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Abstract

In risky situations characterized by imminent decisions, scarce resources and insufficient

data, policy makers rely on experts to estimate model parameters and their associated uncer-

tainties. Different elicitation and aggregation methods can vary substantially in their efficacy

and robustness. While it is generally agreed that biases in expert judgements can be mitigated

using structured elicitations involving groups rather than individuals, there is still some dis-

agreement about how to best elicit and aggregate judgements. This mostly concerns the merits

of using performance-based weighting schemes to combine judgements of different individuals

(rather than assigning equal weights to individual experts), and the way that interaction be-

tween experts should be handled. This paper aims to contribute to, and complement the ongoing

discussion on these topics.

Keywords: structured expert judgement, performance based weighting schemes, elicitation protocol,

aggregation, confidence
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1 INTRODUCTION

Risk assessment and management are often characterised by imminent decisions and scarce re-

sources. Usually, at least some requisite data for pressing decisions are unreliable, rudimentary

or entirely absent. In these situations, policy makers rely on expert judgements to fill the knowl-

edge gaps. Experts estimate quantities (parameters of models), decide the forms of cause-effect

relationships, and predict the outcomes of management interventions, all of which are uncertain.

We restrict our attention to the elicitation of parameters and their associated uncertainties from

experts. How these are best elicited and combined across experts is critical to a decision process, as

differences in the efficacy and robustness of elicitation and aggregation methods can be substantial

(e.g. [42, 45, 17, 21]).

It is generally agreed that in scientific disciplines, experts are very sensitive to contextual

and psychological frailties including anchoring, dominance effects, and overconfidence, which can

severely distort technical judgements (e.g. [32, 49, 13, 39]), and that many of these frailties can

be mitigated using structured elicitations that involve groups rather than individuals (e.g. [21,

50, 15, 42]). Since the 1990’s, and building on developments in decision theory, mathematics and

behavioural science, some researchers have argued that substantial improvement in the quality and

reliability of aggregated expert judgements can be achieved by using performance-based weighting

schemes of aggregation [12, 24, 1]. However, heated debate continues in the literature regarding

the practical merits of performance-based weighting, with opponents arguing that stable individual

differences between experts on which to base weights are too difficult to measure [6].

Several (different) elicitation protocols developed over the last decades have been deployed

successfully in political science, infrastructure planning and volcanology (e.g. [24, 1, 2, 45, 5]). Most

follow thoroughly documented methodological rules, but they differ in several aspects, including

the way interaction between experts is handled, and the way an aggregated opinion is obtained

from individual experts. There is no single, best structured expert judgement(SEJ) protocol; each

has strengths and weaknesses (e.g. [5, 45]). A SEJ for uncertainty quantification can be roughly

defined as a formalised procedure that:
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1. Asks questions that have clear operational meanings;

2. Follows transparent methodological rules, i.e. is traceable, repeatable and open to review;

3. Anticipates and mitigates some of the most important psychological and motivational biases;

4. Is thoroughly documented;

5. Provides opportunities for empirical evaluation and validation.

These elements make SEJ accountable, transparent and repeatable1. If expert opinion is used as

scientific data, then it should be subject to the same kind of methodological rules for quality as-

surance that are applied to other types of empirical data [23, 21].

This paper aims to contribute to, and complement the ongoing discussion about the reliability

and validity of different aggregation schemes for quantitative expert judgements. The most recent

debate presented in [6] and its accompanying commentaries [20], [54], [42], [7] acted as a catalyst

for writing this paper. We will discuss the following three fundamental conjectures:

1. Prior performance can be a useful guide to future performance.

2. There is no clear relationship between the various measurable qualities of experts judgements.

3. An extensive, facilitated discussion among experts, prior to eliciting their individual final

estimates improves experts’ performance.

Various papers support the above conjectures and we will refer to them in due course, however this

paper is not intended to be a literature review. We will complement the discussion on these three

conjectures by analysing the data collected from a large scale elicitation exercise. The elicitation

exercise used the IDEA protocol for SEJ [55, 31]. A brief overview of IDEA, its development,

and the data can be found in Section 2. Section 3.1 discusses the first conjecture. It introduces

ideas about differential weighting that are somewhat in contrast to those espoused in [6] and [7].

It also touches on the paramount importance of validating expert opinion. Section 3.2 discusses

the second topic. Measuring the quality of expert judgements, and the experts’ performance as

1Note that this definition includes the one formulated by Roger Cooke: “The qualifier structured means that
expert judgment is treated as scientific data, albeit scientific data of a new type.” in [19].
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uncertainty quantifiers, seems essential if one wants to treat expert data in the same way as sci-

entific data. However, the various measures available for evaluating expert performance in making

quantitative estimates reward different dimensions of performance, and may lead to differences in

relative performance. Given that the question of whether and how to value the different dimensions

of expert performance that exist arise regularly in discussions of expert performance evaluation, we

believe an investigation into the question of whether any relationship tends to exist between these

different measures in practice is of interest and worth discussing further. The discussion from [6],

[54], [42], and [7] offers little background on this topic, aside from a clear criticism of the relative

use of these measures in the weighting scheem proposed in [21]. Because of this lack of context,

some claims made in [6] and [51] may be missinterprretted. Section 3.2 makes statements which

reflect the authors position on this topic and may seem in disagreement with certain claims made

in [6] and [54]. Section 3.3 relates to the third topic. It follows and supports (to some extent) ideas

presented in [6] and [7]. Arguments from Section 3 will be supported by and discussed in the light

of data analysis. Section 4 concludes the paper.

2 IDEA: A DELPHI-LIKE PROTOCOL WITH A TWIST

There are two main ways in which experts’ judgements are pooled [17]. One method is usually

referred to as behavioural aggregation, and involves striving for consensus via discussion [45]. When

experts (initially) disagree, the advocates of behavioural aggregation will advise on a discussion

between the experts with divergent opinions, resulting in a “self-weighting” through consensus2.

But this comes at the cost of verifiability and reproducibility. Moreover, while well-functioning

behavioural groups offer participants the opportunity to share knowledge and correct misunder-

standings, such interaction is frequently prone to biases including overconfidence, polarisation of

judgements and groupthink [33].

Mathematical rules used in mathematical aggregation provide a more explicit, auditable and

objective approach. A weighted linear combination of opinions is one example of such a rule. Equal

2However, where a group consensus judgement cannot be reached, individual expert distributions can be elicited
and combined using a mathematical aggregation technique. Or alternatively, where consensus is not the aim, the
resulting spread of expert viewpoints following discussion can be maintained and presented to decision-makers [42].
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weighting is often used mostly because of its simplicity (no justification for weights is required).

Evidence also shows that the equal weighting scheme frequently performs quite well relative to

more sophisticated aggregation methods (e.g. [17]), but not always [24, 20]. There are reasons

to believe that differential weighting based on anything (e.g. self-ratings, peer-ratings, citation

indices) other than performance should be avoided [56, 15, 22]. Probably the most well known

and widely used version of a differential weighting scheme is the Classical Model or Cooke’s model

(CM) for SEJ [21]. Perhaps its most distinguishing feature is the use of calibration variables3 to

derive performance based weights.

Mixed SEJ protocols combine behavioural and mathematical aggregation techniques [28]. The

most common mixed protocol is the Delphi method [48], in which experts receive feedback over

successive questionnaire rounds, in the form of other group members’ judgements. Experts remain

anonymous and do not interact with one another directly. Instead, a facilitator provides feedback

between rounds. As originally conceived the Delphi method strives to reach consensus after a rela-

tively small number of rounds [26], though in modern usages achieving consensus is not necessarily

the primary aim (e.g. [53]). While research supports a general conclusion that Delphi method

can improve accuracy over successive rounds, this is by no means guaranteed. Critical reviews

suggest that even though individual judgements may converge after a number of rounds [53], this

convergence does not necessarily lead to greater accuracy (e.g. [44, 8]). Increasingly it appears

that for genuine improvement in judgement quality to take place between rounds, it is important

that feedback include the reasoning behind the expert’s opinion (i.e. [8, 9]. Moreover, while the

Delphi permits sharing of rationales, it still places limitations on the degree to which information

sharing can take freely place between experts, with the result that misunderstandings and linguistic

ambiguity are more difficult to remove. For example, a recent study that attempted to employ the

Delphi approch for use in eliciting probability distributions experienced considerable delays and

difficulties possibly arising due to the lack of expert - expert interaction and expert - facilitator

interaction, leading to a decreased ability to clarify reasoning, assumptions and the details of the

survey instrument [4].

3Calibration variables are variables taken from the experts’ domain for which the true values are known, or will
become known, within the time frame of the study [1].
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2.1 IDEA Protocol

The IDEA protocol described in this section synthesizes specific elements from all the approaches

described above. In doing so, it aims to minimize the disadvantages of existing approaches and

optimise their advantages. The majority of elements that characterise IDEA are not new; its most

important contribution is in the structured approach to the combination of these elements (a sim-

ilar approach is also proposed in [7], yet informally). The elements of the IDEA protocol, and the

reasons behind these choices are discussed in great detail in [13, 31]. In this paper we will reiterate

the specific steps, without repeating the discussion in the above mentioned references. IDEA is

so-called because it encourages experts to Investigate, Discuss, and Estimate, and concludes with

a mathematical Aggregation of judgements. It is a Delphi-like protocol in that experts give indi-

vidual judgements over subsequent rounds, and facilitators provide feedback. In contrast to the

traditional Delphi, IDEA does not seek consensus and can not always ensure full anonymity. A

diverse group of experts first answer questions without engaging in discussion. Experts are then

provided with the judgements of their peers and have the opportunity to endorse agreements and

discuss differences of opinion (unlike Delphi), allowing people to reconcile the meanings of words

and context (e.g. [16]). The discussion may be remote (on an on-line platform or over email) or

face-to-face. Facilitators encourage and moderate discussion between rounds. In typical face-to-face

discussions, people are often forced to declare the identity of their estimates to others, exposing

them to dominant individuals, halo effects and potential pressure to conform. Conversely, people

may refrain from defending their estimate in order to avoid identification. In IDEA, while the com-

plete anonymity that characterizes a traditional Delphi process is lost, making the second estimate

strictly anonymous largely mitigates these phenomena. This promotes the benefits of behavioural

aggregation, while guarding against some of the most debilitating elements of group elicitation

[14, 39]. Expert estimates obtained through the second round (post-discussion) are mathematically

aggregated. The method for mathematical aggregation can be chosen by the practitioners and it is

not dictated by the IDEA protocol. Because IDEA does not strive for consensus, on the contrary

encourages independent anonymous final estimates, the dangers of reaching an artificial consen-

sus are mitigated against. Differences of opinion are recorded and can be easily communicated to
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decision makers.

IDEA uses a structured procedure for questioning experts about uncertain variables, described

in detail in [14]. When used to elicit continuous quantities this procedure uses four questions to

elicit the values of variables (corresponding to different quantiles), termed a four-step format. A

slightly different version of this procedure (for fixed quantiles) corresponds to the way questions are

asked in the CM, so the mathematics used in the CM for scoring and aggregating expert judgements

can be easily used in the last step of IDEA.

When eliciting probabilities of event occurrences, IDEA uses three questions, termed a three-

step format, one for a best estimate and the other two for an interval that captures uncertainty

around it. Other approaches, including CM, ask the experts to assign events to probability bins

bi = (pi; 1− pi), where pi corresponds to the probability of occurrence. Bins can have the following

form: b1 = (0.1; 0.9), b2 = (0.2; 0.8), b3 = (0.3; 0.7), etc. if the probability of occurrence scale is

discretised into 10 intervals. An expert assigns an event to the b2 bin if their best estimate (about

the probability of occurrence) is anywhere between 0.1 and 0.2. So, these approaches only ask

for best estimates, acknowledging the imprecision in the experts’ judgements by allowing a fixed

interval around them (equal to the respective bin’s length). IDEA allows the expert to chose their

own interval. The probabilities of binary variables can sometimes be interpreted in terms of relative

frequencies. It is then legitimate to ask experts to quantify their degree of belief using a subjective

distribution. In this case the upper and lower bounds asked for in the three-step format may

be thought of as quantiles of this subjective probability distribution. However, when the relative

frequency interpretation is not appropriate (i.e. when the probability of a unique event is elicited)

the three-step format may be criticised for lacking operational definitions for the upper and lower

bounds, in a probabilistic framework. Then, the elicited bounds can be thought of as an analogue

of the fixed bounds of the bins, when the probability of occurrence scale is discretised into bins

(see above). The imprecision in the experts’ judgements is decided and quantified by the experts

themselves, rather than chosen by the analyst.

The main reason to elicit bounds in such cases is to improve thinking about the best estimates.

Another reason is to provide an indication of relative participant uncertainty. Because the data
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analysed in this paper consists of elicited unique events’ probabilities, most measures of performance

that we consider and use to compare expert performances are calculated using the elicited best

estimates, rather than the bounds.

Irrespective of the way the probabilities are interpreted, the mathematical apparatus of the CM

and its specific feature of using calibration variables can be used in the last step of IDEA.

2.2 Data

The IDEA protocol was refined and tested as part of a forecasting “tournament” that started in

2011 as an initiative of the US Intelligence Advanced Research Projects Activity (IARPA)4. Five

university-based research teams were involved in predicting hundreds of geopolitical, economic and

military events, with the goal of finding the key characteristics of efficient protocols for eliciting

and aggregating accurate probabilistic judgements. The project used real events that resolved in

the near-future to test the accuracy of forecasts. Thousands of forecasters made over a million

forecasts on hundreds of questions [52, 36]. The Good Judgment Project (GJP) team who won the

tournament [36] encouraged similar think again and estimate lower and upper bounds style practices

[e.g. 37], though to our knowledge, IDEA was unique in eliciting multiple, uncertainty judgements

for each estimate. As opposed to other protocols, the IDEA protocol combines both feedback

and (facilitated) interaction. The benefits of mathematical aggregation for combining forecasters’

opinions were also investigated by other teams [e.g. 3], but none considered performance weighting.

The results shown in this paper are based on the data gathered through this tournament. The

data elicited with the IDEA protocol represent the answers to a subset of the questions developed

by IARPA. All questions considered correspond to Bernoulli variables of the following sort: “Will

the Turkish government release imprisoned Kurdish rebel leader Abdullah Ocalan before 1 April

2013?”, which were answered using the three-step format outlined above. All questions usually

resolved within 12 months, hence they were suited for empirical validation studies. The elicitation

took place remotely, initially via email, and from the second year of the tournament through a ded-

icated website5 which was set up for the participants to answer the questions and upload/download

4http://www.iarpa.gov/index.php/research-programs/ace
5http://intelgame.acera.unimelb.edu.au/
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necessary materials. This website facilitated discussion via a discussion board that could be used

to share relevant resources from outside the platform (e.g. web links), and to comment on and rate

the quality of the information shared by others.

In answering the questions, experts followed the three-step format (see Figure 1). The best

estimate of each expert represents their subjective degree of belief in the probability of the occur-

rence of the event. Accepting that the judgements of experts are inherently imprecise and trying

to formalise this imprecision, the bounds (about which experts are asked prior to asking the best

estimate in order to avoid anchoring effects) are thought of as an uncertainty interval. The width

of this interval provides an indication of how sure the expert is of their estimate.

Figure 1: A three-step format question

The tournament operated on a yearly basis, over the course of four years. Each year, new par-

ticipants joined the IDEA groups, and other participants dropped out. There were 150 participants

(over the four years) who answered at least one question (both rounds). Eight of these participants

returned each year. The level of participants’ expertise covered a very wide range from self-taught

individuals with specialist knowledge to intelligence analyst6. A total of 155 questions were an-

swered by at least one participant. However, no participant answered more than 96 questions.

The participants were divided into groups and the number of groups varied across years to keep

the number of participants per group fairly constant (typically ten). Starting from the third year

6Because the study was conducted with people who may be considered in some contexts to be non-expert partic-
ipants in the remainder of this paper, whenever data from this study are concerned, we will use the term participant
instead of expert.
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Super-groups were formed7 composed of the best performing participants from the previous year8.

The participants composing the Super-group were unaware of the fact that their group was in any

way special. The number of participants composing the Super-group was equal to the number of

participants from any other group. This construction was meant to help us accumulate evidence

around whether prior performance is a useful guide to future performance on forecasting tasks.

3 PERFORMANCE MEASURES AND THE VALUE OF DIS-

CUSSION

In some protocols using mathematical aggregation, the interaction between experts is limited to

training and briefing (e.g. [21]). It is generally believed that interaction between experts may

harm aggregation because it induces correlation between judgements (e.g. [45]). Nevertheless,

when experts share and debate their knowledge during interaction, they establish a common and

better understanding of what is being asked of them (e.g. [33]). We postulate that, in general any

additional dependence between judgements introduced through the discussion between rounds is

justified by the increase in information resulting from discussion and by the reduction of misun-

derstandings and linguistic uncertainty. Results based on the dataset described above support this

postulate and are presented in [30]. The dependence structures within and between the groups

(before and after discussion) are investigated in [30] and found to be effectively the same9. Due to

these findings we feel comfortable in pooling the expert data from all groups and across all years

to form a larger dataset and hence permit more powerful statistical testing.

In evaluating the performance of probability forecasters, we assess their accuracy and their

confidence. While alternative definitions of accuracy exist in the literature on evaluating subjective

probabilities (e.g. [34], [57], [41]), we will hereafter consider accuracy to be a measure of the

degree of correspondence between the participants’ predictions (which are the probabilities of event

7The GJP team tested an idea similar to the super-group of top forecasters, but on a considerably greater scale,
i.e. with the benefit of many more participants.

8Performance was measured using the average Brier score. This measure (defined later in this paper) was imposed
by the forecasting tournament rules and all participating team had to use it.

9The dependence between experts’ answers is measured using the average correlation coefficient of experts within
each group and conditional on the outcomes. For details of the calculations we refer to [30].
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occurrences) and the observed outcomes. The average Brier score [10] is used to evaluate and

compare participants’ long term accuracy. The Brier score for binary variables ranges from 0 for

a perfect forecast to 2 for the worst possible forecast. Although the score can be computed based

on a single forecast, performance on many questions is necessary to provide a reliable guide to

accuracy. In our case, long term performance is calculated as an average Brier score, using the

participants best estimates of the event probabilities (i.e. Figure 1, box 3). The average Brier score

can be further decomposed into two additive components called calibration and refinement [43].

The calibration component of the Brier score is one of the measures thoroughly investigated in [30]

as a measure of performance. In this paper we will also use it in Section 3.2. We treat the length

of the uncertainty intervals provided by participants around their best estimates as a measure of

their confidence. Under this interpretation, a wider interval denotes decreased confidence, while a

narrower interval denotes an increased level of confidence. The length of these intervals can also

be thought of as a measure of informativeness: wide intervals are uninformative.

A more extensive discussion about different concepts and measures of accuracy, calibration and

confidence, and different uses of these terms can be found in [31]. A description of the calibration

term of the Brier score and other measures of confidence and informativeness calculated for the

participants’ assessments are discussed and analysed in [30]. For the sake of conciseness we shall

not repeat these discussions here, but merely refer the reader to the two mentioned references.

3.1 Prior and future performance

Each year we compared the performance of the different groups. When we consider groups of

participants, we are interested in the group accuracy as measured by the average Brier score of the

group aggregated estimates. Specifically, for each group, the best estimates of the participants for

a given question are averaged, and a Brier score per question, per group is calculated. The average

Brier score (across all questions answered by at least one participant from that group) is reported

as the accuracy measure of the group. Each year we compared the accuracy of the equally weighted

opinions of the groups after discussion, using a within-subject design.

In one year alone (2013 - 2014) we had sufficient data to calculate differential weights using
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the CM [21]. We used the best estimate responses of the participants in the IDEA Super-group 1

to calculate calibration and information scores for discrete variables defined in [21] and reiterated

in [30]. Performance-based weights were then derived based on these calibrations scores, and the

best estimates of the participants were weighted accordingly to obtain the differentially weighted

response per question, per group. Brier scores were then calculated per question, per group, for

the new performance weighted responses. Figure 2 shows the average Brier scores of the equally

weighted combination of judgements for each group after discussion, together with standard error

bars, for 2013 - 2014. The performance-based differentially weighted combination of the Super-

group participants’ judgements is shown in the same figure.

Figure 2: Forcasting tournament 2013-2014

Although not statistically significant, the Super-group G1 outperformed the other groups of

participants, suggesting that prior performance is a useful guide to future performance on similar

estimation tasks (out of sample). The same was observed for all the other years of the tournament

(except the first year, where no super-group was used.). This finding is in agreement with the
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findings of [38].

Employing the CM, a slight improvement in performance is achieved using this weighting

scheme. Even though not significant, this improvement provides additional evidence to support

prior performance as a useful guide to future performance (in - sample).

Asking questions that resolve in the near future and using performance measures allows for vali-

dation of the utility of predictions from the particular group of experts being consulted, which is an

essential step for any model. Several methods for validating expert opinion have now been used and

proposed [27, 25] mainly by the advocates of the CM10. These methods include in-sample validation

and cross-validation, if variables of interest (the variables for which expert judgement is required)

are unobservable on relevant time scales. We conjecture that well-designed cross-validation stud-

ies offer a credible approach to validating expert judgement and the utility of performance based

weighting [25, 27], certainly preferable to no validation at all11. The most recent cross-validation

study performed by the authors of [18] offers a high level of support for the idea that prior perfor-

mance a useful guide to future performance: for 54 out of 73 professional expert elicitations, the

performance based combination of experts’ judgements outperformed the equally weighted combi-

nation.

We acknowledge and share the concerns of the authors of [6, 7] about true validation studies

(i.e. where the value of expert performance-based weighting for predicting the target variables of

interest in a genuine application of expert knowledge is able to be evaluated post-hoc). To this end,

we hope that the out-of-sample validation results obtained with IDEA and presented here and in

[31, 30] strengthen the arguments discussed in [27, 25, 20, 18].

Moreover, when judgements conflict, one will (usually) turn out to be “better” than the other.

How can we know, a priori, whose opinion is valid (or more reliable) and should assigned more

weight in an aggregation? Previous studies (e.g. [15, 22]) assure us that we cannot, and the only

way of knowing is by assessing prior performance on similar tasks. [42] argues that the “outlier’s

views should not get masked by combining multiple experts”. While we agree with this statement

10The data used in many of these studies are freely available online at http://rogermcooke.net/
11In other words (using the terminology in [7]) we argue that starting from data in our journey towards data will

get us further than starting from a void.
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in terms of the importance of retaining experts’ un-aggregated opinions along with any group

aggregate judgement in order to avoid masking individual differences of opinion, we argue that

aggregation is often necessary, and that where information on past performance is available it can

provide a valuable way to discriminate between (and aggregate accordingly) situations when an

outlier’s views are likely to be worthwhile, and those where they are not.

The topics of measuring performance and differential weighting are obviously interrelated and

the above discussion suggests that there are good validated reasons to base differential weighting

schemes on measures of prior performance on similar tasks. The question that follows naturally is

which measures of performance should one use. If experts’ answers have one quality (e.g. accuracy)

would this guarantee other qualities (e.g. informativeness)? Does this relationship depend on the

way we define and measure these qualities? These questions are not new, and such relationships

between various measures of performance have been investigated before in the context of subjective

probability (distributions) elicitations. The next section adds yet another case study to the existing

literature and the ongoing debate.

3.2 The correlation between performance measures

Ideally, any increase in an expert’s confidence would be matched with an increase in their accuracy

or calibration. However research across many different measures of confidence, accuracy and cali-

bration has found that these measures are often poorly correlated with one another (e.g. [34], [29],

[40], [2]).

In asking experts to quantify parameters and their uncertainty around these estimates, SEJ

methods rely on each expert’s ability to realistically quantify the limitations of their knowledge.

When experts underestimate the uncertainty in their judgements, apparent overconfidence occurs,

leading to faulty assessments on which hazardous decisions may be based. Even though less un-

certainty around a judgement (more confidence) often translates to greater informativeness, we

believe that certainty should only be valued when associated with well-calibrated assessments.

This contrasts with our interpretation of the views expressed in [54], who seemingly views narrow
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(informative) distributions as more important than calibrated ones12.

This being said, we would like to emphasize that both measures are necessary in evaluating

performance, and they should be evaluated in tandem whenever possible to avoid rewarding high

performance in one measure at the expense of the other.

In this section we investigate the relationship between accuracy (measured by the average Brier

score) and confidence (as measured by uncertainty interval length) using the dataset described in

Section 2.2. Because the average Brier score can be decomposed such that we can measure calibra-

tion as well, and the calibration component of the Brier score is one of the measures thoroughly

investigated in [30] we will extend the analysis and investigate the relationship between calibration

and confidence using the same data set.

Figure 3 looks at these two relationships in terms of rank correlations. We have selected the

participants who answered at least 20 questions, to reduce the variance of the average measures of

performance estimators.

Figure 3: Confidence vs. accuracy and calibration

The rank correlation between the average Brier score and the average confidence is represented

by stars. The rank correlation between the calibration term of the average Brier score and the

12“I feel that in most cases, informativeness is more important than calibration”
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average confidence is represented by circles. These correlations are shown as a function of the

minimum number of questions (n) answered by participants. We denote m the number of partic-

ipants who answered at least n questions. We added n’s corresponding m just above the X-axis

(e.g. for n = 20, m = 53). Each rank correlation is calculated based on m samples, and the

value of m determines if the correlation is statistically different than zero. The only values found

statistically different than zero at 0.05 significance level, when performing a one-tailed statistical

test [46] are the ones enclosed by the ellipse from Figure 3. However, the 0.05 significance level

of a one-tailed statistical test corresponds to a 0.1 significance level of a two-tailed statistical test.

Based on the critical values of a two-tailed statistical test, none of the correlations shown in Figure

3 are statistically different than zero at 0.05 significance level.

Based on the above analysis, there is very little reason to believe that an increase in an expert’s

confidence would correspond to an increase in their accuracy or calibration. This warns us against

relying too heavily on any one dimension of expert performance when evaluating experts under

the assumption that adequate performance according to one metric of expert performance (e.g.

informativeness) would suggest it for others (e.g. calibration). Moreover, if these evaluations are

used to form weights, the weights should reflect this dual importance and evaluate for adequate

performance across multiple dimensions of expert performance.

3.3 Does discussion help?

The authors of [7] recommend behavioural aggregation as an alternative to the CM. We agree with

only one aspect of this recommendation, the possibility of facilitated discussion. IDEA assimilated

the extensive discussion aspect of the behavioural aggregation, but strongly advises against striving

for consensus and the “self-weighting” associated with it. The reasons for this advice are briefly

addressed in this paper (see section 2.1) and thoroughly discussed in [14].

We consistently find (throughout our studies) that sharing information between rounds appears

to improve on average both accuracy and confidence. Figure 4 is one more example of this phe-

nomenon. The average Brier scores of all participants before discussion are plotted against their

average Brier scores after discussion. These are represented by stars. If participants do not change
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their minds (about any question) in the second round, their average Brier score does not change

(so the point representing this pair of scores will fall on the main diagonal). The majority of points

in this scatter plot fall under the main diagonal, indicating that the majority of participants who

change their mind, changed in the direction of the realised outcome. The average confidence of

the participants before discussion is plotted against their average confidence after discussion in the

same plot. These are represented by plus (+) signs. The same general pattern can be observed.

Confidence was greater after discussion.

Figure 4: Average Brier Scores & Average Confidence before and after discussion. Both measures
have similar possible ranges allowing for presentation on the same plot. Averages are calculated
for each participant across all questions.

Because our study does not include a control group that provides both first and second round

judgements but do not undertake discussion in-between, we cannot rule out the possibility that

any changes in performance observed are due to iteration alone, rather than the discussion that

took place during each iteration. However, this within-subject quasi-experimental approach is not

unusual in studying the performance of Delphi-related methods (e.g. [47]). Our result complements

other work which reveals the potential importance that any feedback provided include the reasoning

behind the expert’s opinion (e.g. [8, 9]) in order to contribute to improvements in performance

between different rounds on estimation.
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In the last three years of the tournament the data was collected through a dedicated website.

This gave us the opportunity to collect information about the participants’ level of engagement

in the discussion phase. During the discussion phase, the participants contributed comments and

shared resources (i.e. additional relevant information such as links to news articles, scientific papers,

blog posts, and additional data) with the group. After resources were added on the group discussion

board, they could be viewed and rated. We recorded the number of these actions. These activities

define to some extent the engagement of participants in the discussion between the rounds, and

we can look at the relationship between measures of performance and these activity measures. We

have (again) selected the participants who answered at least 20 questions, to reduce the variance of

the average measures of performance and activity estimators. We first look at the rank correlation

between the average Brier score and: 1) the average number of comments (star), 2) the average

number of added resources (circle), 3) the average number of viewed resources (plus), and 4) the

average number of rated resources (diamond). These correlations are shown as a function of the

minimum number of questions (n) answered by (m) participants. Just like in the previous section,

each rank correlation is calculated based on m samples, and the value of m determines if the

correlation is statistically different than zero. Figure 5 shows these correlations. All correlations

below the horizontal line are significantly different than zero at 0.05 significance level.

Figure 5: Average Brier Scores & Average Level of Activity
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There is strong negative correlation between the average activity level (as defined by the number of

comments made, and by the number of added and viewed resources) and the average Brier score,

which means that higher levels of activity correspond to lower, hence better scores. This result

supports our conjecture that discussion improves (at least one aspect) of performance.

However, when looking at the relationships between activity and the length of the uncertainty

intervals, the rank correlations are much smaller and none is significantly different than zero (see

Figure 6). Given this apparent weaker relationship observed between activity and confidence we

speculate that the shift (increase) in average participant confidence following discussion (Figure 4)

may be the result of receiving feedback (i.e. exposure to the intervals of the other group members)

rather than discussion, as this is the element of the discussion phase that would not necessarily

relate to level of on-line activity and interaction with other group members.

Figure 6: Average Confidence & Average Level of Activity

4 DISCUSSION

The aggregation of expert judgements into a single, transparently constructed estimate is one of

the most important steps in eliciting and using expert judgements. Equal weights are intuitively

appealing because there is no need to defend differential weights, they are easy to understand, and
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all experts feel that they contribute equally. However, one of the most important lessons of empirical

studies over the last decade is that an expert’s performance on technical questions may be predicted

to some extent by the history of their performance on similar questions previously [18, 37, 11].

Taking advantage of this phenomenon, Cooke’s approach to differential weighting circumvents the

difficult issue of the different scales associated with different kinds of questions, and assimilates each

expert’s confidence and statistical accuracy into a single weight. The result is the potential for an

improvement in group performance over equal-weighted based aggregation methods. Our results

suggest that even in the relatively difficult conditions imposed in answering binary questions on

the outcomes of geopolitical events, performance based differential weights calculated using Cooke’s

method may improve upon the performance of groups, even those composed of comparatively higher

performing forecasters, such as those in to the super-groups.

We agree with [6] that the way forward for expert knowledge research involves additional ex-

periments and analyses to further test the benefits of performance weighting schemes against equal

weighting and behavioural aggregation. Our paper provides one such contribution, by drawing on

recent experimental findings. The discussion papers [6], [54], [42], and [7] were published in 2015,

and arguably drew more heavily on an older body of literature, findings and established positions

around the relative merits of performance weighting. We have endeavoured to support this dialogue

by contributing more recent findings and methodologies for drawing on the benefits of both be-

havioural aggregation (here via facilitated discussion) and performance weighting. Both our study,

and that of the GJP present empirical evidence incorporating out-of-sample testing indicating that

prior performance predicts future performance. We argue that this provides grounds for the use

and the continued investigation of performance-based weighting.

Our paper also explored the contested question of whether social interaction between group

members erodes judgement quality [35, 51]. As with IDEA, the GJP also made use of structured

discussion between forecasters and found that it improved performance [38]. In their case, group

members were known to each other via their online identifiers only. They could offer rationales

and critiques, and share information, including their predictions (although, unlike in IDEA, formal

feedback on initial group member predictions was not provided). The results of both approaches
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illuminate the value of facilitated conversations between group participants in reconciling language-

based misunderstandings and interpretations of evidence. They also both suggest that controlled

interaction and feedback can enhance performance, without overwhelming these benefits with dys-

functional group dynamics. Whether or not these findings hold up in different settings, such as

those where group members are motivated to seek status or guard information, remains to be seen.

We conclude by reiterating the recommendation for risk analysts and decision makers to use

consistent, transparent and repeatable approaches to SEJ. As data accumulate over time, the

strengths and weaknesses of these new methodologies for aggregating expert judgements will become

clearer and help to ensure better judgements in the future.
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