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Abstract: Carbonic anhydrase IX has been under intensive investigation as a therapeutic target
in cancer. Studies demonstrate that this enzyme has a key role in pH regulation in cancer cells,
allowing these cells to adapt to the adverse conditions of the tumour microenviroment. Novel
CAIX inhibitors have shown efficacy in both in vitro and in vivo pre-clinical cancer models, adversely
affecting cell viability, tumour formation, migration, invasion, and metastatic growth when used
alone. In co-treatments, CAIX inhibitors may enhance the effects of anti-angiogenic drugs or
chemotherapy agents. Research suggests that these inhibitors may also increase the response of
tumours to radiotherapy. Although many of the anti-tumour effects of CAIX inhibition may be
dependent on its role in pH regulation, recent work has shown that CAIX interacts with several of the
signalling pathways involved in the cellular response to radiation, suggesting that pH-independent
mechanisms may also be an important basis of its role in tumour progression. Here, we discuss these
pH-independent interactions in the context of the ability of CAIX to modulate the responsiveness of
cancer to radiation.

Keywords: carbonic anhydrase IX; cancer; hypoxia; radiation; resistance

1. Introduction

During growth, many solid tumours develop areas of low oxygen tension, or hypoxia, caused by
malformation of the tumour vasculature and the increasing distance of tumour cells from the capillary
bed. In tissues, O2 concentrations of 2–9% are typical, O2 concentrations ≤2% O2 are defined as
hypoxic, and ≤0.02% are defined as severely hypoxic [1]. The diffusion distance of O2 from capillaries
is approximately 100–200 µm; tumour cells situated further than this become hypoxic, as oxygen
gradients develop in the tumour [2,3]. Circulation in the tumour is often cyclic, causing periods of acute
or chronic hypoxia [4]. Tumour pH also falls with increased distance from blood vessels, with decreases
from 7.4 to 6.0 measured around 300 µm from the vasculature [5]. However, the intracellular pH (pHi)
of tumour cells is maintained between 7.0 and 7.4, by the actions of pH regulating proteins [6]. Poor
perfusion also inhibits the removal of waste metabolites from the tumour, allowing acidosis to develop
within the tumour microenvironment (TME). Hypoxia and acidosis cause major problems in cancer
treatment, contributing to increased levels of resistance to both radiotherapy and chemotherapy [7].
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2. Survival Strategies

To survive in these adverse conditions, cancer cells must adapt or die [8]. As one of the
mechanisms of adaptation, cells in hypoxic conditions activate the transcription factor hypoxia
inducible factor-1 (HIF-1), consisting of a heterodimer constructed from α and β subunits. In normal
cellular O2 concentrations, the α subunit is rapidly degraded. The oxygen-dependent activation of
prolyl hydroxylases causes hydroxylation of two proline residues (402 and 564) on HIF-1α, allowing
interaction with an E3 ubiquitin ligase, VHL (the Von Hippel-Lindau factor), which targets this
subunit for destruction in the proteasome [9]. This does not occur in hypoxic conditions and instead
HIF-1α is stabilised and interacts with the HIF-1β subunit forming HIF-1, which activates gene
transcription after nuclear translocation. Hypoxia-independent mechanisms for HIF-1α stabilisation
additionally occur [10–12]. Other proteins also regulate HIF-1 activation, for example, factor inhibiting
hypoxia inducible factor-1 (FIH-1), which prevents full activation of HIF-1 in moderate hypoxia.
This protein maintains its activity in low O2 concentrations [13,14] by impairing the interaction
between the C-terminal transactivation domain of HIF-1α and its co-activator proteins, causing partial
activation of HIF-1 [15]. FIH-1 itself is inhibited in severe hypoxia, or by membrane type-1 matrix
metalloproteinase/(MMP14), allowing full HIF-1 activation [13,16].

HIF-1 regulates the expression of genes involved in glycolysis, angiogenesis, pH regulation,
migration, epithelial-mesenchymal transition (EMT), and invasion [17–19], many of which aid cancer
progression. For example, EMT involves E-cadherin loss, which allows cancer cells to disperse and
develop a migratory and invasive phenotype, and is also linked to increased resistance to chemotherapy
and radiotherapy [20]. Hypoxia via HIF-1 causes E-cadherin loss by stimulating the lysyl oxidase
(LOX)-Snail pathway [21]. LOX inhibition decreases the motility and invasiveness of cancer cells
in hypoxia and also reduces metastasis in vivo [22]. Hypoxia also interferes with the homologous
recombination, non-homologous end-joining, and mismatch repair DNA pathways, and inhibits the
G1/S cell cycle checkpoint. This increases DNA errors and causes chromosomal instability [6,21].

Cancer cells use aerobic glycolysis for energy and to provide components for cell growth and
proliferation, even in normoxic conditions, causing higher rates of glycolysis and increased production
of CO2, H+, and lactate [8,23]. These metabolic by-products must be removed from the cell to prevent
the pHi becoming acidic, and thus maintain a slightly alkaline pHi consistent with survival. Early
studies using D2O in yeast demonstrated that active transport mechanisms are likely to be dependent
on protons, since deuterons could not substitute for protons in these processes [24], and further
illustrated the role of alkaline pHi in transformation, tumorigenicity, and proliferation [25,26]. Tumour
cells can maintain their pHi through increased expression and activation of pH regulatory proteins,
some of which are HIF1-dependent, such as monocarboxylate transporter 4 (MCT4), which exports
lactate and H+ from tumour cells, or carbonic anhydrase IX (CAIX), an enzyme that accelerates the
conversion of CO2 and H2O to HCO3

− and H+ [18,27–29]. HCO3
− is transported back into tumour

cells via HCO3
− transporters and used to buffer pHi [28,30]. The role of CAIX is shown in Figure 1.

As a result of low O2 levels, hypoxic cancer cells are required to undergo lactic acid fermentation
for the production of energy, a process that leads to the production of H+ ions. If these H+ ions are
allowed to build up in the cytoplasm, they can lead to changes in pH, which can be detrimental to the
cell. The metabolic acids generated within the cell can react with HCO3

−, leading to the production of
H2O and CO2. Membrane-permeant CO2 is a form in which much acid is removed from cancer cells.
CAIX facilitates CO2 diffusion out of the cell by catalysing the extracellular hydration of CO2, leading to
the production of H+ and HCO3

−. CAIX therefore maintains a steeper efflux gradient for CO2, leading
to a more alkaline intracellular pH, while also causing the acidification of the extracellular milieu.

Carbonic anhydrases (CAs) are ubiquitous metalloenzymes that catalyse the reversible formation
of HCO3

− and H+ ions from H2O and CO2 [31]. At least 16 different isoforms of CAs have been
isolated from mammals and differ in terms of cellular location, activity, and tissue locations. One
CA, CAVI, is secreted, two (CAVA and VB) are found in the mitochondria, five are cytosolic (CAs I,
II, III, VII, and XIII), and five are found on membranes (CA IV, IX, XII, XIV, and XV); of these, CAIX
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and CAXII have been shown to play an important role in cancer progression [32,33]. Some CAs have
been shown to operate as part of transport ‘metabolons’ to increase the effectiveness of HCO3

−- and
H+-transporters [34–37]. This contributes to the maintenance of an alkaline pHi in tumour cells and an
acidic pHe in the TME, which supports tumour growth, invasion, metastasis, and resistance to both
chemotherapy and radiotherapy [5,6,38–40]. For example, in tumours, the most invasive regions are
those exhibiting the lowest pH, which causes activation and increases expression of proteinases and
metalloproteases that degrade components of the extracellular matrix (ECM), facilitating invasion and
migration [5,41–43]. Alkaline pHi causes resistance to apoptotic stimuli because caspase activation
occurs in acidic pHi conditions [44]; it also increases both DNA synthesis and cell proliferation,
allowing tumour growth and progression [6,8,45,46]. Figure 2 illustrates the expression of CAIX,
proliferation, the hypoxic region, and apoptotic staining in human 3D breast cancer models.
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Figure 1. Contribution of CAIX to the movement of glycolytic protons from inside the cytoplasm to
the extracellular milieu.

In Figure 2, the illustrations on the left demonstrate overlapping staining for CAIX and the
hypoxic marker hypoxyprobe-1 in 3D spheroid cultures of HBL-100 human breast cancer cells. The
right-hand illustrations demonstrate staining for CAIX, Ki67 (a proliferation marker), and caspase-3
(apoptosis) in a xenograft model of MDA-MB-231 human breast cancer cells.

Multiple studies have demonstrated a role for CAIX in pH regulation in cancer cells [28,47–50].
Targeting CAIX is proposed as a logical strategy for anti-cancer therapy, since it is an extracellular
target, mainly associated with malignant growth, and is largely absent from most healthy tissue, with
the exception of the gastro-intestinal tract and stomach [32,38,47,51,52]. CAIX staining in tumours is
associated with poor prognosis and progression in several types of cancer, and in a series of lymph
node-positive breast tumours it was found to correlate with metastasis [40,53–58]. Knockdown of
CAIX in murine models leads to few phenotypic abnormalities other than gastric hyperplasia, inferring
limited toxicity issues in normal tissue [59,60].
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3. CAIX Inhibition as a Cancer Therapy

The effectiveness of CAIX inhibition as an anti-cancer strategy has been demonstrated in many
pre-clinical studies using various cancer models. CAIX inhibitors negatively affect cancer cell viability
and migration, as well as collagen destruction and invasion, and hinder both tumour formation and
metastic growth in murine models, suggesting that increased expression and activity of CAIX in a
cancer will adversly affect progression and prognosis. Many groups have now validated a crucial role
for CAIX in growth, migration, invasion, and metastasis of tumours [40,52,61–68].

In vitro investigations have demonstrated that inhibition of CAIX using siRNA or CAIX inhibitors
decreased the invasiveness of renal and ovarian cancer cells, while also reducing the amount of cells
invading from human breast carcinoma spheroids [40,66,69,70]. A novel class of sulfamate CAIX
inhibitors reduced the invasion, proliferation, and migration of human breast cancer cells, and also
exhibited the capacity to reverse established invasion in a model consisting of breast tumour tissue from
naïve biopsies [40,63,66,71]. CAIX knockdown significantly reduced the proliferation and survival of
cancer cells under both normoxic and hypoxic conditions [40,66,72].

In vivo studies have shown that knockdown of CAIX can decrease tumour volume in both
breast and colon cancer xenografts. Additive results could be obtained in co-treatments alongside
antiangiogenic therapy. Knockdown also inhibited lung metastasis in breast cancer models [52,63,64].
CAIX overexpression studies in a colon cancer model demonstrated increased rates of tumour growth
and expression of Ki-67, a marker of proliferation [64]. CAIX inhibitors also slowed tumour growth
in breast cancer xenografts by decreasing proliferation and increasing cell death [40]. One of these
inhibitors also exhibited anti-metastatic effects in a xenograft model of human breast cancer [73].
Interestingly, the use of CAIX inhibitors in in vivo systems did not lead to any reports of non-specific
toxicity [40,69,73,74]. The development of novel CAIX inhibitors and clinical trials has been reviewed
recently [8,28–30,75].

4. Other Possible Functions for CAIX in Cancer Progression

Although the main function of CAIX in cancer is as a regulator of pHi, several studies show
that other possible mechanisms may be linked to this enzyme, thereby expanding its role in tumour
progression. A recent study found novel roles for CAIX in tumour cell migration and MMP14-mediated
invasion [67]. Interactions were identified with β1 integrins, metabolic transporters, integrin-associated
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protein CD98hc, and MMP14. CAIX appears to associate with MMP14 through phosphorylation sites
in the intracellular domain of CAIX and can increase the degradation of collagen by MMP14 through
providing the H+ the protease needs for its catalytic activity [67].

Interestingly, another recent report has linked MMP14 to the invasive capacity of breast cancer
cell lines [66]. This study showed that although HIF-1α levels increased in hypoxic conditions, the
expression of CAIX was variable between cell lines, and was only markedly upregulated in MCF-7 cells,
a non-invasive cell line, after exposure to chronic hypoxia. HIF-1α gene expression can be constrained
by FIH-1, which in turn can be inhibited by MMP14 [16]. Although MCF-7 cells expressed high FIH-1
levels, they lacked the active form of MMP14, suggesting that in this cell line, FIH-1 is able to prevent
full HIF-1 activation in acute hypoxia, but not in chronic hypoxia [66]. This is in agreement with prior
studies showing that FIH-1 suppression increases CAIX expression in hepatoma and osteosarcoma cell
lines [14]. In the MCF-7 models, FIH-1 knockdown increased CAIX expression in hypoxic cells [66].
Taken together, these results suggest a strong link between hypoxia, HIF-1, FIH-1, CAIX, and MMP14
in the regulation of cancer cell invasive potential [14,16,66,67].

CAIX can decrease binding of E-cadherin to the cytoskeleton and affect cell adhesion [76] while
also increasing the metastatic potential of tumour cells by effects on the activity of Rho-GTPase [77].
It similarly interacts with DKK1 protein, and thus the Rho/ROCK pathway, activating paxillin and
stimulating migration [77]. CAIX can be phosphorylated at Thr-443 by Protein Kinase A during
hypoxia, causing activation of CAIX and facilitating migration via increased transcription of proteins
involved in cytoskeletal organisation and EMT [77–79]. Overexpression of CAIX also modulates
Rho/ROCK signalling (which is pH sensitive), activates paxillin, increases focal adhesion turnover, cell
migration, and activation of the FAK/PI3K/mTOR/p70S6K signalling pathway [77,80]. Conversely,
CAIX inhibition impedes ROCK1 and decreases invasion [68,81].

5. Radiation

Radiotherapy is used to treat approximately 50% of cancer patients, either alone or in concert
with chemotherapy or surgery [82]. It aims to eliminate cancer cells from the primary tumour, regional
lymph nodes, or oligometastatic disease whilst limiting normal tissue damage. Radiation responses
depend on the production of free radicals and intermediate ions that cause DNA damage in the form
of single-strand (SSBs) or double-strand (DSBs) breaks in DNA. DBSs are the most effective in terms of
inflicting cell damage and activate the DNA damage response (DDR) pathway that regulates whether
the cell repairs DNA or undergoes cell death [83,84].

DSBs in DNA are detected by ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and
Rad3-related (ATR) kinases, which activate signalling pathways that stimulate cell cycle checkpoints
and DNA repair. H2AX, once phosphorylated by ATM, recruits DNA repair proteins to the damaged
area, and cyclins and cyclin-dependent kinases (CDKs) at G1/S and G2/M interphases delay cell
division while DNA is repaired. The damage is restored by either homologous recombination or
nonhomologous end joining (NHEJ) repair pathways. If DNA is not repaired, the damage results in
cell death.

However, some tumours may either acquire or possess intrinsic radioresistance, and a major
clinical advantage would be achieved in cancer treatment if new approaches to sensitizing these
tumours to radiotherapy were developed [84,85]. Studies in the 1950s acertained the role of hypoxia in
radioresistance and, conversely, the role that O2 plays in radiation responses [86–88]. Maximal cell
kill in response to radiotherapy needs O2 to form free radicals that damage DNA, and stabilise or
‘fix’ radiation-induced DNA damage [89]. This causes changes in the DNA that cannot be repaired,
leading to cell death if the cell tries to undergo cell division [1,90]. Hypoxic cells can be 2 to 3 times
more resistant to the same dose of radiation, because fewer DSBs are stabilised [88]. Another factor is
the decrease in cell proliferation caused by hypoxia, as DNA damage is higher in rapidly dividing
cells [5]. The phase of the cell cycle also affects radiation responses, with cells in G2/M and G1 phases
the most radiosensitive and those in the S phase more radioresistant [91,92]. Increased acidification
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decreases the effectiveness of radiation; cells cultured in acidic media are more resistant to radiation,
with acidic pHe shown to reduce fixation of radiation-induced DNA damage, inhibit radiation-induced
apoptosis, and delay G2/M-phase arrest allowing more time for treated cells to repair DNA damage,
thus increasing radioresistance [7,93–99].

6. CAIX Inhibition and Radiation

Studies have shown that CAIX can influence the response of cancers to radiation [53,100]. The
knockdown of hypoxia-induced CAIX, or CAIX and CAXII together, sensitised tumour cells to
radiation by decreasing the number of cells in the radioresistant S phase in both in vitro and in vivo
models. This knockdown caused decreased intracellular pH values, which were found to correlate with
enhanced cell death, suggesting that active CAIX is protecting cells against radiation by preserving an
alkaline pHi, since ectopic CAIX expression increased cell survival after radiation treatment [29,62].
Recent studies have also shown the ability of CAIX inhibitors to sensitise renal cell carcinoma to
radiation by increasing radiation-induced apoptosis [101], which is one mechanism known to be
involved in the therapeutic effect of radiotherapy [102]. CAIX inhibitors similarly enhanced radiation
sensitivity when used in combination in a breast cancer model; proteomic studies indicated that
co-treatment increased expression of pro-apoptotic proteins and reduced expression of anti-apoptotic
proteins [66]. Other pre-clinical data using xenograft models have shown that tumours expressing
high levels of CAIX were less responsive to radiation, but that CAIX inhibitors could significantly
increase radiosensitivity [103,104]. For example, the co-treatment of CAIX inhibitors with radiation in
a colon HT29 mouse xenograft model demonstrated an improved therapeutic effect [103]. Although
this was not apparent in in vitro studies, a novel class of sulfamate CAIX inhibitors enhanced the effects
of radiation in a colorectal model, both in vitro and in vivo [103,104]. The use of isotopic substitution
experiments could give insight into whether CAIX inhibition induces radiation sensitivity by increasing
intracellular H+ concentrations [24].

7. CAIX and Radiation Responses, and Other Mechanisms

Although most research suggests that CAIX influences cancer responses via pH regulation, this
enzyme can also interact with other mechanisms involved in cellular reactions to radiation, suggesting
that additional factors may be involved in its ability to radiosensitize cancer cells. Radiation triggers
several signalling cascades known to be involved in cell survival such as the PI3K/AKT and ERK
pathways; this occurs through activation of the epidermal growth factor receptor (EGFR) [105,106].
EGFR can influence radiation responses by binding to DNA-dependent protein kinases (DNA-PK),
enhancing their activity and thus DNA repair [106–108]. Radiation induces nuclear accumulation
of EGFR, where it is involved in the relaxation of chromatin, allowing DNA repair proteins access
and thus enhancing resistance to radiation [109]. Decreased expression of EGFR or AKT has been
shown to increase radiation sensitivity in human cancer cells [110]. Activation of EGFR by epidermal
growth factor causes phosphorylation of CAIX on Tyr449, which in turn can activate the PI3K/AKT
pathway by interacting with the p85 regulatory subunit [111]. This suggests that radiation itself may
activate survival pathways through a mechanism that at least partially involves CAIX. PI3K/Akt
is one of the pathways stimulated by radiation that is known to be involved in the inhibition of
cell death via apoptosis; further, several studies have also linked overexpression and activation of
EGFR with radiation resistance in cancer [112–118]. EGFR inhibitors can sensitise cancer cells to
radiation both in vitro and in vivo, with positive results also observed in a Phase III trial in head and
neck cancer [119,120]. Whether this response to radiation is in part through the prevention of CAIX
phosphorlyation and activation of PI3K/AKT is currently unclear.

NF-κB activity is stimulated by hypoxia and acidic pH [121–125]. It is also activated by radiation
and has a key role in radiation resistance and cell survival [126–130]. CAIX can interact with the
NF-κB signalling pathway via a mechanism involving β1-integrin. Expression of β1 integrin is
increased in various cancers, where it is involved in cell survival, proliferation, apoptosis, invasion,
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metastasis, and resistance to both chemotherapy and radiotherapy [131–135]. Studies have shown that
cancer cells can be sensitized to radiotherapy by targeting β1 integrins [136,137]. The radioresistance
mediated by β1 integrin is regulated by NF-κB, which increases β1-integrin expression, but conversely,
inhibition of β1-integrin can inhibit the transcriptional activity of NF-κB [138]. A recent study
demonstrated an interaction between CAIX and β1 integrin in tumour cells [67]; therefore this is
another possible mode of interaction between CAIX and radiation responses. The downmodulation of
β1 integrin can synergistically inhibit Akt-mediated survival in breast cancer cell lines and enhance
radiotherapy in breast cancer xenografts [134,136,139]. A further study has shown that CAIX is
required for the activation of NF-κB in hypoxia and can, via this interaction, stimulate the production
of G-CSF to promote movement of granulocytic myeloid-derived suppressor cells (MDSC) to the
metastatic niche of the lung [140]. Interestingly, G-CSF is strongly linked with protection from radiation
damage [141,142], and high expression of the receptor is associated with poor response to radiotherapy
in rectal cancer [143].

Signal transducer and activator of transcription 3 (Stat3) is overexpressed in many cancers; STAT3
has been shown to be involved in the regulation of CAIX expression in several studies [144,145].
Inhibition of STAT3 has been found to increase radiation sensitivity in cancer cells, and to inhibit
radiation-induced progression in glioma [146–148]. IL-6 promotes tumour growth and invasion
through STAT3 activation [140], and has likewise been linked to radiation resistance [149,150]. IL-6
is also an NF-κB responsive gene [151]. Taken together, it is therefore possible that CAIX is part of
an IL-6-STAT3-NF-κB signalling axis involved in radiation resistance as illustrated in Figure 3. These
interactions appear to be independent of the pH-regulating roles of CAIX.
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EGF induces phosphorylation of CAIX via the EGFR, allowing interaction with the p85 regulatory
subunit of PI3K and activation of survival pathways. AKT can in turn activate I-κB kinase (IKK) and
the NF-κB transcription factor, causing the production of IL-6. IL-6 can, via STAT3 and HIF, increase
CAIX expression. Overexpression of CAIX, EGFR, STAT3, and IL-6, and activation of NF-κB, EGFR,
and STAT3, have all been linked with radiation resistance.

The increased presence of lactate in the TME has been linked to both radiation and
chemoresistance [36,152,153], which may be due to the antioxidant effects of lactate in the case of
radioresistance [154]. The secretion of excess lactic acid from the cell is regulated by MCTs, such



Metabolites 2018, 8, 13 8 of 18

as the HIF1-inducible MCT4, which operates almost solely to export lactate, or MCT1, which also
transports other monocarboxylates [18,155–157]. Both MCT1 and 4 co-transport H+ with lactate [18].
MCT1 expression is increased in various cancers such as ovarian, prostate, breast, and colorectal
cancers, where it correlates with progression and poor patient prognosis [158–160]. In xenografts of
lung, colorectal, or small cell lung cancer, MCT1 inhibitors decreased lactate secretion and increased
radiosensitivity [161,162].

The MCT1/4 accessory molecule CD147 is required for plasma membrane expression of these
transporters; if targeted, it can decrease expression of these MCTs and inhibit tumour growth in an
in vivo model [163]; therefore, CD147 should also be linked to radiation responses. Studies show
that CD147 can promote radioresistance in hepatocellular carcinoma cells in vitro and in vivo, and it
has been linked to radioresistance in cervical cancer [164–166]. Interestingly, CD147 has also been
demonstrated to interact with integrin β1 in hepatocellular carcinoma, causing activation of the FAK
pathway and increasing malignancy of these cells.

Could CAIX inhibition affect lactate secretion from cancer cells and thus sensitise resistant tissues
to radiation? In an interesting study, it was found that the increased lactate efflux from hypoxic breast
cancer cells was not due to amplified expression of MCTs, but to a hypoxia-induced upregulation of
CAIX, via a mechanism that was independent of its catalytic activity [37]. Other studies have also
demonstrated that CAs have effects on cells that are not dependent on the catalytic activity of these
enzymes. For example, it has been demonstrated that both the cytosolic CAII and CAIV can enhance
the activity of monocarboxylate transporters 1 and 4 in a non-enzymatic manner, thus increasing
lactate flux [34,36,167,168]. Jamali et al. showed that knock-down of CAIX decreased lactate flux by
approximately 50%. This study proposed that CAIX may function as a ‘proton-collecting/distributing
antenna’ that accelerates proton transfer and requires an extracellular location for CAIX, and that could
facilitate both MCT1 and MCT4 activity. They further suggested that this collaboration between MCTs
and CAIX would not be inhibited by compounds that specifically target CAIX catalytic activity [37].

Recently, lactate has been shown to induce the expression of CAIX in normoxic cancer cells both
in vitro and in vivo in a mechanism involving both HIF-1 and specificity protein (SP-1) transcription
factors [169]. The major mechanism of CAIX increase appeared to be through redox-dependent
stabilisation of HIF-1α. Again, this suggests a possible signalling loop in which hypoxic cells produce
lactate that can increase CAIX expression via HIF, and which in turn allows increased lactate export
via CAIX/MCT co-operation and thus increased radiation resistance.

Hypoxia induces dedifferentiation of cancer cells to become phenotypically more stem
cell-like [170]. It has been proposed that CAIX may be involved in this process, as CAIX expression
has been shown to correlate well with that of CD44, a breast cancer stem cell marker [171–173].
Radioresistance is considered an inherent characteristic of cancer stem cells [174–176]. It has been
suggested that such cells may repair DNA more effectively after radiation, since they express high
levels of genes associated with DNA damage repair [177–180]. Inhibition of CAIX depletes the
number of breast cancer stem cells in tumour hypoxic subvolumes, and therefore CAIX inhibitors
may be useful to treat the radioresistant cancer stem cell population. Furthermore, it has been
inferred that CAIX is required to maintain the stemness phenotype within the hypoxic niche of breast
tumors [65]. This may be due to the possible mechanisms outlined above, or to the effect of CAIX on
the acidic TME, since extracellular acidosis has also been linked to the development of ‘stemness’ [181].
Interestingly, increased lactate concentrations can also cause cancer cells to develop a cancer stem cell
phenotype [182]. In pancreatic cancer stem cells, STAT3 is activated, but STAT3 inhibition decreases
both radioresistance and stem cell numbers in pancreatic cancer [148]. Therefore, since both lactate
and STAT3 activation can increase expression of CAIX [144,145,169], it is certainly possible that the
effect of CAIX inhibitors on radiation sensitivity of cancer stem cells is due to the interactions of CAIX
with lactate and STAT3.
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8. Conclusions

CAIX is an attractive target for the treatment of cancer [8,31–33]. Data suggests that CAIX
inhibition is a therapeutic strategy that could interfere with cancer cell proliferation, migration, and
invasion, while in vivo studies demonstrate that metastatic growth could also be limited. While
evidence indicates that the effectiveness of this inhibition is through interference with pH regulation
in cancer cells, recent studies show that CAIX can interact with many other signalling pathways and
mechanisms known to be active in cancer cells, many of which appear to influence the response of
cancer cells to radiation. These pathways are not mutually exclusive, and sensitivity to radiation
could be determined by additive or synergistic interactions between pH-dependent and independent
mechanisms, which suggests that CAIX may have many important roles in cancer cells that could
potentially be exploited therapeutically, particularly by radiation oncologists.
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