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Compositional heterogeneity near the base of the
mantle transition zone beneath Hawaii
Chunquan Yu 1,5, Elizabeth A. Day1,2, Maarten V. de Hoop3, Michel Campillo1,4, Saskia Goes2,

Rachel A. Blythe2 & Robert D. van der Hilst1

Global seismic discontinuities near 410 and 660 km depth in Earth’s mantle are expressions

of solid-state phase transitions. These transitions modulate thermal and material fluxes

across the mantle and variations in their depth are often attributed to temperature anomalies.

Here we use novel seismic array analysis of SS waves reflecting off the 410 and 660 below the

Hawaiian hotspot. We find amplitude–distance trends in reflectivity that imply lateral var-

iations in wavespeed and density contrasts across 660 for which thermodynamic modeling

precludes a thermal origin. No such variations are found along the 410. The inferred 660

contrasts can be explained by mantle composition varying from average (pyrolitic) mantle

beneath Hawaii to a mixture with more melt-depleted harzburgite southeast of the hotspot.

Such compositional segregation was predicted, from petrological and numerical convection

studies, to occur near hot deep mantle upwellings like the one often invoked to cause volcanic

activity on Hawaii.
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Mantle transition zone (MTZ) discontinuities due to
phase transitions in silicate minerals (e.g., olivine, gar-
net) near 410 and 660 km depth1,2 play an important

role in modulating mantle flow3,4. Mantle convection is foremost
a thermally driven system and most MTZ studies use 410 and 660
topography to estimate temperature anomalies at these depths5–9.
Compositional heterogeneity is also expected, however, because
subduction continuously introduces differentiated tectonic plates
(containing basalt, harzburgite, and peridotite) into the slow-
mixing system2,10–12. Computer simulations predict segregation
of these components in the relatively warm low-viscosity envir-
onments near mantle upwellings, leading to accumulations at the
base of the MTZ13–15, but observational evidence for such a
process is scarce16,17. However, a hot upwelling has long been
proposed below Hawaii18 and this area is well sampled by SS
waves (Fig. 1) making it a good location to look for evidence of
this process. We present direct and clear evidence for lateral
variation in composition near the base of the MTZ, from joint
seismological and mineral physics analysis of the amplitudes of
so-called SS precursors (S waves that bounce off MTZ dis-
continuities). This shows that this is a promising technique to get
constraints on the thus far elusive distribution of compositional
heterogeneity within Earth’s mantle.

Results
Seismic exploration of transition-zone discontinuities. For our
SS precursor study we used ~180,000 broadband seismograms
from 668 earthquakes (between 2000 and 2014), with epicentral
distances Δ between 70° and 170°, magnitudes mb > 5.5, and
depths h < 75 km19. At large offset (Δ > 110°), the recorded SS
wave field reveals signal related to reflections at the 410 and 660,
with the former (referred to as S410S) arriving ~150 s and the
latter (S660S) ~200 s before the surface reflection SS (Fig. 2a, b).
Such data have been previously used to estimate discontinuity
depths5,6,8,9. Small offset data (Δ < 110°) are sensitive to contrasts
in seismic velocity and density across interfaces but are often

discarded because of interference with (source or receiver side)
multiples.

The amplitude of precursors depends on source-receiver
distance and the contrast in impedance Z—the product of mass
density (ρ) and seismic wavespeed (β)—across the 410 and 66020–
23. The combination of Δρ and Δβ determines the shape of the
amplitude–distance curve and the distance at which the polarity
of the reflection changes (Supplementary Figs. 1 and 2).
Conversely, one can infer Δρ and Δβ from amplitudes if they
can be measured over a large enough distance range. Shearer and
Flanagan23 used such amplitude versus offset (AVO) analysis to
estimate a global average for Δρ and Δβ across the 410 and 660
from data beyond 110° (Fig. 2a). The inclusion of precursors at
smaller offsets would allow more robust estimation of Δρ and Δβ
and make it possible to study regional variability.

To unveil precursor signals at distances less than 110°, we must
suppress phase interference from multiples. This can be done
with a parabolic Radon transform24 or a local slant-stack filter25,
but our curvelet-based method19 (see Methods) gives superior
phase separation between multiples (Fig. 2c) and SS precursors
(Fig. 2d). The transformation to and from the curvelet domain
does not affect amplitudes. Edge effects occur near 80° due to data
cut-off at 70° but precursors are now clearly visible at distances
shorter than 110° (compare Fig. 2a, d). For S410S, the amplitude
varies with distance but the observed arrivals agree with
predictions from 1D models such as ak13526 (Fig. 2b, d) and
the pulse shape is constant across the entire distance range.
For S660S the situation appears more complicated. Beyond 105°
the waveforms are simple and the S660S times are consistent
with 1D predictions, but between 90° and 100° the S660S
amplitude decreases, and at Δ < 90° the reflections seem to arrive
closer to SS.

This apparent move-out of the 660 cannot be explained by
topography (as this would affect the small- and large-offset data
similarly) or anomalous wavespeeds (as the move-out velocity
needed to explain it is unrealistically large)19. Synthetics from 1D
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Fig. 1 Study region and ray geometry of SS precursors. a Map showing the study region (black rectangle) and distribution of sources (red circles) and
receivers (green triangles) used in this study. The circles within the black rectangle indicate the bins NW and SE of the Hawaiian hotspot for stacks shown
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models (Supplementary Fig. 1) and calculation of S660S reflection
coefficients (RS660S) in a two-layer medium (Supplementary
Fig. 2) demonstrate that the observed features are in fact
consistent with expected amplitude variations in the reflected
waves with distance and a change in sign that manifests as a
phase shift. These amplitude variations in short-distance
precursors are highly sensitive to impedance parameters, making
it possible to constrain wavespeed and density contrasts more
tightly than from large-offset data alone.

We measure the precursor amplitudes relative to the surface
reflections (that is, S410S/SS and S660S/SS) from approximately
70°–170° (gray circles, Fig. 3a, b). Before using these amplitudes
for AVO analysis, we remove effects of geometrical spreading,
intrinsic attenuation, mantle heterogeneity, and interface topo-
graphy (see Methods; Supplementary Figs. 3 and 4). The
corrected amplitudes are shown as black circles. Only the most
reliable data are used for further analysis (Fig. 3).

By matching the corrected amplitude ratios with theoretical
predictions, we estimate the following contrasts for the region
under study: (Δρ410, Δβ410)= (2.5 ± 1.1, 6.0 ± 3.0%) and (Δρ660,

Δβ660)= (4.8 ± 0.5, 5.1 ± 1.9%) (Supplementary Fig. 5). Note that
in stacks such as in Fig. 2d, the reflections do not go to zero (as in
Fig. 3) due to spatial averaging and noise. These velocity and
density estimates also depend on mean wavespeed β (see
Methods).

Lateral variation in seismic reflectivity at 660. The enhanced
sensitivity provided by the addition of short-distance data allows
for testing whether Δρ and Δβ vary across the study area. If
Hawaiian volcanism is the surface expression of a relatively stable
deep mantle source, as often proposed18, then differences in
structure upwind and downwind of the source, in the NW
direction of the plate motion over the source, may exist. The
geographical distribution of SS data allows us to test this by
analyzing areas NW and SE of Hawaii separately (Fig. 1). In both
regions, our data processing yields clear S410S and S660S signals
(Fig. 4a, b).

For 410, the amplitude–distance trends in the NW and SE bins
(Fig. 4c, d) are similar to one another and to those of the whole
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Fig. 2 SS precursors before and after array analysis. a Time–distance plot of ~180,000 waveforms between 70° and 170° stacked at 0.5° intervals and
aligned on the surface reflection SS (set to 0 s). At large distances the stacks are noisy due to decreased data volume. b Travel times relative to SS
predicted from ak13526. c Multiples of S, S diffractions, and precursors to ScSScS. d SS and precursors. Curvelet filtering effectively decomposes the
recorded wavefield (a) into multiples (c) and the SS wavefield (d). Horizontal bar in d, near 200 s before SS, marks the distance across which the 660
reflection changes polarity (that is, 2σ uncertainty of estimates of zero-reflection distance)
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region (Fig. 3a). There is a tradeoff between Δρ and Δβ, but the
best-fit values for each stack (Fig. 5a, b) are (within error) similar
to the ones estimated for the entire study region: Δρ410= 2.5 ±
1.1% and Δβ410= 6.0 ± 3.0% (Supplementary Fig. 5A). Shearer
and Flanagan23 find a similar trade-off, but their global averages
(Δρ410,global= 0.9%, Δβ410,global= 9.7%) differ from the regional
values obtained here. The impedance contrast ΔZ410 (8.5 ± 1.9%)
inferred here is consistent with that of PREM27 (8.5%) and
estimates from ScS reverberations (9.2 ± 2%20) and SS precursors
(6–12%23; 7.8 ± 0.6%21).

In contrast to the near-constant 410 values, the 660 trends
reveal remarkable regional differences, with the distance of zero
reflection and the range of S660S/SS amplitudes substantially
smaller in the region NW than that SE of Hawaii (Fig. 4e, f). We
infer that the elasticity contrasts (Δρ660, Δβ660) increase from (4.8
± 0.7, 4.7 ± 2.5%) NW of Hawaii (Fig. 5c) to (6.9 ± 1.3, 7.8 ± 4.6%)
SE of it (Fig. 5d).

The constraints on Δρ660 and Δβ660 are further tightened by
considering the polarity transition distance, where RS660S ~ 0.
Based on visual inspection, we estimate the transition distance to
be 93° ± 5° and 102° ± 5° (2σ uncertainties; Fig. 4a, b) for the NW
and SE stacks, respectively. The actual 95% confidence region for
Δρ660 and Δβ660 (shaded in Fig. 5c, d) is the intersection of the
95% confidence ellipse from the amplitude trends and the region
bounded by lines corresponding to lower and upper limits of the
polarity transition distance.

Lateral variation in composition at 660. Yu et al.19 inferred from
SS precursor travel times that the mean transition zone thickness
beneath the Central Pacific is 239 ± 2 km, suggesting an average
adiabatic mantle temperature of ~1400 ± 100 °C (Supplementary
Fig. 8;19). To assess what variations in temperature and/or
composition might be responsible for the observed lateral varia-
tion in Δρ660 and Δβ660, we use the method described in Cobden
et al.28 and the thermodynamic data base by Stixrude and
Lithgow-Bertelloni12 to calculate velocity profiles along a range of
mantle adiabats (Fig. 6a, c) for several mantle compositions14,29

(Methods; Supplementary Figs. 6 and 7). We calculate profiles for
pyrolite, commonly assumed to represent average background
mantle (containing 60% olivine, the main mineral responsible for
the global phase transitions), harzburgite (a melt-depleted end
member composition containing 80% olivine), and a mechanical
mixture of 80% harzburgite and 20% basalt, which has a similar
overall composition as pyrolite (partial mantle melting below
ridges forms harzburgite and basalt in approximately these
proportions1,2,29). (For simplicity, we will use basalt and

harzburgite to denote compositions throughout the mantle depth
range, irrespective of their phase stability field).

From these profiles, we calculate the jumps that would be
observed in SS at the frequencies used (see Methods) and
compare them with the contrasts inferred from observations
(Fig. 5). The predicted (Δρ, Δβ) fall on narrow trends (Fig. 6b, d).
To facilitate the comparison, the best seismic fits are constrained
to fall on these trends (by adjusting β and Δρ/Δβ within the
uncertainty allowed by the data; Fig. 5; Methods).

The inferred contrasts at the top of the MTZ (Δρ410, Δβ410) are
consistent with a pyrolitic composition across the region (Fig. 6b).
At these depths, however, the sensitivity to composition is
relatively small so that compositional heterogeneity cannot be
ruled out entirely.

For the base of the MTZ, the seismically inferred differences in
wavespeed and density contrasts between the NW and SE bins are
larger than what can be explained with temperature alone, in
particular since the small (~20 km) changes in MTZ thickness
across the region19 rule out large lateral thermal gradients. The
inferred regional differences in Δρ and Δβ can, however, be
explained by lateral variations in composition. NW of Hawaii the
inferred contrast is consistent with an average (pyrolitic)
composition; SE of Hawaii the data require a more olivine-rich,
i.e., more harzburgitic composition. Harzburgite increases Δβ660
and Δρ660 (as well as β660) and (within reasonable temperature
uncertainty) the SE values fall in between the range of predictions
for a pure harzburgite and a mechanical mixture of harzburgite
and basalt (Fig. 6d).

Discussion
The joint seismological and mineral physics analysis presented
here provides evidence for compositional heterogeneity near the
base of the transition zone beneath the Central Pacific ranging
from average pyrolitic mantle beneath Hawaii to a mixture with
more melt-depleted harzburgite southeast of the hotspot, whereas
no such heterogeneity is required near the top of the MTZ.

Before discussing the implications for our understanding of
mantle dynamics, we acknowledge two important assumptions
and possible uncertainties in the reflectivity calculations. Our
seismological and mineral physics calculations assume homo-
geneity and isotropy across the interfaces. Even if the bulk
compositions above and below 660 were different, harzburgite
enrichment below 660 is still the simplest way to explain the
higher seismic jumps in the SE. In any case, lateral variation in
composition is required to explain the observed regional variation
in Δβ and Δρ. Seismic anisotropy could bias estimates of Δβ (but
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not Δρ). However, at the base of the MTZ, anisotropy is expected
to be weak and uniform on the scale of our study area. The
transitions in olivine that give rise to 410 and 660 are quite well
constrained from mineral physics12,30 (Supplementary Fig. 7) and
uncertainties in the predicted amplitudes of the seismic jumps,
even with secondary phases28,31, would not affect our main
conclusions that compositional heterogeneity is required to
explain the lateral variation in Δβ and Δρ at 660.

Local harzburgite enrichment near the base of the MTZ could
result from compositional segregation due density contrasts that
result from differences in phase-transition depths in basaltic and
harzburgitic material32,33 (Fig. 7). Basaltic crust and its under-
lying harzburgitic residual mantle lithosphere are difficult to
separate when they are part of cool (high-viscosity) plates that

subduct through the transition zone34–36 and such subduction
will contribute to formation of a mechanical mixture in the lower
mantle12,36,37. In upwellings from this mixed deep mantle,
however, the hot low-viscosity environment allows segregation
near 660 of the harzburgitic parts, which are still in their high-
density lower-mantle phase, from the basaltic components, which
have already transformed to a lighter structure. Over time, this
can lead to accumulations of basalt above and harzburgite below
66014,15,36.

Such segregation is a plausible explanation for the composi-
tional heterogeneity discovered here. First, mantle upwellings
have long been proposed as ultimate sources for Hawaiian ocean
island basalts18. Second, discontinuity depths suggest that MTZ
temperature is relatively high in this area19,38. Third, the region is
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far away from active subduction that would destroy or overprint
evidence of segregation. We recognize that the accumulations in
the transition zone can form over time and may not be directly
related to current upwellings. In the case of Hawaii, harzburgite
enrichment appears southeast of any previously proposed loca-
tion of a deep-seated plume. This heterogeneity may complicate
detecting thermally-controlled phase-boundary topography and
explain the lack of agreement on the position of a deep Hawaiian
source.

Harzburgite enrichment could also explain high wavespeed
anomalies just below 660 that are visible in some tomographic
models (Supplementary Fig. 10;17). Basalt accumulations in the
Hawaiian upper mantle inferred by Ballmer et al.39 could be the
complement to the deep MTZ harzburgite enrichment we pro-
pose. In conjunction with further improved seismic tomography,
the reflectivity analysis presented here provides a new tool for
constraining the nature and distribution of compositional het-
erogeneity in the MTZ. Basalt-harzburgite segregation near the
base of the MTZ has been expected since the 1960s (see Ring-
wood32) and evidence that this process does indeed occur has
important implications for our understanding of the chemical
evolution of the Earth14,37.

Methods
Curvelet transform and wavefield separation. Curvelets (or directional wave
packets) can be thought of as localized “fat” plane waves and can be used for sparse
representations of wavefields40–42. After transformation of the wavefield from
space-time to the curvelet domain, coefficients associated with phases that have
different slownesses (for instance, SS precursors versus multiples of S, ScS, and Sdiff)

can be separated, and back transformation of these partitioned coefficients then
produces separated wavefields in the space-time domain. Effectively, this amounts
to a localized analog of directional filtering. The notion of scale in the curvelets is,
here, correlated with the frequency content of the data. Localization in space, time,
scale, and direction make curvelets superior to conventional Radon transforms or
slant stacking. Detailed description of how curvelets can be applied to extract SS
precursors can be found in Yu et al.19.

Reflection coefficients at 410 and 660. For a two-layer medium, the SH
reflection coefficient of the boundary can be calculated from the well-known
Zoeppritz equations and expressed as43

RSdS ¼ ρ2β2cosi2 � ρ1β1cosi1
ρ2β2cosi2 þ ρ1β1cosi1

ð1Þ

where ρ, β and i are density, shear wavespeed (β), and incident (or emergent) angle,
respectively. Subscripts 1 and 2 represent the top and bottom layer, respectively,
and d represents either 410 or 660. For underside reflections, both incident and
reflected S waves are located in the bottom layer. Following Shearer and Flana-
gan23, we define

Δρ ¼ 2
ρ2 � ρ1
ρ2 þ ρ1

; Δβ ¼ 2
β2 � β1
β2 þ β1

; ΔZ ¼ 2
Z2 � Z1

Z2 þ Z1
ð2Þ

where Δρ and Δβ are fractional changes in density and shear wavespeed across the
boundary, respectively. For small values of Δρ and Δβ, the fractional change in
shear-wave impedance (Z= ρ β) is

ΔZ � Δρþ Δβ ð3Þ

RSdS is sensitive to Δρ, Δβ, and the incident angle i2 (i1 can be obtained using
Snell’s law). The polarity of RSdS and the angle (or distance) where the reflection is
zero (that is RSdS= 0) are determined by the numerator on the right-hand side of
Eq. (1).
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To demonstrate the effect of Δρ and Δβ on the angle (or distance) where
RS660S = 0, we calculate synthetic waveforms for three different models
(Supplementary Fig. 1). Models 1 and 2 have the same Δβ but different Δρ across
the 660, whereas models 1 and 3 have the same Δρ but different Δβ. Models 2 and 3
have the same Δρ/Δβ across the 660. All models are simplified from PREM27 to
minimize contamination from other phases and the calculation of the synthetic
wavefields is based on the reflectivity method44. Synthetics show that all models
generate a polarity flip of S660S but the angle (epicentral distance) where this
happens depends on Δρ/Δβ.

The angle where S660S vanishes and switches polarity can be calculated from Eq.
(1). Supplementary Fig. 2A shows RS660S as a function of distance for the three
models. The calculated distance is consistent with that inferred from the synthetics
(cf. Supplementary Figs 1B–D and 2). The distribution of zero-reflection distances
for the range of Δρ and Δβ considered here is shown in Supplementary Fig. 2B. For
fixed zero-reflection distance, Δρ/Δβ is almost constant.

SdS reflection coefficients versus SdS/SS amplitude ratios. The measured
S410S/SS and S660S/SS amplitude ratios are affected by several factors including
reflection coefficients, geometrical spreading, intrinsic attenuation, and mantle
heterogeneity. To recover discontinuity properties, it is necessary to isolate the
reflection coefficients from the other factors. For a 1D reference model, SdS/SS
amplitude ratios can be expressed as

ASdS

ASS
¼ RSdS

RSS

GSdS

GSS

QSdS

QSS
ð4Þ

where, A are amplitudes, R reflection coefficients, G geometrical spreading, and Q
seismic quality factor (inverse of seismic attenuation). The reflection coefficient of
SS, the free-surface reflection, is 1. Due to the spherical geometry of the Earth, GSdS/
GSS is slightly lower than unity over the distance range with reliable SdS amplitude
measurements (Supplementary Figs. 3A, B). Because SS travels through the highly
attenuating upper mantle four times it is more attenuated than S410S or S660S,
which travel through the upper mantle only twice. Assuming a nominal period of
30 s and the PREM attenuation model, QS410S/QSS and QS660S/QSS are estimated to
be ~118% and ~127%, respectively (at 140°; Supplementary Figs. 3C, D). In
combination, the RS410S and RS660S are ~13% and ~17% smaller than S410S/SS and
S660S/SS, respectively.
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We verify these corrections through numerical waveform modeling
(Supplementary Fig. 4). The “1400 °C_harz_sharp” model is simplified from the
thermodynamic modeling result of harzburgite mantle composition at a 1400 °C
adiabatic temperature (see the “Thermodynamic modeling” section below). It
contains two sharp discontinuities at 410 and 660. Theoretical RS410S and RS660S
from Eq. (1) are systematically smaller than measured S410S/SS and S660S/SS
amplitude ratios, respectively. After correction for geometrical spreading and
attenuation (Supplementary Fig. 3), S410S/SS and S660S/SS match the predicted
values well (Supplementary Figs. 4C, D).

Incoherent stacking due to small time shifts in the reflected phases caused by
either discontinuity topography or mantle heterogeneity could also affect measured
amplitude ratios23. In our study region, depth variations in 410 and 660 are small
(σ ~ 3 km19). Assuming similar effects from mantle heterogeneity, the
corresponding time shifts would reduce the amplitudes of S410S and S660S by about
8% only. As a result, the corrected reflection coefficients RS410S and RS660S of the
regional stack are ~5% and ~10% smaller than S410S/SS and S660S/SS, respectively
(Fig. 3). Correction for incoherent stacking is not necessary for two sub stacks as
their topographic variations are much smaller.

Effects of mean shear wavespeed β on RSdS. For constant incident angle i2, RSdS
is most sensitive to Δρ and Δβ across the discontinuity (Eq. (1)), but as RSdS is
measured at different epicentral distances (or ray parameters), value of incident
angle i2 is a function of absolute shear wavespeed at the discontinuity. To account
for this effect we introduce an additional parameter – mean shear wavespeed (β) at
the discontinuity. For constant RSdS, there is a tradeoff between Δρ and Δβ due to
variations in β. This effect will cause overestimation of Δβ and underestimation of
Δρ if the assumed β is smaller than the true value, and vice versa (Fig. 5 and
Supplementary Fig. 5).

We can potentially constrain lateral variations in β at the discontinuity given
additional constraints on Δρ, Δβ or Δρ/Δβ ratio. Our thermodynamic modeling
(see the “Thermodynamic modeling” section below) suggests that for mantle
composition dominated by olivine, Δρ/Δβ is almost constant regardless of mantle
composition or temperature (Fig. 6b, d). For the NW sub stack, using mean β660
from ak135 gives a Δρ/Δβ ratio almost the same as the one predicted by our
thermodynamic modeling. It suggests that β660 to the NW of Hawaii is close to the
global average (ak135) (Fig. 5c). However, to the SE of Hawaii, maintaining same
Δρ/Δβ ratio requires 3% higher in β660 than global average (Fig. 5d). The
amplitude–distance trend of S410S/SS does not provide a tight constraint on β410,
but the fit improves for larger values and allows the same 3% increase (compared to
that of ak135) as for 660 (Fig. 5b).

Thermodynamic modeling. We perform thermodynamic modeling using Per-
ple_X45, following the method as described by Cobden et al.28, and using the
database compiled by Stixrude and Lithgow-Bertelloni12. The effect of pressure-,
temperature- and frequency-dependent anelasticity is added using model Q7,
which corresponds to model Qg46 above the olivine-wadsleyite transition and
model Q647 below, where transitions in Q parameters occur smoothly over a
pressure range of 2.2 GPa around the olivine-to-wadsleyite and ringwoodite-to-
postspinel phase transitions, i.e. changes in anelasticity parameters do not con-
tribute to the jumps.

Density and velocity profiles are calculated for three different mantle
compositions (all taken from Xu et al.29: pyrolite (60% olivine), harzburgite (80%
olivine) and mechanical mixture of harzburgite (80%) and basalt (20%), along
adiabats with potential temperatures ranging from 1200 °C to 1600 °C.
Supplementary Fig. 6 shows the phase diagram for the pyrolite mantle
composition.

For all geotherms and compositions, the jumps of β and ρ around 410 and 660
are due to the phase transitions in olivine. But, the depth and magnitude vary
depending on the mantle temperature and composition (Supplementary Fig. 7).
The depths of 410 and 660 are mainly controlled by temperature, while
composition has a larger effect on the magnitude of Δβ and Δρ, as well as on β at
the discontinuity (Supplementary Fig. 8). The basalt fraction in the mechanical
mixture lowers the overall olivine fraction and reduces the contrasts compared to a
100% harzburgite composition.

Effects of frequency on SdS reflection coefficients. SdS reflection coefficients for
a two-layered medium are fully described by Eq. (1) and are not frequency
dependent. However, Δβ and Δρ profiles from thermodynamic modeling usually
show both abrupt and gradual changes, leading to the frequency-dependent nature
of SdS reflection coefficients. Due to nonlinear effects and/or phase interference, it
is difficult to calculate the effect on reflection coefficients.

We use synthetic waveform modeling to derive (empirically) an equivalent
depth interval, over which the total changes in density and VS can predict the
observed amplitudes of SS precursors via Eq. (1). Supplementary Fig. 9 shows the
procedure of deriving an equivalent depth interval using two different models: (a) a
harzburgite model along a 1400 °C adiabat with gradual changes in density and
velocity near 410 and 660 and (b) the PREM reference model. We first measure
amplitude ratios of SdS/SS on synthetic waveforms and then correct them for
geometrical spreading and intrinsic attenuation. For the gradual 1400 °C
harzburgite model, the observed S410S/SS and S660S/SS amplitude ratios are

equivalent to those predicted by total changes of density and VS over a depth
interval of ~10 km and ~25 km, respectively. In contrast, for the PREM model, the
observed S410S/SS and S660S/SS are well predicted by the first order discontinuities
at 400- and 670-km depth. We apply the above procedure to all thermodynamic
models. The results are shown in Fig. 6b, d.

Data availability. All broadband seismic waveforms are retrieved from IRIS-DMC
(Incorporated Research Institutions for Seismology, Data Management Center).
Results obtained in this study are available upon request from the corresponding
author.
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