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Abstract: Subnational conflict research increasingly utilizes georeferenced event datasets to
understand contentious politics and violence. Yet, how exactly locations are mapped to par-
ticular geographies, especially from unstructured text sources such as newspaper reports and
archival records, remains opaque and few best practices exist for guiding researchers through
the subtle but consequential decisions made during geolocation. We begin to address this
gap by developing a systematic approach to georeferencing that articulates the strategies
available, empirically diagnoses problems of bias created by both the data-generating pro-
cess and researcher-controlled tasks, and provides new generalizable tools for simultaneously
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optimizing both the recovery and accuracy of coordinates. We then empirically evaluate our
process and tools against new microlevel data on the Mau Mau Rebellion (Colonial Kenya
1952-1960), drawn from 20,000 pages of recently declassified British military intelligence
reports. By leveraging a subset of this data that includes map codes alongside natural lan-
guage location descriptions, we demonstrate how inappropriately georeferencing data can
have important downstream consequences in terms of systematically biasing coefficients or
altering statistical significance and how our tools can help alleviate these problems.
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How do we determine where historical acts of violence took place? At the heart of many

questions in conflict studies is the where of violence: Where were civilians or communities

targeted by conflict actors? Where did counterinsurgency tactics succeed or fail? Underlying

these analyses are decisions and assumptions about how to map events to the geography

that they occupied. Determining whether an event took place at a specific latitude and

longitude, or in a village or particular administrative unit, is a matter of weighing evidence,

comparing sources, and making judgment calls between different possible georeferencing

strategies. These important decisions, however, are usually made in an ad hoc manner, on

the basis of opaque assumptions, and without the benefit of empirically tested guidance.

We begin to address this gap by developing a systematic approach to georeferencing that

articulates the strategies available, empirically diagnoses problems of bias created by both

the data-generating process and researcher-controlled tasks, and provides new generalizable

tools for simultaneously optimizing both the recovery and accuracy of coordinates. We are

able to do this by exploiting a new source of conflict data from the Mau Mau uprising in late

colonial Kenya. Drawn from over 20,000 pages of archival records, comprising raw intelligence

reports written by British security personnel, our events contain either a natural language

location description, a precise military map code, or both. This allows us to explicitly test

differences between georeferencing strategies and their relative performance by leveraging

comparisons between imputed and military coordinates.

The article proceeds as follows: the next two sections discuss existing debates over error

and bias in spatial data and provide a brief survey of how georeferencing decisions are made

across contemporary conflict research. We next introduce a new dataset of conflict events

during the the Mau Mau rebellion, describing the archival records and how we sampled and

coded them. We then discuss the tasks, decisions, and problems of georeferencing event
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data, including the trade-offs that various strategies entail for recovery versus accuracy. We

also develop two new ensemble methods of georeferencing that leverage empirical diagnostic

information to overcome these trade-offs, flexibly combining strategies and data sources

to compensate for the weaknesses of any one. Finally, we empirically demonstrate how

inappropriately georeferenced data can have important downstream consequences in terms

of systematically biasing coefficients and altering statistical significance.

Error and bias in spatial conflict event data

Scholars have turned increasingly to analyzing subnational variation in protests, rebel

violence, and repression. These works have transformed our understanding of contentious

politics, allowing us to evaluate theories on the local dynamics of violence, the influence of

terrain and infrastructure on war, and the myriad strategic interactions between states, their

challengers, and civilians. This rigorous microlevel work depends on georeferenced conflict

event datasets, which have proliferated in recent years. Regional or global event datasets

include the Armed Conflict Location and Event Dataset (ACLED) (Raleigh et al., 2010), the

UCDP Georeferenced Event Dataset (UCDP GED) (Sundberg & Melander, 2013), and the

Social Conflict in Africa Database (SCAD) (Salehyan et al., 2012), among others.1 Intensive

endeavors to compile georeferenced event data on particular conflicts have complemented

such cross-national efforts (see Table I).

This increasing reliance on event data raises important questions over the data generating

process and how systematic sources of bias could undermine valid causal inferences. Conflict

1See also the University of Maryland’s Study of Terrorism and Responses to Terrorism (START), the
RAND Database of Worldwide Terrorism Incidents (RDWTI), the International Crisis Early Warning System
(ICEWS), and the Global Data on Events Language and Tone (GDELT).
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Table I. Sample of single country georeferenced event datasets

Contemporary Afghanistan 2004-11 Berman et al. (2011); O’Loughlin et al.
(2010)

Chechnya 2000-05 Lyall (2009)

Columbia 1988-2000 Albertus & Kaplan (2012)

India 1984-96 Hoelscher, Miklian & Vadlamannati
(2012)

Iraq 2004-10 Berman, Shapiro & Felter (2011);
Condra & Shapiro (2012)

Israel/Palestine 2000-05 Benmelech, Berrebi & Klor (2015)

North Caucasus 2000-08 Toft & Zhukov (2012); Zhukov (2012)

Northern Ireland 1968-1998 Loyle, Sullivan & Davenport (2014)

Pakistan 1988-2011 Bueno de Mesquita et al. (2015)

Philippines 1997-2010 Berman et al. (2011); Crost, Felter &
Johnston (2014)

Historic Greece 1943-44 Kalyvas (2006); Kalyvas & Kocher (2007)

Guatemala 1975-1985 Sullivan (2016)

Spain 1936-39 Balcells (2010)

Ukraine 1943-1955 Zhukov (2015)

Vietnam 1965-75 Douglass (2016); Kocher, Pepinsky &
Kalyvas (2011)
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event datasets never represent full ‘ground truth.’ Rather, social actors with their own per-

spectives and agendas select events for observation, recording, and archiving (Woolley, 2000:

157). Journalistic sources, from which much event data has been coded, have come under

heavy criticism for the small fraction of total events they capture, for coverage fatigue, and

for bias towards large-scale, violent, and urban events (Baum & Zhukov, 2015; Davenport,

2010: 7; Davenport & Ball, 2002; Earl et al., 2004; Eck, 2012; O’Loughlin et al., 2010;

Weidmann, 2016; Woolley, 2000). Archival records, on the other hand, are usually generated

by government actors who have their own motives for collecting information during conflict.

Indeed, they often selectively destroy or censor records and may systematically undercount

civilian deaths resulting from their own operations (Balcells & Sullivan, 2018; Bennett, 2013:

3; Byman, 2013: 36).

Error and bias induced by the researcher controlled processes of data recovery, extraction,

and coding have received far less attention. Machine coding has been critiqued as a method

of event compilation due to its apparently amplified urban bias and typical reliance on

English language news sources (Hammond & Weidmann, 2014; Wang et al., 2016). Scholars

have also noted discrepancies in the spatial accuracy of datasets: Eck (2012) finds UCDP-

GED outperforms ACLED while Weidman (2015) demonstrates that both UCDP-GED and

ACLED are highly inaccurate compared to U.S. military records from Afghanistan. Branch

(2016) also notes that georeferencing can introduce unrecognized problems with selection bias

because it poorly captures non-spatial concepts that are then excluded or misrepresented in

later analyses.

Although highlighting that georeferencing accuracy varies, existing work has not yet

systematically analyzed how both the data generating process and researcher controlled

decisions over measuring and modeling the landscape of civil conflict create their own biases

4



and inefficiencies. Nor have we developed best practices in the field for how to rigorously

georeference observations. This is the contribution we seek to make: how do we best extract

locations from raw data and assign them coordinates? Georeferencing is a process of the

researcher’s own creation and under their control: while we cannot resolve all the myriad

challenges arising from how records were generated, we can minimize our own contributions

to bias and measurement error.

Contentious politics and existing approaches to geolo-

cation

Within the burgeoning microlevel literature on contentious politics, it has not yet

become standard practice to describe georeferencing procedures in a fully transparent and

replicable manner. Even frequently used global event datasets such as the Global Terrorism

Database (GTD) and the Global Database of Events, Language, and Tone (GDELT) fail to

specify in their documentation exactly how coordinates were obtained from location names

(toponyms).2

From those works that do describe their geolocation methods, three general practices

can be discerned: reliance on GPS or satellite data, binning events into administrative units,

or matching location names to coordinates through gazetteer databases. First, for some

modern conflicts, GPS-enabled field equipment or satellite coverage provide highly accurate

geographic information. The ‘Significant Activities’ database was collected by U.S. soldiers in

Afghanistan and Iraq who included GPS coordinates in their field reports (Berman, Shapiro

2See codebooks at https://www.start.umd.edu/gtd/downloads/Codebook.pdf and http://data.gdelt
project.org/documentation/GDELT-Event Codebook-V2.0.pdf.
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& Felter, 2011; Condra & Shapiro, 2012; Gleditsch & Weidmann, 2012). Hassan & O’Mealia

(2018) use satellite data to pinpoint arson events during the 2007-2008 Kenyan election

violence. This type of geographical data is highly accurate and avoids the problems of later

deriving coordinates from location descriptions. It is also rare. Historic actors often lacked

such technological capabilities and even many contemporary governments (and other armed

actors) do not have the resources, capacity, or will to collect GPS data in the field. There is

also a limited range to the types of concepts satellite imagery can capture.

More commonly, researchers forgo coordinates altogether and bin events within exist-

ing administrative units. This is the case for much microlevel data collected on individual

conflicts, including Chechnya (Lyall, 2009), Columbia (Albertus & Kaplan, 2012), Pakistan

(Bueno de Mesquita et al., 2015), Palestine (Benmelech, Berrebi & Klor, 2015), the Philip-

pines (Berman et al., 2011; Crost, Felter & Johnston, 2014), Spain (Balcells, 2010), Ukraine

(Zhukov, 2015), and Vietnam (Kocher, Pepinsky & Kalyvas, 2011; Douglass, 2016). This

approach avoids the problems of georeferencing while still reaching low levels of spatial ag-

gregation, such as villages (although more commonly events are assigned to districts or

municipalities). This practice, however, is non-ideal insofar as it compels the researcher to

choose an administrative unit of analysis for practical reasons that may later conflict with

theoretical needs or endogeneity concerns. Accurate and reliable conversion to coordinates

would allow for greater flexibility over model specification, facilitate geographic matching

and combination with other variables, and enable better use of data by future researchers

driven by new questions.

Finally, a growing number of conflict event datasets match toponyms to coordinates

through publicly available databases, such as the GeoNet Names Server or Google Earth,
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as well as with historic gazetteers, field atlases, and other digitized maps.3 Although the

technical procedures remain opaque, it appears that most of these efforts begin with a

primary database and then work sequentially through alternatives until a match is found.

This haphazard approach poses a number of potential problems. First, it prioritizes

recovery rates over accuracy by consulting sources of varying and often unknown quality

until coordinates have been tracked down. Second, it fails to systematically consider what

the best match is out of a range of possibilities within and across databases. This creates

unneccessary spatial error. Third, manually consulting a broad range of databases and other

sources of geographic information is highly labor intensive. Large amounts of data may then

be left missing, especially for projects led by small research teams.

Both missing coordinate data and spatial error are unlikely to be random. Georeferencing

processes can thus carry over and create additional sources of bias that affect later analysis.

This makes it vital to first render visible the important decisions made during georeferencing

that affect the recovery rate, accuracy, and bias of coordinates. New tools are then necessary

to assist the researcher in implementing the best georeferencing process for their event data,

given its unique problems.

3ACLED, for example, uses a combination of GeoNames, Google maps, Falling Grain, and other un-
specified gazetteers (see codebook for Raleigh et al., 2010). UCDP-GED matches to GeoNames first
then, failing that, consults Google Earth followed by unspecified digitized maps and field atlases (Sund-
berg and Melander 2013, 526). SCAD works with a combination of Yahoo! Maps, Falling Grain, and
www.itouchmap.com/latlong (see codebook for Salehyan et al., 2012).
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Best practices and new tools for building geographic

conflict data

The process of georeferencing, or matching textual descriptions of places to standard-

ized identifiers (such as coordinates) through databases of geographic information (gazetteers),

involves two fundamental concerns: precision (accuracy) and recall (recovery). Imprecision

can seep into imputed coordinates through a wide variety of mechanisms: from errors in the

data generating process that placed events far from their true locations, to mispellings or

duplicated place names that lead to false matches, to errors in the underlying gazetteer data.

The data generating process and georeferencing method can similarly affect recall rates. For

example, records may give vague location information that is difficult to match at all while

matching techniques that require near identical wording necessarily leave many observations

missing.

If coordinates were truly missing at random, then low recall rates would simply reduce

our sample size and downstream statistical leverage. Similarly, if inaccuracies were random,

then low precision would merely introduce statistical noise and make relationships more

difficult to discern, but would nonetheless return unbiased estimates. If the accuracy and/or

missingness of coordinates are systematically distorted, however, then meaningful sources of

potentially unacknowledged bias would impact later analyses.

It is therefore vitally important to understand how both the data generating and geo-

referencing processes create missing and/or inaccurate location information. Given this

understanding, the researcher can tailor geolocation to minimize both its own problems and

those that would otherwise carry over from the data generating process. Evaluating and

implementing good strategies of georeferencing, in turn, rely on better tools that explicitly
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address the problems of precision and recovery and the potential trade-offs between them.

The remainder of this section develops a systematic approach to georeferencing, including

novel matching tools, with several benefits for the researcher. First, it eliminates the need

to ex ante prioritize or exclude gazetteers, allowing the researcher to develop an individu-

alized collection of sources that can be simultaneously consulted. Second, it systematically

considers and derives best matches both within and across these sources, removing the labor

intensive and somewhat haphazard task of trying to ‘hand match’ locations to coordinates.

Third, it provides flexible tools for maximizing recovery rates, minimizing inaccuracy, or bal-

ancing trade-offs between them. Finally, it provides complete transparency in the subtle but

meaningful choices that are usually opaquely left to the researcher when trying to geolocate

event data.

A systematic approach to georeferencing involves four key choices, all of which potentially

affect both recovery and precision (see Table II). We discuss each of these choices in turn,

giving recommendations for best practices or describing the trade-offs between options. We

then present two new tools we developed to facilitate georeferencing according to these best

practices.

Which coordinate sources? : First, the researcher must choose which gazetteers to use

and how to potentially combine them. Not all gazetteers are created equal and, given the

expanding number of available geographic information sources, the best are not readily ap-

parent. For example, we found ten different coordinate sources for Kenya, ranging from

historic gazetteers to government databases to commercial application programming inter-

faces (APIs).4 Instead of relying on general reputation or ease of access to choose one data

4Kenya coordinate sources include the 1964 Official Kenya Gazetteer; US Board of Geographic Names’
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Table II. Key decision points in the georeferencing process

Decision: Which
coordinate
sources?

→
Allow self-
referential
matching?

→
Which
geometry
type?

→
Type of
string
matching?

Options: single
gazateer

yes point exact

sequentially
consulted
gazateers

no polygon fuzzy

combined
gazateers

multipoly-
gon

linestring

source, or sequentially consulting a subset of sources, we recommend combining all data

sources into a master gazetteer. This allows for diagnostics and comparisons of recovery

rates and accuracy between gazetteers. It also enables the application of more sophisticated

tools that can rank matches across gazetteers and suggest a best match for each individual

observation.

Allow self-referential matching? : Datasets compiled from records that provide GPS or

map coordinates, for at least some subset of observations, allow the researcher to engage

in ‘self-referential matching.’ By this we mean recovering coordinates for observations with

only natural language location descriptions using other observations in the dataset (rather

than external gazetteers). This practice can greatly enhance recovery rates. Global or even

country-level gazetteers may not include small rural locations, such as markets or farms—

database of foreign geographic feature names or NGA; National Geospatial-Intelligence Agency’s GeoNet
Names Server or GeoNames; Google Maps’ search API; Bing Maps’ search API; OpenStreetMap; Global
Administrative Areas database or GADM; Getty Thesaurus of Geographic Names; International Livestock
Research Institute; and Wikidata. Full source documentation is included in the Online appendix.
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whose names may also change over time, preventing matches with pre- and post-conflict

gazateers. If, even once, the records themselves provide a coordinate for such a location,

then that geographic information can be recovered for all observations sharing the location

name. The trade-off is that this practice will automatically spread any bias or error from

these replicated coordinates throughout the dataset. One must thus carefully evaluate the

underlying reliability of the actor-generated coordinates.

Which geometry type? : Third, the researcher must choose the types of geometry to match

on. The most common, point matching, treats locations as a single geographic point. An-

other possibility attributes polygons or multipolygons to locations, which holds advantages

for larger locations like towns and administrative units that we might feel uncomfortable

reducing to a single point in space. Additionally, geographic features such as rivers can be

treated as linestrings. One can also combine geometries, assigning each location the point

or shape with greatest verisimilitude. Different geometries may, however, involve trade-offs

or sacrifices in recovery and accuracy and should be empirically judged within each context.

Type of string matching? : Finally, two general options exist to recover coordinates: exact

matching and fuzzy matching. Exact matching requires an identical letter for letter match

between toponyms in the event data and the gazetteer sources. The technique thus entails

high precision (matches are likely true) but low recall. Indeed, many potential matches are

missed due to minor deviations between sources, such as spelling errors, different prefixes

and suffixes, and other modifiers. Intensive hand cleaning can minimize such discrepancies

but recovery rates will nonetheless likely remain low. Fuzzy matching, on the other hand,

allows for toponyms to differ and still constitute a match, where the task is to carefully define

the allowable degree of difference. Fuzzy matching thus has high recall, compared to exact
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matching, but may also generate many false matches, reducing precision.5 The researcher

must thus decide whether missing data or geospatial error is of greater risk to downstream

analysis before choosing a string matching method.

These choices often present trade-offs which are difficult to optimize across the entire

georeferencing process. Ideally, we want to recover as many observations as possible, drawing

across all available data sources and georeferencing methods, while still retaining precision.

We developed two new tools to help achieve this. Below, we provide an intuitive insight into

each tool with full technical details described in the Online appendix. Replicable R code,

with functions, is also available at https://github.com/rexdouglass/MeasuringLandscape.

Fixed hand rules ensemble: This is an automated tool that requires the researcher to

first evaluate which methods and gazetteers perform best, in terms of accuracy, given their

data. Fixed rules are then programmed which tell the ensemble tool which matches to pri-

oritize across observations. For example, we found that for our Kenya data exact matches

were preferred to fuzzy matches, self-referential matches to gazetteer matches, and points

to other geometric forms. We were also able to rank order our gazetteer sources by overall

accuracy. Thus the tool was programmed to first generate possible matches across georef-

erencing strategies and then to select the one that best meets our customized preference

ordering.

5Given the current lack of appropriate tools, we built a custom fuzzy toponym matching pipeline, treating
it as a supervised learning problem. A full description of the pipeline and evaluation of its performance is
provided in the Online appendix. In brief, we created a training dataset of events with both text and
military map codes paired against the ten closest gazetteer entries to the true location. We coded each
event toponym-gazetteer dyad (n=20,243) as a match (3,192) or mismatch (17,051). A two stage classifier
was then trained to predict the likelihood of a match between any two arbitrary toponym pairs. The first
stage screened out pairs with little chance of being a match, using the Jaccard similarity between their 2-
character ngram profiles, approximated with Locality Sensitive Hashing (LSH). A second stage then refined
this smaller number of plausible matches using 28 different measures of similarity and estimated an exact
probability with an XGBoost model.
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Semi-supervised ensemble: While fixed rules are relatively easy to implement, they are

inflexible and uniformly applied. This neglects additional information that could be used

to pick the best possible match on a case by case basis, further minimizing imprecision and

bias. The semi-supervised ensemble treats georeferencing as a supervised learning problem,

predicting how far away a potential match is from the true location. This necessitates a mod-

erately sized training dataset of ideal matches where observations have both a place name and

known true location (a requirement not met by all datasets). The model works by calculating

the actual distance between known points and potential matches in the gazetteers, learning

to predict this distance as a function of event and gazetteer properties such as reporting

district, conflict year, data source, matching type, etc.6 The tool learns which potential

match is likely to be the most accurate given all of this underlying information, applying

its decision-making observation by observation. This provides a more flexible approach than

the fixed rules ensemble and is also highly customizable.

Application to the Mau Mau rebellion

This sections employs our tools in the Kenyan context to, first, show how our data

generating process created important biases that necessitated maximizing both recovered co-

ordinates and their precision. We then demonstrate how different georeferencing strategies

6We fit an XGBoost model, described later in the section ‘Choosing the right georeferencing approach for
Kenya,’ which predicts the log distance in kilometers between an event location and a gazetteer suggestion,
minimizing mean squared error. Our unit of analysis is the event-gazetteer dyad (N=340,355) and the model
includes the following independent variables: match properties such as the underlying gazateer source,
spatial type, exact or fuzzy matching, and self-referential match; the predicted probability of a fuzzy match
being true estimated with the second stage of the toponym matcher introduced above; place types from the
gazetteers such as village, town, road, river, district, etc.; and document properties such as the reporting
district and year.
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create relative bias in how events are placed in relation to variables commonly thought to

influence conflict dynamics—including population density and terrain ruggedness. Finally,

we show that those biases alter both coefficients and p-values when conducting simple hy-

pothesis testing on the intensity of violence during the Mau Mau uprising. Our new Kenya

data grants us vital leverage to evaluate and compare georeferencing strategies because it

contains a subset of events with both natural language location descriptions and military

generated map coordinates.

New data from the Kenya Emergency

Best practices in constructing archival data, as recommended in the introductory ar-

ticle to this issue, require strong awareness of the data generating process and transparency

in reporting it. How records were created, preserved, archived, and accessed creates poten-

tial sources of bias and determines the universe of events to which findings can legitimately

speak. It is also recommended that researchers collect information using basic and unam-

biguous categories and highly disaggregated spatial and temporal units. This minimizes

coder induced bias while preserving the fine-grained nature of the available records: cate-

gories and units can always be scaled up later in theoretically meaningful ways. Following

these recommendations, we describe a new microlevel dataset on the Mau Mau uprising in

late colonial Kenya (1952-1960).

On 21 October 1952, in response to a string of murders and growing unrest, the colonial

government of Kenya declared a State of Emergency. Growing out of land grievances within

the Kikuyu, Embu, and Meru (henceforth Kikuyu) tribal reserves, Mau Mau violence was

targeted simultaneously at the colonial state, collaborating tribal chiefs and their locally
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recruited Home Guards, white settlers, and fellow Kikuyu who refused to participate in

oathing ceremonies. These rituals were designed to silence the non-combatant population and

bind their loyalty to the rebels. While the armed forces battled guerrilla gangs in the forests,

the native reserves turned into an intra-ethnic civil war, with much of the violence directed

at Kikuyu non-combatants (Bennett, 2013: 12; Branch, 2009: 6; Furedi, 1973; Kershaw,

1997: 212-247). Both sides were brutal. The government and its allies engaged in aerial

bombardment, forced villagization, mass detentions, and extrajudicial torture and killings.

The insurgents routinely practiced targeted assassinations, massacres, arson campaigns, and

the beating and murder of civilians (see Anderson, 2006; Bennett, 2013; Branch, 2009;

Elkins, 2005). The military phase of the Emergency ended in October 1956 when the last

Mau Mau leader, Dedan Kimathi, was captured. Emergency regulations and many tactics

of pacification in the reserves were not lifted, however, until 12 January 1960. According to

official statistics, the conflict cost the lives of approximately 1,200 members of the Kenyan

security forces (mostly Home Guard), 10,000-20,000 insurgents, and some 25,000 civilians

(French, 2011: 151).7

Conflict event data was recorded and compiled throughout the emergency by Special

Branch, an intelligence unit within the police. Relying on the pre-conflict intelligence in-

frastructure of the colonial state, Special Branch officers assembled police and military in-

telligence from a wide range of sources into weekly, bimonthly, or monthly reports at the

district and provincial levels. The purpose of these reports was to track conflict dynamics

for local civilian and military administrators as well as for higher distribution to the wartime

intelligence committees.

7A sophisticated demographic study confirms that the total ‘excess deaths’ amongst the Kikuyu was likely
between 30,000-60,000 (Blacker, 2007: 225).
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Although the format varied across both time and space, each report contained some type

of operational intelligence section with either a table of incidents or narratives of events.

Because both police and military sources were consulted, a wide range of incidents were

tracked, covering both violent and non-violent events (oathings, theft, arson, abductions,

assaults, killings, etc.). The incident lists also encompass government counterinsurgency

activities, such as screening and sweep operations, patrols, and contacts between military

units and rebels. Event descriptions include the date, location (often referenced with a

military map code), a brief description of what occurred, and counts of arrested, wounded,

and killed.

After the conflict, as decolonization approached, these files were removed from Kenya

and buried from public view. It was only in 2011, following lawsuits filed against the United

Kingdom’s Foreign and Commonwealth Office—for torture committed during the Mau Mau

uprising—that a hidden archive was discovered at Hanslope Park, Her Majesty’s Government

Communications Centre (Bennett, 2013: 3). Known as the ‘Migrated Archives’ or the FCO

141- series, the records were deposited in tranches into the British National Archives at Kew

between April 2012 and November 2013. They contain hundreds of thousands of pages of

military and administrative documents detailing the violence that consumed late colonial

Kenya.

Out of the massive volume of available documents, we sampled the Special Branch reports

because of their comprehensive coverage. Contained in 59 dossiers, the reports for the entire

period of the Emergency have survived for most affected districts, with the exception of Fort

Hall (missing after August 1954) and Machakos (missing after December 1955).8 Moreover,

8The intelligence files come from 16 districts as well as from Central Province, Rift Valley Province, and
Nairobi City. The National Archives of the United Kingdom (TNA), Foreign and Commonwealth Office
(FCO) 141/ 5721-22, 5726, 5730, 5733, 5736, 5746, 5751, 5754-62, 5766-82, 5784, 5786-88, 5791, 5793-94,

16



these reports and the intelligence infrastructure that compiled them existed in non-affected

districts and both pre- and post-dated the uprising. We could thus rely on the content of

the documents to tell us the geographic and temporal range of conflict events.9

From the intelligence files, we coded 10,469 conflict events with nuanced information on

the event and its location. We categorized each event by type and then coded both the

instigator and target. Data on casualties and captures was also extracted from the files. Fol-

lowing best practices, we preserved as much disaggregation in the data as possible and used

basic and unambiguous conceptual categories. For example, for the event type, coders were

asked to extract brief original language descriptors from the event narratives summarizing

the incident. We then pulled a list of all the unique descriptors from the compiled data and

sorted them into basic categories before aggregating to larger concepts. The category ‘phys-

ical violence’ thus includes the subcategories of ‘abduction’ (‘abduction’ and ‘kidnapping’),

‘assault’ (‘assault’ and ‘attack’), and ‘murder’ (‘murder’ and ‘elimination’). The same pro-

cess was followed for coding the instigator and target of the event. This procedure allowed

us to preserve a high degree of disaggregation and transparency, to avoid creating missing

data by failing to appropriately specify categories ex-ante, and to minimize reliance on coder

classificatory judgment.

5827-33, 5839, 5841-43, 5846 & 5850-52; also TNA War Office (WO) 276/378, 386 &388.
9Despite the comprehensive coverage of the documents, some notable sources of potential bias remain.

First, the intelligence records may not systematically capture major government operations in the heart of
the forest zones, where the Mau Mau were encamped and civilians prohibited (these were outside district
reporting boundaries). Second, because these records relied on military and police sources, they could
undercount violent offenses by the government against civilians. Civilians would have been less likely to
report government violence and the security forces would have been less likely to document their own crimes.
Finally, some Kenyan security forces were notorious for considering any man of military age caught outside
his home area without proper papers, or in the act of running away, as a rebel. They also often deemed
anyone they shot or injured as a rebel to protect themselves from investigation and possible prosecution
for civilian abuses. We thus have low confidence that the data accurately distinguish between rebels and
civilians.
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Choosing the right georeferencing approach for Kenya

Location information in our Mau Mau event data varies considerably. In the raw

intelligence files, 51% of observations are directly linked to precise military map codes under

the East African Grid System.10 The precision of these coordinates is high, identifying events

usually to within 1,000 meters of accuracy. 35% of observations, however, only had natural

language descriptions of the location and 14% were missing location identifiers altogether,

with only a reporting district available (see Table 3).

Table III. Location information available from raw intelligence files

No Coordinates Coordinates Total

No Text Location 1,474 (14%) 544 (5%) 2,018 (19%)

Text Location 3,663 (35%) 4,788 (46%) 8,451 (81%)

Total 5127 (49%) 5,332 (51%) 10,469 (100%)

To understand whether underlying biases in the data generating process drove these

differences, and how that should impact our georeferencing strategy, we modeled how both

the properties of government data collection efforts (district, year, time window covered)

and important attributes of the events themselves (initiator, target, and type of event)

relate to location information. At several points, including here, we perform regression and

classification tasks utilizing a non-parametric, machine-learning technique called Extreme

Gradient Boosting (XGBoost) (Chen & Guestrin, 2016) that works with both categorical

10We wrote code to convert these map codes to modern coordinates in the WGS84 system, using instruc-
tions contained in United States Army Map Service 1944.
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and continuous independent variables. XGBoost is an ensemble method that iteratively fits

individual models, with each new model designed to address the errors of proceeding models

(called a greedy function approximator) (Friedman, 2001). The individual models comprise

decision trees, which progressively split the data into smaller subsets similar in outcome as

a function of the covariates. Each split represents a single cut on a single covariate. The

trees are grown until reaching a stopping condition: a leaf node with only a single value on

the outcome for classification and a leaf node with no less than three values for regression.

For each observation, predictions from each tree are then weighted into a final prediction.

To avoid over-fitting, each tree only has access to a random subset of observations and

covariates. The majority of the technical discussion is relegated to the Online appendix,

including hyper-parameters, loss functions, training and test splits, cross validation, and

class imbalance.

Our model predicts the likelihood of an event missing military map coordinates as a

function of the aforementioned properties of that event. We find missingness to be nonran-

dom, with the model having high out of sample predictive accuracy (AUC 0.88). In other

words, events with military map codes are systematically different from those with only text

descriptions. Figure 1 shows how missingness varies according to the attributes of each co-

variate, measured as the predicted likelihood of missing map codes when setting a covariate

to a specific value and holding all others at their observed value. The covariates are ordered

from top left to bottom right in terms of their measured importance to the overall model.

Missing location information was most strongly related to the properties of the underlying

intelligence document, suggesting that, when compiling any microlevel dataset, the unique

data generating process of recording and preserving information is vital to understand. Cer-

tain kinds of reports, particularly those covering longer time periods and issued less regularly,
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were much less likely to contain exact coordinates compared to regularly issued weekly re-

ports. Likewise, different years of the war were more likely to exclude spatial information

than others. Reports from 1952, the first year of the Emergency, were about 40% less likely to

have coordinates than in 1955, probably reflecting bureaucratic disorganization as the state

struggled to mobilize resources to counter the rebellion. The reporting district also strongly

predicted receiving a military map code. For example, events in the Fort Hall district files

almost always contained specific coordinates while Nairobi city files nearly exclusively relied

on textual descriptions. Provincial files and outlying districts from the conflict zone were

also more likely to lack coordinates, with Machakos District around 75% less likely to report

map codes than Fort Hall.

Lastly, we found variation in geographic reporting across action, target, and perpetrator

of the event, with certain kinds of events in the war receiving systematically greater spatial

coverage than others. Thefts and security operations were more likely to have coordinates

than oathings or rebel captures. Events initiated by government actors, or against certain

government actors (e.g. the King’s African Rifles and Police), were also more likely to

contain coordinates than others. Thus, even though the government gives the appearance of

capturing both sides of this conflict, the quality of that information varies systemically.

The data generating process in late colonial Kenya thus created serious sources of bias in

the accuracy and missingness of location information preserved by the archival records. To

drop observations without military map codes, or fail to recover a large percentage of them,

would certainly bias later analysis. But so too would recovering a high volume of inaccurate

coordinates, given the underlying processes that determined which events received map codes

versus location names. To conduct downstream analysis, we were thus confronted with
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Figure 1. Determinants of missing geographic information

Predicted probability of an event missing exact military coordinates as a function of the details
of an event and the document properties (arranged by their relative predictive importance
from top left to bottom right). The x-axis shows the probability of missing coordinates given a
particular attribute of the event, holding all other properties to their observed values. Proba-
bilities estimated with an XGBoost model. Missingness is non-random, with the model having
high out of sample predictive accuracy (AUC of 0.88).
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the pressing problem of simultaneously attempting to maximize recall and precision while

geolocating events.

While this analysis is particular to the Mau Mau context, the same problems likely apply

to many conflict settings. Simply omitting events with vague or missing location information

would systematically undercount events from certain parts of the country and years of the

conflict, which are often correlated with important patterns of spatial and temporal violence.

It would also systematically undercount civilian and rebel initiated acts as well as certain

categories of rebel behavior.

To maximize both accuracy and recovery of coordinates, we compared the performance

of different georeferencing strategies and gazetteer sources, leveraging a subset of our ob-

servations that possessed both natural language location descriptions as well as reported

military map codes. For each georeferencing technique and gazetteer, we graphed its recall

rate against the mean squared error between the recovered coordinates and the military

map codes. This evaluation required an untestable assumption: that the military map codes

represent a close approximation to ‘ground truth’ or the true location of events. Of course,

soldiers in the field in the 1950s did not benefit from access to modern GPS equipment, which

could introduce inaccuracies or biases into the military coordinates themselves. We think

this is a minimal problem for two reasons: first, soldiers were working from high resolution

local maps built from recently conducted aerial photography. They thus had reasonably

good tools at their disposal to locate their own position, or incidents reported to them, us-

ing the natural features of the landscape, the road network, and nearby villages and farms.

Second, the East Africa Grid System, in which they were working, used layered boxes to

pin point positions, allowing soldiers to report map codes of varying levels of accuracy. If

they were unsure of their precise location, they could use a slightly bigger box (and we do
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observe high volumes of both 7- and 9-digit map codes). Soldiers could also decline to use

map codes altogether, as was often the case and likely to occur where grid coordinates would

not improve upon simpler text descriptions.

Figure 2 shows the relative performance of each individual gazetteer and georeferencing

strategy along both dimensions of recall and precision. The upper left hand corner rep-

resents the choices that best meet our needs, maximizing recovery while minimizing the

distance to known military coordinates. The best performing gazetteers for our task are

thus GeoNames, the NGA, and the historic 1964 Official Kenya Gazetteer. This was our

most contemporary source of geographic information to the conflict itself, constructed from

United Kingdom Survey of Kenya maps generated between 1953-1962. The Survey of Kenya

maps were, in turn, based on aerial photography conducted in 1952 by the British Royal

Air Force.11 Openstreetmap and Google, on the other hand, performed particularly poorly.

With regard to georeferencing strategies, some choices were outright superior, while others

involved important tradeoffs. Point matching, for example, outperformed all other types of

geometry along both dimensions. On the other hand, exact matching maximized accuracy

while fuzzy matching allowed for higher recovery rates. These results are unique to our data

and would naturally vary in other contexts.

Using these diagnostics, we then created preference orderings for the fixed rules ensemble.

The semi-supervised ensemble also incorporated this information, as well as other variables

shown in the earlier analysis to structure missingness, such as the reporting district, year,

and report type. Figure 3 provides a map of our successfully georeferenced Mau Mau event

data using the semi-supervised ensemble method, which recovered 71% of observations. Both

11Kenya 1:50,000 series (Sheet 103/II), available through the British Library Maps at
http://www.bl.uk/online gallery/onlineex/maps/africa/soomify136544.html.
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Figure 3. Geographic distribution of Mau Mau conflict events

Region of interest with modern political features and place names. Individual conflict events
are represented by red dots. Inset shows the modern international borders of Kenya with the
region of interest contained within the blue ellipsis, estimated as a bivariate guassian containing
95% of events.
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the hand based rules and the semi-supervised ensemble had comparable precision with root

mean squared error of 31km and 30km respectively.

Downstream consequences of geographic coding choices

Paying close attention to the data-generating process, making informed choices over

georeferencing methods, and following best practices should pay empirical dividends. Our

data should be more reliable and less prone to bias than if we had made alternative choices.

We test this in two ways. First, we analyze how different choices over gazetteers and georef-

erencing strategies generate relative bias in how close or far events are placed in relation to

common variables of interest, including population density, distance from roads, and terrain

ruggedness. Second, we examine how these same choices can bias coefficients or alter p-values

in a simple hypothesis testing model with conflict intensity as the dependent variable.

The first analysis once again rests on leveraging the subset of our observations that

have both location descriptions and military map coordinates. For each gazetteer, using

the imputed coordinates, we calculate the average value of five commonly used independent

variables and then compare them to the presumed ‘true values’ generated by the military

map codes. We chose distance to a road, density of forest cover, population density, volume

of rainfall, and ruggedness of terrain as each of these variables is frequently employed in

analyses of insurgency and contentious politics and claimed to impact patterns of violence

(see Table 4 for variable descriptions and sources). For example, security forces heavily

utilize road networks, making them targets for IEDs and other attacks. Difficult terrain,

such as dense forest cover and ruggedness, furnish hiding places for insurgents, facilitating
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and prolonging conflict. Population centers provide large concentrations of targets as well

as sources of supply and cover for insurgents blending into the civilian population.

We find that georeferenced locations are systematically different from coordinates pro-

vided by the military. Figure 4 shows the mean difference between imputed points and

known military coordinates across each of the different gazetteer sources, organized by vari-

able. With rare exceptions, the various gazetteers placed events closer to roads (by about

25%), in more populated areas (by about 30%), and with less rainfall (by about 10%).

Perhaps more importantly, different gazetteers created distinct sources of bias both within

and across variables. Ruggedness and forest cover, for example, varied significantly in the

magnitude and direction of bias depending on the underlying source gazetteer. Users of

event data, and consumers of the research based on it, have little ability to predict such

biases and adjust inferences accordingly without conducting the diagnostics that we have.

Additionally, to the degree that researchers wish to understand the role of these variables in

producing or conditioning conflict events, careless or inappropriate georeferencing strategies

could mechanically create relationships that will bias downstream analysis.

We now illustrate the impact of georeferencing decisions on a standard hypothesis testing

model. We fit a negative binomial regression predicting the intensity of conflict in Kenya

within a given geographic area (10km wide hexagons, N=700) as a function of our five inde-

pendent variables (population, rainfall, distance from roads, ruggedness, and forest cover).

Not only are these variables routinely included in conflict models, but they have particu-

lar relevance to the Kenyan context. The Mau Mau maintained their bases high up in the

Aberderes and Mt. Kenya forests and were targeted there by government security forces,

both by ground troops and aerial bombardment (Anderson, 2005: 230-288). Much of the
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Table IV. Description of covariates

Variable
Spatial

distribution
Variable

Spatial
distribution

Population
(log): persons
living in a grid
square (2km) in
1960, estimated
based on national
census data
(UNESCO, 1987).

Distance to
roads (log): road
vectors digitized
from
contemporaneous
road surveys
(Colony and
Protectorate of
Kenya, 1951).

Ruggedness
(log): measured as
the square root of
the squared absolute
elevation between a
1 km cell and each
of its contiguous
neighbors (Shaver,
Carter & Shawa,
2016).

Rainfall (log):
average annual
rainfall in mm
(Hijmans et al.,
2005).

Forest cover:
density of forest
cover in 1km grid
cells (Hansen et al,
2000).
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conflict, however, likely occurred at the borders between the forests and the settled area as

rebel bands ventured down, seeking supplies and support from the civilian population. It

was here that they came into contact both with loyalists and with patrolling security forces

(Bennett, 2013: 20-26). For similar reasons, population density also likely shaped the dy-

namics of violence as the heavily populated Kikuyu tribal reserves became a battleground

between the Mau Mau and the local defense forces, with civilians and their loyalties caught

in between (Branch, 2009: 55-93). The road network served as an artery of security force

patrols, potentially enhancing population security closer to paved roads but also providing

a target for rebel attacks. Finally, rainfall directly impacts agricultural quality and the pro-

ductivity of land. Since Mau Mau arose over land disputes and the growing wealth disparities

both within the Kikuyu community and compared to the white settler population, we might

expect more conflict events around highly productive land (Kershaw, 1997: 212-241).

We fit a multitude of models, varying only the gazetteers and georeferencing strategy.12

Results are shown in Figure 5, which plots the coefficients (exponentiated) on the x-axis

and the p-value on the y-axis for each variable. This allows one to visualize shifts in both

statistical significance and substantive meaning across georeferencing decisions.

Even in this simple model with few covariates, we find wide variation in substantive

effect, significance, and sign across the georeferencing strategies. Population and rainfall

demonstrate the least ambiguous effects, their coefficients uniformly positive (with one ex-

ception) and always statistically significant. The magnitude of their coefficients, however,

ranges greatly: a one unit increase in log population creates anywhere from a 1.5 to 3 fold

increase in conflict intensity while the same increase in log rainfall generates 8 to 30 times

12Which does change the universe of observations and degree of spatial missingness depending on what
each method recovers.
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as many conflict events. All results thus support the understanding that more highly pop-

ulated communities on good land were disproportionately impacted by the conflict; how

disproportionately varies by the georeferencing method. Distance from roads also consis-

tently decreases conflict intensity across models, although there is wide variation on whether

the effect gains statistical significance. Depending on our georeferencing strategy, we might

thus conclude that roads fail to matter or that police and military patrols facilitated by paved

roads greatly improve security, at least in this context. Finally, the results for ruggedness

vary drastically in terms of statistical significance and the sign of the coefficient even flips

for several gazetteer sources. Tree cover is also severely impacted, with no consistency in

the sign, magnitude, or statistical significance of the coefficient. Given the importance of

forests and mountains to both rebel and government strategies in the Kenyan context, this

is worrisome indeed. Getting the georeferencing wrong would prevent us from generating

valid inferences on a central dynamic of this conflict.

Conclusion

Microlevel conflict analyses involve a host of typically hidden decisions over how to han-

dle the spatial components of event data, beginning with the georeferencing process itself.

We demonstrate that these choices have clear consequences for downstream analysis, includ-

ing the validity and interpretation of statistical results. Yet, no clear best practices currently

exist in the field to guide the complex process of mapping events to their geographies.

This article attempts to fill this void, leveraging original data on the Mau Mau rebel-

lion to flush out the decision making process of retrieving coordinates while developing new

32



tools for maximizing recovery and minimizing error and bias. We demonstrate diagnostics

that can be used to understand the data generating process and how the social actors who

recorded and archived events introduced systematic bias into geographic missingness. We

also provide simple, empirically informed guidelines on the decisions that must be made

during georeferencing and the tradeoffs they entail. Finally, we introduce machine learning

based methods to overcoming the weaknesses of any particular data source or georeferenc-

ing choice. Our ensemble tools allow for the sophisticated combination of gazetteers while

discerning best probable matches given the underlying features and empirically discovered

problems of the data. These tools can be adapted to any conflict where at least a portion of

the location descriptions can be reasonably linked to known, accurate coordinates.

Of course, our tools do have limitations of which researchers should be aware. To conduct

the diagnostics, generate appropriate hand rules, and properly train the semi-supervised

ensemble, one needs a subset of the data with a reasonably accurate ‘ground truth.’ For

media-based events, this could be constructed by analyzing potential overlaps with GPS-

based military records (such as the Significant Activities data for Iraq and Afghanistan).

For historic conflict data, one would likely be reliant on the archival records themselves to

provide this sample (as many British records do). Machine learning techniques also require

more technical expertise and computational costs than current approaches to georeferencing.

Our findings suggest a number of important insights for both producers and consumers

of conflict event data. First and foremost, there needs to be greater transparency and docu-

mentation of the steps taken during georeferencing. When multiple strategies are available,

the chosen one should be theoretically and empirically justified. Ideally, alternative georefer-

encing decisions would be explored and included in the data release, enabling sophisticated

robustness checks. Our analysis also indicates that all users of event data should be highly
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cognizant of the data generating process. The historical record is a product of the decisions,

incentives, and constraints of individuals and institutions, who are themselves embedded in

the social processes they have documented. At a minimum, we must try to understand the

underlying biases in our data and not magnify their effects. With sophisticated tools, as we

have tried to develop, we may even be able to mitigate such biases.
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