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Abstract. Let k be a field of odd prime characteristic p. We calculate the Lie algebra
structure of the first Hochschild cohomology of a class of quantum complete intersections
over k. As a consequence, we prove that if B is a defect 2-block of a finite group algebra
kG whose Brauer correspondent C has a unique isomorphism class of simple modules, then
a basic algebra of B is a local algebra which can be generated by at most 2

√
I elements,

where I is the inertial index of B, and where we assume that k is a splitting field for B and
C.

1. Introduction

The purpose of this paper is to examine certain algebras of dimension p2 over a field of
odd characteristic p, which occur as the basic algebras of blocks of finite groups with normal
defect groups of order p2 and a unique simple module. The goal is to understand the Brauer
correspondents of such blocks. To this end, we make a detailed examination of the degree
one Hochschild cohomology as a Lie algebra.

Theorem 1.1. Let k be a field of odd prime characteristic p and let q ∈ k× be an element
of finite order e such that e ≥ 2 and such that e divides p− 1. Let

A = k〈x, y | xp = 0 = yp, yx = qxy〉 .
Set L = HH1(A) and let L′ be the derived Lie subalgebra of the Lie algebra L. Denote by
socZ(A)(L) the socle of L as a left Z(A)-module. Then A is a split local symmetric k-algebra
of dimension p2, and the following hold.

(i) We have dimk(L) = 2(p+ (p−1
e

)2).
(ii) We have Z(L) = {0}.

(iii) There is a 2-dimensional maximal toral subalgebra H of L such that L = H⊕L′.
(iv) The derived subalgebra L′ is nilpotent; in particular, L is solvable.
(v) We have dimk(socZ(A)(L)) = 2e and socZ(A)(L) ⊆ Z(L′).

(vi) We have J(Z(A))L = L′ and dimk(L/L′) = 2.
(vii) We have dimk(Z(L′)) = 2e+ 2. In particular, L′ is abelian if and only if e = p− 1.
(viii) The subalgebra H is p-toral, and we have (L′)[p] = {0}.

See Section 5 for the proof. Other papers examining Hochschild cohomology of similar
algebras include Bergh and Erdmann [2] and Oppermann [17], but their results and goals
lie in different directions. For example, in [2] it is assumed that q is not a root of unity.
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The last statement in Theorem 1.1 regarding the p-restricted structure of L is motivated
by invariance results of p-power maps in Hochschild cohomology under derived and stable
equivalences in work of Zimmermann [25] and Rubio y Degrassi [20].

To exploit Theorem 1.1 we prove the following general theorem, which provides an upper
bound for the number of loops in the quiver of a symmetric split algebra over an arbitrary
field.

Theorem 1.2. Let k be a field and let A be a symmetric split k-algebra. We have∑
S

dimk(Ext1
A(S, S)) ≤ dimk(socZ(A)(HH

1(A)))

where in the sum S runs over a set of representatives of the isomorphism classes of simple
A-modules. In particular, if A is a symmetric split local k-algebra, then

dimk(J(A)/J(A)2) ≤ dimk(socZ(A)(HH
1(A))) .

This will be proved in Theorem 3.1 and Corollary 3.2. Combining the two theorems
above with standard properties of stable equivalences of Morita type yields the following
consequence.

Corollary 1.3. Let A be as in Theorem 1.1, and let B be a split local symmetric k-algebra
such that there is a stable equivalence of Morita type between A and B. We have

dimk(J(B)/J(B)2) ≤ 2e .

The motivation for the above results comes from local-global considerations in the modular
representation theory of finite groups. Let G be a finite group and let B be a block of the
group algebra kG of G over a field k of odd characteristic. Let P be a defect group of B, C
the block of of kNG(P ) in Brauer correspondence with B and let I be the inertial index of
B. Suppose that k is a splitting field for B and C. If P has order p2, then it is known that
there is a stable equivalence of Morita type between B and C. If in addition P is elementary
abelian and C has a unique isomorphism class of simple modules, then C is a matrix algebra
over a quantum complete intersection as in Corollary 1.3. Moreover, in this case e ≤

√
I

and if I > 1, then e > 1. Thus, Corollary 1.3 yields the following local-global result.

Corollary 1.4. Let G be a finite group and let B be a block of the group algebra kG of G
over a field k of odd characteristic p. Let P be defect group of B, C the block of kNG(P )
in Brauer correspondence with B and let I be the inertial index of B. Suppose that P is
elementary abelian of order p2, that C has a unique isomorphism class of simple modules,
and that k is a splitting field for B and C. Then B has a unique isomorphism class of simple
modules, and

dimk(J(B)/J(B)2) ≤ 2
√
I .

Corollaries 1.3 and 1.4 are proved at the end of Section 5. We note that in the situation
of Corollary 1.4, Broué’s abelian defect group conjecture [4] would imply that the blocks B
and C are derived equivalent, and therefore by a result of Roggenkamp and Zimmermann
[24, Proposition 6.7.4], that B and C are Morita equivalent. Hence, it would follow that the
dimension of J(B)/J(B)2 is two. If p = 3, it is known that B and C are Morita equivalent
in this situation [9].

If e = 2, then it follows from results in [1] that the algebra A in Theorem 1.1 is Morita
equivalent to the unique nonprincipal block algebra of the finite group algebra kG, where
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G = (Cp×Cp)oQ8, with Z(Q8) acting trivially on Cp×Cp, such that the induced action of
Q8/Z(Q8) ∼= C2 × C2 is given by each copy of C2 acting by inversion on the corresponding

copy of Cp. Thus A lifts to an O-free O-algebra Â which is Morita equivalent to the unique
nonprincipal block B1 of OG. Here O is a complete discrete valuation ring of characteristic
zero with residue field k of odd prime characteristic p; we assume that O contains a primitive
4p-th root of unity. This algebra Â can be described, using the normalised polynomials
fn(u) = 2Tn(u

2
) of the Chebyshev polynomials of the first kind Tn (see §6 for a more detailed

review of the notation).

Theorem 1.5. With the notation above, the O-algebra

Â = O〈γ, δ | γδ + δγ = 0, fp(γ) = 0 = fp(δ)〉

is a basic algebra of B1. In particular, we have k ⊗O Â ∼= A.

This will be proved in §6. If e > 2, it turns out that it is much harder to describe Â.

2. Basic background facts

Let k be a field. For A a finite-dimensional k-algebra, we denote by `(A) the number of
isomorphism classes of simple A-modules. We write Ae = A⊗kAop. We consider Ae-modules
as A-A-bimodules and vice versa, whenever convenient. We denote by [A,A] the additive
commutator space, spanned by the set of elements [a, b] = ab − ba, with a, b ∈ A. If A is
split local, then every element in A is of the form λ · 1 + r for some λ ∈ k and some r ∈
J(A). This yields immediately the following well-known fact:

Lemma 2.1. Let A be a finite-dimensional split local k-algebra. We have [A,A] ⊆ J(A)2.

A k-algebra A is symmetric if A is isomorphic to its k-dual A∨ as an A-A-bimodule (this
implies that A is finite-dimensional). If A is symmetric, then the socle of A as a left A-
module and as a right A-module coincide. If A is also split, then this coincides with the
socle of A as an A-A-bimodule. The image s ∈ A∨ of 1A ∈ A under an A-A-bimodule
isomorphism A ∼= A∨ is called a symmetrising form. Note that it satisfies s(ab) = s(ba). If
A is symmetric with a fixed choice of a symmetrising form s, for any subspace U of A we
denote by U⊥ the subspace consisting of all a ∈ A satisfying s(au) = 0 for all u ∈ U . We
have dimk(U) + dimk(U

⊥) = dimk(A), and hence U⊥⊥ = U . It is well-known that [A,A]⊥ =
Z(A) and that soc(A)⊥ = J(A). The space [A,A] is contained in any symmetrising form
of A. If A is split local symmetric, then soc(A) has dimension 1 and is the unique minimal
ideal in A; thus, in that case, we have [A,A]∩ soc(A) = {0}. Dualising yields the following,
which appears in the proof of [15, Lemma 2].

Lemma 2.2. Let A be a split local symmetric k-algebra. Then soc2(A) ⊆ Z(A).

Proof. Choose a symmetrising form of A. The statement follows from Lemma 2.1, since
(J(A)2)⊥ = soc2(A) and [A,A]⊥ = Z(A). �

For A a split finite-dimensional k-algebra, the semisimple quotient A/J(A) is a direct
product of matrix algebras, hence symmetric. Thus (A/J(A))∨ ∼= A/J(A) as A-A-bimodules.
Moreover, we have an A-A-bimodule isomorphism A/J(A) ∼= ⊕S S ⊗k S∨, where S runs
over a set of representatives of the isomorphism classes of simple A-modules. If A is split
and symmetric, then A/J(A) ∼= soc(A) and (A/soc(A))∨ ∼= J(A) as A-A-bimodules.
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Lemma 2.3 ([6, Chapter IX, Corollary 4.4]). Let A be a finite-dimensional k-algebra, and
let S, T be finite-dimensional A-modules. There is a canonical graded k-linear isomorphism

HH∗(A;S ⊗k T∨) ∼= Ext∗A(T, S).

Proof. A standard adjunction, with T viewed as an A-k-bimodule, yields for any projective
Ae-module P a natural isomorphism

HomA(P ⊗ T, S) ∼= HomAe(P,Homk(T, S)) ∼= HomAe(P, S ⊗k T∨).

By naturality, replacing P by a projective resolution of A as an Ae-module yields an isomor-
phism of cochain complexes. Taking cohomology yields the statement. �

Lemma 2.4. Let A be a split symmetric k-algebra. We have a graded k-linear isomorphism

HH∗(A; soc(A)) ∼=⊕
S

Ext∗A(S, S) ,

where S runs over a set of representatives of the isomorphism classes of simple A-modules.
In particular, we have

dimk(HomAe(A, soc(A))) = `(A) ,

dimk(HH
1(A; soc(A))) =

∑
S

dimk(Ext1
A(S, S)) ,

where S runs over a set of representatives of the isomorphism classes of simple A-modules.

Proof. As mentioned above, we have A-A-bimodule isomorphisms

soc(A) ∼= A/J(A) ∼=⊕
S

S ⊗k S∨,

where S runs over a set of representatives of the isomorphism classes of simple A-modules.
Thus the isomorphism follows from the previous lemma. Comparing dimensions in degree 0
and in degree 1 yields the two equalities. �

3. Calculating derivations on symmetric algebras

Let k be a field and let A be a finite-dimensional k-algebra. We will use the description
of HH1(A) as outer derivations. A k-linear map f : A → A is a derivation if f(ab) =
af(b) + f(a)b for all a, b ∈ A. If z ∈ Z(A) and f is a derivation on A, then z · f defined
by (z · f)(a) = zf(a) is a derivation on A. In this way, the set of derivations Der(A) on A
becomes a Z(A)-module. If x ∈ A, then the map [x,−] sending a ∈ A to [x, a] = xa − ax
is a derivation; any derivation of this form is called an inner derivation, of A, and the
set IDer(A) of inner derivations of A is a Z(A)-submodule of Der(A). We have a canonical
isomorphism HH1(A) ∼= Der(A)/IDer(A); see e.g. [23, 9.2.1]. The HH0(A)-module structure
and the Z(A)-module structure on Der(A)/IDer(A) correspond to each other through the
canonical isomorphism HH0(A) ∼= Z(A). Any derivation f on A satisfies f(1) = 0, since
f(1) = f(1 · 1) = f(1) · 1 + 1 · f(1) = 2f(1), hence ker(f) is a unitary subalgebra of A. The
space IDer(A) is isomorphic to the quotient of A by the kernel of the map x 7→ [x,−], hence
dimk(IDer(A)) = dimk(A) − dimk(Z(A)). Thus if A is symmetric, then dimk(IDer(A)) =
dimk([A,A]). For any Z(A)-module H we denote by socZ(A)(H) its socle as a Z(A)-module.
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Theorem 3.1. Let A be a symmetric split k-algebra and let E be a maximal semisimple
subalgebra. Let f : A → A be an E-E-bimodule homomorphism satisfying E + J(A)2 ⊆
ker(f) and Im(f) ⊆ soc(A). Then f is a derivation on A in socZ(A)(Der(A)), and if f 6= 0,
then f is an outer derivation of A. In particular, we have∑

S

dimk(Ext1
A(S, S)) ≤ dimk(socZ(A)(HH

1(A)))

where in the sum S runs over a set of representatives of the isomorphism classes of simple
A-modules.

Proof. Let a, b ∈ A. By the Wedderburn–Malcev theorem, we have A = E ⊕ J(A). Thus
a = c+ r and b = d+ s for some c, d ∈ E and r, s ∈ J(A). The hypotheses on f imply that

f(ab) = f(cd+ cs+ rd+ rs) = f(cs+ rd) = cf(s) + f(r)d = af(b) + f(a)b.

This shows that f is a derivation. Suppose that f is an inner derivation. Then Im(f) ⊆
[A,A]∩soc(A). But Im(f) is also an E-E-bimodule. Any E-E-bimodule contained in soc(A)
is in fact an ideal. The space [A,A] contains no nonzero ideal as A is symmetric. Thus f is
either zero or an outer derivation. Since J(Z(A)) is contained in J(A), any such derivation
is annihilated by J(Z(A)). This shows that HomEe(J(A)/J(A)2, soc(A)) is isomorphic to a
subspace of socZ(A)(HH

1(A)). Since J(A) annihilates J(A)/J(A)2 and soc(A), this subspace
is isomorphic to HomAe(J(A)/J(A)2, soc(A)). As A is symmetric, we have

soc(A) ∼= A/J(A) ∼=⊕
S

S ⊗k S∨,

with S running over a set of representatives of the isomorphism classes of simple A-modules.
The dimension of HomAe(J(A)/J(A)2, S ⊗k S∨) is equal to the number of summands of
the Ae-module J(A)/J(A)2 isomorphic to S ⊗k S∨. If i is a primitive idempotent such
that iS 6= {0}, then S is the unique simple quotient of Ai, hence S∨ is the unique sim-
ple quotient of iA, and thus S∨i is one-dimensional. It then follows that the dimension of
HomAe(J(A)/J(A)2, S⊗k S∨) is equal to the number of summands of J(A)i/J(A)2i isomor-
phic to S, and that is precisely dimk(Ext1

A(S, S)). �

Corollary 3.2. Let A be a split local symmetric k-algebra. Let f : A → A be a k-linear
map satisfying 1 + J(A)2 ⊆ ker(f) and Im(f) ⊆ soc(A). Then f is a derivation on A in
socZ(A)(Der(A)), and if f 6= 0, then f is an outer derivation of A. In particular, we have

dimk(J(A)/J(A)2) ≤ dimk(socZ(A)(HH
1(A))) .

Proof. Since A is split local, we have dimk(J(A)/J(A)2) = dimk(Ext1
A(S, S)), where S =

A/J(A) is the unique simple A-module, up to isomorphism. Moreover, k · 1k is the unique
maximal semisimple subalgebra of A. The result follows from Theorem 3.1. �

Combining Theorem 3.1 and Corollary 3.2 implies Theorem 1.2.

Remark 3.3. The projective ideal Zpr(A) of Z(A) is the ideal corresponding via the canon-
ical isomorphism Z(A) ∼= EndA⊗OAop(A) to the ideal of bimodule endomorphisms of A which
factor through a projective bimodule. Note that HH1(A) is annihilated by Zpr(A), hence
HH1(A) is a module over the stable center Z̄(A) = Z(A)/Zpr(A), and we have

socZ(A)(HH
1(A)) = socZ̄(A)(HH

1(A)).

This shows that socZ(A)(HH
1(A)) is invariant under stable equivalences of Morita type.
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It is possible to give a more structural proof of the inequality in Theorem 3.1, based on
the following result.

Proposition 3.4. Let A be a split symmetric k-algebra. We have canonical short exact
sequences

0 // HomAe(A, soc(A)) // HomAe(A,A) // HomAe(A,A/soc(A)) // 0

0 // HomAe(A/J(A), A) // HomAe(A,A) // HomAe(J(A), A) // 0

In particular, we have

dimk(Z(A))− `(A) = dimk(HomAe(A,A/soc(A))) = dimk(HomAe(J(A), A)) .

Proof. We may assume that A is basic. Any Ae-homomorphism from A to A/soc(A) is in
particular a homomorphism of left A-modules. As such, it lifts to an endomorphism of A,
and hence is induced by right multiplication with an element y ∈ A, followed by the canonical
map A → A/soc(A). For this to induce a bimodule homomorphism from A to A/soc(A) a
necessary condition is [y, a] ∈ soc(A) for all a ∈ A. Using that A is basic, one can show that
this forces y ∈ Z(A). Indeed, for any primitive idempotent i we have

[y, i] = yi− iy = yi− iyi− iy(1− i) ∈ soc(A).

Since A is basic, this forces iy(1− i) = 0 because soc(A(1− i)) has no submodule isomorphic
to the simple module Ai/J(A)i. Thus iy = iyi, and a similar argument shows iyi = yi. Thus
y commutes with all primitive idempotents. For a ∈ Ai we have [y, a] = yai−ayi ∈ soc(Ai),
so this is annihilated by 1 − i, hence equal to iyiai − iaiyi ∈ soc(iAi) ∩ [iAi, iAi], which
is zero because the local algebra iAi is symmetric. Thus y ∈ Z(A), which means precisely
that the induced homomorphism A → A/soc(A) lifts to a bimodule homomorphism A →
A, whence the exactness of the first sequence as stated. The second sequence is obtained
from applying duality to the first. By Lemma 2.4, the dimension of the left term in the first
sequence is `(A), and the middle term is isomorphic to Z(A), which proves the first equality.
The second equality is obtained via duality. �

Remark 3.5. The inequality in Theorem 3.1 can be proved using Proposition 3.4 as follows.
We consider the long exact sequence obtained from applying the functor HomAe(A,−) to
the short exact sequence of Ae-modules

0 // soc(A) // A // A/soc(A) // 0

This yields in particular an exact sequence

HomAe(A,A) // HomAe(A,A/soc(A)) // HH1(A; soc(A)) // HH1(A)

By Proposition 3.4 the first map is surjective. Thus the second map is zero, hence the
third map is injective. Thus HH1(A; soc(A)) is isomorphic to a subspace of HH1(A). Since
J(Z(A)) ⊆ J(A), this subspace is contained in socZ(A)(HH

1(A)). The inequality in Theorem
3.1 follows from 2.4.

The surjectivity of the first map in the above exact sequence can be used to give a proof
of a result of Brandt [3], as follows. Identify HomAe(J(A)/J(A)2;A) with a subspace of
HomAe(J(A);A) via the canonical surjection J(A)→ J(A)/J(A)2. If J(A)2 is nonzero, then
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HomA(J(A)/J(A)2, A) is strictly smaller than HomA(J(A), A), because the inclusion map
J(A) ⊆ A does not factor through J(A)/J(A)2. Since J(A)/J(A)2 is semisimple, we have

HomAe(J(A)/J(A)2, A) = HomAe(J(A)/J(A)2, soc(A)),

which in turn (as observed in the proof of 3.1) is isomorphic to⊕S Ext1
A(S, S), where S runs

over a set of representatives of the isomorphism classes of simple A-modules. Thus, if A is
split symmetric such that J(A)2 6= {0}, then the dimension of HomAe(J(A), A) is strictly
greater than that of⊕S Ext1

A(S, S). Proposition 3.4 implies in that case the inequality

dimk(Z(A))− `(A) ≥ 1 +
∑
S

dimk(Ext1
A(S, S))

due to Brandt [3, Theorem B].
It follows that the integers dimk(Z(A))− `(A)− 1 and dimk(socZ(A)(HH

1(A))) are both

upper bounds for
∑

S dimk(Ext1
A(S, S)). These two upper bounds are not comparable in

general, since they arise from unrelated parts of a long exact sequence with a zero map. The
following two examples illustrate this. Suppose that k has odd prime characteristic p. If A =
k(Cp o Cp−1), with Cp−1 acting regularly on the nontrivial elements of Cp, then standard
calculations yield

dimk(Z(A))− `(A)− 1 = 0 < dimk(socZ(A)(HH
1(A))) = 1 .

By contrast, if A is as in Theorem 1.1, then, using Lemma 4.3 below, we have

dimk(Z(A))− `(A)− 1 =
(
p−1
e

)2
+ 2p− 3 ≥ dimk(socZ(A)(HH

1(A))) = 2e ,

with equality if and only if e = p− 1.

Derivations with image in the second socle layer are characterised as follows.

Proposition 3.6. Let A be a split local symmetric k-algebra, let {x1, x2, .., xr} be a k-basis
of a complement of J(A)2 in J(A), and let z be a nonzero element in soc(A). There is a
basis {y1, y2, .., yr} of a complement of soc(A) in soc2(A) such that xiyi = yixi = z for 1 ≤
i ≤ r, and such that xiyj = yjxi = 0, for 1 ≤ i, j ≤ r, i 6= j. Let f : A → A be a k-linear
map satisfying 1 + J(A)2 ⊆ ker(f), such that

f(xi) =
r∑
j=1

σi,jyj

for some coefficients σi,j ∈ k, 1 ≤ i, j ≤ r.

(i) The map f is a derivation if and only if σi,j = −σj,i for all i, j, 1 ≤ i, j ≤ r. In
particular, if char(k) 6= 2 and if f is a derivation, then σi,i = 0 for 1 ≤ i ≤ r, and

the space of derivations obtained in this way has dimension r(r−1)
2

.
(ii) If f is an inner derivation, then Im(f) ⊆ soc(Z(A))∩ soc2(A)∩ [A,A], and Im(f) is

contained in a complement of soc(A) in soc(Z(A)) ∩ soc2(A).

Proof. Let a, b ∈ A. In the following sums, the indices i and j run from 1 to r. Write

a =
∑
i

αixi + λ · 1 + u
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with coefficients αi and λ in k, and u ∈ J(A)2. Similarly, write

b =
∑
j

βixi + µ · 1 + v

with βi, µ ∈ k and v ∈ J(A)2. Thus

f(a) =
∑
i

αixi =
∑
i,j

αiσi,jyj,

f(b) =
∑
i

βixi =
∑
i,j

βiσi,jyj.

Since u, v annihilate the yi, short calculations, using the hypotheses on f , yield

f(a)b = (
∑
i,j

αiσi,jβj)z + µf(a),

af(b) = (
∑
i,j

βiσi,jαj)z + λf(b),

f(ab) = µf(a) + λf(b).

Thus f is a derivation if and only if∑
i,j

(αiσi,jβj + βiσi,jαj) = 0

for all choices of coefficients αi, βj. This holds if and only if σi,j = −σj,i for all i, j. Statement
(i) follows. Suppose now that f is an inner derivation, say f = [w,−] for some w ∈ A. By
the assumptions on f , we have [w, J(A)2] = {0} and [w,A] ⊆ soc2(A) ⊆ Z(A), where the
last inclusion is from Lemma 2.2. Note that Im(f) is spanned by the [w, xi], 1 ≤ i ≤ r. If
c ∈ J(Z(A)), then

[w, xi]c = wxic− xiwc = w(xic)− (xic)w = 0,

since xic is contained in J(A)2, hence commutes with w. Thus Im(f) is annihilated by
J(Z(A)), implying Im(f) ⊆ soc(Z(A))∩soc2(A). Since also Im(f) ⊆ [A,A], which intersects
soc(A) trivially as A is symmetric split local, statement (ii) follows. �

For monomial algebras, the Lie algebra structure of HH1 has been calculated in work of
Strametz [21]. Maximal diagonalisable Lie subalgebras of HH1 have been calculated by Le
Meur [13] for certain algebras without oriented cycles. The dimension of dim(HH1(A)) is
related to combinatorial data of the quiver of A in work of de la Peña and Saoŕın [18].

4. The dimension of HH1(A)

Let k be a field of odd prime characteristic p, let 1 6= q ∈ k× have order e dividing p− 1,
and let

A = k〈x, y | xp = yp = 0, yx = qxy〉.
Then A is a symmetric local k-algebra of dimension p2, having the set of monomials

V = {xiyj | 0 ≤ i, j ≤ p− 1}
as a k-basis. The linear map A→ k sending xp−1yp−1 to 1 and all other monomials in V to
0 is a symmetrising form for A.
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Remark 4.1. One can define an algebra A as above for arbitrary q ∈ k×, but unless the
order of q divides p− 1, this yields a selfinjective algebra which is not symmetric. Indeed, if
A is symmetric, then any symmetrising form s of A is nonzero on the socle element xp−1yp−1.
Thus

0 6= s(xp−1yp−1) = s(xp−2yp−1x) = qp−1s(xp−1yp−1),

and hence qp−1 = 1. Thus the algebras arising for q not of order dividing p−1 are not Morita
equivalent to block algebras of finite groups.

The purpose of this section is to determine the dimension of HH1(A).

Proposition 4.2. We have dim(HH1(A)) = 2(p+ (p−1
e

)2).

We start with some technical observations. The subset

V ′ = {xiyj | 0 ≤ i, j ≤ p− 1, (i, j) 6= (0, 0)}

of A is a k-basis of J(A), and the element xp−1yp−1 spans soc(A). For r ≥ 0 the subset

Vr = {xiyj | 0 ≤ i, j ≤ p− 1, i+ j ≥ r}

of V is a k-basis of J(A)r

Lemma 4.3.

(i) The set {xiyj | 0 ≤ i, j ≤ p− 1, i and j divisible by e, or i = p− 1, or j = p− 1}
is a k-basis of Z(A). In particular, we have

dimk(Z(A)) =
(
p−1
e

)2
+ 2p− 1.

(ii) The set {xiyp−1, xp−1yj | p−e ≤ i, j ≤ p−1} is a k-basis of soc(Z(A)); in particular,
we have dimk(soc(Z(A))) = 2e− 1.

(iii) We have J(Z(A)) ⊆ J(A)e, and if e = 2, then soc(Z(A)) = soc2(A) ⊆ J(A)2.

Proof. If x and y commute with a linear combination of monomials in the set V , then x and
y commute with the monomials with nonzero coefficients in that linear combination. Thus
Z(A) has a basis which is a subset of V . Clearly x, y commute exactly with the monomials
xiyj where either both i, j are divisible by e or one of i, j is p − 1. This shows that Z(A)
has a basis as stated in (i). Since xe and ye are in J(Z(A)), hence annihilate soc(Z(A)), it
follows that soc(Z(A)) is contained in the span of the elements of

{xiyj | p− e ≤ i, j ≤ p− 1} ∩ Z(A) = {xiyp−1, xp−1yj | p− e ≤ i, j ≤ p− 1}.

On the other hand, every element of {xiyp−1, xp−1yj | p− e ≤ i, j ≤ p− 1} is annihilated by
J(Z(A)), whence (ii). Statement (iii) follows easily from the previous statements. �

Lemma 4.4. The set

{xiyj | 1 ≤ i, j ≤ p− 1, i or j not divisible by e}

is a k-basis of [A,A]. In particular, we have

dimk([A,A]) = (p− 1)2 −
(
p−1
e

)2

and the space [A,A] is contained in the ideal Axy = xyA.
9



Proof. Let 1 ≤ i, j ≤ p− 1. If j is not divisible by e, then

[x, xi−1yj] = xxi−1yj − xi−1yjx = (1− qj)xiyj 6= 0

whence xiyj ∈ [A,A]. Similarly, if i is not divisible by e, then

xiyj = (1− qi)−1[y, xiyj−1] ∈ [A,A].

Thus the given set is contained in [A,A] and it spans a subspace of [A,A] of dimension

(p− 1)2−
(
p−1
e

)2
. Since dimk([A,A]) = dimk(A)−dimk(Z(A)), the formula for dimk([A,A])

follows from Lemma 4.3. This dimension coincides with the dimension of the subspace
spanned by the given set, whence the result. �

Let f : A→ A be a derivation. Then f(1) = 0, and f is uniquely determined by its values
at x and y. An easy induction shows that for any positive integer n and a1, a2, . . . , an ∈ A,
we have

f(a1a2 · · · an) =
n∑
i=1

a1a2 · · · ai−1f(ai)ai+1 · · · an ;

in particular, for any a ∈ A we have f(an) =
∑n

i=1 ai−1f(a)an−i.

Lemma 4.5. For 0 ≤ i, j ≤ p − 1, let αi,j, βi,j ∈ k. There is a derivation f : A → A
satisfying

f(x) =
∑

0≤i,j≤p−1

αi,jx
iyj, f(y) =

∑
0≤i,j≤p−1

βi,jx
iyj

if and only if the following hold.

(1) αi,j−1(1− qi−1) + βi−1,j(1− qj−1) = 0 for 1 ≤ i, j ≤ p− 1.
(2) α0,j−1 = 0 for 1 ≤ j ≤ p− 1.
(3) βi−1,0 = 0 for 1 ≤ i ≤ p− 1.

In particular, if f is a derivation on A, then f maps J(A) to J(A).

Proof. Suppose that f is a derivation with the given values for x and y. In the following
sums, unless otherwise indicated, the indices i and j run from 0 to p− 1. We have

0 = f(0) = f(qxy − yx) = qf(x)y − yf(x) + qxf(y)− f(y)x

=
∑
i,j

αi,j(qx
iyj+1 − yxiyj) +

∑
i,j

βi,j(qx
i+1yj − xiyjx)

=
∑
i,j

αi,j(q − qi)xiyj+1 +
∑
i,j

βi,j(q − qj)xi+1yj.

The term in the first sum with j = p − 1 is zero, as is the term in the second sum with
i = p− 1 (this is where we use the p-power relations xp = 0 = yp). We reindex the first sum
with j running from 1 to p− 1, and the second sum with i running from 1 to p− 1, and we
then separate the terms with i = 0 or j = 0. This yields

0 = (q − 1)

(
p−1∑
j=1

α0,j−1y
j +

p−1∑
i=1

βi−1,0x
i

)
+ q

p−1∑
i,j=1

(αi,j−1(1− qi−1) + βi−1,j(1− qj−1))xiyj.

Since q 6= 1, the first two sums above yield the conditions (2) and (3). The third sum
yields the condition (1). In particular, α0,0 = β0,0 = 0, and hence f(x), f(y) ∈ J(A). This
implies that f sends J(A) to J(A).

10



Conversely, there is a derivation g from the free algebra k〈x, y〉 in two generators (abusively
again denoted x and y) to the algebra A which takes on x and y the values as given in the
statement. By construction, g vanishes on qxy − yx. The properties (1), (2) and (3) imply
that g vanishes also on xp and yp. Thus g induces a derivation on A with the required values
for x and y. �

Lemma 4.6. We have dimk(Der(A)) = p2 + 1 + (p−1
e

)2.

Proof. A derivation f : A → A is determined by the 2p2 coefficients αi,j, βi,j as in Lemma
4.5. Any assignment of values f(x), f(y) satisfying the conditions (1) to (3) in that lemma
determines a unique derivation. If e divides both i − 1 and j − 1, then the condition (1) is
trivially satisfied, otherwise (1) yields a relation. Thus the condition (1) yields (p−1)2−(p−1

e
)2

relations. The conditions (2) and (3) each yield p − 1 relations. Thus, the total number of
relations from Lemma 4.5 is

(p− 1)2 −
(
p−1
e

)2
+ 2(p− 1) = p2 − 1−

(
p−1
e

)2

and it follows that dimk(Der(A)) = p2 + 1 + (p−1
e

)2. �

Proof of Proposition 4.2. We have dimk(A) = p2 and dimk(Z(A)) =
(
p−1
e

)2
+ 2p − 1 from

Lemma 4.3. Thus dimk(IDer(A)) = p2 −
(
p−1
e

)2 − 2p+ 1. It follows from Lemma 4.6 that

dimk(HH
1(A)) = 2

(
p−1
e

)2
+ 2p,

which completes the proof of Proposition 4.2. �

5. The Lie algebra structure of HH1(A)

A Lie subalgebra H of a Lie algebra L is called toral if the image of H in the adjoint rep-
resentation on L is simultaneously diagonalisable (hence abelian). For semisimple complex
Lie algebras, the maximal toral Lie subalgebras are exactly the Cartan subalgebras. As in
the previous section, let k be a field of odd prime characteristic p, let 1 6= q ∈ k× have order
e dividing p− 1, and let

A = k〈x, y | xp = yp = 0, yx = qxy〉.

The technicalities needed for the proof of Theorem 1.1 are contained in the following series
of lemmas. We start by identifying innner derivations.

Lemma 5.1. For i, j such that 0 ≤ i, j ≤ p−1, consider the inner derivation di,j = [xiyj,−]
on A.

(i) We have di,j(x) = (qj − 1)xi+1yj, where 0 ≤ i, j ≤ p − 1. In particular, we have
di,j(x) = 0 if and only if i = p− 1 or e divides j.

(ii) We have di,j(y) = (1 − qi)xiyj+1, where 0 ≤ i, j ≤ p − 1. In particular, we have
di,j(y) = 0 if and only if j = p− 1 or e divides i.

(iii) Let d be an inner derivation of A. Then d(x) is a linear combination of monomials
xiyj with 1 ≤ i, j ≤ p − 1 such that e does not divide j. Similarly, d(y) is a linear
combination of monomials xiyj with 1 ≤ i, j ≤ p− 1 such that e does not divide i.

11



Proof. Let i, j be integers such that 0 ≤ i, j ≤ p− 1. We have

di,j(x) = [xiyj, x] = xiyjx− xi+1yj = (qj − 1)xi+1yj.

This expression vanishes precisely if qj = 1 or if i+ 1 = p, whence (i). As similar calculation
proves (ii). An inner derivation on A is a linear combination of the inner derivations di,j,
where 0 ≤ i, j ≤ p− 1. Thus (iii) follows from (i) and (ii). �

Using Lemma 4.5, we determine all derivations on A mapping one of the generators to a
single monomial and the other to zero.

Lemma 5.2. Let a, b, c, d be integers such that 0 ≤ a, b, c, d ≤ p− 1.

(i) There is a derivation fa,b on A satisfying fa,b(x) = xayb and fa,b(y) = 0 if and only
if b = p− 1 or a ≥ 1 and e divides a− 1. Moreover, in that case we have

fa,b(x
cyd) =

(
c−1∑
s=0

qbs

)
xa+c−1yb+d ,

with the convention that this is zero if c = 0. In particular, if e divides a − 1 and b
or if b = p− 1, then

fa,b(x
cyd) = cxa+c−1yb+d .

(ii) There is a derivation ga,b on A satisfying ga,b(x) = 0 and ga,b(y) = xayb if and only
if a = p− 1 or b ≥ 1 and e divides b− 1. Moreover, in that case we have

ga,b(x
cyd) =

(
d−1∑
t=0

qat

)
xa+cyb+d−1 ,

with the convention that this is zero if d = 0. In particular, if e divides a and b− 1,
or if a = p− 1, then

ga,b(x
cyd) = dxa+cyb+d−1 .

Proof. With the notation of Lemma 4.5, the condition fa,b(y) = 0 is equivalent to the vanish-
ing of all coefficients βi,j, where 0 ≤ i, j ≤ p− 1. The condition fa,b(x) = xayb is equivalent
to αa,b = 1 and the vanishing of all remaining coefficients αi,j. If 1 ≤ a ≤ p− 1 and 0 ≤ b ≤
p−2, then the relation (1) from Lemma 4.5 yields 0 = αa,b(1−qa−1) = 1−qa−1, hence that e
divides a−1. If a = 0, then relation (2) from Lemma 4.5 forces b = p−1. Suppose now that
fa,b is a derivation; that is, b = p−1 or a ≥ 1 and e divides a−1. Since fa,b(y) = 0 = fa,b(1),
an easy induction shows that fa,b(y

d) = 0. Thus fa,b(x
cyd) = fa,b(x

c)yd. Another straighfor-

ward induction shows that fa,b(x
c) = (

∑c−1
s=0 q

bs)xa+c−1yb. Combining these facts yields the
first formula in (i). If in addition e divides b, then qb = 1, whence the second formula. This
proves (i), and the proof of (ii) is similar. �

Note the slight redundancy in the statement of Lemma 5.2: if 0 ≤ a ≤ p− 1 and e divides
a − 1, then necessarily a ≥ 1, since we assume that e 6= 1. We determine next a linearly
independent subset of Der(A) whose image in HH1(A) is a k-basis.

Lemma 5.3. Let a, b, c, d be integers such that 0 ≤ a, b, c, d ≤ p− 1. Let X be the disjoint
union of the two sets of derivations

{fa,b | 0 ≤ a, b ≤ p− 1, e divides a− 1 and b, or b = p− 1}
{ga,b | 0 ≤ a, b ≤ p− 1, e divides a and b− 1, or a = p− 1}
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The set X is linearly independent, and its span H is a complement of IDer(A) in Der(A).

Proof. By Lemma 5.2, the set X indeed consists of derivations. The linear independence of
the set X of derivations follows immediately from the fact that the set V of monomials in x
and y is a basis of A. The cardinality of the set X is equal to dimk(HH

1(A)), by Proposition
4.2. Any nonzero linear combination of the derivations in X map either x or y to a nonzero
element in A. If x is mapped to a nonzero element, this element involves a monomial xayb

with b divisible by e. But then Lemma 5.1 implies that this linear combination is not an
inner derivation. A similar argument applies if y is mapped to a nonzero element. This
shows that the space H spanned by X intersects IDer(A) trivially. Since dimk(H) = |X| =
dimk(HH

1(A)), it follows that H is a complement of IDer(A) in Der(A). �

We calculate next the Lie brackets between the elements of the basis X of H.

Lemma 5.4. With the notation of Proposition 5.3, let a, b, c, d be integers such that
0 ≤ a, b, c, d ≤ p− 1.

(i) Suppose that e divides a−1 and b, or that b = p−1; similarly, suppose that e divides
c− 1 and d, or that d = p− 1. If a+ c− 1 ≤ p− 1 and b+ d ≤ p− 1, then

[fa,b, fc,d] = (c− a)fa+c−1,b+d

and we have b + d = p − 1 or e divides both a + c − 2 and b + d; in particular, we
have fa+c−1,b+d ∈ X. If one of a+ c− 1 or b+ d is at least p, then

[fa,b, fc,d] = 0 .

(ii) Suppose that e divides a and b−1, or that a = p−1; similarly, suppose that e divides
c and d− 1, or that c = p− 1. If a+ c ≤ p− 1 and b+ d− 1 ≤ p− 1, then

[ga,b, gc,d] = (d− b)ga+c,b+d−1

and we have a + c = p − 1 or e divides both a + c and b + d − 2; in particular, we
have ga+c,b+d−1 ∈ X. If one of a+ c, b+ d− 1 is at least p, then

[ga,b, gc,d] = 0 .

(iii) Suppose that e divides a−1 and b, or that b = p−1; similarly, suppose that e divides
c and d− 1, or that c = p− 1. If a+ c > p− 1 or b+ d > p− 1, then

[fa,b, gc,d] = 0 .

(iv) Suppose that e divides a−1 and b, or that b = p−1; similarly, suppose that e divides
c and d − 1, or that c = p − 1. Suppose that a + c ≤ p − 1 and that b + d ≤ p − 1.
We have a+ c < p− 1 if and only if b+ d < p− 1, and in that case, we have

[fa,b, gc,d] = −bfa+c,b+d−1 + cga+c−1,b+d .

(v) Suppose that e divides a−1 and b, or that b = p−1; similarly, suppose that e divides
c and d− 1, or that c = p− 1. Suppose that a+ c ≤ p− 1 and that b+ d ≤ p− 1. We
have a+ c = p− 1 if and only if b+ d = p− 1, and in that case we have (a, b, c, d) =
(0, p− 1, p− 1, 0), and

[f0,p−1, gp−1,0] = (q−1 − 1)−1[xp−2yp−2,−] = (q−1 − 1)−1dp−2,p−2 .
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Proof. With the assumptions as in (i), both sides vanish at y, and we need to show that they
coincide at x. It follows from Lemma 5.2 (i) that

[fa,b, fc,d](x) = fa,b(x
cyd)− fc,d(xayb) = cxa+c−1yb+d − axa+c−1yb+d

This is a nonzero derivation only if a+ c− 1 ≤ p− 1 and b+ d ≤ p− 1. If b+ d < p− 1, then
b < p−1 and d < p−1, hence a−1, c−1, b, d are divisible by e, and therefore a+ c−2 and
b+d are divisible by e. This shows (i), and the proof of (ii) is similar. With the assumptions
as in (iii), we have

[fa,b, gc,d](x) = fa,b(gc,d(x))− gc,d(fa,b(x)) = −gc,d(xayb) = −bxa+cyb+d−1

where the last equation uses Lemma 5.2 (ii). A similar calculation yields [fa,b, gc,d](y) =
cxa+c−1yb+d, whence (iii). If a + c = p − 1, then e divides a (since e divides c and p − 1),
so e does not divide a − 1, and hence b = p − 1. The hypothesis b + d ≤ p − 1 forces d =
0, so e does not divide d− 1, and hence hence c = p− 1, which in turn forces a = 0 by the
hypothesis a + c ≤ p − 1. This shows that under the assumptions in (iv) and (v), we have
a + c = p − 1 if and only if b + d = p − 1, which in turn holds if and only if (a, b, c, d) =
(0, p− 1, p− 1, 0). For the proof of (iv), assume that a+ c < p− 1 and b+ d < p− 1. Then
all of a, b, c, d are strictly smaller than p − 1. Thus e divides a − 1, d − 1, b, and c, and
therefore e divides b + d − 1 and a + c − 1. Hence fa+c,b+d−1 and ga+c−1,b+d are in X. We
have

[fa,b, gc,d](x) = fa,b(0)− gc,d(xayb) = −bxa+cyb+d−1 ,

where the last equation is from Lemma 5.2 (ii). This is equal to − bfa+c,b+d−1 + cga+c−1,b+d

evaluated at x. Similarly,

[fa,b, gc,d](y) = fa,b(x
cyd)− gc,d(0) = cxa+c−1yb+d ,

where the last equation is from Lemma 5.2 (i). This is equal to − bfa+c,b+d−1 + cga+c−1,b+d

evaluated at y. The formula in (iv) follows. In order to prove (v), we need to calculate

[f0,p−1, gp−1,0](x) = f0,p−1(0)− gp−1,0(yp−1) = xp−1yp−2 ,

where the last equation uses Lemma 5.2 (ii) and −(p− 1) = 1 in k. Similarly, we have

[f0,p−1, gp−1,0](y) = f0,p−1(xp−1)− gp−1,0(0) = −xp−2yp−1 .

Note that qp−2 = q−1 since e divides p− 1. By Lemma 5.1, we have

dp−2,p−2(x) = (q−1 − 1)xp−1yp−2, dp−2,p−2(y) = −(q−1 − 1)xp−2yp−1.

Statement (v) follows. �

The space H in Lemma 5.3 is not a Lie subalgebra of Der(A) because of the relation (v) in
5.4; this relation implies that the images of f0,p−1 and gp−1,0 in HH1(A) commute (because
their Lie bracket is an inner derivation). The Lie brackets between basis elements in X
determine the Lie algebra structure of HH1(A). In order to describe this structure, we first
identify those elements in X which are commutators.

Lemma 5.5. Let a, b, c, d be integers such that 0 ≤ a, b, c, d ≤ p− 1.
14



(i) If e divides a− 1 and b, or if b = p− 1, then

[f1,0, fa,b] = (a− 1)fa,b and [g0,1, fa,b] = bfa,b .

In particular, if e divides b, then

[f1,0, f1,b] = 0 and [g0,1, f1,b] = bf1,b .

(ii) Suppose that e divides c and d− 1, or that c = p− 1. We have

[f1,0, gc,d] = cgc,d and [g0,1, gc,d] = (d− 1)gc,d .

In particular, if e divides c, then

[f1,0, gc,1] = cgc,1 and [g0,1, gc,1] = 0 .

(iii) The linear endomorphisms ad(f1,0) and ad(g0,1) of Der(A) restrict to linear endo-
morphisms of the subspace H spanned by X, and, with respect to the basis X, these
endomorphisms of H are represented by diagonal matrices.

(iv) All basis elements in X except f1,0 and g0,1 are commutators in Der(A).
(v) We have [f1,0, g0,1] = 0.

Proof. The statements (i) and (ii) are special cases of Lemma 5.4, and the statements (iii),
(iv), and (v) follow from (i) and (ii). �

Lemma 5.6. Let a, b, c, d be integers such that 0 ≤ a, b, c, d ≤ p− 1.

(i) Suppose that e divides a− 1 and b, or that b = p− 1. If a+ b ≥ 2, then a ≥ e+ 1 or
b ≥ e. In particular, a+ b− 1 ≥ min{e, p− 2}.

(ii) Suppose that e divides c and d− 1, or that c = p− 1. If c+ d ≥ 2, then c ≥ e or d ≥
e+ 1. In particular, c+ d− 1 ≥ min{e, p− 2}.

Proof. Assume that b < e. Then b < p − 1, so e divides a − 1 and b. The inequality b < e
forces b = 0. Since a + b ≥ 2, this implies a ≥ 2, hence a− 1 ≥ 1. Since e divides a− 1, it
follows that a− 1 ≥ e, and hence a+ b− 1 ≥ e. If b ≥ p− 1, then a+ b− 1 ≥ p− 2, whence
(i). A similar argument yields (ii). �

Proof of Theorem 1.1. Statement (i) is proved in Proposition 4.2. We use the same notation
as in Theorem 1.1; in particular, L = HH1(A) and L′ is the derived Lie subalgebra of L. It
follows from Lemma 5.5 that L′ contains the images of all elements of X except possibly the
images of f1,0 and g0,1.

The relations in Lemma 5.4 imply that L′ contains no nonzero linear combination of the
images of f1,0 and g0,1. Thus L′ has codimension 2 in L.

A complement of L′ is spanned by the image of {f1,0, g0,1}, and this complement is a
2-dimensional abelian Lie subalgebra of L, by Lemma 5.5 (v). Moreover, L′ has as a basis
the image in HH1(A) of the set

X ′ = X \ {f1,0, g0,1} .
Equivalently, X ′ consists of all fa,b, gc,d in X with a+ b ≥ 2 and c+ d ≥ 2.

It follows from Lemma 5.5 (iii) that the images of f1,0 and g0,1 span a toral subalgebra.
Lemma 5.5 implies that the centraliser in L of the image of f1,0 is spanned by the images of
f1,b, g0,d with b and d− 1 divisible by e. Similarly, the centraliser in L of the image of g0,1 is
spanned by the images of fa,0, gc,1, with a−1 and c divisible by e. Thus Z(L) is contained in
the span of the images of f1,0 and g0,1, but it follows again from Lemma 5.5 that no nonzero
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linear combination of these two elements is in the center. This shows that Z(L) = {0} and
that the toral subalgebra H is maximal. This proves (ii) and (iii).

For m ≥ 1 denote by Lm the subspace of L spanned by the images of those fa,b, gc,d in
X for which a + b ≥ m and c + d ≥ m. Thus L1 = L, L2 = L′, and Lm = {0} for m ≥
2p. The relations in Lemma 5.4 imply that [L′,Lm] ⊆ Lm+1, which in turn implies that L′
is nilpotent, whence (iv).

The socle of L as a Z(A)-module is contained in the subspace of L which is annihilated
by xe and ye. We have xefa,b = fa+e,b if a+ e ≤ p− 1, and xefa,b = 0 if a ≥ p− e. Similarly,
we have yefa,b = fa,b+e if b+ e ≤ p− 1 and yefa,b = 0 if b ≥ p− e. It follows that the socle of
L as a Z(A)-module is equal to the subspace of HH1(A) which is annihilated by xe and ye.
Thus the image of fa,b in L is contained in socZ(A)(L) if a ≥ p− e and b ≥ p− e. Since also
e divides both a− 1 and b or b = p− 1, this forces b = p− 1. Similarly, the image of ga,b in
L is contained in socZ(A)(L) if and only if b ≥ p and a = p− 1. It follows that socZ(A)(L) is
equal to the space spanned by the image in L of the set

S = {fa,p−1 | p− e ≤ a ≤ p− 1} ∪ {gp−1,b | p− e ≤ b ≤ p− 1}

This shows in particular that

dimk(socZ(A)(L)) = 2e .

The relations in Lemma 5.4 imply that we have [X ′, S] = {0}, and hence we have an inclusion

socZ(A)(L) ⊆ Z(L′) .

This proves (v).
By the above and Lemma 5.6, L′ is spanned by the images of elements fa,b, gc,d where at

least one of a, b is greater or equal to e, and where at least one of c, d is greater or equal to
e. Thus L′ is contained in xeL+ yeL. Since no nonzero linear combination of the images of
f1,0, g0,1 is contained in J(Z(A))L, statement (vi) follows.

In order to prove (vii), suppose first that e = p− 1. In that case we have

X ′ = {fa,p−1 | 0 ≤ a ≤ p− 1} ∪ {gp−1,b | 0 ≤ b ≤ p− 1}

The images in L of any two elements of X ′ commute; more precisely, any two elements in
X ′ commute already in H, except for [f0,p−1, gp−1,0], which is inner by Lemma 5.4 (v). This
shows that L′ is abelian if e = p− 1.

Suppose that e < p− 1; in particular, e ≤ p−1
2

. We consider the basis X ′ = X \ {f1,0, g0,1}
of L′. Since e < p − 1, there are derivations fe+1,0, g0,e+1, f1,e, and ge,1 in X ′. Using
Lemma 5.4, one verifies that the Lie brackets of any of these four elements with any element
in X ′ yield elements in X, possibly multiplied by scalars (which can be zero). It follows that
in order to calculate centralisers in L′ of these four particular elements, it suffices to calculate
centralisers in the space H′ spanned by X ′. It follows further that if one of the above four
elements centralises a linear combination of elements in X ′, it centralises the elements of X ′

with nonzero coefficients individually. A tedious verification, using Lemma 5.4, shows that
the centraliser of fe+1,0 in X ′ intersected with the centraliser of g0,e+1 is the set S1 ∪ S2,
where

S1 = {fa,p−1 | p− e ≤ a ≤ p− 1} ∪ {fe+1,0, fp−e,0, fe+1,p−1}
and

S2 = {gp−1,d | p− e ≤ d ≤ p− 1} ∪ {g0,e+1, g0,p−e, gp−1,e+1}
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The element f1,e does not centralise any of the two elements fe+1,0 and fp−e,0. Similarly, ge,1
centralises neither g0,e+1 nor g0,p−e. Thus every element in Z(L′) is the image of a linear
combination of the set

S3 = {fa,p−1 | p− e ≤ a ≤ p− 1} ∪ {fe+1,p−1} ∪ {gp−1,d | p− e ≤ d ≤ p− 1} ∪ {gp−1,e+1}

One verifies that the image of S3 is contained in Z(L′). The cardinality of S3 is 2e + 2.
Statement (vii) follows.

For the last statement, note that the p-power map on L is induced by the map sending a
derivation f on A to the composition f [p] = f ◦ f ◦ · · · ◦ f of f with itself p times. We clearly
have (f1,0)[p] = f1,0, and (g0,1)[p] = g0,1; that is, the images of f1,0 and g0,1 in L are p-toral.
Since the image of {f1,0, g0,1} in L is a basis of H, this shows that H is p-toral. Any element
of X ′ = X \ {f1,0, g0,1} is of the form fa,b or ga,b with a + b − 1 ≥ e or a + b − 1 ≥ p − 2
(the latter arises if a or b is equal to p − 1). Consider first the case where p ≥ 5, so that
p− 2 ≥ 3. Since e ≥ 2, it follows that a+ b− 1 ≥ 2. Lemma 5.2 implies that any derivation
in X ′ sends a monomial in x, y of total degree m to a scalar multiple of a monomial of total
degree at least m + 2. Thus any composition of p elements in X ′ sends a monomial in x, y
of degree at least 1 to a scalar multiple of a monomial xcyd of total degree c + d ≥ 1 + 2p.
This implies that at least one of c, d is greater that p, which in turn implies that xcyd = 0
in A. It follows that any composition of p elements in X ′ is zero. Therefore, if f is a linear
combination of elements in X ′, then f [p] = 0. Since the image in L of X ′ is a basis of L′,
this proves (viii) in the case p ≥ 5. If p = 3, then e = 2, and we have

X ′ = {f0,2, f1,2, f2,2, g2,0, g2,1, g2,2} .

A direct verification shows that the composition of any three derivations in this set is zero,
completing the proof. �

Proof of Corollary 1.3. A stable equivalence of Morita type preserves the Tate analogue of
Hochschild cohomology, hence preserves HH1(A) as a module over HH0(A) ∼= Z(A) since
the projective ideal in Z(A) annihilates Hochschild cohomology in positive degrees. The
corollary follows from statement (v) in Theorem 1.1 together with Corollary 3.2. �

Proof of Corollary 1.4. First consider the case that B is nilpotent. By the structure theorem
of nilpotent blocks [19, (1.4.1)], B is a matrix algebra over kP , hence dimk(J(B)/J(B)2) =
2, and the result holds. Thus, we may assume that B is not nilpotent. In particular, since
P is abelian, I > 1 [5, (1.ex.3)]. By [10, Theorem 1.1], the inertial quotient of B is abelian.
By the structure theory of blocks with normal defect group ([12, Theorem A] or [22, §45]),
C is a matrix algebra over a twisted group algebra of the semidirect product of P with the
inertial quotient of B. Hence, since C has a unique isomorphism class of simple modules, by
[7, Lemma 2], the inertial quotient of B is a direct product of two cyclic groups of order

√
I

(see for instance the proof of Theorem 1.1 and Proposition 5.3 of [10]). By Theorem 4.2 and
Corollary 4.3 of [8] and their proofs, a basic algebra of C is isomorphic to the algebra A of

Theorem 1.1 with 1 < e ≤
√
I. By [10, Theorem 1.1], B is local. Finally, by [14, Theorem

A.2], there is a stable equivalence of Morita type between B and C. The result now follows
from Corollary 1.3. �
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6. Lifting quantum complete intersections over O

Let p be an odd prime and O a complete discrete valuation ring containing a primitive 4-th
root of unity, with residue field k of characteristic p and field of fractions K of characteristic
0.

We denote in this section by G a finite group obtained as a semi-direct product of an
elementary abelian p-group

P = 〈g〉 × 〈h〉 ∼= Cp × Cp
of rank two by a quaternion group Q8 = 〈s, t | s4 = 1, s2 = t2, sts3 = t3〉 of order 8, acting on
P by sgs−1 = g−1, shs−1 = h, tgt−1 = g, and tht−1 = h−1. In particular, the unique central
involution z = s2 = t2 of Q8 acts trivially on P , hence Z(G) = 〈z〉. The group algebra OG
has two blocks, the principal block B0 = OGe0, where e0 = 1

2
(1 + z), and one nonprincipal

block B1 = OGe1, where e1 = 1
2
(1 − z). The block B1 has a unique isomorphism class of

simple modules, and more precisely, the quantum complete intersection

A = k〈x, y | xp = yp = 0, xy + yx = 0〉
is a basic algebra of k⊗OB1. We determine the structure of a basic algebra of B1. To do this,
we will require the Chebyshev polynomials Tn of the first kind. For n ≥ 0, the polynomial
Tn in the variable u is the unique polynomial in Z[u] of degree n satisfying Tn(cos(θ)) =
cos(nθ) for any θ ∈ R. Using sin(θ) = cos(θ − π

2
) we obtain for n odd the formula

sin(nθ) = (−1)
n−1
2 Tn(sin(θ)) .

The polynomials Tn can be defined recursively by T0(u) = 1, T1(u) = u, and Tn+1(u) =
uTn(u)− Tn−1(u) for n ≥ 1. This recursion formula shows that the leading coefficient of Tn
is 2n−1. It also shows that for n even (resp. odd), the polynomial Tn is involves only even
(resp. odd) powers of the variable u. For n ≥ 0, define a polynomial fn in the variable u by

fn(u) = 2Tn(u
2
) .

Then f0(u) = 2, f1(u) = u, and fn+1(u) = ufn(u)−fn−1(u). In particular, fn is a polynomial
in Z[u] with leading coefficient 1, and if n is even (resp. odd), then fn involves only even
(resp. odd) powers of u. The well-known explicit formulae for Chebyshev polynomials imply
that if n = p, then all coefficients of fp other than the leading coefficient of fp are divisible
by p, and hence fp reduces to the monomial up in k[u].

Theorem 6.1. With the notation above, let Â be the O-algebra

Â = O〈γ, δ | γδ + δγ = 0, fp(γ) = 0 = fp(δ)〉

Then Â is a basic algebra of B1; in particular, we have k ⊗O Â ∼= A.

Proof. Since e1 annihilates the OQ8-modules of rank one, it follows that S = OQ8e1 is the
quotient algebra of OQ8 corresponding to the unique irreducible character of Q8 of degree
2, hence isomorphic to the matrix algebra M2(O). The unique simple B1-module (up to

isomorphism) has dimension 2. Thus, setting Â = CB1(S) = BQ8

1 , we get from [22, (7.5)
Proposition] that

B1 = S ⊗O Â
and then necessarily Â is a basic algebra of B1, as its unique simple module has dimension
1. We need to show that Â has generators satisfying the relations as in the statement, and
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then we need to show that there are no other relations. We use the generators g, h, s, t of
the group G with the relations as stated at the beginning of this section. Define elements γ
and δ in B1 by

γ = (g − g−1)te1 , δ = (h− h−1)se1 .

Note that t commutes with g, g−1, hence with g − g−1. Similarly, s commutes with h, h−1,
and with h− h−1. We have

ste1 = 1
2
st(1− t2) = 1

2
s(t− t−1)

tse1 = 1
2
st3(1− t2) = 1

2
s(t−1 − t)

and hence tse1 = −ste1. Using this equality, we verify that se1 and te1 commute with γ and
δ. We have

s(g − g−1)te1 = (g−1 − g)ste1 = (g − g−1)tse1

which shows that se1 and γ commute. Similar calculations show the remaining commutation
relations. This shows that the elements γ and δ are in Â, and we need to show that they
generate Â. Note that g− g−1 = (g2−1)g−1 is a generator of J(k〈g〉)/J(k〈g〉)2; similarly for
h. Thus (g − g−1)e1 and (h − h−1)e1 generate the radical modulo the radical square of the
image of OP in B1, hence these two elements together with e1 generate the algebra OPe1.
The two elements γ and δ are obtained by multiplying (g−g−1)e1 and (h−h−1)e1 by te1 and
se1, respectively, and the two elements se1 and te1 generate S as an O-algebra. It follows
that the set {se1, te1, γ, δ} generates B1 as an O-algebra. But then γ and δ necessarily

generate Â as a unitary algebra.

We verify that γ and δ satisfy the relations as stated. We have

γδ = (g − g−1)t(h− h−1)se1 = −(g − g−1)(h− h−1)tse1

= (h− h−1)(g − g−1)ste1 = −(h− h−1)s(g − g−1)te1 = −δγ
whence the anti-commutation relation for γ and δ. For the remaining relations, we first
consider the element g − g−1 in O〈g〉. This element acts on any O〈g〉-module of rank one
as multiplication by ζ − ζ−1 for some p-th root of unity ζ. This is an imaginary number;

writing ζ = e
2πm
p for some integer m, we get that ζ − ζ−1 = 2 sin(2πm

p
)τ , where τ satisfies

τ 2 = −1. Thus τ
2
(g − g−1) acts as multiplication by − sin(2πm

p
). Since Tp involves only odd

powers of x, it follows that Tp(
τ
2
(g − g−1)) acts as multiplication by ± sin(p2πm

p
) = 0, and

hence Tp(
τ
2
(g− g−1)) = 0 in O〈g〉, or equivalently, fp(τ(g− g−1)) = 0. We calculate the odd

powers of γ and δ. For n = 2m+ 1 for some integer m ≥ 0 we have

(te1)n = t(t2e1)m = (−1)mte1 = τn−1te1 ,

and hence we have

γn = (g − g−1)ntne1 = τn−1(g − g−1)nte1 = τ−1(τ(g − g−1))nte1

Thus, using again that fp involves only odd powers of x, we have

fp(γ) = τ−1fp(τ(g − g−1))te1 = 0.

A similar calculation yields fp(δ) = 0. This shows that γ and δ satisfy the relations as stated.

That is, Â is a quotient of the unitary O-algebra

C = O〈γ, δ | γδ + δγ = 0, fp(γ) = 0 = fp(δ)〉.
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As an O-module, Â is free of rank p2. The relations defining C imply that C is generated,
as an O-module, by the images of the p2 monomials γiδj, with 0 ≤ i, j ≤ p − 1, and hence
C is, as an O-module, a quotient of a free O-module of rank p2. This forces C ∼= Â, whence
the result. �

If B is a nilpotent block of some finite group algebra, then the largest O-free commutative
algebra quotient of a basic algebra of B is symmetric. Indeed, in that case the basic algebras
of B are isomorphic to OQ for some defect group Q of B, and the largest O-free commutative
algebra quotient of OQ is the symmetric O-algebra OQ/Q′, where Q′ is the derived subgroup
of Q. In [11, Remark 1.3], the question was raised whether this property characterises
nilpotent blocks. Some evidence for this comes from a theorem of Okuyama and Tsushima
in [16] which states that B has a commutative (and necessarily symmetric) basic algebra if
and only if B is nilpotent with abelian defect groups. For the sake of testing this question,
we calculate the largest commutative O-algebra quotient of the basic algebra Â of the non-
principal (and non-nilpotent) block B1 of OG, and show that this is indeed not symmetric.

The irreducible characters of B1 have degree either 2 or 4. Thus the simple K ⊗O Â-
modules have dimension either 1 or 2. The number of simple K ⊗O Â-modules of dimension
1 is equal to 2p− 1, and this is also equal to the O-rank of the largest O-free commutative
quotient of Â. This quotient is of the form Â/I, where I is the smallest O-pure ideal in Â

which contains [Â, Â]. Its structure is as follows.

Proposition 6.2. Let Â = O〈γ, δ | γδ + δγ = 0, fp(γ) = 0 = fp(δ)〉 as in the previous
theorem.

(i) The set {γiδj | 1 ≤ i, j ≤ p− 1, i or j odd} is an O-basis of [Â, Â].

(ii) The smallest O-pure ideal in Â which contains [Â, Â] is equal to Âγδ = γδÂ, and the
set {γiδj | 1 ≤ i, j ≤ p− 1} is an O-basis of this ideal.

(iii) The largest O-free commutative quotient of Â is isomorphic to

D = O〈µ, ν | µν = νµ = 0, fp(µ) = fp(ν) = 0〉 .

The set {1} ∪ {µi, νi | 1 ≤ i ≤ p − 1} is an O-basis of D; in particular, the O-rank
of this quotient is 2p− 1.

(iv) We have k ⊗O D ∼= k〈µ, ν | µν = νµ = 0, µp = νp = 0〉, and the k-algebra k ⊗O D
is not symmetric; in particular, the O-algebra D is not symmetric.

Proof. The algebra K⊗O Â is split semisimple, and hence rkO(Z(A))+rkO([Â, Â]) = rkO(Â).
Since A is symmetric, we have dimk(Z(A)) + dimk([A,A]) = dimk(A). Since the canonical

map Z(Â) → Z(A) is surjective, it follows that rkO([Â, Â]) = dimk([A,A]). Thus [Â, Â] is

an O-pure O-submodule of Â. The same arguments is in the proof of Lemma 4.4 show that
the set {γiδj | 1 ≤ i, j ≤ p− 1, i or j odd} is contained in [Â, Â]. This set spans an O-pure

O-submodule of Â mapping onto [A,A], and hence this set is an O-basis of [Â, Â]. This
proves (i). The ideal generated by the set {γiδj | 1 ≤ i, j ≤ p− 1, i or j odd} contains the
set {γiδj | 1 ≤ i, j ≤ p − 1}. The O-span of the latter is an ideal, whence (ii). It follows

from (ii) that A/Aγδ is the largest O-free commutative quotient of Â. The relations of this

quotient are obtained from those of Â, whence (iii). The image of the polynomial fp(u) in
k[u] is xp. Thus the relations of k ⊗O D follow from those of D. The socle of the k-algebra

20



k⊗O D contains the images of µp−1 and νp−1, hence has dimension at least 2. Since k⊗O D
is local, this shows that k ⊗O D is not symmetric, and hence neither is D. �
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4. M. Broué, Isomtries parfaites, types de blocs, catégories dérivées. Astérisque 181–182 (1990), 61–92.
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