removed by
baseline subtraction; (c) The backwall reflection was removed by FMC subtraction. Note that the images were normalized to the maximum value in each
image. The results here were from simulated data.

SNR = 50dB and SNR = 5dB, respectively.
These two images have a sharp indication of the crack
which indicates that the FMC subtraction has removed the
most part of the backwall reflection. However, as the FM
algorithm is much more sensitive to noise than the TFM
algorithm, the effect of the residual backwall reflection after
the FMC subtraction becomes much more obvious. This
component introduced strong artefacts into the FM images,
which are the strong side bars near the indication of the
crack. These artefacts raise the risk of falsely judging the
type of the defect. However, these two images also showed
good robustness to the noise as the indications of the crack
remained stable and sharp even at a high noise level. Except
for the image quality, the effects of the FMC subtraction on
the sizing accuracy should also be studied, as one of the
main objectives of imaging is to provide an accurate sizing.
Fig. 13 shows the sizing results of the TFM images and the
FM images using different methods to remove the backwall

reflection. From these sizing results, we can see that by using
the FMC subtraction to remove the backwall reflection, the
FM algorithm is able to provide an accurate sizing for a
crack whose depth is between 1λ to 3λ, which means that
the FMC subtraction only works for small cracks. This is
because the primary assumption of the FMC subtraction is
that the amplitude of the scattered signal is much smaller
than the backwall reflection, when the crack becomes larger,
the assumption become invalid. However, given that the goal
is to improve imaging and sizing of the smallest defects,
this trend is not entirely problematic. For the sizing results
of the TFM images, it is clear that the effect of the FMC
subtraction is roughly equal to the baseline subtraction as the
sizing results based on these two methods are quite close to
each other.
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Fig. 12. The FM images of a 2λ crack: (a) Without removing the backwall reflection at SNR = 50dB; (b) Without removing the backwall reflection at
SNR = 5dB; (c) The backwall reflection was removed by baseline subtraction at SNR = 50dB; (d) The backwall reflection was removed by baseline
subtraction at SNR = 5dB; (e) The backwall reflection was removed by FMC subtraction at SNR = 50dB; (f) The backwall reflection was removed by
FMC subtraction at SNR = 5dB. Note that the images were normalized to the maximum value in each image. The results here were from simulated data.
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Fig. 13. The sizing results of the FM images and the TFM images using different methods to remove the backwall reflection: (a) The sizing results when
SNR=50dB; (b) The sizing results when SNR=5dB.
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TABLE I
ARRAY PARAMETERS

Array parameter Probe 1 Probe 2
Element number 64 64
Element width (mm) 1.6 0.5
Element pitch (mm) 2.1 0.6
Centre frequency (MHz) 1 5
Bandwidth (-6dB; MHz) 0.756 to 1.33 3.37 to 6.64

TABLE II
FM AND TFM SIZING RESULTS BASED ON THE EXPERIMENT DATA - THE

TRUE CRACK SIZE IS 11MM

1MHz probe 5MHz probe
FM algorithm 13.7mm 36.4mm
TFM algorithm 10.0mm 9.7mm

V. EXPERIMENT RESULTS

For the experimental validation, two arrays with centre
frequencies of 1MHz and 5MHz were used. These two array
probes were manufactured by IMASONIC (Haute− Saône,
France), the details of the parameters are shown in Table I.
A mild steel sample with a thickness of 38mm was used
(ultrasonic longitudinal wave velocity=5960 m/s). This sample
contains an EDM notch whose depth is 11mm and width is
0.5mm. As a result, for the 1MHz probe, the notch is 1.85λ
and for the 5MHz probe, the notch is 9.23λ. The FMC data
were collected from this sample using two different probes
listed in Table 1, with the same array configuration of θtest = 0
(Fig. 1). After the acquisition of the FMC data, the backwall
reflections were removed by the FMC subtraction. For gen-
erating the experimental images, the TFM was performed in
the time domain while the FM was performed at the central
frequency of the array probe and used all the eigenvalues at the
central frequency to generate images, which is in accordance
with our numerical simulations. The central frequencies and
bandwidths of the two array probes used for experimental
validation are listed in Table I. The TFM and the FM imaging
results at different frequencies are shown in Fig. 14. These
image results based on the experimental data show a good
consistency with the imaging results based on the simulations.
Fig. 14(a) and Fig. 14(b) are the FM images of the 11mm
EDM at different centre frequencies. These two images give
us a very good indication of the EDM notch, however, there
are also some strong artefacts, i.e. the ’side bars’ near the
main indication, which were in consistent with our numerical
examples (see Fig. 12(e) and Fig. 12(f)) and were considered
to be introduced by using the FMC subtraction to remove
the backwall reflection. Fig. 14(c) and Fig. 14(d) are the
TFM images based on the experiment data acquired by two
different array probes. It can be seen from the Fig. 14(c)
that the amplitude of the artefacts introduced by the noise is
comparable to the tip indication, which make the judgement
and the sizing of the notch difficult if the real location and
shape of the defect is unknown in advance. The sizing results
from these images were shown in Table II.
From the sizing results, we can see that the FM algorithm

gives us a good estimation of the crack depth at 1MHz but
failed to provide an accurate estimation at 5MHz, which is

because for the 5MHz probe, the small crack assumption of
the FMC subtraction is not valid. These sizing results, based
on the FM images, showed a very good consistency with the
simulation results. The TFM provides us an accurate estima-
tion of the crack depth at both 1MHz and 5MHz. However,
for the TFM image with a centre frequency of 1MHz, the
implementation of the sizing needs the prior knowledge about
the type of the defect, as the tip indication is easily to be
masked by the artefacts. Additionally, the FM overestimated
the crack depth while the TFM underestimated the crack depth.

VI. CONCLUSIONS

Previous work on the Factorization Method for NDE was
mainly concerned with the super resolution effect [35], [18],
[13], [19], but rarely addressed specific applications. This
paper investigated the application of the FM algorithm on
the subsurface imaging of the surface-breaking cracks. To
evaluate the performance of the FM algorithm directly, the
widely used imaging algorithm, the TFM algorithm, was used
as a reference. The main challenge of this application of the
FM algorithm is that the backwall will introduce a strong
reflection which will mask the presence of the crack while
imaging. In this paper, we developed a method to remove the
backwall reflection before the imaging algorithm is applied,
called ‘FMC subtraction’ in this paper.

Firstly, the TFM algorithm and the FM algorithm were
applied to the simulated data and their performance were
compared under different values of crack depth and noise level.
Through the comparison, we found that the FM algorithm is
able to correctly detect and accurately size a crack whose
depth is not smaller than 1λ, while the smallest crack that the
TFM can be applied to s 2λ. Additionally, the FM algorithm
also gives good noise robustness as the FM algorithm is able
to provide a sharp indication of the crack and an accurate
sizing result under a high noise level (SNR = 5dB). Then,
the effects of the FMC subtraction were also studied through
simulation. Through all the imaging and sizing results, the
best performance of the FMC subtraction can be achieved
when the crack depth is between 1λ and 3λ. After all the
simulation study, the FM algorithm and the FMC subtraction
were applied to experimental data. The results showed a good
consistency with the simulations. From this, we found that the
FM algorithm is able to image and size small surface-breaking
cracks.

The work in this paper also verifies the possibility of the
Factorization Method as an alternative to the Total Focusing
Method for phased array imaging. The present work is to
our mind a significant step toward the application of the
Factorization Method to an experimental phased array imaging
system. To achieve this goal completely, more work is required
to explore the effect of different crack types, e.g. tilted cracks
and true flaws.
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