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One of the main limitations to understanding the evolutionary history of hydrothermal vent and cold seep communities is
the identification of tube fossils from ancient deposits. Tube-dwelling annelids are some of the most conspicuous
inhabitants of modern vent and seep ecosystems, and ancient vent and seep tubular fossils are usually considered to have
been made by annelids. However, the taxonomic affinities of many tube fossils from vents and seeps are contentious, or
have remained largely undetermined due to difficulties in identification. In this study, we make a detailed chemical
(Fourier-transform infrared spectroscopy and pyrolysis gas-chromatography mass-spectrometry) and morphological
assessment of modern annelid tubes from six families, and fossil tubes (seven tube types from the Cenozoic, 12 Mesozoic
and four Palaeozoic) from hydrothermal vent and cold seep environments. Characters identified from these investigations
were used to explore for the first time the systematics of ancient vent and seep tubes within a cladistic framework.
Results reveal details of the compositions and ultrastructures of modern tubes, and also suggest that two types of tubes
from ancient vent localities were made by the annelid family Siboglinidae, which often dominates modern vents and seeps.
Our results also highlight that several vent and seep tube fossils formerly thought to have been made by annelids cannot be
assigned an annelid affiliation with any certainty. The findings overall improve the level of quality control with regard to
interpretations of fossil tubes, and, most importantly, suggest that siboglinids likely occupied Mesozoic vents and seeps,
greatly increasing the minimum age of the clade relative to earlier molecular estimates.
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Introduction

Hydrothermal vents and cold seeps are remarkable sites in

the deep sea, characterized by the ejection of chemically

reduced fluids from the seafloor that fuel abundant life

through the process of chemosynthesis (Van Dover 2000).

Annelids are some of the most conspicuous dwellers of

modern hydrothermal vent and cold seep ecosystems,

occurring as large habitat-forming tubeworm bushes, on

the walls of vent chimneys, and showing remarkable

adaptations that enable them to thrive in these environ-

ments. Tube-building annelids such as siboglinids, serpul-

ids and chaetopterids often occur at vents and seeps, and

siboglinids are especially well adapted to these environ-

ments by possessing chemosynthetic endosymbionts. Not

long after the discovery of vent and seep ecosystems in

the late 1970s and early 1980s (Lonsdale 1977; Corliss

et al. 1979; Paull et al. 1984), multiple fossil analogues of

these communities were also described. These have

shown the occupation of vents and seeps by animal life to

be ancient, dating back to the Silurian period, approxi-

mately 443–419 Ma (Little et al. 1997; Barbieri et al.

2004). Phanerozoic vent and seep deposits contain bra-

chiopod, gastropod and bivalve fossils, and commonly

tubular fossils often considered to have been made by

annelids. While the taxonomy of non-tube fossil groups is

generally uncontroversial, that of the tube fossils has

remained elusive. Many tubular fossils are referred to sim-

ply as ‘worm tubes’, rather than being assigned to specific

modern or fossil lineages, or have received controversial

assignments (Campbell 2006; Vrijenhoek 2013). This has

hindered our ability to understand the evolutionary history

of chemosynthetic communities.

The majority of annelids are entirely soft-bodied and in

general this phylum has a very poor fossil record (Parry

et al. 2014). However, the dwelling tubes that many
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annelids create are often more robust structures that have

a greater likelihood of becoming preserved as fossils

(Ippolitov et al. 2014; Georgieva et al. 2015a), and espe-

cially so within vents and seeps where rapid mineral pre-

cipitation often favours fossilization.

Some annelids can produce only thin, temporary mucus

tubes, but many construct dwelling tubes with greater

durability (Gaill & Hunt 1988; Merz 2015). Non-mucus

or robust annelid tubes can be divided into three broad

categories: calcium carbonate tubes, agglutinated tubes

comprised of inner organic layers and outer exogenous

material (e.g. sediment grains), and tubes comprised

purely of an organic secretion. Calcareous tubes are

almost exclusively confined to the family Serpulidae, but

single extant sabellid and cirratulid genera also produce

calcareous tubes (Ippolitov et al. 2014). Calcareous tubes

can be formed of either calcite or aragonite, or of both

minerals, and may also exhibit distinct crystal microstruc-

tures (Vinn et al. 2008). Agglutinated tubes occur in fami-

lies such as Sabellidae and Terebellidae, or only in a

subset of members of a family, e.g. the genus Mesochae-

topterus (Chaetopteridae). Purely organic tubes (referred

to as ‘organic’ tubes hereafter) often have a high protein

content which co-occurs with a carbohydrate (Merz

2015). For example, chaetopterid tubes are considered to

be formed of a highly ordered fibrous protein embedded

within a carbohydrate matrix (Gaill & Hunt 1988), and

also to contain furfural (Berkeley 1922). The tubes of

Alvinella spp. (Alvinellidae) are primarily comprised of

protein (Vovelle & Gaill 1986). Other organic tubes may

be formed of a b-chitin and protein complex. The latter

composition most notably occurs in the tubes of sibogli-

nids (Brunet & Carlisle 1958; Shillito et al. 1995), which

constitute the most prominent tubicolous annelid family

occupying modern vents and seeps. Chitin content can

vary throughout the length of siboglinid tubes (Julian

et al. 1999), and has also recently been detected in the

tubes of spionids and oweniids (Guggolz et al. 2015).

Annelid builders of calcareous, agglutinated and organic

tubes all occur at modern hydrothermal vents and cold

seeps (Olu et al. 1996; Desbruy�eres et al. 2006; Levin &

Mendoza 2007; Kupriyanova et al. 2010).

Many of the tubular fossils at ancient vent and seep

sites are considered to have originally been organic in

composition (e.g. Little et al. 1999a, b; Goedert et al.

2000; Himmler et al. 2008), but identification based on

their morphologies has proved difficult. This is because:

(1) many fossil tubes lack diagnostic characters; (2) often

only short fragments of fossil tubes are found, making it

difficult to assess the morphology of the whole tube; (3)

the same type of tube can exhibit a range of preservations;

and (4) tube surfaces with diagnostic characters may be

obscured by mineralization. Existing taxonomic designa-

tions of fossil tubes to the annelids are made based on

their resemblance at various morphological scales to

tubicolous annelid lineages as well as on environmental

considerations in some instances. Potential annelid affini-

ties of originally calcareous fossil tubes may also be eval-

uated on their ultrastructure if this is well preserved (e.g.

Taylor & Vinn 2006), and Palaeozoic fossil tubes are also

assessed for their resemblance to non-annelid tube-

builders from this period such as cornulitids, microcon-

chids and tentaculitids (e.g. Vinn et al. 2016).

Identification of fossil vent and seep tubes is further

complicated by poor understanding of the taphonomy and

fossilization of different tube types within these settings.

The few existing studies show that vestimentiferan and

alvinellid tubes at hydrothermal vents are preserved pri-

marily by iron sulphides, with details of outer tube orna-

ment and fibrous textures sometimes very intricately

replicated (Cook & Stakes 1995; Georgieva et al. 2015a).

At seeps, aragonite can preserve the original finely multi-

layered structure of the tube walls of the vestimentiferan

Escarpia southwardae, also retaining details of fraying of

the fibrous tube wall and the delamination (layer separa-

tion) of tube walls (Haas et al. 2009). At seeps, the origi-

nal wall structure of an annelid tube may be preserved,

allowing the determination of whether the tube was origi-

nally calcareous or organic; however, at vents this is more

difficult as carbonate is rapidly dissolved and replaced.

While it is known that organic compounds (biomarkers)

specific to methane- and sulphur-cycling micro-organisms

may be preserved at vents and seeps (Peckmann et al.

2004; Blumenberg et al. 2012), the preservation of anne-

lid tube biomarkers during fossilization within these envi-

ronments has not been investigated. If preserved,

biomarkers can potentially provide additional information

to aid in the identification of problematic vent and seep

tube fossils due to the different compositions of organic

annelid tubes (Gaill & Hunt 1988).

Based on tube morphology and occurrence within an

ancient vent environment, many fossil vent and seep tubes

have been assigned to the vestimentiferans (a subgroup of

siboglinids comprising its larger members) (Little et al.

1999c, 2004; Shpanskaya et al. 1999). However, these

identifications have been challenged as the morphological

characters used to make the diagnoses are not unique to

the vestimentiferans, being also present in other annelid

families as well as non-annelid fossil taxa (Kiel & Dando

2009). Such characters include longitudinal wavy ridges,

tube collars (or flanges) and multi-layered tube walls, as

well as the size and mass occurrence of tubes. However,

no comprehensive comparison of modern organic and fos-

sil annelid tubes has yet been attempted to determine

whether there are clear morphological features that can

distinguish tubicolous annelid lineages in the fossil

record.

Interpretations of Palaeozoic and Mesozoic vent and

seep tubes as vestimentiferans are also at odds with the

age of the siboglinids as determined through molecular
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clock methods. The oldest putative vent siboglinid,

Yamankasia rifeia, is »440 million years old, which

vastly exceeds the range of molecular age estimates for

the family Siboglinidae Caullery, 1914, of 50–126 million

years (Little & Vrijenhoek 2003; Vrijenhoek 2013).

Recently discovered borings of the bone-eating siboglinid

worm Osedax in Late Cretaceous (»100 million year old)

plesiosaur and turtle bones (Danise & Higgs 2015), how-

ever, suggest that the older molecular age estimates for

this family may be more accurate. The above study also

highlights that better morphological assessment of fossils

is needed to clarify the evolutionary ages of vent and seep

fauna.

To advance the understanding of the evolutionary his-

tory of deep-sea hydrothermal vents and cold seep com-

munities, this study aims to improve the taxonomy of the

abundant but problematic fossil annelid tubes from Phan-

erozoic vents and seeps. Firstly, by investigating both

modern annelid and fossil tubes from vents and seeps, we

aim to define a range of morphological criteria by which

tubes from different lineages may be distinguished. We

also aim to clarify whether modern organic annelid tubes

exhibit significantly different chemical compositions, and

whether these can be detected in the fossil record. Sec-

ondly, we analyse these data within a more objective,

modern cladistic framework.

Materials and methods

Modern and fossil tube selection
Fossil tubes for identification were selected based on the

availability of material, and are therefore a non-random

subsample of all the reported tubes from fossil vent and

seep localities (Supplemental File 1, Table S1). An effort

was made to include tubes from a range of geological

time periods and exhibiting a range of morphologies

(summarized in Supplementary File 1, Table S2).

Tubes from modern annelid families for detailed study

and comparison with fossil material (Supplementary File

1, Table S3) were chosen on the basis of two main criteria:

(1) those that occur within modern vents and seep environ-

ments, and (2) those for which difficulties in discrimina-

tion in the fossil record of vents and seeps have been

noted. As potential confusion between siboglinid and chae-

topterid tubes in the fossil record has been highlighted

(Kiel & Dando 2009), analyses of modern material were

focused on tubes from these two families, with an effort

made to cover the range of tube morphologies exhibited

by each family (Supplementary File 1, Table S3).

In addition to vestimentiferans, the family Siboglinidae

includes another two monophyletic lineages that construct

durable organic tubes: the frenulates and the moniliferans.

Both of these lineages build small-diameter (mostly less

than 1 mm) tubes that are often long compared to their

diameter, with frenulate tubes generally exhibiting greater

morphological diversity. The tubes of vestimentiferans,

Sclerolinum (moniliferan) and frenulates were all

included in tube comparisons. Siboglinid tubes are known

to exhibit variation from their anterior to posterior sec-

tions (Southward et al. 2005). Vestimentiferan tubes can

produce extensive posterior tube regions buried in sub-

strate that lack ornamentation and are sometimes termed

‘roots’ (Dattagupta et al. 2006). For such tubes, the mor-

phology of the anterior, middle and posterior regions were

noted. Chaetopterid tubes can also show morphological

variation along their length, although this is more rarely

observed than in siboglinid tubes.

Serpulid tubes that may resemble siboglinid tubes were

also included in tube comparisons, as were the tubes of

the genera Alvinella (Alvinellidae) and Glyphanostomum

(Ampharetidae) because they construct organic tubes and

occur at vents (and also seeps for the latter genus)

(Reuscher et al. 2009, 2012). Agglutinated tubes from

several families (Sabellidae, Chaetopteridae, Oweniidae)

were included for comparison with non-agglutinated

tubes. Palaeozoic fossil tubes were also compared to the

tubes of Palaeozoic non-annelids, using existing literature

describing the latter.

Morphological analysis
Fossil tubes were photographed and measured in hand

specimen, and a selection of these were also imaged

uncoated using a FEI Quanta 650 FEG-ESEM scanning

electron microscope at the Natural History Museum, UK

(NHMUK). Fossil tubes from each locality were also pre-

pared as polished thin sections, and visualized using light

microscopy. Selected modern tubes were initially photo-

graphed, after which lengths of approximately 10 mm

were cut from a subset of these for further analyses. For

tubes that showed differentiation along their length,

10 mm sections were cut from each different region (e.g.

the anterior, middle and posterior portions of frenulate

tubes). For tubes preserved in ethanol, sections were ini-

tially critical-point dried, and all tube sections were subse-

quently visualized using scanning electron microscopy

(SEM). Following this, tube sections were embedded in

resin, prepared as polished thin sections and visualized

using light microscopy.

Aspects of the overall morphology, ultrastructure and

composition (see below) exhibited by modern tubes were

used to identify characters that can be used to distinguish

annelid tubes, with an attempt made to include all of the

features that a tube may exhibit. This was important

because tubes, especially when fossilized, generally pos-

sess relatively few characters compared to annelid soft tis-

sues. The 48 characters (see Supplementary File 2, Fig.

S4) are all binary-coded to maximize the amount of infor-

mation obtainable.
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Principal coordinate and phylogenetic analyses
Selected tube characters were used to create a character

matrix (Supplementary File 1, Table S4) in which mor-

phological and compositional aspects of modern and fossil

tubes were scored using findings from this study as well as

the existing literature. During creation of the character

matrix, the differing anterior and posterior sections of

four vestimentiferan tubes were scored individually to test

for any effects of this on subsequent analyses. Fossil tubes

from two localities (Bear River, Wilbur Springs) were

also removed from the character matrix prior to any sub-

sequent analyses. These tubes were only available in thin

section; therefore, broader tube morphology could not be

assessed.

The resulting character matrix was firstly used to con-

duct a principal coordinate analysis (PCA), to assess the

similarity of tubes based on the 48 identified characters

within a low-dimensional space. PCA was performed

using PAST (Hammer et al. 2001), which has the ability

to handle an incomplete matrix. Similarity was computed

with the Gower Similarity index.

The tube character matrix was also used to conduct

phylogenetic analyses to determine whether composi-

tional and morphological criteria can reconstruct currently

accepted relationships of modern annelid lineages as

inferred from soft tissues and DNA (Rouse & Fauchald

1997; Weigert & Bleidorn 2016), and where fossils fit in

relation to these. These were performed using the parsi-

mony program TNT v. 1.1 (Goloboff et al. 2008), for the

following two data sets: (1) modern taxa, tube data only

(43 taxa, 48 characters); and (2) modern and fossil taxa,

tube data only (64 taxa, 48 characters). To explore con-

gruence between DNA-based phylogenies and tube mor-

phology, an additional three data sets were created that

included molecular data for modern annelids (Supplemen-

tary File 1, Table S5). These data sets were analysed using

the Bayesian program MrBayes v. 3.2.6 (Ronquist &

Huelsenbeck 2003) (see Supplementary File 1: Methods

Supplement 1). Outgroup choice for all analyses was

based on the findings of Weigert et al. (2014).

For analyses performed using TNT, all characters were

treated as non-additive (unordered) and were weighted

using implied character weighting, which is deemed more

appropriate for data sets in which homoplasy is likely to

occur (Goloboff 1993; Legg et al. 2013). The degree to

which homoplastic characters are down-weighted during

the analysis is determined by the concavity constant k,

which is set to 3 by default in TNT. Greater values of k

down-weigh homoplastic characters to a lesser extent, and

our data sets were analysed with both k D 3 and k D 4 due

to the suggested high potential for homoplasy when deal-

ing with tubicolous annelids (Merz & Woodin 2006; Kiel

& Dando 2009). Tree searching was conducted using the

new technology search option, as this is regarded as the

most suitable search tool for finding the shortest trees

when handling data sets that contain 50 or more taxa

(Goloboff 1999). Tree search parameters were as follows:

200 random stepwise addition sequences, 3000 iterations

each of drifting and ratcheting, and 100 rounds of tree fus-

ing. Symmetric resampling of 1000 replicates was used to

measure nodal support as this technique is unaffected by

character weighting (Goloboff et al. 2003; Legg et al.

2013).

Tube compositional analysis
Several modern organic tubes covering a range of annelid

families were initially analysed using Fourier transform

infrared spectroscopy (FTIR). This technique is used to

identify the types of bonds or functional groups present

within an organic sample (Williams & Fleming 1980),

and was employed to provide an overview of similarity in

organic composition between tubes from various taxo-

nomic lineages. FTIR analyses were performed using a

Nicolet Nexus FTIR bench unit (Thermo Scientific,

Waltham, MA, USA) at Imperial College, London (ICL)

in attenuated total reflectance mode. Spectra were col-

lected at a resolution of four data points per reciprocal

centimetre, and converted to absorbance using Nicolet

OMNIC software (Thermo Scientific).

A subset of the modern organic tubes that showed dif-

ferent FTIR spectra were then analysed in more detail

using pyrolysis gas-chromatography mass-spectrometry

(py-GC-MS; also performed at ICL) to identify the struc-

tural components of the tubes. Py-GC-MS is widely

employed for analysis of organics preserved in fossils, as

it allows rapid detection of complex polymers and

requires very little material (Gupta & Cody 2011). For

this analysis, small pieces of modern dry annelid tube

were placed inside quartz pyrolysis tubes plugged with

quartz wool at each end. Further details of the py-GC-MS

methods used can be found in Supplementary File 1,

Methods Supplement 2.

To determine whether fossil tubes contained any pre-

served organic matter (and would hence make good tar-

gets for py-GC-MS), thin sections of fossil tubes were

initially viewed using confocal laser scanning microscopy

(CLSM) with a Nikon A1-Si confocal microscope at the

NHMUK, operated in auto-fluorescence mode. Fossil

tubes were selected for py-GC-MS if they showed pro-

nounced fluorescence relative to surrounding minerals

with CLSM and were therefore suspected to contain pre-

served organic matter. For py-GC-MS, the walls of fossil

tubes were carefully separated from the host rock, ground

to a fine powder, placed inside pyrolysis tubes, and ana-

lysed using the same instrument parameters as modern

tubes. Fossil tubes from two localities (Humptulips, Wai-

piro) were assessed only for organics content (with

4 M. N. Georgieva et al.



py-GC-MS; Supplementary File 1, Table S2) and were

therefore not included in the character matrix.

Organization of results
The results section follows a systematic review of ancient

vent and seep tube fossils organized by geological age

(youngest to oldest). Results of principal coordinate, phy-

logenetic and tube compositional analyses are subse-

quently presented.

Sample identification codes for fossil tube material in

the systematics section (e.g. RK-5) are locality codes and/

or codes assigned by collectors/donors of material.

Repository abbreviations. NHMUK, Natural History

Museum, London, UK; UL, University of Leeds, Leeds,

UK; LACMIP, Natural History Museum of Los Angeles

County, Invertebrate Paleontology section, USA; PMO,

Palaeontological Museum, Oslo, Norway; NRC, Natural

Resources Canada.

Systematic palaeontology

Phylum Annelida Lamarck, 1809

Family incertae sedis

‘Rocky Knob tubes’

(Fig. 1)

2008 worm tubes Campbell, Francis, Collins, Gregory,

Nelson, Greinert, & Aharon: 90, fig. 4b, c.

2010 worm tubes Saether, Little, & Campbell: 510,

fig. 3c.

2011 ?Siboglinidae Saether: 73, fig. 5.1e–i.

Material. RK-5, block of many large-diameter tubes,

mostly in the same orientation. RK-15B-6, block of

small-diameter tubes mostly in the same orientation.

RNT1, many similar-sized tubes, mostly in the same ori-

entation. RNT2, dense aggregation of small-diameter

tubes in a range of orientations. 12-RK, small and larger

diameter tubes, mostly in the same orientation. Donated

by K. A. Campbell and collected by C. T. S. Little.

Occurrence. Rocky Knob, northern Hawke’s Bay area,

east coast of North Island, New Zealand (»38�19’S,
177�56’E). Seep carbonates occurring as isolated lenses

in mudstone, Bexhaven Limestone Formation, Tolaga

Group, Middle Miocene (Campbell et al. 2008; Saether

et al. 2010; Saether 2011).

Description. Carbonate tubes mostly straight and exhib-

iting a wide range of diameters, from 1.0 to 7.9 mm, pre-

served in clusters mostly of similar-sized tubes (Fig. 1A,

B). In some clusters, tubes are preserved in the same ori-

entation (Fig. 1B). The tubes are non-branching, large-

diameter fragments taper somewhat (Fig. 1A), and some

tube walls appear to be touching others (Fig. 1B, F). Tube

walls are mostly smooth (Fig. 1C); however, one tube

exhibits small round textures on its surface (Fig. 1D)

while another small-diameter tube bears fine, long, contin-

uous longitudinal wrinkles (Fig. 1B). Tube walls appear to

have been originally fibrous as in places torn fibres are

preserved (Fig. 1E), and some of the tubes also seem to

have been originally flexible due to the occurrence of

irregular tube cross-sections (Fig. 1F). The tubes show

pronounced organic content (Fig. 1G; Supplementary File

1, Table S9). The tubes also appear originally to have

been multi-layered (Fig. 1E, G, H), with delamination

occurring between some layers (Fig. 1H). Some tube sec-

tions show well-consolidated lamination that is many

layers thick (Fig. 1G, H).

Remarks. Tubes from Rocky Knob have previously been

tentatively ascribed to siboglinids (Saether 2011). How-

ever, cluster and cladistic analyses (Figs 22, 24) failed to

place these tubes among the siboglinids or any other anne-

lid families included in the analyses. Noting their similar-

ity to vestimentiferan tubes, we therefore assign these

tubes to the annelids only, as more information would be

required to assign them to siboglinids. The abundance of

these tubes at this ancient seep, large diameter range, gen-

erally smooth organic tube walls, and the thick, neatly

multi-layered tube wall appearance in some of the speci-

mens do suggest a vestimentiferan affinity. The round

structures (Fig. 1D) present on the surface of a large-

diameter tube may constitute the circular bases of arago-

nite botryoids (Fig. 1F).

Phylum incertae sedis

‘Upper Waiau River tubes’

(Fig. 2)

Material. UWT3-4, clumps of tubes preserved mostly in

the same orientation, one large-diameter tube has a very

grainy tube wall. Donated by K. A. Campbell.

Occurrence. Upper Waiau River, northern Hawke’s Bay

area, east coast of North Island, New Zealand (»38�13 0S,
178�5 0E). Seep carbonates occurring as isolated lenses in

mudstone, Bexhaven Limestone Formation, Tolaga

Group, ?late early Miocene–middle Miocene (Campbell

et al. 2008; Saether 2011).

Description. Relatively straight carbonate tubes, 2.3–

6.6 mm in diameter (Fig. 2A). Tube walls smooth

(Fig. 2A) or with a grainy appearance (Fig. 2B, C) created

by what seems to be aragonite growth around many small

spheres. In section, tube walls appear to have a high

organic content (Fig. 24; Supplementary File 1, Table

S9), and comprise multiple brown layers of varying thick-

ness. Preserved tears (Fig. 2D) also suggest that the origi-

nal tube wall had an organic component. The brown
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layers sometimes have a thick carbonate band occurring

along their outer edge (Fig. 2D, E). The small spheres that

likely give the tube its grainy appearance are located on

the outside of this layer (Fig. 2D).

Remarks. These tubes were resolved among siboglinids

only within the cladistic analysis that allowed more homo-

plasy (Fig. 23B). However, the amount of missing data for

the tubes (Supplementary File 1, Table S4) makes this

Figure 1. ‘Rocky Knob tubes’, Middle Miocene, New Zealand. A, RK-5, larger tube fragments in hand specimen. B, RNT-1, smaller,
parallel-aligned tubes, with one tube exhibiting fine longitudinal wrinkles on its surface (white arrow). C, 12-RK, detail of smooth tube
wall. D, RNT-1, tube exhibiting round concretions on its surface. E, RK-15B-6B, tube in transverse section showing preserved torn
fibres. F, RK-15B-6B, tube with irregular cross section suggesting it may originally have been flexible. G, RK-15B-6A, detail of join
between three tubes with thick, multi-layered walls in transverse section; imaged using confocal laser scanning microscopy (see online
for colour version). H, detail of tube transverse section showing delamination of its thick, multi-layered tube wall. Scale bars: A D 20
mm; B D 5 mm; C D 2 mm; D, F D 1 mm; E D 100 mm; G, H D 200 mm.
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result uncertain. In addition, the small spheres present on

the surface of these tubes make them difficult to place.

These spheres are not located on top of the organic fibrous

layers as would be expected in an agglutinated tube.

Instead, the spheres are located on top of another layer of

mineralization, suggesting that they formed on the tube

during or after mineralization. Similarly preserved tubes

have been observed in the Devonian Hollard Mound

deposit (Peckmann et al. 2005). The tube assemblage at

Upper Waiau River warrants further investigation and

Figure 2. ‘Upper Waiau River tubes’, UWT3-4, ?late Early Miocene–Middle Miocene, New Zealand. A, tubes in hand specimen. B,
tube with grainy wall in hand specimen. C, detail of tube wall in B. D, detail of tube wall in near transverse section showing brown bands
that make up the multi-layered tube wall, where a tear in the wall is also preserved (grey arrow); a small sphere is preserved towards the
outside of the tube (white arrow). E, detail of tube wall in transverse section showing a thick calcareous band occurring on the outside of
the brown tube wall layers. Scale bars: A D 20 mm; B D 2 mm; C D 1 mm; D, E D 200 mm.
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therefore these tubes are not presently assigned to a mod-

ern annelid or non-annelid lineage.

Phylum Annelida Lamarck, 1809

Family Serpulidae Rafinesque, 1815

‘Bexhaven tubes’

(Fig. 3)

Material. BXG, many small-diameter tubes occurring

clustered together (Fig. 3A). Collected by C. T. S. Little.

Occurrence. Bexhaven locality, northern Hawke’s Bay

area, east coast of North Island, New Zealand (»38�3 0S,
178�5 0E). Seep carbonates occurring as isolated lenses in

mudstone, Bexhaven Limestone Formation, Tolaga

Group, Middle Miocene (Campbell et al. 2008; Saether

2011).

Description. Carbonate tubes 0.5–1.9 mm in diameter,

non-branching, somewhat sinuous (wavy) (Fig. 3A), and

appearing to have been originally rigid as they demon-

strate clean fractures (Fig. 3E). Tubes do not taper in the

fragments observed. Tube wall surfaces exhibit numerous

fine, parallel transverse wrinkles (Fig. 3B). Tubes are

clearly attached to each other (Fig. 3C, D), and show

chevron-like multi-layered tube wall structure (Fig. 3E),

while in some cases the tube walls have been replaced

(Fig. 3D). Tube walls do not appear to contain preserved

organic matter (Fig. 25).

Remarks. The attachment exhibited by the tubes and the

chevron-like structure of their walls clearly point to the

tubes having been made by Serpulidae Rafinesque, 1815,

and they are identified as such by both cluster and cladis-

tic analyses (Figs 22, 24). The tube wall ornamentation of

fine closely spaced transverse wrinkles is also seen in

Figure 3. Serpulidae sp., ‘Bexhaven’, BXG, Middle Miocene, New Zealand. A, tubes in hand specimen. B, detail of tubes in hand spec-
imen showing fine parallel transverse wrinkles on tube surfaces. C, tubes in section. D, cluster of five attached tubes in transverse sec-
tion. E, detail of partial transverse section of tube wall showing its chevron-like appearance. Scale bars: A D 20 mm; B D 3 mm; C D
2 mm; D, E D 500 mm.
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many members of this family (e.g. Serpula spp.). Serpul-

ids have also tentatively been suggested to occur at the

Haunui and Ugly Hill localities (Saether 2011).

?Family Siboglinidae Caullery, 1914

‘West Fork Satsop River tubes’

(Fig. 4)

Material. JLG459C, WFSR-3B, several wavy tubes.

WFSR-3A-1, several tubes observed in thin section.

Donated by J. L. Goedert.

Occurrence. West Fork Satsop River, Grays Harbor

County, Washington State, USA (»47�16 0N, 123�33 0W).

Float seep limestone blocks. Lincoln Creek Formation,

Oligocene (Campbell & Bottjer 1993; Kiel & Amano

2013).

Description. Carbonate tubes up to 2.4 mm in diameter,

somewhat sinuous, non-branching, and not appearing to

have been agglutinated or to taper in the observed frag-

ments (Fig. 4A, B). Tubes appear inflexible and unat-

tached, and the tube walls are free of ornamentation. In

thin section, the tube walls are brown, of variable thick-

ness but finely multi-layered (Fig. 4C, D). An originally

organic composition of the tube walls is also supported by

confocal microscopy (Fig. 25), and breaks in the tube wall

can be observed showing potential frayed fibre endings

(Fig. 4D).

Figure 4. ‘West Fork Satsop River tubes’, Oligocene, Washington State, USA. A, B, WFSR-3B and WFSR JLG 459C, respectively,
tubes in hand specimen showing wavy nature and smooth tube walls. C, D, WFSR 3A-1; C, transverse section of tube showing multi-
layered brown walls of varying thickness; D, detail of tube wall where a potential preserved fibrous tear occurs, revealing frayed fibre
endings (white arrow). Scale bars: A D 10 mm; B D 5 mm; C D 300 mm; D D 100 mm.
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Remarks. These tubes were resolved only within the cla-

distic analysis that allowed for more homoplasy (Fig. 23B),

in which they fall among siboglinids. The fibrous organic

composition and concentrically multi-layered walls are,

however, also consistent with the tubes of chaetopterids,

although the smooth walls and sinuosity of these tubes sug-

gest that they are possibly more likely to have been made by

siboglinids. We therefore tentatively suggest a siboglinid

affinity.

?Family Siboglinidae Caullery, 1914

‘Murdock Creek tubes’

(Fig. 5)

Material. WA-MC LACMIP loc. 6295, one spiralling

tube (Fig. 5A), another tube with a »90� bend, and a

smaller tube observed in thin section only. Donated by

J. L. Goedert.

Occurrence. Murdock Creek, Clallam County, Washing-

ton State, USA (»48�9 0N, 123�52 0W). Loose seep car-

bonate blocks. Pysht Formation, late Early Oligocene

(Goedert & Squires 1993; Kiel & Amano 2013; Vinn

et al. 2013).

Description. Carbonate tubes 0.7–3.0 mm in diameter,

appearing non-branched, non-agglutinated and non-

tapering in the tube fragments observed. The spiralling

Figure 5. ‘Murdock Creek tubes’, WA-MC LACMIP loc. 6295, Early Oligocene, Washington State, USA. A, a single tube in hand
specimen possibly bearing longitudinal wrinkles. B, detail of tube wall in transverse section with thick, multi-layered and delaminated
tube wall. C, transverse section of tube which appears to have originally been flexible. D, detail of tube wall where a preserved tear
occurs, revealing fibre endings (grey arrow). Scale bars: A D 5 mm; B D 150 mm; C D 100 mm; D D 50 mm.
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tube (Fig. 5A) appears to have coarse longitudinal wrin-

kles on its surface, but whether these are original is uncer-

tain. In thin section, tube walls are thick and

concentrically multi-layered (Fig. 5B–D), and occasion-

ally delaminated (Fig. 5B). Some of the tubes appear to

have originally been flexible (Fig. 5C) and to have had

fibrous walls due to visible preserved wall tears in thin

section (Fig. 5D).

Remarks. These tubes appear to have been organic origi-

nally due to preserved tube wall tears that reveal a fibrous

nature. The size of the tubes, their thick, multi-layered

walls and the spiralling that they exhibit suggest that the

tubes may have been made by vestimentiferans, as the

combination of these features are not commonly encoun-

tered in other organic tube-building annelids that occur at

vents and seeps. Due to a limited amount of material

available for study, and as these tubes were only resolved

among those of siboglinids when homoplastic characters

are downweighted less within cladistic analyses

(Fig. 23B), the tubes are only tentatively assigned to the

siboglinids.

?Family Siboglinidae Caullery, 1914

(?vestimentiferan)

‘Canyon River tubes’

(Fig. 6)

2000 vestimentiferan worm tubes Goedert, Peckmann, &

Reitner: 995, fig. 3.

Material. WA-CR LACMIP 16957, several large,

straight tubes preserved in the same orientation. JLG 473,

tubes embedded in carbonate matrix, thin sections of tubes

only. Donated by J. L. Goedert.

Occurrence. Canyon River, south-west Washington

State, USA (47�18.18 0N, 123�30.52 0W). Seep carbonate

within siltstone, Lincoln Creek Formation, lower Oligo-

cene (Goedert et al. 2000; Peckmann et al. 2002).

Description. Carbonate tubes from this locality were

originally described by Goedert et al. (2000). They mea-

sure 1.1–7.0 mm in diameter, and are non-branching, non-

agglutinated and not attached to other tubes (Fig. 6A–C).

Tubes taper slightly, and the walls of the majority of the

tubes are smooth and lack ornamentation (Fig. 6A, B),

while longitudinal wrinkles are present in one small-diam-

eter tube (Fig. 6C). Tube walls are thick and multi-lay-

ered, and at times delaminated (Fig. 6D), suggesting an

originally organic composition. The tubes appear to have

originally been rigid as walls are generally not com-

pressed, both in hand specimen (Fig. 6A–C) and thin sec-

tion (Fig. 6E), and fluorescence during CLSM analysis of

the tube walls further suggests that the tubes were origi-

nally organic (Fig. 6F).

Remarks. These tubes were suggested to have been

made by vestimentiferans by Goedert et al. (2000), resem-

bling tubes made by the genus Escarpia. Despite the tubes

being largely unresolved in the cladistic and cluster analy-

ses (Figs 22, 24), they closely resemble those of vestimen-

tiferans owing to their smooth walls and columnar

morphology. The diameter range of the tubes, as well as

the hard, organic, mostly thick and multi-layered nature

of the tube walls, are typical of most vestimentiferans. We

therefore suggest that vestimentiferans are the most likely

builders of these tubes, but this assignment is tentative

due to the poor resolution of these tubes in the cladistic

analysis.

Phylum incertae sedis

‘Bear River tubes’

(Fig. 7)

Material. LACMIP 5802 BRB-1, several small tubes

preserved in close proximity and embedded within the

carbonate matrix. Donated by J. L. Goedert.

Occurrence. Bear River, Pacific County, Washington

State, USA (46�19.94 0N, 123�55.96 0W). Large seep

deposit, siltstone of Cliff Point, late Eocene (Vinn et al.

2013).

Description. Tubes are 0.4–2.3 mm in diameter, and

appear non-agglutinated and not attached to other

tubes (Fig. 7A). As the tubes are fairly round in thin sec-

tion, it is inferred that they were originally rigid (Fig. 7A).

Whether or not the tubes taper is unknown, and details

of wall ornamentation could not be assessed. In thin sec-

tion, the tube walls are thick (Fig. 7B, C) and in

places remnants of tube wall appear multi-layered

(Fig. 7C). The brown, filmy nature of the tube walls

(Fig. 7B, C) suggests that they were likely originally

organic in composition.

Remarks. The thick, multi-layered organic tube walls

suggest that these tubes could potentially have been made

by annelids, perhaps siboglinids. However, due to the

inability to assess outer tube wall characters and availabil-

ity of only a limited number of sections, these tubes have

not been assigned to a modern annelid lineage.

Phylum Annelida Lamarck, 1809

?Family Siboglinidae Caullery, 1914

(?vestimentiferan)

‘Omagari tubes’

(Fig. 8)

2003 possible vestimentiferan worm tubes Hikida, Suzuki,

Togo, & Ijiri: 336, figs 3.1, 4.1, 4.4, 4.5, 5, 8.

Material. Many small, similar-diameter tubes pre-

served together. OMG03-4a, pinkish calcite with many
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worm tubes with brown walls (Fig. 8A, B). OMG03-4b,

brown-walled tubes observed in thin section. OMG03-1,

many tubes in muddy, crumbly matrix (Fig. 8C, D).

OMG03-2, OMG03-3a, OMG03-3b, many tubes with

light-coloured walls preserved in hard cement. Donated

by Y. Hikida.

Occurrence. Omagari, Nakagawa-cho region, north-

western Hokkaido, northern Japan (44�39.58 0N,
142�2.22 0E). Approximately 10 m wide seep carbonate

deposit, Omagari Formation, Yezo Supergroup, Campa-

nian, Cretaceous (Hikida et al. 2003; Majima et al. 2005;

Kiel et al. 2008a).

Figure 6. ‘Canyon River tubes’, Oligocene, Washington State, USA. A–C, WA-CR LACMIP 16957; A, large-diameter tubes in hand
specimen; B, smooth small-diameter tubes; C, small-diameter tube with longitudinal wrinkles. D–F, JLG 473; D, delaminated tube wall
with a fragment of preserved multi-layered tube wall (white arrow); E, uncompressed transverse section of a small diameter tube; F,
detail of tube wall showing fluorescent bands that likely indicate the presence of preserved organic matter from the tube wall, imaged
using confocal laser scanning microscopy (see online for colour version). Scale bars: A D 20 mm; B D 5 mm; C D 3 mm; D D 150 mm;
E D 300 mm; F D 30 mm.
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Description. Non-agglutinated tubes, many of which

are partially or fully replaced by silica or siderite,

resulting in a dark brown-black or reddish colour,

respectively. The tubes do not appear to be branching

(Fig. 8A–D), and have walls that, where visible, appear

smooth (Fig. 8B, D). Tube diameters range from 0.8 to

2.7 mm, and tubes do not appear to taper distinctly

along their lengths. Tube walls are uncompressed, sug-

gesting that they may have originally been rigid, and

are multi-layered (Fig. 8E, F). Tube walls are gener-

ally not very thick, apart from in a subset of tubes in

which the walls are thick and exhibit many layers

Figure 7. ‘Bear River tubes’, LACMIP 5802 BRB-1, late Eocene, Washington State, USA. A,multiple tubes in transverse section with neat
round profiles. B, small-diameter tube with thick wall. C, large-diameter tube with thick wall and showing evidence of multi-layering. Scale
bars: AD 2 mm; BD 300mm; CD 200mm.
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Figure 8. A–H, ‘Omagari tubes’, Campanian, Hokkaido, Japan; A, OMG03-4a, hand specimen with many, similar-diameter tubes with
brown walls encased in carbonate; B, OMG03-3b, detail of tube with brown wall, outer wall appears smooth; C, D, OMG03-1, cluster
of tubes (C) with mineralized walls but not encased in carbonate, and detail of individual tubes (D); E, OMG03-2, tubes with brown
walls in section; F, OMG03-4b, large-diameter tube in transverse section with wall comprised of many layers; G, OMG03-1, preserved
tear in the wall of a tube suggesting an originally fibrous nature; H, clump of Omagari tubes (reproduced from Hikida et al. 2003).
I, clump of the roots of the seep vestimentiferan Lamellibrachia luymesi (donated by C. Fisher). Scale bars: A D 10 mm; B D 1 mm;
C D 5 mm; D, E D 2 mm; F D 500 mm; G D 50 mm; H, I D 20 mm.
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(Fig. 8F). Preserved tears of the tube wall reveal an

originally fibrous nature (Fig. 8G).

Remarks. These tubes were interpreted as those of vesti-

mentiferans by earlier work (Hikida et al. 2003), but are

difficult to identify owing to their lack of ornamentation.

They fall among siboglinids when more homoplasy is per-

mitted in the cladistic analysis (Fig. 23B). The tubes were

clearly organic, due to preserved wall tears that reveal a

fibrous nature. Transverse ornamentation typical of some

frenulates or chaetopterids is absent, and the size and

clumped nature of the tubes, combined with walls that are

sometimes thick and neatly multi-layered, suggests that

the Omagari tubes are most likely the roots/posterior por-

tions of vestimentiferan tubes. The morphology of Oma-

gari tube clumps very closely resembles a clump of the

roots of the seep vestimentiferan Lamellibrachia luymesi

(Fig. 8H, I). We therefore tentatively suggest that the

Omagari tubes may be vestimentiferan tube roots.

Family incertae sedis

‘Okukinenbetsu yellow tubes’

(Fig. 9A–D)

Material. OKb4, OKb4-2, OKb4-4, yellowish-walled

tubes observed in thin section. OKb4-5, similar-sized

tubes with yellowish walls preserved in a range of orienta-

tions. Donated by F. Gill.

Occurrence. Okukinenbetsu River (Kanajirisawa Creek)

seep carbonate, Obira-machi, north-western Hokkaido,

northern Japan. Mudstone of Middle Ezo Group, Cenoma-

nian, Cretaceous (Majima et al. 2005; Kaim et al. 2008;

Kiel et al. 2008a).

Description. Small carbonate tubes, 1.1–2.4 mm in

diameter, fairly straight, non-branching and non-

agglutinated (Fig. 9A). Tubes are not attached to each

other and do not seem to taper much, and the tube walls

appear to have originally been somewhat flexible

(Fig. 9A). The only ornamentation visible on the tubes is

fine, continuous longitudinal wrinkles which occasionally

bifurcate (Fig. 9A, B). In thin section, the tube walls are

preserved as brown-yellow rims showing evidence of

multi-layering and mineral growth between tube layers

(delamination) (Fig. 9C, D). Some of the tube sections

also show signs of compression and/or shrinkage.

Remarks. Fine longitudinal wrinkles such as those found

on these tubes are most often associated with vestimentif-

eran tubes, and they very closely resemble the small-

diameter tubes with longitudinal wrinkles from Canyon

River. However, these tubes could not be resolved by the

cladistic analysis (Fig. 23) likely due to the poor state of

preservation of their wall structure, and are therefore pres-

ently only ascribed to the annelids.

?Family Siboglinidae Caullery, 1914

‘Okukinenbetsu brown tubes’

(Fig. 9E–I)

Material. OKb4-3, larger tubes with brown walls largely

obscured by rock matrix. Donated by F. Gill.

Occurrence. Okukinenbetsu River (Kanajirisawa Creek)

seep carbonate, Obira-machi, north-western Hokkaido,

northern Japan. Mudstone of Middle Ezo Group, Cenoma-

nian, Cretaceous (Majima et al. 2005; Kaim et al. 2008;

Kiel et al. 2008a).

Description. Large brown silicified tubes 3.7–4.3 mm in

diameter, uncompressed in section (Fig. 9E) and with

clear multi-layering (Fig. 9F–I) that is very thick and well

consolidated in some of the tubes (Fig. 9I). Highly frayed

edges can be seen, suggesting that tubes were originally

organic and fibrous (Fig. 9F).

Remarks. The clear round transverse sections of the

larger brown tubes suggests that the tubes were originally

rigid. Their size may indicate that the inhabitants were not

frenulates, while the structure of the tube wall indicates

that they are more likely to have been made by siboglinids

than chaetopterids due to the thick, well-consolidated

multi-layering. These tubes fall among siboglinids when

more homoplasy is permitted in the cladistic analyses

(Fig. 23B); therefore, this affinity is only tentatively

suggested.

?Family Siboglinidae Caullery, 1914

(?vestimentiferan)

‘Troodos collared tubes’

(Fig. 10A–C)

1999a vestimentiferan worm tubes Little, Cann, Herring-

ton, & Morisseau: 1028, fig. 2b, c.

Material. Kambia 401b, 4061, 4062; Kapedhes 2031,

2051, 2081; Memi 212b2, 2021; Sha 3011, Small worm

tubes with collars, generally occurring with other similar

tubes. Collected by C. T. S. Little.

Occurrence. Massive sulphide deposits. Troodos Ophio-

lite, Cyprus. Turonian, Late Cretaceous (Oudin &

Constantinou 1984; Little et al. 1999a).

Description. Pyritic worm tubes 0.6–1.9 mm in diame-

ter, which appear to have been hard, sinuous, non-

branching and not attached to other tubes (Fig. 10A, B).

It is not discernible whether or not the tubes taper. The

tubes possess short collars which are sometimes slightly

flaring and at times are positioned at an oblique angle

relative to the tube (Fig. 10C). The tube surface between

adjacent collars appears smooth and unornamented

(Fig. 10B).
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Remarks. The similarity of these tubes to those made by

vestimentiferans was highlighted by Little et al. (1999a),

in particular to the spiralling tubes of Alaysia spiralis.

Siboglinid, chaetopterid and serpulid tubes may all pos-

sess collars and occur at vents, while siboglinid and

serpulid tubes may both be highly spiralling. Although the

cladistic analysis grouped these tubes with siboglinids

when more homoplasy was allowed (Fig. 23B), they clus-

ter near serpulids within the PCA plot (Fig. 21). Although

small, the collars of the tubes are at times flaring and

Figure 9. Cenomanian tubes from Okukinenbetsu River, Japan. A–D, ‘Okukinenbetsu yellow tubes’; A, OKb4-5, long fragment of a
tube exhibiting fine longitudinal wrinkles; B, OKb4-5, short tube fragments also exhibiting fine longitudinal wrinkles; C, OKb4-4, trans-
verse section of tube with yellowish walls; D, OKb4-2, detail of a yellow tube wall, showing some evidence of multi-layering. E–I,
‘Okukinenbetsu brown tubes’; E, OKb4, partial longitudinal and transverse sections of a tube with brown walls; F, OKb4, detail of
brown-walled tube revealing a multi-layered, fibrous nature; G–I, detail of thick, multi-layered brown-walled tubes in OKb4-3 (G),
OKb4-2 (H) and OKb4 (I). Scale bars: A, B D 2 mm; C, F D 300 mm; D, I D 50 mm; E D 1 mm; G D 150 mm; H D 200 mm.
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attached at an oblique angle with respect to the tube,

which are features more readily observable on siboglinid

tubes (those of vestimentiferans and frenulates). These

tubes are therefore tentatively suggested to have been

made by vestimentiferans rather than serpulids.

Family Siboglinidae Caullery, 1914

(vestimentiferan)

‘Troodos wrinkled tubes’

(Fig. 10D, E)

1999a vestimentiferan worm tubes Little, Cann,

Herrington, & Morisseau: 1028, fig. 2e.

Material. Kambia 4051, 4061, 6061, t3; Kapedhes 204b,

2101, worm tubes with walls ornamented by transverse

and longitudinal wrinkles. Collected by C. T. S. Little.

Occurrence. Massive sulphide deposits. Troodos Ophio-

lite, Cyprus. Turonian, Late Cretaceous (Oudin &

Constantinou 1984; Little et al. 1999a).

Figure 10. Tubes from the Turonian of Cyprus. A–C, ‘Troodos collared tubes’; A, B, Kambia 4061 and Memi 212b2, respectively, sin-
uous worm tubes with collars; C, Kambia 401b, worm tube with collar attached at an oblique angle. D, E, ‘Troodos wrinkled tubes’,
Kapedhes 2101 and 204b, respectively, worm tubes bearing longitudinal and transverse wrinkles. F, G, ‘Troodos attached tubes’, Memi
2021 and Kinousa 2023, respectively, sinuous tubes that appear attached to a surface, tubes in F bearing fine parallel transverse wrinkles.
Scale bars: A–D, F, G D 1 mm; E D 0. 5 mm.
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Description. Generally straight or slightly curving

pyritic tubes 1.2–4.5 mm in diameter, which do not show

signs of having been flexible and are not attached to other

tubes (Fig. 10D, E). Whether tubes taper cannot be

assessed with certainty due to the short length of pre-

served fragments. Tubes do not have collars, and instead

possess fine transverse and longitudinal wrinkles on their

surfaces, with the transverse wrinkles often being more

pronounced and fairly regular (Fig. 10D). Longitudinal

wrinkles are fine and occasionally bifurcating (Fig. 10E).

One tube specimen has a smaller tube preserved within it.

Remarks. These tubes are resolved among siboglinids by

both cladistic and cluster analyses (Figs 22–24), as a result

of the fine, bifurcating longitudinal wrinkles as well as the

fine transverse wrinkles which they possess. The features

above are not observed on serpulid tubes, which some-

times possess coarse longitudinal wrinkles. The longitudi-

nal wrinkles of chaetopterid tubes are often coarser (Kiel

& Dando 2009), and have not been observed to be cross-

cut by fine transverse wrinkles. We therefore suggest that

the most likely builders of these tubes are vestimentifer-

ans, which do exhibit such ornamentation patterns (cf.

Ridgeia piscesae tubes, Fig. 15G).

Family incertae sedis

‘Troodos attached tubes’

(Fig. 10F, G)

1999a vestimentiferan worm tubes Little, Cann, Herrington,

& Morisseau: 1028, fig. 2a.

Material. Kinousa 2023, Memi 2021, sinuous worm

tubes that appear attached to a surface, several tubes often

occurring together. Collected by C. T. S. Little.

Occurrence. Massive sulphide deposits. Troodos Ophio-

lite, Cyprus. Turonian, Late Cretaceous (Oudin &

Constantinou 1984; Little et al. 1999a).

Description. Pyritic tubes 0.2–0.5 mm in diameter, very

sinuous (Fig. 10F, G). The tubes have the appearance of

being attached to a surface as they are mostly sinuous in

two dimensions. Some of the tubes have smooth walls

(Fig. 10G) whereas others possess regular fine transverse

wrinkles (Fig. 10F). The wrinkled tubes are also some-

what tapering, whereas the smooth tubes do not appear to

taper in the fragments observed.

Remarks. These tubes are resolved near siboglinids in

cladistic analyses when more homoplasy is permitted

(Fig. 23B), and cluster near to serpulids within the PCA

plot (Fig. 21). Their attachment suggests an annelid affin-

ity to a lineage such as Serpulidae, Alvinellidae or vesti-

mentiferans (posterior tube sections), in which this

characteristic is often observed. For the tubes that exhibit

closely spaced transverse wrinkles and taper, Serpulidae

are the most likely tube-builders as these characters are

not observed in the tubes of Alvinellidae or in the poste-

rior sections of vestimentiferan tubes. However, this is

less clear for the smooth tubes, and it is difficult to tell

whether the smooth and transversely wrinkled tubes were

made by the same or different taxa. Therefore, these tubes

are presently only assigned to the annelids.

?Family Siboglinidae Caullery, 1914

(?vestimentiferan)

‘Ellef Ringnes tubes’

(Fig. 11A, B, D, E)

1989 serpulid worm tubes Beauchamp, Harrison, Nassi-

chuk, Krouse, & Eliuk: 54, fig. 2.

1992 serpulid worm tubes Beauchamp & Savard: 438, figs

2b, 5b.

2013 tubeworms Williscroft: 20, fig. 5c, d.

2017 vestimentiferan worm tubes Williscroft, Grasby,

Beauchamp, Little, Dewing, Birgel, Poulton, &

Hryniewicz: 797, fig. 8l, m.

Material. NRC C-581891 QQA 10-22, clustered broken

fragments of large tubes, mostly in various orientations

however some tubes are aligned parallel to each other.

NRC C-541891 CPPL, tubes observed in thin section.

Provided by S. E. Grasby.

Occurrence. Ellef Ringnes Island seep carbonates, Arc-

tic, Canada. Christopher Formation, Lower Albian, Creta-

ceous (Beauchamp et al. 1989; Beauchamp & Savard

1992; Williscroft 2013).

Description. Carbonate tubes are non-branching, do not

appear attached to other tubes, and are not agglutinated

(Fig. 11A, B). They are 2.0–10.0 mm in diameter, more or

less straight, and have smooth walls. In thin section, the

tubes show very thick, concentrically multi-layered walls

(Fig. 11D, E) that are very likely organic due to the pres-

ence of breaks in the tube wall that reveal potential torn

misaligned layers that have curved slightly away from

each other (Fig. 11D, E). The round cross sections suggest

that the tubes are likely to originally have been rigid and

inflexible.

Remarks. These tubes were previously considered to

have been made by serpulids (Beauchamp & Savard

1992; Williscroft 2013), but have more recently been

interpreted as vestimentiferan worm tubes (Williscroft

et al. 2017). Evidence of an originally calcareous tube

wall such as chevron-like layering is absent, while torn

fibres point to the tubes having been originally organic in

composition. The thick tube walls and neat, well-

consolidated multi-layering are very characteristic of ves-

timentiferan tubes, and the size of these tubes and their

hardness support this interpretation. However, these tubes
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Figure 11. Tubes from the Albian Christopher Formation, Canada. A, B, D, E, ‘Ellef Ringnes tubes’; A, NRC C-581891 QQA-10-22,
tubes in hand specimen; B, NRC C-581891 QQA-10-22, sections of tubes; D, NRC C-541891CPPL, detail of a transverse section of a
tube showing thick, multi-layered tube walls, with some possible misaligned torn fibres (white arrow); E, NRC C-541891CPPL, detail
of a transverse section of a tube showing a break in the tube wall where it appears broken fibres have curved slightly and misaligned
(white arrow). C, F, G, ‘Prince Patrick tubes’; C, NRC C-453952 1–4, tubes in hand specimen; F, NRC C-453961PPL, transverse sec-
tion of a tube exhibiting thick, multi-layered tube walls; G, NRC C-453989PPL, longitudinal section of a tube with thinner walls con-
taining round pellets. Scale bars: A–C D 10 mm; D, F, G D 1 mm; E D 500 mm.
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only group among modern siboglinid tubes when more

homoplasy is permitted within the cladistic analysis

(Fig. 23B). For the above reasons, we tentatively suggest

that the large tubes from Ellef Ringnes Island are likely

the anterior sections of vestimentiferan tubes.

?Family Siboglinidae Caullery, 1914

(?vestimentiferan)

‘Prince Patrick tubes’

(Fig. 11C, F, G)

1992 serpulid worm tubes Beauchamp & Savard: 438, figs

2a, 5a, 8c, d.

Material. NRC C-453952 1-4, Prince Patrick Island,

many small tubes cemented together in a large bundle.

NRC C-453961 PPL, C-453989 PPL, tubes observed in

thin section. Provided by S. E. Grasby.

Occurrence. Prince Patrick Island seep carbonates,

Arctic, Canada. Christopher Formation, Lower Albian,

Cretaceous (Beauchamp et al. 1989; Beauchamp &

Savard 1992).

Description. Carbonate tubes mostly 1.0 mm in diame-

ter, but tubes of up to 5 mm also occur in these clumps

(Fig. 11C). Tubes are unattached, non-branching and non-

agglutinated. Ornamentation of the tube walls is largely

obscured due to surface mineralization. In thin section,

the tube walls are very similar to those of the large tubes

from the same deposit: they are mostly thick and comprise

many superimposed layers (Fig. 11F), but some are thin-

walled (Fig. 11G). Tube cross-sections are distinctly

round (Fig. 11F) suggesting that tubes were originally

rigid. Some of the smaller tubes contain small transparent

spheres within their interior (Fig. 11G).

Remarks. Tubes from Prince Patrick Island have also

been interpreted as having been made by serpulids

(Beauchamp & Savard 1992). However, these tubes were

probably not originally calcareous in composition due to

the absence of chevron-like layering, their neatly lami-

nated tube walls and the separation of wall layers in pla-

ces, which is unlikely to occur in cemented mineral tubes.

Although outer tube wall ornamentation could not be

assessed, the at times thick walls that these tubes possess,

in combination with the morphology of the tube cluster,

suggest that they may represent the fossilized root por-

tions of vestimentiferan tubes (cf. Fig. 8I). These tubes

are resolved near siboglinid tubes in the PCA plot

(Fig. 21) and near vestimentiferans in the less conserva-

tive cladistic analysis (Fig. 24B), and are therefore also

tentatively assigned to the vestimentiferans.

Family incertae sedis

‘Cold Fork Cottonwood Creek tubes’

(Fig. 12)

1995 possibly Pogonophoran worm tubes Campbell: 46,

fig. 22.

2002 worm tubes Campbell, et al. 71, fig. 9.

Material. CFCC-2A, 2B, CC-F8, CFC-G, CFCC-10-

02, yellowish-walled tubes, many occurring

together in a range of orientations. Donated by K. A.

Campbell.

Occurrence. Cold Fork Cottonwood Creek, northern

California, USA. Seep carbonate lenses and nodules with

complex cement sequence, Great Valley Group, Aptian–

Albian, Cretaceous (Campbell 1995; Campbell et al.

2002).

Description. Calcite tubes 0.2–5.4 mm in diameter, non-

branching, wavy, non-agglutinated and not appearing to

taper along their length (Fig. 12A). Tube walls are smooth

in several samples (Fig. 12B) but are generally obscured

by the host rock. Tube walls appear poorly preserved

(Fig. 12C) and are likely recrystallized (Campbell et al.

2002), but seem to have been originally organic due to the

presence of folds in the tube layers visible in thin section

(Fig. 12D). In places the tubes also appear multi-layered

(Fig. 12E). Internal septa have been observed in some of

the tubes (Campbell et al. 2002), but not during the pres-

ent study.

Remarks. These tubes have been likened to those of ves-

timentiferans due to their diameter range (Campbell et al.

2002) but with the exception of Riftia pachyptila (Gaill

et al. 1997), internal septa are not reported in the tubes of

vestimentiferans. Septa are more commonly observed in

chaetopterid and occasionally serpulid tubes, and for this

reason these tubes group among chaetopterids in

the cladistic analyses. However, the tubes are on the

whole difficult to interpret due to the inability to assess

tube ornamentation and the poor state of preservation of

the tube walls. Therefore, they have not been assigned to

a modern annelid group.

Phylum incertae sedis

‘Wilbur Springs tubes’

(Fig. 13)

Material. WS45A, single tapering tube with a smooth

wall, more tubes revealed in thin section. Donated by K.

A. Campbell.

Occurrence. Wilbur Springs, northern California, USA.

Seep carbonate lenses in serpentenites and siltstone
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turbidites, Great Valley Group, Hauterivian, Cretaceous

(Campbell 1995; Campbell et al. 2002).

Description. The single tapering carbonate tube section

(27 mm long) measures 2.4–3.6 mm in diameter. Tube

wall is smooth and shiny (Fig. 13A). In thin section, car-

bonates from Wilbur Springs reveal two types of tubes:

thick-walled tubes »2.3 mm in diameter which appear to

have been replaced by large calcite crystals (Fig. 13B),

and similar-sized tubes that exhibit tube walls with a hazy

Figure 12. ‘Cold Fork Cottonwood Creek tubes’, Hauterivian, California, USA. A, CFC-G, tubes in hand specimen, walls largely
obscured by rock matrix. B, CFCC-10-02, tube with some visible wall which appears smooth. C, CC-F8, transverse section of a tube
showing the hazy nature of the walls. D, CFCC-2A, detail of tube wall in transverse section showing delaminated, curving tube layers.
E, CC-F8, detail of tube wall in transverse section showing multi-layered nature. Scale bars: A D 10 mm; B D 5 mm; C, D D 100 mm;
E D 50 mm.
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brown rim (Fig. 13C–E). However, due to the poor state

of preservation, very few characters can be discerned

from either type of tube.

Remarks. These tubes are not preserved well enough

to be assigned to a particular animal group, and were

not included in cladistic and cluster analyses as so few

characters could be coded. However, it is worth noting

that the degree of tapering and smooth wall of the sin-

gle tube in hand specimen resemble the shells made

by scaphopods.

Phylum Annelida Lamarck, 1809

Family incertae sedis

‘Sassenfjorden area tubes’

Figure 13. ‘Wilbur Springs tubes’, WS-45, Hauterivian, California, USA. A, smooth-walled, tapering tube in hand specimen. B, trans-
verse section of tube with replaced wall that may have been originally calcareous in composition. C–E, tube walls in near-transverse sec-
tion with poorly preserved walls that may have originally been organic in composition. Scale bars: A D 10 mm; B D 500 mm; C, E D
200 mm; D D 400 mm.
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Figure 14. ‘Sassenfjorden area tubes’, Volgian–Ryazanian, Svalbard. A–C, hand specimens of tubes; A, Svalbard 2007-03, long tube
with poorly preserved walls; B, PMO 2009-01, smooth-walled tube possibly with a small collar; C, PMO 2009-03, tube with possible
longitudinal wrinkles. D, E, 171.002D, near-transverse sections of tubes with thick, neatly-multi-layered walls. F, 170.996, detail from
transverse section of a tube where the tube exhibits curving layers that have separated. G, 171.027, tube with poorly preserved walls.
Scale bars: A D 10 mm; B D 2 mm; C D 5 mm; D, E D 300 mm; F D 100 mm; G D 200 mm.
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(Fig. 14)

2011 ‘vestimentiferan’ worm tubes Hammer et al. 21,

fig. 5d.

2012 worm tubes Hryniewicz, Hammer et al. 118, fig. 5a.

Material. Svalbard 2007-03, long tube with yellowish

wall. PMO 2009-01, single tube with dark black wall.

PMO 2009-03: single tube with longitudinal wrinkles.

171.002D, 170.996, 171.027, selection of thin sections of

different tubes. Donated by K. Hryniewicz.

Occurrence. Sassenfjorden area, Svalbard. Seep carbo-

nates in shale and shale and siltstone, Slottsmøya Mem-

ber, upper Agardhfjellet Formation, Volgian–Ryazanian

(latest Jurassic–earliest Cretaceous) (Hammer et al. 2011;

Hryniewicz et al. 2012, 2015; Vinn et al. 2014).

Description. Carbonate tube sections measuring 2.9–

5.7 mm in diameter, all fairly straight, and not attached to

other tubes. The long tube appears unornamented

(Fig. 14A) and the tube with a black wall is smooth and

shows no ornamentation apart from a possible small collar

(Fig. 14B), while the remaining tube fragment bears what

may be faint longitudinal wrinkles (Fig. 14C). In thin sec-

tion, some of the tubes exhibit thick, neatly multi-layered

walls (Fig. 14D, E). Curving delaminated layers can also

be observed in some of the tube sections (Fig. 14F), sug-

gesting that they were originally organic in composition.

A subset of tubes exhibit diffuse (poorly preserved?) tube

walls (Fig. 14G).

Remarks. Non-serpulid, originally organic-walled tubes

from the Sassenfjorden area were suggested to have been

made by siboglinids (Hammer et al. 2011; Hryniewicz

et al. 2015). However, the tubes examined do not clearly

group with the tubes of modern annelid families included

in cladistic and cluster analyses (Figs 22, 24). The tube

sections with thick, neatly multi-layered walls that were

observed within this study were possibly made by vesti-

mentiferans, in which this tube structure is widely

observed. However, the broad morphology of this tube is

presently unknown, and tubes from this deposit in general

warrant further investigation as several different tube

types are present. Hence, these tubes are broadly ascribed

to the annelids.

Family Siboglinidae Caullery, 1914

(vestimentiferan)

‘Figueroa tubes’

(Fig. 15 A–F, H, I)

1999b Vestimentiferan tube worm Little et al.: 168,

fig. 2b–d.

2004 Vestimentiferan tube indeterminate Little et al.: 545,

figs 7.3, 8.1–8.7, 11.5

Material. FF-10, FFC-00, FFC-12, FFC-18, FFC-19,

FFC-37, blocks of vent sulphides containing fossilized

tube fragments, tubes often occurring singly. Collected by

C. T. S. Little.

Occurrence. Figueroa massive sulphide deposit, San

Rafael Mountains, southern California, USA. Franciscan

Complex, Pliensbachian, Lower Jurassic (Little et al.

1999a, 2004).

Description. Pyritic tubes are 0.3–6.9 mm in diameter,

appear to have been originally rigid as they do not exhibit

folds or depressions in their walls, and are fairly straight

(Fig. 15A). One long tube fragment appears to taper along

its length (Fig. 15A). Tubes possess collars (Fig. 15B–D)

which are large and flaring in some cases (Fig. 15B, D),

some tubes showing several collars in short succession

(Fig. 15B), the collars sometimes oriented obliquely

(Fig. 15C). The tube walls are ornamented with fine,

bifurcating longitudinal and irregular transverse wrinkles

(Fig. 15A–C, E, F). In section, tube walls are preserved by

colloform and framboidal pyrite, and it is unclear whether

tubes were originally multi-layered (Fig. 15H, I).

Remarks. These tubes group with siboglinids in both

PCA and cladistic analyses (Figs 22, 24). The presence of

large, flaring collars suggests that they are unlikely to

have been made by chaetopterids. Serpulids and vestimen-

tiferans both produce collars which are large and flaring;

however, the pattern of fine longitudinal and irregular

transverse wrinkles on tube surfaces suggests that the

tubes are more likely to have been made by vestimentifer-

ans, as fine longitudinal wrinkles are not commonly

observed in serpulid tubes. The ornamentation of the Fig-

ueroa tubes also greatly resembles that of Ridgeia pisce-

sae tubes (Fig. 15G). Therefore, we infer that the most

likely constructors of the Figueroa tubes were

vestimentiferans.

Family incertae sedis

Tevidestus serriformis Shpanskaya, Maslennikov &

Little, 1999

(Fig. 16A–C)

1999c Tevidestus serriformis Little et al.: 1062, fig. 4.

Material. NHMUK VF71, single tube fragment.

Collected by C. T. S. Little.

Occurrence. Sibay massive sulphide deposit, southern

Ural Mountains, Russia (52�41.66 0N, 58�38.15 0E).
Lower–Middle Devonian (Little et al. 1999c; Shpanskaya

et al. 1999).
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Figure 15. A–F, H, I, ‘Figueroa tubes’, Pliensbachian, California, USA; A–C, tubes in hand specimen; A, FFC-12, straight, tapering
tube with fine longitudinal wrinkles; B, FFC-00-21, tube fragment bearing longitudinal wrinkles and collars; C, FFC-18B, tube with lon-
gitudinal wrinkles and a fine, obliquely positioned collar; D, FFC-18, longitudinal section of tube exhibiting long, flaring collars; E,
FFC-12, scanning electron microscopy (SEM) image showing details of tube wall ornamentation; F, FFC-12, greater detail of same
tube; H, FFC-19, detail of tube transverse section showing preservation of tube walls; I, FFC-19, detail of tube wall in transverse section.
G, Ridgeia piscesae (Siboglinidae) tube, JdF317, showing detail of the ornamentation. Scale bars: A, C D 2 mm; B, D, G, H D 1 mm;
E D 500 mm; F D 100 mm; I D 300 mm.
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Description. Pyritic tubes 10–20 mm in diameter pos-

sessing closely spaced spaced collars that can have curved

edges (Fig. 16A) (Shpanskaya et al. 1999). Collars may

be short (Fig. 16B) or slightly flaring. The outer tube wall

exhibits a fine mesh of what appear to be pyritized fibres

(Fig. 16B, C), which cross each other at near right angles

and suggest that these tubes were originally organic in

composition.

Remarks. When compared with modern annelid tubes,

the fibrous and collared appearance of Tevidestus

serriformis tubes suggests they are most likely to have

been made by an annelid such as a siboglinid or chaetop-

terid. These tubes group near chaetopterids and amphare-

tids in the PCA (Fig. 21), but group with chaetopterids in

the more conservative cladistic analysis (Fig. 23A) and

are unresolved when more homoplasy is permitted

(Fig. 23B). The chaetopterid genera Phyllochaetopterus

and Spiochaetopterus produce tubes with a distinct fibre

alignment whereby the sheets of parallel fibres overlap

with adjacent sheets at near right angles (Fig. 16D)

(Bhaud 1998). However, the fibres that comprise

Figure 16. A–C, Tevidestus serriformis tubes, Devonian, Sibay, Russia, NHMUK VF71; A, tube fragment exhibiting numerous short
collars; B, C, detail of tube wall showing small collars and meshwork of fibres. D, Phyllochaetopterus prolifica outer tube wall detail for
comparison, NHMUK 1915.5.1.4-6. Scale bars: A D 4 mm; B, C D 1 mm; D D 10 mm.
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chaetopterid tubes are much finer than those observed on

the tube of T. serriformis. The presence of both small and

large flaring collars on T. serriformis tubes would be more

indicative of vestimentiferan tubes; however, as such

large fibres are not observed in vestimentiferan tube walls

either, it is not possible to assign T. serriformis tubes to a

particular modern annelid group. Tevidestus serriformis

tubes also do not resemble Palaeozoic non-vent/seep

tubes. Tevidestus serriformis tubes are not rapidly

tapering like cornulitids (Vinn & Mutvei 2005) and

Hyolithellus (Skovsted 2006). Gaojishania cyclus tubes

bear small annulations resembling collars (Cai et al.

2013); however, these tubes are more irregular along

their length, while Conotubus fossils do not possess the

mesh-fibre pattern preserved on T. serriformis tubes.

Tevidestus serriformis tubes are therefore presently

assigned to the annelids.

?Phylum Annelida Lamarck, 1809

Family incertae sedis

‘Sibay tubes’

(Fig. 17)

1999c Indeterminate annelid? tube Little, Maslennikov,

Morris, & Gubanov: 1061, figs 4, 5.

Material. NHMUK VF71, cluster of tubes. Collected by

C. T. S. Little.

Occurrence. Sibay massive sulphide deposit, southern

Ural Mountains, Russia (52�41.66 0N, 58�38.15 0E). Mid-

dle-Lower Devonian (Little et al. 1999c; Shpanskaya

et al. 1999).

Description. Pyritic tubes 0.3–7.0 mm in diameter, non-

tapering, sometimes gently curved and with smooth walls

(Fig. 17A, B) (Little et al. 1999c). The tube walls were

Figure 17. ‘Sibay tubes’, NHMUK VF71, Devonian, Sibay, Russia. A, hand specimen showing cluster of tubes in various orientations.
B, detail of tube wall showing smooth appearance. C, detail of the walls of three adjacent tubes in transverse section; walls appear thick
and multi-layered. D, detail of framboidal pyrite preserving tube walls. Scale bars: A D 3 mm; B D 1 mm; C D 500 mm; D D 10 mm.
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originally described to be formed of fine-grained pyrite

which is occasionally colloform (Little et al. 1999c). In

thin sections examined during the present study, the tube

walls appear thick and may be multi-layered (Fig. 17C),

and some also appear to be comprised of framboidal

pyrite (Fig. 17D).

Remarks. These tubes exhibit few distinguishing charac-

teristics, which led to their previous diagnosis as indeter-

minate ?annelid tubes (Little et al. 1999c). As we were

unable to find further characters, the tubes were largely

unresolved within cluster and cladistic analyses (Figs 22,

24). The indeterminate status of the tubes is therefore

maintained. They are tentatively suggested to be annelid

tubes due to their smooth, thick and possibly multi-

layered walls, and as they do not closely resemble the

tubes of other Palaeozoic tubicolous animals.

Phylum incertae sedis

Eoalvinellodes annulatus Little, Maslennikov,

Morris, & Gubanov, 1999c

(Fig. 18)

1999c Eoalvinellodes annulatus Little, Maslennikov,

Morris, & Gubanov: 1060, fig. 5.

2006 Eoalvinellodes annulatus Buschmann &Maslennikov:

146, figs 5, 6, 8.

Material. NHMUK VF50-55, 57, 60-61, 102, NHMUK

OR 1388a, tubes occurring either singly or in small

clumps. UL YKB-1, thick-walled tubes observed in thin

section. Collected by C. T. S. Little.

Occurrence. Yaman Kasy massive sulphide deposit,

southern Ural Mountains, Russia (51�24.43 0N,
57�41.63 0E). Late Ordovician or earliest Silurian (Little

et al. 1999c; Shpanskaya et al. 1999; Buschmann &

Maslennikov 2006).

Description. Small pyrite-walled tubes 0.1–3.5 mm in

diameter, non-branching and slightly tapering (Fig. 18A,

B) (Little et al. 1999c; Buschmann & Maslennikov 2006).

Tubes are straight to wavy, and do not show evidence of

having been flexible before fossilization (Fig. 18A–C).

The tubes show ornamentation of pronounced transverse

wrinkles, which occasionally bifurcate, on what is consid-

ered to be their inner surface, and are smooth externally

(Little et al. 1999c). In section, tube walls comprise a sin-

gle thick layer of framboidal pyrite (Little et al. 1999c),

or can be preserved with thick walls of finely layered col-

loform pyrite (Fig. 18D–F).

Remarks. These tubes were originally suggested to have

been made by an alvinellid-like polychaete due to their

proximity to hydrothermal vent chimneys (Little et al.

1999c). However, alvinellid tubes do not exhibit the neat,

bifurcating transverse wrinkles seen in Eoalvinellodes

annulatus tubes; alvinellid tubes are often much more

disorganized. Similar transverse folded fabric-like tex-

tures occur in the tubes of chaetopterids, some frenulates

and the Palaeozoic fossils Sabellidites cambriensis

(Moczyd»owska et al. 2014) and Sinotubulites (Cai et al.

2015). This texture is, however, much finer on frenulate

and S. cambriensis tubes than E. annulatus tubes. Eoal-

vinellodes annulatus tubes group with those of chaetop-

terids when more homoplasy is permitted within the

cladistic analysis (Fig. 23B) due to the coarse trans-

verse wrinkles which they both exhibit. The wrinkles

on E. annulatus tubes have a somewhat neater appear-

ance, and also resemble Glyphanostomum tubes

(Fig. 20N). As several types of annelid and non-annelid

tubes are found to possess this type of tube wall orna-

mentation, it is not possible to infer the taxonomic

affinity of the tube maker.

Phylum incertae sedis

Yamankasia rifeia Shpanskaya, Maslennikov &

Little, 1999

(Fig. 19)

1999 Yamankasia rifeia Shpanskaya, Maslennikov &

Little: 225, plate 3, figs 1–6.

1999c Yamankasia rifeia Little, Maslennikov, Morris, &

Gubanov: 1064, figs 6, 7.

2006 Yamankasia rifeia Little et al.; Buschmann &

Maslennikov: 147, figs 7, 8.

Material. NHMUK VF78, 80, 84, 89, 97, NHMUK OR

6468a, 6468b, very large tubes mostly preserved singly.

UL 61633, partial tube in polished block. Collected by

C. T. S. Little.

Occurrence. Yaman Kasy massive sulphide deposit. Ural

Mountains, Russia (51�24.43 0N, 57�41.63 0E). Late Ordovi-
cian or earliest Silurian (Little et al. 1999c; Shpanskaya

et al. 1999; Buschmann & Maslennikov 2006).

Description. These are the largest of the fossil vent

and seep tubes, 3.0–39.0 mm in diameter, with pyritic

walls (Fig. 19A). They are not branching and are

thought to taper at their base (Little et al. 1999c;

Buschmann & Maslennikov 2006). The tubes appear to

have been originally flexible as they often show fold-

ing and creases (Fig. 19B), suggesting an originally

fibrous and organic nature, and one tube also exhibits

possible fossilized fibres on its surface (Fig. 19C). The

tubes are fairly straight, and some well-preserved tubes

show very fine parallel and closely spaced longitudinal

wrinkles on their outer tube surfaces (Fig. 19D). The

tubes may also be transversely wrinkled (Buschmann

& Maslennikov 2006). In thin section, the tubes
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comprise several concentric layers of framboidal pyrite

(Fig. 19E, F), while in some specimens colloform

pyrite is interpreted to have grown on the outside of

the tubes (Fig. 19G) (Little et al. 1999c).

Remarks. These tubes are unique amongst hydrothermal

vent and cold seep fossils because of their size, and also

their distinct fine and parallel longitudinal wrinkles. Very

large tubes at modern hydrothermal vents are constructed

Figure 18. Eoalvinellodes annulatus, Silurian, Yaman Kasy, Russia. A–C, NHMUK OR1388a, NHMUK VF52 and NHMUK VF53,
respectively, hand specimens of gently curving tubes with folded fabric-like tube wall texture. D, E, UL YKB1, transverse sections of
tubes showing thick walls with thick, possibly multi-layered walls. F, UL YKB1, detail of tube wall in transverse section showing pres-
ervation by colloform pyrite many layers thick. Scale bars: A, B D 2 mm; C D 1 mm; D, E D 500 mm; F D 100 mm.
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by Riftia pachyptila but these do not show the same orna-

mentation. The root tubes of some vestimentiferans show

similar ornamentation of parallel closely spaced longitudi-

nal wrinkles, but it is unlikely that the tubes of

Yamankasia rifeia are root portions because of their size.

The large size also means that they are unlikely to be fre-

nulate tubes, despite grouping with frenulates in the cla-

distic and PCA analyses (Figs 22, 24). The above

Figure 19. Yamankasia rifeia, Silurian, Yaman Kasy, Russia. A, NHMUK VF84, large tube in hand specimen. B, NHMUK VF97, cast
of tube exhibiting fold. C, NHMUK VF78, pyritized fibres or filamentous micro-organisms preserved on the outside of a tube. D,
NHMUK VF78, fine longitudinal wrinkles preserved on outer tube surface. E, NHMUK OR6468a, tube in transverse section with thick,
multi-layered wall. F, NHMUK OR6468b, tube wall in transverse section preserved as several layers. G, UL 61633, detail of tube trans-
verse section showing colloform pyrite interpreted as having grown on the outside of the tube. Scale bars: A D 10 mm; B D 5 mm; C D
500 mm; D D 3 mm; E D 1.5 mm; F, G D 500 mm.
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Figure 20. Morphology of tubes made by annelid lineages occurring at modern hydrothermal vents and cold seeps (see Supplementary
Table S3 for details). A, disorganized tubes of Alvinella spp. (Alvinellidae). B, agglutinated tube of Mesochaetopterus taylori (Chaetopteri-
dae). C, agglutinated Sabellidae tube. D, branched tube of Phyllochaetopterus claparedii (Chaetopteridae). E, segmented tubes of Spiochae-
topterus costarum (Chaetopteridae). F, Phyllochaetopterus polus (Chaetopteridae) tubes bearing short collars and wrinkled-fabric
ornamentation. G, collared Serpulidae tubes (likely Serpula narconensis). H, collared tubes of Serpula vermicularis (Serpulidae). I, large
tube of the vestimentiferan Riftia pachyptila (Siboglinidae). J, collared, ornamented tube of the vestimentiferan Ridgeia piscesae (Siboglini-
dae). K, smooth tube of the vestimentiferan Escarpia southwardae (Siboglinidae). L, collared tubes of the frenulate Polybrachia canadensis
(Siboglinidae). M, hard tubes of the frenulate Siphonobrachia lauensis (Siboglinidae). N, Glyphanostomum tube. O, detail of the wall of an
Alvinella spp. tube in transverse section. P, detail of the wall of an M. taylori tube in transverse section. Q, detail of the wall of a Mega-
lomma vesiculosum (Sabellidae) tube in transverse section. R, detail of the wall of a Serpulidae tube in transverse section. S, T, detail of
the wall of a Spiochaetopterus typicus (Chaetopteridae) tube; S, transverse section; T, same tube in longitudinal section. U, V, detail of the
wall of a P. polus tube; U, transverse section; V, same tube in longitudinal section. W, X, E. southwardae tube; W, detail of the
anterior tube wall in transverse section; X, transverse section of the posterior tube wall. Y, Z, A’, frenulate Unibrachium colombianum
(Siboglinidae) tube; Y, transverse section of the very anterior portion of the tube; Z, longitudinal section of the ringed middle region of
the same tube; A’, transverse section of the middle tube region. Scale bars: A, B, D, E, F, H, I, J, M D 10 mm; G D 3 mm; C, L D 5 mm;
K D 20 mm; N D 1 mm; O D 200 mm; P, S, U, V D 500 mm; Q, Y D 300 mm; R D 50 mm; T, W, Z, A’ D 200 mm; X D 125 mm.
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characteristics are also not consistent with the tubes of

other Palaeozoic tubicolous animals and therefore Y. rifeia

tubes are not likened to any particular modern annelid

group.

Tube similarities and phylogenetic

relationships

The PCA analysis showed distinct clustering of modern

annelid tubes according to family (Fig. 21). Fossil tubes

were largely positioned between modern tube groupings,

although some fossil taxa plotted in closer proximity to

siboglinid tubes. Scores for the first two coordinate axes

account for approximately 30% of the variation in the

data (Supplementary File 1, Table S6).

The cladistic analysis of modern tubes only (Fig. 22)

was able to group most of the taxa according to estab-

lished annelid taxonomic lineages based on the 48 defined

tube morphological characters. The majority of chaetop-

terids grouped with other chaetopterid species, and all ser-

pulids grouped together, despite also grouping with

chaetopterids. Siboglinid and sabellid tubes also mostly

grouped with members of the same family. However, the

defined characters did not resolve relationships between

annelid families according to established annelid phyloge-

nies (e.g. Weigert et al. 2014).

When fossils are included in the cladistic analyses,

many taxa, including the majority of fossils, are left

Figure 21. Principal coordinate analysis plot of modern and fossil annelid tubes, based on the 48 characters scored for this study. Fossils
(grey crosses): 1. Yamankasia rifeia; 2, Eoalvinellodes annulatus; 3, ‘Sibay tubes’; 4, Tevidestus serriformis; 5, ‘Figueroa tubes’; 6,
‘Sassenfjorden area tubes’; 7, ‘Cold Fork Cottonwood Creek tubes’; 8, ‘Prince Patrick tubes’; 9, ‘Ellef Ringnes tubes’; 10, ‘Troodos
attached tubes’; 11, ‘Troodos wrinkled tubes’; 12, ‘Troodos collared tubes’; 13, ‘Okukinenbetsu yellow tubes’; 14, ‘Okukinenbetsu
brown tubes’; 15, ‘Omagari tubes’; 16, ‘Canyon River tubes’; 17, ‘Murdock Creek tubes’; 18, ‘West Fork Satsop River tubes’; 19, Ser-
pulidae sp., ‘Bexhaven’; 20, ‘Upper Waiau River tubes’; 21, ‘Rocky Knob tubes’. Modern tubes: Chaetopteridae (orange dots): 22,
Chaetopterus cf. variopedatus; 23, Chaetopteridae id83; 24, Phyllochaetopterus polus; 25, P. gigas; 26, P. claparedii; 27, P. prolifica;
28, P. socialis; 29, Spiochetopterus izuensis; 30, S. sagamiensis; 31, S. costarum; 32, S. typicus; 33,Mesochaetopterus taylori. Siboglini-
dae, frenulata (dark blue filled triangles): 34, Galathealinum arcticum; 35, Lamellisabella denticulata; 36, Oligobrachia gracilis; 37,
Polybrachia canadensis; 38, Siboglinum ekmani; 39, S. lacteum; 40, Siphonobrachia lauensis; 41, Unibrachium colombianum; 42, Zen-
kevitchiana longissima; 43. Siboglinidae, Sclerolinum (light blue outline triangle): S. contortum; Siboglinidae, vestimentiferans (light
purple filled inverted triangles): 44, Alaysia spiralis; 45, Arcovestia ivanovi; 46, Escarpia southwardae; 47, Lamellibrachia anaximan-
dri; 48, Paraescarpia echinospica; 49, Ridgeia piscesae; 50, Riftia pachyptila; 51, Tevnia jerichonana; 52, Seepiophila jonesi; Siboglini-
dae, vestimentiferan roots (dark purple outline inverted triangles): 53, E. southwardae root; 54, L. anaximandri root; 55, S. jonesi root;
56, P. echinospica root; Alvinellidae (maroon outline diamond): 57, Alvinella sp.; Ampharetidae (fuchsia outline rhombus): 58, Glypha-
nostomum sp.; Serpulidae (lime filled squares): 59, Serpulidae sp. JCR; 60, Serpula vermicularis; 61, Vermiliopsis infundibulum; Sabelli-
dae (yellow outline squares): 62, Sabella pavonina; 63, Megalomma vesiculosum; Oweniidae (dark green outline dot): 64. Owenia
fusiformis.
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unresolved when homoplastic characters are down-

weighted to a greater extent (k D 3; Fig. 23A). When

homoplastic characters are down-weighted less (k D 4;

Fig. 23B), a greater proportion of fossil taxa are resolved.

With both of these analyses, however, modern siboglinid

and chaetopterid tubes are divided. Consistency and reten-

tion indices for the cladistic analysis reflect a high degree

of homoplasy, and that characters mostly retain poten-

tial synapomorphies in the modern taxa only (Fig. 22)

and the k D 4 fossils-included analyses (Fig. 23B), but

not within the k D 3 analysis including fossils

(Fig. 23A). The inclusion of molecular data for the

modern tubicolous annelids improved the resolution of

evolutionary relationships between annelid families

(Supplementary File 1, Figs S1, S2). However, this did

not improve the resolution of trees containing fossil

taxa (Supplementary File 1, Fig. S3).

Organic constituents of modern tubes and

their preservation

Screening of organic tubes for potential differences in

composition using FTIR showed that tubes from the anne-

lid families Siboglinidae and Alvinellidae had distinctly

Figure 22. Strict consensus cladogram of the three most parsimonious trees of tubes built by a total of 43 modern annelid taxa (best
score D 14.344, consistency index D 0.308, retention indexD 0.629). The analysis was based on the 48 mostly morphological tube char-
acters and was performed using implied character weighting (k D 3). Numbers on nodes represent groups present/contradicted support
values. Symbols/colours indicate taxonomic affinities.
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different FTIR spectra to Chaetopteridae tubes (Fig. 24).

Chaetopterid tube spectra lacked -NH peaks and showed

only weak -CH peaks. The Alvinella tube spectrum gener-

ally resembled those of several siboglinids, such as Scle-

rolinum contortum which only showed one -NH peak,

whereas vestimentiferan and frenulate tubes exhibited two

-NH peaks.

More in-depth analyses of the compositions of these

modern tubes using py-GC-MS (Supplementary File 1,

Table S7) revealed divergent compositions between sibo-

glinid, chaetopterid and alvinellid tubes, with siboglinid

tubes (both anterior and posterior tube regions) being rich

in the compounds 3-acetamido-5-methylfuran and acet-

amido-pyrones, and often also acetamide and 3-

acetamidofuran. A single alvinellid and five chaetopterid

tubes largely lacked these compounds, which are consid-

ered among the most important pyrolysis products indica-

tive of chitin (Gupta & Cody 2011). Tubes from all three

families were, however, rich in compounds considered to

be pyrolysis products of proteins, and several of the ana-

lysed chaetopterid tubes also contained furfural.

Assessment of fossil tubes for preserved organic matter

was performed using confocal microscopy. The walls of

vestimentiferan tubes replaced by aragonite from modern

cold seeps emitted a distinct fluorescence signal compared

to surrounding carbonate minerals (Fig. 25A), suggesting

that tube wall organics had been preserved during the

mineralization process. A similar fluorescence pattern

Figure 23. Strict consensus cladograms constructed using a total of 64 modern and fossil annelid taxa and 48 mostly morphological tube
characters. Analyses were performed using implied character weighting, with the concavity constant set as default (k D 3; A), and also
set to downweight homoplastic characters less (k D 4; B). Numbers on nodes represent groups present/contradicted support values. Mod-
ern taxa are coloured according to taxonomic groups; fossil taxa are in grey. A, consensus of 271 most parsimonious trees (best score D
15.387, consistency index D 0.195, retention index D 0.264); B, consensus of 60 most parsimonious trees (best score D 13.568, consis-
tency index D 0.232, retention index D 0.569). Symbols/colours indicate taxonomic affinities.
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was also obtained for a number of ancient tubes from seep

deposits (Fig. 25B, C). Fossil serpulid tube walls from

ancient seeps showed no fluorescence (Fig. 25D), suggest-

ing that the observed fluorescence is unique to tubes con-

sidered to have been originally organic. When organic

components preserved in recently mineralized and ancient

fossil tubes from seeps were analysed in more detail

through py-GC-MS, aragonite-replaced roots of Escarpia

southwardae and Lamellibrachia luymesi tubes did not

contain the characteristic chitin pyrolysis products

recorded in unmineralized tubes. Sixteen ancient fossil

tube samples from seeps also showed that although organ-

ics were present in the tube walls, these were mostly pro-

tein constituents and none could be associated with a

particular modern annelid group (Supplementary File 1,

Table S9).

For Alvinella and Ridgeia piscesae tubes replaced by

sulphide minerals from modern hydrothermal vents

(Supplementary File 1, Table S8), py-GC-MS analyses

detected sulphurous compounds but none of the character-

istic pyrolysis products of chitin and proteins recorded in

unmineralized tube specimens.

Discussion

Can tube organics help to identify fossil vent and

seep tubes?
This study constitutes the first major comparative evalua-

tion of the organic compositions of modern annelid tubes,

which were initially screened using FTIR and then analysed

in greater detail through py-GC-MS. Assessment of the

organic constituents of alvinellid, chaetopterid and sibogli-

nid tubes confirms the different compositions of the tubes

built by these families, thereby suggesting that tube

Figure 24. Fourier transform infrared (FTIR) spectroscopy spectra of the organic tubes of vent and seep annelids. Spectra are offset on
the absorbance axis, and key spectral absorbance peaks are labelled with the types of chemical bonds they represent: -NH, nitrogen-
hydrogen; -CH, carbon-hydrogen; -OH, oxygen-hydrogen. The regions of the tube analysed are as follows: Tevnia jerichonana (anterior,
inner tube wall); Zenkevitchiana longissimi (middle, outer tube wall); Lamellibrachia anaximandri (posterior, outer tube wall); Scleroli-
num contortum (anterior, outer tube wall); Alvinella sp. (middle); Spiochaetopterus izuensis (middle, outer tube wall).
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organics can be taxonomically informative. While there has

been some confusion as to whether chaetopterid tubes con-

tain chitin (Barnes 1964; Ippolitov et al. 2014; Parry et al.

2014), our FTIR (Fig. 24) and py-GC-MS (Supplementary

File 1, Table S7) results from four chaetopterid genera sug-

gest that they do not, as three major chitin marker pyrolysis

products that were commonly observed in siboglinid tubes

were absent from the tubes of chaetopterids. Py-GC-MS

showed that the majority of chaetopterid tubes analysed

contained furfural, as previously reported (Berkeley 1922).

The absence of key chitin markers, as well as furfural, dis-

tinguished Alvinella tubes from those of the siboglinids and

chaetopterids, respectively. The above analyses also con-

firmed the presence of chitin in Sclerolinum, as well as the

Figure 25. Results of confocal laser-scanning microscopy (CLSM) of recently mineralized and ancient fossil annelid tubes (see online
edition for colour version). Tubes are imaged in auto-fluorescence mode, where areas of fluorescence likely reflect the presence of
organic matter. A, detail of mineralized Escarpia southwardae (Siboglinidae) tube transverse section. B, fossil tube from Upper Waiau
River, New Zealand (UWT3-4), detail of transverse section. C, fossil tube from West Fork Satsop River, Washington State, USA
(WFSR 1A), detail of transverse section. D, fossil tubes from Bexhaven, New Zealand (BXG), detail of two near-transverse sections.
Scale bars: A D 100 mm; B–D D 200 mm.
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root portions of two vestimentiferan tubes (Supplementary

File 1, Table S7), and the inclusion of tube organic constitu-

ents within the tube character matrix also helped to resolve

modern annelid families within cladistic analyses (Fig. 22).

The utility of organic composition for tube identifica-

tion does, however, appear to diminish during fossiliza-

tion at vents and seeps. While confocal microscopy

(Fig. 25) and py-GC-MS revealed that organic matter had

been preserved in the walls of recently mineralized vesti-

mentiferan tubes from seeps, only one sample showed the

presence of chitin markers upon pyrolysis (Supplementary

File 1, Table S8). This suggests that chitin does not gener-

ally fossilize within seep environments. A selection of

ancient tube fossils from seeps also showed preserved

organics but no traces of chitin or furfural derivatives

(Supplementary File 1, Table S9). We were therefore

unable to determine whether ancient seep tubes could

potentially have been built by siboglinids or chaetopterids

based on the above analyses. At vents, recently mineral-

ized tubes of Alvinella spp. and Ridgeia piscesae showed

very little organic content at all (Supplementary File 1,

Table S8). While chitin has been detected in fossils

through py-GC-MS (e.g. Stankiewicz et al. 1997), it is

generally considered to have a low preservation potential

within normal sedimentary settings (Sephton et al. 2009),

and it appears that this is also the case in hydrothermal

vent and cold seep environments. Although our analyses

of organics in fossil tubes proved inconclusive, tube wall

organics may still aid in the identification of fossil seep

material through the development of additional bio-

markers for organic annelid tubes that are less affected by

fossilization, or in cases where tube walls are exception-

ally well preserved.

Tube morphology
As annelid dwelling tubes are not joined to the annelid

body and the adaptive evolution of tubes is considered

independent to that of soft tissues (Ippolitov et al. 2014),

tubes have generally been considered to have limited util-

ity in taxonomy. However, there are recognized characters

of fossil tubes, such as tube wall structure in fossil ser-

pulid tubes from seeps (Vinn et al. 2012), that can enable

taxonomic designation. In this study, tube characters that

are important for taxonomic determination have been

expanded, as well as clarified. While aspects of tube mor-

phology such as longitudinal ridges, tube wall structure,

tube size, mode of occurrence and collars have been

highlighted as being problematic in fossil tube identifica-

tion as they are shared by several modern lineages (Kiel

& Dando 2009), we were able to show that many of these

features can still be taxonomically useful. This is due to

additional details observed within this study, such as the

orientation of collars with respect to the tube, the collar

size, and the type of longitudinal wrinkles and how theyT
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combine with other tube morphological characters. Fea-

tures such as rings of frenulate tubes (Fig. 20Z) appeared

unique to this group, and are therefore a key identifying

character for this lineage, whereas segments or wrinkled

fabric-type textures that were observed in frenulate tubes

can also occur in the tubes made by other families. Fossil

tubes exhibiting the latter features would therefore be dif-

ficult to place, and for these reasons, we suggest that the

Neoproterozoic fossil Sabellidites cambriensis may not

have been made by a siboglinid, as suggested by

Moczyd»owska et al. (2014).
It is also important to note that for tube morphology,

absence of evidence is not evidence of absence, and there-

fore the identification of a fossil tube is only possible if

some diagnostic features of the tube have been retained

following fossilization. The tube-builders of poorly pre-

served tubes such as the Cold Fork Cottonwood Creek

specimens are therefore unlikely to be identified using

morphology. With such fossils it is difficult to determine

whether there was an original absence of characters or

whether these were not preserved (Sansom 2015), which

may be more of a problem for tubes fossilized at seeps as

vent tubes occasionally retain very fine ornamental details

(Little et al. 1998).

Cladistic analyses
Through the application of cladistics, the taxonomic identi-

fication of fossil tube material from ancient vents and seeps

has been placed within a modern comparative context,

allowing affinities of vent and seep tubes to be assessed

more objectively. In summary, this analysis revealed that

out of eight fossil tube types that were previously inter-

preted as having been made by vestimentiferans, siboglinid

affinities could be upheld for only two of these, three were

changed to possibly siboglinid, two were ascribed to the

annelids only, and one tube type was ascribed to Animalia

only (Table 1). Among the tube types that were not previ-

ously ascribed to siboglinids, an additional five are here

suggested to have possibly been made by siboglinids. Nota-

bly, this includes mid-Cretaceous tubes from the Christo-

pher Formation in the Canadian Arctic, which were

previously considered to have been made by serpulids

(Beauchamp & Savard 1992), and, more recently, vesti-

mentiferans (Williscroft et al. 2017).

The ability of the cladistic analysis of only modern tubes

(Fig. 22) to resolve taxa among families confirms that tubes

do possess enough information for taxonomic assignment.

The analysis also demonstrates that coding tube characters

and analysing them within a cladistic framework does

allow determination of the probable identity of a tube, and

thus could do so for a fossil tube if sufficiently well pre-

served. However, the lack of correspondence of deeper

annelid branches within our analyses to existing annelid

molecular phylogenies (e.g. Weigert et al. 2014), even

when molecular data were included (Supplementary File 1,

Figs S1, S2), likely reflects the more limited sampling of

annelid taxa within our analyses.

The generally poorer resolution of cladograms which

included fossil tubes (Fig. 23) further highlights that alter-

ation during fossilization is often significant, and the small

number of characters that can be gleaned subsequently

from fossil tubes makes their identification difficult, even

at broad taxonomic levels. This is also demonstrated by

the PCA plot (Fig. 21), in which the majority of fossil

vent and seep tubes cluster with each other rather than

with the tubes of modern annelid lineages, and is reflected

in the overall increased uncertainly of fossil tube taxo-

nomic interpretations (Table 1). The inclusion of molecu-

lar data worsened fossil taxon resolution (Supplementary

File 1, Fig. S3), likely as a result of conflicts arising from

homoplasies in the morphological data. The cladistic anal-

yses including fossils (Fig. 23) especially appeared to

encounter problems in placing smooth-walled tube fossils,

which is how many of the fossil seep and several vent

tubes are preserved. Even tubes from Canyon River,

which are generally accepted as having been made by

vestimentiferans, are not well resolved in the cladistics

analysis. Tubes with more detailed outer wall ornamenta-

tion, for which there was greater information to base

these identifications upon, resolved more definitively

among modern annelid groups. These tubes comprised

Cretaceous tubes from the Troodos Ophiolite, and Jurassic

tubes from the Figueroa deposit, which were both

resolved among modern vestimentiferan tubes (Fig. 23).

While helping to resolve the identities of only a small

proportion of the fossil tubes investigated, this study

has nevertheless improved the level of quality control

within palaeontological interpretations of fossil vent

and seep tubes, which was greatly needed (Kiel &

Dando 2009; Vrijenhoek 2013). Gaining an understand-

ing of evolutionary history also requires authors to be

cautious, as over-identifications of fossils can lead to

false conclusions of taxon evolutionary ages (Bell et al.

2010; Parham et al. 2012). Cladistic comparative meth-

ods are widely used for fossil identifications because

they increase transparency in the fossil identification

process and clearly demonstrate which characters are

attributed to each fossil, thereby adding objectivity to

fossil identifications that may be inherently difficult

(Crepet et al. 2004). Overall, the use of cladistics has

greatly improved knowledge of the types of characters

that can be gleaned from both fossil and modern tubes,

which of these are homoplastic, and also which charac-

ters can result in more definitive identifications.

The above methods, however, need to be applied with

greater caution for very ancient tube fossils (such as those

from the Palaeozoic), as the identity of these fossils will

largely be evaluated with respect to modern tubes from

which they are very distant in time. The Palaeozoic fossils
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are also the most likely to belong to now-extinct taxa that

do not have modern morphological analogues.

Implications for vent and seep evolutionary

history
The evolutionary history of the annelid family Siboglini-

dae is controversial, owing to conflicting theories of its

origins from fossil and molecular age estimates (Vrijen-

hoek 2013). Our study suggests that Late Cretaceous tubes

from the Troodos Ophiolite and Early Jurassic tubes from

the Figueroa deposit were made by vestimentiferans,

which greatly extends the age of this lineage beyond that

suggested by molecular clock analyses. This finding is

supported by a further piece of independent evidence: the

discovery of mid Cretaceous Osedax fossils (Danise &

Higgs 2015) suggesting that the more derived siboglinid

lineages have a Mesozoic origin. However, we were

unable to find definitive evidence that Devonian and Silu-

rian vent fossils were made by siboglinids, thereby rein-

forcing doubts that this family could extend back into the

Palaeozoic (Vrijenhoek 2013) and certainly not back to

the Neoproterozoic (Moczyd»owska et al. 2014). Four

types of tubes that are tentatively assigned to the vesti-

mentiferans by this study are from Cretaceous deposits

(Table 1), and while their designation remains uncertain,

if vestimentiferans originated during the Jurassic or ear-

lier, they are likely to have been abundant within Creta-

ceous vents and seeps.

The faunal compositions of hydrothermal vents and

cold seeps have undergone dynamic shifts over evolu-

tionary time. Although it has been difficult to attribute

many of these transitions to large-scale environmental

upheaval events (Kiel & Little 2006), a proportion of

the dominant modern vent and seep fauna is considered

to have originated during the Cenozoic (Vrijenhoek

2013). The occurrence of Mesozoic siboglinid fossils

constitutes a diversion from this pattern, correlating bet-

ter with the Jurassic origins ascribed to vent and seep

molluscs such as provannids (Kiel et al. 2008b; Kaim &

Kelly 2009). The confirmed and suspected presence of

siboglinids in many ancient vent and seep deposits is

perhaps due to their possession of weedy characteristics

such as wide habitat preferences and distant dispersal

abilities (Georgieva et al. 2015b), which may have

enabled them to make use of vent and seep environ-

ments repeatedly and over long periods of time. The

surprising fossil discoveries of Danise & Higgs (2015)

and the reinterpretations presented here emphasize that

the evolutionary history of this remarkable family war-

rants further investigation, and we therefore urge that an

earlier origin for the main tube-building vent and seep

annelid lineage, the vestimentiferans, be considered and

incorporated into a much-needed new molecular age

estimation for Siboglinidae.
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