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Plants continuously monitor fluctuations in their
environment and actively adjust their metabolism to
cope with variations in light and carbon resource
availability. However, the links between photoreceptor
signaling pathways and central metabolism are poorly
understood. Emerging evidence suggests that phyto-
chrome photoreceptor signaling and carbon resource
management are strongly coupled. In this review, we
outline the current understanding of how phytochrome-
dependent light signaling interfaceswithmetabolism and
carbon resource management.

The ability to sense and react to the light environment
enables plants to adapt to and thrive in a changing
environment. Post germination, seedlings adopt either
a skotomorphogenic or photomorphogenic develop-
mental program, depending on whether light is avail-
able. The skotomorphogenic strategy is adopted by
dark-grown seedlings, which exhibit elongated hypo-
cotyls and closed cotyledons that are folded against the
hypocotyl in a so-called apical hook. This growth pro-
gram relies on seed reserves to seek light through rapid
hypocotyl extension. By contrast, when exposed to
light, seedlings undergo photomorphogenic growth,
which typically prevents hypocotyl elongation and,
instead, promotes cotyledon expansion and greening,
processes that enable seedlings to begin photoautotro-
phic growth. To support photomorphogenic devel-
opment, plants have evolved multiple families of
photoreceptors that capture a wide range of the light
spectrum. These include UVB-RESISTANCE8, which
detects UV-B light, cryptochromes (crys), phototropins,
and the ZEITLUPE/FLAVIN-BINDING, KELCH RE-
PEAT, F BOX 1/LOV KELCH PROTEIN2 family of
photoreceptors, which absorb UV-A and blue light, and
the phytochromes (phys), which sense red (R) and far-
red (FR) light (Galvão and Fankhauser, 2015). This

review will focus on the phy photoreceptors, whose
unique photosensory properties can profoundly influ-
ence plant growth and development.

The phys are a multigene family; for instance, the
Arabidopsis (Arabidopsis thaliana) genome encodes five
PHY genes, designated PHYA to PHYE. These photo-
receptors are synthesized in the cytosol in their inactive
Pr form. R light exposure drives Pr photoconversion to
the biologically active Pfr form (Li et al., 2011). Pfr is
then translocated into the nucleus, where it negatively
regulates transcription through direct binding to
PHYTOCHROME INTERACTING FACTORS (PIFs),
basic helix-loop-helix (bHLH) transcription factors that
are negative regulators of photomorphogenesis. Phy
interaction with PIFs has the dual effect of sequestering
PIFs from their cognate promoters and promoting PIF
phosphorylation and proteolysis (Leivar and Quail,
2011; Park et al., 2012). In parallel, phys indirectly
suppress the COP1 E3 ubiquitin ligase/SPA complex
(Sheerin et al., 2015), which mediates the turnover of
PHYA and PHYB and positive regulators of photo-
morphogenesis, such as HY5, HYH, LAF1, and LONG
HYPOCOTYL IN FAR RED (HFR1; Wang and Wang,
2015). In darkness, these transcription factors are tar-
gets of 26S proteasome-mediated degradation by the
COP1 E3 ligase component (Lau and Deng, 2012).

As light exposure elicits distinct and quantifiable
growth and molecular changes post germination, the
seedling system has proved to be invaluable in delin-
eating the photoreceptor roles and signaling events.
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Such experiments have established that phys are im-
portant sensors of irradiance quality and quantity in
early development (Strasser et al., 2010; Hu et al., 2013).
However, phys also operate postseedling establish-
ment, ensuring that plant development continues to
react to local and seasonal changes. Many of these light-
driven responses elicit alterations in growth and ar-
chitecture that may necessitate concomitant changes in
carbon resource distribution and management. This
review highlights studies that are beginning to uncover
connections between phys and central metabolism. The
new research is revealing that phy action is not confined
to molecular signaling but also strongly impacts me-
tabolism, while the plant’s carbon status is relayed back
to the phy pathway. This integrated system enables
plants to simultaneously adjust growth, resources, and
metabolism to a changing environment.

PHYTOCHROMES, MEDIATORS OF PLANT
GROWTH PLASTICITY

The general body plan of plants is genetically enco-
ded, but plant architecture can be modified to adjust to
the environment that surrounds it. In this sense, exter-
nal cues, such as light, have a profound effect on the
way a plant grows and develops, ultimately affecting a
plant’s fitness, disease resistance, and productivity (Li
et al., 2012). Phys are able to modulate plant plasticity
because of their exquisite sensitivity to both fluence rate
(light intensity) and light quality (spectral composi-
tion). The competing reactions of rapid light-induced
photoreceptor activation to Pfr and slower inactivat-
ing thermal relaxation to Pr deliver a graded response
to fluence rate (Rausenberger et al., 2010; Johansson
et al., 2014; Jung et al., 2016; Legris et al., 2016).

This characteristic allows seedlings to calibrate dee-
tiolation and subsequent vegetative growth with the
available light levels. Sensitivity to spectral composi-
tion arises from the unique photochemical properties
that allow phys to detect small changes in the R-FR ratio
caused by nearby plants. The neighbor-sensing system
allows plants to reprogram their growth and metabo-
lism such that they can cope better with potential
shading and competition for resources. This suite of
changes in plant physiology and development is col-
lectively referred to as the shade avoidance response
(SAR). While several phys contribute to SAR, phyB
plays a particularly prominent role. Indeed, phyB
mutants display classical SAR phenotypic traits, but
additional mutations increase the severity of the phe-
notype (Franklin and Whitelam, 2005; Martínez-García
et al., 2010; Leivar and Quail, 2011; Casal, 2012). In
Arabidopsis, SAR characteristics include perturbed
seedling deetiolation (the switch to photomorphogenic
growth), altered leaf architecture, typified by elongated
petioles and small leaf blades, reduced biomass, and
early flowering (Li et al., 2012; Galvão and Fankhauser,
2015; Yang et al., 2016; Fig. 1A). Phys, therefore, pro-
vide a versatile sensory system that can detect intrusive

vegetation, shading, or persistent cloud cover and elicit
adaptive changes (Galvão and Fankhauser, 2015).

A series of studies have shown that PIFs operate
antagonistically to phys, as positive regulators of the
SAR response. Although seven members of the PIF
family can interact with PHYs, only PIF4, PIF5, and
PIF7 have unambiguously been shown to mediate this
response, with PIF1 and PIF3 playing minor roles
(Leivar and Quail, 2011; Casal, 2012; Leivar andMonte,
2014; de Wit et al., 2015, 2016). As PIFs are phosphor-
ylated by phyB Pfr and targeted for degradation, under
low R-FR ratio conditions that switch phyB Pfr to its
inactive Pr form, PIF4 and PIF5 proteins accumulate
(Lorrain et al., 2008). Interestingly, while phyB also in-
duces PIF7 phosphorylation, this does not trigger PIF7
degradation; rather, it inactivates it, blocking the tran-
scriptional regulation of target genes. A low R-FR ratio,
therefore, strongly promotes PIF action by boosting
PIF4 and PIF5 levels and by allowing for PIF7 action
(Li et al., 2012).

PIF4, PIF5, and PIF7 are known to mediate SAR by
directly targeting genes involved in auxin biosynthesis
and other hormone signaling pathways, including GA,
brassinosteroid (BR), jasmonate, and ethylene (Leivar
and Monte, 2014).

The SAR is negatively regulated by the atypical
bHLH transcription factors HFR1 and PHY RAPIDLY
REGULATED1 (PAR1) and PAR2 (Galstyan et al.,
2011). These proteins suppress PIF action by binding to
their DNA-binding domain and affecting their biolog-
ical activity (Hao et al., 2012; Zhou et al., 2014). Inter-
estingly, PIFs induce the expression of these genes,
which suggests that HFR1 and PARs operate in a neg-
ative feedback loop that may be important to moderate
the SAR response. These studies have shown that the
phy-PIF regulatory mechanism provides a means to
directly couple light sensing with transcriptional regu-
lation and growth. This system is a central driver of
plastic growth responses enabling plants to adapt to
changeable light conditions.

PHYTOCHROME CONTROL OF
PHOTOSYNTHETIC CAPACITY

A very prominent feature of seedling establishment
conditions is the development of chloroplasts and their
preparation for photosynthetic function. This section
will review the expanding body of evidence that links
phy to photosynthetic competence.

Several studies have shown that phys are important
regulators of photosynthetic pigment abundance. R
light treatment of wild-type seedlings has been shown
to induce the formation of chlorophyll within hours
(Ghassemian et al., 2006), while sequential phy deple-
tion in R-grown phyB, phyABDE, and phyABCDE
mutant seedlings leads to concomitant reductions in
chlorophyll levels (Hu et al., 2013). In older plants, se-
vere phy deficiency or a low R-FR ratio also lowers
chlorophyll levels per biomass unit, but not to the same
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Figure 1. Phytochrome affects biomass, plant architecture, and carbon metabolism. A, Images of Arabidopsis Landsberg erecta
wild type (Ler) and the phytochrome mutants phyB and phyABD. B, Lack of phytochrome signaling leads to enhanced levels of
several organic acids, sugars, and amino acids inmost studies. The heatmap visualizes fold changes in solublemetabolite content
in phytochromemutants and the prr975mutant compared with wild-type (WT) controls, or in response to low R-FR ratio, as seen
in gas chromatography-mass spectrometry (GC-MS) data sets (Jumtee et al., 2008, 2009; Fukushima et al., 2009; Yang et al., 2016;
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extent as in seedlings (Hu et al., 2013; Patel et al., 2013;
Yang et al., 2016). In tomato (Solanum lycopersicum), phy
effects on chlorophyll levels also are quite evident in
adult plants (Kharshiing and Sinha, 2016).

Over the years, a solid body of work has strongly
implicated phys in the transcriptional regulation
of photosynthesis-related genes. CAB and RBCS
were among the first known phy-regulated genes
(Silverthorne and Tobin, 1984; Mösinger et al., 1985;
Nagy et al., 1986; Otto et al., 1988; Dean et al., 1989;
Wehmeyer et al., 1990; Thompson and White, 1991).
These early studies implicated phy in the rapid accu-
mulation of CAB and RBCS mRNA following exposure
to R light. Later research provided genetic evidence for
phy control of the chlorophyll biosynthesis geneHEMA1
and the light-harvesting complex component LHCB2
(McCormac andTerry, 2002). This rolewas confirmed by
microarray studies illustrating that R light treatment of
etiolated seedlings led to broad changes in the expres-
sion of genes involved in photosynthesis or chloroplast
development (Leivar et al., 2009). Moreover, in dark-
ness, about 60% of these genes also are significantly
up-regulated in pifQ mutants, which lack PIF1, PIF3,
PIF4, and PIF5. This indicates that, in the dark, PIFs
have an important role in suppressing photosynthetic
gene expression (Leivar et al., 2009).

In addition to these observations, the molecular
mechanisms leading to the reduction in chlorophyll
levels have been investigated. Two reports (Toledo-
Ortiz et al., 2010, 2014) showed that PIFs and the bZip
transcription factor HY5 antagonistically regulate
chlorophyll and carotenoid biosynthesis. Carotenoids
assist photosynthesis by acting as auxiliary antennae
for light absorption. These studies demonstrated that
both PIFs and HY5 can bind to and potentially compete
for G-boxes on the promoters of carotenoid and
chlorophyll biosynthetic genes, such as PHYTOENE
SYNTHASE, VIOLAXANTHIN DEEPOXIDASE or
PROTOCHLOROPHYLLIDE OXIDOREDUCATASE C,
GENOMES UNCOUPLED5 (GUN5), and LIGHT-
HARVESTING CHLOROPHYLL-PROTEIN COMPLEX
I SUBUNIT A4. Pigment and transcript levels for these
genes are accordingly low in the hy5 mutant and ele-
vated in the quadruple pifQmutant. As phys negatively
regulate PIFs but promote HY5 action, this dual-control
transcriptional mechanism conveys exquisite light
control of photosynthesis-related genes.

Interestingly, other studies have shown that chloro-
plast status can feedback to influence the photomor-
phogenic pathways through chloroplast retrograde
signaling (for review, see Chan et al., 2016). Earlier
studies hinted that this might be the case (McCormac
and Terry, 2004; Nott et al., 2006). A recent study has
shown that the GOLDEN2-LIKE1 (GLK1) transcription
factor plays a critical role in this process in seedlings
(Martín et al., 2016). In darkness, PIFs repress GLK1
expression, while light inactivates this process, allow-
ing gene regulation and photomorphogenic develop-
ment to proceed. At high light intensities that may be
damaging for the chloroplast, GLK1 is repressed, this
time through GUN1-mediated retrograde signaling
from the chloroplast. This signal halts photomorpho-
genic gene expression and development, which serve to
protect the seedlings from high-light damage.

In summary, there is ample evidence for transcrip-
tional regulation of photosynthetic genes by phyto-
chromes, especially genes involved in photosynthetic
pigment synthesis, and we are now also beginning to
understand the role of phytochrome in retrograde sig-
naling and the interplay between both signaling systems.

FINE-TUNING OF PHOTOSYNTHETIC PROCESSES
BY PHYTOCHROME

Molecular studies have hardwired the links between
phy and photosynthetic gene expression, but photo-
physiological analysis is required to understand the
advantages and disadvantages of altered photosyn-
thetic capacity in phy-dependent adaptive responses
(e.g. SAR). A recent study analyzed the contribution of
phys and crys to the regulation of proteins involved in
chloroplast metabolism and the Calvin cycle, including
Rubisco and Rubisco activase (Fox et al., 2015). First, the
quadruple phyA;phyB;cry1;cry2 mutant was shown to
have reduced chlorophyll levels, harvesting complex,
and Calvin cycle proteins. Then, reduced maximum
CO2 fixation in this quadruple mutant confirmed the
impaired activity of the Calvin cycle and electron
transport components. These data suggest that phy and
cry signaling may not affect simply photosynthetic ca-
pacity but the efficiency of the Calvin cycle. Notably,
this study also showed that, despite the deficiencies of
phyA;phyB;cry1;cry2 mutants, these were not limiting

Figure 1. (Continued.)
Han et al., 2017). Fold changeswere calculated by dividing themetabolite content of themutant (or low R-FR ratio-treated plants)
by that of the wild type (or high R-FR-treated plants). For Jumtee et al. (2008), values at 24 h after the start of FR or white light
treatment were first normalized by the respective dark control of each genotype at the same time point, and then fold change of
phyA over the wild type was determined from these values. Experimental setup, samples, and conditions for each study are
indicated above the heat map. Fold changes are indicated in colors, with dark blue representing the largest decrease and dark
orange representing the largest increase in the mutant over the wild type, or low R-FR over high R-FR ratio. The values of the 5th
and 95th percentiles were used as minimum andmaximum values, respectively. + and2 indicate statistically significant increase
and decrease, respectively, according to the statistics employed in each study. EOD, End of day; EON, end of night; LD, light-dark;
D, dark; YL, young leaf; ML, mature leaf; na, data are not available for this metabolite. Numbers for Fukushima et al. (2009)
indicate time of sampling after light onset in the morning in hours.

1042 Plant Physiol. Vol. 176, 2018

Krahmer et al.

 www.plantphysiol.orgon February 15, 2018 - Published by Downloaded from 
Copyright © 2018 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


for photosynthesis at low light levels but were very
restrictive at high fluence rates. Other studies observed
reductions in CO2 uptake in phyB and multiallele phy
mutants at medium and high light levels (Boccalandro
et al., 2009; Yang et al., 2016). Conversely, cotton (Gos-
sypium hirsutum) plants that overexpress PHYB were
shown to have higher photosynthetic rates per unit of
leaf area and higher biomass (Rao et al., 2011). These
data collectively indicate that phy action is important
for regulating carbon fixation and biomass production,
particularly at high fluence rates. They also suggest
that, even though the photosynthetic machinerymay be
impaired by phy deactivation, it is not necessarily
limiting for photosynthesis in low-light environments.
An additional observation was made by Boccalandro

et al. (2009), who showed that phyB also increases sto-
matal density, which is postulated to enhance photo-
synthetic rate at the expense of water use efficiency.
Leaf thickness is another phy-controlled architectural
trait thatmay affect photosynthetic performance. Thiele
et al. (1999) showed that potato (Solanum tuberosum)
plants overexpressing PHYB achieve higher photosyn-
thetic rates per plant and per leaf area but have similar
rates to wild-type plants when normalized to chloro-
phyll content. The authors suggested that the thicker
palisade tissue and the resulting higher chlorophyll
content per unit of leaf area allowed the plants to reach
a higher overall photosynthetic rate. Thinner leaves
are part of the shade avoidance syndrome (McLaren
and Smith, 1978; Franklin and Whitelam, 2005), which
necessarily entails a larger leaf area-to-biomass ratio.
Therefore, carbon uptake should be normalized to the
existing biomass to determine its contribution to
growth, and this information is lacking in most studies.
Taken together, these mechanistic and physiological

studies are uncovering an important role of phys in
managing photosynthetic capacity. In SAR conditions
that can be light limiting, reduced investment in the
photosynthetic machinery does not appear to impair
CO2 uptake and may relieve the demand on energy
reserves, liberating resources for other processes.

PHYS HAVE WIDE-RANGING EFFECTS ON
CORE METABOLITES

Following assimilation by photosynthesis, the newly
acquired carbon is distributed into different metabolic
pathways to either provide energy for maintenance and
growth or to biosynthesize metabolites for other com-
ponents, such as amino acids for protein synthesis.
Evidence is emerging that phy signaling has sizable
effects on the majority of such primary carbon meta-
bolic pathways and a subset of secondary metabolites.
Studies published over the last 11 years reported
metabolomics experiments comparing phy mutants
with wild-type controls in Arabidopsis and rice (Oryza
sativa; Ghassemian et al., 2006; Jumtee et al., 2008, 2009;
Patel et al., 2013; Yang et al., 2016; Han et al., 2017). One
of these studies analyzed metabolic changes during the

first 24 h of FR- or white-light induced deetiolation of
dark-germinatedwild-type and phyA seedlings (Jumtee
et al., 2008), while Ghassemian et al. (2006) investigated
changes due to deetiolation in R light. The other reports
(Patel et al., 2013; Yang et al., 2016; Han et al., 2017)
focused on metabolic changes in low R-FR ratio or phy
single andmultiallelemutant whole rosettes (more than
2.5 weeks old), while the rice study distinguished be-
tween young and mature leaves (Jumtee et al., 2009).
Although the results differ, as expected for different
experiments, species, and conditions, the general trend
indicates that a large number of metabolites, especially
sugars and tricarboxylic acid cycle components, accu-
mulate to higher levels in phy mutants compared with
wild-type plants (for cross-comparison of most of these
studies, see Fig. 1B). Interestingly, a large subset of
these changes are observed in the prr975 mutant
(Fig. 1B) that lacks the circadian clock genes PSEUDO
RESPONSE REGULATOR9 (PRR9), PRR7, and PRR5
(Fukushima et al., 2009). This may not be surprising as,
like the phyB mutant, prr975 seedlings have a similar
elongated hypocotyl phenotype in R light, suggesting
that PRRs may be positive regulators of the phyB
pathway (Kato et al., 2007). Indeed, epistasis analysis
positions PRR7 and PRR5 downstream of phytochrome
in this response (Ito et al., 2007). Furthermore, as TOC1
was shown to bind to and repress the activity of PIF3
and PIF4, it is possible that other PRRs suppress PIF
signaling in a similarmanner (Soy et al., 2016; Zhu et al.,
2016). Because of the strong connections between phy
signaling and PRRs, we have included the metabolic
changes in the prr975mutant in this review (Fukushima
et al., 2009). The following section will review phy
control of sugars and starch, followed by tricarboxylic
acid cycle intermediates and amino acids.

Starch and Sugars

Suc is themajor sugar used to transport excess carbon
from source leaves to sink tissues (Kölling et al., 2013),
where it is broken down into Glc and Fru, which are
then used by different pathways including respiration.
Starch is synthesized during the day and is used as a
carbon resource during the night to sustain mainte-
nance and growth in the absence of light (Zeeman et al.,
2010).

Jumtee et al. (2008) reported that exposure of etio-
lated seedlings to FR light led to a phyA-dependent fall
in the levels of sugars (including Suc, Glc, Fru, andGal).
Interestingly, white light treatment appeared to be less
effective in depleting sugars. As FR light activates
deetiolation, but not the greening of cotyledons, under
these conditions, the carbon resources may be used for
growth but not replenished through photosynthesis.

An intriguing finding is that, even though phy de-
pletion tends to impair photosynthesis, particularly at
higher light levels (see above), Arabidopsis phyBD and
phyABDE mutants sampled at day 35 overaccumulate
daytime sugars and starch (Yang et al., 2016). The rice
phyABC triple mutant also has higher daytime sugar
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levels compared with the wild type, and this is partic-
ularly evident in younger triple mutant leaves that
contain excessive levels of the reducing sugars Glc, Fru,
and Gal. Like the Arabidopsis phyBD and phyABDE
mutants, the rice phyABC mutant has altered starch
levels compared with the wild type. However, in rice
phyABC, starch is more abundant at night, indicating
incomplete usage during the dark period.

Two studies (Fukushima et al., 2009; Han et al., 2017)
that sampled around 18 to 20 d (as opposed to 35 d in
Yang et al., 2016) reported reduced sugar levels in
prr975, phyA, phyB, and phyAB when compared with
the wild type. Reflecting this, the phy mutants in the
study byHan et al. (2017) also have lower starch. This is
interesting, as it illustrates that the impact of phy and
PRR signaling on sugar and starch abundance may be
dependent on the developmental stage and/or experi-
mental conditions. In fact, Patel et al. (2013) show that
rosettes accumulate significantly more soluble sugars
(especially Suc) at low R-FR ratios compared with high
R-FR ratios at 16°C but not at 22°C. This is a possible
explanation for the different results reported by Han
et al. (2017; 20°C daytime) and Yang et al. (2016; 18°C),
in addition to age, photoperiod, choice of mutant, and
light intensity. A consistent finding across studies is
that phy deficiency alters sugar levels. Whether this
leads to a rise or fall in sugars will potentially depend
on the collective effects of phy on carbon uptake
and resource use in different conditions or phases of
development. More in-depth metabolic flux analysis
will be required to decipher the regulatory processes
that underlie the sometimes dramatic phy-controlled
changes in sugar metabolite levels. Transcriptome
studies showed that ;30% of R-induced genes are in-
volved in cellular metabolism (Leivar et al., 2009);
therefore, it appears that metabolic changes may result
at least in part from transcriptional regulation.

Tricarboxylic Acid Cycle Components and Amino Acids

Photosynthetic carbon is used either for growth and
biosynthetic processes or to create ATP, involving gly-
colysis and the tricarboxylic acid cycle. The intermedi-
ates of these processes are used not only in respiration
but also in the biosynthesis of othermetabolites, such as
amino acids (for review, see Fernie et al., 2004). It ap-
pears that the majority of tricarboxylic acid cycle or-
ganic acids and amino acids are regulated by phy.
During FR-induced deetiolation, amino acid concen-
trations drop in wild-type but not in phyA seedlings
(Liu et al., 2012). The authors hypothesize that this
phyA-mediated effect may arise from an increase in
protein synthesis to support growth, which would de-
plete the amino acid pool. Likewise, the abundance of
amino acids drops in response to deetiolation in con-
stant red light within only a few hours (Ghassemian
et al., 2006). Han et al. (2017) also record reductions in
amino acid and tricarboxylic acid cycle intermediates in
phyA, phyB, and phyAB plants long after deetiolation.

However, other studies report elevated levels of amino
acids and tricarboxylic acid cycle components in adult
multiallele phymutants, prr975, and young phyABC rice
leaves (Fukushima et al., 2009; Jumtee et al., 2009; Yang
et al., 2016). Among the metabolites measured by Patel
et al. (2013), Gly exhibited the largest increase under
low R-FR ratio compared with high R-FR ratio at 16°C,
but no change was seen at 22°C. Therefore, as for sug-
ars, temperature (but also photoperiod, age, choice of
mutants, and light intensity) provides a possible ex-
planation for the differences seen by Yang et al. (2016)
and Han et al. (2017).

In cases where organic and amino acids accumulate, it
is currently unclear whether this is because of increased
production or slower consumption. Transcript profiles
of enzymes catalyzing the synthesis of fumarate and
citrate reveal that these genes are down-regulated in
phyABDE mutants (Yang et al., 2016), suggesting that
these metabolites are not elevated through transcrip-
tional up-regulation. An alternative hypothesis is that
tricarboxylic acid cycle intermediates accumulate due to
decreased synthetic processes that use these metabolites.
For example, reduced throughput to chlorophyll (which
can be low in phy mutants) would increase the pool
of chlorophyll biosynthesis precursors, including Glu
(Tanaka and Tanaka, 2007). Another possibility is that
high levels of amino acids may arise from reduced
rates of protein synthesis. The challenge ahead will be
to establish whether the metabolic changes observed
in phy-deficient plants are an accidental consequence
of misregulated growth or whether they are adaptive
for light-limiting or FR-rich canopy shade conditions.
The apparent conditionality of the phy-dependent
metabolic profile suggests that phys may have an
important role in ensuring that the metabolic response
is alignedwith the plant growth strategy (Jumtee et al.,
2008, 2009; Yang et al., 2016; Han et al., 2017).

PHY CONTROL OF GROWTH AND BIOMASS

Another open question is whether and how the
changes in cellular metabolic processes by phy deple-
tion are linked to biomass accumulation. There is evi-
dence that phy can have a positive effect on biomass
accumulation in some conditions. For example, phyA
tomato mutants, as well as 5-week-old Arabidopsis
phyBD and phyABDE mutants, have substantially
less biomass than the respective wild-type controls
(Kharshiing and Sinha, 2016; Yang et al., 2016). As
discussed above, reduction in photosynthetic rates
often is accompanied with a reduction in biomass, and
this would be a plausible mechanism leading to a
reduction in biomass in phy mutants. Alternatively,
inefficient metabolism in phy-deficient plants could
contribute to their decreased biomass. To resolve these
questions, more quantitative data are needed in or-
der to estimate the contribution of the photosynthetic
machinery or metabolic misregulation to biomass
accumulation.
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CARBON SENSING BY PHY
SIGNALING COMPONENTS

Recent studies have shown that, as well as adjusting
metabolism, phytochrome signaling responds to en-
dogenous carbon status. In fact, if phytochrome sig-
naling is involved in sensing carbon availability, this
opens the question of whether the changes in metabo-
lism and growth in phytochrome mutants and prr975
arise at least in part from altered carbon reserve sens-
ing. Several studies have delineated close links between
central light signaling components, including HY5 and
PIFs, and carbon-activated signaling.
HY5 has emerged as a key phytochrome signal-

ing component that links light signal transduction to
carbon resource management. Earlier chromati-
nimmunoprecipitation (ChIP)-chip analysis identified
more than 3,500 direct HY5 target genes with a sig-
nificant enrichment in metabolic, nutrient signaling,
and photosynthetic genes (Lee et al., 2007). HY5 was
subsequently shown to regulate the expression of
chlorophyll biosynthesis and photosynthesis-related
genes through direct binding to G-box promoter
elements (Toledo-Ortiz et al., 2014). More recently,
HY5 was shown to directly enhance the expression
of TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1)
and the Suc efflux transporters SWEET11 and SWEET12.
TPS1 elevates levels of trehalose-6-phosphate, ametabolic
signaling molecule that controls growth, flowering, and
shoot-to-root transport of Suc (Chen et al., 2016).
However, HY5 action is not confined to the shoot; it
translocates to the root and induces the expression of
root-located HY5, which, in turn, activates NRT2.1
transcription and root nitrate uptake. Furthermore, the
HY5-induced NRT2.1 expression in the root appears to
be dependent on the shoot metabolic carbon status.
Thus, HY5 appears to play a pivotal role in coordinat-
ing carbon uptake and growth in the shoot with
nitrogen uptake in roots (Chen et al., 2016). Interest-
ingly, COP1-mediated proteolysis of PHYAwas shown
to be impaired by Suc application, indicating that
COP1 could be Suc regulated (Debrieux et al., 2013). It
will be interesting to establish if other COP1 targets
such as HY5 are regulated by internal carbon status.
The PIF transcription factors were recently impli-

cated in sugar signaling. Suc-induced hypocotyl elon-
gation appears to be PIF dependent, and this response
is abolished in the pifQ mutant (Stewart et al., 2011).
Although Suc only moderately alters PIF transcription,
PIF5 protein was shown to accumulate in response
to Suc (Stewart et al., 2011). A different study by Shor
et al. (2017) did not observe Suc effects on the protein
stability of PIF1, PIF3, PIF4, and PIF5 but demon-
strated through ChIP-quantitative PCR (qPCR) that
Suc enhances PIF enrichment at the promoters of the
clock genes LHY and CCA1. This Suc-dependent reg-
ulation appears to enhance the peak of LHY and CCA1
expression at dawn. The authors propose that this
mechanism may allow PIFs to participate in Suc en-
trainment of the oscillator. A number of earlier studies

demonstrated that PIFs target promoter elements of
multiple auxin biosynthetic and signal transduction
genes (Franklin et al., 2011; Nozue et al., 2011;
Hornitschek et al., 2012). PIFs also have been shown to
be required for the Suc regulation of several of these
auxin-related rates (Lilley et al., 2012; Sairanen et al.,
2012).

The PIF-interacting proteins DELLA and BZR1,
master regulators in the GA and BR pathways, re-
spectively, also have been implicated in sugar re-
sponses. DELLAs are potent growth suppressors that
are known to operate, in part, by directly sequestering
PIFs and BZR1 from target promoters (Davière and
Achard, 2016). The binding of GA to GID receptors
increases GID affinity for DELLAs and initiates their
degradation by the 26S proteasome (Davière and
Achard, 2016). Recently, Suc (but not Glc) was shown to
stabilize the DELLA RGA protein and inhibit its
GA-mediated turnover. This stabilized DELLA is nec-
essary for both the Suc-induced up-regulation of the
anthocyanin biosynthetic genes and the Suc-induced
hypocotyl growth repression in dark-grown seedlings
(Li et al., 2014). A separate study using paclobutrazol
(PAC) treatment (a GA biosynthesis inhibitor) impli-
cated GA in the Suc induction of hypocotyl elongation
in dark-adapted seedlings (Zhang et al., 2010). The
BR-regulated transcription factor BZR1 also has been
implicated in this dark-dependent Suc response (Zhang
et al., 2016). Interestingly, BZR1 has been shown to
complex with PIF4 to coregulate light- and hormone-
responsive genes (Oh et al., 2012). Zhang et al. (2016)
demonstrated that Suc increased the stability of BZR1
in a mechanism proposed to involve Target of Rapa-
mycin (TOR) kinase. TOR is a central component in
energy sensing and the regulation of biosynthetic pro-
cesses such as ribose biogenesis and protein synthesis.
Inhibiting TOR activity results in growth arrest and
reduced expression of BR-responsive genes (Zhang
et al., 2016). Hence, carbon availability controls a
growth program through a TOR-dependent BZR1
pathway. Together, this analysis indicates that the
PIF-BZR1-DELLA regulatory hub integrates light,
carbon, and hormonal signals.

TOR also has been implicated in the integration of
carbon and light signaling in the control of leaf initia-
tion at the shoot apical meristem. For some time, phy-
tochrome signaling has been known to control the rate
at which leaves develop in Arabidopsis (Halliday et al.,
2003). Light was shown to promote leaf initiation and
meristematic activity by triggering the localization of
the polar auxin transporter PIN1 and cytokinin signal-
ing (Yoshida et al., 2011). More recently, an elegant
study in seedlings demonstrated that light signals are
relayed to shoot apical meristem cells through a long-
distance cytokinin, most likely from the cotyledons
(Pfeiffer et al., 2016). Furthermore, TOR kinase conveys
both light signaling and energy information to control
the expression of WUSCHEL, a gene that keeps stem
cells in an active state. This finding has advanced our

Plant Physiol. Vol. 176, 2018 1045

Phytochrome, Metabolism, and Growth Plasticity

 www.plantphysiol.orgon February 15, 2018 - Published by Downloaded from 
Copyright © 2018 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


thinking on how light signaling and carbon availability
jointly coordinate growth.

CONCLUSION AND FUTURE PERSPECTIVES

We have given an overview of the interrelation of
carbon resource management and metabolism and phy
signaling. Owing to considerable scientific efforts, a
picture is emerging where phys play important roles in
driving growth plasticity and biomass production as
well as controlling photosynthetic capacity and me-
tabolite levels. However, we are far from fully under-
standing most of the underlying mechanisms. It is
unclear how the known phy signaling mechanisms are
connected to the metabolite profiles observed in phy
mutants (see Outstanding Questions). Systems or
modeling approaches could be used to help delineate
these links and to understand the interplay between
light signaling, carbon signaling, metabolism, and
growth. The Arabidopsis Framework model integrates
information from external light inputs, carbon resource
production, and allocation to leaves and growth (Chew
et al., 2014). This type of modular model could be
used to predict the dual action of phytochrome and
photosynthesis on resource management and biomass
production. A long-term goal will be to understand
how light-induced changes in molecular signaling and
metabolism control plant plasticity.
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