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 1 

A. ABSTRACT 2 

Passive acoustic monitoring is an efficient way to study acoustically active animals but species 3 

identification remains a major challenge. C-PODs are popular logging devices that automatically 4 

detect odontocete echolocation clicks. However, the accompanying analysis software does not 5 

distinguish between delphinid species. Click train features logged by C-PODs were compared to 6 

frequency spectra from adjacently deployed continuous recorders. A generalized additive model 7 

was then used to categorize C-POD click trains into three groups: broadband click trains, 8 

produced by bottlenose dolphin (Tursiops truncatus) or common dolphin (Delphinus delphis), 9 

frequency-banded click trains, produced by Risso’s (Grampus griseus) or white beaked dolphins 10 

(Lagenorhynchus albirostris), and unknown click trains. Incorrect categorization rates for 11 

broadband and frequency banded clicks were 0.02 (SD 0.01), but only 30% of the click trains 12 

met the categorization threshold. To increase the proportion of categorized click trains, model 13 

predictions were pooled within acoustic encounters and a likelihood ratio threshold was used to 14 

categorize encounters. This increased the proportion of the click trains meeting either the 15 

broadband or frequency banded categorization threshold to 98%. Predicted species distribution at 16 

the 30 study sites matched well to visual sighting records from the region. 17 

 18 

  19 
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II. INTRODUCTION 20 

Passive acoustic monitoring is an established method of studying the movement, distribution and 21 

behavior of acoustically active species (Fenton, 1982; Van Parijs et al., 2009; Brookes et al., 22 

2013; Kalan et al., 2015; Kloepper et al., 2016). The field of cetacean ecology has especially 23 

benefited from advances in acoustic monitoring as these animals are largely visually inaccessible 24 

to researchers for the majority of their lives. Moreover, most cetaceans produce acoustic signals 25 

that can be detected by acoustic recorders and data loggers over large distances. Accordingly, 26 

passive acoustic monitoring has provided invaluable insights into the habitat use (Mellinger et 27 

al., 2007; Van Parijs et al., 2009), communication (Parks et al., 2009), population size 28 

(Jaramillo-Legorreta and Rojas-Bracho, 2011; Harris et al., 2013), and behavior (Buckstaff, 29 

2004; Koschinski et al., 2008; Nuuttila et al., 2013; Pirotta et al., 2014b) of multiple genera. 30 

Moreover, passive acoustic monitoring is directly involved in both long-term and real-time 31 

conservation efforts for protected cetacean species (Clark et al., 2005; Van Parijs et al., 2009; 32 

Jaramillo-Legorreta and Rojas-Bracho, 2011; Klinck et al., 2012). 33 

Taxonomic classification of the echolocation clicks of odontocetes is an ongoing problem 34 

in passive acoustic surveys. The received characteristics of any given click depend on the 35 

animal’s behavior as well as the filtering effects of the cranial anatomy, the propagation 36 

environment and the parameters of the recording system (Au et al., 1985; Au et al., 1995; 37 

Carlström, 2005; Johnson et al., 2006; DeRuiter et al., 2009; Au et al., 2012a; Roch et al., 2015).  38 

Since echolocation signals are highly directional, the received amplitude and spectral 39 

characteristics of echolocation clicks further depends on the orientation of the vocalizing animal 40 

with respect to the receiver (Rasmussen et al., 2004; Wahlberg et al., 2011; Au et al., 2012b). 41 
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Together, these filtering effects render it virtually impossible to classify individual echolocation 42 

clicks to species.  43 

Researchers have addressed the classification task by averaging echolocation click 44 

characteristics across multiple clicks, click trains, and/or acoustic encounters. In doing so, group 45 

and species-specific features in echolocation clicks have been discovered. For example, 46 

Baumann-Pickering et al. (2013) compared the location of satellite tagged animals to passive 47 

acoustic recordings and was able to describe species-specific characteristics of false killer whale 48 

(Pseudorca crassidens) and short finned pilot whale (Globicephala macrorhynchus) 49 

echolocation clicks. Similarly, distributions of peak frequency, center frequency, click duration, 50 

inter-click interval (ICI) and bandwidth have been useful in discriminating between the 51 

echolocation clicks of melon-headed whales (Peponocephala electra), Gray’s spinner dolphins 52 

(Stenella longirostris longirostris) and to a lesser extent, bottlenose dolphins (Tursiops 53 

truncatus) (Baumann-Pickering et al., 2010).  54 

In other studies, the structure of the frequency spectrum has proven useful in classifying 55 

click trains. In the Pacific, the echolocation clicks of white-sided dolphins (Lagenorhynchus 56 

obliquidens) and Risso’s dolphins (Grampus griseus) have been shown to display consistent 57 

peaks and notches in spectral energy below 48 kHz (Roch et al., 2007).  Risso’s dolphins click 58 

trains contained peaks in energy at 22.4, 25.5, 30.5 and 38.7 kHz and at 22.2, 26.6, 33.7 and 37.3 59 

kHz for white-sided dolphins. The spectral location was sufficient to discriminate between the 60 

two species but site and instrument-specific anomalies reduced the confidence of the 61 

classifications (Roch et al., 2007).  In the same habitat, bottlenose dolphin and common dolphin 62 

(Delphinus delphis) echolocation clicks were found to have a more uniform energy distribution 63 

between 40 and 80 kHz (Soldevilla et al., 2008). Echolocation clicks from these species were 64 
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nearly indistinguishable but easily discriminated from the peak and notch structure of Risso’s 65 

and white-sided dolphins, especially when site and instrument specific parameters were 66 

accounted for (Roch et al., 2011; Roch et al., 2015). Uniform energy between 40-120 kHz was 67 

recorded for on-axis clicks of bottlenose dolphins in the Indian Ocean, and held for off axis 68 

angles up to ~13°, beyond which peaks and notches in energy were observed but were dependent 69 

on the angle between the animal and the recording system (Wahlberg et al. 2011). Similarly, in 70 

the North Atlantic Calderan et al. (2013) investigated whether the peaks and notches in spectral 71 

energy observed in Pacific animals were also present in clicks produced by Risso’s and white-72 

beaked dolphin (Lagenorhynchus albirostris), the latter having morphologically similar cranial 73 

structure to Pacific white-sided dolphins. Towed arrays in western Scottish waters suggested that 74 

a similar peak-and-notch structure was present in both species. Taken together, these studies 75 

suggest that the presence of stable peak-and-notches in spectral energy may be useful for 76 

increasing taxonomic resolution from acoustic recordings.  77 

While significant progress has been made in classifying echolocation clicks in continuous 78 

recordings, little effort has been directed toward classifying echolocation clicks in click logging 79 

devices. C-PODs (Chelonia, Ltd.) are commercially available click logging devices popular in 80 

marine studies. The C-POD system returns a series of summary parameters related to detected 81 

clicks but does not save the waveform of the clicks themselves. Consequently, the volume of 82 

data collected by these systems is drastically less, while some of the click frequency/time 83 

information is preserved.  Such systems are efficient, have low false positive detection rates, and 84 

produce generally consistent output between units (Dähne et al., 2013; Roberts and Read, 2014).  85 

For these reasons, C-PODs are a popular tool used to study odontocete behavior and ecology 86 

worldwide (Carstensen et al., 2006; Koschinski et al., 2008; Bailey et al., 2010; Pirotta et al., 87 
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2014a; Jaramillo‐Legorreta et al., 2016).  For species with mid- to high-frequency echolocation 88 

clicks, long-term and full spectrum (fs >200 kHz) continuous recordings are often impractical 89 

due to the high up-front cost of continuous recorders, high data volumes, time-consuming post-90 

processing to extract echolocation clicks, and limited recording duration compared to click 91 

loggers.   92 

Data collected by the C-POD data are generally processed to detect the presence of 93 

odontocete echolocation click trains with the accompanying KERNO classifier. The KERNO 94 

software is capable of discerning between dolphin and porpoise clicks based on the frequency 95 

and bandwidth of the detections. However, C-PODs currently lack the ability to discriminate 96 

between most dolphin species. Thus, where users can be relatively confident that only the target 97 

dolphin species is present, the use of C-PODs has proven to be both cost and time effective 98 

(Simon et al., 2010; Pirotta et al., 2015). However, where the scientific and/or regulatory 99 

concern focuses on a single species within a large habitat, the ability to discriminate between 100 

target and non-target species becomes a critical aspect of the research methodology.  101 

The motivation for this study is the need to efficiently monitor the population of 102 

bottlenose dolphins resident along the eastern coast of Scotland. This population is protected by 103 

a variety of UK and EU regulations including the designation of special areas of conservation 104 

(SAC) in the Moray Firth and the Firth of Tay. However, in recent years the population appears 105 

to have undergone significant range expansion; while animals are consistently observed within 106 

the SAC’s, a large proportion of the population partially or fully resides outside of the  protected 107 

areas (Cheney et al., 2014). Additionally, the construction of large offshore wind farms is 108 

planned off Eastern Scotland for the coming years. Determining what effect, if any, the 109 

construction, operation, and decommissioning of these structures will have on these animals is 110 
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important for long term conservation goals. Thus, a better understanding of how the population 111 

uses the entire Eastern Scottish coast habitat is needed. One of the primary challenges to meet 112 

this objective using passive acoustic monitoring techniques lies in discriminating between target 113 

(bottlenose dolphin) and non-target species known to occur in the area. These include common 114 

dolphin, Risso’s dolphin and white beaked dolphin (Lagenorhynchus albirostris) (Weir et al., 115 

2007; Quick et al., 2014). Thompson et al. (2013) addressed the multi-species concern by 116 

integrating visual observations of various dolphin species and echolocation click detections from 117 

C-PODs. In their study, effort controlled visual survey data from 1980 through 2010 were 118 

combined with up to three seasons worth of C-POD detections from the Moray Firth. Results 119 

from their study strongly suggested that bottlenose dolphins primarily occupy the nearshore areas 120 

(<10 km from the coast) within the inner Moray Firth while a greater diversity of dolphin species 121 

were found in the offshore waters.  122 

Discriminating between any dolphin species in C-POD data would represent a major step 123 

forward in the application of such systems in multi-species contexts. This challenge of species 124 

discrimination has been recognized and approached by researchers working with a similar group 125 

of species in Irish waters (Robbins et al., 2015). In that study the authors used multi-dimensional 126 

scaling techniques to try and discriminate between visually-confirmed Risso’s, common and 127 

bottlenose dolphin detections in C-POD data. The authors found that the limited metrics 128 

produced by the C-POD system in combination with their own post-processing metrics were 129 

insufficient to classify detections to species. This result is unsurprising given the difficulty in 130 

discriminating between common and bottlenose dolphin clicks even with continuous, full-131 

spectrum recordings (Soldevilla et al., 2008; Roch et al., 2011).   132 
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In the present study we investigated the potential for discriminating between echolocation 133 

clicks with distinct peaks and notches, hereafter termed “frequency banded” and those that, when 134 

averaged across encounters, lack distinct peaks and troughs in spectral energy below 48 kHz, 135 

referred to hereafter as “broadband”. We denote this task as “categorization” rather than 136 

classification as we are not seeking to identify the exact species producing the click-types. We 137 

used data from acoustic recorders deployed alongside C-PODs to build a model that 138 

discriminated between broadband and frequency-banded clicks in C-POD data, and then used 139 

this model to classify data from a larger set of C-PODs for which there was no co-deployed 140 

recorder.  141 

  142 

III. METHODS 143 

A. Data Collection 144 
In the spring of 2013, 30 C-PODs and 10 SM2M (Wildlife Acoustics) recorders were 145 

deployed along the eastern Scottish coast (Figure 1). Deployment locations were chosen to 146 

maximize acoustic coverage and minimize the likelihood of being displaced by storms or fishing 147 

activity. All units were moored to the seafloor using 100kg chain weights. Some were furnished 148 

with surface markers, while others had acoustic releases to facilitate recovery.  The choice of 149 

mooring type was based upon vessel traffic in the deployment location. C-PODs were deployed 150 

in ten groups of three, with moorings within the group deployed approximately 5, 10 and 15 km 151 

from the coast. Moring locations are hereafter referred to as 5, 10, and 15 to indicate that 152 

distances from shore were approximate values only.  One SM2M was co-deployed with one of 153 

the C-PODs at each group. The SM2M was attached to the same mooring line as the C-POD and 154 

the units were separated by more than one meter. This configuration allowed us to compare the 155 



9 
 

continuous recordings from the SM2Ms, from which we could identify broadband and frequency 156 

banded echolocation click trains, to the C-POD detection logs. The C-PODs logged continuously 157 

from the deployment date, while SM2Ms were programmed to commence recording on Aug 13th 158 

2013 with a 10 minute on/off duty cycle and sampling rate of 96 kHz and 12 dB gain. All units 159 

recorded until their battery capacity was exhausted and were recovered between October and 160 

November of the same year, as weather allowed (Table 1). For units displaced during the 161 

deployment, the C-POD outputs related to temperature, angle of the device and sonar detection 162 

were examined to determine the date on which the device was moved out of position.  All data 163 

from midnight of that day onwards were removed from the analysis.   164 

 165 
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FIGURE 1 Survey locations for the ECOMMAS project C-POD and joint C-POD/SM2M 167 

deployment sites on the Eastern Scottish Coast. Deployment sites indicated by nearest large 168 

town: Latheron (Lat), Helmsdale (Hel), Cromarty (Cro), Spey Bay (Spe), Fraserburgh (Fra), 169 

Cruden Bay (Cru), Stonehaven (Sto), Arbroath (Abr), St Andrews (StA), St Abbs (Stb). All units 170 

were placed at approximately 5, 10, or 15km from the coast (color online).  171 

 172 

TABLE I  173 

Locations, dates and number of days for which usable data were obtained for all deployed 174 

devices (SM suffix indicates SM2M units, all others are C-PODs). For C-PODs, the number of 175 

click trains logged, the number of acoustic encounters, and the number of broadband or 176 

frequency banded click trains contributed to the training dataset, along with – in parentheses –  177 

the number of unique days represented by that contribution, are also given All dates are dd/mm 178 

in 2013. Five C-POD deployments that returned no usable data are omitted – Spey Bay 15, 179 

Fraserburgh 10 and 15, Cruden Bay 10, and Stonehaven 10. 180 

 181 

      Training Data 

Location name 

(SM=SM2M unit) 

Data 

From  

Data 

To  

# 

Days 

# Click 

Trains  

# 

Encounters 

Broadband  Frequency- 

banded 

Latheron 5 31/07 23/10 84 480 26  337 (9) 

Latheron 5 SM 10/08 14/10 65     

Latheron 10 20/06 09/10 111 71 3   

Latheron 15 20/06 07/10 109 36 4   

Helmsdale 10 20/06 10/10 112 144 6   

Helmsdale 5 01/08 22/10 82 0 0   

Helmsdale 15 20/06 06/10 108 5 1   

Helmsdale 15 SM 10/08 25/09 46     

Cromarty 5 01/08 21/10 81 3680 199   

Cromarty 10 01/08 25/08 24 105 9   

Cromarty 15 01/08 23/10 83 23 4 22 (2)  
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Cromarty 15 SM 10/08 15/10 66     

Spey Bay 5 24/07 22/10 90 330 24   

Spey Bay 10 20/06 06/10 108 0 0   

Spey Bay 10 SM 10/08 12/10 63     

Spey Bay 15 - - -     

Fraserburgh 5 25/07 24/10 91 859 21  303 (8) 

Fraserburgh 5 SM 10/08 07/10 58     

Fraserburgh 10 - - -     

Fraserburgh 15 - - -     

Cruden Bay 5 26/07 26/11 123 910 29   

Cruden Bay 5 SM 10/08 12/10 63     

Cruden Bay 10 - - -     

Cruden Bay 15 19/06 26/11 160 541 31   

Stonehaven 5 26/07 26/11 123 955 34 226 (7) 32 (2) 

Stonehaven 5 SM 10/08 03/10 54     

Stonehaven 10 - - -     

Stonehaven 15 19/06 26/11 160 1047 77   

Arbroath 5 27/07 26/10 91 224 16   

Arbroath 10 27/07 25/10 90 20 2   

Arbroath 10 SM 10/08 11/10 62     

Arbroath 15 21/06 27/11 159 887 44   

St Andrews 5 27/07 28/10 93 183 22   

St Andrews 10 27/07 28/10 93 0 0   

St Andrews 10 SM 10/08 18/10 69     

St Andrews 15 21/06 10/10 111 55 3   

St Abbs 5 27/07 27/11 123 55 6 5 (1)  

St Abbs 5 SM 10/08 03/10 54     

St Abbs 10 27/07 25/10 90 71 4   

St Abbs 15 20/06 27/11 160 72 8   

 182 

 183 

 184 

 185 

B. C-POD Click Detection and Feature Extraction  186 
C-POD data were downloaded and processed for echolocation click detections using the 187 

manufacturer’s software and accompanying KERNO classifier (v2.042). The KERNO software 188 

classifies impulsive detections into one of the following four groups: “Sonar”, “NBHF” 189 
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(narrowband high-frequency click trains often indicative of porpoise species), “Other Cet” 190 

(wideband clicks indicative of most dolphin species) and “Unk” (representing 191 

unclassified/unknown clicks). The C-POD software and KERNO classifier group “NBHF” and 192 

“Other Cet” signals into short “click trains” based on temporal proximity and assign a “click 193 

train ID” to each such group.  The manufacturer states that this detection and classification 194 

system allows multiple clicking animals to be differentiated from each other. The KERNO 195 

classifier also assigns a quality class to each detection (high, moderate, or low) indicating the 196 

probability that the click train was correctly discriminated from other “non-train” sources such as 197 

snapping shrimp or rain (Tregenza, 2016).  198 

The click features (referred to as “details” in the accompanying software) logged by C-PODs 199 

are non-standard in the acoustics field and so require careful interpretation. Specifics of the click 200 

features are proprietary and defined by the manufacturer as the time of the click, measured with 201 

5µs resolution, dominant zero-crossing frequency (fZC, which should not be confused with peak 202 

frequency), end zero-crossing frequency (derived from the last zero-crossing interval), 203 

bandwidth measured on an “arbitrary scale” (manufacturers description), and click duration 204 

measured as the number of cycles at the dominant frequency (NCycles). C-PODs also document 205 

a metric of amplitude which, though reported as sound pressure level, is not corrected for 206 

hydrophone frequency response (Dähne et al., 2013). For this analysis, all “high” or “moderate” 207 

quality “Other Cet” detections were selected and the accompanying click features, referred to as 208 

“click details” by the manufacturer, were exported to a text file. For each click train (i.e. all 209 

clicks with the same “click train ID”), we also calculated the median inter-click-interval, mean 210 

dominant zero-crossing frequency, mean bandwidth and mean click duration (NCycles).  211 
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C. C-POD Data Quality 212 
Initial data exploration was undertaken to identify collinearity between click train features 213 

documented by the C-POD. The distributions of all train features were visually inspected and we 214 

excluded all click trains for which there were insufficient data to produce reliable models (i.e. the 215 

tails of the distributions). Thus, all click trains with median inter-click-intervals greater than or 216 

equal to 0.4 seconds, mean click durations greater than or equal to 11 cycles (NCycles), mean 217 

bandwidths greater than or equal to 7 (manufacturers arbitrary units), or dominant frequencies 218 

less than 30 kHz were excluded from the categorization portion of the analysis (resulting in the 219 

removal of ~1% of all logged click trains).  220 

We then grouped C-POD click trains into “acoustic encounters,” consisting of all click trains 221 

on the same C-POD occurring within 30 minutes of another click train (Thompson et al., 2011). 222 

In this process we assume that each encounter was produced by the same animal or group of 223 

animals and that groups of acoustically dissimilar species (e.g., Risso’s and bottlenose dolphins) 224 

were not represented in the data. This is consistent with visual observations indicating that mixed 225 

odontocete groups, especially any containing bottlenose dolphins, are extremely rare in Scottish 226 

coastal waters (Ross and Wilson, 1996; Hammond et al., 2002). 227 

 228 

D. Identifying Broadband and Frequency Banded Click Trains in the C-229 

POD Detections  230 
The few click features documented by the C-POD system are not sufficient to allow users 231 

to visually discriminate between click trains matching the broadband and frequency banded 232 

categories described above. Thus, we used continuous recordings to identify time periods with 233 

clearly identifiable bouts of broadband or frequency banded click trains. These periods were 234 

compared to the click log produced by the C-POD at to the same mooring. Where echolocation 235 
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click trains were present on both instruments at the same time, we assumed that the echolocation 236 

click trains had originated from the same animal or group of animals.  237 

Data from the SM devices were downloaded, converted to spectrograms (1024 point fast-238 

Fourier transform , 10.67 ms window, and 50% overlap) and processed for echolocation clicks 239 

using PAMGuard click detecting software (Gillespie et al., 2009). Click detection trigger was set 240 

to 10 dB and click detections were manually scanned for the presence of high signal-to-noise 241 

echolocation click encounters and annotated as such. Echolocation clicks from high SNR 242 

encounters containing at least 500 clicks were extracted and the average spectrum was inspected 243 

for the presence of either distinct peaks or notches in energy indicative of white-beaked or 244 

Risso’s dolphins or unimodal energy between 20 and 40 kHz suggestive of bottlenose and/or 245 

common dolphins.  While visually inspecting the continuous recordings for high SNR frequency 246 

banded click trains, we did not seek an exact match the location of the spectral energies as 247 

reported by reported by Calderan et al. (2013) or Soldevilla et al. (2008). Both environment and 248 

recording equipment impart site and equipment-specific filter effects on the received signals 249 

(Roch et al., 2015). We expect some variation in the received characteristics of echolocation 250 

clicks. Neither did we attempt to differentiate between species within the two click encounter 251 

types (e.g. common vs bottlenose dolphin). Instead encounters where the average spectrum 252 

contained at least two peaks in energy between 35 and 43 kHz and with >3 dB peak-to-peak 253 

difference between successive peaks and notches were annotated as “frequency banded”. Click 254 

encounters for which there was a unimodal peak in energy between 20 and 30 kHz were 255 

annotated as broadband (Figure 2). 256 

 257 
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 258 

 259 

FIGURE 2 Spectrograms (left) (fs 96  kHz, 10.67 ms Hann window, 50% overlap) and 260 

concatenated click spectrums (right) of echolocation clicks within from frequency banded (top) 261 

and broadband (bottom) acoustic encounters. Top row: 10 seconds of recordings from a frequency 262 

banded encounter consistent with white beaked and/or Risso’s dolphins and 3000 concatenated 263 

echolocation clicks from the frequency banded encounter. Bottom row: 10 seconds of recordings 264 

from a broadband encounter containing whistles and echolocation clicks consistent with bottlenose 265 

and/or common dolphins (color online). 266 

 267 

The timing of acoustic encounters documented by the C-PODs were compared with the 268 

times of broadband and frequency banded click trains observed in the continuous SM2M 269 
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recordings. The train features from “high” or “moderate” quality “other cetacean” trains 270 

coinciding with visually confirmed broadband and frequency banded encounters in the 271 

continuous recordings were used to build and train categorization models.  272 

To increase the volume of C-POD click trains from broadband encounters, click train 273 

features from the Cromarty 5 C-POD, for which there was no adjacent SM2M recorder, were 274 

randomly selected for inclusion in the broadband training dataset. Despite the lack of concurrent 275 

acoustic recordings, we are confident that the vast majority of the click trains logged by the C-276 

POD at this location were produced by bottlenose dolphins and as such represented our 277 

broadband category. The area in and around the Cromarty and inner Moray Firths has been 278 

continuously surveyed for the last 25 years and is a well-known bottlenose dolphin habitat that 279 

(Hammond and Thompson, 1991; Wilson et al., 2004; Cheney et al., 2013; Thompson et al., 280 

2014; Pirotta et al., 2015). These studies strongly suggest that no dolphin species besides 281 

bottlenose regularly occupy the area. To further reduce the probability of including frequency 282 

banded click trains in the broadband training data, only click trains from the month of August, 283 

coinciding with the majority of visual surveys, were added to the training dataset. 284 

Obtaining a representative sample of echolocation click behaviors is important in order to 285 

produce an accurate categorization system. Of the 1195 C-POD click trains that could be linked 286 

to trains in the adjacent SM recordings only 270 (22%) were broadband. We added only as many 287 

click trains from the Cromarty 5 site as needed to provide an equal number of broadband and 288 

frequency banded click trains for the categorization task.  We could have reasonably included all 289 

of the data from the Cromarty 5 C-POD based on the overwhelming evidence showing that the 290 

area is primarily occupied by bottlenose dolphins. However, we chose to limit the number of 291 

auxiliary click trains included from this C-POD for two reasons. First, the Cromarty 5  unit 292 
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contained almost as many “OtherCet” click trains as the other 25 recovered C-PODs combined. 293 

Therefore, we sought to reduce potential bias introduced by site-specific behavior present in the 294 

data from that unit. Second, the Cromarty Firth is a known “hot-spot” for bottlenose dolphin 295 

foraging activity (Hastie et al., 2004; Hastie et al., 2006; Pirotta et al., 2014b). Thus, we would 296 

expect to document more clicks with shorter inter-click-interval (reflecting the production 297 

terminal buzzes characteristic of prey capture attempts) near that location (Pirotta et al., 2014b). 298 

Including an excessive number of buzzes in the training data would introduce bias towards low 299 

ICI’s within the broadband category.  300 

E. Model-based Prediction and Categorization  301 
The above procedures generated a set of C-POD click trains, with measured features, for 302 

which we were reasonably confident of the species group producing the clicks. We used these 303 

acoustically verified click trains to build and characterize a binomial family generalized additive 304 

model (GAM) that output the predicted probability that each click train consisted of broadband 305 

clicks. The covariates for this model included: median inter-click-interval, mean zero-crossing 306 

frequency, mean click bandwidth and mean click duration. The GAM categorization model was 307 

created in R version 3.2.4 revised (R Core Team, 2016) with the MGCV package version 1.8-12 308 

(Wood, 2006). 309 

 Here, our goal was to build and select the GAM model best able to discriminate between the 310 

two echolocation click types commonly documented on the eastern Scottish coast. Thus, a k-fold 311 

cross validation approach was used to characterize candidate GAM models and provide 312 

parameters for final model selection.  313 

 314 



19 
 

 315 



20 
 

FIGURE 3 Predicted probability of a C-POD echolocation click train being associated with 316 

broadband encounter from the adjacent recordings (P, Equation 1). Points represent C-POD click 317 

trains associated with broadband (black) and frequency banded (grey) click encounters in the 318 

adjacent SM2M recordings. Horizontal lines represent the minimum classification threshold (Tt, 319 

Equation 2) above and below which click trains were classified as broadband and frequency 320 

banded, respectively. Click trains failing to meet the threshold (i.e. between the lines) were 321 

deemed too ambiguous to classify and left uncategorized. 322 

 323 

 324 

For model comparison, all candidate GAMs were assessed using 200 iterations of a 5-fold 325 

cross-validation procedure and train categorization threshold of 0.425 (Tt; Equation 1). Thus, all 326 

click trains with predicted P exceeding 0.925 were categorized as broadband and those less than 327 

0.075 were categorized as frequency banded (Equation 1, Figure 3). Click trains with predicted 328 

probabilities between 0.075 and 0.925 were considered too ambiguous to categorize and were 329 

therefore denoted as “unknown”.  330 

 331 

 332 

𝑇𝑟𝑎𝑖𝑛 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑃) = {

  𝑃 ≥ 0.5 + 𝑇𝑡  → 𝐵𝑟𝑜𝑎𝑑𝑏𝑎𝑛𝑑
  𝑃 ≤ 0.5 − 𝑇𝑡 → 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑏𝑎𝑛𝑑𝑒𝑑

0.5 − 𝑇𝑡 < 𝑃 < 0.5 + 𝑇𝑡 → 𝑈𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
    (Equation 1) 333 

     334 

 335 

For each model iteration 1/5th of the verified C-POD click trains were randomly selected and 336 

used as the validation set. The remaining 4/5ths of the verified C-POD click trains were used to 337 
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build the GAM models. In this portion of the analysis acoustic encounters were not considered 338 

and all verified click trains were treated as independent. For each iteration, we calculated the 339 

following metrics: proportion of broadband and frequency banded click trains that met either 340 

categorization threshold (proportion classified), the proportion of correctly categorized click 341 

trains (correct categorization rate), and the proportion of incorrectly categorized click trains 342 

(incorrect categorization rate). Performance values for each GAM were calculated using the 343 

same train threshold for all models (Tt, Equation 1). We then calculated the mean and standard 344 

deviation of all performance metrics across the 200 iterations and used these values to select the 345 

model meeting our selection criteria.   346 

Model selection focused on reducing the proportion of frequency banded click trains 347 

incorrectly categorized as broadband, and thereby minimize the chances of artificially inflating 348 

the bottlenose dolphin occupancy rates throughout the survey area. We also sought to categorize 349 

the highest proportion of click trains possible, regardless of type. Thus, our model selection 350 

criterion (SC) was defined as: 351 

 352 

𝑆𝐶 = 3𝐹𝑃𝑓 + 𝑈   (Equation 2) 353 

 354 

 Where FPf  was the false positive rate for frequency banded click trains and U was the 355 

proportion of uncategorized click trains. We introduce a scalar value of three representing our 356 

qualitative decision to penalize frequency banded click trains incorrectly categorized as 357 

broadband over click trains left uncategorized. The selection criterion was calculated for all 358 

candidate models and the GAM with the lowest criterion score was used to predict the 359 

probability that each click train was comprised of broadband clicks. 360 
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F. Encounter Likelihood  361 
By itself, the GAM model could not account for the fact that click trains recorded in close 362 

succession were most likely produced by the same individual or group of animals (Quick et al., 363 

2014). To incorporate this information and increase the proportion of categorized click trains, we 364 

calculated the joint likelihood of each acoustic encounter by taking the product of all GAM 365 

predictions within the acoustic encounter. We then calculated the joint likelihood that all click 366 

trains comprising each encounter were either broadband or frequency banded. The two 367 

likelihoods were then combined into a likelihood ratio (LR; Equation 3) calculated as;   368 

 369 

𝐿𝑅 =
∏ 𝑃𝑖

𝑛
𝑖=1

∏ (1−𝑃𝑖)𝑛
𝑖=1

      (Equation 3) 370 

 371 

where Pi is the predicted probability from the GAM categorization model that the ith  of n click 372 

trains in the acoustic encounter was broadband. Since the model was binary, the likelihood that 373 

an encounter was comprised of frequency banded click trains was calculated by simply replacing 374 

Pi with (1 - Pi) to give the denominator of Equation 3. As with the click train analysis, a 375 

minimum likelihood encounter threshold (Te;  Equation 4) was chosen above and below which all 376 

trains within acoustic encounters were categorized as broadband or frequency banded:  377 

 378 

𝐸𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = {

𝐵𝑟𝑜𝑎𝑑𝑏𝑎𝑛𝑑, 𝐿𝑅 ≥  𝑇𝑒

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐵𝑎𝑛𝑑𝑒𝑑, 𝐿𝑅 ≤ 1 /𝑇 𝑒
𝑈𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑, 1/ 𝑇𝑒  <  𝐿𝑅 <  𝑇𝑒

 (Equation 4) 379 

 380 

In this portion of the analysis we therefore needed to choose a minimum likelihood threshold 381 

(Te) that balanced the risk of incorrectly classifying encounters against the risk of failing to 382 
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classify most encounters. We compared the encounter categorization produced by the likelihood 383 

ratios to the validated training data to determine the correct and incorrect encounter classification 384 

rates. Through a process of trial and error we found that Te=5, so that the evidence had to be five 385 

times as strong for one option than the other for a positive classification to be made, produced 386 

the optimal balance of maximizing classification rates while minimizing classification errors. 387 

Thus all encounters with likelihood ratios above 5 were classified as broadband and encounters 388 

with likelihood ratios below 1/5 were classified as frequency banded. All click trains from 389 

encounters with likelihood ratios (LR) between 1/5 and 5 were deemed too ambiguous for 390 

categorization and were left uncategorized. Finally, the GAM and the encounter analysis were 391 

applied to the full C-POD data set for which simultaneous acoustic recordings were not 392 

available.  393 

 394 

IV. RESULTS 395 

A. Echolocation Click Encounters in C-PODs and Continuous 396 

Recordings 397 
All SM2M units were successfully recovered in late 2013, but four C-PODs were not 398 

recovered, while four others were on moorings that had been displaced, or had stopped recording 399 

early, and subsequently excluded from the analysis (Table 1, Figure 6).The number of usable 400 

recording days varied considerably between units based on battery life and/or displacement 401 

during the survey period. The median number of usable days for the C-PODs was 108 (range 24-402 

160). Due to the increased power and storage requirements, the SM2M units recorded for fewer 403 

days than the C-PODs, with a median number of recording days of 62.5 (range 46 -69; Table 1). 404 

Together the C-PODs identified 10,753 high or moderate quality “Other Cet” click trains, 405 

representing undetermined delphinid species (Table 1). The number of “Other Cet” click trains 406 
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logged by each C-POD varied from zero (recorded by the Helmsdale 10, Spey Bay 10 and St 407 

Andrews 10 units; Figure 1) to a maximum of 3662 (recorded by the Cromarty 5 unit). 408 

Of these, 1% represented click trains from the tails of the click feature distributions where there 409 

therefore excluded from the analysis. Data exploration indicated that dominant frequency and 410 

end frequency were collinear and so the latter was excluded from the categorization analysis.  411 

B. C-POD Echolocation Click Features  412 

Five of the 10 C-PODs deployed with adjacent SM2Ms registered click trains that were also 413 

identifiable in the full spectrum SM2M recordings (Table 1). The lack of concurrent detections 414 

in the other five C-POD/SM2M pairs could partly be attributed to the very few echolocation 415 

click detections by either the SM2M or the C-POD those locations (e.g., Spey Bay and St 416 

Andrews 10). In other cases, such as Cruden Bay 5, the failure to detect clicks on the adjacent 417 

SM2M likely arose from the duty cycle of the SM2M units which precluded visual 418 

categorization of the echolocation clicks. Last, differences in detection probability between the 419 

C-PODs and SM2M units may result in fewer click trains overall being recorded by the C-PODs. 420 

In total, 925 click trains detected by the KERNO classifier occurred concurrently with 421 

visually confirmed broadband (n=253) or frequency banded (n=672) click train encounters in the 422 

continuous recordings. The vast majority of verifiable broadband click trains (89%) were 423 

extracted from the Stonehaven 5 deployment. This distribution was therefore not representative 424 

of either the spatial or temporal scale of the survey. To obtain a more representative sample of 425 

broadband click features, 419 click trains were randomly selected from the Cromarty 5 C-POD, 426 

where long term sighting records confirm the overwhelming presence of bottlenose dolphins, and 427 

added to the broadband training. Four hundred and nineteen were used so as to include an equal 428 

number of frequency banded and broadband click trains with which we built the GAM for 429 

categorization (see Methods).  430 
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 431 

C. Categorization Model Performance 432 

The model with the best categorization score was a tensor product smooth with mean zero-433 

crossing frequency, mean bandwidth and median inter-click interval (Table 2). Tensor smooths 434 

are multi-variate functions that allow for interactions between inputs with different units (e.g. 435 

frequency in kHz, and Number of Cycles). Five-fold cross validation resulted in a mean false 436 

categorization rate of 1.4% for verified frequency banded click trains and, on average, 437 

categorized 40% of the training data (Figure 4, Table 3). 438 

TABLE II  439 

Mean and standard deviation for the true classification rate (TCR), false classification rate (FCR), 440 

and proportion of unclassified click trains for each model as estimated by the k-fold cross 441 

validation. Mean and standard deviation of the GAM classification model performance metrics 442 

for the top 15 models using a classification threshold (Tt, Equation 2) of ±0.425. Grey highlight 443 

indicates model selected for this analysis and (*) indicates the initial ‘best guess’ model used to 444 

establish a classification threshold (Tt) for all analysis.  (Equation 1)445 
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 446 

  
Broadband Click Trains 

Frequency Banded Click 

Trains     

Formula 

TCR FCR TCR FCR Unclassified 

 

Selection 

Criterion 

Speciesid~te(MedICI, MeanNCycles, Meanzfc) 0.49 ± 0.02 0.02 ± 0.01 0.29 ± 0.02 0.01 ± 0.01 0.60 ± 0.01 0.638 

Speciesid~te(MedICI, MeanNCycles, Meanzfc)+s(MeanBW) 0.49 ± 0.02 0.02 ± 0.01 0.29 ± 0.02 0.02 ± 0.01 0.59 ± 0.01 0.640 

Speciesid~te(MedICI, MeanNCycles, MeanBW)+s(Meanzfc) 0.48 ± 0.03 0.03 ± 0.01 0.28 ± 0.04 0.02 ± 0.01 0.60 ± 0.03 0.644 

Speciesid~te(MedICI, MeanNCycles, MeanBW, Meanzfc) 0.47 ± 0.03 0.03 ± 0.01 0.27 ± 0.03 0.02 ± 0.01 0.61 ± 0.02 0.658 

Speciesid~te(MedICI, MeanNCycles, MeanBW) 0.47 ± 0.03 0.03 ± 0.01 0.27 ± 0.03 0.02 ± 0.01 0.61 ± 0.02 0.659 

Speciesid~te(MedICI, MeanBW, Meanzfc)+s(MeanNCycles) 0.52 ± 0.03 0.02 ± 0.02 0.20 ± 0.05 0.02 ± 0.01 0.62 ± 0.05 0.681 

Speciesid~te(MedICI,MeanNCycles)+s(MeanBW)+s(Meanzfc) 0.48 ± 0.03 0.02 ± 0.01 0.19 ± 0.03 0.02 ± 0.01 0.65 ± 0.02 0.693 

Speciesid~s(MedICI)+te(MeanNCycles, MeanBW, Meanzfc) 0.48 ± 0.03 0.01 ± 0.01 0.21 ± 0.03 0.02 ± 0.01 0.64 ± 0.03 0.693 

Speciesid~te(MedICI, MeanNCycles)+s(Meanzfc) 0.49 ± 0.03 0.02 ± 0.01 0.19 ± 0.03 0.02 ± 0.01 0.65 ± 0.02 0.698 

Speciesid~te(MedICI, MeanNCycles)+s(MeanBW) 0.48 ± 0.03 0.02 ± 0.01 0.18 ± 0.02 0.02 ± 0.01 0.65 ± 0.02 0.704 

Speciesid~s(MedICI)+te(MeanNCycles, 

Meanzfc)+s(MeanBW) 0.48 ± 0.03 0.01 ± 0.01 0.18 ± 0.02 0.02 ± 0.01 0.66 ± 0.02 0.717 

Speciesid~te(MeanNCycles, Meanzfc)+s(MedICI) 0.47 ± 0.03 0.01 ± 0 0.16 ± 0.02 0.02 ± 0.01 0.67 ± 0.02 0.728 

Speciesid~te(MedICI, 

Meanzfc)+s(MeanNCycles)+s(MeanBW) 0.47 ± 0.02 0.01 ± 0.01 0.14 ± 0.02 0.02 ± 0.01 0.68 ± 0.02 0.729 

Speciesid~s(MedICI)+te(MeanNCycles, 

MeanBW)+s(Meanzfc) 0.47 ± 0.03 0.01 ± 0.01 0.14 ± 0.03 0.02 ± 0.01 0.68 ± 0.02 0.734 

Speciesid~s(MedICI)+s(MeanNCycles)+te(Meanzfc, 

MeanBW) 0.46 ± 0.03 0.01 ± 0.01 0.15 ± 0.03 0.02 ± 0.01 0.68 ± 0.02 0.735 

  447 
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TABLE III  448 

Results of the binomial GAM used to analyze click type (ClickTrain) using a tensor smooth of median inter-click interval (MedICI), 449 

mean number of cycles in clicks (MeanNCycles) and mean zero crossing frequency (meanzfc).  450 

Parametric Coefficients 

Formula: ClickTrain~te( MedICI, MeanNCycles, Meanzfc, 

family=Binomial ,link=logit) 

Intercept Estimate  Standard Error z-value Pr(>|z|) 

-0.3500 0.1254   -2.791 0.00525 

Approximate Significance of Smooth Terms 

Est. df Reference df Chi squared P-value 

69.28   79.31   612 <.001 

 451 
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 452 

FIGURE 4 Two dimensional representations of the for-dimensional tensor-smooth binomial classification GAM.  Shade indicates the 453 

probability that a given click train was broadband (black) or frequency banded (white) based on the mean inter-click-interval (Median 454 

ICI), mean number of cycles (e.g. duration) of the clicks, and mean zero-crossing frequency (Mean fZC) of the click trains. Points 455 

represent training data for broadband (black) and frequency banded (light gray) click trains. 456 

 457 
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 458 

When applied to the full C-POD dataset (minus the training data), the model categorized a total of 3968 (37%) of the click 459 

trains, of which 2737 were identified as broadband and 1231 frequency banded. The remaining 63% of the click trains failed to meet 460 

either categorization threshold (Tt). As expected, the proportion of click train types varied across the deployment sites. C-PODs near 461 

the inner Moray Firth (Cromarty and Spey Bay) contained primarily broadband click trains and units to the north and south 462 

(Helmsdale and Fraserburgh) contained primarily frequency banded click trains. Uncategorized click trains were present on all units 463 

and, with the exception of the Cromarty locations, generally represented the majority of the click trains detected at each deployment 464 

site (Figure 5). 465 
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 466 

 467 

FIGURE 5 Upper Panel: The proportion of click trains classified as broadband (black), frequency banded (gray) or unknown (white) 468 

by the GAM classification model with a minimum classification threshold of ±0.425(Tt  Equation 1).  Lower Panel: The proportion of 469 

click trains classified as broadband, frequency banded or unknown by the combination of the GAM click-train classification and the 470 
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encounter likelihood ratio. Asterisks indicate joint C-POD/SM2M deployment locations from which training data were derived. 471 

Displaced units (SpB 05, Fra 10, Fra 15, Cru 10, Sto 10) not shown.  472 

 473 

D. Encounter Likelihood  474 

The 10,753 click trains documented by the 26 recovered C-PODs represented 573 encounters. Twelve encounters coincided with 475 

visually verified broadband trains recorded by the adjacent SM2M recordings and 27 encounters coincided with visually verified 476 

frequency-banded click trains in the SM2M recordings (Table 1). Using a minimum likelihood ratio of five (Te = 5 in Equation 4), 10 477 

of the verified broadband click-train encounters were correctly categorized, two were incorrectly categorized as frequency banded 478 

encounters and none were left unclassified, while 24 of the 27 verified frequency banded encounters were correctly categorized, none 479 

were incorrectly categorized and three were left unclassified.  When the likelihood model was applied to the remaining data, 264 480 

(43%) total encounters were categorized as broadband, 273 (45%) as frequency banded and the remaining 75 (12%) were left 481 

unclassified (Figure 5). The Helmsdale 15 unit contained a single acoustic encounter for which no click trains met the GAM 482 

categorization threshold, but the likelihood ratio of the encounter was less than 1/5 allowing classification, therefore the proportion of 483 

click trains classified on the Helmsdale unit was 0 in the GAM only model, but 100% when the encounter likelihood ratio was applied.  484 

The highest daily occupancy rates were observed at the Cromarty 5 deployment location, with other peaks around the Latheron, 485 

Fraserburgh, Arbroath and St Andrews sites (Figure 6). No encounters of either type were documented by the Helmsdale 10, Spey Bay 486 

10 and St Andrews 10 units.  The daily occupancy rates of broadband and frequency banded click encounters differed between 487 
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locations. Deployments near the inner Moray Firth showed higher broadband daily occupancy rates while the converse was true for 488 

the Latheron, Fraserburgh and Cruden Bay sites.  These results are consistent with long-term studies in the area that have shown 489 

regular bottlenose dolphin presence in and around the SAC (Hammond and Thompson, 1991; Wilson et al., 1997; Quick et al., 2014). 490 

Interestingly, encounters in Stonehaven, Arbroath, and to a lesser degree St Andrews and St Abbs, showed similar rates of detection 491 

positive days for both broadband and frequency-banded click types, indicating the presence of multiple species.   492 

 493 
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FIGURE 6 Daily occupancy of broadband echolocation click encounters (blue), frequency banded echolocation click encounters 495 

(yellow) and uncategorized echolocation click train encounters (dark gray). Gray blocks indicate times when the C-PODs were recording 496 

(see also table 1) and  497 

black rectangles indicate periods for which there were simultaneous SM2M recordings (color online). 498 

 499 

V. DISCUSSION  500 

The categorization results reported here for C-POD detections are consistent with the few visual surveys available for areas 501 

outside of the Moray Firth. This study identified primarily broadband encounters in the data from all three Cromarty C-PODs. This 502 

finding is unsurprising given that a portion of the broadband training detections were derived from the Cromarty 5 unit. However, the 503 

prevalence of broadband click trains at the other two Cromarty deployment sites is consistent with previous studies in the area.  504 

Similarly, broadband encounters were more prevalent than frequency banded click trains in the C-POD detections at the St Andrews 505 

and St Abbs sites, where bottlenose dolphins are the most frequently sighted species (Cheney et al., 2013). Approximately equal 506 

numbers of broadband and frequency banded detections occurred through the Grampian region (Cruden Bay, Stonehaven and 507 

Arbroath), which agrees well with  reported sighting rates for bottlenose and white-beaked dolphins between Cruden Bay and 508 

Stonehaven (Anderwald and Evans (2010). Similarly, Weir et al. (2007) report multiple sightings of white-beaked dolphins in and 509 

around the Aberdeen area (between Cruden Bay and Stonehaven).  510 
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Daily occupancy rates from the C-POD data suggest a degree of spatial partitioning between species producing broadband and 511 

frequency-banded clicks. Broadband click encounters comprised the vast majority of the detection positive days logged by the C-512 

PODs deployed in the inner Moray Firth (Cromarty). Contrary to our expectations, the acoustic encounters on the Helmsdale C-PODs, 513 

which were located within the Moray Firth SAC, were dominated by frequency banded click trains. This suggests that, over the 2013 514 

deployment period, bottlenose dolphins were not the most common species using this portion of the SAC.  515 

Outside of the SAC, both broadband and frequency banded click encounters were frequently observed. However, for each 516 

deployment group (e.g., St Andrews, Arbroath etc.) broadband click trains were more common in the nearshore (~5 km) than the 517 

offshore deployment sites (~10 and 15 km). This is consistent with previous studies that suggest bottlenose dolphins preferentially use 518 

nearshore areas (Arso Civil, 2014; Quick et al., 2014). The Stonehaven C-PODs contained a mix of broadband and frequency banded 519 

encounters, matching visual surveys indicating that both bottlenose and white beaked dolphins are commonly sighted in that area 520 

(Weir et al., 2007; Anderwald and Evans, 2010). These results hint at the possibility of areas along the eastern Scottish coast having 521 

different ecological importance for the two groups. This has been confirmed for bottlenose dolphins in the inner Moray Firth where 522 

foraging buzzes are more frequently documented near known “hot-spots” (Hastie et al., 2004; Pirotta et al., 2014b). However, fewer 523 

data are available for the other species present in the area and/or outside of the Moray Firth. 524 

The similarity between our results and previously published sightings data indicates that the C-POD encounter categorization 525 

system presented here works well for eastern Scottish waters. However, it would be inappropriate to directly apply this categorization 526 

tool to C-POD detections collected from other regions. Recent classification studies on similar species groups using full spectrum 527 



36 
 

recording (fs = 200 kHz) have shown that deployment location and instrument type can adversely affect the performance of click train 528 

classifiers (Roch et al., 2015). It is unclear whether this might be the case with C-POD data for which fewer click features are 529 

collected. While it is possible that the zero-crossing method combined with the limited click parameters are more robust to site and/or 530 

instrument specific variations, it could just as easily be the case that the limited click features recorded by the C-PODs are more 531 

susceptible to such variations. Thus, future studies seeking to use this classifier or these methods must not omit a validation process. 532 

Ideally this would involve comparing C-POD detections with concurrent visual sightings (e.g., Roberts and Read 2014, Robbins et al. 533 

2015, Nuutilia et al. 2013). However, where visual observations are not possible or practical, pairing C-PODs with continuous 534 

recorders is an alternative method.  535 

The use of C-POD data processed only with the KERNO classifier is justified in surveys where the researchers can be confident 536 

that the majority of detections represent single dolphin and/or porpoise species. This is the case for the dolphin detections within the 537 

inner Moray Firth where bottlenose dolphins represent the principle dolphin species. Similarly, throughout the North Sea, harbor 538 

porpoise (Phocoena phocoena) represent the only resident cetacean capable of producing “NBHF” clicks and are, therefore, unlikely 539 

to be confused with other species. In such contexts, C-PODs and similar devices can directly inform studies of cetacean abundance 540 

and behavior (Jaramillo-Legorreta and Rojas-Bracho, 2011; Kyhn et al., 2012; Brookes et al., 2013; Wilson et al., 2013; Pirotta et al., 541 

2014b; Williamson et al., 2016). However, where multiple odontocete species with similar click features are present, additional 542 

methods are needed to increase taxonomic resolution. This study highlights the benefits of developing methods to increase taxonomic 543 

precision in detections from low-cost click loggers when full acoustic audits are impossible or impractical. This is especially pertinent 544 
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given that C-PODs and their predecessor T-PODs are widely used for monitoring an mitigation associated with offshore industrial 545 

activities (Carstensen et al., 2006; Scheidat et al., 2011).  546 

In this work we relied on several assumptions, but a key one was that all click trains detected by the C-PODs were produced by 547 

one of the four most common species seen in the area. C-PODs are capable of recording echolocation clicks from all odontocetes with 548 

the exception of sperm whales (Physeter macrocephalus) for which the energy is below the sensitivity of the instruments (Dähne et 549 

al., 2013). This includes clicks from species that, while infrequent, are known to visit the eastern Scottish coast including killer whales 550 

(Orcinus orca), long-finned pilot whales (Globicephala melas), and Atlantic white sided dolphins (Lagenorhynchus acutus). Based on 551 

published click characteristics (Deecke et al., 2005; Eskesen et al., 2011), click trains from these species would likely be classified as 552 

broadband click encounters by this categorization system. Thus, it is possible that some of the “Other Cet” click trains detected by the 553 

C-PODs represented one or more of these species. However, previous visual surveys indicate that such species are infrequent visitors 554 

to the eastern Scottish coast and could therefore contribute only a trivial amount of noise to the encounter rates presented here. 555 

Regardless, the ambiguity in dolphin detections reiterates the need to inform acoustic-only methods with other sources of information 556 

about the study system. 557 

The interpretation of these results assumed that stable frequency banding, or the lack thereof, in echolocation clicks was diagnostic 558 

of the species-group producing them. This assumption is debated in the literature, with several authors providing evidence of species 559 

discrimination based on the spectral location of peaks and notches (Houser et al., 1999; Soldevilla et al., 2008; Calderan et al., 2013), 560 

while others have postulated that spectral banding cannot be diagnostic of species (Wahlberg et al., 2011). While an in-depth analysis 561 
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of this debate is outside of the scope of this study, careful consideration is prudent to understand the validity of the categorization 562 

analysis presented here.  Currently two hypotheses exist regarding how frequency banding might be produced. Wahlberg et al. (2011) 563 

and Rasmussen et al. (2004) measured on-axis clicks from free-ranging bottlenose and white sided dolphins, respectively. Both studies 564 

fitted a baffled piston model to the received clicks, and Wahlberg et al. (2011) suggested that the banding found in other species was 565 

attributed to the off-axis banding effects dictated by the piston aperture size. However, these studies primarily analyzed clicks from 566 

on-axis angles and may therefore have missed the filter effects caused by the cranial anatomy. If this is the case then it does not 567 

preclude the independent documentation of stable spectral peaks and notches in the spectra of clicks recorded off-axis from a number 568 

of species with similar cranial morphology (Soldevilla et al., 2008; Au et al., 2012b).  569 

The off-axis spectral characteristics of echolcoation clicks have been measured for bottlenose dolphins. Au et al. (2012b) 570 

measured the entire biosonar field around captive bottlenose dolphins and found that, off-axis, echolocation clicks degraded into 571 

discrete pulses most likely produced by the phonic lips and internal reflections from within the animal’s head (Au et al., 2012b). 572 

Multiple pulses, when processed with an FFT or DFT algorithm, result in “ripples” in the spectrum consistent with the peaks and 573 

notches described by Soldevilla et al. (2008). However, as with sperm whales, the inter-pulse-interval in bottlenose dolphin 574 

echolocation clicks is highly sensitive to the off-axis angle (Goold, 1996). Therefore, when energy is averaged across multiple clicks 575 

collected from a variety of angles relative to the animal, the peaks and notches in spectral energy from this species become less 576 

distinct. 577 
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Unfortunately, detailed studies of off-axis clicks from “frequency banded” species including Risso’s, white-beaked and white-578 

sided dolphins are lacking. However, it is possible that differences in cranial morphology between the species groups could account 579 

for differences in the stability of spectral peaks and notches. For example, assuming the multi-pulse model of echolocation click 580 

propagation, more uniform path lengths between the phonic lips and melon for frequency banded species would result in consistent 581 

inter-pulse-intervals. This would subsequently lead to less variation in the spectral location in peak and notch energy for off-axis 582 

clicks in these species. Additional studies are needed to determine whether or not this is the case.  583 

Assuming the presence of stable spectral peaks and notches is diagnostic of species group, on-axis clicks will necessarily confound 584 

our ability to discriminate between broadband and frequency banded click trains in both the SM2M recordings and the C-POD 585 

encounter categorization model (Au et al., 1974; Au et al., 1999; Rasmussen and Miller, 2002; Rasmussen et al., 2004; Wahlberg et 586 

al., 2011; Au et al., 2012a). Moreover, if a disproportionately large selection of on-axis click trains were included in the training data, 587 

this would add considerable noise to the final categorization task. We limited this outcome by restricting the selection of C-POD click 588 

trains used to build the GAM to periods during which more than 500 high SNR click trains could be identified in the adjacent SM2M 589 

recordings. This conservative selection criterion reduced the probability of creating a biased sample of clicks from any particular beam 590 

angle and thereby increased our confidence in the accuracy of the categorization task.  591 

Our categorization model included ICI as a predictor, yet it is known that odontocetes modify their inter-click-interval depending 592 

on their behavioral state (Janik, 2000; Johnson et al., 2006; Pirotta et al., 2014b). This has the potential to introduce two confounding 593 
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factors into the analysis presented here. First, there is question of whether ICI can be used to discriminate between different species 594 

(or groups) of dolphins. Additionally, there is the potential that the categorization task is describing behavior (e.g. foraging vs. travel) 595 

rather than species group. 596 

In addressing whether ICI can be used for species discrimination we note that the GAM model selected here used a tensor smooth 597 

across all three click train features recorded by the C-POD. Thus, ICI itself did not predict the click-train category. Instead, prediction 598 

was based on the relationship between median ICI, mean zero-crossing frequency and mean bandwidth. Accordingly, while ICI itself 599 

has not been widely used to discriminate between species,  Johnson et al. (2006) note that in Blainsville’s beaked whales (Mesoplodon 600 

densirostris) there is a species-specific relationship between ICI, peak frequency and bandwidth of the individual clicks. For this 601 

species, as the animal approaches a prey target decreasing ICI’s are linked with decreasing click durations and increasing click 602 

bandwidths and peak frequencies. Thus, while inter click interval, bandwidth or peak frequency alone would be inadequate to 603 

categorize echolocation clicks, the relationship between these variables may be sufficiently different in some species to allow for 604 

categorization and/or classification. 605 

Concerning whether our sample of echolocation clicks represented a biased distribution of clicking behaviors (e.g. primarily click 606 

trains associated with foraging or travelling), we note that the training data were obtained from multiple times and locations 607 

throughout the survey. Therefore, click trains associated with foraging, travelling and socializing activities should all be represented in 608 

the training data for both echolocation click types (Pirotta et al., 2014b). K-fold cross validation involved subsetting trains from 609 

multiple acoustic encounters. This methodology was necessary as very few acoustic encounters could be correlated with the adjacent 610 
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SM2M recordings (10 broadband and 17 frequency banded encounters; Table 1). This also meant we were forced to train and test our 611 

model on the same data -  with more verified acoustic encounters we could have better characterized in vs. out of sample model 612 

performance, and this should still be the aim for future studies.  613 

As with any acoustic classifier, ours is not immune to miscategorization. There are a number of ways in which future studies may 614 

account for this misclassification error.  First, the performance of this categorization system should be tailored to the research 615 

objectives by modifying encounter thresholds based on cost functions derived from study objectives. For example, in this study a 616 

single encounter threshold was set above and below which encounters were categorized as broadband or frequency banded. However, 617 

studies for which there is a high cost to false negative detections may wish to take a more conservative approach. In such cases, the 618 

likelihood categorization threshold (Te) could be either decreased or excluded altogether; opting instead to include all click trains with 619 

a GAM prediction score above a given threshold (Tp) in the final analysis. Alternatively, future studies may seek to incorporate 620 

misclassification error directly into the analysis. Bayesian occupancy models, in particular, offer sufficient flexibility to allow for the 621 

incorporation of correct and incorrect classification rates across all categories (Miller et al., 2011).  622 

Provided the above considerations are kept in mind, it would be worthwhile to investigate whether this categorization system 623 

might perform comparably to C-POD detections collected from other habitats. Similar dolphin species compositions have been 624 

observed in western Scotland (MacLeod et al., 2005), Ireland (Robbins et al., 2015), California (Soldevilla et al., 2008), and in the 625 

Mediterranean sea (Frantzis and Herzing, 2002). If the C-POD categorization system derived here performs comparably in other 626 

habitats, it suggests a wider application of these GAM/likelihood methods may be possible.  627 
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 628 

VI. CONCLUSIONS  629 

Our study indicates that it is possible to increase the taxonomic resolution of low-cost click loggers by using statistical methods to 630 

discriminate between acoustically similar species groups. By comparing continuous recordings to logged C-POD detections we were 631 

able to identify and discriminate between the broadband and frequency banded click trains produced by the two pairs of dolphin 632 

species most commonly encountered in Eastern Scottish coastal waters.  633 
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