A COMPARATIVE STUDY OF HOW BRITISH TITS ENCODE PREDATOR THREAT IN THEIR

MOBBING CALLS

Nora V Carlson¹, Susan D Healy¹, Christopher N Templeton^{1, 2}

¹ School of Biology, University of St Andrews, Scotland, UK

² Department of Biology, Pacific University, Forest Grove, OR, USA

Word count: 9120

*Correspondence: Nora V Carlson

School of Biology

University of St Andrews

Harold Mitchell Building

St Andrews, Fife

KY16 9TH, Scotland, UK

+44(0)7541-967008

nc54@st-andrews.ac.uk

Co-correspondence: Christopher N Templeton,

Department of Biology,

Pacific University,

2043 College Way

Forest Grove, Oregon, 97116, USA

+1 503-352-3149

templeton@pacificu.edu

A COMPARATIVE STUDY OF HOW BRITISH TITS ENCODE PREDATOR THREAT IN THEIR

2 MOBBING CALLS

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

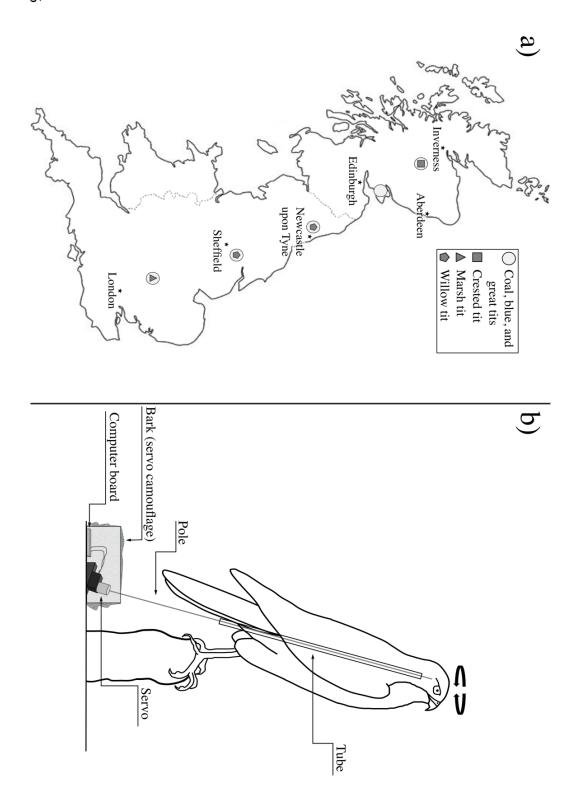
1

Many species use anti-predator vocalizations to signal information about potential predators, including the level of threat posed by a particular predator. It is not clear, however, why only some prey species do this. Because they use multiple mechanisms to encode threat specific information about predators, North American Paridae species have been a particularly useful model for studying anti-predatory signals. Paridae as a group are also useful for examining phylogenetic conservation of vocal signals because all of these species (at least those studied previously) employ similar ways of encoding information about predatory threat. To test whether the ways in which predator threat information is encoded (here measured by a bird's vocal output) are conserved across a family with similar vocalizations, we used taxidermy mounts to simulate low and high threat predators to induce mobbing in six species across five genera of British Paridae. We found that, like North American species, British tits all increased their call rate in response to predators compared with non-threatening control mounts, but they all varied in the number and types of additional ways they encoded this information. Some species (blue & willow tits) used all four ways to differentiate between different threat predators, while others used only two (crested tits), one (great & coal tits) or none at all (willow tits). The variation in the way each species encoded predator threat information in their calls was not explained by phylogenetic relatedness or by variation in life history. To better understand patterns of information encoding across related species, we suggest that playback experiments to determine how encoded information is used by conspecifics and

- heterospecifics might provide insights about why some species encode information about
 predator threat in multiple ways.
- 26
- 27 **KEY WORDS:** acoustic communication, anti-predator behaviour, information encoding,
- 28 mobbing, Paridae, predator-prey dynamics

1 A COMPARATIVE STUDY OF HOW BRITISH TITS ENCODE PREDATOR THREAT IN THEIR 2 MOBBING CALLS 3 4 Many species, across a wide range of taxa, use vocalizations to warn about and 5 defend against predators (Gill & Bierema, 2013; Klump & Shalter, 1984; 6 Slobodchikoff, 2010; Townsend & Manser, 2013). These anti-predator vocalizations 7 can provide information about a predator's size, speed, distance, type/category, and 8 even behaviour (Evans, Macedonia, & Marler, 1993; Gill & Bierema, 2013; Griesser, 9 2008; Marler, 1955; Murphy, Lea, & Zuberbühler, 2013; Placer & Slobodchikoff, 10 2000; 2004). 11 12 Species vary substantially in the ways they encode information to communicate about 13 predators. Meerkats, Suricata suricatta, for example, increase call rate along with a 14 number of fine-scale acoustic parameters to communicate an increase in the danger a 15 predator poses (Manser, 2001), while yellow warblers Setophaga petechia use the 16 likelihood of producing a particular call type (seet) to signal the presence of a nest 17 predator (Gill & Sealy, 2004). Other species use strategies that range from employing 18 a single way of encoding information to combining multiple ways of encoding 19 information. Furthermore, some strategies may be driven entirely by the signaller's 20 internal state while others reference external stimuli (Gill & Bierema, 2013; Magrath, 21 Haff, Fallow, & Radford, 2014). American crows Corvus brachyrhynchos, for 22 example, use longer calls and higher call rate to signal increased danger (Yorzinski & 23 Vehrencamp, 2009), while vervet monkeys *Chlorocebus pygerythrus* indicate not 24 only predator type (leopard, eagle, and snake) but degree of danger through the

propensity to use different call types (predator types) and an increase in the number of


26 elements (degree of danger; Seyfarth, Cheney, & Marler, 1980). It is not clear why 27 this variability across different taxa and species in encoding mechanisms exists. But, 28 as many closely related species share similar vocalizations and may therefore share 29 similar ways of encoding predator threat information, it might be that phylogenetic 30 relationships provide part of the explanation (Hailman, 1989; Latimer, 1977; Randler, 31 2012) 32 33 The North American Paridae have been widely used to study the ways in which 34 individuals encode predator threat particularly in their mobbing calls. Mobbing calls 35 generally serve to harass the predator and/or to recruit conspecifics and 36 heterospecifics for that harassment (Curio, 1978). In their mobbing calls, North 37 American Paridae encode not only the presence or absence of a predator but they also 38 differentiate between predators of different threat levels. These species indicate the 39 presence of a higher threat predator by increases in: 1) call rate (black-capped 40 chickadees Poecile atricapillus, Carolina chickadees Poecile carolinensis, mountain 41 chickadees *Poecile gambeli*, and tufted titmice *Baeolophus bicolor*; Baker & Becker, 42 2002; Bartmess-LeVasseur, Branch, Browning, Owens, & Freeberg, 2010; Billings, 43 Greene, & La Lucia Jensen, 2015; Hetrick & Sieving, 2011; Templeton, Greene, & 44 Davis, 2005); 2) the number of elements in their calls (black-capped chickadees, 45 Carolina chickadees, mountain chickadees, and tufted titmice; (Baker & Becker, 46 2002; Bartmess-LeVasseur et al., 2010; Billings et al., 2015; Courter & Ritchison, 47 2010; Hetrick & Sieving, 2011; Sieving, Hetrick, & Avery, 2010; Soard & Ritchison, 48 2009; Templeton et al., 2005); 3) the propensity to produce particular call types 49 (tufted titmice and black-capped chickadees; Clemmons & Lambrechts, 1992; Sieving 50 et al., 2010); and 4) the proportion of one call type used across mobbing events

(black-capped chickadees; Baker & Becker, 2002). Of the North American species, black-capped chickadees have been shown to use all four of these ways of encoding information in response to predators of different levels of threat. While the remaining species have not been tested for all of the four ways, the available evidence suggests that they likely behave in the same fashion as black-capped chickadees and there is no indication that any of these species do not use any of the four ways of encoding information. The lack of evidence to the contrary combined with data from the outgroup ,Japanese great tits, *Parus minor*, which share the four ways with black-capped chickadees, has led to the assumption that all Paridae species encode predator threat information in their mobbing calls using this particular suite of changes to their vocalizations (Hetrick & Sieving, 2011; Langham, Contreas & Sieving, 2006; Suzuki, 2014; Wilson & Mennill, 2011).

As only a small number of the Paridae have actually been tested and most of the species tested are from the same genus (*Poecile*; Johansson et al., 2013), providing a general explanation for the ways in which animals encode predator threat is not straightforward. To test experimentally the degree to which phylogenetic conservatism might explain the distribution of encoding mechanisms within families, we induced mobbing events in flocks of tits found in the UK (six species across five genera) by simulating predator encounters using robotic taxidermy mounts of predators representing different threat levels. We then examined whether each of these species 1) differentiated between predators and non-predators in their mobbing calls, 2) differentiated between high and low threat predators, and 3) used the same four ways of encoding predator threat as the previously-tested Parid species. Here we use the term 'encode' simply to denote that the calls produced in response to different

76	predators are statistically different and that they therefore have the potential to
77	provide reliable information to receivers. Without playback experiments we cannot
78	confirm that receivers decode and use this information.
79	
80	We used these data to test whether phylogeny explains the number and ways of
81	encoding information used by a given species, making the following predictions: 1) It
82	the ways of encoding information are conserved within the Pariadae, UK tit species
83	should use all four ways of encoding information to differentiate predators from non-
84	threats, and differentiate between predators of different threat levels. 2) If, however,
85	any of these species vary in the way they encode information about predators, the
86	pattern of relatedness should at least roughly match these differences such that those
87	species that are more closely related (e.g. marsh and willow tits in the genus <i>Poecile</i>)
88	to be more similar in the ways in which they encode information than those that are
89	more distantly related (e.g. marsh tits in the genus <i>Poecile</i> and blue tits in the genus
90	Cyanistes).
91	
92	METHODS
93	
94	Study sites
95	
96	We conducted experiments from January to March 2014 and 2015 in four general
97	geographical regions in the UK (Figure 1a), each of which had feeders at a number of
98	different sites. Blue tits, Cyanistes caeruleus, great tits, Parus major, and coal tits,
99	Periparus ater, are found across the UK; crested tits, Lophophanes cristatus, occur
100	only in northern Scotland; marsh, Poecile palustris, and willow, Poecile montanus,

101	tits occur only in the southern regions of the UK. To test blue, great, and coal tits we
102	used feeders in and around St Andrews, Fife (latitude, longitude; 56.331247, -
103	2.838451; n = 23 feeder locations) from January-March 2014. To test crested tits
104	along with blue, great and coal tits we used feeders in the north-western Cairngorm
105	mountains in Scotland (57.191208, -3.779156; n = 15 feeder locations) from January-
106	March 2015. To test willow tits along with blue, great, and coal tits, we used feeders
107	in Doncaster (53.519235, -1.131355) and Newcastle upon Tyne (55.053305, -
108	1.644546) from January-March 2015 (n = 7 feeder locations). To test marsh tits along
109	with blue, great, and coal tits we used feeders in Monk's Wood near Cambridge
110	(52.401114, -0.238468; n = 9 feeder locations) from January-March 2015. Feeders
111	were filled with black-oil sunflower seeds and peanuts and placed in either
112	parks/forests or private gardens. To ensure that birds had enough time to locate and
113	become accustomed to using the feeders, all of the bird feeders were put up a
114	minimum of two weeks before we began the experiment.

symbol inside the circle. b) Schematic of the robo-raptors used for these experiments. A hidden servo and computer board were used to control circles. The additional presence of crested (square), marsh (triangle), or willow tits (pentagons) is indicated by the corresponding dark grey the head of each taxidermy mount to produce realistic head movements for a perched raptor. Figure 1. a) Feeder locations in the four regions across the UK. Blue, great, and coal tits were found in all regions as shown by the light grey

119

120

121

118

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

To test whether and how the tit species encode information about predator threat in their mobbing calls we simulated encounters with three common British species, which vary dramatically in the level of threat they pose to adult tits: 1) sparrowhawks, Accipiter nisus, are high-threat predators for tits and prey almost exclusively on small to medium sized birds including tit species (Curio, Klump, & Regelmann, 1983; Millon, Nielsen, Bretagnolle, & Møller, 2009; Petty, Patterson, Anderson, Little, & Davison, 1995); 2) common buzzards, *Buteo buteo*, are low-threat predators for tits as, although the majority of their diet ($\sim 73\%$) made up of mammals and larger birds such as pigeons, buzzards do occasionally eat small passerines (~ 16% of their diet; Graham, Redpath, & Thirgood, 1995), including tit species (Swann & Etheridge, 2009); 3) grey partridges, *Pedrix pedrix*, were used as a control to ensure that the tit species responded to the specific features of the predators and not simply to the presence of a moving taxidermy bird. This species is found across the UK, is similar in size to a sparrowhawk, but as it does not eat birds it poses no threat to tit species (Šálek, Marhoul, Pintíř, Kopecký, & Slabý, 2004). We used custom-made robotic taxidermy mounts of each species (Carlson et al.

139

140

141

142

143

144

145

146

we used custom-made robotic taxidermy mounts of each species (Carlson et al. submitted; Figure 1b) to elicit mobbing responses by the tits. We used two different mounts of each species to reduce pseudoreplication. Our mounts included: one male juvenile and one female adult sparrowhawk, two adult female buzzards, and two adult male grey partridges. All mounts were perched on a tree branch or log, and their heads rotated to mimic natural perched head movements. An Arduino computer board (Arduino Duemilanove from Arduino LLC, https://www.arduino.cc) controlled a

servo motor, which was programmed with 15 different commands that controlled the head movement of the mounts to create a series of movements that mimicked natural behaviour. These 15 commands were the same for all three types of stimulus and the head moved for the entire time the mount was exposed. The total movement of the head ranged $\sim 100^\circ$ and as the chest of the mounts faced the feeder, the head faced in the direction of the bird feeder and the nearby surrounding cover all of the time (Figure 1b; Book & Freeberg, 2015).

Predator presentations

At each study site we presented birds with all three treatments (sparrowhawk, buzzard, partridge) in a randomized order; the mount exemplar for each presentation was selected randomly. We conducted experiments from one hour after dawn to one hour before dusk to allow the birds time to recover from the presentations and allow sufficient time to forage in preparation for overnight, as these presentations were all carried out during the winter (Jan-March). We separated all buzzard and sparrowhawk presentations and most control and predator presentations by a minimum of 8 hours at each feeder location. Due to time constraints at some study sites, on occasion if we presented the control (partridge) first and the birds continued to feed normally, we waited for 15 minutes and then presented a predator trial (sparrowhawk n = 6, buzzard n = 5 trials). We excluded from the analyses those trials in which birds obviously responded to something other than the stimulus (e.g. when we observed a sparrowhawk flying overhead or initial behaviour suggesting birds had encountered a predator just before we arrived; n = 7). At some locations the focal species were not

present for one or more trials and thus we collected data for fewer than three treatments (n = 9 sites).

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

171

172

We began presentations once we had confirmed the presence of the focal species (acoustically or visually) near the feeder. We placed the taxidermy mount on a 1.5 m pole approximately 2 m from the bird feeder. Because head orientation is important in predator threat assessment (Book & Freeberg, 2015), we ensured that the mount faced the bird feeder in all trials. We then retreated to a minimum distance of 4 m away and hid behind cover. A trial began when an individual of the focal species either: 1) came within 5 m of the mount; 2) came within 7 m of the mount with its body and head oriented towards the mount for 20 seconds more than once in 2 minutes; or 3) began mobbing the mount, by producing mobbing calls, rapidly changing perches, and wing flicking while oriented towards the mount, or flying at the mount in an aggressive fashion. Starting at this time point, we recorded when birds began to mob, and all vocalizations that were produced for 5 minutes before removing the mount. Distances were not physically marked in the field but, prior to beginning the manipulations, the researchers were trained to determine by eye when birds were within 3, 5, and 7 meters of the mount. We recorded all trials with a Sennheiser ME 66 super-cardioid microphone (Sennheiser Electronics, Hanover, Germany) and a Marantz PMD660 solid-state sound recorder (Marantz America, LLC., Mahwah, N.J., USA) with a bitdepth of 24 bits and a sampling rate of 48 kHz.

192

193

194

195

At each simulated predator encounter we recorded the total number of individuals of each species present and kept track of which species met any of the above mobbing criteria, and therefore was considered to participate in the mobbing event. Due to 196 environmental conditions and the variation in flock size (mean ± standard error: 7.47± 197 0.40 individuals/flock) and composition (number of species: 2.86 ± 0.09 198 species/flock), sample sizes varied across species; blue: n= 47 locations (control n = 199 41, buzzard n = 42, sparrowhawk n = 43), great: n = 43 locations (control n = 35, 200 buzzard n = 41, sparrowhawk n = 42), coal: n = 41 locations (control n = 34, buzzard 201 n = 35, sparrowhawk n = 36), crested: n = 14 locations (control n = 14, buzzard n = 14), buzzard n = 14202 14, sparrowhawk n = 13), marsh: n = 9 locations (control n = 9, buzzard n = 9, 203 sparrowhawk n = 9), and willow: n = 7 locations (control n = 7, buzzard n = 6, 204 sparrowhawk n = 7), as did the average number of conspecifics present during a trial 205 (mean \pm standard error): blue: 3.00 ± 0.21 , great: 2.37 ± 0.14 , coal: 3.51 ± 0.38 , 206 crested: 1.73 ± 0.11 , marsh: 1.59 ± 0.10 , and willow: 1.52 ± 0.11 . 207 208 Ethical note 209 210 All of this work was approved by the University of St Andrews School of Biology 211 Ethics Committee (01112013) and Scottish National Heritage, and followed 212 ASAB/ABS guidelines for treatment of animals in research. As we conducted 213 predator presentations during the winter months, we restricted our simulated predator 214 encounters to the period from one hour after sunrise to one hour before sundown so 215 that birds could prepare for, and recover from, the hours of darkness. As predator 216 encounters are stressful for the animals involved, we limited predator presentations to 217 5 minutes once individuals began to respond. We then removed the stimulus and left 218 the area as quickly as possible to allow the individuals to recover and return to 219 feeding.

Acoustic analysis

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

For all acoustic analyses, we used Raven Pro v 1.5 software (Bioacoustics Research Program, 2014) with a fast Fourier transform (FFT) size of 1050 samples, a Hann window function, and a spectrogram frequency grid resolution of 23.04 Hz. We analyzed all calls produced within three minutes of the onset of mobbing by manually selecting all calls and visually categorizing them by call type and call features (Table 1, Figure 2). All call types were clearly distinguished from one another as they were classed into different types based on clearly visible structural differences. Additionally, each species has a unique repertoire of calls making species identification relatively straightforward even when multiple species were calling during a trial (Table 1, Figure 2). To confirm the reliability of the categorization of calls by NC, we asked six people to categorize the calls. Nearly all of the classifications (89%) had high repeatability across individuals (inter-class correlation (ICC) values > 0.80; Nakagawa & Schielzeth, 2010). The four calls that received scores below 0.80 all included subtle variation, and so were re-scored by an individual familiar with Paridae vocalizations. Repeated scores conducted by this trained individual ranged from 0.77 - 1.0, with only one call type (short calls) receiving an ICC score below 0.80. In instances in which multiple calls overlapped it could have been more difficult to determine the number or type of elements, but this occurred infrequently and closer examination of each instance allowed the number of elements to be determined.

244

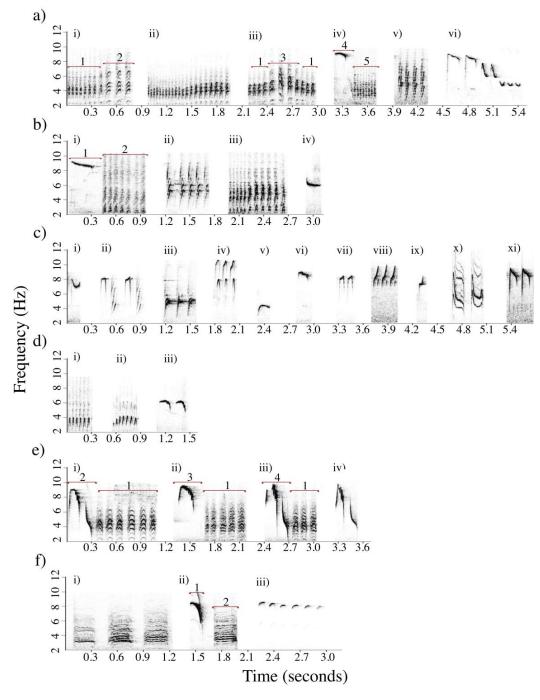


Figure 2. Spectrograms of UK tit mobbing calls. a) Blue tits: i-iv) churr call with 1) normal D elements and 2) exit elements, ii) frequency-modulated call, 3) mid elements, 4) introductory (intro) element (similar to A or B elements in chick-a-dee calls), 5) short D elements, v) chirp call (elements similar to C elements in chickadee

251	calls), vi) tonal call (similar to blue tit song). b) Great tits: i) jar/rattle call with 1)
252	intro element (similar to chickadee A or B elements) and 2) jar/rattle elements , ii)
253	chirp call, ix) D call, x) tonal call. c) Coal tits: i) bowl element, ii) chirp elements
254	(with peak elements), iii) dot elements, iv) hook elements, v) mound elements, vi) mt
255	elements, vii) peak elements, viii) s-dot element, ix), s elements, x) squeak elements,
256	xi) slide elements. d) Crested tits: i) normal trill call, ii) frequency-modulated trill
257	call, iii) tonal call. e) Marsh tits: i-iii) dä/D or complete calls with 1) dä/D elements,
258	2) full whole tonal element, 3) peak whole tonal element, 4) broken whole tonal
259	element, iv) ptew call. f) Willow tits: i) tää-tää call, ii) si-tää-tää call, with 1) si intro
260	element and 2) tää/D element, iii) zizi call. All spectrograms are scaled to one
261	another. For some call names we used new phonetic terminology, while for others call
262	names came from other sources: all species: (J. P. Hailman, 1989), marsh & willow
263	tits: (Haftorn, 1993), (Japanese) great tit: (Suzuki, 2014).

264 Table 1. Definition of call and element types for each tit species with references to spectrogram examples (Figure 2).

Marsh tit	Crested tit		Coal tit	Great tit	Species Blue tit
Tonal Tonal	Trill ~Frequency-modulated		Chirp Tonal Single or multi	Chirp Tonal Jar/rattle	Call type Churr ~ Short ~Frequency-modulated
Calls containing both dä/D and tonal elements Non-broadband frequency-modulated notes	Calls containing trill elements Calls containing trill notes that shift in frequency over the course of the call Figure 2.2d ii		Calls containing chirp elements Calls containing only tonal elements Single calls contain strings of only one element type, multi calls contain strings of multiple element types	Calls containing chirp elements Calls containing only tonal elements Calls containing jar / rattle elements	Call description Calls containing D elements Churr calls containing short D elements that appear as a stack of dots – Figure 2.2a iv 5 Churr calls containing D elements that vary in peak frequency across the call – Figure 2.2a ii
tonal dä/D whole broken	squeak slide trill intro	chirp dot hook mound mt peak s-dot S	intro chirp intro tonal Bowl	exit chirp intro tonal jar / rattle intro	Element type D intro mid
narrowband broadband with distinct frequency bands broadband with distinct frequency bands peak shape meets at top peak shape doesn't meet at top	broadband with frequency bands narrowband decreasing in frequency broadband line narrowband	peak with thin broadband line line with dot on right side hook shape at top and line under mound shape bumpy mound shape narrowband increase in frequency s shape with dot/dash under s shape with no dot/dash under	narrowband broadband short call with two distinct dots on right side narrowband narrowband bowl shape	D elements structurally different from those before broadband short call with two distinct dots on right side narrowband narrowband broadband with no distinct frequency bands and triangle shape at bottom narrowband with distinct peak shaped frequency bands	Element description broadband with distinct peak shaped frequency bands narrowband D elements structurally different from those before and after
2d iii 2e i - iii 1 2e i 2 2e iii 4	2c x 2c xi 2d i & ii	2c iii 2c iii 2c iv 2c iv 2c v 2c v 2c vi 2c viii 2c viii 2c viii	2b ii 2b iv 2c i	2a i 2 2a v 2a v 2a vi 2b i 2 2b i 1 2b i 1	Spectrogram figure 2a i - iv 2a iv 4 2a iii 3

				Willow tit				
Zizi	Tää-tää			Si-tää-tää	Ptew	Dä / D		
Calls containing only zi elements Figure 2.2f iii	Calls containing only D elements Figure 2.2f i		2.2f ii	Calls containing both D and si intro elements Figure	Calls containing only ptew elements	Calls containing only dä / D elements.		
Ŋ.	tää / D	si intro		tää / D	ptew	Dä / D	peak	full
narrowband	broadband with distinct frequency bands	narrowband		broadband with distinct frequency bands	tonal calls	broadband with distinct frequency bands	only has peak element	has both peak and slide element
2f iii	2f i	2f ii 1	2f i & ii 2		2e iv		2e ii 3	2e i 2 & iii 4

265	Statistical analysis
266	Effect of predator threat on calling behaviour
267	To test how UK tit species encode information about predator threat in their mobbing
268	calls, we focused on the four ways in which the other Parids encode information: 1)
269	call rate (calls/individual/minute), 2) total number of elements in a call (henceforth
270	'element number'; or in the case of call types that are composed of different element
271	types, the number of each element type), 3) proportion of all calls produced during a
272	mobbing event that contained particular note types during a mobbing event
273	(henceforth 'proportion'), and 4) the number of mobbing events in which birds
274	produced a particular call type divided by the total number of mobbing events
275	(henceforth 'propensity'; Baker & Becker, 2002; Bartmess-LeVasseur et al., 2010;
276	Ficken, Hailman, & Hailman, 1994; Hetrick & Sieving, 2011; Soard & Ritchison,
277	2009; Templeton et al., 2005).
278	
279	To determine whether the birds used any of these ways of encoding information, we
280	generated linear mixed models or generalized linear mixed models with a Gaussian or
281	binomial error structure respectively depending on the distribution and type
282	(continuous or binomial) of the data. We constructed these models for each species
283	separately as they appeared to differ in their combinations of different call and note
284	types (Figure 2), and as each species had a range of call/note types, we tested if each
285	species employed the encoding mechanisms for each call/note type to differentiate
286	between different threat predators.
287	
288	We used these statistical models to test if the bird changed a specific call/note type in
289	response to different predator threat levels for each of the four ways of encoding

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

information. Our response variable was the way information was encoded for each call/note type described above, and our fixed effects were the predator threat level and three variables that accounted for the experimental design: the mount presentation order, the mount exemplar, and the number of conspecifics present. To control for between-feeder variation we included date and geographic region as random effects. We also included a nested term 'calls per trial' that accounted for the number of calls (each trial at each location had varying numbers of calls produced by each species) at each feeder location during each trial. This term helped to minimize pseudoreplication of calls. We transformed the data using a log or boxcox transform for any response variable with non-normal residuals. For the binomial models where all calls of one of the levels of stimulus:order or stimulus:mount exemplar consisted of all 1 or 0, the models could not converge, so we ran these models as linear mixed models. We ran type III Wald Chi-square tests to check for significant effects of threat level for each call type for each way of information encoding for all species (Table 1). For models where threat level had a significant effect, we tested if the effect was different for different predator threats by running a planned comparison between buzzard and sparrowhawk by re-ordering stimulus levels and re-running the model (Table 1). Generalized linear mixed models were fit by maximum likelihood using the Laplace approximation, while linear mixed models were fit using REML and t-tests used Satterthwaite approximations to generate degrees of freedom. This allowed us to test what call/note types each species used to differentiate between predator threats, and what information encoding mechanisms each species used. While the chance of committing a type I error is higher when multiple tests are being performed, we did not apply a correction such as a Bonferroni correction as we, like others, felt that the chance of committing type II errors sufficiently high that biologically meaningful

patterns would have been obscured (Feise, 2002; Perneger, 1998; Rothman, 1990).

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

Instead, to help assess the robustness of our results, we calculated both marginal and conditional R² values specific for linear and generalized linear mixed models (Nakagawa & Schielzeth, 2012) for the overall models (Table 2) and 95% confidence intervals for model estimates (Table 3) We conducted all statistical analyses in R v3.1.2 (R Core Team, 2014), using the lme4 (Bates, Maechler, Bolker, & Walker, 2014) package. In our results the ways of encoding information about predator threat are as follows: 1) call rates are reported as calls/individual/minute, 2) element number values as the number of elements/call, 3) all proportions as the number of calls that were of a call type/total number of calls or the number of calls containing that element type/total number of calls that can contain that element type (e.g. as within great tit jar/rattle call types some calls have introductory elements, we calculated the proportion of calls that contain introductory elements by dividing the number of calls rattle/jar calls with introductory elements by the total number of rattle/jar calls; Figure 2, Table 1), and 4) propensities as the number of mobbing events where the call or element type occurred/ total number of mobbing events. Effect of phylogeny on calling behaviour To determine if phylogeny explained the pattern of ways encoding information across the species tested, we looked for phylogenetic signal using Pagel's lambda (Freckleton, Harvey, & Pagel, 2002; Pagel, 1999). We calculated Pagel's lambda for a tree with correct branch lengths, and one that had been collapsed into a large polytomy (no phylogenetic signal) and then compared the maximum likelihood of both lambdas using a maximum likelihood test. However, as many of the measures of phylogenetic signal are not as reliable with trees under 20 species (Freckleton,

340 Harvey, & Pagel, 2002; Münkemüller et al., 2012; Pagel, 1999) we are cautious about 341 the results of these tests. 342 343 Effect of ecology on behaviour 344 To determine if ecology explained the pattern of ways of encoding information across 345 the species, we collected ecological information from the published literature 346 (Alatalo, 1981; Cramp, 1993; Deadman, 2014; Ekman, 1989; Fisher, 1982; Gimm, 347 1960; Morse, 1978; Perrins, 1979) on foraging niche, dominance, and gregariousness 348 for each species and included them as explanatory variables in our statistical models. 349 We chose these variables because each has been suggested as having an effect on 350 anti-predatory behaviour (Goodale et al., 2010). 351 352 Foraging niche, as measured by the height and distance from a tree trunk, influences 353 the exposure and vulnerability of a species when foraging and can therefore affect the 354 vulnerability of a species to predation. For example a species that forages high up in 355 trees or on insects in the air spend more time scanning the sky and may be more likely 356 to see, and respond to, an aerial predator while a species that forages near to, or on, 357 the ground may not (Goodale et al., 2010; Goodale & Kotagama, 2005a; Lima, 1993; 358 Magrath et al., 2014). Greater racket-tailed drongos, Dicrurus paradiseus (Goodale & 359 Kotagama, 2005a) and red-cap moustached tamarins, Saguinus mystax pileatus 360 (Peres, 1993) for example, both forage high up off the ground (sallying and upper 361 canopy respectively) and are the species in their mixed-species groups that are most 362 likely to detect aerial predators. 363

364 Interspecific dominance, as measured by shifts in foraging niche in the presence and 365 absence of heterospecifics (Alatalo, 1981; Perrins, 1979), can affect the likelihood of 366 a species to eavesdrop on, rather than produce information about predator threats. 367 Because a dominant individual is in a better position to eavesdrop on information 368 provided by subordinates (Gill & Bierema, 2013; Goodale et al., 2010), rather than to 369 produce information about predators, it has less need of a variety of ways to encode 370 information (Furrer & Manser, 2009; Marler, 1967). 371 372 Gregariousness, measured as the average size of a conspecific winter flock, could also 373 affect the chance of seeing a predator, and therefore the propensity to produce calls, 374 and the complexity of signalling might increase with increased group size (Freeberg 375 & Harvey, 2008; Goodale et al., 2010; Magrath et al., 2014; Manser et al., 2014). 376 Orange-billed babblers, Turdoide rsufescens (Goodale & Kotagama, 2005b) and red-377 cap moustached tamarinds (Peres, 1993) are the most abundant species in their mixed 378 species flocks and tend to spend more time scanning and respond to more potential 379 threats, respectively, than do their flock mates. Downy woodpeckers, *Picoides* 380 pubescens (Sullivan, 1985) and yellow mongoose, Cynictis penicillata (le Roux, 381 Cherry, & Manser, 2008) tend to produce alarm calls only when heterospecifics are 382 present, while the anti-predator vocal repertoire size of mongoose species, 383 Herpestidae, increases with group size and social complexity (Manser et al., 2014). 384 385 To determine if there was a correlation between each species' ecology and the ways 386 in which they encoded predator threat information we ran four generalized linear 387 models with binomial error structure including the ways of encoding information as 388 our response variable. We ran an analysis of deviance on the model to test for

389 significant effects of the three ecological variables – foraging niche, dominance, and 390 gregariousness – on the ways that each species encoded information about predator 391 threat. 392 393 RESULTS 394 395 Blue tits 396 397 Blue tits used all four ways of encoding information to differentiate between 398 predators and non-threats and to differentiate between different levels of threat (Table 399 2; Figure 3). Blue tits increased their call rate to predators: they called the least to 400 controls, more to buzzards, and the most to sparrowhawks (mean \pm standard error, conditional R^2_{GLMM} ; control: 1.06 ± 0.24 ; buzzard: 2.12 ± 0.37 ; sparrowhawk: $6.21 \pm$ 401 402 0.73; $R^2_{GLMM} = 0.613$). Blue tits increased the total number of elements and D notes 403 as threat increased, and decreased the number of mid notes to buzzards compared to 404 the other stimuli (elements: control 8.69 ± 0.21 , buzzard 10.38 ± 0.25 , sparrowhawk 405 13.01 ± 0.17 , $R^2_{GLMM} = 0.305$; D: control 9.26 ± 0.28 , buzzard 11.53 ± 0.33 , 406 sparrowhawk 14.05 ± 0.19 , $R^2_{GLMM} = 0.699$; mid: control 2.57 ± 0.30 , buzzard 1.76 ± 0.00 0.17, sparrowhawk 3.22 ± 0.19 , $R^2_{GLMM} = 0.478$; Table 2). Blue tits produced a 407 408 smaller proportion of the churr mobbing calls that include exit notes compared to 409 either controls or sparrowhawks than to buzzards, and a smaller proportion of calls 410 with chirp notes to sparrowhawks than to controls or buzzards (exit: control $0.21 \pm$ 0.02, buzzard 0.16 \pm 0.01, sparrowhawk 0.21 \pm 0.01, $R^2_{GLMM} = 0.469$; chirp: control 411 0.31 ± 0.02 ; buzzard 0.32 ± 0.02 , sparrowhawk 0.10 ± 0.01 , $R^2_{GLMM} = 0.668$; Table 412 413 2). Blue tits also increase the proportion of tonal notes as threat increases (control

```
0.12 \pm 0.01, buzzard 0.15 \pm 0.02, sparrowhawk 0.20 \pm 0.01, R^2_{GLMM} = 0.533). Blue
414
415
        tits increased their propensity to produce mid, exit, tonal, frequency modulated, and
416
        short notes to high-threat predators compared to low-threat predators or controls (mid:
417
        control 0.07 \pm 0.04, buzzard 0.15 \pm 0.05, sparrowhawk 0.44 \pm 0.08, R^2_{GLMM} = 0.488;
        exit: control 0.40 \pm 0.08, buzzard 0.40 \pm 0.07, sparrowhawk 0.84 \pm 0.06, R^2_{GLMM} =
418
419
        0.251; tonal: control 0.24 \pm 0.07, buzzard 0.40 \pm 0.07, sparrowhawk 0.65 \pm 0.07,
420
        R^2_{GLMM} = 0.247; frequency modulated: control 0.31 \pm 0.07, buzzard 0.32 \pm 0.07,
421
        sparrowhawk 0.67 \pm 0.07, R^2_{GLMM} = 0.607; short: 0.44 \pm 0.08, exit 0.84 \pm 0.06,
422
        sparrowhawk 0.95 \pm 0.03, R^2_{GLMM} = 0.370; Table 2).
423
424
        Great tits
425
426
        To differentiate one or both predators from the control great tits used three ways of
427
        encoding information: call rate, proportion, and propensity. However, they only used
428
        call rate to differentiate between high and low threat predators (Table 2; Figure 3).
429
        Great tits had a higher call rate in response to high threats compared to controls and
430
        buzzards (control: 1.00 \pm 0.21, buzzard: 3.27 \pm 0.61, sparrowhawk: 8.54 \pm 1.17,
        R^2_{GLMM} = 0.465; Table 2). They decreased the proportion of calls that contained chirp
431
432
        elements and increased the propensity to produce jar/rattle calls during a mobbing
433
        event to predators compared to controls (chirp proportion: control 0.14 \pm 0.21,
434
        buzzard 0.02 \pm 0.01, sparrowhawk 0.009 \pm 0.002, R^2_{GLMM} = 0.578; jar/rattle
435
        propensity: control 0.68 \pm 0.08, buzzard 0.81 \pm 0.06, sparrowhawk 0.95 \pm 0.03,
436
        R^2_{GLMM} = 0.271; Table 2).
437
438
        Coal tits
```

440 Coal tits encoded information in three ways to differentiate between controls and 441 predator threats: call rate, element number, and propensity (Table 2). Coal tits only 442 used element number, however, to differentiate between predators of varying threat 443 levels in their mobbing calls (Table 2; Figure 3). Coal tits increased their call rate as 444 threat increased (control: 0.45 ± 0.11 , buzzard: 2.53 ± 0.56 , sparrowhawk: $5.25 \pm$ 445 1.00, $R^2_{GLMM} = 0.347$). Coal tits produced more hook and mt elements to buzzards 446 than either controls or sparrowhawks (hook: control 1.69 ± 0.16 , buzzard 3.91 ± 0.23 , sparrowhawk 3.62 ± 0.30 , $R^2_{GLMM} = 0.490$, mt: control 1.43 ± 0.14 , buzzard 2.97 ± 0.14 447 0.38, sparrowhawk 1.47 \pm 0.12, R^2_{GLMM} = 0.313; Table 2). Coal tits produced fewer 448 449 squeak and more mound elements to controls than to predator threats, and more s-dot 450 elements as threat increased (squeak: control 2.71 \pm 1.39, buzzard 2.73 \pm 0.16, sparrowhawk 2.79 ± 0.10 , $R^2_{GLMM} = 0.198$; mound: control 2.50 ± 0.50 , buzzard 1.93451 \pm 0.28, sparrowhawk 1.77 \pm 0.14, R^{2}_{GLMM} = 0.608; s-dot: control 2.09 \pm 0.34, buzzard 452 3.36 ± 0.10 , sparrowhawk 4.15 ± 0.17 , $R^2_{GLMM} = 0.319$; Table 2). Coal tits decreased 453 454 their propensity to produce mound or squeak elements in response to controls 455 compared to predatory stimuli (mound: control 0.06 ± 0.04 , buzzard 0.29 ± 0.08 , sparrowhawk 0.51 ± 0.08 , $R^2_{GLMM} = 0.300$; squeak: control $0.14 \pm 0.01 = 6$, buzzard 456 457 0.47 ± 0.09 , sparrowhawk 0.63 ± 0.08 , $R^2_{GLMM} = 0.473$; Table 2). 458 459 Crested tits 461

460

462

463

Crested tits differentiated one or both predators from the control in three ways: call rate, proportion, and propensity. However, they only used proportion and propensity to differentiate between different threat predators (Table 2; Figure 3). They increased 464 their call rate as threat increased, produced a higher proportion of frequency 465 modulated calls, and a lower propensity to produce tonal notes in response to 466 buzzards compared to controls and sparrowhawks (rate: control 11.71 ± 4.33 , buzzard 467 14.92 ± 3.38 , sparrowhawk 16.32 ± 2.30 , $R^2_{GLMM} = 0.479$; frequency modulated 468 proportion: control 0.61 ± 0.02 , buzzard 0.75 ± 0.01 , sparrowhawk 0.73 ± 0.01 , 469 $R^2_{GLMM} = 0.364$; tonal propensity: control 0.21 \pm 0.11, buzzard 0.08 \pm 0.08, 470 sparrowhawk 0.38 ± 0.14 , $R^2_{GLMM} = 0.289$; Table 2; Figure 3). 471 472 Marsh tits 473 474 Marsh tits used all four ways of encoding information to differentiate both between 475 predators and non-threats and between predators of different threat levels (Table 2; 476 Figure 3). Marsh tits increased their call rate to predators compared to controls. 477 decreased the number of dä/D elements in response to buzzards compared to controls 478 or sparrowhawks, and decreased the proportion of full tonal notes to buzzards 479 compared to controls and sparrowhawks (rate: control: 1.24 ± 0.35 ; buzzard: $1.26 \pm$ 480 0.30; sparrowhawk: 4.56 ± 0.85 , $R^2_{GLMM} = 0.740$; dä/D elements: control: 0.21 ± 0.85 0.11; buzzard: 0.08 ± 0.08 ; sparrowhawk: 0.38 ± 0.14 , $R^2_{GLMM} = 0.324$; proportion of 481 482 full tonal notes: control: 0.71 ± 0.07 ; buzzard: 0.49 ± 0.08 ; sparrowhawk: 0.53 ± 0.03 , 483 $R^{2}_{GLMM} = 0.370$; Table 2). They also increased their propensity to produce peak tonal 484 elements, all tonal, and ptew calls to higher threat predators (peak tonal: control 0.33 \pm 0.17, buzzard 0.56 \pm 0.18, sparrowhawk 0.89 \pm 0.11, R^2_{GLMM} = 0.608; tonal: control 485 0.78 ± 0.15 , buzzard 0.89 ± 0.11 , sparrowhawk 1.00 ± 0.00 , $R^2_{GLMM} = 0.398$; ptew: 486 control 0.78 ± 0.05 , buzzard 0.89 ± 0.11 , sparrowhawk 1.00 ± 0.00 , $R^2_{GLMM} = 0.398$; 487 488 Table 2).

489	
-----	--

490 Willow tits

Willow tits varied several call features between the control and predator treatments but did not differentiate between predators of different threat levels (Table 2; Figure 3). Willow tits increased their call rate in response to predators (mean \pm standard error; buzzard: 1.72 ± 0.42 ; sparrowhawk; 2.04 ± 0.25 , $R^2_{GLMM} > 0.999$) compared to controls (control: 0.71 ± 0.28 ; Table 2). Willow tits also increased the number of total elements and decreased the number of si intro elements as predator threat increased (elements: control 2.40 ± 0.22 , buzzard 2.86 ± 0.14 , sparrowhawk, 3.59 ± 0.12 , $R^2_{GLMM} = 0.201$; si intro: control 2.00 ± 0.49 , buzzard 2.51 ± 0.19 , sparrowhawk 2.83 ± 0.14 , $R^2_{GLMM} = 0.207$; Table 2).

For all species, we observed some order and mount exemplar effects in the statistical models, but as none of these effects were consistent across call types, ways of encoding information, stimulus species, or responding tit species, they are not included in our results.

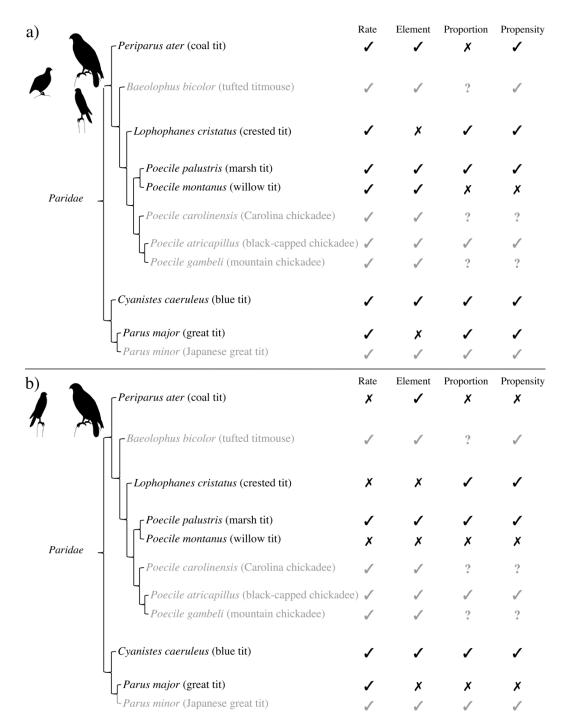


Figure 3. The four ways in which each of the previously studied Paridae encode information differentiating a) predators (sparrowhawk and buzzard) from non-predators (partridge) and b) high (sparrowhawk) from low (buzzard) threat predators. Rate: call rate, Element: number of elements in a call, Proportion: the proportion of call types used within a mobbing event, Propensity: the propensity to produce call

512	types across mobbing events. Light grey text indicates those species tested in previous
513	studies, question marks indicate encoding mechanisms not previously tested, and Xs
514	show mechanisms that are not used. Phylogeny information was based on (Johansson
515	et al., 2013). Published data derived from: black-capped chickadee: (Baker & Becker,
516	2002; Billings et al., 2015; Clemmons & Lambrechts, 1992; Templeton et al., 2005),
517	tufted titmouse: (Bartmess-LeVasseur et al., 2010; Courter & Ritchison, 2010;
518	Hetrick & Sieving, 2011; Sieving et al., 2010), Carolina chickadee: (Bartmess-
519	LeVasseur et al., 2010; Hetrick & Sieving, 2011; Soard & Ritchison, 2009), Mexican
520	chickadee: (Billings et al., 2015), Japanese great tit: (Suzuki, 2012; 2014; Suzuki &
521	Ueda, 2013).

table is included in supplemental material. vocal response. Planed comparison t and z test results. Only comparisons with P values ≤ 0.05 shown here (with the exception of zizi calls); full Table 2. Type III Wald Chi-square test results for predator type (control, buzzard, or sparrowhawk) as a significant predictor of variation in

524

Marsh Tit	Crested Tit	Coal Tit	Great Tit	Species Blue Tit
Proportion of Propensity to use Call rate Number of Proportion of	Propensity to use Call rate Call rate	Proportion of Propensity to use Call rate	Number of Proportion of Propensity to use Call rate	Encoding Method Call rate
Frequency-modulated calls Tonal calls All då/D elements Full tonal elements	Hook elements Mound elements Mt elements S-dot elements Squeak elements Mound elements Mound elements All	Chip calls Jar/rattle calls All	Total elements Mid elements D elements Exit calls Chirp calls Tonal calls Mid elements Exit elements Exit elements Frequency-modulated calls Short calls All	Element Type
0.144 0.289 0.469 0.259 0.255	0.226 0.072 0.310 0.139 0.057 0.250 0.269 0.321	0.065 0.192 0.239	0.105 0.120 0.178 0.113 0.221 0.153 0.288 0.218 0.218 0.243 0.223 0.312 0.382	R ² c Margianl 0.409
0.346 0.289 0.740 0.324 0.370	0.490 0.608 0.313 0.319 0.198 0.300 0.473 0.473	0.578 0.271 0.347	0.305 0.478 0.699 0.469 0.668 0.533 0.488 0.251 0.247 0.607 0.370 0.465	R ² _{GLMM} nl Conditional 0 0.613
6.32 6.45 10.39 12.69 6.88	7.05 21.84 11.97 7.27 9.75 18.58 6.21	7.55 10.96 15.46	20.54 6.76 28.84 6.27 117.04 114.17 33.01 114.78 114.35 9.63 17.27 44.00	χ^{2}
0.042 0.040 0.006 0.002 0.031	0.004 0.029 0.003 0.003 0.026 0.008 0.045	0.023 0.004 <0.001	<pre><0.001 0.034 <0.001 0.044 <0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.0000</pre>	P <0.001
2.496 -1.173 -1.732 0.061 -1.996	0.307 3.993 1.771 -2.656 2.137 3.703 -0.047	-1.162 2.625 2.093	-1.546 -1.279 0.888 -1.060 2.511 1.105 -0.389 3.604 0.490 -1.538 0.368 1.822	Control- Buzzard T
0.013 0.251 0.108 0.952 0.046	0.761 <0.001 0.083 0.008 0.0035 <0.001 0.963	0.249 0.010 0.039	0.126 0.242 0.375 0.289 0.012 0.269 0.698 <0.001 0.625 0.124 0.713 0.071	zard P 0.870
0.456 1.940 2.816 -3.491 0.834	1.557 0.049 1.343 -2.663 2.889 3.331 2.432	-2.723 2.870 3.856	1.914 0.563 5.346 1.677 -1.878 3.649 5.280 -0.694 3.695 2.200 4.014 6.569	Control- Sparrowhawk T P
0.648 0.063 0.013 0.001 0.404	0.128 0.128 0.961 0.187 0.008 0.005 0.001	0.008 0.005	0.059 0.584 <0.001 0.094 0.060 <0.001 <0.001 0.489 <0.001 0.028	trol- whawk P
2.318 2.318 3.140 -3.084 2.482	-2.700 -2.258 -4.667 -0.773 0.193 0.393 -0.651 1.602	-1.740 0.346 1.216	3.248 2.579 3.564 2.435 -4.104 2.587 5.044 3.264 2.925 2.981 3.312 4.489	Buzzard- Sparrowhawk T P 5.452 <0.0
0.027 0.028 0.006 0.004 0.013	0.012 0.033 <0.001 0.446 0.848 0.695 0.517 0.121	0.086 0.730 0.227	0.002 0.276 <0.001 0.015 <0.001 0.010 <0.001 0.001 0.001 0.004 0.003 0.001	Buzzard- arrowhawk P 52 <0.001

			Willow Tit			
Propensity to use		Number of	Call rate			Propensity to use
Zizi calls	Si intro elements	Total elements	All	Ptew calls	Peak tonal elements	All tonal elements
0.234	0.207	0.129	0.445	0.398	0.501	0.398
1.000	0.207	0.201	1.000	0.398	0.608	0.398
5.96	16.46	7.89	46.36	8.29	12.36	8.28
0.051	< 0.001	0.019	< 0.001	0.016	0.002	0.016
2.420	0.360	-0.222	3.721	-0.636	3.091	-0.636
0.036	0.719	0.826	0.007	0.534	0.008	0.534
-1.234	-4.053	2.803	1.994	2.703	2.316	2.703
0.246	<0.001	0.025	0.086	0.016	0.036	0.016
-0.446	-1.685	1.634	0.602	2.519	0.144	2.519
0.665	0.093	0.167	0.561	0.023	0.888	0.023

Table 3. Model estimates and 95% confidence intervals for linear and generalized linear mixed models determining if predatory type (control, buzzard, or sparrowhawk) had a significant effect on the variation in vocal response of UK tit species (Table 2).

528

529

95% Confidence interval

					7570 Cominac	nee meer var
Species	Encoding Method	Element Type	Stimulus	model estimate	lower	upper
Blue Tit	Call rate	All	Control	4.076	-2.090	4.468
			Buzzard	1.189	-2.470	10.623
			Sparrowhawk	8.971	0.834	17.109
	Number of	Total elements	Control	9.620	6.802	12.438
			Buzzard	7.310	1.563	13.057
			Sparrowhawk	12.463	6.734	18.191
	Number of	Mid elements	Control	3.716	1.439	5.993
			Buzzard	2.235	-2.311	6.782
			Sparrowhawk	4.241	0.138	8.344
	Number of	D elements	Control	1.745	1.597	1.894
			Buzzard	1.810	1.518	2.102
			Sparrowhawk	2.121	1.835	2.407
	Proportion of	Exit calls	Control	-1.822	-3.016	-0.628
			Buzzard	-2.705	-5.532	0.122
			Sparrowhawk	-0.606	-3.221	2.009
	Proportion of	Chirp calls	Control	-2.933	-4.600	-1.266
			Buzzard	-0.376	-4.039	3.286
			Sparrowhawk	-4.924	-8.668	-1.179
	Proportion of	Tonal calls	Control	-4.670	-6.436	-2.903
			Buzzard	-3.759	-7.140	-0.379
			Sparrowhawk	-1.672	-5.048	1.704
	Propensity to use	Mid elements	Control	0.034	-0.177	0.244
			Buzzard	-0.017	-0.486	0.451
			Sparrowhawk	0.779	0.292	1.267
	Propensity to use	Exit elements	Control	0.133	0.046	0.569
			Buzzard	0.134	-0.286	0.903
			Sparrowhawk	0.792	0.346	1.585
	Propensity to use	Tonal calls	Control	-0.009	-0.250	0.232
			Buzzard	0.074	-0.500	0.648
			Sparrowhawk	0.666	0.067	1.264
	Propensity to use	Frequency-modulated calls	Control	0.691	0.125	0.972
			Buzzard	0.793	0.132	1.617
			Sparrowhawk	1.613	0.692	1.963
	Propensity to use	Short calls	Control	0.288	0.069	0.506
			Buzzard	0.344	-0.175	0.864
			Sparrowhawk	0.948	0.407	1.490
Great Tit	Call rate	All	Control	2.479	-0.433	5.391
			Buzzard	6.122	-0.709	12.953
			Sparrowhawk	16.091	9.117	23.064
	Proportion of	Chirp calls	Control	0.131	0.028	0.235
			Buzzard	0.200	-0.156	0.282
			Sparrowhawk	0.301	-0.264	0.187
	Propensity to use	Jar/rattle calls	Control	0.438	0.206	0.670
			Buzzard	0.849	0.311	1.388
G 1 77	G. II.	. 11	Sparrowhawk	0.911	0.356	1.466
Coal Tit	Call rate	All	Control	0.431	-2.258	3.120
			Buzzard	4.633	-1.991	11.257
	Number of	Hook alamanta	Sparrowhawk	7.247	1.094	13.400
	Number of	Hook elements	Control	1.737	1.055	2.862

			Buzzard	4.608	2.528	8.455
			Sparrowhawk	2.959	1.706	5.153
	Number of	Mound elements	Control	2.707	0.960	7.627
			Buzzard	3.905	1.338	11.435
			Sparrowhawk	3.192	1.156	8.832
	Number of	Mt elements	Control	1.607	1.035	2.495
			Buzzard	7.049	3.404	14.997
			Sparrowhawk	2.619	1.666	4.116
	Number of	S-dot elements	Control	2.315	1.293	4.148
			Buzzard	4.258	2.224	4.395
	N. I. C	G 1 1	Sparrowhawk	3.853	2.113	4.495
	Number of	Squeak elements	Control	10.472	3.042	36.042
			Buzzard	10.647	3.091	36.676
	Duomanaitesta saa	Mound claments	Sparrowhawk	10.655	3.095	36.681
	Propensity to use	Mound elements	Control	-0.057	-0.287	0.173
			Buzzard	0.368	-0.251	0.988
	Propensity to use	Squeak elements	Sparrowhawk	0.452	-0.123	1.027
	Tropensity to use	Squeak elements	Control	0.036	-0.209	0.281
			Buzzard	0.801	0.151	1.451
Crested Tit	Call rate	All	Sparrowhawk	0.654	0.046	1.262 25.277
Crested 11t	Can rate	7 111	Control Buzzard	10.084 9.511	-5.110 -29.763	48.786
			Sparrowhawk	31.261	-0.998	63.519
	Proportion of	Frequency-modulated calls	Control	-0.430	-2.066	1.205
	rroportion or	rrequency modulated cans	Buzzard	2.832	-1.365	7.029
			Sparrowhawk	-0.057	-3.297	3.183
	Propensity to use	Tonal calls	Control	0.186	-0.309	0.680
	1 3		Buzzard	-0.309	-1.632	1.013
			Sparrowhawk	0.751	-0.315	1.817
Marsh Tit	Call rate	All	Control	4.076	-0.043	8.196
			Buzzard	1.189	-6.198	8.576
			Sparrowhawk	8.971	1.444	16.498
	Number of	Dä/D elements	Control	-7.905	-17.199	1.389
			Buzzard	-7.717	-23.088	7.653
			Sparrowhawk	-21.884	-39.026	-4.741
	Proportion of	Full intro elements	Control	0.997	0.849	1.000
			Buzzard	1.029	0.850	1.484
			Sparrowhawk	1.821	0.960	1.994
	Propensity to use	All tonal elements	Control	0.821	0.145	1.498
			Buzzard	0.643	-0.584	1.870
			Sparrowhawk	1.571	0.351	2.792
	Propensity to use	Peak tonal elements	Control	-0.827	-1.761	0.107
			Buzzard	0.416	-1.306	2.137
			Sparrowhawk	0.505	-1.556	2.567
	Propensity to use	Ptew calls	Control	0.821	0.145	1.498
			Buzzard	0.643	-0.584	1.870
XX.11 T.	C 11 4	A 11	Sparrowhawk	1.571	0.351	2.792
Willow Tit	Call rate	All	Control	1.335	-0.194	2.864
			Buzzard	3.045	0.615	5.475
	Number of	Total elements	Sparrowhawk	2.817	-0.169	5.804
	Nulliber of	Total elements	Control	4.012	1.738	9.261
			Buzzard	4.953	2.289	10.869
	Number of	Si intro elements	Sparrowhawk	6.649	3.077	14.456
	ranioei di	or muo ciements	Control	0.745	0.555	0.936
			Buzzard	0.772	0.437	1.108
	Propensity to use	Zizi calls	Sparrowhawk Control	0.563	0.285	0.842
	- top enough to use		Control Buzzard	-0.065 1.008	-1.300 -1.006	1.169
					-1.096	3.111
			Sparrowhawk	-0.959	-3.613	1.695

- 532 PHYLOGENY AND ECOLOGY
- Phylogenetic signal did not explain which species used which ways of encoding
- information about predator threat in their mobbing calls (rate: $\chi^2_1 = -0.03$, P = 1;
- number of elements: $\chi^2_1 = -1.37$, P = 1; proportion: $\chi^2_1 = -6.36$, P = 1; propensity: χ^2_1
- = -1.30, P = 1). Ecology also did not explain variation in which species used each
- method of encoding information about predator threat in their mobbing calls (rate:
- foraging niche F(2) = 1.05, P = 0.431, dominance F(2) = 6.59, P = 0.054,
- gregariousness F(2) = 2.77, P = 0.176; number of elements: foraging niche F(2) =
- 540 2.66, P = 0.184, dominance F(2) = 1.91, P = 0.262, gregariousness F(2) = 1.05, P = 0.262
- 541 0.431; proportion: foraging niche F(2) = 0.26, P = 0.810, dominance F(2) = 1.39, P = 0.810
- 542 0.515, gregariousness F(2) < 0.001, P > 0.999; propensity: foraging niche F(2) = 0.52,
- 543 P = 0.657, dominance F(2) = 2.77, P = 0.265, gregariousness F(2) < 0.001, P >
- 544 0.999).

545 Table 4. Ecology of tested Paridae species. Species grouped by number and type of ways they encode information about predator threat (left

546

columns).

Willow tit	Crested tit	Coal tit	Great tit	Mountain chickadee	Carolina chickadee	Tufted titmouse	Blue tit	Marsh tit	Japanese great tit	Black-capped chickadee	Species
×	×	×	0	0	0	0	0	0	0	0	Call
×	×	0	×	0	0	0	0	0	0	0	Encodii Element number
×	0	×	×	?	?	?	0	0	0	0	Encoding Method sment Proportion mber
×	0	×	×	?	?	0	0	0	0	0	Propensity
		0		0			0			0	Pre upper
	0				0	0					Preferred foraging height r mid low/g
0			0					0	0		ng height low/ground
			0			0	0		0	0	dominant
	0				0			0			Dominance mid
0		0		0							ominance mid subordinate small
0	0				0	0		0			small
			0	0					0	0	Gregariousness medium large
		0					0				large

DISCUSSION

We found that the UK tit species varied in both the types and degree to which they encode information about predators. UK tits all responded to predators with mobbing calls and all communicated the presence of a predator by increasing call rate relative to their responses in control trials. Each species varied in the ways they communicated predator presence and differentiated between low and high threat predators. These results are not consistent with the presumption that all Paridae use the same mechanisms to encode similar information about predators.

Variation across species in signalling strategy could potentially be explained by relatedness: those species more closely related should be more similar in terms of the ways of encoding information they use to encode information about predators. The presence or absence of alarm calling as a behaviour in rodents appears to be well explained by phylogeny, though this says nothing concerning the specific ways of encoding information in these calls (Shelly & Blumstein, 2005). We found no correlation between the Parid phylogeny and the pattern of ways of encoding information. Additionally, we could find no patterns in the ways the traits mapped onto the phylogeny that would explain the ways of encoding information used by the species we tested. Marsh tits, for example, encode information in the same ways as do blue tits, one of their more distant relatives, while they share only half of the ways of communicating the presence of a predator and none of the same ways of communicating the threat of a predator, with congeneric willow tits. Relatedness similarly fails to explain the variation in the number and mechanisms across the rest of the phylogeny. These patterns are similar to those found in marmots, which also

vary the ways in which they encode information about predators based on a factor other than phylogenetic relatedness (Blumstein, 2007).

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

572

573

If relatedness does not explain the number or ways of encoding information used by UK tits, aspects of their natural history might. Some species may be pre-disposed through their ecology to be better equipped to notice and respond to predators, and these species therefore may use a greater variety of ways of communicating that information (Goodale, Beauchamp, Magrath, Nieh, & Ruxton, 2010). However, our tests indicated no correlations between any of the three ecological variables we examined and the ways in which the different species encoded predator threat information. If foraging niche explained ways of encoding information then we would have expected that outer/upper canopy-foraging blue and coal tits should be more similar in the ways in which they encode information, relative to species that forage in locations with limited visibility (lower trunk foraging: marsh, willow, and great tits) as these species are less exposed to predatory raptors (Gibb, 1960; Morse, 1978; Nakamura, 1970; Perrins, 1979). Blue and marsh tits are, however, more similar in the ways in which they respond to predators (both presence and threat) than are blue and coal tits. Foraging niche, at least, does not seem to be an especially useful explanation for the variation in the ways of encoding information. Similarly, we would have expected species that travel in larger winter flocks, such as blue, great, and coal tits, to use more ways of encoding information relative to those less gregarious species (crested, marsh, and willow tits; Deadman, 2014; Ekman, 1979; 1989; Fisher, 1982; Morse, 1978). As the more gregarious tit species are, however, no more likely to use more ways of encoding information than the less gregarious species, gregariousness during winter also is not a good explanation for the variation

we see . Finally, if interspecific dominance influenced ways of encoding information we would have expected the more dominant great and blue tits to use more similar ways of encoding information. However blue and great tits were no more similar in the ways they encode information than are the more subordinate coal or willow tits (Alatalo, 1981; Cramp, 1993; Perrins, 2012). Given that neither phylogeny or any of the more plausible natural history traits provide an explanation for the variation in the number or ways that the UK species use to encode predator information in their mobbing calls, the question becomes why do these species communicate predator threat with such variety? There are two common explanations for the use of multiple ways of encoding information about a single event or threat. The first is that the multiplicity is an artefact of the signaller's internal state: as the animal's internal state affects a suite of aspects of its vocal response via arousal, an increase in that animal's arousal (fear) will result in an increase in the call rate, number of elements, or even different call types (Blumstein, 2007; Blumstein & Armitage, 1997; J. P. Hailman & Ficken, 1996; Marler, Evans, & Hauser, 1992; Seyfarth & Cheney, 2003). This explanation presupposes that the information provided to receivers is redundant but that the variety in the ways the information is provided leads to a stronger or more urgent signal (Blumstein & Armitage, 1997; Marler et al., 1992). The second explanation is that each way of encoding information is used to

617

618

619

620

621

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

The second explanation is that each way of encoding information is used to communicate different information about the thereat, enabling a signaller to increase the amount of information it can deliver (Marler et al., 1992; Suzuki, Wheatcroft, & Griesser, 2016). Here the information, while pertaining to the same threat, is not

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

information encoding strategies.

redundant. For example, Japanese great tit mobbing calls contain different element types that elicit two different types of behaviour: A, B and C notes elicit scanning behaviour, while D notes elicit approach behaviour (Suzuki, 2016). In order to address why related species use different ways to encode predator threat, we need to establish what specific information it is that they encode (Templeton et al., 2005). Redundancy does seem to explain changes in the acoustic features of the calls that California ground squirrels, Spermophilus beecheyi, use to signal state of arousal (Owings & Virginia, 1978). Conversely, signallers might use different ways of encoding information to encode different types of information, predatory category using propensity and distance using call rate (Griesser, 2008; Suzuki et al., 2016). This appears to be relatively common among primates. Blue monkeys, Cercopithecus mitis stuhlmanni, for example, signal predator type using propensity of certain call types, but change the rate of each call type as predator distance decreases to signal increased threat (Murphy et al., 2013). As UK tit species each use different ways to encode information in their calls, and as there is no explanation for this variation in either their phylogenetic relatedness or their ecology, they may provide a fruitful system for investigating how species might use different ways of encoding information to encode redundant or additive information. Although the information encoded in these types of vocalizations is well researched, the causes of the intra- and interspecific differences remain unclear. Investigating the prevalence of the multiple ways of encoding information across species and by addressing the types of information that these different approaches

achieve may allow us to derive further evolutionary insights into variation in

647	
648	REFERENCES
649	
650	Alatalo, R. V. (1981). Interspecific Competition in Tits <i>Parus</i> spp. and the goldcrest
651	Regulus regulus: Foraging Shifts in Multispecific Flocks. Oikos, 37(3), 335–344.
652	
653	Baker, M. C., & Becker, A. M. (2002). Mobbing calls of black-capped chickadees:
654	Effects of urgency on call production. <i>The Wilson Bulletin</i> , 114(4), 510–516.
655	
656	Bartmess-LeVasseur, J., Branch, C. L., Browning, S. A., Owens, J. L., & Freeberg, T.
657	M. (2010). Predator stimuli and calling behavior of Carolina chickadees (Poecile
658	carolinensis), tufted titmice (Baeolophus bicolor), and white-breasted nuthatches
659	(Sitta carolinensis). Behavioral Ecology and Sociobiology, 64(7), 1187–1198.
660	http://doi.org/10.1007/s00265-010-0935-y
661	
662	Bates, D., Maechler, M., Bolker, B. M., & Walker, S. (2014, September 30). lme4:
663	Linear mixed-effects models using "Eigen" and S4.
664	
665	Billings, A. C., Greene, E., & La Lucia Jensen, De, S. M. (2015). Are chickadees
666	good listeners? Antipredator responses to raptor vocalizations. Animal Behaviour,
667	110, 1–8. http://doi.org/10.1016/j.anbehav.2015.09.004
668	
669	Bioacoustics Research Program. (2014, September 30). Raven Pro: Interactive Sound
670	Analysis Software (Version 1.5). Ithaca, NY: The Cornell Lab of Ornithology.
671	

672	Blumstein, D. T. (2007). The Evolution, Function, and Meaning of Marmot Alarm
673	Communication. In Advances in the Study of Behavior Vol. 37 (Vol. 37, pp. 371-
674	401). Elsevier. http://doi.org/10.1016/S0065-3454(07)37008-3
675	
676	Blumstein, D. T., & Armitage, K. B. (1997). Alarm calling in yellow-bellied
677	marmots: I. The meaning of situationally variable alarm calls. Animal Behaviour,
678	<i>53</i> , 143–171.
679	
680	Book, D. L., & Freeberg, T. M. (2015). Titmouse calling and foraging are affected by
681	head and body orientation of cat predator models and possible experience with real
682	cats. Animal Cognition, 18(5), 1155–1164. http://doi.org/10.1007/s10071-015-
683	0888-7
684	
685	Clemmons, J. R., & Lambrechts, M. M. (1992). The waving display and other nest
686	site anti-predator behavior of the black-capped chickadee. The Wilson Bulletin,
687	104(4), 749–756.
688	
689	Courter, J. R., & Ritchison, G. (2010). Alarm calls of tufted titmice convey
690	information about predator size and threat. Behavioral Ecology, 21(5), 936–942.
691	
692	Cramp, S. (1993). Handbook of the birds of Europe the Middle East and North Africa.
693	(C. M. Perrins, D. J. Brooks, E. Dunn, R. Gillmor, J. Hall-Craggs, B. Hillcoat, et
694	al., Eds.) Oxford, New York: Oxford University Press.
695	
696	Curio, E. (1978). The adaptive significance of avian mobbing. I. Teleonomic

697	hypotheses and predictions. Zeitschrift Fur Tierpsychologie, 48, 175–183.
698	
699	Curio, E., Klump, G. M., & Regelmann, K. (1983). An anti-predator response in the
700	great tit (<i>Parus major</i>): is it tuned to predator risk? <i>Oecologia</i> , 60(1), 83–88.
701	
702	Deadman, A. J. (1973). A population study of the coal tit (Parus ater) and crested ti
703	(Parus cristatus) in a Scottish pine plantation (Doctoral thesis). Aberdeen, U.K.:
704	University of Aberdeen.
705	
706	Ekman, J. (1979). Coherence, composition and territories of winter social groups of
707	the willow tit Parus montanus and the crested tit P. cristatus. Ornis Scandinavica
708	<i>10</i> (1), 56–68.
709	
710	Ekman, J. (1989). Ecology of non-breeding social systems of Parus. The Wilson
711	Bulletin, 101(2), 263–288.
712	
713	Evans, C. S., Macedonia, J. M., & Marler, P. (1993). Effects of apparent size and
714	speed on the response of chickens, Gallus gallus, to computer-generated
715	simulations of aerial predators. Animal Behaviour, 46, 1–11.
716	
717	Feise, R. J. (2002). Do multiple outcome measures require p-value adjustment. BMC
718	Medical Research Methodology, 2(8), 1–4.
719	
720	Ficken, M. S., Hailman, E. D., & Hailman, J. P. (1994). The chick-a-dee call system
721	of the Mexican chickadee. Condor, 96(1), 70-82.

722	
723	Fisher, D. J. (1982). Report on roving tit flocks project. British Birds, 75, 370–374.
724	
725	Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic Analysis and
726	Comparative Data: A Test and Review of Evidence. American Naturalist, 160(6),
727	712–726. http://doi.org/10.1086/343873
728	
729	Freeberg, T. M., & Harvey, E. M. (2008). Group size and social interactions are
730	associated with calling behavior in Carolina chickadees (<i>Poecile carolinensis</i>).
731	Journal of Comparative Psychology, 122(3), 312–318.
732	http://doi.org/10.1037/0735-7036.122.3.312
733	
734	Furrer, R. D., & Manser, M. B. (2009). The evolution of urgency-based and
735	functionally referential alarm calls in ground-dwelling species. American
736	Naturalist, 173(3), 400-410. http://doi.org/10.1086/596541
737	
738	Gibb, J. A. (1960). Populations of tits and goldcrests and their food supply in pine
739	plantations. <i>Ibis</i> , 102(2), 163–208.
740	
741	Gill, S. A., & Bierema, A. M. K. (2013). On the meaning of alarm calls: a review of
742	functional reference in avian alarm calling. Ethology, 119, 449–461.
743	
744	Gill, S. A., & Sealy, S. G. (2004). Functional reference in an alarm signal given
745	during nest defense: seet calls of yellow warblers denote brood-parasitic brown-

746	headed cowbirds. Behavioral Ecology and Sociobiology, 56(1), 71-80.
747	
748	Goodale, E., & Kotagama, S. W. (2005a). Alarm calling in Sri Lankan mixed-species
749	bird flocks. Auk, 122(1), 108–120.
750	
751	Goodale, E., & Kotagama, S. W. (2005b). Testing the roles of species in mixed-
752	species bird flocks of a Sri Lankan rain forest. Journal of Tropical Ecology, 21(6),
753	669–676.
754	
755	Goodale, E., Beauchamp, G., Magrath, R. D., Nieh, J. C., & Ruxton, G. D. (2010).
756	Interspecific information transfer influences animal community structure. Trends
757	in Ecology & Evolution, 25(6), 354–361. http://doi.org/10.1016/j.tree.2010.01.002
758	
759	Graham, I. M., Redpath, S. M., & Thirgood, S. J. (1995). The diet and breeding
760	density of Common Buzzards Buteo buteo in relation to indices of prey abundance.
761	Bird Study, 42(2), 165–173. http://doi.org/10.1080/00063659509477162
762	
763	Griesser, M. (2008). Referential calls signal predator behavior in a group-living bird
764	species. Current Biology, 18(1), 69–73.
765	
766	Haftorn, S. (1993). Ontogeny of the vocal repertoire in the willow tit <i>Parus montanus</i> .
767	Ornis Scandinavica, 24(4), 267–289.
768	
769	Hailman, J. P. (1989). The Organization of Major Vocalizations in the Paridae. <i>The</i>
770	Wilson Bulletin, 101(2), 305–343.

771	
772	Hailman, J. P., & Ficken, M. S. (1996). Comparative Analysis of Vocal Repertoires,
773	with Reference to Chickadees. In D. E. Kroodsma & E. H. Miller (Eds.), <i>Ecology</i>
774	and Evolution of Acoustic Communication in Birds (pp. 136–159). Ithaca.
775	
776	Hetrick, S. A., & Sieving, K. E. (2011). Antipredator calls of tufted titmice and
777	interspecific transfer of encoded threat information. Behavioral Ecology, 23(1),
778	83–92.
779	
780	Johansson, U. S., Ekman, J., Bowie, R. C. K., Halvarsson, P., Ohlson, J. I., Price, T.
781	D., & Ericson, P. G. P. (2013). A complete multilocus species phylogeny of the tits
782	and chickadees (Aves: Paridae). Molecular Phylogenetics and Evolution, 69(3),
783	852-860. http://doi.org/10.1016/j.ympev.2013.06.019
784	
785	Klump, G. M., & Shalter, M. D. (1984). Acoustic behaviour of birds and mammals in
786	the predator context. Zeitschrift Fur Tierpsychologie - Journal of Comparative
787	Ethology, 66, 189–226.
788	
789	Langham, G. M., Contreras, T. A., & Sieving, K. E. (2006). Why pishing works:
790	Titmouse (Paridae) scolds elicit a generalized response in bird communities.
791	Ecoscience, 13(4), 485–496.
792	
793	Latimer, W. (1977). A comparative study of the songs and alarm calls of some <i>Parus</i>
794	species. Zeitschrift Fur Tierpsychologie, 45, 414–433.
795	

796	le Roux, A., Cherry, M. I., & Manser, M. B. (2008). The audience effect in a
797	facultatively social mammal, the yellow mongoose, Cynictis penicillata. Animal
798	Behaviour, 75(3), 943–949. http://doi.org/10.1016/j.anbehav.2007.07.014
799	
800	Lima, S. L. (1993). Ecological and evolutionary perspectives on escape from
801	predatory attack: a survey of North American birds. The Wilson Bulletin, 105(1),
802	1–47.
803	
804	Magrath, R. D., Haff, T. M., Fallow, P. M., & Radford, A. N. (2014). Eavesdropping
805	on heterospecific alarm calls: from mechanisms to consequences. Biological
806	Reviews, 90(2), 1–27. http://doi.org/10.1111/brv.12122
807	
808	Manser, M. B. (2001). The acoustic structure of suricates' alarm calls varies with
809	predator type and the level of response urgency. Proceedings of the Royal Society
810	B:Biological Sciences, 268(1483), 2315–2324.
811	
812	Manser, M. B., Jansen, D. A. W. A. M., Graw, B., Hollén, L. I., Bousquet, C. A. H.,
813	Furrer, R. D., & le Roux, A. (2014). Vocal Complexity in Meerkats and Other
814	Mongoose Species. Advances in the Study of Behavior (1st ed., Vol. 46, pp. 281-
815	310). Elsevier Inc. http://doi.org/10.1016/B978-0-12-800286-5.00006-7
816	
817	Marler, P. (1955). Characteristics of some animal calls. <i>Nature</i> , 176(4470), 6–8.
818	
819	Marler, P. (1967). Animal communication signals. Science, 157(3790), 769–774.
820	

821	Marler, P., Evans, C. S., & Hauser, M. D. (1992). Animal signals: Motivational,
822	referential, or both? In H. Papoušek, U. Jürgens, & M. Papoušek (Eds.), Nonverbal
823	Vocal Communication: Comparative and Developmental Approaches (pp. 64–84).
824	Cambridge: Cambridge University Press.
825	
826	Millon, A., Nielsen, J. T., Bretagnolle, V., & Møller, A. P. (2009). Predator-prey
827	relationships in a changing environment: the case of the sparrowhawk and its avian
828	prey community in a rural area. Journal of Animal Ecology, 78(5), 1086–1095.
829	http://doi.org/10.1111/j.1365-2656.2009.01575.x
830	
831	Morse, D. H. (1978). Structure and foraging patterns of flocks of tits and associated
832	species in an English woodland during the winter. <i>Ibis</i> , 120(3), 298–312.
833	http://doi.org/10.1111/j.1474-919X.1978.tb06790.x
834	
835	Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., &
836	Thuiller, W. (2012). How to measure and test phylogenetic signal. Methods in
837	Ecology and Evolution, 3(4), 743-756. http://doi.org/10.1111/j.2041-
838	210X.2012.00196.x
839	
840	Murphy, D., Lea, S. E. G., & Zuberbühler, K. (2013). Male blue monkey alarm calls
841	encode predator type and distance. Animal Behaviour, 85(1), 119-125.
842	http://doi.org/10.1016/j.anbehav.2012.10.015
843	
844	Nakagawa, S., & Schielzeth, H. (2010). Repeatability for Gaussian and non-Gaussian
845	data: a practical guide for biologists. Biological Reviews, 85, 935-956.

846	http://doi.org/10.1111/j.1469-185X.2010.00141.x
847	
848	Nakagawa, S., & Schielzeth, H. (2012). A general and simple method for obtaining R ²
849	from generalized linear mixed-effects models. Methods in Ecology and Evolution,
850	4(2), 133–142. http://doi.org/10.1111/j.2041-210x.2012.00261.x
851	
852	Nakamura, T. (1970). A study of Paridae community in Japan, 141–169.
853	
854	Owings, D. H., & Virginia, R. A. (1978). Alarm calls of California ground squirrels
855	(Spermophilus beecheyi). Zeitschrift Fur Tierpsychologie, 46(1), 58–70.
856	
857	Pagel, M. (1999). Inferring the historical patterns of biological evolution. <i>Nature</i> , 401,
858	877–884.
859	
860	Peres, C. A. (1993). Anti-predation benefits in a mixed-species group of Amazonian
861	tamarins. Folia Primatologica; International Journal of Primatology, 61(2), 61-
862	76.
863	
864	Perneger, T. V. (1998). What's wrong with Bonferroni adjustments. British Medical
865	Journal, 316(7139), 1236–1238. http://doi.org/10.1136/bmj.316.7139.1236
866	
867	Perrins, C. M. (1979). British Tits. (M. Davies, J. Gilmour, K. Mellanby, & E.
868	Hosking, Eds.) (1st ed.). London, U.K.: William Collins Sons & Co. Ltd.
869	
870	Petty, S. J., Patterson, I. J., Anderson, D. I. K., Little, B., & Davison, M. (1995).

871	Numbers, breeding performance, and diet of the sparrowhawk Accipiter nisus and
872	merlin Falco columbarius in relation to cone crops and seed-eating finches. Forest
873	Ecology and Management, 79, 133–146.
874	
875	Placer, J., & Slobodchikoff, C. N. (2000). A fuzzy-neural system for identification of
876	species-specific alarm calls of Gunnison's prairie dogs. Behavioural Processes, 52,
877	1–9.
878	
879	Placer, J., & Slobodchikoff, C. N. (2004). A method for identifying sounds used in the
880	classification of alarm calls. Behavioural Processes, 67(1), 87-98.
881	http://doi.org/10.1016/j.beproc.2004.03.001
882	
883	R Core Team. (2014). R: A language and environment for statistical computing (3rd
884	ed.). Vienna, Austria: R Foundation for Statistical Computing.
885	
886	Randler, C. (2012). A possible phylogenetically conserved urgency response of great
887	tits (Parus major) towards allopatric mobbing calls. Behavioral Ecology and
888	Sociobiology, 66(5), 675–681.
889	
890	Rothman, K. J. (1990). No adjustments are needed for multiple comparisons.
891	Epidemiology, 1(1), 43–46.
892	
893	Seyfarth, R. M., & Cheney, D. L. (2003). Signalers and receivers in animal
894	communication. Annual Review of Psychology, 54, 145–173.
895	

896	Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Vervet monkey alarm calls:
897	Semantic communication in a free-ranging primate. Animal Behaviour, 28(4),
898	1070–1094.
899	
900	Shelly, E. L., & Blumstein, D. T. (2005). The evolution of vocal alarm
901	communication in rodents. Behavioral Ecology, 16(1), 169–177.
902	http://doi.org/10.1093/beheco/arh148
903	
904	Sieving, K. E., Hetrick, S. A., & Avery, M. L. (2010). The versatility of graded
905	acoustic measures in classification of predation threats by the tufted titmouse
906	Baeolophus bicolor: exploring a mixed framework for threat communication.
907	Oikos, 119(2), 264–276.
908	
909	Slobodchikoff, C. N. (2010). Alarm calls in mammals and birds. Encyclopedia of
910	Animal Behavior, 40–43.
911	
912	Soard, C. M., & Ritchison, G. (2009). Chick-a-dee calls of Carolina chickadees
913	convey information about degree of threat posed by avian predators. Animal
914	Behaviour, 78(6), 1447–1453.
915	
916	Sullivan, K. (1985). Selective alarm calling by downy woodpeckers in mixed-species
917	flocks. Auk, 184–187.
918	
919	Suzuki, T. N. (2012). Referential mobbing calls elicit different predator-searching
920	behaviours in Japanese great tits. Animal Behaviour, 84(1), 53-57.

921	
922	Suzuki, T. N. (2014). Communication about predator type by a bird using discrete,
923	graded and combinatorial variation in alarm calls. Animal Behaviour, 87, 59-65.
924	
925	Suzuki, T. N. (2016). Semantic communication in birds: evidence from field research
926	over the past two decades. <i>Ecological Research</i> , 1–14.
927	
928	Suzuki, T. N., & Ueda, K. (2013). Mobbing calls of Japanese tits signal predator type:
929	field observations of natural predator encounters. The Wilson Journal of
930	Ornithology, 125(2), 412–415.
931	
932	Suzuki, T. N., Wheatcroft, D. J., & Griesser, M. (2016). Experimental evidence for
933	compositional syntax in bird calls. <i>Nature Communications</i> , 7, 1–7.
934	http://doi.org/10.1038/ncomms10986
935	
936	Swann, R. L., & Etheridge, B. (2009). A comparison of breeding success and prey of
937	the Common Buzzard Buteo buteo in two areas of northern Scotland. Bird Study,
938	42(1), 37–43. http://doi.org/10.1080/00063659509477146
939	
940	Šálek, M., Marhoul, P., Pintíř, J., Kopecký, T., & Slabý, L. (2004). Importance of
941	unmanaged wasteland patches for the grey partridge Perdix perdix in suburban
942	habitats. Acta Oecologica, 25(1-2), 23–33.
943	http://doi.org/10.1016/j.actao.2003.10.003
944	
945	Templeton, C. N., Greene, E., & Davis, K. (2005). Allometry of alarm calls: black-

946	capped chickadees encode information about predator size. Science, 308(5730),
947	1934–1937.
948	
949	Townsend, S. W., & Manser, M. B. (2013). Functionally referential communication in
950	mammals: the past, present and the future. Ethology, 119(1), 1–11.
951	http://doi.org/10.1111/eth.12015
952	
953	Wilson, D. R., & Mennill, D. J. (2011). Duty cycle, not signal structure, explains
954	conspecific and heterospecific responses to the calls of black-capped chickadees
955	(Poecile atricapillus). Behavioral Ecology, 22(4), 784–790.
956	
957	Yorzinski, J. L., & Vehrencamp, S. L. (2009). The effect of predator type and danger
958	level on the mob calls of the American crow. Condor, 111(1), 159–168.
959	http://doi.org/10.1525/cond.2009.080057
960	
961	
962	
963	
964	
965	
966	
967	
968	
969	

972 970 over-dispersion of maximum value of 1.20 (generalized linear mixed models). variation in vocal response. Planed comparison t and z test results. § indicates either non-normally distributed residuals (linear mixed models) or Supplementary table 1. Type III Wald Chi-square test results for predator type (control, buzzard, or sparrowhawk) as a significant predictor of

971

				Great Tit																									Blue Tit	Species	
			Number of	Call rate								Propensity to use								Proportion of								Number of	Call rate	Encoding method	
D elements	Jar/rattle elements	Intro elements	Total elements	All	Short elements	Frequency-modulated calls	Tonal elements	Chirp elements	D elements	Exit elements	Mid elements	Intro elements	Short calls	Frequency-modulated calls	Tonal calls	Ciurp calls	D calls	Exit calls	Mid calls	Intro calls	Tonal elements	Chirp elements	D elements		Exit elements	Mid elements	Intro elements	Total elements	All	Call / element type	
∞								∞	∞										œ											Normality	
log	log		\log																				0.29	boxcox:	\log		\log			Transform	
lmer	lmer	lmer	lmer	lmer	lmer	glmer	lmer	glmer	lmer	lmer	lmer	glmer	glmer	glmer	glmer	glmer	glmer	glmer	lmer	glmer	lmer	lmer	lmer		lmer	lmer	lmer	lmer	lmer	Model Type	
Gaussian	Gaussian	Gaussian	Gaussian	identity	Gaussian	binomial	Gaussian	binomial	Gaussian	Gaussian	Gaussian	binomial	binomial	binomial	binomial	binomial	binomial	binomial	Gaussian	binomial	Gaussian	Gaussian	Gaussian		Gaussian	Gaussian	Gaussian	Gaussian	identity	Family	
identity	identity	identity	identity	log	identity	logit	identity	logit	identity	identity	identity	logit	logit	logit	logit	logit	logit	logit	identity	logit	identity	identity	identity		identity	identity	identity	identity	\log	Link	
3.44	0.05	0.38	0.65	44.00	17.27	9.63	14.35	4.78	3.06	14.78	33.01	1.59	3.83	3.16	14.17	17.04	4.18	6.27	3.25	1.68	1.26	0.92	28.84		0.18	6.76	2.38	20.54	43.10	χ2	
0.179	0.975	0.827	0.721	<0.001	<0.001	0.008	0.001	0.092	0.217	0.001	<0.001	0.451	0.148	0.206	0.001	<0.001	0.124	0.044	0.197	0.432	0.553	0.630	<0.001		0.912	0.034	0.305	<0.001	<0.001	p value	

Information encoding in Paridae

	•		
		1220	1

		Coal tit
	Proportion of	Proportion of Propensity to use Prate Call rate Number of
Mound elements Mt elements Peak elements S elements S-dot elements Slide elements Squeak elements Multi calls	Peak elements S elements S-dot elements Slide elements Squeak elements Bowl elements Churp elements Dot elements	Chirp elements Tonal elements Intro calls Jar/rattle calls D calls Chirp calls Tonal calls Intro elements Iar/rattle elements Jar/rattle elements Tonal elements Chirp elements Chirp elements Chirp elements Chirp elements Tonal elements Tonal elements Total elements All Total elements Bowl elements Dot elements Churp elements
on on on	box. 0.48 log log log shox. 0.30	S log boxc 1.70 log log log log
	log log log log log log log log	log boxcox:- 8.41 8.41 1.70 log log
lmer lmer glmer lmer glmer glmer glmer	Imer Imer Imer Imer Imer Imer Imer Imer	Imer Imer glmer glmer glmer lmer lmer lmer lmer lmer lmer lmer
Gaussian Gaussian binomial Gaussian binomial binomial Gaussian binomial	Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian	Gaussian Gaussian binomial binomial binomial Gaussian
identity identity logit identity cloglog cloglog identity logit	identity cloglog identity	identity identity logit logit logit logit identity identity identity identity identity log identity identity identity log identity log identity identity identity identity identity identity identity identity identity
1.44 1.64 1.21 0.56 2.95 2.70 3.54	1.78 3.18 11.97 3.16 7.27 0.34 2.25 0.98 3.18	0.40 5.11 1.85 0.56 0.13 7.55 0.48 3.71 10.96 1.87 0.50 4.25 15.46 3.68 0.53 0.53 0.53 0.53 0.63
0.486 0.441 0.545 0.758 0.229 0.260 0.170 0.067	0.412 0.204 0.003 0.206 0.026 0.026 0.844 0.324 0.614 0.204	0.819 0.078 0.078 0.397 0.756 0.939 0.023 0.789 0.157 0.004 0.393 0.779 0.119 color:blue; 0.0159 0.159 0.766 0.825 0.729 0.004 0.0029

										Marsh Tit								Tit	Crested												
	Propensity to use					Proportion of			Number of	Call rate	produce	Propensity to			Proportion of			Number of	Call rate												Propensity to use
dä/D elements All tonal elements Full tonal elements Peak tonal elements	Complete calls Intro elements	Whole tonal elements Ptew calls	Peak tonal elements Broken tonal elements	Full tonal elements	dä/D elements All tonal elements	Intro elements	dä/D elements	Intro elements	Total elements	Tonal calls All	Frequency-modulated calls	Trill calls	Frequency-modulated calls	Tonal calls	Trill calls	Tonal elements	Trill elements	Total elements	All	Multi calls	Squeak elements	Slide elements	S-dot elements	S elements	Peak elements	Mt elements	Mound elements	Hook elements	Dot elements	Churp elements	Bowl elements
	×× ×	n wo wo	,	∞ ∘	oo oo	∞								∞	∞.							∞.									
								log	log							\log	\log	\log													
lmer lmer lmer	lmer	glmer lmer	glmer	glmer	lmer	lmer	lmer	lmer	lmer	lmer	lmer	lmer	glmer	lmer	lmer	lmer	lmer	lmer	lmer	lmer	lmer	glmer	lmer	lmer	glmer	lmer	lmer	lmer	lmer	lmer	lmer
Gaussian Gaussian Gaussian Gaussian	Gaussian Gaussian	Gaussian	binomial	binomial	Gaussian Gaussian	Gaussian	Gaussian	Gaussian	Gaussian	Gaussian	Gaussian	Gaussian	binomial	Gaussian	Gaussian	Gaussian	Gaussian	Gaussian	Gaussian	Gaussian	Gaussian	binomial	Gaussian	Gaussian	binomial	Gaussian	Gaussian	Gaussian	Gaussian	Gaussian	Gaussian
identity identity identity identity	identity identity	logit identity	logit	logit	identity identity	identity	identity	identity	identity	identity	identity	identity	logit	identity	identity	identity	identity	identity	identity	identity	identity	logit	identity	identity	logit	identity	identity	identity	identity	identity	identity
0.54 8.28 2.98 12.37	0.98	5.44 0.06	4.06	6.88	0.06	0.10	12.69	4.03	1.38	4.72 10.39	6.45	4.72	6.32	0.50	0.49	2.83	0.55	2.93	6.21	1.07	18.58	2.83	3.88	5.59	1.44	1.61	9.75	2.22	3.06	2.41	1.64
0.764 0.016 0.226 0.002	0.960	0.066	0.184	0.031	0.972	0.950	0.002	4.031	0.503	0.094	0.040	0.094	0.042	0.778	0.784	0.243	0.760	0.231	0.045	0.586	<0.001	0.243	0.144	0.061	0.488	0.447	0.008	0.329	0.216	0.300	0.440

Information encoding in Paridae

																Tit	Willow				
				Propensity to use						Proportion of						Number of	Call rate				
Zizi calls	Si-tää-tää calls	Tää elements	Zi elements	Si intro elements	Zizi calls	Si-tää-tää calls	Tää-tää calls	Tää elements	Zi elements	Si intro elements	Tää elements	Zi elements		Si intro elements		Total elements	All	dä/D calls	Ptew calls	Whole tonal elements	Broken tonal elements
						∞.															∞.
											log	0.48	boxcox:-	0.22	boxcox:-	log					
lmer	lmer	lmer	lmer	lmer	lmer	lmer	glmer	glmer	glmer	glmer	lmer	lmer		lmer		lmer	lmer	lmer	lmer	lmer	lmer
Gaussian	Gaussian	Gaussian	Gaussian	Gaussian	Gaussian	Gaussian	binomial	binomial	binomial	binomial	Gaussian	Gaussian		Gaussian		Gaussian	Gaussian	Gaussian	Gaussian	Gaussian	Gaussian
identity	identity	identity	identity	identity	identity	identity	logit	logit	logit	logit	identity	identity		identity		identity	identity	identity	identity	identity	identity
5.96	3.65	5.75	2.71	2.71	0.76	1.88	0.13	0.46	0.17	0.13	5.73	1.03		16.46		7.89	46.36	0.41	8.29	2.73	2.15
0.051	0.162	0.057	0.258	0.258	0.684	0.391	0.938	0.795	0.919	0.938	0.057	0.599		<0.001		0.019	<0.001	0.815	0.016	0.256	0.341

*Acknowledgments

Acknowledgements

2

16

1

3 We thank the Richard K Broughton, St Andrews Botanic Garden, the Rothiemurchus 4 Estate, Cublin Forest, Boat of Garten, the National Parks & Reserve managers, the 5 Forestry Comission, Scottish National Heritage, Yorkshire and Northumberland Wildlife 6 Trusts, and many homeowners for providing access to their gardens and lands. We are 7 grateful Erick Greene for the idea to use 'robo-raptors' and his help designing them and 8 George Jamieson who created the taxidermy mounts. We also thank members of the 9 Healy and Templeton labs for helpful suggestions on the experimental design and 10 interpretation, and Dr. Michael Morrissey for his advice on statistical models. Finally we 11 thank Scott MacDougall-Shackleton, Toshitaka Suzuki, and an anonymous reviewer for 12 their constructive comments on earlier versions of the manuscript. This research was 13 approved by the University of St Andrews School of Biology Ethics Committee 14 (01112013) and funded by NERC (NE/J018694/1), the Royal Society (RG2012R2), the 15 M. J. Murdock Charitable Trust (2014199), and the University of St Andrews (University

of St Andrews 600th Year Scholarship and the St Leonard's Fee Scholarship).