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Highlights 

▶The ASR properties using two types of electrolytes are investigated.  

▶SBCO50 showed the lowest ASR values in the overall temperature range. 

▶The percolation limit was also achieved for a SBCO50 composite cathode. 

▶SBCO50 on CGO91 has to be adopted at 750 oC or in a lower temperature range 

▶SBCO50 on CGO91 coated 8YSZ has to be used as a temperature of 750 oC of above. 

 

 

Abstract 

SmBaCo2O5+d (SBCO) showed the lowest observed Area Specific Resistance (ASR) value 

in the LnBaCo2O5+d (Ln: Pr, Nd, Sm, and Gd) oxide system for the overall temperature ranges 

tested.  The ASR of a composite cathode (mixture of SBCO and Ce0.9Gd0.1O2−d) on a 

Ce0.9Gd0.1O2−d (CGO91) electrolyte decreased with respect to the CGO91 content; the 
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percolation limit was also achieved for a 50 wt% SBCO and 50 wt% CGO91 (SBCO50) 

composite cathode.  

The ASRs of SBCO50 on the dense CGO91 electrolyte in the overall temperature range of 

500 to 750 oC were relatively lower than those of SBCO50 on the CGO91 coated dense 8 

mol % yttria-stabilized zirconia (8YSZ) electrolyte for the same temperature range. From 750 

oC and for all higher temperatures tested, however, the ASRs of SBCO50 on the CGO91 

coated dense 8YSZ electrolyte were lower than those of the CGO91 electrolyte. 

The maximum power densities of SBCO50 on the Ni-8YSZ / 8YSZ / CGO91 buffer layer 

were 1.034 W cm-2 and 0.611 W cm-2 at 800 oC and 700 oC. 

 

Keywords: Intermediate temperature-operating solid oxide fuel cell, layered peorvksite, area 

specific resistance, percolation, composite cathode 

 

 

1. Introduction 

Recently, Intermediate Temperature-operating Solid Oxide Fuel Cells (IT-SOFCs) have 

been focused on because Solid Oxide Fuel Cells (SOFCs) operated at high operating 

temperature ranges over 800 oC have problems of thermal degradation, thermal expansion 

mismatch and high fabrication cost. However, cathode overpotential has dramatically 
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increased at the intermediate operating temperature ranges and has typically been the major 

source of voltage loss in IT-SOFC operation. Therefore, most research on IT-SOFCs had been 

devoted to cathode materials [1–3]. 

One candidate cathode material using ionic and electronic conductors (MIECs), a layered 

perovskite with the general formula LnBaCo2O5+d (Ln: lanthanides 0 < d <1), has recently 

been a subject of interest for cathode materials for IT-SOFCs because of its high oxygen 

transport properties, excellent oxygen surface exchange coefficients and superior oxide ionic 

diffusivity [4,5]. 

Our group has shown that layered perovskite materials are promising cathode materials for 

application to IT-SOFCs at temperatures between 500 oC and 700 oC [6-9]. For example, the 

maximum electrical conductivity value of SBCO was 570 S cm−1 at 200 oC; this material also 

showed a metal–insulator transition (MIT) phenomenon at about 200 oC. The Area Specific 

Resistance (ASR) results for single phase SBCO and for a composite cathode comprised of 50 

wt% SBCO and 50 wt% CGO91 were 0.13 and 0.05 Ω cm2 at 700 oC. The coefficients of 

thermal expansion (CTE) of the SBCO of 19.7×10−6 K−1 and 20.0×10−6 K−1 at 600 and 700 oC 

dropped to 12.5×10−6 K−1 and 12.7×10−6 K−1 at 600 and 700 oC, which values are similar to 

the value of the CGO91 electrolyte [7]. 

In this work, the electrochemical properties of a composite cathode prepared using SBCO 

with various weight percentages of CGO91 (from 0 wt% to 70 wt%) were investigated for 
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direct application as IT-SOFC cathode material. Significantly, the ASR properties when using 

two types of electrolytes (CGO91 and CGO91 coated 8 mol% Y2O3 stabilized ZrO2 (8YSZ)) 

are also investigated for the operating temperature conditions. In addition, the power densities 

when using a single phase cathode and composite cathodes on a Ni-8YSZ / 8YSZ / CGO91 

buffer layer were also measured for cathode application of IT-SOFC.  

 

2. Experimental  

2.1. Sample preparation and phase synthesis 

Layered perovskites with general chemical compositions of LnBaCo2O5+d (Ln: lanthanides) 

were prepared by general solid state reaction using high purity oxides (Praseodymium oxide 

(Pr6O11, Aldrich, 99.9%), Neodymium oxide (Nd2O3, Aldrich, 99.9%), Samarium oxide 

(Sm2O3, Aldrich, 99.9%), Gadolinium oxide (Gd2O3, Aldrich, 99.9%) and Cobalt oxide 

(Co3O4, Aldrich, 99.9%) ) and carbonate (barium carbonate, (BaCO3, Aldrich, 99.9%)). These 

oxides and carbonate were heat-treated at 300 oC for 2 hours to achieve dehydration of the 

raw materials. After weighing the powders for exact stoichiometry with respect to the molar 

ratio of lanthanide oxides, barium carbonate and cobalt oxide, the samples were calcined in 

two steps. In the case of the first calcination process, the powders were mixed and ground in a 

mortar and pestle. Then, in order to decompose the carbonate, they were placed in a muffle 

furnace and heated at various ramp rates from room temperature to 1000°C for 8 hours as a 
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first calcination. The temperature for the first calcination was increased in 3 steps, for 

example 300, to 500 to 750 oC before reaching 1000 oC. After finishing the cooling process to 

room temperature, the samples were ground and ball-milled for 24 hours with zirconia media 

in acetone. In the second step, samples were heated at 1100 oC for 36 hours at an increment of 

5 oC/min and were then cooled to room temperature. 

X-ray diffraction (XRD) patterns of the prepared samples were obtained in a Philips 

diffractometer using Cu radiation (λ= 0.15418 nm). The obtained data were matched with the 

reference data for identification of the crystal structures. 

2.2. Half cell fabrication and test  

For the fabrication of symmetric half cells that could be used to perform electrochemical 

characterizations, 10 mol% gadolinia doped ceria (Ce0.9Gd0.1O2-d, CGO91, Praxair Specialty 

Ceramics, 99.9%) and 8 mol% Y2O3 stabilized ZrO2 (8YSZ, Tosoh) were used as electrolytes. 

These electrolytes were prepared by pressing the powders into pellets with circular shapes at 2 

x 103 kg/m2 and sintering them at 1400°C for 4 hours. The final dimensions of the sintered 

CGO91 electrolyte pellets were approximately 21 mm diameter and 2 mm thickness. For the 

CGO91 buffer layer coated 8YSZ electrolyte, CGO91 slurry was prepared with vehicle 

systems comprised of α-Terpineol and Butvar, spin coated onto the surface of the sintered 

8YSZ and then heat treated at 1300 oC for 3 hours.  

Single phase cathodes and composite cathodes with CGO91 powders were also used for 
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electrochemical measurements. Vehicle systems comprised of α-Terpineol and Butvar were 

prepared and then cathodes were mixed with vehicles. The characteristics of the initial single 

phase cathodes and of the composite phase cathodes are summarized in Table 1. These 

cathodes were coated onto the electrolytes using screen printing to form symmetrical half 

cells. These half cells were sintered for 1 h at 1000 °C in order to form a porous electrode 

structure well bonded to the electrolyte. The final surface area of the symmetric cells was 

about 1.09 cm2. 

Measurements of the ASRs of the cathodes were conducted in air at open circuit voltage 

(OCV) as a function of temperature between 500 and 850 oC, with an increment of 50 oC. An 

AC four-probe method using a Solartron 1260 was used to measure the electrochemical 

properties. Impedance measurements were conducted in a frequency range of 5 MHz to 100 

mHz; the amplitude of the applied voltage was 20 mV under OCV. The ASRs, measured from 

the differences between the first intercept in the vicinity of the high frequency and the last 

intercept at low frequency, were divided in two because the tested cells had two symmetrical 

electrodes. 

2.3. Single cell fabrication and test  

Anode substrates of SOFC comprised of 8YSZ and NiO (Alfa, 99.9%) powders were 

provided by the Korea Electric Power Research Institute (KEPRI), as previously reported and 

as can be found in the literature [10]. After coating the CGO91 slurry on the anode substrates 
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of SOFC with a spin coater, a buffer layer (CGO91 slurry) coated sample was sintered at 

1300 oC for 3 hours. SmBaCo2O5+d (SBCO) and 50 wt% SBCO-50 wt% CGO91 (SBCO50) 

cathodes were also screen-printed and then heat-treated on CGO91 coated anode substrates at 

1000 °C for 1 hour. 

Power densities multiplied by voltage and current were measured as a function of applied 

current density using a Solatron 1286 with a 4 lead configuration under 5% H2 / N2 from 600 

oC to 800 oC with a water bubbling system. 3% H2O humidified H2 was supplied to the anode 

chamber by bubbling through deionized water at a flow rate of 100 sccm. Air was also fed 

into the cathode chamber as the oxidant gas. When supplying hydrogen gas and the oxidant 

gas, mass flow controllers were used to control the gas flow rates. Pt-paste and Pt-mesh were 

used for current collection. Pt mesh, having a surface area of 1.09 cm2, was placed on the 

cathodes; Pt paste was also used between the mesh and each electrode as a current collector. 

 

3. Results and discussion 

3.1. Electrochemical properties of LnBaCo2O5+d 

Fig. 1 shows the relationships of the Area Specific Resistances (ASRs) to the various 

lanthanide replacements in the LnBaCo2O5+d (Ln: Pr, Nd, Sm, and Gd) oxide systems as a 

function of temperature in the range of 500 to 850 oC. The ASRs of PrBaCo2O5+d (PBCO) at 

600, 650 and 700 oC are 1.209, 0.475 and 0.233 Ω cm2 and the values of NdBaCo2O5+d 
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(NBCO) in this same tested temperature range are 0.606, 0.438 and 0.259 Ω cm2. In addition, 

GdBaCo2O5+d (GBCO) shows ASR values of 13.749, 4.943 and 1.945 Ω cm2 at 600, 650 and 

700 oC. Finally, the ASRs of SmBaCo2O5+d (SBCO) in the same measured temperature range 

are 0.603, 0.283 and 0.131 Ωcm2.  Consequently, from these summarized ASR values, as 

well as from the results shown in Fig. 1, it can be asserted that the Sm doped layered 

perovskite (SBCO) shows the lowest observed ASR values in the LnBaCo2O5+d (Ln: Pr, Nd, 

Sm, and Gd) oxide systems; therefore, Sm substitution in LnBaCo2O5+d can play an important 

role in decreasing ASR values. 

However, most of the ASR values, except for the value of 0.131 Ω cm2 of the SBCO 

measured at 700 oC, are not below the target ASR value (0.15 Ω cm2 at 700 oC) suggested by 

Steel and Heinzel for cathode materials for IT-SOFC [11].  This low performance can be 

improved by introducing the concept of a composite cathode to a single phase cathode; this is 

a mixed structure using the cathode material of SBCO and the electrolyte material of CGO91. 

Importantly, the usage of such composite cathodes can not only increase the ionic 

conductivity but also extend the three phase boundary (TPB) between the cathode and the 

electrolyte. In addition, the coefficient of thermal expansion (CTE) for such s structure 

decreases as a function of the increased contents of electrolyte material [12-17].  

3.2. Electrochemical properties of composite cathodes  
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The ASR values of single phase (SBCO) and composite cathodes with SBCO and CGO91 

were investigated with respect to the temperature and CGO91 contents; results are 

summarized in Fig. 2 (a) and (b).  In the case of these experiments, the composite cathodes 

are denoted with initials. For example, SBCO40 is the composite cathode consisting of 60 

wt % SBCO and 40 wt% CGO91. According to the order of abbreviation, SBCO50 is a 

sample with 50 wt % of SBCO and 50wt% of CGO91; SBCO70 is a composite cathode 

comprising of 30 wt % of SBCO and 70 wt% of CGO91.  

These results are shown in Fig. 2 (a) and (b); the ASR results for SBCO, SBCO20, 

SBCO40 and SBCO50 were presented in our previous work in the literature [7]. The ASR 

values of SBCO10, SBCO30, SBCO60 and SBCO70, which have been also reported in the 

literature [8], are 0.155, 0.095, 0.093 and 0.133 Ω cm2 at 700 oC. From the summarized 

results shown in Fig. 2 (b), it can be seen that the percolation limit was achieved for the 

SBCO50 composition and, significantly, the optimized triple phase boundary influenced the 

electrochemical processes, resulting in reduced polarization.  

Fig. 3 shows the impedance plots of SBCO50 on dense CGO91 electrolyte with respect to 

the temperature tested. From these plots, it can be seen that the resistance caused by the grain 

boundary of CGO91 is between at 500 and 550 oC, in the vicinity of the high frequency 

ranges (103 Hz); this level of resistance is not observed after 600 oC. From the impedance 

results for SBCO50 on CGO91 electrolyte at temperatures over 600 oC, it can be seen that the 
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charge transfer occuring at the interface between the cathode and electrolyte is not dominant 

when the temperature increases, which indicates that the active site of the electrode and the 

electrolyte is extended as a result of the enhanced triple phase boundary (TPB). 

Fig. 4 shows impedance results for SBCO and SBCO50, allowing a comparison with the 

ASR differences with respect to the CGO91 level of SBCO. The cathodic polarization of the 

two cathode materials is dependent on the CGO91 content; the cathodic polarization of 

SBCO50 is 50% lower than that of SBCO at all temperatures tested because of the enhanced 

active sites and the increased triple phase boundary in the electrodes. For example, the 

impedance results for the various composite cathodes with SBCO, SBCO20, SBCO40 and 

SBCO50 measured at 700 oC show the relationship of the CGO91 content effect in these 

composite cathode systems. These results show not only the effect of CGO91 in the 

composite cathode but also explain the phenomenon of percolation. In summary, the usage of 

CGO91 as one of the components in a composite cathode improves the ionic conductivity and 

the mixed ionic and electronic (MIEC) property, as well as bringing about improvements in 

the oxygen diffusion rate at the boundary of the cathode and in the electrolyte and charge 

transfer of oxygen ions. 

Impedance spectra of SBCO50 on CGO91 (buffer layer) coated 8YSZ from 500 to 750 oC 

are shown in Fig. 5; the resistance of the grain boundary in 8YSZ can be found in the vicinity 

of 104 Hz, as high as the frequency ranges measured at 500 oC. Therefore, in this case, it is 
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determined from the impedance spectra that the cathodic polarization of SBCO50 is in the 

frequency range of 104 Hz or less than 104 Hz. From these impedance results, the charge 

transfer resistance can be seen to affect the overall resistance when the temperature increases. 

In addition, when one compares Figs. 5 and 3 of the impedance plots, the separation of the 

entire impedance plot occurs due to the 8YSZ-based electrolyte.  

In order to illustrate the CGO91 effect, Fig. 6 provides the summarized results for SBCO50 

with different electrolytes, for example, the CGO91 coated 8YSZ electrolyte and the CGO91 

electrolyte. In the temperature ranges tested, the total set of ASRs of SBCO50 on the CGO91 

coated dense 8YSZ electrolyte in the overall temperature range of 500 to 750 oC were 

relatively larger than those of SBCO50 on the dense CGO91. However, the ASR value of 

SBCO50 is expected to be almost the same at 750 oC. From 750 oC to the higher temperature 

ranges tested, the ASRs of SBCO50 on the CGO91 electrolyte were higher than those of 

CGO91 coated 8YSZ. Therefore, it is desirable that SBCO50 on CGO91 be adopted in a 

temperature range of 750 oC or less and that SBCO50 on CGO91 coated 8YSZ be applied at a 

temperature of 750 oC or above. In addition, the differences between these electrolytes show 

the impact of the activation energy, although all use the same material (SBCO50). For 

example, the activation energy of SBCO50 on the CGO91 electrolyte is found to be 

approximately 1.06 eV. However, the value of SBCO50 on the CGO91 coated 8YSZ 

electrolyte was 1.40 eV. 
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3.3. Performance properties of single cell  

Figure 7 shows the performances, as a function of applied current density, of single cells 

comprised of Ni-YSZ / YSZ / CGO91 (buffer layer)/ SBCO and Ni-YSZ / YSZ / CGO91 / 

SBCO50 under 5% H2 / N2 from 600 oC to 800 oC with a water bubbling system. The results, 

expressed in gray color, are from the SBCO50 as a composite cathode; the black color shows 

the results from SBCO as single phase cathode.  

From these results, two galvanostatic single cell tests shows open circuit voltages (OCV) of 

1.078 V for the SBCO cathode and 1.089 V for the SBCO50 cathode when measuring is 

performed at 800 oC; these values were very close to the values obtained using the Nernst 

equation with humidified hydrogen (3% H2O) as fuel [18], which implies that the YSZ 

electrolyte was well formed, without pores or cracks on the Ni-YSZ anode substrate, and that 

the fuel gas did not pour out from the anode side during operation. 

When comparing the power density values of the cathode materials on CGO91 coated 

8YSZ, SBCO50 shows power density values of 1.034, 0.830, 0.611, 0.387 and 0.216 W cm-2 

at 800, 750, 700, 650 and 600 oC, respectively. The performance reported here can be 

significantly improved by using humidified pure H2 as a fuel and oxygen instead of the 5% H2 

/ N2 and air. In addition, the maximum power density values of SBCO with Ni-YSZ / YSZ / 

CGO91 (buffer layer) are 0.968, 0.684, 0.401, 0.211 and 0.105 W cm-2 at the temperature 

ranges shown in Fig.7. The increased power density implies that full coverage of the ionic 
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conduction phase has effectively extended the triple phase boundaries (TBPs) and 

consequently increased the electrochemical activity of the SBCO electrodes.  

 

4. Conclusions 

The Sm doped layered perovskite shows the lowest observed ASR values in LnBaCo2O5+d 

(Ln: Pr, Nd, Sm, and Gd) oxide systems. When adding various weight percentages of CGO91 

(0 wt% to 70 wt%) to single phase SBCO, SBCO50 comprised of 50 wt% of SBCO and 

50wt% of CGO91 showed the lowest values in the overall temperature range. From the 

electrochemical results obtained using a variety of electrolytes, SBCO50 on CGO91 has to be 

adopted at 750 oC or in a lower temperature range and SBCO50 on CGO91 coated 8YSZ has 

to be used as a temperature of 750 oC of above. The maximum power densities of SBCO50 on 

the CGO91 buffer coated anode substrate were 1.034 W cm-2 and 0.611 W cm-2 at 800 oC and 

700 oC. 
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Fig. 1. 

Fig. 1. Arrhenius plot of area specific resistances (ASRs) of LnBa0.5Sr0.5Co2O5+d (Ln: Pr, Nd, 

Sm and Gd) sintered at 1000 oC for 1 hour. 
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Fig. 2. (a) Arrhenius plot of area specific resistances (ASRs) of composite cathodes with 

SmBaCo2O5+d and CGO91 contents (0 wt% to 70 wt%) from 500 to 850 oC and (b) 

summarized ASR results for composite cathodes with SmBaCo2O5+d and CGO91 contents (0 

wt% to 70 wt%) at 600, 650 and 700 oC [7, 8].  
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Fig. 3. 

Fig. 3. Impedance plots of SBCO50 on CGO91 electrolyte from 200 to 750 oC. The inset 

numbers denote the logarithm of the measuring frequency.  
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Fig. 4. 

Fig. 4. Comparison of impedance plots of SBCO50 and SBCO on CGO91 from 500 to 750 oC. 

The inset numbers denote the logarithm of the measuring frequency.  
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Fig. 5. 

Fig. 5. Impedance plots of SBCO50 on CGO91 coated 8YSZ from 500 to 750 oC. The inset 

numbers denote the logarithm of the measuring frequency.  
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Fig. 6. Comparisons of ASR results for SBCO50 on CGO91 and CGO91 (buffer layer) coated 

8YSZ. 
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Fig. 7. 

Fig. 7. Current (I) - voltage (V) - power density (P) curve of the Ni-YSZ / YSZ / CGO91 

(buffer layer) / SBCO and Ni-YSZ / YSZ / CGO91 (buffer layer) / SBCO50 under 5% H2 / N2 

as fuel and air as oxidant in the temperature range of 600 oC to 800 oC. The results expressed 

in gray color are from SBCO50 as a composite cathode; the black color shows the results for 

SBCO as single phase cathode. 
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Table 1. Chemical compositions and their initials in this research 

Compositions Initials 

PrBaCo2O5+d PBCO 

NdBaCo2O5+d NBCO 

SmBaCo2O5+d SBCO 

GdBaCo2O5+d GBCO 

30 wt% SBCO and 70 wt% CGO91 SBCO70 

40 wt% SBCO and 60 wt% CGO91 SBCO60 

50 wt% SBCO and 50 wt% CGO91 SBCO50 

60 wt% SBCO and 40 wt% CGO91 SBCO40 

70 wt% SBCO and 30 wt% CGO91 SBCO30 

80 wt% SBCO and 20 wt% CGO91 SBCO20 

90 wt% SBCO and 10 wt% CGO91 SBCO10 

 


