1	Non-Blinded Title page
2	Title:
3	Asymmetry during maximal sprint performance in 11-16 year old boys
4	
5	Authors:
6	Robert W. Meyers ¹ , Jon L. Oliver ^{1,2} , Michael G. Hughes ¹ , Rhodri S. Lloyd ^{1,2} and
7	John B. Cronin ^{2,3}
8	
9	¹ Youth Physical Development Unit, Cardiff School of Sport, Cardiff Metropolitan
10	University, Cardiff, UK.
11	² Sports Performance Research Institute New Zealand (SPRINZ), AUT University,
12	Auckland, New Zealand
13	³ School of Exercise, Biomedical and Health Science, Edith Cowan University, Perth.
14	Australia.
15	
16	Corresponding Author:
17	Mr Robert W Meyers
18	Cardiff School of Sport, Cardiff Metropolitan University
19	Cyncoed Campus, Cyncoed Road
20	Cardiff, UK.
21	Tel: +44(0)2920416505
22	Email: <u>rwmeyers@cardiffmet.ac.uk</u>
23 24	
25	
26	

27 Abstract

28	Purpose: The aim of this study was to examine the influence of age and
29	maturation upon magnitude of asymmetry in the force, stiffness and the
30	spatiotemporal determinants of maximal sprint speed in a large cohort of boys.
31	Methods: Three-hundred and forty-four boys between the age of 11–16
32	years completed an anthropometric assessment and a 35 m sprint test, during which
33	sprint performance was recorded via a ground-level optical measurement system.
34	Maximal sprint velocity, as well as asymmetry in spatiotemporal variables, modeled
35	force and stiffness data were established for each participant. For analysis,
36	participants were grouped into chronological age, maturation and percentile groups.
37	Results: The range of mean asymmetry across age groups and variables
38	was 2.3–12.6%. The magnitude of asymmetry in all the sprint variables was not
39	significantly different across age and maturation groups ($p > .05$), except relative leg
40	stiffness ($p < .05$). No strong relationships between asymmetry in sprint variables and
41	maximal sprint velocity were evident ($r_s < .39$).
42	Conclusion: These results provide a novel benchmark for the expected
43	magnitude of asymmetry in a large cohort of uninjured boys during maximal sprint
44	performance. Asymmetry in sprint performance is largely unaffected by age or
45	maturation and no strong relationships exist between the magnitude of asymmetry and
46	maximal sprint velocity.
47	
48	
49	
50	Key words
51	Speed; Growth; Maturation; Stiffness; Force

52 Introduction

53	The concept of asymmetry during human locomotive activities has been
54	studied in the literature as a potential injury risk factor (7,51,55), a basis for
55	appropriate programming of injury prevention interventions (18), and a mechanism to
56	enhance coaching knowledge about performance (54). Previous studies in adult
57	populations have investigated asymmetry using isokinetic dynamometry (10,21),
58	force plates (1), multidirectional acyclical jumping tasks (18,26), cyclical rebound
59	jumping tasks (14) and submaximal running (3,7,55). Some studies have investigated
60	relationships between maximal sprint performance and asymmetry in jump
61	performance (50), asymmetry in lean mass (4) and asymmetry in muscle architecture
62	(29), yet the data pertaining to the actual asymmetry during maximal sprint
63	performance is very sparse (12,27). Specifically, only one study has examined
64	maximal sprint asymmetry in a youth population (49), but this involved sprinting on a
65	non-motorized treadmill as opposed to overground conditions.
65 66	non-motorized treadmill as opposed to overground conditions. An understanding of the expected magnitude of asymmetry in non-injured
66	An understanding of the expected magnitude of asymmetry in non-injured
66 67	An understanding of the expected magnitude of asymmetry in non-injured athletes would be useful to assist in the prescription of training and facilitates a better
66 67 68	An understanding of the expected magnitude of asymmetry in non-injured athletes would be useful to assist in the prescription of training and facilitates a better understanding of any diagnostic information collected; however the magnitudes of
66 67 68 69	An understanding of the expected magnitude of asymmetry in non-injured athletes would be useful to assist in the prescription of training and facilitates a better understanding of any diagnostic information collected; however the magnitudes of asymmetry may vary depending upon the mode of locomotion and the variables of
66 67 68 69 70	An understanding of the expected magnitude of asymmetry in non-injured athletes would be useful to assist in the prescription of training and facilitates a better understanding of any diagnostic information collected; however the magnitudes of asymmetry may vary depending upon the mode of locomotion and the variables of interest. It has also been suggested that asymmetry values exceeding $10 - 15\%$ may
66 67 68 69 70 71	An understanding of the expected magnitude of asymmetry in non-injured athletes would be useful to assist in the prescription of training and facilitates a better understanding of any diagnostic information collected; however the magnitudes of asymmetry may vary depending upon the mode of locomotion and the variables of interest. It has also been suggested that asymmetry values exceeding $10 - 15\%$ may predispose athletes to increased injury risk (17); however there is a large variability in
66 67 68 69 70 71 72	An understanding of the expected magnitude of asymmetry in non-injured athletes would be useful to assist in the prescription of training and facilitates a better understanding of any diagnostic information collected; however the magnitudes of asymmetry may vary depending upon the mode of locomotion and the variables of interest. It has also been suggested that asymmetry values exceeding 10 – 15% may predispose athletes to increased injury risk (17); however there is a large variability in the magnitude of asymmetry reported in non-injured populations. Asymmetry in
 66 67 68 69 70 71 72 73 	An understanding of the expected magnitude of asymmetry in non-injured athletes would be useful to assist in the prescription of training and facilitates a better understanding of any diagnostic information collected; however the magnitudes of asymmetry may vary depending upon the mode of locomotion and the variables of interest. It has also been suggested that asymmetry values exceeding $10 - 15\%$ may predispose athletes to increased injury risk (17); however there is a large variability in the magnitude of asymmetry reported in non-injured populations. Asymmetry in vertical forces and spatiotemporal characteristics during sprinting in injury-free adults

77 important to note that the maximal sprint velocities reported from studies on non-78 motorized treadmills may be ~80% of those achieved during overground sprinting 79 (24). Specifically, non-motorized treadmills studies in male youth (46) report 80 velocities that are approximately 50% slower than data recently reported during 81 overground studies in similar populations (33). Such a decrement in performance is 82 likely to result from the influence of treadmill inertia, and has been suggested to result 83 in altered sprint kinetics and kinematics in youth (48). Furthermore, a variety of 84 calculations for asymmetry have been utilized in the literature, including ratios of 85 asymmetry between left and right limbs (49), and asymmetry angles (13). Whilst the 86 asymmetry angle has been suggested to not suffer from artificial inflation (59), the use 87 of left and right comparisons in both calculations may be questioned for group 88 comparisons when considering the independent behaviors an athletes "propulsive" 89 and "stick" leg during running performance (11). It is therefore clear that asymmetry 90 values vary considerably dependent on the population studied, the mode of 91 assessment during sprint task, the variables of interest and the method of calculation. 92 Until a broader understanding of the expected magnitude of asymmetry in non-injured 93 youth populations is established for sprint performance during overground running, 94 the application of an arbitrary threshold for injury risk in youth remains questionable. 95 Developing an understanding of asymmetry in youth populations is of 96 particular interest due to the role of growth and maturation in changes in athletic 97 performance (28,56) and injury risk (5,44). Sprint speed is known to develop in a non-98 linear fashion throughout childhood and adolescence (28,56), with fluctuations in 99 performance (33,43) and injury risk (5,44) reported to occur around the time of peak height velocity (PHV); however little is known about the changes in asymmetry in 100 101 relation to growth and maturation. It has been suggested that the rapid growth

4

102 experienced around the period of PHV may result in temporary disruption in sprint 103 performance termed "adolescence awkwardness" (43). Furthermore, during periods of 104 growth it has been suggested that loading from daily movement tasks may produce 105 bilateral asymmetry in skeletal dimensions (23). It could therefore be suggested that 106 growth and maturation may have impact upon asymmetry in sprint performance 107 resultant from asymmetry bone growth and disrupted motor coordination. The few 108 studies examining asymmetry in youth populations have reported that the magnitude 109 of asymmetry during skilled soccer performance is similar between the ages of 6 and 110 10 (53) and that asymmetry during non-motorized sprint performance is constant 111 across maturation groups that span the period of PHV (49). These data may suggest 112 that growth and maturation has a limited impact on the level of asymmetry in sprint 113 performance despite clear changes in performance capacity and growth over the same 114 period; however no large cohort studies have investigated this concept in youth during 115 overground sprinting.

116 The determinants of sprint performance have been well researched within 117 adult populations (9,20,39,57); however data to support the relationships between the 118 magnitude of asymmetry and sprint performance are somewhat limited, and no studies 119 have investigated this concept in youth populations. In youth populations, it has been 120 suggested that power, horizontal force, step length and contact time are significant 121 predictors of sprint performance (46), with some evidence to support a maturational 122 effect in the ability to absorb and produce power (47). Furthermore, maturation may 123 not only predict sprint performance in youth (46), but also may influence the reliance 124 of boys upon step frequency or step length to elicit maximal sprint performance (35). It has also been suggested that both vertical and leg stiffness (16,47,52) may 125 126 contribute to sprint performance in boys. Whilst all of the aforementioned sprint

127 characteristics may be deemed important for sprint performance in youth, the

evidence to describe the expected magnitude of asymmetry of these variables in non-injured youth is somewhat limited.

From a sprint performance perspective, some strong relationships (*r* = .70) between asymmetry in ground reaction force during single-leg jumping and 10 m sprint time have been shown in adults (50), however no studies have attempted to examine this relationship in youth, nor during maximal velocity sprinting. A clearer understanding of the relationships between asymmetry and performance may help to assess the importance of addressing asymmetry for the enhancement of sprint performance.

137 Finally, the substantial changes in strength, power (32) and rate of change 138 in anthropometric variables (28) that boys experience around the time of PHV, may 139 cause temporary disruption in motor control (43) that in turn may lead to fluctuations 140 in asymmetry of sprint performance. Knowledge of the changes in the magnitude of 141 these asymmetries with age and maturation could be important for all professionals 142 within a multidisciplinary team working with youth athletes from both diagnostic and 143 prognostic perspectives. Therefore, given the limited research into the nature of 144 asymmetry during maximal sprint performance in youth, the aim of this study was to 145 examine the influence of age and maturation upon the magnitude of asymmetry in the 146 force, stiffness and the spatiotemporal determinants of maximal sprint speed in a large 147 cohort of boys.

148

149 Methods and Materials

150 Participants

151	Three-hundred and forty-four school-aged boys (mean $\pm s$: age 13.2 \pm 1.4
152	yrs, height 1.56 \pm 0.12 m, mass 55.2 \pm 15.5 kg) agreed to participate in the study. Age
153	from PHV was -0.93 \pm 1.34 years, as predicted from anthropometric measures (36).
154	Participants reported no injuries prior to, or during the testing period, and were
155	engaged in twice weekly, 60-minute physical education classes. No data related to
156	habitual or supplementary physical activity outside of this curriculum time were
157	collected. The project received ethical approval by the University's Research Ethics
158	committee, and both participant assent and parental consent were obtained prior to
159	testing.

160

161 Procedures

162 All data collection sessions were scheduled during physical education 163 classes with testing taking place over a two-week period and within the same indoor 164 facility. Participants were required to complete maximal sprint testing and an 165 anthropometric assessment during a single testing session. Participants were 166 instructed to wear their standard physical education clothing and footwear, asked to 167 refrain from physical activity 24 hours before testing and to refrain from eating one hour prior to testing. Participants were provided with the opportunity to familiarise 168 169 themselves with the test equipment and protocols prior to the first testing session. 170 Anthropometric assessment. Following previously published guidelines on 171 the assessment of stature (8), standing height and sitting height were measured to the 172 nearest cm, while body mass was measured to the nearest 0.1 kg. These data were 173 used in order to establish the maturity status of each participant using previously 174 reported regression equations to calculate a maturity offset (years from PHV) (36).

175 This approach was taken owing to the non-invasive and practical nature of the 176 assessment and its acceptable levels of error (± 0.59 years) (36). 8

177 Sprint test. The sprint test required participants to perform two trials of a 178 maximal 35 m sprint while data pertaining to the spatiotemporal characteristics of the 179 sprint performance were collected via a floor-level optical measurement system 180 (Optojump, Microgate, Italy) within the 15-30 m section of the test track. In each 181 sprint trial participants were instructed to start 0.5 m behind the start line in a split 182 stance, before being given the commands "Ready" and "Go". Verbal encouragement 183 was provided throughout each trial, with a minimum of four minutes rest provided 184 between trials to ensure sufficient recovery. This approach has been effectively 185 utilised in large cohorts of boys (33), and has been reported to have acceptable levels 186 of reliability (ICC: .79-.86; CV: 3.8-5.0%) (34). 187 Data reflecting the maximal velocity and the spatiotemporal characteristics (step length, step frequency, ground contact time and flight time) of 188 189 each participants' sprint performance were calculated instantaneously for each step 190 taken within the 15-30 m data collection zone via a Windows XP laptop running 191 specialist software (Optojump, Microgate, Italy). All data were collected at a 192 sampling rate of 1000Hz and subsequently exported to spreadsheet software (Excel 193 for Mac 2011, Microsoft, USA) for further data processing and analysis. Subsequently,

194 vertical stiffness (k_{vert}), leg stiffness (k_{leg}), maximal force (F_{max}), displacement of

195 centre of mass (Δy_c) and leg spring displacement (ΔL^{-1}) during ground contact were

196 calculated from the anthropometric and spatiotemporal characteristics (38). These

197 variables were defined as:

198	٠	Vertical stiffness (k_{vert}): The ratio ($kN \cdot m^{-1}$) of the modeled peak ground	
199		reaction force (F_{max}) over the modeled maximal vertical displacement of the	;
200		centre of mass (Δy_c).	
201			
202		$k_{vert} = (F_{max} \cdot \varDelta y_c^{-1})/m$	[1]
203		where:	
204		$F_{max} = m \cdot g \cdot \pi/2 \cdot ((CT/FT)+1)$	
205		$\Delta y_c = (Fmax/m) \cdot (CT^2/\pi^2) + g \cdot (CT^2/8)$	
206		m being participants body mass (kg), g being gravitational force, CT be	ing
207		the ground contact time and FT being the flight time, and:	
208			
209	•	Leg stiffness (k_{leg}): The ratio ($kN \cdot m^{-1}$) of the modeled peak ground reaction	l
210		force (F_{max}) over the modeled leg spring displacement (ΔL^{-1}) during ground	
211		contact	
212		$k_{leg} = F_{max} \cdot \Delta L^{-1}$	[2]
213		where:	
214		$\Delta L^{-1} = L - \sqrt{L^2 - ((Speed \cdot CT)/2)^2} + \Delta y_c$	
215		L being leg length (m) and Speed being mean forward running velocity (m.s.	s ⁻¹)
216			
217		Finally, relative vertical and leg stiffness measure were calculated by	
218	norma	lising data to leg length and body mass (31). This modelling approach was	
219	taken	owing to its non-invasive nature as well as the low level of mean error bias (k	Kvert
220	= 2.30	9%; $k_{leg} = 2.54\%$) and significant regressions ($k_{vert} = p < .01, R^2 = .98; k_{leg} = p$	
221	<.01,	$R^2 = .89$) reported with force-plate measures during overground running (37)	•
222			

223	From the two trials conducted, the trial where the highest maximal
224	velocity was reached over two consecutive steps was taken forward for analysis (33).
225	Subsequently, the values corresponding to the spatiotemporal, force and stiffness
226	characteristics for each leg were averaged across all data points in the 15-30 m data
227	collection zone, and a percentage asymmetry was calculated. Percentage asymmetries
228	were expressed as the magnitude of the difference between the minimum and
229	maximum values across the averaged spatiotemporal, force and stiffness data
230	collected for each leg, and subsequently expressed as a percentage as defined below:
231	
232	% Asymmetry = (Maximum value – minimum value/ maximum value
233	*100) [3]
234	
235	This approach has been taken to account for the role of a "propulsive" and
236	"stick" leg, whereby greater positive work may be completed by the "propulsive" leg,
237	whilst greater stiffness may be evident in the "stick" leg (11). This is especially
238	important to ensure that inter-participant variations in limb dominance were not
239	masked during group-based asymmetry comparisons (2).
240	
241	Statistical Analyses
242	Means and standard deviations were calculated for all variables described.
243	These data were analysed in both chronological and maturational groups. In line with
244	previous research (33), chronological groups were defined by age on the date of the
245	test (U12 – U16), whilst maturational groups were partitioned according to their
246	maturity offset, whereby: Group 1 (G1) = more than 2.5 years before PHV; Group 2

(G2) = -2.49 to -1.5 years from PHV; Group 3 (G3) = -1.49 to -0.5 years from PHV;

248	Group 4 (G4) = -0.49 to 0.5 years from PHV; Group 5 (G5) = 0.51 to 1.5 years from
249	PHV. In order to establish the magnitude of asymmetry across the sample,
250	asymmetry values that represented the 10 th , 25 th , 50 th , 75 th and 90 th percentiles across
251	the whole sample were also calculated through rank ordering. Participants were also
252	divided into 1 ^{st-} 10 th , 11 th -25 th , 26 th -50 th , 51 st -75 th , 76 th -90 th and 91 st -100 th percentile
253	groups for each spatiotemporal, force and stiffness variable. This approach was
254	adopted in order to examine differences in maximal sprint velocity across percentile
255	groups, allowing the influence of the magnitude of asymmetry in each variable upon
256	the maximal sprint velocity to be examined.
257	The assumption of normality of all data was assessed via the
258	Kolmogorov-Smirnov test, and parametric or non-parametric analyses were deployed
259	where appropriate. Comparisons between the magnitude of asymmetry across
260	chronological and maturational groups were made via a series of Kruskal-Wallis tests,
261	with post-hoc analysis of pairwise comparisons achieved through multiple Mann-
262	Whitney U tests with Dunn-Sidak corrections applied. Percentile groups for
263	asymmetry of each spatiotemporal, force and stiffness variable were examined using a
264	one-way ANOVA to determine if groups differed for maximal sprint velocity.
265	Homogeneity of variance was assessed via Levene's statistic and where violated,
266	Welch's adjustment was used to correct the F-ratio. The location of significant
267	differences were identified by either using Tukey's HSD or Games- Howell post hoc
268	analysis, where equal variances were and were not assumed, respectively. Spearman's
269	rho correlations were used in order to identify relationships between the magnitude of
270	asymmetry and maximal sprint velocity within the whole sample, as well as
271	chronological and maturation sub-groups. Statistical significance was accepted at p
272	< .05, while correlation coefficients greater than 0.7 were classified as "strong", 0.45-

0.7 were "moderate", 0.2-0.45 "weak", and less than 0.2 representing "no relationship"
(40). All statistical analyses were conducted on IBM SPSS Statistics for Mac v22.

276 Results

277 The descriptive characteristics of the participants in each chronological 278 and maturation group are shown in Tables 1 and 2, respectively. The results in Tables 279 3 and 4 show the mean magnitude of asymmetry within each chronological and 280 maturation group, respectively. No significant differences were found in the 281 magnitude of asymmetry for speed, step length, step frequency, ground contact time, 282 flight time, F_{max} , relative k_{vert} across all chronological groups. The magnitude of 283 asymmetry in relative k_{leg} was significantly higher in the U13 group compared to the U12 and U14 groups (χ^2 (4) = 12.36, p < .05 and χ^2 (4) = 19.09, p < .05, respectively), 284 285 but no significant differences existed between all other groups. The maturation group 286 analysis revealed no significant differences in the magnitude of asymmetry between 287 all five maturation groups for all variables assessed. Finally, no significant differences 288 were observed between the maximal sprint velocity achieved by participants within 289 the asymmetry percentile groups for all spatiotemporal, force and stiffness variables, 290 with the exception of those in the 0-10th percentile group for flight time, who were significantly faster than those in the $26^{\text{th}}-50^{\text{th}}$ and $51^{\text{st}}-75^{\text{th}}$ percentile groups (F_(5, 338) = 291 292 1.482, *p* < .05). 293 294 ****Tables 1, 2, 3 and 4 about here**** 295 296 The correlation analyses of the whole sample revealed that no significant

297 relationships were evident between the magnitude of asymmetry in any sprint test

298	variable and maximal sprint velocity. When relationships were examined in individual
299	chronological age groups, no significant relationships were found between sprint
300	velocity and magnitude of asymmetry. Maturation group analysis of the relationships
301	between sprint velocity and the magnitude of asymmetry in the spatiotemporal, force
302	and stiffness variables also revealed no significant relationships between the majority
303	of variables, with the exception of weak correlations observed for: maximal sprint
304	velocity and step frequency asymmetry (r_s (37) = .39, $p < .05$) in G1; maximal sprint
305	velocity and flight time asymmetry (r_s (80) =27, $p < .05$) as well as relative k_{vert}
306	asymmetry (r_s (80) =24, $p < .05$) in G3; and maximal sprint velocity and step length
307	asymmetry in G4 and G5 (r_s (60) =28, $p < .05$ and r_s (63) =28, $p < .05$,
308	respectively).
309	The percentiles for the magnitudes of asymmetry for each variable across
310	the whole sample are provided in table 5.
311	
312	****Table 5 about here****
313	
314	Discussion
315	The aim of this study was to establish the influence of age and maturation
316	upon the magnitude of asymmetry that exists during maximal sprint performance in
317	boys. It would appear that the magnitude of asymmetry in most spatiotemporal, force
318	and stiffness measures were similar across groups of boys with contrasting
319	chronological and maturational ages. No strong relationships between the magnitude
320	of asymmetry and maximal sprint velocity were evident and no differences in sprint
321	velocity were found across asymmetry percentile groups for the majority of variables

323 Comparison of the range of mean asymmetry across chronological and 324 maturational age groups and all variables (2.3-12.6%) is problematic due to the 325 differing approaches to data acquisition and calculations of asymmetry employed in 326 the current youth literature. Maximal force data from the present study (2.3-3.7%)327 was lower than that reported for horizontal and vertical force in studies from a similar 328 population (14.7 - 15.4%), although calculations of asymmetry in this study did not 329 account for inter-participant differences in limb dominance, and a non-motorized 330 treadmill was used for data acquisition (49). This method results in reduced peak 331 running velocities compared to the overground conditions that were utilised in the 332 present study (33,48). Furthermore, no spatiotemporal or kinematic variables were 333 reported in their study and although further data pertaining to asymmetry in kinetic, 334 kinematic and spatiotemporal sprint variables are available (3,13), all other existing 335 studies have utilized adult populations. The majority of variables reported fell within 336 or below the 10-15% threshold that may be considered normal and acceptable (18,19,30,41), with the exception of flight time and relative k_{vert} at the 90th percentile 337 338 and relative k_{leg} at the 75th and 90th percentiles; however any direct comparison of 339 data is again made difficult due to differing methodological approaches that have been 340 utilised and populations studied.

14

341Quantification of the magnitude of asymmetry has been suggested to be of342value for the monitoring of recovery following ACL reconstruction in youth343populations (22), and also may be predictive of reoccurrence of ACL injury (42). It344has further been suggested that asymmetry exceeding 10-15% (18,19,30,41) may be a345threshold that represents heightened injury risk; however, it is clear from previous346research (3,13,49) and the data presented in this study that the magnitude of347asymmetry varies considerably depending upon a number of methodological factors.

348 The data presented within this study serves as a novel benchmark for the magnitude of 349 asymmetry in male youth, while the presentation of percentile data facilitates an 350 improved understanding of the normal magnitudes of asymmetry in youth 351 populations. Given the high proportion of pelvic and lower limb injuries that youth 352 athletes sustain during sprinting (45), the ability to measure asymmetry in a 353 functionally relevant sprint task is appealing, with technological advances making 354 such measures more accessible. It may be that sprint asymmetry provides a more 355 direct predictor of injury risk than less functionally specific tasks of asymmetry, such 356 as jumping, but further research is needed to confirm this proposition. 357 The results across the chronological age groups suggested that the 358 magnitude of asymmetry is relatively similar across different age groups, with the 359 exception of relative k_{leg} that showed a temporary increase in the magnitude of 360 asymmetry in the U13 group. The reason for relative k_{leg} showing fluctuations in 361 asymmetry, despite no significant change in other variables, remains unclear; however 362 other studies in youth populations have reported decrements in leg stiffness between 363 the ages of 10-12 years during bilateral hopping tasks (25) and in the year before PHV 364 during sprinting (43), with the phenomenon of 'adolescent awkwardness' provided as 365 a rationale for these performance decrements. Such an explanation would seem a 366 plausible rationale for changes in asymmetry based upon observed decrements in 367 motor control and performance that may be derived from differential timings of the 368 growth spurt in the legs and trunk (28,43); however as this decrement in asymmetry was not observed in maturation groups, the precise mechanisms remain unclear. 369 370 The results also indicated that the magnitude of asymmetry was similar 371 between maturational groups, indicating that maturation may not influence the

15

372 magnitude of asymmetry in the variables assessed in this study. It has been suggested

373 that maturation influences sprint speed as well as the associated spatiotemporal (33), 374 kinematic and kinetic (46) determinants in youth. It has been proposed that this 375 influence may result from greater movement variability and physiological differences 376 associated with maturation (28,56). The results from this study may also suggest that 377 the magnitude of asymmetry in sprint performance may be largely pre-determined by 378 the age of 11 years old, and remain stable thereafter. Such a theory may align with 379 the evidence that gait variability in youth may be equal to adult values by 11-14 years 380 of age (15); however these data include both male and female participants and further 381 research into asymmetry during maximal sprinting in younger male participants (< 11 382 years old) is warranted to substantiate these propositions.

16

383 The relationships between asymmetry and performance have often been 384 debated, with the suggestion that some level of asymmetry may be considered a 385 normal consequence of sports performance (58) and movement variability may 386 actually be encouraged for improved sprint performance (6). Conversely, some 387 evidence suggests that greater asymmetry during jumping results in slower sprint 388 times (50). The results of this present study suggested that there were no strong 389 relationships between the maximal sprint velocity achieved and the magnitude of 390 asymmetry in almost all the variables assessed. This would suggest that the magnitude 391 of asymmetry might not be an important aspect of higher levels of sprint performance. 392 Given that the relationships between variables that reached significance 393 were inconsistent across all maturation groups, these data might imply that the nature 394 of the relationship between asymmetry and performance may be differential 395 depending on the stage of maturation, however the strength of the relationships 396 reported are weak, and further longitudinal training studies would be required to 397 assess the relevance of these observations.

398 The results presented should be viewed in light of the limitations of the 399 study. Firstly, although a large cohort of boys was recruited, the cross-sectional 400 nature of the analysis may result in different interpretations of the impact of growth 401 and maturation upon performance compared to longitudinal studies (56). Secondly, 402 although the spatiotemporal data in this study were measured directly via the optical 403 measurement system, force and stiffness data were modeled rather than directly 404 measured. In this instance, force plate instrumentation was not viable for testing a 405 large cohort in a school setting and all modeling equations have been previous 406 validated as an acceptable practical alternative (37).

407 In summary, the results of this study provide a novel benchmark for the 408 expected magnitude of asymmetry in a large cohort of uninjured boys during maximal 409 sprint performance. Such data are important for all members of multi-disciplinary 410 teams working with youth populations as they provide guidance on the expected 411 levels of asymmetry during overground maximal sprint performance over a range of 412 important spatiotemporal, force and stiffness variables. Furthermore, asymmetry in 413 the majority of variables associated with sprint performance appear to be largely 414 unaffected by age or maturation. Therefore, practitioners monitoring asymmetry 415 during sprinting with youth populations should not expect large deviations in the 416 magnitude of asymmetry with advancing age and maturation. The impact of acute or 417 chronic changes in the magnitude of asymmetry during sprinting is currently 418 unknown; however based upon the data presented in this study, changes in asymmetry 419 would not be expected as part of natural growth and development in boys aged 11-16 420 years old. On this basis future research should aim to evaluate the longitudinal trends 421 in the magnitude of asymmetry during sprint performance in youth, and seek to 422 establish thresholds for specific variables and data collection techniques where the

17

423 magnitude of asymmetry poses a heightened risk of injury occurring. Finally, no
424 strong relationships exist between the magnitude of asymmetry and maximal sprint
425 velocity in youth and therefore asymmetry may be considered a normal part of
426 maximal sprinting that appears to not exert influence upon maximal sprint velocity in
427 boys.

References

430	1.	Atkins S, Hesketh C, Sinclair J. The presence of bilateral imbalance of the
431		lower limbs in elite youth soccer players of different ages. J Strength Cond Res
432		[Internet]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23698076
433	2.	Auerbach BM, Ruff CB. Limb bone bilateral asymmetry: Variability and
434		commonality among modern humans. J Hum Evol. 2006;50(2):203-18.
435	3.	Bachman G, Heise GD, Bressel E. The symmetry of the human leg spring:
436		spring coefficients between right and left legs during running. In: Proceedings
437		of the 23rd Annual Meeting of the American Society of Biomechanics,
438		Pittsburg. University of Pittsburg; 1999. p. 2–3.
439	4.	Bell D, Sanfilippo J, Binkley N, Heiderscheit B. Lean mass asymmetry
440		influences force and power asymmetry during jumping in collegiate athletes. J
441		Strength Cond Researc. 2014;28(4):884–91.
442	5.	Bowerman E, Whatman C, Harris N, Bradshaw E, Karin J. Are maturation,
443		growth and lower extremity alignment associated with overuse injury in elite
444		adolescent ballet dancers? Phys Ther Sport. 2014;15(4):234-41.
445	6.	Bradshaw EJ, Maulder PS, Keogh JWL. Biological movement variability
446		during the sprint start: performance enhancement or hindrance? Sports
447		Biomech. 2007;6(3):246–60.

448	7.	Brughelli M, Cronin J, Mendiguchia J, Kinsella D, Nosaka K. Contralateral leg
449		deficits in kinetic and kinematic variables during running in Australian rules
450		football players with previous hamstring injuries. J Strength Cond Res.
451		2010;24(9):2539–44.
452	8.	Centers for Disease Control and Prevention. National Health and Nutirtion
453		Examination Survey III: Body Measurements (Anthropometry) [Internet]. 1988
454		[cited 2010 Jun 20]. Available from:
455		http://www.cdc.gov/nchs/data/nhanes/nhanes3/cdrom/nchs/manuals/anthro.pdf
456	9.	Clark KP, Weyand PG. Are running speeds maximized with simple-spring
457		stance mechanics? J Appl Physiol. 2014;117:604–15.
458	10.	Croisier J-L, Forthomme B, Namurois M-H, Vanderthommen M, Crielaard J-
459		M. Hamstring muscle strain recurrence and strength performance disorders.
460		Am J Sports Med. 2002;30(2):199–203.
461	11.	Dalleau G, Belli A, Bourdin M, Lacour J-R. The spring-mass model and the
462		energy cost of treadmill running. Eur J Appl Physiol Occup Physiol.
463		1998;77(3):257–63.
464	12.	Exell TA, Gittoes MJR, Irwin G, Kerwin DG. Gait asymmetry: composite
465		scores for mechanical analyses of sprint running. J Biomech. Elsevier;
466		2012;45(6):1108–11.
467	13.	Exell TA, Irwin G, Gittoes MJR, Kerwin DG. Implications of intra-limb
468		variability on asymmetry analyses. J Sports Sci. 2012;30(4):403-9.
469	14.	Flanagan EP, Harrison AJ. Muscle dynamics differences between legs in
470		healthy adults. J Strength Cond Res. 2007;21(1):67-72.
471	15.	Hausdorff JM, Zemany L, Peng C, Goldberger AL. Maturation of gait
472		dynamics: stride-to-stride variability and its temporal organization in children.

- J Appl Physiol. 1999;86(3):1040–7. 473
- 474 16. Heise GD, Bachman G. Leg spring model properties of children. In:
- 475 Proceedings of the 24th Annual Meeting of the American Society of
- 476 Biomechanics, Illinois. University of Illinois at Chicago; 2000.
- 477 17. Hewit J, Cronin J, Hume P. Multidirectional leg asymmetry assessment in sport. 478 Strength Cond J. 2012;34(1):82–6.
- 479 18. Hewit JK, Cronin JB, Hume PA. Asymmetry in multi-directional jumping tasks. 480 Phys Ther Sport. 2012;13(4):238–42.
- 481 19. Hoffman JR, Ratamess NA, Klatt M, Faigenbaum AD, Kang J. Do bilateral

482 power deficits influence direction-specific movement patterns? Res Sports Med.

- 483 2007;15(2):125-32.
- 484 20. Hunter JP, Marshall RN, McNair PJ. Interaction of step length and step rate 485 during sprint running. Med Sci Sports Exerc. 2004 Feb;36(2):261-71.
- 486 21. Impellizzeri FM, Rampinini E, Maffiuletti N, Marcora SM. A vertical jump
- 487 force test for assessing bilateral strength asymmetry in athletes. Med Sci Sport 488 Exerc. 2007;39(11):2044-50.
- 489 22. Ithurburn MP, Paterno M V., Ford KR, Hewett TE, Schmitt LC. Young athletes
- 490 with quadriceps femoris strength asymmetry at return to sport after anterior
- 491 cruciate ligament reconstruction demonstrate asymmetric single-leg drop-

492 landing mechanics. Am J Sports Med. 2015;43(11):2727–37.

- 493 23. Kanchan T, Mohan Kumar TS, Pradeep Kumar G, Yoganarasimha K. Skeletal 494 asymmetry. J Forensic Leg Med. 2008;15(3):177-9.
- 495 24. Lakomy H. The use of a non-motorised treadmill for analysing sprint 496 performance. Ergonomics. 1987 Nov;30(4):627-37.
- 497 25. Lloyd RS, Oliver JL, Hughes MG, Williams CA. The influence of

498		chronological age on periods of accelerated adaptation of stretch-shortening
499		cycle performance in pre and postpubescent boys. J Strength Cond Res.
500		2011;25(7):1889–97.
501	26.	Lockie R, Callaghan S, Berry S, Cooke E, Jordan C, Luczo T, et al.
502		Relationship between unilateral jumping ability and asymmetry on
503		multidirectional speed in team-sport athletes. J Strength Cond Res.
504		2014;28(12):3557–66.
505	27.	Maćkała K, Michalski R, Ćoh M. Asymmetry of step length in relationship to
506		leg strength in 200 meters sprint of different performance levels. J Hum Kinet.
507		2010;25:101-8.
508	28.	Malina RM, Bouchard C, Bar-Or O. Growth, Maturation, and Physical Activity.
509		2nd Ed. Champaign, Illinois: Human Kinetics; 2004. 61-62,67-70,218-222 p.
510	29.	Mangine GT, Fukuda DH, Lamonica MB, Gonzalez AM, Wells AJ, Townsend
511		JR, et al. Influence of Gender and Muscle Architecture Asymmetry on Jump
512		and Sprint Performance. J Sport Sci Med. 2014;13:904–11.
513	30.	McElveen MT, Riemann BL, Davies GJ. Bilateral comparison of propulsion
514		mechanics during single-leg vertical jumping. J Strength Cond Res.
515		2010;24(2):375-81.
516	31.	McMahon TA, Cheng GC. The mechanics of running: How does stiffness
517		couple with speed? J Biomech. 1990;23(SUPPL. 1):65-78.
518	32.	Mero A. Power and speed training during childhood. In: Van Praagh E, editor.
519		Pediatric Anaerobic Performance. Champaign, Illinois: Human Kinetics; 1998.
520		p. 241–67.
521	33.	Meyers RW, Oliver J, Hughes M, Cronin J, Lloyd RS. Maximal sprint speed in
522		boys of increasing maturity. Pediatr Exerc Sci. 2015;27:85–94.

523	34.	Meyers RW, Oliver JL, Hughes MG, Lloyd RS, Cronin JB. Reliability of the
524		spatio-temporal determinants of maximal sprint speed in adolescent boys over
525		single and multiple steps. Pediatr Exerc Sci. 2015;27:419–26.
526	35.	Meyers R, Oliver J, Hughes M, Lloyd R, Cronin J. Influence of age, maturity,
527		and body size on the spatiotemporal determinants of maximal sprint speed in
528		boys. J Strength Cond Res [Internet]. 2016; Available from:
529		http://journals.lww.com/nsca-
530		jscr/Abstract/publishahead/The_influence_of_age,_maturity_and_body_size_o
531		n.96630.aspx
532	36.	Mirwald RL, Baxter-Jones AD., Bailey DA, Beunen GP. An assessment of
533		maturity from anthropometric measurements. Med Sci Sport Exerc.
534		2002;34(4):689–94.
535	37.	Morin JB, Dalleau G, Kyröläinen H, Jeannin T, Belli A. A simple method for
536		measuring stiffness during running. J Appl Biomech. 2005;21(2):167-80.
537	38.	Morin JB, Jeannin T, Chevallier B, Belli A. Spring-mass model characteristics
538		during sprint running: Correlation with performance and fatigue-induced
539		changes. Int J Sports Med. 2006;27(2):158-65.
540	39.	Morin J-B, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour J-R.
541		Mechanical determinants of 100-m sprint running performance. Eur J Appl
542		Physiol. 2012 Dec;112(11):3921–30.
543	40.	O'Donoghue PG. Statistics for Sport and Exercise Studies: an introduction.
544		London: Routledge; 2012.
545	41.	Paterno M V, Ford KR, Myer GD, Heyl R, Hewett TE. Limb asymmetries in
546		landing and jumping 2 years following anterior cruciate ligament
547		reconstruction. Clin J Sport Med. 2007;17(4):258-62.

548 42. Paterno M V., Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, et al. 549 Biomechanical measures during landing and postural stability predict second 550 anterior cruciate ligament injury after anterior cruciate ligament reconstruction 551 and return to sport. Am J Sports Med. 2010;38(10):1968-78. 552 43. Philippaerts RM, Vaeyens R, Janssens M, Van Renterghem B, Matthys D, 553 Craen R, et al. The relationship between peak height velocity and physical 554 performance in youth soccer players. J Sports Sci. 2006;24(3):221–30. 555 Read P, Oliver JL, Croix M. Injury Risk Factors in Male Youth Soccer Players. 44. 556 Strength Cond J. 2015;37(5):1–7. 557 45. Reid JP, Nelson NG, Roberts KJ, McKenzie LB. Track-related injuries in 558 children and adolescents treated in US emergency departments from 1991 559 through 2008. Phys Sport. 2012;40(2):56-63. 560 46. Rumpf MC, Cronin JB, Oliver JL, Hughes MG. Kinematics and kinetics of 561 maximum running speed in youth across maturity. Pediatr Exerc Sci. 562 2015;27(5):277-84. 563 47. Rumpf M, Cronin J, Oliver J, Hughes M. Vertical and leg stiffness and stretch-564 shortening cycle changes across maturation during maximal sprint running. 565 Hum Mov Sci. 2013;32(4):668-76. 566 48. Rumpf M, Cronin J, Oliver J, Hughes M. Assessing youth sprint ability — 567 methodological issues, reliability and performance data. Pediatr Exerc Sci. 568 2011;23(8):442-67. 569 49. Rumpf MC, Cronin JB, Mohamad IN, Mohamad S, Oliver JL, Hughes MG. 570 Kinetic asymmetries during running in male youth. Phys Ther Sport. 571 2014;15(1):53-7.

23

572 50. Sannicandro I, Piccinno A, Rosa RA, De Pascalis S. Correlation between

573 functional asymmetry of professional soccer players and sprint. Br J Sports 574 Med. 2011;45:328-9. 575 51. Schache AG, Wrigley T V., Baker R, Pandy MG. Biomechanical response to 576 hamstring muscle strain injury. Gait Posture. 2009;29(2):332-8. 577 52. Schepens B, Willems P, Cavagna G. The mechanics of running in children. J 578 Physiol. 1998;509(3):927-40. 579 53. Teixeira MCT, Teixeira LA. Leg preference and interlateral performance 580 asymmetry in soccer player children. Dev Psychobiol. 2008;50(8):799-806. 581 54. Thompson A, Bezodis IN, Jones RL. An in-depth assessment of expert sprint 582 coaches' technical knowledge. J Sports Sci. 2009;27(8):855-61. 583 55. Vagenas G, Hoshizaki B. A multivariable analysis of lower-extremity 584 kinematic asymmetry in running. Int J Sport Biomech. 1992;8:11-29. 585 56. Viru A, Loko J, Harro M, Volver A, Laaneots L, Viru M. Critical periods in the 586 development of performance capacity during childhood and adolescence. Eur J 587 Phys Educ. 1999;4(1):75-119. 588 Weyand PG, Sternlight DB, Bellizzi MJ, Wright S. Faster top running speeds 57. 589 are achieved with greater ground forces not more rapid leg movements. J Appl 590 Physiol. 2000;89(5):1991-9. 591 58. Wilk KE, Meister K, Andrews JR. Current concepts in the rehabilitation of the 592 overhead throwing athlete. Am J Sports Med. 2002;30(1):136-51. 593 59. Zifchock RA, Davis I, Higginson J, Royer T. The symmetry angle: A novel, 594 robust method of quantifying asymmetry. Gait Posture. 2008;27(4):622-7. 595 596 597

	U12	U13	U14	U15	U16			
n	85	77	70	70	42			
Age (years)	$11.5 \pm 0.3*$	$12.5\pm0.3^*$	$13.5 \pm 0.3*$	$14.5 \pm 0.3*$	$15.5 \pm 0.3*$			
Height (m)	$1.46\pm0.07*$	$1.52\pm0.08*$	$1.58\pm0.08*$	$1.65 \pm 0.08*$	$1.71\pm0.10*$			
Mass (kg)	$41.2 \pm 9.2*$	$47.3 \pm 11.5^{\circ}$	$53.1 \pm 14.0^{\circ}$	$61.4 \pm 14.7^{\#}$	$65.1 \pm 16.8^{\#}$			
Maturity offset (years)	$-2.3 \pm 0.5*$	$-1.7 \pm 0.6*$	$-0.8\pm0.7*$	$0.2 \pm 0.7*$	$1.1 \pm 0.9*$			
600								
601 Key: * = Significat	ntly different to	all other group	s, $p < .05; ^ = S$	Significantly dif	ferent			
602 to U12, U15 and U								
604								
605								
606								

Table 1. Participant characteristics according to chronological age group (Mean \pm SD).

Table 2. Participant characteristics according to maturation group (Mean \pm SD).

	G1	G2	G3	G4	G5
n	37	104	80	60	63
Age (years)	$11.5 \pm 0.4*$	$12.1 \pm 0.7*$	$13.2 \pm 0.8*$	$14.3\pm0.7*$	$15.0 \pm 0.8*$
Height (m)	$1.39 \pm 0.05*$	$1.48 \pm 0.05*$	$1.58\pm0.05*$	$1.65 \pm 0.05*$	$1.73\pm0.07*$
Mass (kg)	$33.8 \pm 4.5*$	$42.8\pm7.6^*$	$53.6 \pm 9.7*$	$60.0\pm10.1*$	$70.8\pm15.6^*$
Maturity offset (years)	$-2.8 \pm 0.3*$	$-2.0 \pm 0.3*$	$-1.0 \pm 0.3*$	$0.0 \pm 0.3*$	$1.1 \pm 0.8*$

Key: * = Significantly different to all other groups, p < .05.

Table 3. The magnitude of asymmetry (%) between legs for participants in different

- chronological age groups.

	U12	U13	U14	U15	U16
Speed	3.6 ± 2.7	4.2 ± 3.5	3.1 ± 2.3	3.1 ± 2.9	2.8 ± 1.8
Step length	2.7 ± 2.0	3.8 ± 4.1	2.5 ± 2.2	3.5 ± 3.0	2.4 ± 2.6
Step frequency	3.5 ± 2.8	4.2 ± 3.0	3.4 ± 2.4	3.1 ± 2.5	3.5 ± 2.6
Contact time	3.7 ± 2.9	2.9 ± 2.4	3.0 ± 2.3	3.1 ± 2.2	3.0 ± 2.4
Flight time	6.1 ± 4.1	7.7 ± 5.3	5.8 ± 3.7	6.4 ± 5.2	6.9 ± 6.1
Relative F _{max}	3.1 ± 2.0	3.3 ± 2.6	2.3 ± 1.9	3.4 ± 2.6	3.4 ± 3.1
Relative k _{vert}	6.6 ± 5.1	6.1 ± 4.6	5.8 ± 4.2	5.2 ± 3.9	5.6 ± 3.9
Relative k _{leg}	$9.0\pm7.8^{*}$	$12.6 \pm 8.3^{\circ}$	$8.0\pm6.9*$	9.9 ± 7.3	10.6 ± 7.9

Key: F_{max} = modeled peak ground reaction force, k_{vert} = vertical stiffness, k_{leg} = leg

stiffness, * = significantly different to U13 group (p < .05), ^ = Significantly different to U13 and U14 group (*p* < .05).

	G1	G2	G3	G4	G5
Speed	3.6 ± 3.2	3.8 ± 2.7	3.7 ± 3.4	2.9 ± 2.2	3.1 ± 2.3
Step length	3.1 ± 3.4	3.1 ± 2.9	3.0 ± 3.0	2.6 ± 2.4	3.3 ± 3.1
Step frequency	3.7 ± 2.8	4.1 ± 2.9	3.2 ± 2.6	3.2 ± 2.6	3.4 ± 2.5
Contact time	4.0 ± 3.3	3.4 ± 2.6	2.9 ± 2.1	2.8 ± 2.2	3.1 ± 2.3
Flight time	5.7 ± 3.8	7.1 ± 4.8	6.1 ± 4.6	5.7 ± 4.5	7.4 ± 5.8
Relative F _{max}	3.2 ± 2.0	3.2 ± 2.4	2.6 ± 2.1	2.7 ± 2.3	3.7 ± 2.9
Relative <i>k</i> _{vert}	6.9 ± 5.7	6.7 ± 4.6	5.4 ± 4.1	5.1 ± 4.1	5.3 ± 3.7
Relative k_{leg}	9.8 ± 7.3	10.1 ± 7.9	10.2 ± 8.5	8.5 ± 6.0	10.9 ± 8.4

Table 4. The magnitude of asymmetry (%) between legs for participants in different maturation groups.

Key: F_{max} = modeled peak ground reaction force, k_{vert} = vertical stiffness, k_{leg} = leg

stiffness.

Note: No significant differences (p > .05) shown between all groups for each variable listed.

Table 5. Percentiles for the magnitude of asymmetry (%) in spatiotemporal, force,

displacement and stiffness variables for the whole sample.

	10 th	25 th	50 th	75 th	90 th
Speed	0.5	1.3	3.0	4.7	7.1
Step length	0.4	1.0	2.3	4.2	6.8
Step frequency	0.5	1.2	3.1	5.2	7.2
Contact time	0.4	1.2	2.7	4.6	6.6
Flight time	1.1	2.7	5.6	9.3	13.5
Relative F _{max}	0.5	1.1	2.6	4.5	6.5
Relative k _{vert}	1.1	2.3	4.9	8.6	12.0
Relative k_{leg}	1.8	4.5	7.9	13.9	20.3

Key: F_{max} = modeled peak ground reaction force, k_{vert} = vertical stiffness, k_{leg} = leg

stiffness.