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Abstract: 

Research has demonstrated a significant role of discipline social identification in 

predicting learning approaches, even controlling for individual differences. Smyth, 

Mavor, Platow, Grace and Reynolds. (2015) suggest that learners share discipline-

based social identifications, and that this identification, in combination with relevant 

norms, influences the adoption of learning approaches.  The current paper extends this 

analysis in two directions. First, the effect of broad field of study is examined for 

systematic differences across content domains. Secondly, the model examines effects 

on student perceptions of teaching quality and intentions to continue within a 

discipline. Results provide support for Smyth et al.’s (2015) model, demonstrating links 

between discipline identification, perceived norms, learning approaches and outcomes. 

Strongly identified students, students who perceived deep learning norms and students 

taking a deep learning approach all reported more positive outcomes. Disciplinary 

variations in responses to learning approaches and outcomes were also found, broadly 

in line with that found in the Biglan-Becher literature. 
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Learning behaviour and learning outcomes: the roles for social influence 

and field of study. 

1. Introduction 

The intent of the current paper is to outline the emerging body of literature tracing the 

social processes involved in tertiary education and build on this literature through empirical 

testing of a developed model of student learning. Drawing on both educational and social 

psychological theory and research, this paper demonstrates the value of including models of 

social influence in our understanding of the nature of the educational context. Two key 

concepts are used throughout. First, it is assumed that students engage with and approach 

learning in the manner outlined in the work of Biggs and colleagues (Biggs, 1989, 1999; 

Biggs, Kember, & Leung, 2001; Biggs & Tang, 2007a, 2007b) on learning approaches. That 

is, learning behaviour is flexible, context dependent and subject to a host of influences. 

Further, learning approaches can be roughly dichotomised into those that prioritise 

understanding (deep learning) and those that prioritise efficiency, often at the cost of mastery 

(surface learning). Second, it is assumed that an individual’s sense of self is partially socially 

constructed and is similarly flexible and context dependent. Using the social identity 

approach (Tajfel & Turner, 1986; Turner, Hogg, Oakes, Reicher, & Wetherell, 1987) as an 

organising framework, the social- and self-processes involved in tertiary education are 

considered, particularly with regard to the processes of social influence that stem from social 

identification and perceived norms. These two theoretical foundations are then used as a base 

from which models of the process of tertiary learning may be understood and developed.  

Recent literature (Bliuc, Ellis, Goodyear, & Hendres, 2011a, 2011b; Platow, Mavor, 

& Grace, 2013) has established relationships between these two key concepts of social 

identification and deep learning approaches, and has begun to map their dynamic, 
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longitudinal mutual influence. The current study situates this advance in the context of Biggs’ 

broader 3P model of the learning process (Presage, Process, Product), while simultaneously 

developing the social identity aspect through the inclusion of norms. 

This integrated model has both practical and theoretical value, as well as implications 

for the way courses are designed and delivered. The nature of a student’s learning approaches 

and the social influences on their cognition and behaviour both have flow-on impacts on high 

value outcomes, including: academic achievement, student course perception and evaluations, 

student engagement with the discipline and intentions to continue. The inclusion of learning 

approaches, social influence variables and their interactions in the same model allows for a 

more rounded understanding of the student experience and provides some clear suggestions 

for course design. Further, these course design insights are applicable across a wide range of 

educational contexts. The learning approaches model is applicable across a wide range of 

content, delivery mode and education types (using different assessment types, Heijne-

Penninga, Kuks, Hofman, & Cohen-Schotanus, 2008; in private tertoary institutions, Kek, 

Darmawan, & Chen, 2007; across disciplines, Laird, Shoup, Kuh, & Schwarz, 2008; using a 

variety of course designs, Wang, Su, Cheung, Wong, & Kwong, 2013; e.g. in study 

groups,Yan & Kember, 2004). The consideration of social and normative dimensions further 

broadens this usefulness (by controlling for variations in culture, values, and teaching 

structure, by considering the subjective perceptions of student norms) and the implications 

for teaching and learning to be applicable internationally and across disciplines, in the context 

of tertiary education. 

1.1 Learning Approaches 

Learning approaches are a popular and enduring model of student learning. The model 

proposed by Marton and Säljö (1976), and developed by Biggs (1979, 1999), suggests that 
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students relate to the task or subject material they are given in one of two ways: (1)  Deep 

Learning: engaging and seeking to understand intent and broader implications, or (2) Surface 

Learning: focusing on completion of task requirements and often resorting to memorisation. 

This model has inspired considerable research on ways in which educators can shape these 

approaches and the relationships these approaches may have to crucial academic outcomes 

(e.g., Ramsden, 2003; Trigwell & Prosser, 1991; Zeegus, 2001).  

Learning approaches themselves have been explored in depth (e.g. Baeten, Kyndt, 

Struyven, & Dochy, 2010; Biggs, 1979, 1999; Biggs et al., 2001; Biggs & Tang, 2007a, 

2007b; Cassidy, 2004; Entwistle, 2000, 2005; Ramsden, 1991, 2003; Struyven, Dochy, 

Janssens, & Gielen, 2006; Trigwell & Prosser, 1991; Walsh, 2007; Yan & Kember, 2004; 

Zeegus, 2001)  and will therefore only be outlined briefly here. Importantly, a learning 

“approach” is understood as not something a student has, but rather something a student takes 

in a particular situation, to a particular task: it is a way of organising, understanding and 

relating to a task that is assumed to be context-dependent (Biggs, 1999). In tertiary education 

students, a deep learning approach is characterised by active integration of new knowledge, 

thinking critically, referring to a wide range of resources and questioning conclusions. 

Tertiary education students adopting a surface approach, on the other hand, focus chiefly on 

meeting task-requirements and learning only what is necessary in the most efficient way 

possible.  This kind of learning is generally characterised by a focus on isolated facts, rote 

memorization strategies, and selective information processing.  

1.2 Discipline-Related Social Identification and Learning Approaches 

Researchers have recently argued in favour of considering social self-definition in 

terms of academic discipline as an important factor underlying learning approaches (Bliuc et 

al., 2011a, 2011b; Platow et al., 2013). This recent work integrates the concept of discipline-
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based social identification into pre-existing learning approach models.  The social identity 

approach, which includes both social identity theory (Tajfel & Turner, 1986) and self-

categorization theory (Turner et al., 1987), conceptualizes the individual’s sense of self as 

flexible, context dependent, and comprised partly of what are referred to as social identities. 

Social identities are the cognitive representations that result from seeing oneself as a member 

of particular social groups, the associated sense of belonging, and the cognitive and 

emotional significance attached to those memberships.  Each social identity also carries with 

it norms for behaviour (an idea of what members of the group do, and are supposed to do).  

The combination of the extent to which an individual identifies with a social identity (i.e. 

perceives it as self-defining) and the nature of the perceived norms has a demonstrable effect 

on behaviour (e.g. healthy eating, Baker, Little, & Brownell, 2003; excercise, Hagger & 

Chatzisarantis, 2005; eating intentions, Louis, Davies, Smith, & Terry, 2007). 

In this vein, Bliuc et al. (2011a, 2011b) examined discipline-related social identity as a 

predictor of both learning approaches and academic achievement. The model these authors 

proposed holds that discipline-related social identification predicts academic achievement, 

and that this is mediated through deep learning approaches.  That is, students who identified 

more strongly with their disciplines would be more likely to adopt a deep learning approach 

and, thereby, have better academic outcomes.  The findings from their studies supported the 

model; deep learning approaches were associated with better academic outcomes, and 

stronger identification with the discipline was associated with a deep learning approach.  As 

expected, there was also a significant indirect effect of discipline-related social identity on 

academic outcomes mediated through learning approach.  

In a parallel development, Platow et al. (2013) explored the relationship of social 

identification, deep learning approach and grades, with a particular focus on the changes in 
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self-concept associated with a course of study when adopting deep learning approaches.  

Platow et al,’s (2013) proposed model is a dynamic, cross-lagged model in which the 

discipline-related social identity and learning approach are related to each other, and are 

reciprocally influential over time. Their study provided partial support for the model, in that 

deeper learning approaches at Time 1 predicted increased identification levels, but the 

opposite path (Time 1 identification predicting changes in deeper learning approaches) was 

not confirmed.   

Smyth and colleagues (Smyth, Mavor, Platow, Grace  and Reynolds, 2015) build on 

these findings through the addition of an explicit normative dimension to the understanding 

of the relationship between discipline-related social identification and learning approaches. 

This latter model especially takes into account discipline-related learning norms, and the 

impact they may have on the learning approach taken. The authors conducted a campus-wide 

online study, in which students were asked to report on discipline-related social 

identification, discipline-related learning approaches and the learning norms they perceived 

in their discipline. These variables were then entered into a sequential regression model, 

including person variables (personality, demographics), context variables (teaching quality) 

and the social psychological variables in separate, successive blocks. The social identity and 

normative influence variables predicted learning approach over and above person and context 

factors.  

Smyth et al.’s (2015) findings indicate a need to examine normative influence as well 

as social identification when exploring factors that predict learning approaches. In line with 

previous work of Bliuc et al.(2011a) and Platow et al.(2013), they find a significant, positive 

effect of social identification in predicting the extent to which students adopt a deep learning 

approach. The model also demonstrates that the social identification effect on learning 
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approach is moderated by the perceived norms for the group and these effects are present 

beyond those of person and context variables. That is, it is not only the strength of 

identification with a group that influences ultimate learning approach behaviour, but also 

what that group membership means, in terms of norms for desirable group behaviour. 

1.3 Learning Approach and Student Outcomes 

As might be suggested by the kinds of activities that define learning approaches, they 

have divergent impacts on both learning and academic outcomes. Deeper learning approaches 

are commonly associated with more positive education outcomes (e.g. Artino, Rochelle, & 

Durning, 2010; Biggs, 1979; Lizzio, Wilson, & Simons, 2002; Platow et al., 2013; 

Richardson, Abraham, & Bond, 2012; Walsh, 2007). For instance, self-reported learning 

approaches have been demonstrated to predict student perceptions of the course, overall 

course satisfaction, and perceptions of teaching quality (Lizzio et al., 2002). This influence of 

learning approach on course perceptions is a useful relationship to consider for two reasons. 

First, universities seek to maximise positive student experiences of courses and, second, there 

is evidence for a relationship between course satisfaction and better grades and better long-

term information retention (Ramsden, 1991).  

Further to which, student engagement with the discipline and intentions to continue 

also can be linked to learning approaches (Platow et al., 2013). These variables are of interest 

in a conceptualisation of the education process that suggests that tertiary education should 

help initiate the student into a community of practice, not just transmit the necessary 

knowledge to them (e.g. Barrie, 2006; O'Donnell & Tobbell, 2007). In this understanding, 

intentions to continue to engage with the community: (e.g., by continuing study, seeking 

relevant employment or finding out more about relevant topics) can be considered an equally 

important academic outcome.   
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1.4 Presage, procedure, and product 

In integrating the above concepts into a broader model, it is necessary to consider the 

process of learning in a tertiary context. Biggs (1989) conceptualised this process in terms of 

the “3 Ps”: presage, procedure and product. This model is the foundation of the learning 

approaches model, in that the presage factors are expected to interact and produce a particular 

learning approach, or procedure. This learning approach then predicts the outcome. This 3-

stage conceptualisation maps easily onto the learning approaches model in use in the current 

paper. 

The first stage of the 3P model, the “presage”, is characterised as the factors that 

precede learning. These factors include both student factors and the structure of the learning 

context. Student factors can include things such as individual differences (e.g. personality), 

prior knowledge, life experience and expectations. In our model, the presage stage of this 

model is captured in two parts. The person-level variation is addressed in our measurement of 

personality and demographics. In order to gain a complete picture of the presage, however, 

we also examine the structure of the learning context and the nature of the content. As this is 

a multi-disciplinary sample (across 13 courses in 6 different disciplines and multiple year 

levels) and there is evidence that, between academic disciplines, we would expect some 

variation style of teaching (Lindbolm-Ylänne, Trigwell, Nevgi, & Ashwin, 2006), method of 

teaching, preparation time, hours of contact and research involvement (Neumann, 2001), as 

well as the typical kinds of tasks involved in studying in the discipline (Ramsden, 2003), field 

of study is included as a clustering variable in the model, broken up in line with a Biglan-

Becher style typology (further detail in method section. For detail on typology, see, for 

example: Becher & Trowler, 2001; Biglan, 1973).   
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The second stage of the Biggs conceptualisation is the “procedure” stage, which 

captures the process and experience of learning. This was originally conceptualised as simply 

learning approaches. In our model, however, we consider the learning process as the dynamic 

social experience of being a student, as well as the individual approaches students take to 

their learning.  

Finally, the “product” stage of Biggs’ model is described as the end-product of 

education: the outcomes. In the current study, perceived teaching quality and intention to 

continue variables are the outcomes of interest. 

1.5 The current study 

The current paper, then, builds on recent developments in the learning approaches 

model that are informed by contemporary social psychological theory related to self-

concepts, identities and group processes, particularly social norms (Bliuc et al., 2011a; 

Platow et al., 2013; Smyth, Mavor, Platow, & Grace, 2017; Smyth et al., 2015). In doing so, 

we extend the learning approaches model beyond the original person-by-situation framework, 

in which learning approaches are determined by the interaction between student factors and 

the learning environment. This extended model includes dynamic social and normative 

effects in shaping learning approaches. In applying the normative influence model described 

above, we consider not only the processes that lead to the more conventionally desirable 

learning strategies (i.e. deep learning approaches), but also the way in which these social and 

normative processes might combine to produce a surface learning approach.  

As this is a complex model, we had a range of expectations for trends in the data. The 

overall model to be tested, allowing for disciplinary variation, can be seen in Figure 1. Broad 

initial expectations were that, in the first instance, learning approach should impact on 

student outcomes, such that deep and surface learning should be inversely related and deep 
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learning approaches should positively impact (and surface learning should negatively impact) 

both outcomes (perceived quality of teaching and intention to continue). Identification levels 

and perceived norms were also considered a possible influence on outcomes, independently 

of learning approaches. 

<<Figure 1 about here>> 

1.5.1 Field of study 

With regard to variations by field of study, we had some clear expectations drawn 

from the literature. First, we expected students in “soft” disciplines to report deeper learning 

approaches (Laird et al., 2008) . Similarly, students in applied disciplines were expected to 

have a greater focus on procedure and task completion, rather than knowledge frameworks 

(Neumann, Parry, & Becher, 2002) and, therefore, report less deep learning than students in 

pure disciplines. Perceived norms should vary by discipline, as the nature of norms are 

greatly determined by both learning context and fellow students (Smyth et al., 2015; Turner, 

1991).  

We also expected that outcomes (perceived teaching quality and intention to continue) 

should be related to the learning approach taken (Biggs, 1999; Lizzio et al., 2002; Platow et 

al., 2013) and therefore expect higher ratings of teaching quality and stronger intentions to 

continue in soft and pure disciplines, as compared to hard or applied disciplines.  We did not, 

however, necessarily expect any differences in discipline identification, as the self-selection 

of degree-choice should mean that the majority of students consider their area of study at 

least somewhat self-defining. We expect that variation in the level of identification within 

each discipline group would be broadly comparable. 
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1.5.2 Replication and extension of Smyth et al (2015) 

Other expectations for the current research were drawn from the replication and 

extension of Smyth et al.’s (2015) work. It was expected that personality variables should 

partially predict discipline-related social identification and perceived study norms. Previous 

research suggests conscientiousness should be related to stronger perceived deep-learning 

norms and higher levels of identification, as well as deeper learning approaches and better 

academic outcomes (Chamorro-Premuzic & Furnham, 2008; O’Connor & Paunonen, 2007). 

The other personality variable to be examined, extraversion, may also predict deeper learning 

approaches. The expected prediction here is only partial, but not negligible and so has been 

included in the model. 

Higher levels of discipline-related social identification, stronger deep learning norms 

and their interaction were also expected to positively predict deep learning approaches. It was 

expected that the form of the interaction would be such that the influence of norms was 

accentuated at higher levels of identification. The converse would also be apparent for 

strongly identified students who perceive strong surface learning norms. That is, the influence 

of surface learning norms should undercut the identification- deep learning approach 

relationship at higher levels of identification.  
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2. Method 

2.1 Participants 

Participants were 315 undergraduate students (136 female and 117 male, 2 unknown) 

from across 13 courses from 6 different disciplines, at a moderately-sized Australian 

university.  Participants were part of a larger longitudinal study of discipline social 

identification and learning approaches. The analyses explored here are based on participants 

who only participated at single time point1. Participants were recruited during lecture time 

and completed a pen-and- paper survey within a few weeks of the beginning of the semester.  

Ages of participants ranged from 16 to 62 years (mean = 19.95). 74% of students indicated 

that English was their first language.  The sample for investigation consisted of students 

ranging from one to six years into their studies (median = 1st year; 113 students (37%) were 

post 1st year).  

2.2 Measures 

Participants indicated their degree of agreement or disagreement with the following 

scale items on a seven-point Likert scale (ranging from strongly disagree to strongly agree), 

unless specified otherwise. In example items below an (r) indicates a reversed item. 

2.2.1 Person-level Factors 

The most relevant aspects of the Big-Five personality model (John, Naumann, & 

Soto, 2008) are conscientiousness and extraversion. Conscientiousness has a robust relation 

to both learning approaches and academic outcomes (Chamorro-Premuzic & Furnham, 2004, 

2008; O’Connor & Paunonen, 2007) and there is some evidence that extraversion predicts 

deeper learning approaches (McManus, Keeling, & Paice, 2004). Conscientiousness and 

extraversion were measured using 12 items each, from the widely used Big-Five inventory 
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(John et al., 2008; e.g., “I often forget to put things back in their proper place.”(r), " I don't 

mind being the centre of attention.").  The two inventories were reliable (αconsc=.80, αextr=.87). 

Demographic variables, including age, gender, linguistic background and field of study were 

also recorded. 

2.2.2 Field of study 

The thirteen courses sampled fall into six main discipline areas: humanities and social 

sciences, computing, commerce/marketing, psychology and mathematics. These were 

categorised using a Biglan-Becher style typology of disciplines (Becher & Trowler, 2001; 

Biglan, 1973), divided along two dimensions: paradigm development and pragmatism 

(Umbach, 2007). This is a commonly used typology that was developed from Kolb (1981) 

and is a common basis for exploring disciplinary variation in learning approaches (e.g. 

Kember & Leung, 2011; Laird et al., 2008; Lindbolm-Ylänne et al., 2006; Neumann et al., 

2002). The paradigm development dimension is broken into hard (areas in which there are 

clear paradigms, rules and laws, e.g. chemistry and physics) and soft (areas in which there is 

little consensus on theory methods and problems, e.g. history and literature). The pragmatism 

dimension is divided into pure (disciplines in which few practical applications are considered, 

e.g. pure mathematics and philosophy) and applied disciplines (which concentrate on 

applications, e.g. engineering and accounting). These two dimensions combine to form a 2 by 

2 matrix of possible categorisation: hard-pure, hard-applied, soft-pure and soft-applied. In the 

current study, there was an even split of hard (mathematics, engineering and computing) and 

soft (humanities & social sciences, psychology and commerce/ marketing) disciplines and 

one applied discipline per grouping (commerce and engineering)2.  Dividing our data like this 

allows for comparisons across the 6 individual disciplines, as well as by the hard/soft and 

pure/applied dimensions.  
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2.2.3  Identification 

Identification as a student in their particular field of study was measured using a scale 

of seven items that are widely used to measure social identification (see Haslam, 2004).  

Items included: “Being a student in my field of study is important to me “, “I would 

RATHER NOT tell other people that I am a student in my field of study” (r), and “I have a 

lot of respect for students in my field of study”. In the current data, the scale was acceptably 

reliable (α = .74). 

2.2.4 Learning Approaches and Norms  

Students’ learning approaches were measured using 12 items adapted from the revised 

version of the Study Process Questionnaire (SPQ; Biggs et al., 2001).  Six items measured 

each learning approach (e.g., “I spend a lot of my free time finding out more about interesting 

topics dealt with in class” (deep); “I only study seriously those topics that I know will be 

assessed.” (surface)). In the current data, both scales were acceptably reliable (αdeep = .77, 

αsurface = .76). 

Six items were used to assess perceptions of norms among students in their field of 

study adapted from the SPQ (three for each kind of norm; e.g., “Most students in my field of 

study prefer to focus on learning efficiently by memorizing key information and minimizing 

study time.” (surface norms), “Most students in my field of study prefer to focus on 

understanding content fully and integrating new information with what they already know” 

(deep norms)). In the current data, both scales were considered an acceptable balance of 

reliability and construct coverage given their short length (αdeep norms = .60, αsurface norms = .69). 



RUNNING HEAD: LEARNING BEHAVIOUR AND OUTCOMES: THE ROLE FOR 
SOCIAL INFLUENCE  16 
 
2.2.5 Teaching Quality 

To examine course-level outcomes, perceived teaching quality was measured using four 

items on seven-point scales ranging from “extremely low” to “extremely high”.  Items 

included:  “The quality of course content in my field of study (e.g. the lectures and tutorials) 

is:”, “The quality of teaching in my field of study is:”.  These questions were all highly 

correlated, and loaded onto a single factor in preliminary factor analysis, and were, therefore, 

treated in our analysis as measuring one “Teaching Quality” construct (α=.68). 

2.2.6 Intention to continue 

As an outcome measure, we examined student intentions to continue in a variety of ways. 

Drawing on scales used in previous research (Platow et al., 2013; Smyth et al., 2015), the 

items focused on a range of possible continuation behaviours. Participants were asked to 

indicate the extent to which they intended to: continue studies in the field, pursue a relevant 

career, find out more about topics covered, retain only the information they need (r), make 

sure none of their friends take this course (r), and choose a course as different as possible 

next semester (r). The items were all highly correlated and were, therefore, treated as a single 

“intention to continue” scale, which, in the current data, was acceptably reliable (α = 0.73). 

3. Results 

Data were analysed in three steps. Firstly, means and correlations of key variables were 

examined to see if the patterns were broadly consistent with previous research. Secondly, the 

data were divided by discipline group (math, engineering, computing, psychology, commerce 

and business (henceforth “commerce”) and humanities and social sciences (henceforth 

“humanities”); and by over-arching discipline category (hard vs. soft paradigm), to examine 

differences between these groups on key variables. ANOVA and post-hoc comparisons were 
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used to examine the nature of any differences. Finally, a full path model was tested, exploring 

the complex interrelationships between these variables and their implications for outcomes. 

As our data were collected in a stratified sample (students within discipline groups), we 

analysed the data clustered by thirteen course groups. We used Mplus (Muthén & Muthén, 

1998-2012) to handle both the clustering by discipline and the complexity of the model.  

While our sample size and uneven cell sizes did not allow for a full multi-level model, we 

used a random intercepts model to capture the non-independence inherent in collecting data 

in nested course and discipline groups. While we recognise the possible theoretical value of a 

full random slopes model, our data do not allow this analysis. 

3.1 Preliminary Analysis 

Table 1 presents the means, standard deviations, and correlations between all 

variables. There are few relationships between any of the pure demographics (age, gender, 

year and language background) and our key variables of interest and, moreover, those 

relationships that are significant are small in size. To simplify and focus the model on our key 

variables of interest the demographic variables were not included in the path analysis3. The 

personality variables, on the other hand, were correlated with the learning approach, social 

identity and norm scales and were, therefore, retained in the path model.  

<<Table 1 about here>> 

There are several important things to be noted about the correlational associations in 

the whole sample. First, stronger discipline identification is related to deeper learning 

approaches (r = .347, p<.01) and deeper learning norms (r = .340, p<.01), as we would expect 

from the previous literature. Second, self-reported deeper learning approaches also 

demonstrate the pattern of relationships we would expect, being positively associated with 

deep learning norms (r = .302, p<.01) and greater levels of conscientiousness (r = .341, 
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p<.01) and negatively associated with surface learning approaches (r = -.351 p<.01) and 

surface learning norms (r = -.149, p<.01).  Third, we note that our outcome measures are 

associated positively with discipline-related identification (r = .442, p<.01 and r = .387, 

p<.01, for perceived quality and intention to continue, respectively), deep learning 

approaches (r = .324, p<.01, r = .398, p<.01) and deep learning norms (r = .286, p<.01 and r = 

238, p<.01). These outcomes are also negatively associated with surface learning approaches 

(r = .-.268, p<.01 and r = -.418, p<.01).  

3.2 Discipline-group comparisons 

To address our expectations on discipline differences, the six discipline groups were 

divided broadly into hard (engineering, computer science, mathematics; N=158) and soft 

(humanities, commerce and psychology; N = 157) categories. These sub-categories were 

large enough for meaningful analysis (n>150; Lizzio et al., 2002). They were, therefore, 

compared on all key variables to examine systematic discipline-category-based differences. 

The variables compared were identification, learning approaches and perceived norms, as 

well as personality, perceived teaching quality and intentions to continue. Category means on 

all key variables are presented in Table 2. Independent sample t-tests were conducted on all 

key variables. To account for family-wise error effects in multiple t-tests, a conservative 

confidence level of .01 was used in significance testing. Only deep learning approaches (t 

(312) = 3.14, p<.01), perceived teaching quality (t (295) =4.03, p<.01) and intentions to 

continue (t (299) = 3.93, p<.01) differed between these two broad categories, with the soft 

group scoring more highly on all three variables.  

Differences in all key variables were then compared across all six discipline groups 

using ANOVA. Means and standard deviations across the six discipline groups can be seen in 

Table 2, and F-statistics can be seen in Table 3. Significant differences among discipline 
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groups were found on all variables, except conscientiousness and discipline identification. 

Post hoc comparisons using the Tukey HSD test indicated a range of pair-wise differences, as 

indicated in Table 2 (group means that share subscript symbols do not significantly differ).  

<<Tables 2 & 3 about here>> 

Disciplines did not significantly differ on identification or deep learning norms scores. 

Deep learning approach scores differed such that the engineering (M =3.99) and commerce 

(M = 4.03) groups scored significantly lower than the humanities (M = 4.66) and psychology 

(M = 4.69) groups. Surface learning approach scores showed the expected converse pattern, 

with the psychology group (M =3.45) scoring significantly lower than the engineering (M 

=4.18) and commerce (M =4.39) groups.  Mean scores on outcomes were also divergent. 

Commerce (M= 4.39) and engineering (M= 4.48) students scored, on average, significantly 

lower than humanities (M= 5.17) and psychology students (M= 5.60) on intentions to 

continue. Teaching quality scores significantly differed between such that humanities and 

psychology students reported greater teaching quality, on average.  

The overall trends indicate that the engineering and commerce groups (the applied 

disciplines) differ significantly from the humanities and psychology (soft-pure disciplines) on 

many key variables. The hard-pure disciplines (computing and mathematics) showed less 

consistent trends, in that these disciplines were not significantly different from either the soft-

pure or applied groupings. The scores for theses disciplines fell in a consistent descriptive 

pattern (below those for soft-pure and above those for applied) across deep learning, surface 

learning, surface learning norms, perceived teaching quality and intention to continue, but not 

significantly so. 
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3.3 Full model testing 

We next tested the full conceptual model (see Figure 1), clustering the data at a course 

level to account for the systematic differences in the student experience identified above. In 

order to control for expected main effects identified in (Smyth et al., 2015), we added 

personality factors at the first stage of the path model, predicting our main social and norm 

variables. The full theoretical model was a good fit (χ2 (2) = 2.931, p=.2309; χ2/df = 1.4655, 

RMSEA=.040, CFI = .998, TFI = .955, SRMR = 0.012).  The model can be seen in Figure 24.  

<Figure 2 about here>> 

In our model, for the personality aspects conscientiousness and extraversion, a few 

significant relationships emerged (for path weights, see Table 4). In predicting discipline 

social identification, effects were such that more conscientious and more extraverted students 

were more strongly identified with their discipline. In predicting deep learning norms, we 

found that more conscientious students were more likely to perceive norms supportive of a 

deep approach. Finally, in predicting surface learning norms, there were no significant effects 

for either personality factor. 

<<Table 4 about here>> 

The next stage of the model predicted learning approaches, with the social variables 

(identification, learning norms, their interaction), and personality as predictors. This stage of 

the model is shown in our model diagram (see Figure 2) and also Table 4.  Surface learning 

approaches were negatively predicted by discipline identification levels (β = -.24 p<.001) and 

positively predicted by surface learning norms (β = .29, p<.001), but the interaction was not 

significant as a predictor of surface learning approach. 

In predicting deep learning approaches, four of the relationships with the social 

identification and norm variables were significant and in the direction we would expect: 
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stronger identification (β =.29 p<.001), stronger deep learning norms (β = .18 p<.001), 

weaker surface learning norms (β = -.12 p<.01), and the identification by deep learning norms 

interaction (β = .11 p<.001), all predicted deeper learning approaches. The identification by 

surface norm interaction, however, also predicted weaker deep learning approaches (β = -.102 

p<.001). 

<Figures 3 & 4 about here>> 

The form of the interactions can be seen in Figures 3 and 4. Considering first the 

expected identification by deep norm interaction, the form of the interaction indicates that, 

overlaid on the positive main effect of norms, identification accentuates the normative effect 

at higher levels of identification.  The second interaction, identification by surface norms, 

indicates that stronger surface learning norms decrease the adoption of deep learning 

approaches, but only in strongly identified students.  

Simple slopes analysis5 indicated that, for deep learning norms at low levels of 

identification (-1 SD), the relationship between perceived deep learning norms and deep 

learning approaches was non-significant (β = .059, p = .389). At high levels of identification 

(+1 SD), however, this relationship was positive and significant (β = .278, p<.001; see Figure 

3.  The relationship between surface learning norms and deep learning approaches is similarly 

non-significant at low levels of identification (-1 SD; β = -.021, p = .653). At high levels of 

identification (+1 SD), however, this relationship was negative and significant (β = -.163, 

p<.001), in that stronger surface learning norms were inversely related to deeper learning 

approaches (see Figure 4).  

We then consider the outcome variables. First, the learning approaches and social 

variables were allowed to predict perceived course-based teaching quality. In predicting 

perceived teaching quality, we find that there were significant positive paths from deep 
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learning approaches (β = .11, p <.01), deep learning norms (β = .12 p<.05) and discipline 

identification (β = .32 p<.001), as well as a significant negative path from surface learning 

approaches (β = -.142, p<.001). The main effect of identification on teaching quality was 

moderated by an identification by surface learning norm interaction. The form of the 

interaction can be seen in Figure 5. Stronger surface learning norms predicted stronger 

perceptions of good teaching quality, but only in students who were weakly identified. 

Simple slopes analysis indicated that, for students who were strongly identified, there was no 

significant effect of surface learning norms on perceived teaching quality (β = -.003, p = 

.974). For students who were weakly identified with their discipline, however, the effect of 

surface learning norms was significant and positive (β = .248, p = .007).    

<Figure 5 about here>> 

In predicting intentions to continue, we found five significant effects. Firstly, 

conscientiousness was a positive predictor (β = .14 p<.01), whereas extraversion was a 

negative predictor (β = -12 p<.01) of intention to continue. Both learning approaches were 

also significant predictors, in the directions we would expect (deep learning approach: β = .14 

p<.001; surface learning approach: β = -.23 p<.01), as was perceived teaching quality (β = 

.41, p<.001). 
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4. Discussion 

The current paper sought to build on recent literature that demonstrates the positive 

relationships of discipline-based social identification, perceived study norms and their 

interaction with learning approaches. The study adds to this literature by exploring 

differences across discipline groups and exploring two important outcome measures, 

perceived teaching quality and intentions to continue. We then cluster data by discipline 

group to control for within-discipline dependencies, allowing us to draw some inferences 

across disciplines that encompass the full range of the Biglan-Becher typology.  

The pattern of zero-order correlations indicates two key things. Firstly, in line with 

the findings of Smyth et al. (2015), students who identify more strongly with their discipline 

were likely to perceive the norms among their fellow students to favour deep learning 

practices and take a deeper learning approach. Further, more strongly identified students also 

perceive the quality of teaching to be higher and are more likely to intend to continue in the 

field. Secondly, student outcomes (in this case perceptions of course-based teaching quality 

and intentions to continue with study or relevant employment) are related not only to 

individual factors (conscientiousness) but also to the learning approaches taken, as suggested 

by Lizzio, et al. (2002) and Platow et al. (2013).  The pattern of correlations found in these 

data are as predicted from both education and psychology literature (Biggs et al., 2001; Biggs 

& Tang, 2007a; Bliuc et al., 2011a, 2011b; Platow et al., 2013; Ramsden, 2003). 

4.1 Disciplinary variation 

The six discipline groups were divided broadly into hard and soft categories. Deep 

learning approaches, perceived teaching quality and intentions to continue scores differed 

between these two categories, with the soft disciplines scoring more highly on all three 

dimensions. This suggests that, in accordance with the literature and our expectations, 



RUNNING HEAD: LEARNING BEHAVIOUR AND OUTCOMES: THE ROLE FOR 
SOCIAL INFLUENCE  24 
 
students in “soft” disciplines were taking deeper learning approaches and responded more 

positively on the outcome measures. 

Differences between all six constituent disciplines were then explored, to trace 

differences that may lie along the pure/applied dimension, as well as discipline-specific 

effects. Significant differences among discipline groups were found on all variables, except 

conscientiousness and discipline identification. The lack of difference in identification was as 

expected and indicated that the extent to which students consider their field of study self-

defining does not vary with content domain. 

With regard to learning approaches and learning norms, we find that mean scores for 

applied disciplines were significantly more surface-oriented than those in soft-pure 

disciplines, but not significantly different to mean scores in the hard-pure disciplines. This 

pattern is repeated in the outcome scores, in that the soft-pure disciplines, had significantly 

higher averages on both outcomes, as compared to the engineering group (the commerce 

group scored with the engineering group on intention to continue but was not significantly 

lower on teaching quality). These trends support previous literature (e.g. Laird et al., 2008) 

that suggests that students in soft-pure disciplines take deeper learning approaches and report 

the associated more positive outcomes.  The applied courses also demonstrated the expected 

effects, indicating a trend toward surface learning and surface learning norms. The 

vocational, procedural, job-specific nature of these courses’ content may drive this tendency 

toward surface learning. Lizzio et al. (2002) find similar effects in their datasets, in that 

commerce students in their sample who had stronger surface learning approaches achieved 

higher grades. Their explanation similarly focused on the applied nature of the field. 

That we find these differences in learning approaches and outcomes, despite no 

between-discipline differences in identification levels or perceived deep learning norms, has 
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important implications. What this suggests, in the first instance, is that there are meaningful 

discipline-based differences in the learning approach and outcome variables, and that these 

are not simply artefacts of baseline differences in identification between courses. That is, the 

reason we find deeper learning approaches in humanities and social science courses, is not 

that students in this discipline are simply more strongly identified. That there were no 

significant differences between disciplines on social identity and deep learning norms 

indicates that these discipline variations are not attributable to identification-related sampling 

error. There are real, meaningful variations in the student experience across disciplines. 

These differences likely take the form of teaching methods, typical tasks and research 

involvement (Lindbolm-Ylänne et al., 2006; Neumann, 2001; Ramsden, 2003).  

4.2 Full model 

Having established clear differences between student experience in various fields of 

study, we then tested our full model, clustering data by discipline group to control for within-

discipline dependencies. The model was a good fit for the data and yielded several important 

findings. 

We find that discipline-related identification and perceived deep learning norms 

significantly predicted deep learning approaches (see Figure 2 and Table 4). Similarly, 

surface learning approach was predicted by surface learning norms and negatively predicted 

by discipline-related social identification. The main effect relationships between identity, 

norms and deep learning approach were, however, moderated by the interactive effect of 

identification and norms for deep learning. All of these findings are in keeping with the 

emerging literature on social identity in education (Bliuc et al., 2011a, 2011b; Platow et al., 

2013; Smyth et al., 2015). 
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 The positive relationship between deeper learning norms and deep learning approach 

was moderated by the strength of student identification with the associated group, such that 

the effect was contingent on stronger identification (see Figure 3).  Only those who identified 

strongly were influenced by the deep learning norms and therefore reported engaging in 

higher levels of deep learning. For those who reported a lower level of identification, there 

was no significant effect of perceived norm. What this suggests is that norms alone are not 

sufficient to drive students to adopt a deeper learning approach.  

We can interpret this interaction in a complementary, alternative manner, if we consider 

the norm strength to be moderating the identification- learning approaches relationships. In 

this understanding, there is a significant positive relationship between identification and deep 

learning approaches. The form of the interaction suggests, however, that the effect of the 

perceived norms of that group modify this relationship. There is little difference in learning 

approaches between students who are strongly or weakly identified, when norms are not 

perceived to support deep learning. When the norms are strong, however, this difference is 

significant and positive (i.e. when norms are supportive of deeper learning approaches, more 

strongly identified students are significantly more likely to adopt a deep learning approach 

than weakly identified students).  

The second interaction provides further evidence of this relationship. The identification 

by surface learning norm interaction is such that stronger surface learning norms mitigate the 

positive relationship of identification with deep learning approaches in highly identified 

students. This relationship is non-significant for low identifiers. Once again, for students 

strongly identified with their discipline, the nature of the perceived norms of the discipline 

group influence the adoption of learning approaches. This suggests that stronger discipline-

related social identification will only lead to deeper learning approaches when the norms for 
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that identity are perceived to support deep learning. Both these interpretations of the 

interaction are congruent with those that can be drawn from the findings of Smyth et 

al.(Smyth et al., 2015), but are also in line with findings we would expect, working from 

work from Jetten and colleagues on the role for norms in the identification-behaviour 

relationship (Jetten, Spears and Manstead, 1996; 1997). 

In the final stage of the model, the learning approaches are, as we would expect, 

negatively correlated and predict the outcome variables. That is, deeper learning approaches 

predict more positive perceptions of teaching quality and stronger intentions to continue, 

whereas surface learning approaches negatively predict both outcomes (see Figure 2). This 

supports indications in the literature that deeper learning approaches are related to greater 

course satisfaction (Lizzio et al., 2002) and stronger intention to continue (Platow et al., 

2013). 

The one unexpected effect, when it comes to these outcome measures, was the 

identification by surface norm interaction. What we find here is that, for students weakly 

identified with their discipline, weaker perceived surface learning norms were associated with 

perceptions of significantly lower teaching quality. That is, the lowest rating of teaching 

quality were from students who were both weakly identified and perceived weak surface 

learning norms among their fellow students. One explanation here can be drawn from a 

consideration of the larger pattern of main effects. Overall, stronger discipline identification 

was associated with deeper learning approach. As such, it is reasonable to infer that more 

weakly identified students are taking more surface-oriented learning approaches. This, 

coupled with being in course in which their peers are not engaged in surface learning, likely 

leads to poorer comparative performance and a poorer understanding of the material. Poorer 
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academic performance, in turn, can lead to a perception that the teaching is to blame, and 

therefore of poorer quality (e.g. Greenwald & Gillmore, 1997).  

Some limitations of the current methodology need to be borne in mind when 

interpreting our findings. The core limitation of the data is that it represents a single time-

point “snapshot” of student responses. As has been discussed, learning approaches, social 

identification and norm processes are all inherently dynamic, context dependent and in a state 

of constant feedback. As such, these findings are limited in their ability to covey the 

complexity and changeability of these process. Instead, these findings should be treated as an 

indicative illustration of the shape and directions of the patterns of influence, which can be 

expanded upon through longitudinal and experimental research that captures causality and 

change over time. A second limitation is in the inclusion of students for whom the “field of 

study” question may be complex or ambiguous. While we attempted to capture the prevailing 

norms in the area of study most central to the student’s identity, the reality of modern tertiary 

education is that fewer and fewer students are studying in a single discipline and many who 

are early in their study careers do not have a clear idea of which aspects or content domains 

in their studies may be self-defining. Given that our pattern of findings with regard to 

discipline differences falls in line with the existing literature, we do not foresee any problems 

in applying our findings. However, future research may clarify the pattern of findings, by 

categorising disciplines in a more granular way and allowing students to align themselves 

with multiple fields, or none at all. 

4.3 Conclusion 

Taken together, the findings indicate several key things. First, the data indicate 

disciplinary variations that mesh well with the literature on the Biglan-Becher typology 

(Becher & Trowler, 2001). Secondly, we replicate the findings of Smyth et al (2015), 
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indicating a key role of discipline-related social identification, perceived norms and their 

interaction in predicting learning approaches. In the current data we control for personal 

differences by measuring personality and control for some contextual variations by clustering 

data by discipline. Over and above both the personal and contextual influences, we still find a 

significant role for the social-identity and norm factors. Thirdly, we replicate the findings in 

the existing literature indicating that deeper learning approaches are associated with better 

outcomes. In the current data, these outcomes were: (1) perceived teaching quality, indicating 

that those who took a deeper approach had a better experience of the course, and (2) intention 

to continue, indicating that those who took a deep approach were more engaged with the 

community of practice in their discipline.  

There are valuable practical and theoretical implications from these findings. They 

suggest that we need to consider a more complex view of the determination of learning 

approaches in tertiary education. Students are driven, not only by their own personalities and 

by the features of their learning context, but also by their perceived social environment.  

Policy-makers and educators would gain from including these aspects in their 

considerations, when designing curricula or planning course activities. While student factors 

and learning environment do combine to predict learning approaches, including discipline 

social identification and perceived norms in the model allows us to predict learning 

approaches with greater accuracy. It also allows educators to begin to engage with the 

existing literature on the mechanisms of social influence in designing their courses, such that 

interventions and models designed to influence group behaviour in other domains can be 

more easily translated to the educational domain. There already exists a large body of social 

psychological research on the ways in which social influence through social identification 

and perceived norm is enacted and how we can harness this for positive change (Bliuc, 
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McGarty, Reynolds, & Muntele, 2006; McGarty, Bliuc, Thomas, & Bongiorno, 2009; 

Musgrove & McGarty, 2008; Postmes, Haslam, & Swaab, 2005; Postmes, Spears, Sakhel, & 

deGroot, 2001; Thomas & McGarty, 2009; Thomas, McGarty, & Mavor, 2009a, 2009b; 

Turner, 1991; White, Smith, Terry, Greenslade, & McKimmie, 2009). With the inclusion of 

social identification and norms in our understanding of the learning process, we can then 

draw on this social influence literature to improve the effectiveness of the ways in which we 

attempt to shape student approaches to learning and educational outcomes. 
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Learning behaviour & learning outcomes: the roles for social influence and 

field of study. 
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Footnotes 

(1) The current sample was compared to the sample from the longitudinal dataset, using 

ANOVA. No significant differences were found in any of the variables used in the 

final model. As such, the dataset analysed here was considered equally representative 

of the broader population. 

(2) Ordinarily, computing courses would be treated as “applied”, as they are 

technological courses. In the current sample, however, the computing courses 

surveyed were both coding-language based, theoretical courses focusing on the 

theoretical science of computing and were much closer to the Becher 

conceptualisation of a “pure” discipline as “cumulative, atomistic structure, concerned 

with universals, simplification and a quantitative emphasis.”(Neumann et al., 2002, p. 

406) . 

(3) A model containing these variables was tested, but was a much poorer fit for the data 

and would not change the interpretation of the main models presented.  

(4) For the sake of clarity, the personality variables are excluded from the figure. These 

variables were associated with measures at all stages of the model (as suggested by 

the literature), but are not the focus of the current paper. To facilitate a clearer focus 

on the novel aspect- social processes-, these paths are reported in full in Table 4, but 

not included in the figure. 

(5) We thank Chris Sibley for his excellent tutorial example on calculating simple slopes 

in MPlus, available online (Sibley, 2013). 
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Table & Figure Captions 

Table 1: Means, standard deviations and correlations of key variables 

Table 2: Means and standard deviations, by group 

Table 3: one-way ANOVA, by discipline (6 groups) 

Table 4: path weights, restricted model 

 

Figure 1: Conceptual map of relationships 

Figure 2: Full model. (χ2 (2) = 2.931, p=.2309; χ2/df = 1.4655, RMSEA=.040, CFI = .998, 

TFI = .955, SRMR = 0.012). 

Figure 3: Form of the identification by deep-learning-norm interaction 

Figure 4: Form of the identification by surface-learning-norm interaction, predicting deep 

learning approaches. 

Figure 5: Form of the identification by surface-learning-norm interaction, predicting 

perceived quality of teaching.  
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Table 1: Means, standard deviations and correlations of key variables 

 Mean 

(SD) 

Age GEND NESB Year CONSC EXTR ID DLA SLA DLN SLN QUAL 

Gender (GEND) - .039 -           

NESB - .025 -.052 -          

Year -  .285** .119* -.014 -         

Conscientiousness 

(CONSC) 

4.58 

(.859) 

.025 -.197** -.058 .016 -        

Extraversion 

(EXTR) 

4.15 

(1.032) 

.068 -.129* -.078 .076 .042 -       

Discipline 

Identification (ID) 

5.28 

(.771) 

-.013 -.078 -.035 -.046 .169** .122* -      

Deep Learning 

Approach (DLA) 

4.44 

(.927) 

.102 -.129* .064 -.119* .341** .032 .347** -     

Surface Learning 

Approach (SLA 

3.75 

(1.028) 

-.029 .009 .053 .177** -.170** .033 -.224** -.351** -    

Deep Learning 

Norms (DLN) 

4.60 

(.807) 

.025 -.179** .097 -.097 .175** -.015 .340** .302** -.070 -   

Surface Learning 

Norms (SLN) 

4.66 

(.997) 

.019 .016 -.046 .030 -.003 .072 .005 -.149** .272** -.108 -  
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Perceived 

Teaching Quality 

(Qual) 

5.43 

(1.034)) 

.023 -.203** -.087 -.158** .234** .073 .442** .324** -.268** .286** .032 - 

Intention to 

Continue (Cont) 

5.11 

(.996) 

-.006 -.179** -.107 -.241** .328** -.097 .387** .398** -.418** .238** -.103 .537** 

**p<.01, *, p<.05 
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Table 2: Means & SDs by group 

 
Category  Hard  Soft 

 

Hard 
Soft  

Maths 
Engineering IT  

 H&SS Commerce 
Psychology 

Conscientiousness 
4.51 (.851) 4.66 (.865)  4.51 (.846)a 4.37 (.868) a 4.88 (.808) a  4.43 (.790) a 4.54 (.888) a 4.74 (.871) a 

Extraversion 
4.07 (.913) 4.25 (1.106)  3.98 (.953) b 4.30 (.758) b,c 4.30 (.847) b,c  4.05 (.894) b 4.77 (1.012) c 4.16 (1.142) b,c 

Discipline 
Identification 

5.32 (.832) 5.24 (.661) 
 

5.41 (.701) d 5.03 (1.050) d 5.32 (1.138) d 
 

5.08 (.659) d 5.05 (.607) d 5.32 (.664) d 

Deep Learning 
Approach 

4.27α (.905) 4.57α (.923) 
 

4.31 (.807) e,f 3.99 (1.158)e 4.77 (.734) e,f 
 

4.66 (.887) f 4.03 (.744) e 4.69 (.932) f 

Surface Learning 
Approach 

3.83 (1.057) 3.62 (.959) 
 

3.73 (1.033) g,h 4.18 (1.165) h,i 3.80 (.753) g,h 
 

3.52 (.989) g,h 4.39 (.895) i 3.45 (.881) g 

Deep Learning 
Norms 

4.48 (.764) 4.67 (.816) 
 

4.55 (.698) j 4.21 (.943) j 4.60 (.644) j 
 

4.70 (.921) j 4.40 (.850) j 4.74 (.776) j 

Surface Learning 
Norms  

4.72 (1.069) 4.59 (.941) 
 

4.77 (.999) k,l 4.78 (1.194) k,l 4.03 (1.201) k 
 

4.17 (1.180) k 5.19 (.866) l 4.53 (.831) k 

Perceived Teaching 

Quality 5.17α (1.119) 5.67α (.905) 

 

5.31 (1.047) m,n 4.77 (1.286) m 

4.97 

(1.048)m,n 

 

5.81 (.777) n 5.15 (.884) m,n 5.76 (.901) n 
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Intention to 

Continue 4.84α (1.064) 5.33α (.876) 

 

4.98 (.980) o,p 4.48 (1.218) o 

4.50 (1.112) 

o,p 

 

5.17 (1.005) p,q 4.39 (.797) o 5.60 (.678) o,p,q 

αdenotes a significant difference (hard vs. soft). 

Note: discipline means sharing a subscript letter do not significantly differ. 
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Table 3: One-way ANOVA, by discipline (6 groups) 

 

 

Sum of 

Squares df 

Mean 

Square F 

Conscientiousness Between Groups 5.564 5 1.113 1.523 

Within Groups 207.555 284 .731  

Total 213.119 289   

Extraversion Between Groups 14.092 5 2.818 2.727* 

Within Groups 294.575 285 1.034  

Total 308.667 290   

Discipline 

Identification 

Between Groups 4.202 5 .840 1.424 

Within Groups 181.807 308 .590  

Total 186.009 313   

Deep Learning 

Approach 

Between Groups 22.424 5 4.485 5.608** 

Within Groups 246.337 308 .800  

Total 268.762 313   

Surface Learning 

Approach 

Between Groups 27.822 5 5.564 5.651** 

Within Groups 303.256 308 .985  

Total 331.078 313   

Deep Learning 

Norms 

Between Groups 8.036 5 1.607 2.531* 

Within Groups 189.873 299 .635  

Total 197.909 304   

Surface Learning 

Norms 

Between Groups 19.860 5 3.972 4.205** 

Within Groups 282.470 299 .945  

Total 302.330 304   

Perceived 

Teaching Quality 

Between Groups 32.244 5 6.449 6.603** 

Within Groups 284.219 291 .977  

Total 316.464 296   

Intention to 

Continue 

Between Groups 52.957 5 10.591 12.767** 

Within Groups 244.730 295 .830  

Total 297.687 300   

**p<.01, *, p<.05 

 

  



48 
Table 4: Path weights, restricted model 

Path from to Beta p 

Conscientiousness to: 

 Discipline Identification .161 .002 

 Deep Learning Norms .175 .001 

 Surface Learning Norms -.009 .853 

 Deep Learning Approaches .247 .000 

 Surface Learning Approaches -.130 .000 

 Intention to Continue .150 .004 

Extraversion to: 

 Discipline Identification .123 .010 

 Deep Learning Norms -.033 .547 

 Surface Learning Norms .075 .231 

 Intention to Continue -.127 .000 

Discipline Identification to: 

 Deep Learning Approaches .304 .000 

 Surface Learning Approaches -.264 .000 

 Perceived Teaching Quality .287 .000 

Deep Learning Norms to: 

 Deep Learning Approaches .146 .001 

 Perceived Teaching Quality .100 .000 

Surface Learning Norms: 

 Deep Learning Approaches -.100 .005 

 Surface Learning Approaches .292 .000 

 Perceived Teaching Quality -.118 .164 

Identification by DL Norm Interaction to: 

 Deep Learning Approaches .141 .000 

Identification by SL Norm Interaction to: 

 Deep Learning Approaches -.102 .000 

 Perceived Teaching Quality -.161 .000 

Deep Learning Approaches to: 

 Perceived Teaching Quality .111 .001 

 Intention to Continue .117 .000 

Surface Learning Approaches to: 
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 Perceived Teaching Quality -.178 .000 

 Intention to Continue -.214 .002 

Perceived Teaching Quality to: 

 Intention to Continue .382 .000 
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Figure 1. 

 
 
Figure 2  
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Figure 3 
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Figure 4 
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Figure 5 
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