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The Ukrainian shield hosts two Palaeoproterozoic anorthosite-mangerite-charnockite-

granite (AMCG) complexes (the Korosten and Korsun-Novomyrhorod complexes) that 

intruded Palaeoproterozoic continental crust in north-western and central parts of the shield, 
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respectively. We report results of U-Pb zircon and baddeleyite dating of 16 samples from the 

Korosten plutonic complex (KPC), and 6 samples from the Korsun-Novomyrhorod plutonic 

complex (KNPC). Fifteen zircon samples from both complexes were also analysed for Hf 

isotopes. These new, together with previously published data indicate that the formation of 

the KPC started at c. 1815 Ma and continued until 1743 Ma with two main phases of magma 

emplacement at 1800-1780 and 1770-1758 Ma. Each of the main phases of magmatic activity 

included both basic and silicic members. The emplacement history of the KNPC is different 

from that of the KPC. The vast majority of the KNPC basic and silicic rocks were emplaced 

between c. 1757 and 1750 Ma; the youngest stages of the complex are represented by 

monzonites and syenites that were formed between 1748 and 1744 Ma. Both Ukrainian 

AMCG complexes are closely associated in space and time with mantle-derived mafic and 

ultramafic dykes. The Hf isotope ratios in the zircons indicate a predominantly crustal source 

for the initial melts with some input of juvenile Hf from mantle-derived tholeiite melts. 

The preferred model for the formation of the Ukrainian AMCG complexes involves the 

emplacement of large volumes of hot mantle-derived tholeiitic magma into the lower crust. 

This resulted in partial melting of mafic lower-crustal material, mixing of lower crustal and 

tholeiitic melts, and formation of ferromonzodioritic magmas. Further fractional 

crystallization of the ferromonzodioritic melts produced the spectrum of basic rocks in the 

AMCG complexes. Emplacement of the ferromonzodioritic and tholeiitic melts into the middle 

crust and their partial crystallization caused abundant melting of the ambient crust and 

formation of the large volumes of granitic rocks present in the complexes. 

 

KEY WORDS: AMCG complexes; Hf isotopes; Proterozoic; Ukrainian shield; U-Pb 

geochronology. 
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1. Introduction 

 

The origin of anorthosite-mangerite-charnockite-granite (AMCG) complexes is one of 

the more intriguing problems of modern petrology. The main aspects include the origin and 

nature of the initial melts, and the relationships between silicic and basic members of the 

AMCG associations. Different researchers have proposed models in which the initial source 

was in the mantle (Ashwal et al., 1986; Ashwal, 1993; Emslie and Hegner, 1993; Scoates and 

Frost, 1996; Frost and Frost, 1997; Gleißner et al., 2011) or in the lower crust (Taylor et al., 

1984; Schärer et al., 1996; Longhi et al., 1999; Duchesne et al., 1999; Schiellerup et al., 2000; 

Longhi, 2005). In some cases more complex models of interaction of initial mantle melts with 

reworked crustal material were preferred (Emslie et al., 1994; Rämö and Haapala, 2005). As 

for the AMCG complexes, a number of relationships between the basic and silicic members 

have been proposed. The first model envisages common parental melts that underwent 

fractional crystallization to produce the spectrum of rocks from basic to granitic (e.g. 

Duchesne and Wilmart, 1997; Vander Auwera et al., 1998). The second type of model 

invokes indirect links between silicic and basic melts that originate due to common processes 

but from different sources (Emslie, 1991; Rämö and Haapala, 1996; Bolle et al., 2003; Wilson 

and Overgaard, 2005; Duchesne et al., 2010). 

AMCG complexes worldwide exhibit some similarities with respect to their 

emplacement history. They commonly developed over prolonged periods of time that may 

extend for up to several tens of millions of years (M.y.) (Vaasjoki et al., 1991; Higgins and 

van Breemen, 1996; Amelin et al., 1997, 1999; Alviola et al., 1999; Zhang et al., 2007; 

Morisset et al., 2009; Bybee et al., 2014a,b). Previous geochronological data for the Ukrainian 

AMCG complexes (Amelin et al., 1994; Verkhogliad, 1995) indicated a long period of 

magmatism. However, these data were sparse and did not allow confident recognition of the 
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emplacement sequence and of the phases of magmatic activity. The temporal relationships 

between the main rock types had not been established, and correlation between the two 

Ukrainian AMCG complexes was hampered by the lack of data from one of them. Finally, it 

had been shown recently that mantle-derived dykes that vary in composition from kimberlite 

to tholeiitic dolerite, and which are widely distributed in the Ukrainian shield, are coeval with 

the AMCG complexes (Shumlyanskyy et al., 2012; 2016a; 2016b; Bogdanova et al., 2013).  

Isotope data are used to shed light into the sources of the initial melts. Published data 

for the Ukrainian AMCG complexes are limited and signify a predominantly crustal source of 

the melts, with limited input of juvenile mantle material (Shumlyanskyy et al., 2006). 

However, isotope data for the silicic rocks was hitherto absent and ideas about relationships 

of basic and silicic members of the Ukrainian AMCG complexes in terms of their origin were 

highly speculative. In this paper we present extensive U-Pb geochronological and Hf isotope 

data on the two Palaeoproterozoic AMCG complexes located in the Ukrainian shield and 

sampled by the authors over the last decade. Our primary aim is to constrain the secular 

relationships between the main rock suites that compose the AMCG association and to shed 

light on their origins. 

 

2. Geological setting 

 

2.1. The Ukrainian shield 

 

The Ukrainian shield hosts two AMCG plutonic complexes – the Korosten (KPC) and 

Korsun-Novomyrhorod (KNPC). The Korosten plutonic complex is in the North-Western 

domain of the Ukrainian shield, and the Korsun-Novomyrhorod complex is in the central part 

of the shield in the Ingul domain (Fig. 1). Both domains are dominated by orogenic granitoids 
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formed between c. 2080 and 2020 Ma (Shcherbak et al., 2008), while amphibolite facies 

supracrustal rocks compose large areas between the granitic intrusions, and also occur as 

variably-sized xenoliths within the latter. In both areas the Palaeoproterozoic crust prevails 

and Archaean rocks are virtually absent. However, there is a prominent difference in the 

isotope compositions of the Palaeoproterozoic rocks in the North-Western and the Ingul 

domains of the Ukrainian shield: the North-Western domain is dominated by juvenile 

metamorphic rocks and orogenic granites while their counterparts in the Ingul domain bear 

more “evolved” crustal isotope signatures and possibly originate from 200-300 M.y. older 

crustal precursors.  

The North-Western domain was additionally affected by formation of the Osnitsk-

Mikashevychi igneous belt at 2.0-1.97 Ga, which is thought to be an active continental margin 

that developed over the north-western margin of the already amalgamated Sarmatia and 

Volgo-Uralia segments of the East European Craton (Bogdanova et al. 2006; 2013; 

Shumlyanskyy, 2014). After c. 1.95 Ga the Ukrainian shield developed as a stable platform, 

and no orogenic events, deformation and strong metamorphism are known after that time. A 

thick, over 900 m, undeformed platformal sedimentary cover accumulated prior to the 

emplacement of the AMCG complexes, which are also undeformed and non-metamorphosed. 

The equant batholitic shape of these complexes further indicates an absence of any 

unidirectional stress during their formation. 

 

2.2. Korosten plutonic complex (KPC) 

 

The Korosten plutonic complex is one of the largest (about 10 400 km2) and most 

typical examples of AMCG complexes in the world (Fig. 2). Granites occupy about 75 % of 

its area, and the rest is dominated by a range of basic rocks. The western, southern and eastern 
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contacts and several “windows” inside the KPC are composed of Palaeoproterozoic 

metamorphic rocks, granites and migmatites. Remnants of the platformal cover represented 

by Pugachivka sandstones, quartzites and schists occur as large xenoliths among the rocks of 

the Korosten complex and represent its ancient roof. To the north-west the KPC is bordered 

by the Bilokorovychi graben-syncline filled with platformal sediments (sandstones, siltstones, 

schists, conglomerates, and metabasalts) of the Topilnya Series, which according to the 

geological relationships is older than the KPC and is probably equivalent to the Pugachivka 

rocks. The U-Pb zircon age of the Bilokorovychi dyke swarm (Fig. 2) that cut sediments of 

the Topilnya Series is 1799 ± 10 Ma (Shumlyanskyy and Mazur, 2010). In its northern part, 

volcanic and terrigeneous rocks of the Ovruch Series fill the Ovruch and Vilcha basins and 

partly cover the KPC. 

A large number of mantle-derived high-Ni tholeiitic dykes and several layered 

intrusions are known in the North-Western region of the Ukrainian shield, in the vicinity of 

the KPC. The available geochronological data indicate they were emplaced at 1790-1780 Ma 

(Shumlyanskyy et al., 2012; 2016a; Bogdanova et al., 2013).  

The KPC embraces a number of granitic rocks that belong to the rapakivi group, and a 

suite of basic rocks that includes predominantly anorthosite and leucogabbronorite, and 

subordinate gabbro-noritic rocks. Other volumetrically minor rock types include monzonites, 

syenites, and monzonitic syenites. Basic rocks form sheet-like bodies, the largest of which 

occupies 1250 km2, and vary in thickness from hundreds to thousands of metres. Such bodies 

are the gabbro-anorthosite massifs of Volynsky, Chopovychi, Fedorivka, Kryvotyn and 

Pugachivka, together with a number of smaller ones. Detailed field investigations have shown 

that the basic rocks of the KPC were intruded in a number of phases. Each phase corresponds 

to a specific rock assemblage called ‘rock series’ (Mitrokhin, 2001): early anorthositic (A1), 

main anorthositic (A2), early gabbroic (G3), late gabbroic (G4) and dyke (D5). 
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The oldest known basic rocks of the KPC are high-alumina orthopyroxene megacryst-

bearing anorthosite and leuconorite of the early anorthositic series (A1). These occur mainly 

as xenoliths in younger basic and silicic rocks, but rather large bodies are also known. Rocks 

of the main anorthosite series (A2) are the most abundant basic rocks of the KPC. They 

include leucocratic rocks varying from anorthosite to leucogabbronorite, which make up the 

main volume of the gabbro-anorthosite massifs. These rocks contain xenoliths of the A1 rocks 

but in turn they are cut by later gabbroic intrusions and granites. Gabbronorite and leuco-

gabbronorite that represent the early gabbro rock series (G3) are known only in the southern 

part of the Volynsky massif. The late gabbro series (G4) includes various rocks from 

leucogabbro to melagabbro and ultramafics that form layered intrusions and sheet-like bodies 

in association with A2 massifs. G4 rocks intrude all the large gabbro-anorthosite massifs of the 

KPC and they often contain economically significant apatite-ilmenite deposits, one of which 

(the Fedorivka layered intrusion) was described in detail by Duchesne et al. (2006). 

Ferromonzodiorite dykes that cut granitic rocks appear to represent the last manifestation of 

basic magmatism in the KPC, but recent geochronological data (Lubnina et al., 2009; 

Shumlyanskyy and Mazur, 2010; Shumlyanskyy et al., 2016a) indicate that ferromonzodiorite 

dykes (D5) were emplaced throughout the history of the KPC. In general, ferromonzodiorite 

and quartz-ferromonzodiorite dykes are widespread in association with the Korosten AMCG 

complex. These dykes are often laden with plagioclase phenocrysts and are described in the 

literature under the names “plagioporphyrite” or “plagiophyric dolerite” or the local name 

“volynite”. The chilled margins of G4 gabbroic massifs have similar to dykes compositions 

and share features that include the presence of variable amounts of K-feldspar, and 

correspondingly high K2O contents (0.90-3.89 %). They also have high TiO2 (1.91-3.77 %) 

and P2O5 (0.45-1.87 %) contents at relatively low Mg# (21-46). With respect to their 

chemistry, ferromonzodiorite dykes and chilled margins are broadly similar to rocks known as 
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jotunites in other AMCG complexes worldwide (Duchesne et al., 1985; Owens et al., 1993; 

Robins et al., 1997; Vander Auwera et al., 1998; Wiszniewska et al., 2002). 

Granites of the rapakivi group are the dominant rocks at the current level of erosion, 

but characteristic coarse-grained wiborgitic rapakivi is rare. Medium-grained granites with 

sparse mantled ovoids are more common. Biotite-amphibole granites with fayalite and ferrous 

hedenbergite prevail near the contacts with basic rocks. Towards the central parts of the 

granitic massifs these turn into biotite-amphibole granite and then into amphibole-biotite 

granite. According to Esipchuk et al. (1990), emplacement of the KPC granites took place in a 

number of intrusive pulses (phases). The first and main phase of emplacement comprises the 

most abundant rapakivi-group granitoids, and the second phase is represented by minor stocks 

and dykes of biotite granite-porphyry. The third and final phase is represented by Li-F 

microcline-albite granite, which forms thin (<1.5 m) subvertical dykes among granites of the 

main and second intrusive phases (Shcherbakov, 2005). A group of hybrid rocks is located at 

contacts of the G4 gabbroic intrusions with granites of the KPC. Gradual transformation of 

gabbronorite into monzonite, as well as of granite into granosyenite and quartz syenite, has 

been described and explained by mingling of high-temperature gabbroic melt with partly-

crystallized granitic magma (Mitrokhin and Bilan, 2014). 

 

2.3. The Korsun-Novomyrhorod plutonic complex 

 

The Korsun-Novomyrhorod plutonic complex (KNPC) is an oval body elongated in 

the N-S direction with a total area of ~ 5 500 km2. Granitic rocks occupy up to 76 % of the 

area and form two large massifs – the Korsun-Shevchenkivsky and Shpola (Fig. 3). The main 

variety of silicic rocks is coarse-grained rapakivi granite with numerous mantled ovoids 

(wiborgite). Granites with rare ovoids are less abundant and display gradual transitions into 
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wiborgite. Coarse-grained varieties are common in the internal parts of the granite massifs, 

and towards the margins coarse-grained granites are rimmed by a medium-grained variety. 

Aplite and pegmatite varieties of the biotite granite occur as veins cutting both rapakivi 

granite and basic rocks. 

Basic rocks constitute c. 21 % of the area. Leucocratic rocks, i.e. anorthosite and 

leuconorite, are predominant and form four large massifs: the Novomyrhorod, Smila, 

Horodyshe and Mezhyrychi, as well as a number of smaller bodies. Mesocratic norite, 

gabbronorite and gabbro are far less abundant, and melanocratic gabbro and ultramafic rocks 

are very rare. Monzonitic rocks (monzonorite, monzodiorite, monzonite and syenite) cover 

about 3 % of the total area of the KNPC, and they usually occur at the contacts of granites 

against gabbroic rocks. 

As in the KPC, rocks of the KNPC are closely associated with mafic (tholeiitic 

dolerite), ultramafic (picrite) and kimberlite dykes. Numerous fan-like dyke swarms are 

known south- and east-ward of the KNPC, but in spite of their wide areal distribution, these 

dykes do not cut rocks of the KNPC. Sparse geochronological data available for the dykes 

indicate emplacement at c. 1800 Ma. The possible relation of these mantle-derived dykes to a 

mantle plume, or to delamination of lithosphere caused by collision of Sarmatian and 

Fennoscandian segments of the East-European platform shortly before 1800 Ma, was 

discussed in details by Shumlyanskyy et al. (2016b). The intra-plate nature of this magmatism 

remains beyond doubt. 

 

3. Methods 

 

The U-Pb results were collected employing methods that include: thermal-ionisation 

mass-spectrometry (TIMS) on multigrain fractions of zircon and baddeleyite, secondary-ion 
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mass-spectrometry (SIMS) and laser-ablation ICP mass-spectrometry (LA-ICP-MS) carried 

out in-situ on individual zircon grains. 

Most of our samples were taken from natural outcrops and artificial excavations (e.g. 

quarries) with reliable control of the sampled material. A few samples were taken from drill 

cores (Table 1) along intervals that varied from 2 to 20 m, depending on the availability of 

core material. Special attention was paid to collecting homogeneous rocks. Zircons and 

baddeleyites were separated from crushed whole rock samples, each weighing from 0.5 up to 

30 kg, using conventional water table, heavy liquid and magnetic techniques. Subsequently, 

handpicked zircons were analysed by SIMS (Table 2), TIMS (Table 3) and LA-ICP-MS 

(Table 4) techniques. The TIMS analyses were made on multigrain fractions of zircon and 

baddeleyite. The samples were washed using HNO3, H2O and acetone, weighed on a 

microbalance and spiked with a mixed 205Pb/235U tracer. Dissolution of zircon was carried out 

with HF (+HNO3) in Teflon bombs (Krogh, 1973) at 205˚C. The purified samples were 

loaded on zone-refined Re filaments with Si-gel and H3PO4 and measured on a TRITON 

spectrometer at the Swedish Museum of Natural History, Stockholm.  

For the SIMS and LA-ICP-MS analyses the separated zircon crystals were mounted 

into a 25 mm epoxy puck and polished approximately half way through. Before isotope 

analysis, all zircon crystals were imaged using cathodoluminescence (CL) on a Hitachi SEM 

to clarify internal structures and to identify the portions most suitable for analysis. For the 

SIMS analysis the c. 1065 Ma Geostandard 91500 reference zircon (Wiedenbeck et al. 1995) 

was mounted along with the samples. The SIMS U–Th–Pb analyses were carried out using a 

large geometry Cameca IMS 1270 instrument at the Nordsim facility, Swedish Museum of 

Natural History, Stockholm. The analytical method follows that described by Whitehouse and 

Kamber (2005). The following procedures were fully automated: (a) pre-sputtering with a 25 

mm raster for 120 s; (b) centring of the secondary ion beam in the 4000 mm field aperture; (c) 
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mass calibration optimization; and (d) optimization of the secondary beam energy 

distribution. Data reduction employed Excel® macros developed by M.J. Whitehouse.  

The LA-ICP-MS techniques for U, Th, and Pb isotope analysis of zircon at the 

Museum für Mineralogie und Geologie (Senckenberg Museum of Natural History, Dresden), 

use a Thermo-Scientific Element 2 XR sector field ICP-MS coupled to a New Wave UP-193 

Excimer Laser System. Each analysis consisted of a 15 s background acquisition followed by 

a 30 s data acquisition, using a laser spot-size of 25 µm. Raw data were corrected for 

background, common Pb, laser induced elemental fractionation, instrumental mass 

discrimination, and time-dependant elemental fractionation of Pb/Th and Pb/U using an 

Excel® spreadsheet program developed by Axel Gerdes. U and Pb contents and Th/U ratios 

were calculated relative to the GJ-1 zircon standard and are accurate to approximately 10%. 

In all methods described above the common lead correction, when needed, was done 

using the measured 204Pb signal and the modern (i.e. 0 Ma) Pb isotope composition (Stacey 

and Kramers, 1975). The reported discordance refers to the position of data points in relation 

to the concordia curve in conventional 207Pb/235U–206Pb/238U space. Decay constants used 

follow the recommendations of Steiger and Jäger (1977). Age calculations were performed 

using the routines of ISOPLOT 4.15 (Ludwig, 2012).  

To ensure that applied methods of U-Pb dating produce comparable results, one 

sample of granite (sample 05-C1, Susly quarry) was analysed by all three methods. Results of 

dating (2059 ± 5 Ma) are identical within error.  

Hf isotope analyses were performed at Bristol University, UK. The data were acquired 

with a Thermo-Scientific Neptune multicollector inductively coupled plasma mass 

spectrometer (ICP-MS) coupled to a New Wave 193 nm ArF laser ablation sampling system 

operating at 4 Hz and using a 50 mm spot size over a 60 s ablation period. The Yb isotope 

compositions of Segal et al. (2003) were adopted for interference corrections which are done 
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by determination of the Yb mass bias by measuring 173Yb/171Yb during the run, and 

calculating 176Yb/177Hf using the natural 176Yb/171Yb ratio. The relatively minor Lu correction 

was performed by measuring 175Lu and using 175Lu/176Lu=0.02655 (Vervoort et al., 2004), 

assuming that the mass bias behaviour of Lu is analogous to that of Yb Kemp et al. (2009). 

 Data for unknowns were collected along with Plešovice, Temora and 95100 

standards. 176Hf/177Hf initial values were calculated using the 176Lu decay constant of 

Söderlund et al. (2004). Depleted mantle (Chauvel and Blichert-Toft, 2001), and chondritic 

(Bouvier et al., 2008) parameters were used for model age calculations. 

Some of the zircons from the Ukrainian AMCG complexes had high 176Yb/177Hf ratios 

(up to 0.12) that required robust correction procedures to deal with the isobaric interference 

on 176Hf. Analyses of synthetic zircon doped with Hf and REE carried out at Bristol 

University (Fisher et al., 2011), using the same method as the one applied here, demonstrated 

that even such high Yb isobaric interferences can now be satisfactorily corrected. 

 

4. Geochronological data 

 

4.1. The Korosten plutonic complex (KPC) 

 

4.1.1. Previous results 

Table 1 summarizes previous age results with relevance for this study, together with 

the new results presented here. Rocks of the A1 (early anorthosite) series have been dated by 

Amelin et al. (1994) and Verkhogliad (1995) using the U-Pb method on zircon and 

baddeleyite. A coarse-grained anorthosite on the right bank of the river Uzh, near the village 

Pugachivka (for sample and locality numbers, see Table 1) yielded ages of 1800.0 ± 1.3 Ma 

for zircon and 1794 ± 7 Ma for baddeleyite. Xenoliths of the early anorthosite host within the 
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main anorthosite series from the Ignatpil quarry yielded a concordant U-Pb zircon age of 1789 

± 2 Ma. Finally, a sub-concordant zircon age of 1784 ± 3 Ma was obtained for a xenolith of 

anorthosite enclosed in an A2 anorthosite at the Granitne quarry. Large anorthosite bodies of 

the main anorthosite series (A2) had been previously dated at two localities within the 

Volynsky massif. Zircon dating of anorthosite from the Holovino quarry yielded a concordant 

age of 1758.1 ± 1.0 Ma, and the baddeleyite age was 1760.6 ± 0.7 Ma. Zircons from the 

Turchynka anorthosite yielded a concordant age of 1758.0 ± 1.8 Ma. Numerous gabbroic 

massifs of the G4 rock series were, until recently, represented by a single concordant zircon 

age of 1758.8 ± 0.9 Ma for gabbro in the Buky quarry. Amelin et al. (1994) and Verkhogliad 

(1995) also reported a concordant age of 1761 ± 2 Ma for zircons from a plagiophyritic dyke 

that crops out near Pugachivka village, where it cuts granites of the KPC. Ferromonzodiorite 

from the Bilokorovychi dyke swarm yielded a zircon age of 1799 ± 10 Ma (Shumlyanskyy 

and Mazur, 2010). Shumlyanskyy et al. (2016a) report results of U-Pb baddeleyite dating of 

the Rudnya Bazarska dyke, which at 1000-1500 m wide, is one of the largest dykes associated 

with the KPC (Fig. 2). An unconstrained regression yielded an upper intercept age of 1793 ± 

6 Ma. Finally, the youngest known subvolcanic ferromonzodioritic sill intrusion is exposed in 

the Bondary quarry where it cuts granites of the KPC. The U-Pb zircon age of this rock is 

1751 ± 12 Ma (Lubnina et al., 2009). 

In spite of the fact that granitic rocks prevail at the surface of the KPC, only three 

samples had previously been dated by the U-Pb method. Zircons from the rapakivi granite in 

the Kyivshlyakhobud quarry near the city of Malyn were dated by Shcherbak et al. (1989), 

Amelin et al. (1994), and Verkhogliad (1995); a combination of all of their data yields an age 

of 1765 ± 5 Ma. A second sample was taken at the Lezniki granite massif and gave an age of 

1752 ± 16 Ma. A third granite sample is from a thin vein (dyke) of granite porphyry that cuts 

schists of the Bilokorovychi basin, and its age is 1781 ± 3 Ma (Amelin et al., 1994). Basic 
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(basalt) and silicic (rhyolite) volcanic rocks occur in the basal parts of the Ovruch and Vilcha 

basins. Some rhyolite crops out at the surface and was the subject of a detailed geochemical 

and geochronological study (Shumlyanskyy and Bogdanova, 2009). Geochemically these 

rocks closely resemble granites of the KPC, and their zircon U-Pb age (1761 ± 13 Ma) also 

indicates a tight genetic relationship with silicic plutonic rocks of the KPC. 

There are also a number of smaller intrusions located up to several tens of kilometres 

from the main intrusive body of the KPC. One of these intrusions is the Yastrebetsky syenite 

massif (Fig. 2). The U-Pb SIMS zircon age of these syenites is 1772 ± 6 Ma (Sheremet et al., 

2012) which also indicates a link to the KPC. 

 

4.1.2. New U-Pb age results 

The details of the analytical methods are given in Supplementary Appendix A. 

The early anorthositic series (A1) is represented by sample no. 68 that was collected at 

quarry #6 near the Granitne village close to the city of Malyn. It occurs as a large xenolith of 

A1 anorthosite within the A2 anorthosite. Zircons are colourless to slightly pinkish, 

transparent, and up to 0.2 mm long. Grains are equant and prismatic, with a few of them being 

elongated. Crystals are weakly zoned, and zoning is oscillatory, concentric or sectorial. On 

CL images grains are rather dark with only a few of them having bright external mantles (Fig. 

4). Zircons were dated by SIMS and yielded concordant or nearly concordant results (Table 

2); the weighted average 207Pb/206Pb age is 1778 ± 9 Ma, while the upper intercept age is 1781 

± 8 Ma (Fig. 5). 

Anorthosites of the main anorthosite series (A2) contain locally abundant pegmatitic 

pods that represent clusters of the residual liquid left after anorthosite crystallization 

(Shumlyanskyy and Zagnitko, 2011). We have analysed zircons from pegmatites that occur in 

the Paromivka, Horbuliv and Syniy Kamin quarries, all hosted within A2 anorthosites of the 
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Volynsky massif. Four multi-grain TIMS results were obtained for zircons from pegmatites of 

the Paromivka quarry, three multi-grain results for the Syniy Kamin pegmatites, and five 

multi-grain TIMS results and five SIMS spots for pegmatites of the Horbuliv quarry (Tables 

2, 3). Zircons from all of these pegmatite bodies are very similar and occur as large, >0.2 mm, 

prismatic, elongated or flattened crystals. The zircons are transparent, colourless or slightly 

pinkish, and luminescence is very weak to absent (Fig. 4). The new ages indicate that 

pegmatites of the Paromivka quarry crystallized at 1757 ± 3 Ma (weighted average 207Pb/206Pb 

age, MSWD = 0.94, and the upper intercept is 1757 ± 4 Ma if the lower intercept is anchored 

at 0 Ma). Similarly, the upper intercept ages of zircons from the Syniy Kamin and Horbuliv 

quarries are 1756 ± 4 Ma and 1754 ± 4 Ma (ages obtained with the lower intercept anchored 

at 0 Ma, Fig 5). The combined weighted average 207Pb/206Pb age for all results obtained for 

the three different pegmatite bodies is 1758 ± 4 Ma. We accept this age as the time of 

crystallization of the pegmatites in the Volynsky gabbro-anorthosite massif. It corresponds to 

the previously obtained age of their host anorthosites (1758 ± 2 Ma, Verkhogliad, 1995). 

Sample 10-03 was taken at the same quarry as sample no. 68, and it is an anorthosite 

of the Fedorivka anorthosite massif (which should not be confused with the Fedorivka gabbro 

layered intrusion) that is the third largest anorthosite massif in the KPC (Mytrokhyn et al., 

2003; Fig. 2). This anorthosite belongs to the A2 rock series and it contains numerous 

xenoliths of the A1 anorthosite dated by Verkhogliad (1995) and in this work (sample no. 68). 

From sample 10-03 five fractions of baddeleyite have been dated (Table 3), most of which 

yielded concordant or sub-concordant U-Pb (TIMS) results with one result being reversely 

discordant (Fig. 5). The upper intercept of the discordia line (anchored at 0 Ma) yielded an 

age of 1771.5 ± 0.8 Ma, and the weighted average 207Pb/206Pb age is 1771.6 ± 1.5 Ma. This 

age is younger than that of xenoliths hosted by this rock (1784 ± 3 and 1781 ± 8), but 

appropriately older than the age of the A2 anorthosites (~1758 Ma) of the Volynsky massif. 
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Special attention was paid to rocks of the late gabbroic series (G4), as these often 

contain economic apatite-ilmenite ores. Sample 599 is an olivine gabbro of the Fedorivka 

layered intrusion. Two non-magnetic multigrain fractions of zircons differing in size (<0.1 

mm and 0.1-0.2 mm) and four fractions of baddeleyite were dated by TIMS. Zircons are 

almost colourless to slightly brownish, transparent, and commonly containing minor 

inclusions. Grains are elongated and prismatic with well-developed pyramidal tips, and on CL 

images the zircons display complex irregular zoning (Fig. 4). All the results from this sample 

are concordant to sub-concordant (discordance <3 %, Table 3, Fig. 5), and the combined 

zircon and baddeleyite age is 1761.9 ± 1.6 Ma (upper intercept age). 

Sample 03-D24 is of olivine gabbronorite from the Pivnichna Slobidka G4 massif. 

Zircons from this rock are almost equant and about 0.1 mm in size. Prismatic facets are absent 

or poorly developed, and the crystals are transparent, colourless to slightly brownish. Zoning 

is apparent on CL images as a thin dark mantle surrounds the grey main portion of the grains 

(Fig. 4). Six crystals were analysed by SIMS, five of them were <4 % discordant, while one 

grain yielded a significantly discordant (23 %) result (Table 2, Fig. 5). The age of 

crystallization calculated using all 6 results is 1763 ± 8 Ma (upper intercept age) whereas the 

weighted average 207Pb/206Pb age is 1763 ± 4 Ma. 

Olivine monzodiorite of the Torchyn G4 massif was sampled at the Torchyn quarry 

(sample 03-D18). Zircons are slightly elongated and di-pyramidal, and prismatic facets are 

virtually absent. Crystals are transparent, but slightly brownish. On CL images these zircons 

occur as dark grains with very weak simple zoning (Fig. 4). In total, five grains were dated by 

SIMS; three of them yielded sub-concordant (<4 % of discordancy) results, while two crystals 

are significantly discordant (Table 2, Fig. 5). The age of the upper intercept of the regression 

(anchored at 0 Ma) for all five grains is 1756 ± 5 Ma, while the weighted average 207Pb/206Pb 

age is 1757 ± 9 Ma. 
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Sample 289/197 is a gabbro of the Davydky massif that is rather atypical for the KPC. 

It is located in the extreme north-eastern corner of the KPC (Fig. 2) and it occurs as a rounded 

body that occupies an area of 30 km2. Unlike other gabbroic bodies in the KPC, the Davydky 

massif displays a clear fractionation from gabbro to syenite. Two fractions, with 2-3 

baddeleyite grains in each, and one single-grain fraction were analysed by TIMS for U-Pb 

isotopes. All the results are concordant and very consistent (Table 3, Fig. 5) and yield an age 

of 1789.8 ± 1.5 Ma (lower intercept anchored to 0 Ma). 

In addition, our intention was also to expand the geochronological dataset for silicic 

rocks of the KPC, which had previously lacked adequate attention. Two of the granite 

samples were collected at the extreme northern part of the KPC, close to the contact with 

country rocks; these granites were recovered by drilling under the thin sedimentary cover. 

Zircons from sample 503/105 are euhedral and elongate, with well-developed prismatic and 

di-pyramidal facets; crystals are transparent to semi-transparent, pinkish and commonly 

loaded with numerous solid and fluid inclusions. On CL images these zircons display 

pronounced zoning (Fig. 4). U-Pb isotopic analyses of these zircons were carried out by LA-

ICP-MS; seven grains were analysed, of which three yielded concordant results, whereas the 

remaining four are 6 to 30 % discordant (Table 4, Fig. 5). The age calculated for the three 

concordant grains is 1810 ± 14 Ma. 

Zircons from the second granite sample (75/146) are euhedral and short-prismatic, 

with well-developed prismatic and di-pyramidal facets. Optically these crystals are grey, 

transparent to semi-transparent, and commonly exhibit pronounced sectorial zoning revealed 

by accumulations of brownish dust-like inclusions. Fluid inclusions are present, but they are 

not as abundant as in zircons from sample 503/105. On CL images these zircons are 

predominantly dark-grey, with weak concentric zoning (Fig. 4). Among six grains dated by 
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LA-ICP-MS, two yielded concordant results (concordia age = 1817 ± 15 Ma) whereas the 

others are 8 to 21 % discordant (Table 4, Fig. 5). 

The third granite sample (06-BG48) is from fine-grained granite at the Bondary quarry 

in the northern part of the KPC. Zircons from this rock are transparent, colourless to slightly 

brownish, and commonly exceed 0.25-0.30 mm in size. Their shape varies from prismatic to 

elongated prismatic with well-developed pyramidal tips. Solid inclusions are quite common, 

and zoning is virtually absent (Fig. 4). The Bondary granite was dated by means of SIMS on 

single zircon grains. All five analysed grains yielded rather discordant results, with an upper 

intercept at 1780 ± 6 Ma (Table 2, Fig. 5). 

Sample 53-7 is a typical wiborgite from an outcrop near the Myrne village. The 

zircons occur as irregular fragments (0.2-0.5 mm) of even larger crystals, colourless and 

transparent, and weakly zoned on CL images (Fig. 4). Concordant U-Pb data were obtained 

(Table 2, Fig. 5), and the 207Pb/206Pb weighted average age is 1763 ± 6 Ma. 

Zircons from another rapakivi-group granite (sample 95005), taken from an 

abandoned quarry in the Huta Potiivka village, are prismatic, 0.3 to 0.5 mm in size, 

colourless, transparent, with simple concentric zoning (Fig. 4). Seven SIMS analyses were 

carried out on five zircon grains (core and outer parts were both analyzed in two grains) that 

yielded nearly concordant results (Table 2, Fig. 5). The upper intercept age is 1767 ± 7 Ma, 

and the 207Pb/206Pb weighted average is 1765 ± 3 Ma. 

Granite sample 168-1 is a subalkaline biotite granite-porphyry that crops out near the 

Hamarnya village. Here, granites form small stocks that cut rapakivi granites of the main 

emplacement phase and belong to the second emplacement phase recognized by Esipchuk et 

al. (1990). Zircons from this sample are prismatic and elongated with well-developed di-

pyramidal terminations. Grains are transparent, colourless to pale pinkish, often cracked and 

they contain sparse fine inclusions. Three multigrain fractions were dated by the TIMS 
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method and yielded discordant results (Table 3, Fig. 5) with an upper intercept age of 1758 ± 

5 Ma. 

Finally, zircons from a granite sample (03-D1) representing veins of Li-F microcline-

albite granite exposed in the Andriivka village have been analysed by SIMS. These rocks 

belong to the last known manifestation of magmatic activity within the KPC. The zircons are 

well-developed, prismatic with poor pyramidal facets, transparent, and slightly pinkish. Grain 

size varies between 0.10 and 0.15 mm and CL images are very dark and do not reveal any 

zoning (Fig. 4). All grains except one are very discordant. The concordia age of the Andriivka 

granite is 1743 ± 5 Ma (Table 2). 

The two samples represent the suite of monzonitic and syenitic rocks. One is a 

granosyenite (71-9) that was taken at Buky village. Zircons are prismatic, predominantly 

elongated, commonly with curved irregular outlines, and the length of the grains varies from 

0.2 to over 0.5 mm. Zonation is very weak and was seen in a few grains (Fig. 4). Five of the 

six results of SIMS dating were concordant or nearly-concordant, with one result being 

strongly discordant (Table 3, Fig. 5). The obtained upper intercept age is 1764 ± 3 Ma and the 

weighted average 207Pb/206Pb age is 1763 ± 4 Ma. 

The second sample (71-1M) is a monzodiorite (marginal facies) from the Buky massif. 

Zircons extracted from this rock are quite large (c. 0.5 mm), transparent and colourless, 

prismatic, with poorly developed di-pyramidal tips, and CL-imaging reveals simple 

concentric zoning (Fig. 4). Five zircon grains (with two analyses carried out on internal and 

marginal parts of the same grain) yielded sub-concordant SIMS results (Table 2, Fig. 5); a 

regression yielded an upper intercept age of 1761 ± 5 Ma, whereas the weighted average of 

207Pb/206Pb ages is 1761 ± 4. These ages are within error of the 1758.8 ± 0.9 Ma age obtained 

previously for a gabbronorite specimen from the same massif (Amelin et al., 1994; 

Verkhogliad, 1995). 
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4.2. The Korsun-Novomyrhorod plutonic complex (KNPC) 

 

4.2.1. Previous results 

The understanding of the geochronology of the KNPC has been significantly improved 

in recent years. Dovbush et al. (2009) reported U-Pb zircon ages of anorthosites of the 

Novomyrhorod massif (1750.2 ± 0.9 Ma) and of an olivine-amphibole monzonite dyke (1753 

± 7 Ma). Shestopalova et al. (2010) dated allanites from the wiborgites, one of which was 

sampled at the Sivach quarry near the city of Korsun-Shevchenkivsky and yielded an age of 

1753.9 ± 0.8 Ma. Another sample from the Prudyansky quarry near the city of Vasylkiv 

yielded an age of 1753.7 ± 1.1 Ma. A similar age (1752 ± 12 Ma) was obtained by Shcherbak 

et al. (2008) for wiborgite from a quarry in Tashlyk village. Ponomarenko et al. (2011) 

reported a U-Pb zircon age (1758 ± 3 Ma) for a granite of the Ruska Polyana massif from the 

extreme north-eastern part of the KNPC. 

The most recent zircon U-Pb ages for the KNPC rocks were reported by Shestopalova 

et al. (2013): 1747 ± 4 Ma for wiborgite of the Shpola massif from the Prudyansky quarry; 

1748 ± 4 Ma for granite from the same quarry; 1750.1 ± 1.2 Ma for troctolite of the 

Horodyshe massif sampled at the Voronivka village; 1749.0 ± 0.5 Ma for porphyritic norite 

taken from the same massif in the Khlystunivka village; and finally 1739 ± 3 Ma for 

leuconorite from the same locality. Hence, all the published ages for the KNPC fall within a 

narrow time interval ~1754-1740 Ma and indicate close temporal relationships between the 

basic and silicic rocks. 

Shestopalova et al. (2014) presented geochronological indications of the possible 

presence of older rocks in the KNPC. These authors investigated zircons from a xenolith of 

white (altered) anorthosite that was found within anorthosite of the main phase, in the 
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Kamyanka village. Zircons in the xenolith are variable in terms of both their appearance and 

age (the 207Pb/206Pb ages vary from 1744 to 1806 Ma). 

 

4.2.2. New U-Pb age results 

We have dated zircons from six rocks of the KNPC as outlined below. The 

Khlystunivka quarry is in the Horodyshe massif (Fig. 3), and it exposes a medium-grained 

quartz monzonite, which in the western part of the quarry is cut by a thick (20-30 m) sheet-

like syenite body. Contacts between these rocks are usually sharp and uneven, without any 

evidence of alteration. However, gradual transitions of one rock type into another were also 

documented. A quartz monzonite (sample 06-BG4) contains prismatic to elongate zircon 

grains with well-shaped prismatic and pyramidal facets. Crystals are large, up to 0.3 mm in 

length, and euhedral. Zoning is visible both on CL images (Fig. 6) and optically. Core 

portions of the grains are colourless and transparent. The marginal parts are brownish to dark 

brown, and they are often cracked and contain mineral inclusions. Three individual grains 

were analysed from this sample (Table 2) by SIMS. The results are nearly concordant, and a 

regression line (anchored at 0 Ma) yielded an upper intercept age of 1746 ± 9 Ma (Fig. 7), 

while the weighted average 207Pb/206Pb age is 1746 ± 23 Ma. 

Zircons from a quartz syenite (sample 06-BG5) in the Khlystunivka quarry display an 

equant to elongated prismatic habit with well-developed prismatic facets and complex di-

pyramidal tips. Crystals are brownish, cracked and contain mineral inclusions. The core parts 

are intensively coloured while marginal portions are commonly colourless and transparent; 

CL images reveal complex concentric zoning (Fig. 6). All five individual grains analysed in 

this sample fall on a regression line that intersects the concordia at 1748 ± 7 Ma (Fig. 7). 

The Nosachiv norite body is part of the Smila anorthosite massif (Fig. 3). The main 

portion of the body is composed of olivine-apatite-ilmenite and olivine-ilmenite norite 
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(sample 2006), and there is subordinate ilmenite norite with a minor amount of olivine and 

apatite (sample 2008). Host rocks to the Nosachiv body are anorthosites of the Smila massif 

(sample 2004). 

Zircons from sample 2006 occur as fragments (0.2-0.3 mm) of even larger prismatic 

crystals. They are colourless to slightly brownish and weakly luminescent, zoning is weak and 

irregular (Fig. 6), and fine mineral inclusions are common. All five analyzed grains yielded 

nearly concordant SIMS results (Table 2, Fig. 7), and the weighted average 207Pb/206Pb age is 

1756 ± 4 Ma. The addition of data for one baddeleyite multigrain fraction (TIMS) to the 

zircon regression results in an upper intercept age of 1755 ± 6 Ma. 

Zircons from sample 2008 are texturally indistinguishable from those in sample 2006 

(Fig. 6), and they also yield similar U-Pb zircon ages; six analyzed grains yielded near-

concordant ages with a weighted average 207Pb/206Pb age of 1757 ± 4 Ma (Fig. 7). To improve 

the precision of the SIMS zircon ages we analysed baddeleyites from the same sample, but 

they yielded different ages with two baddeleyite fractions having a weighted average 

207Pb/206Pb age of 1766.4 ± 1.8 Ma (Table 3). These are the only baddeleyite results that differ 

significantly from the zircon data, and since the specimen was taken from a drill hole as a set 

of sub-samples collected along c. 20 m long interval, it is possible that data represent two 

different norite rock bodies, one of which was dated by zircon, and another by baddeleyite. 

Zircons from the anorthosite sample 2004 are large (up to 0.5 mm), prismatic to 

equant, with well-shaped prismatic facets and suppressed pyramidal ones. The crystals are 

colourless to slightly brownish, and a few grains are bright brown. Mineral inclusions 

distributed along the long axis of the crystals are quite common, and grains are usually 

unzoned and non-luminescent (Fig. 7). All except one of the six grains yielded nearly 

concordant results. The upper intercept age is 1754 ± 4 Ma, and a weighted average 

207Pb/206Pb age for nearly concordant results is 1756 ± 4 Ma. 
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The possible presence of an older generation of anorthosites in the KNPC was 

mentioned previously in the context of published age results from a xenolith of older 

anorthosite enclosed in anorthosite of the main phase (sample KN-1/2, Shestopalova et al., 

2014). In order to shed further light on this issue we dated three single zircon crystals 

separated from the same xenolith. The regression line through the (TIMS) data is quite 

imprecise (upper intercept is 1755 ± 60 Ma, MSWD = 23) in accordance with the noted 

heterogeneity of zircons in this sample (Shestopalova et al., 2014). However, six of the ten 

results from Shestopalova et al. (2014) plot close to the regression line defined by our three 

data points. If data that seemingly define a single discordia (n=9) are combined, a more 

precise upper intercept of 1756 ± 7 Ma is obtained, which is within error of the age of the 

anorthosite (1750.2 ± 0.9 Ma) that hosts this xenolith. Four zircon fractions dated by 

Shestopalova et al. (2014) yielded even older ages with two concordant points as old as 1801 

± 10 Ma (Fig. 7). 

 

4.3. Summary of geochronology of the Ukrainian AMCG complexes 

 

The new geochronological data provide a new understanding of the emplacement 

history of the Ukrainian AMCG complexes, the KPC and KNPC, and the basis for a model of 

their formation (see Fig. 9 and the associated discussion). Previously, only the early 

anorthosite had been dated, and the new data indicate that formation of the KPC started at c. 

1815 Ma with the emplacement of granites in its northern part. This was shortly followed by 

the assemblage of silicic and basic rocks at 1800-1780 Ma, and it is now clear that main phase 

granites predominantly preceded emplacement of the basic intrusions. We have established 

that formation of the large anorthosite massifs of the main emplacement phase within the 

KPC continued over a period of 10 M.y. Our new data further highlight that the formation of 
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the KPC was accompanied by the emplacement of numerous ferromonzodioritic dykes and 

sills (1800 to 1750 Ma). These geochronological results are in agreement with field 

relationships which suggest the repeated emplacement of dykes. 

With respect to the KNPC the new data are consistent with previously published 

results. The KNPC is slightly younger than the KPC, and it was also emplaced during a single 

pulse of magmatic activity that lasted for 10 M.y. 

 

5. Lu-Hf isotope results 

 

Hafnium isotope ratios were measured in nine zircon samples selected as 

representative of the rocks of the KPC, and six samples as representative of the rocks of the 

KNPC. Hafnium isotopes were measured at the same spots that were analysed previously for 

U-Pb ages by SIMS, and all εHf values were back-calculated to their U-Pb ages (Table 5).  

 

5.1. The Korosten plutonic complex (KPC) 

 

The results of the Hf isotope measurements are reported in Table 5 and displayed 

graphically in Fig. 8. The average εHf value in zircons from the early anorthosites (A1 series, 

sample #68) is 0.1 ± 0.4; this value is similar to values (0.0 ± 0.3) for zircons from pegmatites 

(samples Parom and Horbul) in anorthosites of the main (A2) series. Hafnium in zircons from 

the ilmenite-bearing gabbroic intrusions (G4 series) is slightly more radiogenic: the εHf value 

for zircon from the Torchyn massif (sample 03-D18) is 0.1 ± 1.3 and from the Pivnichna 

Slobidka massif (sample 03-D24) is 0.4 ± 0.4. Hafnium in zircons from the gabbro of the 

Fedorivka ilmenite deposit (sample 599) is less radiogenic with εHf = -0.8 ± 1.4. Zircons 

from the early granites of the northern part of the KPC (Bondary quarry, sample 06-BG48) 
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have εHf values -1.2 ± 1.0, and εHf in zircons from rhyolite of the Ovruch basin (sample 06-

HB7) is -1.3 ± 0.3. A ferromonzodioritic sill that crops out in the Bondary quarry (sample 06-

BG47) contains zircons with the lowest εHf of -3.5 ± 0.5.  

 

5.2. The Korsun-Novomyrhorod plutonic complex (KNPC) 

 

The hafnium isotope ratios in zircons from rocks of the KNPC are less radiogenic than 

those of zircons in the KPC. For instance, εHf in zircons from anorthosites of the Smila 

massif (sample 2004) is -3.1 ± 0.5, and similar Hf isotope compositions are obtained for 

zircons in olivine-ilmenite norite of the Nosachiv gabbroic massif (εHf = -3.0 ± 0.5, sample 

2006), and the ilmenite norite of the same massif (-3.5 ± 0.8, sample 2008). The εHf in 

zircons from wiborgite near the city of Korsun-Shevchenkivsky (sample 06-BG1) is -2.4 ± 

0.9, whereas the value from quartz monzonite in the Khlystunivka quarry (sample 06-BG4) is 

-2.8 ± 0.8, and from quartz syenite in the same quarry (sample 06-BG5) is -2.9 ± 0.9. 

Overall the εHf values within the Korosten complex show relatively little variation, as 

so those from the KNPC, but the εHf values in the KPC are slightly more radiogenic than 

those in the KNPC (Fig.8). 

 

6. Discussion 

 

6.1. Emplacement history 

 

6.1.1. The Korosten plutonic complex (KPC) 

Our new U-Pb zircon and baddeleyite age data, integrated with previous data for the 

KPC indicate that the formation of this plutonic complex was more complicated and 
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prolonged than was thought previously. Formation started with emplacement of granites in its 

northern part at c. 1815 Ma (Table 1, Fig. 9), although there has been some uncertainty as to 

whether these rocks directly belong to the KPC or are part of a suite of granites that reflect 

collision between Fennoscandia and Volgo-Sarmatia. However, their chemical and isotope 

compositions, which will be discussed in a separate paper, are indistinguishable from the 

typical KPC granites, and so they are considered to belong to the KPC. The oldest basic rocks 

of the KPC belong to the early anorthosite (A1) series that crystallized between c.1800 and 

1780 Ma. Mineralogical data indicate that these rocks were crystallized at lower crustal levels 

(9.6-13.3 kbar, or 30-40 km), and they were brought to the surface as xenoliths by subsequent 

magmas (Mitrokhin et al., 2008). Data presented by Shumlyanskyy and Mazur (2010), and 

Shumlyanskyy et al. (2016a) indicate that at least some of the KPC-related ferromonzodioritic 

dykes intruded into the host rocks at 1800-1790 Ma. New ages obtained for the granites of the 

Bondary quarry (1780 Ma) and for the gabbro of the Davydky massif (1790 Ma) suggest that 

some of the granites and gabbroic massifs were emplaced simultaneously with A1 

anorthosites. Thus, a whole spectrum of rocks (anorthosite, gabbro, ferromonzodiorite and 

granite) was formed during the first pulse of magmatic activity at 1815-1780 Ma. It should be 

stressed (i) that this earliest stage of the KPC formation coincides in time and space with 

emplacement of the mantle-derived high-Ni tholeiites (Shumlyanskyy et al., 2012; 2016a; 

Bogdanova et al., 2013), and (ii) the vast majority of the KPC rocks presently exposed at the 

surface were formed subsequently in a much shorter time period between c. 1768 and 1755 

Ma as indicated by the ages summarized in Table 1 and Fig. 9. 

- Large anorthosite bodies of the main anorthosite (A2) series: anorthosites of the 

Volynsky massif crystallized between c. 1761 and 1758 Ma, while residual melts, represented 

by pegmatitic pods, crystallized at c. 1758 Ma. These anorthosite bodies, which are up to 2 

km thick and cover up to 1000 km2, solidified within a few million years. The age of c. 1771 
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Ma obtained for anorthosites of the Fedorivka massif signifies that formation of large 

anorthosite massifs was a complex and protracted process, which continued from c. 1770 to 

1758 Ma. 

- Numerous gabbroic intrusions (G4 series) in the inner and marginal parts of the A2 

anorthosite massifs were formed between 1763 and 1757 Ma; their age is indistinguishable 

(within error) from that of the host anorthosite. 

- The ferromonzodioritic dykes were intruded at c. 1761 Ma.  

- All rapakivi-group granites and syenites that belong to this pulse of magmatic 

activity have ages that fall within a narrow interval of 1765-1762 Ma. These ages contradict 

the widely held opinion that the rapakivi-group granites are younger than the basic rocks. 

- Small bodies of biotite granite-porphyry were intruded into rapakivi-group granites 

at c. 1758 Ma, i.e. simultaneously with the anorthosites and gabbros. 

- Finally, rhyolites of the Ovruch basin were erupted at 1761 ± 13 Ma. 

After c. 1758 Ma magmatic activity within the KPC gradually ceases. The youngest 

rocks of the complex are represented by the late subalkaline granites of the Lezniki massif and 

veins of Li-F microcline-albite granites (1752 ± 8 Ma and 1742 ± 9 Ma, respectively). 

 

6.1.2. The Korsun-Novomyrhorod plutonic complex (KNPC) 

The KNPC is similar to the KPC in many major features, but the ranges of U-Pb ages 

are different (Fig. 9). In the KPC, c. 1800 Ma zircons were found in a xenolith of altered 

anorthosite (Shestopalova et al., 2014) and 1766 Ma baddeleyite in a norite of the Nosachiv 

intrusion, but the implications of these results are uncertain. The older ages (~ 1800 Ma) 

obtained for zircons in the xenolith may correspond to the time of initial crystallization of the 

early generation of anorthosites. The oldest known rocks of the KNPC with well established 

ages are the anorthosites and norites emplaced at c. 1757-1754 Ma (Table 1, Fig.9). 
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Anorthosites of the Novomyrhorod and Smila massifs and various rapakivi units of the KNPC 

formed between 1754 and 1750 Ma, whereas the youngest dated rocks of the KNPC are 

monzonites and syenites of the Khlystunivka quarry that crystallized at c. 1748-1740 Ma. Still 

younger ages (1739 ± 3 Ma) obtained for leuconorite collected in the Khlystunivka quarry 

(Shestopalova et al., 2013) require further confirmation. 

Thus, rocks of the KNPC appear slightly younger than the main intrusive phase of the 

KPC. Another observation, noted in both areas, is that most of the silicic and basic rocks were 

intruded within a time interval of around 10 M.y.  

 

6.2. Duration of the AMCG magmatism and its relation to the coeval mantle-derived 

mafic melts 

 

The KPC and KNPC occur as large igneous bodies (over 10 400 and 5 500 km2, 

respectively) that extend down to mid-crustal levels, and perhaps to the mantle-crust 

boundary as evidenced by an extensive set of geophysical data (Bogdanova et al., 2004). 

Taking into account the geophysical imaging, the volume of the Korosten plutonic complex 

can be estimated between 60 000 and 120 000 km3. Considering the duration of magmatic 

activity in the KPC over a total age range of c. 70-60 M.y., but grouped into two main pulses, 

the average rate of magma production was equal to 1 000 – 2 000 km3/M.y., perhaps reaching 

6 000 – 12 000 km3/M.y. at peak periods. The peak rate is 2-3 orders of magnitude less than 

the magma production rate in continental flood basalt provinces, which are erupted over much 

shorter time periods, and some 10 times less than the magma eruption rate in oceanic islands 

(White et al., 2006 and references therein). However, the estimated rate of magma production 

is broadly similar to the eruption rates in continental rifts and continental hotspots (White et 
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al., 2006). Such rates also correspond to the emplacement rates of some other AMCG 

complexes (Amelin et al., 1997). 

Formation of such large magma volumes implies that significant additional heat was 

available for prolonged periods of time. It should be noted that both Ukrainian AMCG 

complexes were emplaced into stable continental crust, some 150-200 M.y. after the last 

orogenic event. However, their formation was accompanied by emplacement of a wide range 

of mantle-derived melts that includes tholeiites, subalkaline mafic and alkaline ultramafic 

varieties that are similar to within plate rocks elsewhere (Ernst, 2014), in contrast to the initial 

ferromonzodioritic melts for the KPC which have less of a within-plate signature. On 

diagrams showing fields of basalts from different tectonic settings (Condie, 2005; Fig. 10), 

most of the tholeiitic dykes plot in the fields of ocean plateau and ocean island basalts close to 

the primitive mantle. In contrast, most of the KPC ferromonzodiorites plot in the field of arc-

related basalts and gravitate towards the upper continental crust that is consistent with a 

prevalence of material from pre-existing continental crust.  

Mantle-derived melts were intruded throughout the Sarmatian segment of the East 

European craton both in the Ukrainian shield and the Voronezh crystalline massif. Most of 

these dykes were intruded between 1770 and 1790 Ma (Chernyshov et al., 2001; Bogdanova 

et al., 2013; Shumlyanskyy et al., 2012; 2016b) which is perhaps longer than might be 

expected in many models of magmatism linked to the emplacement of a mantle plume. 

However, while some plume-related large igneous provinces are emplaced in extremely short 

periods of less than 2 M.y. (e.g. the Siberian Trap), there are other plume-related events which 

are emplaced in multiple pulses over a longer period of time (e.g. the 1115-1085 Ma 

Keweenawan large igneous province of the Great Lakes region of North America; Ernst, 

2014). The dykes correspond to the earlier stages of KPC evolution, but somewhat postdate 

initiation of magmatism within the KPC. Nonetheless, the presence of relatively hot mantle, 
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which might be attributed to a mantle plume but that is difficult to establish, appears to be 

required for the generation of the large volumes of magma observed, and the heating of the 

lower crust and formation of ferromonzodioritic melts.  

Bogdanova et al. (2013) challenged the relationship of dykes in the Ukrainian shield 

(and AMCG complexes) to the presence of a mantle plume. According to these authors, 

formation of dykes records an oblique collision of Fennoscandia with Sarmatia that started at 

c. 1.83-1.81 Ga and continued for the next c. 100 M.y. causing rotation of Sarmatia and 

extension of the crust that was accompanied by formation of transcrustal faults that served as 

channels for melt migration. A prolonged process of rotation and extension may explain the 

long duration of AMCG magmatism in the Ukrainian shield, whereas the relatively low heat 

input (compared with models for the generation of continental flood basalts), associated with 

this process accounts for the low melt production rate. 

A model that involves melting of the depleted mantle in Andean-type arc systems to 

produce long-lived AMCG magmatism was discussed recently by Bybee et al. (2014a,b). 

However, there is no evidence of the Andean-type arc tectonic settings in the Ukrainian shield 

at the time of formation of the AMCG complexes. All available geological and geochemical 

data indicate a within-plate tectonic setting. 

 

6.3. Hf isotopes support a mixed source of the parental melts for the Ukrainian AMCG 

complexes 

 

A number of publications focus on Hf isotopes in zircons from rocks of AMCG 

complexes worldwide, and the data are mostly interpreted in term of a mixed crustal-mantle 

Hf isotope signature (Fig. 11). The same can be said for the Ukrainian AMCG complexes, 

although the isotope ratios appear to be dominated by the crustal end members. The average 
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hafnium isotope composition in zircons from the KPC basic rocks is close to the CHUR value 

at 1760 Ma: εHf varies from +0.4 to -3.5 (Table 5), and that from zircons in the silicic rocks is 

-1.2 (Fig. 8). In contrast, zircons from similarly aged high-Ni tholeiites in the North-Western 

region of the Ukrainian shield have more radiogenic Hf isotope compositions (εHf = +1.6 to 

+5.5) and appear to have been derived from a moderately depleted mantle source. 

It has been concluded previously that the KPC parental melts might have inherited 

their Nd and Sr isotopic characteristics from the widely distributed lower crust generated in 

the 2.0-1.97 Ga Osnitsk-Mikashevychi orogeny (Shumlyanskyy et al., 2006). However, in 

order to explain the εNd1760 values over +0.5 these authors had to assume a limited input from 

mantle-derived tholeiitic melts (Fig. 8B). New Hf isotope data are in good agreement with 

this model. The εHf1990 in zircons from the Osnitsk-Mikashevychi igneous belt (granites and 

rhyolite) varies from -0.7 to +3.1 (Shumlyanskyy, 2014), with two outliers down to -4.8. If 

these values represent Hf isotope compositions of the Osnitsk-Mikashevychi rocks at the time 

of their formation, and taking into account an average 176Lu/177Hf = 0.012 in these rocks 

(calculated from the measured whole rock Lu and Hf abundances), then the Hf isotope 

composition in the KPC zircons can be explained by the re-melting of the Osnitsk-

Mikashevychi rocks at 1800-1750 Ma, with only minor input of juvenile Hf from mantle-

derived high-Ni tholeiitic melts. Zircons from mafic pegmatites in high-Ni tholeiitic dolerites 

with their mantle-like Hf isotope ratios (see above) indicate that tholeiitic melts represent a 

suitable source of juvenile Hf (as well as of Sr and Nd) that was involved in petrogenesis of 

the KPC basic rocks. However, if a 176Lu/177Hf = 0.021 value typical for a mafic crustal 

source (Kemp et al., 2006) is considered, then input of mantle Hf is not required. The 

metamorphic rocks of the Teteriv Series and granitoids of the Zhytomyr Complex (c. 2.2-2.05 

Ga), which are also widely distributed in the North-Western region of the Ukrainian shield, 

may represent an alternative source of the Korosten melts (Fig. 8B).  
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Zircons from rocks of the KNPC tend to have lower εHfT values varying from -2.4 to -

3.5 that probably indicate older crustal material in their source or smaller input of juvenile 

material, compared to the KPC. Hf isotope data for the possible source rocks of the KNPC are 

not available, but Nd isotope data are summarised in Fig. 8B. The (Nd) model ages of the 

country rocks to the KNPC are slightly older than those for the KPC, and so are the (Hf) 

model ages for the KNPC zircons compared with those from the KPC (Fig. 8C). This 

highlights how the isotope ratios of the two complexes reflect those in the country rocks, 

providing striking evidence that the two complexes are largely derived from crustal source 

rocks heated, in the preferred model, by the emplacement of mafic magmas. Similar links 

between the isotope composition of Mid-Proterozoic anorthosites in the north-western 

Grenville Province of Ontario and the isotope composition of the ambient crust was explained 

by contamination of the mantle-derived basic melts during their ascent through the crust by 

two isotopically distinct lower crustal rock types (Prevec, 2004). 

 

6.4. Model of formation of the Ukrainian AMCG complexes 

 

Our model of formation of the Ukrainian AMCG complexes is based on the following 

observations: (1) mixed crustal-mantle isotope signature of all rocks that constitute both KPC 

and KNPC; (2) close links of the AMCG complexes with mantle-derived tholeiitic melts in 

space and time; (3) long duration of the AMCG magmatism at relatively low average melt 

production rates. 

Evidence in favor of the mixed mantle-lower-crustal origin of the initial 

ferromonzodioritic  melts includes: (1) the prominent Nb-Ta negative anomaly in the 

ferromonzodiorites, that is absent or greatly reduced in the coeval tholeiitic melts; (2) Hf  and 

Nd  isotope compositions of ferromonzodiorites conform to the model of re-melting of the 
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ambient crust but with some input of juvenile mantle-derived material; (3) the 

ferromonzodiorites have rather steep REE patterns [(La/Yb)N = 6.1-10.5] that may imply the 

presence of residual garnet in their source. Such source rocks can be represented by lower-

crustal eclogite. In contrast, tholeiites have less fractionated REE [(La/Yb)N = 2.4-4.0] 

consistent with melt generation in the absence of garnet. 

Melting of the mafic lower crust to produce ferromonzodioritic melts is thought to 

occur at 10-13 kbar (Longhi et al., 1999; Longhi, 2005), which corresponds to a depth of c. 40 

km, and such depths are consistent with either a thickened crust, which is unlikely given the 

wide distribution of the mafic dykes or, alternatively, the lower crust was delaminated and 

displaced down into the mantle (cf. the crustal tongue melting model of Duchesne et al., 

1999). As shown by Bogdanova et al. (2004), the crust beneath the KPC is marked by an 

elevated Moho (beneath the KPC the Moho discontinuity occurs at a depth of 38-39 km, 

whereas in the surrounding areas it is located at depths between 42 and 52 km), and in 

comparison with the ambient areas (Fig. 12), the crust is less dense and less magnetic. Thus, 

the underlying mantle lithosphere and part of the lower crust beneath AMCG plutonic 

complexes may have been lost by delamination and sunk into the mantle due to either 

“continuing movements and disturbances… during post-collisional tectonic events” 

(Bogdanova et al., 2004) or as a result of emplacement and ponding of mantle-derived 

tholeiitic melts which become eclogitized. 

A model of formation of the AMCG complexes based on delamination of the 

lithosphere in a late- to post-orogenic tectonic setting has been proposed by many researchers 

(see Lee et al., 2014; Teng and Santosh, 2015, and references therein). This model envisages a 

replacement of the removed lithosphere by uprising asthenospheric mantle, and the generation 

of mafic magma is response to decompression, as a possible source of the AMCG suite 

(McLelland et al., 2010).  
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The close temporal and spatial links of the AMCG complexes and mantle-derived 

magmatism over relatively large areas can hardly be considered as a coincidence. Irrespective 

of their origin and the role of post-collisional rotation, these melts indicate the presence of a 

significant thermal anomaly that caused fusion of the mantle material. The increased heat 

flow and emplacement of the hot mantle melts heated up the crust, and tectonic disturbance 

caused by collision and the thermal erosion resulted in delamination of the lower crust and its 

sinking into the heated mantle (Fig. 12). The subsequent partial (c. 30 %, see Vander Auwera 

et al., 2011) melting of the mafic lower-crustal material and some interaction with mantle-

derived tholeiitic melts resulted in formation of ferromonzodioritic melts that were initial 

melts for the basic rocks of the Ukrainian AMCG complexes. The progressive evolution of 

ferromonzodioritic melts included a stage of crystal fractionation and contamination of their 

derivatives by products of abundant melting of the middle crust. These resulting silicic melts 

gave rise to the whole spectrum of rapakivi granites and low-volume melts from which late-

stage granite varieties were formed. 

Arguing against the extensive lower-crustal melting, Bybee et al. (2014b, p. 383) 

noted that “the only reasonable mechanism to induce the required volume of melting would 

be upwelling mantle”, which must be accompanied by “equally, if not more voluminous, 

coeval mafic melts (formed by decompression melting of the upwelling mantle) together with 

the anorthosites – a feature which is simply not observed around Proterozoic anorthosite 

massifs”.  However, as was shown above this does not appear to be true in the case of the 

Ukrainian shield, where voluminous products of the mantle melting are present.  

 

7. Conclusions 
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This paper reviews existing geochronology and geochemistry data from the two 

AMCG complexes of the Ukraine shield, the Korosten plutonic complex (KPC) and the 

Korsun-Novomyrhorod plutonic complex (KNPC), and provides additional targeted U-Pb 

dating which leads to the following conclusions: 

1. The whole assemblage of basic and silicic rocks in the northern part of the KPC was 

initially formed between c. 1800 and 1780 Ma. Magmatic activity temporarily ceased from c. 

1780 Ma, to restart vigorously again at c. 1770 Ma. The majority of the KPC rocks that crop 

out at the surface formed between c. 1768 and 1755 Ma. The latest stages of the KPC 

evolution (1752-1743 Ma) are expressed by the formation of the minor intrusions of late 

subalkaline granites, veins of Li-F microcline-albite granites, and sill-like ferromonzodiorite 

intrusion. 

2. In contrast to the KPC, most of the KNPC complex basic and silicic rocks emplaced 

simultaneously between c. 1757 and 1750 Ma, and the latest phases of the complex are 

represented by monzonites and syenites that were formed between 1748 and 1744 Ma. The 

emplacement of the KNPC slightly postdates the main intrusive phase of the KPC, whereas 

the majority of silicic and basic rocks intruded within a similar time interval of 10 M.y.  

3. The KPC and KNPC were formed 150-200 M.y. after the last orogenic event. 

Geological and geochemical data indicate a within-plate tectonic setting of the AMCG 

magmatism in the Ukrainian shield. 

4. The Hf isotope composition of zircons and Nd whole-rock isotope composition 

indicate a predominantly crustal source of the parental magma with some input of juvenile Hf 

and Nd from coeval mantle-derived tholeiite melts.  

5. The preferred model of formation of the Ukrainian AMCG complexes envisages 

delamination of the mafic lower crust into the mantle, either in response to post-collisional 

tectonic disturbance or as a result of the emplacement of large volumes of hot mantle-derived 
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melts into the lower crust. These processes resulted in partial melting of mafic lower-crustal 

material, its mixing with the mantle-derived melts and formation of ferromonzodioritic melts. 

Further fractional crystallization of the ferromonzodioritic melts produced the spectrum of 

basic rocks that belong to the AMCG complexes. The emplacement of the ferromonzodioritic 

and tholeiitic melts into the middle crust and their partial crystallization caused profound 

melting of the ambient crust and formation of the whole spectrum of granitic rocks present in 

the complexes. 
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Figure captions 

Figure 1. Sketch map of the Ukrainian shield. The North-Western Domain (I on the 

map) comprises two orogenic belts: (1) the Teteriv-Zhytomyr belt composed of the Teteriv 

Series amphibolite-facies metamorphic rocks (c. 2200-2100 Ma), and the Zhytomyr Complex 

granites (c. 2090-2040 Ma); and (2) the Osnitsk-Mikashevychi igneous belt (c. 2000 Ma). The 

Ingul Domain (III on the map) is predominantly made of c. 2060-2020 Ma granites and 

related rocks of the Novoukrainka and Kropivnytsky (formerly Kirovograd) Complexes. The 

amphibolite-facies metamorphosed supracrustals of the Ingul-Ingulets Series (c. 2300 Ma) are 

less abundant. 

 

Figure 2. Sketch map of the Korosten plutonic complex (KPC) with locations of dated 

samples and ages in Ma (Table 1). 

 

Figure 3. Sketch map of the Korsun-Novomyrhorod plutonic complex (KNPC) with 

locations of dated samples and ages in Ma (Table 1). 
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Figure 4. CL images of zircons from rocks of the Korosten plutonic complex. 

 

Figure 5. U-Pb isotope diagrams for rocks of the Korosten plutonic complex. 

 

Figure 6. CL images of zircons from rocks of the Korsun-Novomyrhorod plutonic 

complex. 

 

Figure 7. U-Pb isotope diagrams for rocks of the Korsun-Novomyrhorod plutonic 

complex. 

 

Figure 8. A: Hafnium isotope evolution diagram for zircons from rocks of the 

Korosten and Korsun-Novomyrhorod plutonic complexes. Hafnium isotope compositions in 

zircons from coeval tholeiite dykes and layered intrusions (Shumlyanskyy et al., 2012) are 

also shown.  

B. Nd isotope ratios in rocks of the Korosoten and Korsun-Novomyrhorod plutonic 

complexes, and in mantle-derived tholeiites. The isotope composition of the most rocks in 

both complexes can be explained by the re-melting of the country rocks (Teteriv-Zhytomyr 

belt and Osnitsk-Mikashevychi igneous belt for the KPC and igneous rocks of the Ingul 

domain for the KNPC). However, some of the rocks have radiogenic Nd isotope composition 

(high εNd) that indicate input of mantle-derived melts. Thus the isotope data indicate mixed 

mantle-crustal source of the initial melts for the Ukrainian AMCG complexes.  

 

Figure 9. Diagram showing the distribution of ages of rocks of the Korosten and 

Korsun-Novomyrhorod plutonic complexes. The ages of the Ukrainian shield mafic dykes are 

also shown. 
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Figure 10. Diagram showing mantle compositional components for ferromonzodioritic 

dykes and chilled margins of gabbroic intrusions of the Korosten plutonic complex and for 

Ni-bearing tholeiitic dykes and layered intrusions of the Ukrainian shield. Ferromonzodioritic 

dykes and chilled margins represent parental melts from which basic rocks of the KPC have 

crystallized that enables direct comparison with tholeiitic dykes. Korosten initial melts fall in 

the field of arc-related basalts and gravitate towards the upper continental crust indicating 

their non-plume origin. In contrast, tholeiitic dykes plot in the fields of oceanic plateau basalts 

and ocean island basalts close to the primitive mantle and enriched mantle markers that reveal 

their plume-related origin. Abbreviations and fields are according to Condie (2005), and 

references therein: UC, upper continental crust; PM, primitive mantle; DM, shallow depleted 

mantle; HIMU, high-µ (U/Pb) source; EM1 and EM2, enriched mantle sources; ARC, arc-

related basalts; NMORB, normal ocean ridge basalt; OIB, oceanic island basalt; DEP, deep 

depleted mantle; EN, enriched component; REC, recycled component.  

 

Figure 11. Variations in the initial εHf values in zircons from rocks of the AMCG 

complexes worldwide. The data indicate variability of the sources of the initial melts for the 

AMCG complexes consistent with a mixed crustal-mantle Hf isotope signature. The origins of 

most of the rocks, even with the most depleted Hf isotope signature, can be generally 

explained by the melting of (or the contamination by) the juvenile continental crust. 

 

Figure 12. A cross-section model illustrating the proposed relationships between the 

key magmatic phases in the Korosten AMCG complex. The figure is based on the initial 

geological interpretation of the deep structure of the Korosten complex (Bogdanova et al., 

2004, Fig. 11), supplemented by the new (herein) and published geochronological results. 
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Table 1. Summary of the U-Pb zircon, baddeleyite and allanite ages and Hf isotope ratios of zircons from rocks 
of the Ukrainian AMCG complexes 
 Locality 

no. 
Sample Age, Ma Rock Location εHfT Reference or method 

Korosten plutonic complex 

1 1 1/90 1800.0 ± 1.3 (zrn) 
1794 ± 7 (bd) 

Early anorthosite 
(A1) 

village Pugachivka no data Verkhogliad (1995) 

2 2 7/89 1789 ± 2 Early anorthosite 
(A1) 

Ignatpil quarry no data Amelin et al. (1994); 
Verkhogliad (1995) 

3 3 1/89 1784 ± 3 Early anorthosite 
(A1) 

Granitne quarry 
(Malyn) 

no data Verkhogliad (1995) 

4 3 68 1781 ± 8 Early anorthosite 
(A1) 

Granitne quarry 
(Malyn) 

0.1 ± 0.4 This study; SIMS 

5 4 7/90 1758.1 ± 1.0(zrn) 
1760.6 ± 0.7 (bd) 

Main anorthosite 
(A2) 

Holovino quarry no data Amelin et al. (1994); 
Verkhogliad (1995) 

6 5 15/90 1758.0 ± 1.8 Main anorthosite 
(A2) 

Turchynka quarry 
(Syniy Kamin) 

no data Verkhogliad (1995) 

7 5 56/3 1756 ± 4 Main anorthosite, 
pegmatite (A2) 

Turchynka quarry 
(Syniy Kamin) 

no data This study; TIMS 

8 6 Horbul 1754 ± 4 Main anorthosite, 
pegmatite (A2) 

Horbuliv quarry 0.0 ± 0.3 This study; TIMS + 
SIMS 

9 7 Parom 1757 ± 3 Main anorthosite, 
pegmatite 

Paromivka quarry 0.0 ± 0.3 This study; TIMS 

10 3 10-03 1771.5 ± 0.8 (bd) Main anorthosite 
(A2) 

Quarry, Malyn no data This study; TIMS 

11 8 10/90 1758.8 ± 0.9 
 

Gabbronorite (G4) Buky quarry, Buky 
massif 

no data Amelin et al. (1994); 
Verkhogliad (1995) 

12 9 289/197 1789.8 ± 1.5 (bd) Gabbro Davydky massif no data This study; TIMS 
13 10 599 1761.9 ± 1.6 (zrn + 

bd) 
Olivine gabbro 
(G4) 

Fedorivka massif, 
hole 599 

-0.8 ± 
1.4 

This study; TIMS 

14 11 03-D24 1763 ± 8 Gabbronorite (G4) Pivnichna Slobidka 
massif, hole 

0.4 ± 0.4 This study; SIMS 

15 12 03-D18 1756 ± 5 Olivine 
monzodiorite (G4) 

Torchyn quarry, 
Torchyn massif 

0.1 ± 1.3 This study; SIMS 

16 8 71-1M 1761 ± 4 Monzodiorite (G4) Buky quarry, Buky 
massif 

no data This study; SIMS 

17 13 23/90 1760.7 ± 1.7 
 

Plagiophyric 
ferromonzodiorite 
dyke 

village Pugachivka no data Amelin et al. (1994); 
Verkhogliad (1995) 

18 14 1025 1799 ± 10 Ferromonzodiorite 
dyke 

Bilokorovychi dyke no data Shumlyanskyy and 
Mazur (2010) 

19 15 U8227 1793 ± 3 (bd) Ferromonzodiorite 
dyke 

Rudnya Bazarska 
dyke 

no data Shumlyanskyy et al. 
(2016a) 

20 16 06-BG47 1751 ± 12 Ferromonzodiorite 
sill 

Bondary quarry -3.5 ± 
0.5 

Lubnina et al. (2009) 

21 17 503/105 1810 ± 14 Granite Northern part of the 
complex, hole 503 

no data This study; LA-ICP-
MS 

22 18 75/146 1817 ± 15 Granite Northern part of the 
complex, hole 75 

no data This study; LA-ICP-
MS 

23 16 06-BG48 1780 ± 6 Granite Bondary quarry -1.2 ± 
1.0 

This study; SIMS 

24 19 6438 1781 ± 3 Granite porphyry Usovo village, hole 
6438 

no data Amelin et al. (1994) 

25 20 53-7 1763 ± 6 Wiborgite Myrne village no data This study; SIMS 
26 21 95005 1765 ± 3 Granite Huta Potiivka village no data This study; SIMS 
27 22 23/84 1765 ± 5 Granite City of Malyn, 

quarry 
no data Scherbak et al. (1989), 

Amelin et al. (1994), 
Verkhogliad (1995) 
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28 23 168-1 1758 ± 5 Subalkaline biotite 
porphyric granite 

Hamarnya village no data This study; TIMS 

29 24 03-D1 1743 ± 5 Rare-metal granite Andriivka village no data This study; SIMS 
30 25 10/87 1752 ± 16 Late granite Lezniki quarry no data Verkhogliad (1995) 
31 26 06-E2 1761 ± 13 Rhyolite Krasylivka village -1.3 ± 

0.3 
Shumlyanskyy and 
Bogdanova (2009) 

32 8 71-9 1764 ± 3 Syenite Buky village no data This study; SIMS 
33 27 No data 

 
1772 ± 19 
1772 ± 6 

Syenite Yastrebetsky massif no data Skublov et al. (2014); 
Sheremet et al. (2012) 

Korsun-Novomyrhorod plutonic complex 

34 28 KN-1/2 1756 ± 7 
1801 ± 10 

Early anorthosite 
(xenolith) 

Kamyanka village no data Shestopalova et al. 
(2014), 
This study; TIMS 

35 28 KN-1 1750.2 ± 0.9 Anorthosite Kamyanka village, 
Novomyrhorod 
massif 

no data Dovbush et al. (2009) 

36 29 2004 1756 ± 4 Anorthosite Smila massif, hole 
2004 

-3.1 ± 
0.5 

This study; SIMS 

37 30 No data 1750.1 ± 1.2 Troctolite Voronivka village no data Shestopalova et al. 
(2013) 

38 31 No data 1749 ± 0.5 Norite Khlystunivka village no data Shestopalova et al. 
(2013) 

39 31 No data 1739 ± 3 Leuconorite Khlystunivka village no data Shestopalova et al. 
(2013) 

40 29 2006 1756 ± 4 (zrn) 
1755 ± 6 (zrn + 
bd) 

Olivine-ilmenite 
norite 

Nosachiv massif, 
hole 2006 

-3.0 ± 
0.5 

This study; SIMS + 
TIMS 

41 29 2008 1757 ± 4 (zrn) 
1766.4 ± 1.8 (bd) 

Ilmenite norite Nosachiv massif, 
hole 2008 

-3.5 ± 
0.8 

This study; SIMS (zrn) 
This study; TIMS (bd) 

42 32 KN-14-6 1753 ± 7 Olivine-amphibole 
monzonite dyke 

Vyazivok village no data Dovbush et al. (2009) 

43 31 06-BG4 1746 ± 9 Quartz monzonite Khlystunivka quarry -2.8 ± 
0.8 

This study; SIMS 

44 31 06-BG5 1748 ± 7 Quartz syenite Khlystunivka quarry -2.9 ± 
0.9 

This study; SIMS 

45 33 КN-15-1 1753.9 ± 0.8 (all) Wiborgite Sivach quarry, city of 
Korsun-
Shevchenkivsky 

-2.4 ± 
0.9 

Shestopalova et al. 
(2010) 

46 34 КN-13 1753.7 ± 1.1 (all) Wiborgite Shpola massif, 
Prudyansky quarry 

no data Shestopalova et al. 
(2010) 

47 35 748 1752 ± 12 Granite Tashlyk village, 
quarry 

no data Scherbak et al. (2008) 

48 34 КН-13 1747 ± 4 Wiborgite Shpola massif, 
Prudyansky quarry 

no data Shestopalova et al. 
(2013) 

49 34 КН-13-1 1748 ± 4 Pegmatite in the 
granite rapakivi 

Shpola massif, 
Prudyansky quarry 

no data Shestopalova et al. 
(2013) 

50  8568/240 1758 ± 3 Granite Ruska Polyana 
massif, hole 8568 

no data Ponomarenko et al. 
(2011) 

All data are results of zircon (zrn) dating, if otherwise is not stated; bd – baddeleyite, all - allanite.  
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Table 2. Results of SIMS U-Pb zircon dating of rocks of the Korosten and Korsun-
Novomyrhorod plutonic complexes 
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main 

anorthosi
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(A2), 

Horbuliv 
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Huta 

Potievka 

 

1 

.6681 .9 .3124 

0

.7 .7

5 

.1084 .6 1.

3 

773 ± 

11 

762 ± 

8 

752 ± 

11 

8 0 3 

2 

.7541 .7 .3189 

0

.7 .9

7 

.1081 .2 .1 768 ± 

3 

777 ± 

6 

784 ± 

11 

19 90 91 

3 

.6877 .0 .3135 

0

.7 .6

9 

.1084 .7 1.

0 

774 ± 

13 

765 ± 

8 

758 ± 

11 

3 9 8 

4 

.6959 .9 .3158 

0

.7 .7

2 

.1078 .6 .4 763 ± 

12 

767 ± 

8 

769 ± 

10 

2 2 1 

5 

.8309 .7 .3246 

0

.7 .9

9 

.1079 .1 .1 765 ± 

2 

790 ± 

6 

812 ± 

11 

60

8 

59

2 

29 

6 

.7071 .9 .3178 

0

.7 .7

9 

.1074 .5 .5 756 ± 

10 

769 ± 

7 

779 ± 

11 

6 0 8 

7 0
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.7192 .8 .3182 .7 .8

3 

.1076 .5 .4 759 ± 

8 

771 ± 

7 

781 ± 

11 

11 00 9 

S

ample 

71-9, 

syenite, 

village 

Buky 

 

1 

.1404 .9 .2794 

0

.8 .9

6 

.1075 .2 10

.8 

757 ± 

4 

662 ± 

7 

588 ± 

12 

42 89 01 

2 

.7884 .7 .3222 

0

.7 .9

8 

.1078 .1 .5 762 ± 

3 

783 ± 

6 

801 ± 

11 

06

7 

59 71 

3 

.6157 .7 .3102 

0

.7 .9

8 

.1079 .2 1.

5 

765 ± 

3 

752 ± 

6 

742 ± 

11 

02 95 74 

4 

.7597 .7 .3201 

0

.7 .9

7 

.1078 .2 .8 763 ± 

3 

778 ± 

6 

790 ± 

11 

78 40 97 

5 

.6411 .7 .3123 

0

.7 .9

5 

.1078 .2 0.

7 

762 ± 

4 

757 ± 

6 

752 ± 

11 

89 51 92 

6 

.6815 .7 .3140 

0

.7 .9

7 

.1081 .2 0.

5 

768 ± 

3  

764 ± 

6 

760 ± 

11 

57 22 14 

S

ample 

03-D1, 

granite 

vein of 

the third 

intrusive 

phase, 

Andriivk

a village 

 

1 

.3850 .1 .2930 

1

.1 .9

8 

.1085 .2 7.

6 

775 ± 

4 

710 ± 

10 

656 ± 

15 

59

5 

24

9 

25 

2 

.5712 .5 .2514 

4

.1 .9

2 

.1030 .8 15

.5 

680 

±33 

543 ± 

36 

446 ± 

54 

34 56 92 

3 

.1913 .6 .2851 

2

.6 .9

9 

.1066 .3 8.

1 

743 ± 

6 

672 ± 

21 

617 ± 

37 

31

1 

04

5 

88 

4 1
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.5494 .3 .3094 .3 .9

8 

.1067 .3 0.

4 

743 ± 

5 

740 ± 

11 

738 ± 

20 

27 93 60 

K

orsun-

Novomy

rhorod 

AMCG 

plutonic 

complex 

 

S

ample 

06-BG4, 

quartz 

monzonit

e, 

Khlystun

ivka 

quarry 

 

1 

.4069 .4

7 

.2968 

1

.37 .9

3 

.1077 .5

4 

5.

5 

761 ± 

10 

714 ± 

12 

675 ± 

20 

21 33 84 

2 

.6240 .2

5 

.3141 

1

.14 .9

1 

.1068 .5

1 

.0 745 ± 

9 

754 ± 

11 

761 ± 

18 

47 4 0 

3 

.3990 .6

1 

.2995 

1

.57 .9

8 

.1065 .3

5 

3.

4 

741 ± 

6 

712 ± 

13 

689 ± 

23 

85 10 1 

S

ample 

06-BG5, 

quartz 

syenite, 

Khlystun

ivka 

quarry 

 

1 

.4604 .4 .3029 

1

.4 .9

9 

.1068 .2 2.

6 

746 ± 

4 

724 ± 

11 

706 ± 

20 

57 31 40 

2 

.9204 .5 .2082 

2

.4 .9

3 

.1017 .0 28

.9 

656 ± 

18 

387 ± 

19 

220 ± 

26 

46 2 8 

3 

.4982 .3 .3058 

1

.3 .9

8 

.1067 .2 1.

5 

744 ± 

5 

731 ± 

11 

720 ± 

20 

82 03 13 

4 

.9907 .5 .2719 

2

.3 .9 .1064 .8 12 739 ± 632 ± 551 ± 54 94 98 
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4 .2 15 20 32 

5 

.6029 .8 .0598 

5

.9 .8

6 

.0731 .4 65

.0 

017 ± 

68 

79 ± 

26 

75 ± 

21 

66 82 8 

S

ample 

2006, 

olivine-

ilmenite 

norite, 

Nosachiv 

massif 

 

1 

.6404 .9 .3129 

1

.6 .8

6 

.1076 .0 0.

2 

759 ± 

18 

757 ± 

16 

755 ± 

25 

23

1 

76 93 

2 

.6356 .5 .3129 

1

.4 .0

0 

.1075 .1 0.

1 

757 ± 

2 

756 ± 

12 

755 ± 

22 

35

1 

00

5 

24

5 

3 

.6069 .3 .3114 

1

.3 .9

9 

.1073 .2 0.

4 

754 ± 

4 

751 ± 

11 

748 ± 

19 

32

9 

46

2 

27 

4 

.7262 .5 .3199 

1

.3 .8

7 

.1072 .7 .5 752 ± 

13 

772 ± 

13 

789 ± 

20 

00 5 1 

5 

.6646 .5 .3126 

1

.2 .8

5 

.1082 .8 1.

0 

770 ± 

14 

761 ± 

12 

754 ± 

19 

3 8 6 

S

ample 

2008, 

ilmenite 

norite, 

Nosachiv 

massif 

 

1 

.5822 .4 .3090 

1

.4 .9

6 

.1075 .4 1.

4 

758 ± 

7 

746 ± 

12 

736 ± 

21 

28 32 41 

2 

.5928 .4 .3111 

1

.3 .9

2 

.1071 .5 0.

3 

750 ± 

10 

748 ± 

12 

746 ± 

19 

49 2 9 

3 

.6145 .5 .3113 

1

.4 .9

5 

.1075 .5 0.

7 

757 ± 

9 

752 ± 

13 

747 ± 

22 

76 02 22 

4 

.5896 .3 .3095 

1

.3 .9

9 

.1076 .2 1.

3 

759 ± 

4 

747 ± 

11 

738 ± 

20 

13

6 

02

7 
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5 

.5256 .3 .3045 

1

.3 .9

8 

.1078 .3 3.

2 

762 ± 

5 

736 ± 

11 

714 ± 

20 

89 46 13 

6 

.5301 .4 .3064 

1

.4 .9

9 

.1072 .2 2.

0 

753 ± 

4 

737 ± 

12 

723 ± 

21 

26

4 

81

2 

84 

S

ample 

2004, 

anorthosi

te of the 

Smila 

massif, 

host to 

the 

Nosachiv 

massif 

 

1 

.4938 .6 .3039 

1

.6 .9

9 

.1073 .2 2.

8 

753 ± 

3 

730 ± 

13 

711 ± 

24 

38

7 

70

7 

03 

2 

.4466 .5 .3004 

1

.5 .9

9 

.1073 .2 4.

0 

755 ± 

3 

721 ± 

13 

693 ± 

22 

16

8 

21

8 

81 

3 

.5703 .5 .3080 

1

.5 .9

7 

.1076 .4 1.

8 

759 ± 

7 

744 ± 

13 

731 ± 

22 

70 64 57 

4 

.5781 .4 .3070 

1

.2 .8

6 

.1082 .7 2.

8 

769 ± 

13 

745 ± 

11 

726 ± 

18 

11 95 9 

5 

.6247 .2 .3111 

1

.2 .9

6 

.1078 .3 1.

1 

763 ± 

6 

754 ± 

10 

746 ± 

18 

37 90 03 

6 

.2149 .5 .1449 

1

.5 .9

8 

.1109 .3 55

.4 

814 ± 

5 

186 ± 

11 

72 ± 

12 

36 49 83 
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Table 3. Results of TIMS U-Pb zircon and baddeleyite dating of rocks of the Korosten and 
Korsun-Novomyrhorod plutonic complex 

Fraction, mineral 

Isotope ratios 
 
 

r 

Age, Ma 
207Pb/235U  ± σ, % 206Pb/238U ± σ, % 206Pb/238U 207Pb/235U 207Pb/206Pb 

Korosten plutonic complex 

Sample Parom, Paromivka village, quarry, pegmatite in A2 anorthosite 
mixed zircon 4.4156 0.1 0.2981 0.1 0.92 1682 1715 1756 
mixed zircon 4.5942 0.4 0.3089 0.2 0.66 1735 1748 1764 
<0.1 mm zircon 4.2740 1.1 0.2873 1.1 0.99 1628 1688 1764 

>0.1 mm zircon 4.0753 1.1 0.2752 1.1 1.0 1567 1649 1756 
Sample 56/3, Turchinka village, Syniy Kamin quarry, pegmatite in A2 anorthosite 
<0.1 mm zircon 4.2665 1.1 0.2874 1.1 1.0 1629 1687 1760 
>0.1 mm zircon 4.3794 1.1 0.2958 1.1 1.0 1670 1708 1756 
0.1-0.2 mm zircon 4.3591 1.1 0.2944 1.1 1.0 1663 1705 1756 
Sample Horbul, Horbuliv village, quarry, pegmatite in A2 anorthosite 
mixed zircon 4.0403 2.0 0.2779 1.9 1.0 1581 1642 1722 
0.1-0.2 mm zircon 4.1475 1.1 0.2794 1.1 1.0 1588 1664 1760 
<0.1 mm zircon 4.1716 1.1 0.2815 1.1 1.0 1599 1668 1757 
>0.2 mm zircon 4.2530 1.1 0.2873 1.1 1.0 1628 1684 1755 
Sample 10-03, city of Malyn, quarry, anorthosite A2 of the Fedorivka anorthosite massif 
baddeleyite 4.7731 0.1 0.3197 0.1 0.93 1788 1780 1771 
baddeleyite 4.7471 0.1 0.3181 0.1 0.91 1780 1776 1770 
baddeleyite 4.7542 0.2 0.3182 0.2 0.97 1781 1777 1772 
baddeleyite 4.8633 0.9 0.3254 0.9 0.99 1816 1796 1773 
baddeleyite 4.7664 0.6 0.3191 0.6 0.99 1785 1779 1772 
Sample 599, Fedorivka gabbroic massif, olivine gabbro 
zircon 4.6426 0.3 0.3125 0.3 1.0 1762 1757 1753 
zircon 4.6381 0.2 0.3118 0.2 0.9 1764 1756 1750 
baddeleyite 4.7066 0.2 0.3167 0.2 0.92 1774 1768 1762 
baddeleyite 4.6621 0.8 0.3142 0.8 0.98 1762 1761 1759 
baddeleyite 4.6251 0.3 0.3115 0.3 1.0 1761 1754 1748 
baddeleyite 4.5770 0.4 0.3082 0.4 1.0 1761 1745 1732 
Sample 289/197, Davydky layered gabbro-syenite intrusion, gabbro 
baddeleyite 4.7748 0.2 0.3165 0.2 0.95 1790 1781 1772 
baddeleyite 4.7904 0.2 0.3175 0.2 0.95 1790 1783 1777 
baddeleyite 4.8017 0.6 0.3190 0.5 0.87 1786 1785 1785 
Sample 168-1, Hamarnya village, biotite porphyre granite 

zircon 3.7986 0.2 0.2548 0.1 0.9 1463 1592 1768 
zircon 4.0751 0.2 0.2738 0.2 0.9 1560 1649 1765 
zircon 4.3223 0.8 0.2910 0.8 1.0 1647 1698 1761 

Korsun-Novomyrhorod plutonic complex 

Sample 2006, Nosachiv body, olivine-ilmenite norite 
baddeleyite 4.5547 0.7 0.3066 0.6 0.94 1724 1741 1762 
Sample 2008, Nosachiv body, ilmenite norite 
baddeleyite 4.6981 0.2 0.3159 0.1 0.92 1770 1767 1764 
baddeleyite 4.7144 0.1 0.3158 0.1 0.84 1769 1770 1771 
Sample KN-1/2, xenolith of old anorthosite in anorthosite of the main phase, Kamyanka village 
zircon 4.3080 1.1 0.2938 1.1 1.0 1660 1695 1738 
zircon 4.5473 0.1 0.3070 0.1 0.91 1726 1740 1756 
zircon 4.7881 0.4 0.3228 0.4 0.99 1804 1783 1759 
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Table 4. Results of U-Pb LA-ICP-MS dating of zircons from granites of the northern part of 
the KPC 

sotop

e 

ratios 

ges, 

Ma, 

± 1σ 

C

oncentra

tions, 

ppm 

pot 

# 

06Pb/2

04Pb 

06Pb/
238U 

 

σ

, 

% 

07Pb/
235U 

±

 σ, % 07Pb/2

06Pb 

 

σ

, 

% 

isc

. 

%  

06Pb/
238U 

07Pb/
235U 

07Pb/2

06Pb 

b h/

U 

Sam

ple 

503/

105, 

gran

ite 

 

7480 .3225 .

2 

.9369 

1

.5 .1110 .

9 

.8

1 

1 802 ± 

19 

809 ± 

13 

816 ± 

16 

1 4 .3

7 

155 .3259 .

9 

.9507 

1

.4 .1102 .

1 

.6

3 

818 ± 

14 

811 ± 

12 

802 ± 

20 

8 .4

2 

6327 .2983 .

0 

.4919 

1

.5 .1092 .

2 

.6

2 

6 683 ± 

15 

729 ± 

13 

787 ± 

22 

2 1 .5

8 

0738 .2193 .

0 

.3843 

1

.1 .1120 .

6 

.8

5 

30 278 ± 

11 

501 ± 

9 

831 ± 

11 

2 6 .5

0 

568 .2966 .

6 

.6295 

1

.9 .1132 .

0 

.8

6 

10 674 ± 

24 

755 ± 

16 

851 ± 

17 

5 .4

0 

508 .2631 .

2 

.1553 

2

.7 .1145 .

3 

.4

5 

20 506 ± 

16 

665 ± 

22 

873 ± 

43 

9 .5

7 

9259 .3228 .

0 

.9198 

1

.5 .1105 .

1 

.6

8 

803 ± 

16 

806 ± 

12 

808 ± 

20 

5 3 .4

6 

Sam

ple 

75/1

46, 

gran

ite 
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1297

6 

.2864 .

2 

.2639 

1

.6 .1080 .

2 

.7

2 

8 623 ± 

18 

686 ± 

14 

766 ± 

21 

8

7 

2 .4

8 

216 .2624 .

6 

.1972 

2

.3 .1160 .

6 

.6

8 

21 502 ± 

21 

673 ± 

19 

895 ± 

30 

7 3 .3

3 

158 .3245 .

3 

.9895 

1

.5 .1115 .

8 

.8

5 

1 811 ± 

20 

818 ± 

13 

825 ± 

14 

6 9 .7

5 

2328 .3240

0 

.

9 

.9651 

1

.1 .1112 .

7 

.8

2 

809 ± 

14 

813 ± 

10 

818 ± 

11 

5 3 .3

8 

769 .2907 .

9 

.4213 

1

.1 .1103 .

7 

.7

4 

9 645 ± 

12 

716 ± 

10 

805 ± 

14 

8 9 .5

0 

1520 .2896 .

3 

.3056 

1

.5 .1078 .

8 

.8

4 

7 640 ± 

19 

694 ± 

12 

763 ± 

10 

2 7 .4

7 
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Table 5. Hf isotope composition in zircons from rocks of the Korosten and Korsun-
Novomyrhorod plutonic complexes 

# 178Hf ⁄ 177Hf  ± 1σ 176Lu/177Hf 176Yb/177Hf ±1σ 176Hf/177Hf ± 1σ 176Hf/177HfT εHfT ±2σ 

Korosten plutonic complex 

Sample 68, early anorthosite (1781.3 ± 7.5 Ma) 

1 1.46727 ± 3 0.00018 0.00644 0.00032 0.281658 ± 11 0.281652 0.1 0.8 
2 1.46730 ± 3 0.00008 0.00328 0.00005 0.281672 ± 12 0.281669 0.7 0.8 
3 1.46728 ± 2 0.00008 0.00317 0.00004 0.281649 ± 13 0.281647 -0.1 0.9 
4 1.46724 ± 2 0.00011 0.00396 0.00005 0.281648 ± 11 0.281644 -0.2 0.8 
5 1.46724 ± 3 0.00036 0.01555 0.00032 0.281664 ± 16 0.281651 0.1 1.2 
Sample Parom, pegmatite in anorthosite of the main anorthosite series, Paromivka quarry (1758.2 ± 3.7 Ma) 
1 1.46729 ± 3 0.00140 0.05348 0.00069 0.281709 ± 14 0.281662 -0.1 1.0 
2 1.46727 ± 3 0.00212 0.08528 0.00088 0.281715 ± 19 0.281644 -0.7 1.4 
3 1.46728 ± 2 0.00164 0.06117 0.00010 0.281726 ± 14 0.281671 0.3 1.0 
4 1.46730 ± 3 0.00089 0.02894 0.00054 0.281716 ± 16 0.281686 0.8 1.1 
Sample Horbul, pegmatite in anorthosite of the main anorthosite series, Horbuliv quarry (1758.2 ± 3.7 Ma) 
1 1.46726 ± 4 0.00051 0.02143 0.00094 0.281690 ± 18 0.281672 0.3 1.3 
2 1.46725 ± 3 0.00043 0.01680 0.00044 0.281675 ± 14 0.281661 -0.1 1.0 
3 1.46728 ± 3 0.00059 0.02123 0.00037 0.281683 ± 11 0.281663 0.0 0.8 
4 1.46725 ± 3 0.00066 0.02605 0.00008 0.281687 ± 14 0.281665 0.0 1.0 
5 1.46728 ± 3 0.00065 0.02684 0.00014 0.281653 ± 17 0.281631 -1.2 1.2 
Sample 599, olivine gabbro, Fedorivka massif (1762.3 ± 1.6 Ma) 
1 1.46726 ± 3 0.00052 0.01548 0.00034 0.281657 ± 11 0.281639 -0.8 0.8 
2 1.46719 ± 3 0.00097 0.03108 0.00039 0.281686 ± 13 0.281653 -0.3 1.0 
3 1.46726 ± 3 0.00074 0.02173 0.00149 0.281640 ± 18 0.281615 -1.6 1.3 
Sample 03-D24, gabbro, Pivnichna Slobidka massif (1763.1 ± 8.4 Ma) 
1 1.46725 ± 3 0.00098 0.03655 0.00019 0.281715 ± 16 0.281682 0.8 1.2 
2 1.46724 ± 2 0.00054 0.02018 0.00035 0.281680 ± 12 0.281662 0.1 0.9 
3 1.46725 ± 2 0.00065 0.02464 0.00027 0.281705 ± 11 0.281684 0.8 0.8 
4 1.46727 ± 2 0.00095 0.03521 0.00046 0.281686 ± 14 0.281654 -0.2 1.0 
5 1.46726 ± 2 0.00073 0.02757 0.00044 0.281697 ± 12 0.281673 0.4 0.9 
Sample 03-D18, olivine monzogabbro, Torchyn massif (1756.3 ± 4.6 Ma) 
1 1.46724 ± 2 0.00187 0.07535 0.00086 0.281710 ± 17 0.281648 -0.6 1.2 
2 1.46728 ± 2 0.00131 0.05171 0.00121 0.281674 ± 18 0.281630 -1.2 1.3 
3 1.46727 ± 2 0.00006 0.00226 0.00002 0.281673 ± 13 0.281671 0.2 0.9 
4 1.46725 ± 2 0.00008 0.00332 0.00012 0.281702 ± 12 0.281699 1.2 0.8 
5 1.46728 ± 5 0.00067 0.02651 0.00006 0.281662 ± 21 0.281640 -0.9 1.5 
Sample 06-BG48, granite of the main intrusive phase, Bondary quarry (1780.4 ± 6 Ma) 
1 1.46726 ± 2 0.00286 0.12297 0.00684 0.281745 ± 17 0.281648 0.0 1.3 
2 1.46726 ± 4 0.00182 0.08635 0.00507 0.281666 ± 12 0.281605 -1.6 0.8 
3 1.46726 ± 3 0.00260 0.10276 0.01116 0.281678 ± 13 0.281590 -2.1 1.3 
4 1.46726 ± 2 0.00228 0.09941 0.01083 0.281713 ± 15 0.281636 -0.5 1.2 
5 1.46721 ± 3 0.00234 0.10701 0.00361 0.281685 ± 22 0.281606 -1.5 1.6 
Sample 06-BG47, jotunitic dolerite sill, Bondary quarry (1750 ± 12 Ma) 
1 1.46725 ± 2 0.00083 0.03690 0.00028 0.281590 ± 14 0.281563 -3.8 1.0 
2 1.46728± 3 0.00197 0.09262 0.00879 0.281640 ± 21 0.281575 -3.3 1.5 
3 1.46724 ± 2 0.00047 0.01846 0.00011 0.281600 ± 12 0.281585 -3.0 0.9 
4 1.46722 ± 2 0.00154 0.07032 0.00769 0.281592 ± 21 0.281541 -4.5 1.5 
5 1.46724 ± 3 0.00102 0.04031 0.00022 0.281608 ± 15 0.281574 -3.4 1.1 
Sample 06-HB7, rhyolite, Ovruch basin (1761 ± 13 Ma) 
1 1.46724 ± 1 0.00096 0.03373 0.00108 0.281673 ± 29 0.281641 -0.7 2.1 
2 1.46726 ± 2 0.00042 0.01375 0.00021 0.281649 ± 13 0.281635 -1.0 0.9 
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3 1.46725 ± 2 0.00050 0.01672 0.00029 0.281631 ± 15 0.281615 -1.7 1.1 
4 1.46722 ± 3 0.00051 0.01669 0.00085 0.281647 ± 10 0.281630 -1.1 0.7 
5 1.46723 ± 3 0.00047 0.01679 0.00014 0.281640 ± 19 0.281625 -1.3 1.4 
5 1.46726 ± 5 0.00049 0.01746 0.00026 0.281636 ± 6 0.281620 -1.5 0.4 
6 1.46717 ± 2 0.00034 0.01197 0.00031 0.281649 ± 52 0.281638 -0.9 3.7 
7 1.46716 ± 3 0.00066 0.02284 0.00214 0.281671 ± 20 0.281649 -0.5 1.4 

Korsun-Novomyrhorod plutonic complex 

Sample 06-BG4, quartz monzonite, Khlystunivka quarry (1746.1 ± 9.1 Ma) 
1 1.46723 ± 2 0.00175 0.07069 0.00187 0.281663 ± 6 0.281605 -2.4 0.4 
2 1.46722 ± 2 0.00079 0.03015 0.00151 0.281595 ± 11 0.281569 -3.6 0.8 
3 1.46723 ± 2 0.00072 0.02743 0.00067 0.281594 ± 13 0.281570 -3.6 0.9 
4 1.46729 ± 2 0.00049 0.01971 0.00040 0.281597 ± 12 0.281581 -3.2 0.8 
5 1.46722 ± 3 0.00070 0.02910 0.00102 0.281626 ± 16 0.281603 -2.4 1.1 
Sample 06-BG5, quartz syenite, Khlystunivka quarry (1748.0 ± 6.9 Ma) 
1 1.46724 ± 2 0.00236 0.10509 0.00783 0.281639 ± 12 0.281561 -3.9 1.0 
2 1.46721 ± 2 0.00166 0.07852 0.01204 0.281620 ± 11 0.281565 -3.7 1.0 
3 1.46726 ± 3 0.00121 0.05024 0.00091 0.281652 ± 13 0.281612 -2.1 0.9 
4 1.46724 ± 2 0.00101 0.04155 0.00292 0.281627 ± 11 0.281593 -2.7 0.8 
5 1.46723 ± 2 0.00046 0.01719 0.00043 0.281615 ± 10 0.281600 -2.5 0.7 
Sample 2006, olivine-ilmenite norite, Nosachiv massif (1756.2 ± 3.7 Ma) 
1 1.46717 ± 5 0.00158 0.06421 0.00034 0.281611 ± 35 0.281558 -3.8 2.5 
2 1.46723 ± 3 0.00028 0.01060 0.00004 0.281592 ± 12 0.281583 -2.9 0.9 
3 1.46723 ± 3 0.00125 0.04990 0.00031 0.281632 ± 19 0.281591 -2.6 1.4 
4 1.46726 ± 2 0.00197 0.08352 0.00190 0.281636 ± 16 0.281570 -3.4 1.2 
5 1.46724 ± 3 0.00094 0.04997 0.00086 0.281620 ± 17 0.281588 -2.7 1.2 
Sample 2008, ilmenite norite, Nosachiv massif (1757.0 ± 4.1 Ma) 
1 1.46727 ± 2 0.00063 0.02448 0.00062 0.281585 ± 13 0.281564 -3.6 0.9 
2 1.46725 ± 3 0.00028 0.01041 0.00018 0.281571 ± 13 0.281561 -3.7 0.9 
3 1.46723 ± 3 0.00023 0.00989 0.00017 0.281603 ± 16 0.281595 -2.5 1.1 
4 1.46725 ± 2 0.00104 0.03952 0.00083 0.281572 ± 16 0.281538 -4.5 1.1 
5 1.46723 ± 3 0.00110 0.04213 0.00081 0.281606 ± 16 0.281570 -3.4 1.2 
Sample 2004, anorthosite, host to the Nosachiv massif (1754.3 ± 3.9 Ma) 
1 1.46728 ± 2 0.00046 0.01916 0.00041 0.281596 ± 12 0.281580 -3.1 0.9 
2 1.46727 ± 3 0.00114 0.04588 0.00012 0.281620 ± 16 0.281582 -3.0 1.1 
3 1.46724 ± 3 0.00365 0.15039 0.00188 0.281716 ± 29 0.281594 -2.6 2.0 
4 1.46723 ± 3 0.00180 0.07140 0.00068 0.281609 ± 19 0.281549 -4.2 1.4 
5 1.46726 ± 2 0.00110 0.04764 0.00018 0.281629 ± 14 0.281593 -2.6 1.0 
Sample 06-BG1, wiborgite, Korsun-Shevchenkivsky quarry (1753.9 ± 0.8 Ma) 
1 1.46723 ± 3 0.00111 0.04696 0.00144 0.281640 ± 16 0.281603 -2.2 1.2 
2 1.46725 ± 2 0.00154 0.07411 0.00415 0.281680 ± 14 0.281628 -1.4 1.0 
3 1.46724 ± 2 0.00050 0.02060 0.00064 0.281624 ± 13 0.281608 -2.1 1.0 
4 1.46722 ± 2 0.00185 0.07736 0.00581 0.281644 ± 10 0.281582 -3.0 0.8 
5 1.46722 ± 2 0.00066 0.02960 0.00066 0.281603 ± 13 0.281581 -3.0 1.0 
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Highlights 
• Results of 22 new zircon and baddeleyite U-Pb ages obtained for rocks of the 
Ukrainian AMCG complexes are reported 
• 16 zircon samples were analyzed for Hf isotopes 
• The long duration of the AMCG magmatism is discussed 
• A mixed lower-crustal -  mantle source of the parental melts is proposed 
• A model of the Ukrainian AMCG complexes formation is offered 

 




