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The dynamics of a parametric simple pendulum submitted to an arbitrary angle of excitation / was

investigated experimentally by simulations and analytically. Analytical calculations for the loci of

saddle-node bifurcations corresponding to the creation of resonant orbits were performed by apply-

ing Melnikov’s method. However, this powerful perturbative method cannot be used to predict the

existence of odd resonances for a vertical excitation within first order corrections. Yet, we showed

that period-3 resonances indeed exist in such a configuration. Two degenerate attractors of different

phases, associated with the same loci of saddle-node bifurcations in parameter space, are reported.

For tilted excitation, the degeneracy is broken due to an extra torque, which was confirmed by the

calculation of two distinct loci of saddle-node bifurcations for each attractor. This behavior persists

up to / � 7p=180, and for inclinations larger than this, only one attractor is observed. Bifurcation

diagrams were constructed experimentally for / ¼ p=8 to demonstrate the existence of self-excited

resonances (periods smaller than three) and hidden oscillations (for periods greater than three).

Published by AIP Publishing. https://doi.org/10.1063/1.5016819

Resonance is the absorption of all the energy delivered

by an oscillatory excitation to a dynamical system. There

are several examples where resonance plays an impor-

tant role in our daily lives, such as nuclear magnetic

resonance (NMR) in medicine; or for our pleasure in

musical instruments producing sounds by resonant tubes

as in flutes, or resonant strings as in violins. We study

parametric resonance, the phenomenon that describes

how resonance occurs when a parameter changes as a

response to oscillatory excitation, in a paradigmatic sys-

tem, the parametrically excited pendulum. We focus our

study on the persistence of odd periodic resonances with

respect to the parameter range for which they exist.

Analysis based on the basin of attraction of the resonant

orbits reveals how this persistent behavior depends on

the tilt of the pendulum pivot alignment.

I. INTRODUCTION

Resonance is the absorption of all the energy delivered by

an excitation to an oscillatory system. One example is the

absorption of radio frequencies by a quantum system in which

there are interactions between a nuclear spin and an external

magnetic field, as in Ref. 1, FexZn1�xF2 crystals in Nuclear

Magnetic Resonance (NMR), where fluorine nuclei have

nuclear spin I ¼ 1
2
. Another example is the absorption of micro-

waves in Electron Paramagnetic Resonance (EPR) in crystals

of nickel hexahydrate salts. In this system,2,3 the arrangement

of six water molecules defines the crystalline field around the

nickel ion, giving rise to different symmetries from cubic to

rhombic. In both cases, while the oscillatory excitation fre-

quency fext is kept fix, the external magnetic field is varied and

resonance occurs when the difference between two energy lev-

els satisfies jEj � Ekj ¼ �hfext. For the first case, NMR, the

interactions of the nuclear spin with the neighborhoods do not

contribute to the first moment of the resonance curve, while in

the second case (EPR), the first moment depends on the crystal

field symmetry, which can be lowered, and so, the degeneracy

of the levels can be split, and more than one resonance can be

observed.

Resonances in plates excited by acoustic waves used as a

classical equivalent to quantum chaos, as the Sinai stadium,4

for example, are strongly dependent on plate symmetry since

the resonance conditions are established by the boundary con-

ditions. Resonant tubes such as woodwind instruments and

waves in strings are also examples of resonant systems that

depend on the boundary conditions. There are other types of

resonances in systems that have fundamental frequencies

depending only on physical parameters of the apparatus, such

as pendulums and electronic circuits such as RLC, where

only one resonance can be observed when the external excita-

tion frequency is equal to the fundamental one.

One paradigmatic system is the parametric simple pendu-

lum.5 Parametric resonance occurs when a parameter becomes

time dependent as a response to oscillatory excitation.6,7 The

parametric pendulum presents several resonances with the

oscillation frequencies as sub-multiples of the excitation fre-

quency, called subharmonic resonances. Such resonances can

be found by determining the occurrence of simple zeros of the

Melnikov subharmonic functions to find the loci of saddle-

node bifurcations where the subharmonic solutions appear.

However, in case the excitation is along the vertical direction,

/ ¼ 0, odd resonances cannot be determined by the analysisa)Electronic mail: sartorelli@if.usp.br
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of first order corrections of Poincar�e stroboscopic maps of the

system, as showed by Koch and Leven.8 This method also

cannot determine the occurrence of odd oscillations in other

similar symmetric parametric systems, such as a simple pen-

dulum subjected to non-harmonic excitation9 and a pendulum

with periodically varying lengths.10 Using another approach

based on Melnikov’s method, Kwek and Li11 showed in a

very general context that for a nonlinear perturbed system,

while even oscillations arise from parametric excitation along

the vertical direction, odd oscillations appear as a consequence

of external torques. Following this reasoning, one might be

lead to conclude that the extra torque that appears when / 6¼ 0

is the dynamical mechanism behind the appearance of odd res-

onances in parametric pendulums. However, Clifford and

Bishop,12 using symbolic dynamics, reported the occurrence

of period-3 oscillations for the vertically excited case, despite

being only observable for a small range of control parameter

values.

This paper investigates how commonly odd periodic

oscillations of symmetric systems should be expected to

appear, describing how their behavior changes as we tilt the

direction along which the pivot oscillates and what is the

dynamical mechanism behind the onset of stable odd resonan-

ces. We also present a detailed derivation of the Melnikov

subharmonic function for the parametrically excited simple

pendulum in the Appendix.

II. PLANAR SIMPLE PENDULUM REVISITED

In Fig. 1, a diagram of the experimental apparatus is

shown. The harmonic movement of the pendulum pivot in a

sliding car is driven by a crank attached to a servo motor. The

absolute value of the pendulum angular speed jxj ¼ j dh
dt j is

obtained with the help of a rotary encoder and the pivot speed

jvpj ¼ j ds
dt j with a linear encoder. By keeping A constant, the

excitation frequency fp, in the range ½minðfpÞmaxðfpÞ�, was

spanned first in the forward direction and afterward in the

backward direction in steps of 60:01;60:05 Hz.

If we write q ¼ ðh;xÞ, then the planar simple pendulum

can be described by _q ¼ f ðqÞ, where f(q) is the Hamiltonian

vector field

f ðh;xÞ ¼
x

�sin h

 !
: (1)

There is a pair of homoclinic orbits q0
6 that are

bi-asymptotic to the saddle points ðh;xÞ ¼ ð6p; 0Þ. A conti-

nuous 1-parameter family of periodic oscillations fills the inte-

rior of the homoclinic orbits. This family can be parametrized

by a given a 2 ð�1; 0Þ and can be represented by (Fig. 2)

qaðtÞ ¼ ðhaðtÞ;xaðtÞÞ;

where haðtÞ and xaðtÞ are defined implicitly by

cos
ha

2

� �
¼ ksnðt; kÞ; sin

ha

2

� �
¼ dnðt; kÞ;

xa ¼ _h
a ¼ 2kcnðt; kÞ; (2)

where k ¼ sin
ha

max

2

� �
2 ½0; 1� is the elliptic modulus and

snðt; kÞ; cnðt; kÞ, and dnðt; kÞ are the Jacobi elliptic func-

tions.13 Notice that Ta ¼ 4KðkÞ, where K(k) is the complete

elliptic integral of first kind, grows monotonically, and tends

to infinity as the homoclinic orbit is approached, that is,

Ta !1 as a! 0.

III. PARAMETRIC EXCITATION

Suppose a pendulum whose pivot oscillates in a tilted

direction / (for details, see Ref. 7), under linear damping

due to viscous dissipation given by �b _h. If we define the

dimensionless parameters of the system by

Xp ¼
xp

x0

; P ¼
x2

pA

g
; b ¼ b

x0

; (3)

where x0 ¼ 2pf0 is the natural frequency of oscillation of

the pendulum and g is the gravitational acceleration, then the

equation of motion is given by

FIG. 1. Diagram representing the experimental apparatus. Fundamental fre-

quency f0 ¼ 1:61Hz, mass m ¼ 37:61g, center of mass LCM ¼ 5:05 cm from

the pivot position, and dissipation parameter b ¼ 0:0376 s�1.

FIG. 2. Phase space of the simple pendulum showing the saddle points P0;

qa is a family of periodic orbits of period Ta; and q0 is the homoclinic orbit.
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€h ¼ �sin h� � P cos ðXptÞ sin ðh� /Þ þ bx
� �

; (4)

where 0 < � � 1. Notice that if / ¼ 0, the pendulum pivot

oscillates along the vertical direction and the equations of

motion are symmetric with respect to the spatial inversion

transformation R

h! R h ¼ �h; (5)

otherwise, / 6¼ 0 adds an extra torque to the movement.

Now, consider the parametrically excited simple pendu-

lum, whose pivot oscillates harmonically along a direction

tilted by an angle / with the vertical direction, with nondi-

mensionalized amplitude and frequency given by P and Xp,

respectively. If the pendulum is subjected to a viscous dissi-

pation term given by �bx, it can be described by

_q ¼ f ðqÞ þ �gðq; _qÞ (6)

and

gðh;x;P;Xp; bÞ ¼
0

�P cos ðXptÞ sin ðh� /Þ � bx

 !
: (7)

Melnikov’s method (see the Appendix for details) states that

if the quantity

Mmðt0Þ ¼
ðmTp

0

f ðqaðtÞ; _qaðtÞÞ � g qaðtÞ; _qaðtÞ; tð Þdt (8)

has simple zeros, that is, Mm ¼ 0 but @Mm

@t0
6¼ 0, there will

be periodic orbits of period Ta ¼ mTp, where m is even.

Therefore, we obtained the loci of saddle-node bifurcations

for even resonances Pm
even ¼ Rm

even

Rm
evenðXpÞ ¼

4b EðkÞ � k02KðkÞ
� �

pX2
p cos /

sinhðXpK0ðkÞÞ; (9)

where k is the elliptic modulus, E(k) is the complete elliptic

integral of the second kind, K0ðkÞ ¼ Kðk0Þ, and k02 ¼ 1� k2

is the complementary elliptic modulus, in accordance with

the results of Koch and Leven.8 If m is odd, Mmðt0Þ can only

have simple zeros if sin / 6¼ 0, that is, if the additional tor-

que in Eq. (A8) is non-identically null. Then, the loci of

saddle-node bifurcations are given by Pm
odd ¼ Rm

odd

Rm
oddðXpÞ ¼

4b EðkÞ � k02KðkÞ
� �

p sin /
2EðkÞ
KðkÞ � 1

� 	
sechðXpK0ðkÞÞ þ p2S

K2ðkÞ

( ) ;

(10)

where S is given by Eq. (A13). Notice that the elliptic modulus

k is determined from Xp through the resonance condition, and

it is worth noticing that for Xp > m, there is no k such that

Eq. (A3) is satisfied. However, oscillations of odd periods

are not predictable for vertical excitation due to the fact that

odd and even oscillatory solutions exhibit different symmetry

properties. While even oscillations are R-invariant [invariant

under transformation (5)], odd oscillations are not: they appear

in pairs that are R-conjugate.14 This difference causes the

vanishing of the term that could lead to the occurrence of sim-

ple zeros in the Melnikov subharmonic functions for odd

oscillations.

IV. RESULTS AND DISCUSSION

A. Vertical excitation /50

1. Period-3 oscillations

When we have a pure vertical parametric excitation, odd

periodic resonances cannot be predicted by Melnikov’s sub-

harmonic functions due to the symmetry of the equations

of motion. Period-3 oscillations were believed to be observ-

able only for a small interval of parameter values,12 but we

will show that this is not the case. In Fig. 3(a) (parameters

A¼ 2.02 cm and fp¼ 5 Hz), we show the basins of attraction

FIG. 3. For A¼ 2.02 cm, fp¼ 5 Hz and / ¼ 0. (a) The basins of attraction of

periodicity as identified by the color bar at right. There are six islands corre-

sponding to period-3 oscillations. Negative numbers indicate periodic rota-

tions. (b) The phase spaces for the six period-3 attractors, where we plotted

the odd trajectories ðhodd ;xoddÞ in black and the even ones ð�heven;�xevenÞ
in purple. In (c), we have the phase basin of attraction for period-3, with

unstable fixed points represented by white circles, saddle points by white

stars, and in black lines the stable manifolds of the saddle points.
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of a fixed point, period-3, and period-23 oscillations, as well

as that of some periodic rotations. In brown, we can see six

islands representing the basin of attraction of period-3 oscil-

lations. An island is a continuous region (open set) in phase

space. Integrating the system from the initial conditions

labeled with odd numbers in Fig. 3(a) (1, 3, and 5), we

obtained the same attractor (henceforth called the odd attrac-

tor), while initial conditions 2, 4, and 6 lead to a second

attractor (henceforth called the even attractor). In Fig. 3(b),

we plotted the phase portraits of the odd attractor ðhodd;
xoddÞ as black lines and the even one ð�heven;�xevenÞ as

circles, showing that they are conjugated by inversion sym-

metry. For both period-3 attractors, we also constructed

basins of attraction by observing the number of different

maxima of the x time series. If three positive values were

found, the point was colored cyan, while for two positive

maxima (corresponding to three negative minima), the point

was colored magenta, as shown in Fig. 3(c). The black lines

show the separatrices between the basins of attraction of

period-3 oscillations and of equilibrium. They are defined by

the stable manifold of the period-3 saddle points that were

created together with the period-3 attractors in saddle-node

bifurcations.

We call the odd and even attractors shown in Fig. 3(b)

degenerate because the loci of saddle-node bifurcations where

the attractors are created are the same, as shown in Fig. 4(a).

These lines were obtained via numerical continuation.15 This

degeneracy appears as a result of the spatial inversion symme-

try of the system.

Due to the small sizes of the six islands, it is to be

expected that finding an initial condition inside the basin of

attraction of period-3 experimentally would be very difficult.

However, after dozens of tentatives, we managed to find

period-3 resonances experimentally for / ¼ 0. We obtained

the experimental bifurcation diagram hjxji vs. fp, where

hjxji is the mean value of the angular speed, as shown in

Fig. 4(b). Experimental data are shown in triangles, while

the dashed line was obtained by numerical integration of Eq.

(4). It is remarkable not only that the attractors are degener-

ate, in the sense that they necessarily coexist, but also that

they are robust over a small frequency range of 0.7 Hz.

2. Period-5 oscillations

In Fig. 5, the basins of attraction for A¼ 2.02 cm and

fp ¼ 8:55 Hz are shown. There are ten islands that lead to

period-5 oscillations (red), and embedded in each one of

these islands, there are other five tiny islands corresponding

to the period-25 attractor (green). The large regions in brown

are related to the basin of the period-4 attractor, and so, it is

very easy to obtain period-4 oscillations experimentally.

However, the small size of the islands corresponding to

period-5 suggests that such oscillations should be difficult to

observe experimentally. In fact, we did not succeed despite

having tried dozens of times. Taking into consideration the

existence of noise, we conclude that obtaining period-5 oscil-

lations experimentally is practically impossible.

B. Small tilted excitation /54 p
180

Breaking the system symmetry by increasing the tilt in

the pivot motion to / ¼ 4 p
180

, we can see that the six islands

FIG. 4. For A¼ 2.02 cm, fp¼ 5 Hz and / ¼ 0. In (a), we show that the loci

of saddle-node bifurcations are the same for all the six initial conditions,

showing that the attractors are indeed degenerate. These lines were obtained

by numerical continuation.15 (b) Both the experimental (symbols) and the

simulated (dashed line) bifurcation diagrams.

FIG. 5. For A¼ 2.02 cm, fp ¼ 8:55 Hz and / ¼ 0. Basins of attraction of

periodicity. The period of each attractor is indicated by colors (color bar on

the right). Negative numbers correspond to periodic rotations.
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shown in Fig. 3(a) collapsed into the three islands shown in

Fig. 6(a). The large basin of attraction of the fixed point (0,0)

was replaced by the basin of period-1 oscillations. As the

islands apparently suggest a reflection symmetry x! �x,

we also chose six initial conditions [numbered from one to

six in Fig. 6(a)] to compare with the vertical case. In Fig.

6(b), we show the phase spaces for the six period-3 orbits,

where we plotted the three equal odd trajectories in black

lines (xodd vs. hodd) and in purple the three even trajectories

(�xeven vs. heven). Two distinct (non-degenerate) period-3

attractors were obtained. In Fig. 6(c), we can see the basin

of attraction of period-3, showing that each island of period-

icity is divided into two new regions, now corresponding to

different period-3 attractors. These basins are separated by

the stable manifold of a period-3 saddle (shown as a white

star) that was created together with a period-3 attractor. The

period-3 basins suffer an interesting qualitative change, from

six separated islands to three. The two attractor basins

merged in three large period-3 basins due the change in one

period-3 saddle position: at / ¼ 0, the stable manifolds of

the two period-3 saddles separate the fixed point and one

period-3 attractor; at / ¼ 4 p
180

, one of them separates the

period-1 attractor from a period-3 one and the other one sep-

arates the two non-degenerate period-3 attractors.

In Fig. 7, we show the loci of saddle-node bifurcations for

each of the two (even and odd) period-3 attractors, obtained

via numerical continuation. Due to the symmetry break, they

cannot be transformed into each other by spatial reversion and

the loci of saddle-node bifurcations are not degenerate. Both

attractors can still be found up to / � 7p=180.

Above / � 7p=180, only a single type of period-3

attractor is observed. Its basin of attraction is composed of

three disjoint regions.

C. Tilted excitation /5 p
8

Experimental bifurcation diagrams were obtained by

changing fp at instants tstep. This way, the initial conditions

after each step are given by ðhðtstepÞ;xðtstepÞÞ. After a tran-

sient time, the new steady state is recorded.

In the fp range ½0:5; 12:1� Hz, we measured hjxðtÞji, first

in a forward sweep of the excitation frequency, followed by

a backward sweep to investigate the self-excited oscillations.

By plotting hjxji vs. fp, we constructed the bifurcation dia-

grams shown in Fig. 8(a), where circles represent the for-

ward span and a continuous blue line the backward span. By

starting at fp¼ 0.5 Hz, the pendulum oscillates with the same

frequency as the excitation as it is increased. As we get

closer to fp¼ 0.8 Hz, the pendulum starts to oscillate with

period T ¼ Tp=2. Afterward, it resumes oscillating with

T¼ Tp. Therefore, a bubble of bifurcation Tp ! Tp=2! Tp

was observed without hysteresis.

FIG. 6. For A¼ 2.02 cm, fp¼ 5 Hz and / ¼ 4 p
180

. In (a), the periodicity basin

of attraction identifies three period-3 islands. (b) The phase portraits for the

six initial conditions inside the period-3 basin, where we plotted odd trajec-

tories in black (xodd vs. hodd) and even ones in magenta (�xeven vs. heven),

showing two non-degenerate period-3 attractors. In (c), we have the basin of

attraction for period-3. White circles correspond to unstable fixed points,

while saddles are indicated by white stars. The stable manifolds of the saddle

points are depicted in black.

FIG. 7. Loci of saddle-node bifurcations for the two period-3 attractors for

/ ¼ 4p=180. After breaking the symmetry, the attractors cease to be degen-

erate, which is confirmed by the distinct loci of saddle-node bifurcations.
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We can also observe a T¼ Tp resonance related to a

saddle-node bifurcation, clearly presenting hysteresis but

preserving the periodicity. After the fp range ½� 2:7;� 3:8�
Hz of non-periodic behaviors, we have periodic oscillations

related to a period doubling bifurcation, associated with a

T ¼ 2Tp resonance in the range ½� 3:8 � 4:15� Hz. For fp

> 4:15 Hz, the pendulum oscillates with frequency f¼ fp or

T¼ Tp, as expected for a forced pendulum with the extra tor-

que due the tilted direction of excitation.

Given that we did not have to search for adequate initial

conditions manually, as the experimental apparatus sets them

automatically at each fp value, the resonances described in 8(A)

are called self-excited.16 In Fig. 8(b), the bifurcation diagrams

related to saddle-node bifurcations with T ¼ 3Tp; T ¼ 4Tp,

and T ¼ 5Tp oscillations are shown. Symbols correspond to a

forward frequency span, while continuous lines to a backward

sweep. For every diagram, we had to look for specific initial

conditions ðh0;x0Þ. The need to specify initial conditions man-

ually is a characteristic of the so-called hidden oscillations.

In Fig. 9, a region of the parameter space P� Xp related

to the saddle-node bifurcations shown in Fig. 8(b) is shown.

The continuous lines indicated by SN3, SN4, and SN5 are

the loci of saddle-node bifurcations and were obtained via

numerical continuation.15,17 They constitute the borders of

primary subharmonic resonance regions Xp ¼ 3, 4, and 5,

respectively. The full circles, indicated by R3
odd (blue), R4

even

(red), and R5
odd (green), are the loci of saddle-node bifurca-

tions predicted by the Melnikov subharmonic functions [See

Eqs. (9) and (10)].

The agreement between numerical and analytic predic-

tions for the loci of saddle-node bifurcations (where the reso-

nant periodic attractors of periods-3, 4, and 5 appear for

P< 0.5) is remarkable.

V. CONCLUSIONS

We have studied the parametrically excited pendulum

experimentally, numerically, and analytically. For the vertical

excitation case (/ ¼ 0, a symmetrical system), the existence

of odd periodic oscillations is not predictable by Melnikov’s

method due to the fact that odd and even oscillatory solutions

exhibit different symmetry properties. While even oscilla-

tions are R-invariant, odd oscillations are not, appearing in R-

conjugate pairs. This difference causes the term that could

lead to the occurrence of simple zeros in the Melnikov sub-

harmonic functions to vanish for the odd case.

We have characterized two symmetrical period-3 attrac-

tors, which were called degenerate as they were created in

the same locus of saddle-node bifurcations in parameter

space. Despite not being predicted by Melnikov’s method

(first order), we were able to observe period-3 oscillations

experimentally.

We were not able to detect period-5 oscillations experi-

mentally for / ¼ 0 since the corresponding basin of attrac-

tion is too small, as demonstrated numerically.

For a small tilted direction / ¼ 4p=180, the system is

not symmetrical anymore, and so, the attractors are not

degenerate, which is corroborated by the observation of two

distinct loci of saddle-node bifurcations in parameter space.

These loci were obtained via both numerical continuation

and Melnikov’s method, in good agreement. As the basin of

attraction of period-3 oscillations composed of large islands,

such oscillations were easily observed experimentally.

Taking into account experimentally obtained bifurcation

diagrams for / ¼ p=8, we analyzed self-excited resonances

of the period smaller than three, as well as hidden oscilla-

tions for periods greater than three, which are related to sub-

harmonic resonances.
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FIG. 9. Parameter space for the tilted parametric pendulum with / ¼ p
8
.

Continuous lines SN3, SN4, and SN5 are the loci of saddle-node bifurca-

tions obtained by numerical continuation, while full circles indicate R3
odd;

R4
even, and R5

odd obtained by Melnikov’s method.

FIG. 8. For / ¼ p
8

and A¼ 2.02 cm. (a) An experimental bifurcation diagram

in the fp interval ½0:5; 12:1� Hz, showing the self-excited T ¼ Tp=2, T¼Tp,

and T ¼ 2Tp resonances, related to bifurcation bubble, saddle-node, and

period-doubling bifurcations. Above fp � 4:15 Hz, the forced oscillations

are due to the additional extra torque given by the tilted excitation. In (b),

the experimental bifurcation diagrams for the hidden oscillations T ¼ 3Tp;
T ¼ 4Tp, and T ¼ 5Tp are shown.
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APPENDIX: MELNIKOV SUBHARMONIC FUNCTION
METHOD

Consider the parametrically excited simple pendulum,

whose pivot oscillates harmonically along a direction tilted

by an angle / with the vertical direction, with nondimen-

sionalized amplitude and frequency given by P and Xp,

respectively. If the pendulum is subject to a dissipation term

given by �bx, it can be described by

_q ¼ f ðqÞ þ �gðq; _qÞ; (A1)

where 0 < � � 1 and f(q) is the Hamiltonian vector field and

gðh;x;P;Xp; bÞ ¼
0

�P cos ðXptÞ sin ðh� /Þ � bx

 !
:

(A2)

1. Melnikov subharmonic function method

From the family of periodic oscillations in the interior of

the homoclinic orbits, qaðtÞ, consider those satisfying the res-

onance condition Ta ¼ mTp, that is,

4KðkÞ ¼ m
2p
Xp
: (A3)

They are called subharmonic solutions. If Mmðt0Þ, a path

integral given by

Mmðt0Þ ¼
ðmTp

0

f ðqaðtÞ; _qaðtÞÞ � g qaðtÞ; _qaðtÞ; tð Þdt; (A4)

with f � g ¼ f1g2 � f2g1, has simple zeros, then the per-

turbed system (A1) also has a solution that is a periodic

subharmonic oscillation of period mTp, arising from a

saddle-node bifurcation.18,19

The idea is that the quantity Mmðt0Þ in Eq. (A4) is

related to the first order correction of the m-th Poincar�e stro-

boscopic map of the system. If the unperturbed system has a

periodic solution of period m, that is, the m-th stroboscopic

map has a fixed point, then under the condition that Mmðt0Þ
has simple zeros, the m-th stroboscopic map of the perturbed

system also has a fixed point.

2. Melnikov subharmonic functions of the
parametrically excited pendulum

For the parametrically excited pendulum, we substitute

the vector fields (1) and (A2) into the Melnikov subharmonic

function (A4) and obtain

Mmðt0Þ ¼
ðmTp

0

�xaðtÞ P cos ðXptÞ sin ðha � /Þ þ bxa� �
dt:

(A5)

Substituting Eq. (2), subject to the resonance condition (A3),

into Eq. (A5), we have

Mmðt0Þ ¼ �4k2bI1 � 4k2P cos /I2 þ 2kP sin /I3

� 4k3P sin /I4; (A6)

where

I1 ¼
ðmTp

0

cn2ðt; kÞdt;

I2 ¼
ðmTp

0

cos Xpðtþ t0Þ
� �

cnðt; kÞsnðt; kÞdnðt; kÞdt;

I3 ¼
ðmTp

0

cos Xpðtþ t0Þ
� �

cnðt; kÞdt;

I4 ¼
ðmTp

0

cos Xpðtþ t0Þ
� �

cnðt; kÞsn2ðt; kÞdt:

(A7)

The dissipation term �bðxaÞ2 is the one that contributes to

the integrand of I1. The integrand of I2 comes from the con-

tribution of the vertical excitation term

P cos / cos Xpðtþ t0Þ

 �

sin haðtÞ

 �

;

while the integrand of both I3 and I4 comes from the contri-

bution of an extra torque term that appears in the asymmetric

case, / 6¼ 0, given by

s ¼ �P sin / cos Xpðtþ t0Þ

 �

cos haðtÞ

 �

: (A8)

Imposing that Mmðt0Þ in Eq. (A6) has simple zeros allows

us to calculate the loci of saddle-node bifurcations generating

a subharmonic periodic orbit, i.e., the minimum values Rm

such that for P > Rm, we might observe stable oscillatory

motion of period mTp in the parameter space.

By integrating Eq. (A7), we have

I1 ¼
4

k2
EðkÞ � k0 2KðkÞ
� �

; (A9)

where k02 ¼ 1� k2 is the complementary elliptic modulus.

Expressions I2, I3, and I4 can be solved by expanding the

Jacobi elliptic functions in the Fourier series and using the

orthogonality properties between trigonometric functions. To

compute I2, we first use

d cn2ðtÞ
� �

¼ �2cnðtÞsnðtÞdnðtÞdt

and integrate by parts. Then, substituting the resonance con-

dition (A3) into the expression for the Fourier expansion of

cn2ðt; kÞ and using orthogonality relations, we end up with

I2¼
pX2

p

k2
csch XpK0ðkÞ

� �
sinðXpt0Þ; if m even;

0; otherwise;

8><
>: (A10)

where K0ðkÞ ¼ Kðk0Þ. Now, let us compute I3. Proceeding

the same way as before, after some calculations, we have

I3 ¼
2p
k

sech XpK0ðkÞ
� �

cos ðXpt0Þ; if m odd;

0; otherwise:

8<
: (A11)

Finally, we compute I4, which is the most tricky term. We

start by writing the product of the Fourier series for cnðt; kÞ
and sn2ðt; kÞ, substituting the resonance condition (A3). In

order to perform the integration, we must compute the inte-

gration of the product of three cosines with different argu-

ments. With

033103-7 Depetri et al. Chaos 28, 033103 (2018)



CC ¼ 2 1� EðkÞ
KðkÞ

� 	
sechðXpK0ðkÞÞ;

after cumbersome calculations, we have

I4 ¼
p
k3

CC� p2S

K2ðkÞ

 !
cos ðXpt0Þ; if m odd

0; otherwise;

8>><
>>: (A12)

where S is given by

S ¼
X1
l¼0

aþðlÞ
2

csch
aþðlÞ

m
XpK0ðkÞ

� 	
� sech

bðlÞ
m

XpK0ðkÞ
� 	

þ
X1
l ¼ 0

l 6¼ m� 1

2

a�ðlÞ
2

csch
a�ðlÞ

m
XpK0ðkÞ

� 	

� sech
bðlÞ
m

XpK0ðkÞ
� 	

; (A13)

where aþðlÞ¼2lþ1þm; a�ðlÞ¼2lþ1�m, and bðlÞ¼2lþ1.

3. Odd and even subharmonic oscillations

Now, we substitute Eqs. (A9)–(A12) in the expression

to the Melnikov integral in Eq. (A6). If m is even, then

I3 ¼ I4 ¼ 0, and simple zeros of Mmðt0Þ are due to the term

I2, which comes from the vertical excitation component. In

this case, Rm
even is given by

Rm
evenðXpÞ ¼

4b EðkÞ � k02KðkÞ
� �

p cos /X2
p

sinhðXpK0ðkÞÞ: (A14)

This result agrees with Ref. 8. On the other hand, if m is

odd, I2 ¼ 0, and Mmðt0Þ can only have simple zeros if

sin / 6¼ 0, that is, if the additional torque in Eq. (A8) is non-

identically null. Then, Rm
odd is given by

Rm
oddðXpÞ ¼

4b EðkÞ � k02KðkÞ
� �

p sin /
2EðkÞ
KðkÞ � 1

� 	
sechðXpK0ðkÞÞ þ p2S

K2ðkÞ

( ) ;

(A15)

where S is given by Eq. (A13). Note that the elliptic modulus

k is determined from Xp through the resonance condition,

and it is worth noticing that for Xp > m, there is no k such

that Eq. (A3) is satisfied.
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