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The mechanism of propulsion of a model microswimmer
in a viscoelastic fluid next to a solid boundary

Thomas R. Ives and Alexander Morozova)

SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building,
Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom

(Received 19 July 2017; accepted 4 November 2017; published online 11 December 2017)

In this paper, we study the swimming of a model organism, the so-called Taylor’s swimming sheet,
in a viscoelastic fluid close to a solid boundary. This situation comprises natural habitats of many
swimming microorganisms, and while previous investigations have considered the effects of both
swimming next to a boundary and swimming in a viscoelastic fluid, seldom have both effects been
considered simultaneously. We re-visit the small wave amplitude result obtained by Elfring and Lauga
[“Theory of locomotion through complex fluids,” in Complex Fluids in Biological Systems, Biological
and Medical Physics, Biomedical Engineering, edited by S. E. Spagnolie (Springer New York, New
York, NY, 2015), pp. 283–317] and give a mechanistic explanation to the decoupling of the effects
of viscoelasticity, which tend to slow the sheet, and the presence of the boundary, which tends to
speed up the sheet. We also develop a numerical spectral method capable of finding the swimming
speed of a waving sheet with an arbitrary amplitude and waveform. We use it to show that the
decoupling mentioned earlier does not hold at finite wave amplitudes and that for some parameters
the presence of a boundary can cause the viscoelastic effects to increase the swimming speed of
microorganisms. Published by AIP Publishing. https://doi.org/10.1063/1.4996839

I. INTRODUCTION

Many microorganisms are able to propel themselves
through fluid environments by deforming their bodies. The
small size of these organisms, ranging from a few microm-
eters in the case of most bacteria, to tens or hundreds of
micrometers in the case of eukaryotes, and their relatively
small propulsion speeds dictate that their swimming typi-
cally occurs in the low-Reynolds-number regime and that
the fluid flow around them obeys the Stokes equation.1 As
was pointed out by Purcell,2 this poses a severe restriction
on how microorganisms move since they have to break the
intrinsic time-reversibility of the Stokes equation—a result
commonly known as Purcell’s scallop theorem. In order to
propel, microorganisms have to either deform their bodies or
move parts of their bodies in a non-time-reversible fashion,
and a vast number of studies considered how various modes of
propulsion work, and what the resulting properties of microor-
ganisms’ motion are (see Refs. 1, 3, and 4, and references
therein).

Arguably the most influential model of swimming at low
Reynolds numbers is Taylor’s swimming sheet model5 that
guided the later studies of microorganism propulsion. It com-
prises an infinite inextensible two dimensional sheet, periodic
in space, that can change its shape by propagating a wave
with a speed c along its waveform. From the point of view of
an external observer, its shape traces out the curve ys in the
xy-plane, given by

ys(x, t) = f (x − (c − U)t), (1)

a)alexander.morozov@ph.ed.ac.uk

where the wave is traveling in the positive x-direction and
the organism swims at speed U along the same axis. The
waveform f (x) is a periodic function with the period 2π/k,
where k is the associated wavenumber. For sheets with sinu-
soidal waveforms, f (x) = b sin(kx), and small amplitudes,
bk �1, Taylor demonstrated that the sheet moves with the
speed UBN = c b2k2/2 in the direction opposite to the direction
of wave propagation.5

This result was extended by Katz6 who considered a Tay-
lor sheet swimming next to a solid boundary and showed that
to lowest order in bk its swimming speed is given by

UN = c
b2k2

2

(
sinh2(hk) + h2k2

sinh2(hk) − h2k2

)
, (2)

where h is the distance between the middle line of the organism
and the boundary. Notably, this speed is larger than UBN , the
swimming speed in the bulk, for any finite value of h, although
this conclusion relies on the assumption that the organism
keeps the same kinematics in the bulk and next to a wall.
The studies by Taylor5 and Katz6 were instrumental in guid-
ing later studies of low-Reynolds propulsion of various model
swimmers, both in the bulk7–27 and close to surfaces.28–35

Another important extension of Taylor’s result was
derived by Lauga36 who studied a waving sheet swimming
in the bulk of a viscoelastic fluid. Lauga showed36 that for a
range of constitutive models, the small-amplitude swimming
speed is given by

UB = c
b2k2

2

(
1 + βDe2

1 + De2

)
. (3)

Here, β = ηs/(ηs + ηp), with ηs and ηp being the viscosity
of the solvent and the polymer components, respectively, and
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De = λck is the Deborah number of the problem, where λ is the
longest relaxation time of the fluid. For the fixed kinematics of
the organism, this result suggests that viscoelasticity reduces
the propulsion speed of a small-amplitude sheet compared to
its Newtonian value, reaching for large Deborah numbers the
limit βUBN . These conclusions were extended to other swim-
mers37–52 or fluids with different rheological properties53–58

and were used as a motivation for experimental studies.59–67

While the previous studies provide understanding of how
individual effects influence microswimming (with a notable
exception of Refs. 68–71), the actual ecological situation of
many microorganisms often comprises a combination of these
effects. Examples range from sperms moving in mucus along
the cervix wall72–74 to bacterial pathogens invading biofilms
of different bacterial species.75 The simplest model to study
such systems should include both viscoelasticity of the sus-
pending fluid and the presence of a solid boundary, i.e., be a
combination of the effects discussed earlier. The first step in
this direction was taken by Elfring and Lauga76 who calculated
the swimming speed of a small-amplitude Taylor sheet swim-
ming next to a boundary in an Oldroyd-B fluid. Surprisingly,
the swimming speed they obtain,

U = c
b2k2

2

(
1 + βDe2

1 + De2

) (
sinh2(hk) + h2k2

sinh2(hk) − h2k2

)
, (4)

is simply a combination of the swimming speeds UBN , UN ,
and UB, i.e., the effects of viscoelasticity and the boundary
factorise. While Eqs. (2)–(4) are often cited, there is currently
no simple understanding of the corresponding effects.

The purpose of this work is to provide a mechanistic
explanation of the interplay between viscoelasticity of the
fluid and the presence of a solid wall. Our paper is organised
as follows. In Sec. II, we consider a small-amplitude Taylor
sheet model swimming next to a boundary in an Oldroyd-B
fluid. We re-derive the result obtained by Elfring and Lauga,76

Eq. (4), and obtain explicit expressions for the velocity and
stress fields around the swimmer which we will use to develop
a small-amplitude physical mechanism in Sec. IV. In Sec. III,
we develop a numerical method based on a spectral repre-
sentation of hydrodynamic fields to calculate the swimming
speed of a Taylor sheet of any amplitude and shape and apply
it to the situation discussed earlier. Finally, in Sec. IV, we use
the velocity and stress fields calculated in Secs. II and III to
explain the origin of Eqs. (2) and (3), and Eq. (4), and discuss
the emerging mechanism of propulsion.

II. SMALL-AMPLITUDE SWIMMING: ANALYTICAL
SOLUTION

In this section, we consider a Taylor’s waving sheet swim-
ming in a viscoelastic fluid next to a boundary in the small-
amplitude limit, see Fig. 1. In the low-Reynolds-number limit,
the flow of the fluid around the organism is governed by the
Stokes equation, ∇·Σ = 0, where Σ is the total stress in the
fluid given by

Σ = −p1 + 2ηsD + τ. (5)

Here, p is the pressure, 1 is the identity matrix, D =
(∇u +∇uT )/2 is the symmetric strain rate tensor, u is the veloc-
ity of the fluid, ηs is the solvent viscosity, and (. . . )T denotes

FIG. 1. Schematic of a cross section of a sheet of a distance h below a wall
with the waveform f (x).

the transpose. The polymeric contribution to the total stress, τ,
arises due to the polymers being stretched and oriented by local
velocity gradients. Here we use one of the simplest viscoelastic
constitutive equations, the Oldroyd-B model,77,78 that devel-
ops large normal stresses in shear flows that are responsible
for many non-trivial effects exhibited by viscoelastic fluids,77

but the model does not have any shear thinning effects, i.e., its
material properties are independent of local velocity gradients.
Combined together, the governing equations are given by

− ∇p + 2ηs∇ · D + ∇ · τ = 0, (6a)

∇ · u = 0, (6b)

τ + λ
O
τ = 2ηpD, (6c)

where ηp is the polymeric contribution to the fluid’s viscosity,
λ is the longest relaxation time of the solution, and we assumed
the fluid to be incompressible. The upper-convected Maxwell
derivative is given by

O
τ = ∂tτ + u · ∇τ − ∇uT · τ − τ · ∇u.

The boundary conditions are given by the no-slip bound-
ary conditions at the sheet and the wall,

u|y=ys
= us, (7a)

u|y=h = uw , (7b)

where us and uw are the velocity of the material points of the
sheet and the wall, respectively.

To address the situation sketched in Fig. 1, we solve a
slightly more general problem of the sheet in a channel with
walls both above and below it, placed at distances h+ and h

�

from the centreline, respectively. We then return to the original
single-wall problem by taking h+ → h and h

�

→∞.
We start by simultaneously introducing dimensionless

variables and removing any explicit time dependence with the
help of the following transformation to starred quantities:

x∗ = k(x − ct), y∗ = ky, h∗± = h±k,

U∗ =
U
c

, u∗ = 1 +
u
c

, v∗ =
v

c
,

p∗ =
p
ηck

, τ∗ =
τ

ηpck
, Σ∗ =

Σ

ηck
.

In these coordinates, the velocity of the walls is u∗w = −ex

and the shape of the sheet is approximately fixed in time such
that y∗s (x∗) = ε sin(x∗) +O(ε3), where ε = bk is the dimension-
less wave amplitude. Our goal then is to find the steady velocity
field surrounding the sheet and, from this, to calculate the
sheet’s swimming speed. From now on, we will drop the *s.
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We expand the fields p, u, and τ into the Taylor series
about ε = 0. For example, the pressure field is given by

p =
∞∑

n=0

p(n)εn, (8)

where p(n) is the “nth-order” contribution to the pressure field.
The velocity field is the solution to Eq. (6), subject to the

no-slip boundary conditions of Eq. (7). This solution is peri-
odic in x, reflecting the symmetry of the underlying problem.
As we are only interested in the lowest order of the small-ε
expansion of the swimming speed, we only need the bound-
ary conditions to the lowest order in ε . From Taylor’s original
paper,5 we can show that, to the lowest order, the velocity of
the material points of the sheet, us, is given in our coordinates,
where we are co-moving with the wave, by

us = −1 + O(ε2), (9a)

vs = −ε cos(x) + O(ε2). (9b)

In our coordinate system, the swimming speed of the sheet
can be found by averaging the velocity field along the length
of the sheet. Thus, up to the second order in ε , the swimming
speed of the sheet is given by

U =
〈

u(1)���y=ys

〉
ε +

〈
u(2)���y=0

〉
ε2 + O(ε3). (10)

To the lowest order in ε , averages over the line y = ys =
ε sin(x) are equal to averages over the line y = 0; thus we take
the 〈〉 above as simple x-averages.

We find the first and second order velocity fields by sub-
stituting the Taylor expansion of each of the fields into Eq. (6)
and considering each power of ε separately. To the zeroth order,
this procedure yields the following set of equations:

−∇p(0) + β∇2u(0) + (1 − β)∇ · τ(0) = 0,

∇ · u(0) = 0,

τ(0) = D(0),

u(0)���y=ys
= u(0)���y=h+

= u(0)���y=−h−
= −ex,

which has the trivial solution p(0) = 0, τ(0) = 0, and u(0) = �ex.
Note that the zeroth order velocity field does not contribute to
the swimming speed of the sheet as the latter is given by the
difference between the average velocities of the fluid at the
sheet and at the wall, which vanishes at the zeroth order.

The first order velocity field is in fact the same for an
Oldroyd-B fluid as for a Newtonian one.36 To demonstrate
this, we consider the first order equations,

− ∇p(1) + ∇ · (2βD(1) + (1 − β)τ(1)) = 0, (11a)

∇ · u(1) = 0, (11b)

(1 − De ∂x)τ(1) = D(1), (11c)

u(1)���y=ys
= − cos(x)ey, u(1)���y=h+

= u(1)���y=−h−
= 0. (11d)

Here we have used the previous solution, u(0) = �1, in
Eq. (11c), and we have re-arranged Eq. (11a) using ∇2u(1)

= 2∇·D(1). Let L be the linear operator defined by

L(a) = (1 − De ∂x)∇ · E · a, (12)

where E = exey � eyex. Applying L to Eq. (11a), we obtain

∇ · E · ∇ ·
(
(1 − De ∂x)(2βD(1) + (1 − β)τ(1))

)
= 2∇ · E · ∇ · (1 − βDe ∂x) D(1) = 0, (13)

where we have used the commutativity of differential opera-
tors and Eq. (11c) to remove τ(1). This equation is satisfied
either by a D(1) for which ∇ · E · ∇ · D(1) = 0 or by a D(1)

for which (1 � βDe ∂x)D(1) = 0. The first of these condi-
tions is satisfied by the Newtonian solution, while the second
has no non-trivial solutions which are periodic in x. More-
over, since the boundary conditions are the same as in the
Newtonian case, we conclude that the first order velocity
field in an Oldroyd-B fluid is that the same as its Newtonian
counterpart.

In his original analysis of a Taylor sheet swimming next
to a wall, Katz6 showed that the first order velocity field, u(1)

± ,
in the Newtonian fluid above (+) and below (�) the sheet is
given by

u(1)
± = (1 + A± − B±y) sin(x) sinh(y) + A±y sin(x) cosh(y),

(14a)

v (1)
± = −(A±y + B±) cos(x) sinh(y) − (1 − B±y) cos(x) cosh(y),

(14b)

where

A± =
sinh2(h±)

sinh2(h±) − h2
±

, B± =
± sinh(h±) cosh(h±) ± h±

sinh2(h±) − h2
±

.

The contribution of this field to the swimming speed is given
by the first term of Eq. (10), which reads

〈u(1)���y=ys
〉ε = ε2(A +

1
2

) + O(ε3). (15)

Here we have dropped the explicit ± notation, but we note that
this contribution to the swimming speed is different for each
region of the fluid. Below, we ensure that the total swimming
speed is the same regardless of whether we use the fluid veloc-
ity above or below the sheet, but first we calculate the second
term in Eq. (10).

The second order set of governing equations is given by

− ∇p(2) + β∇2u(2) + (1 − β)∇ · τ(2) = 0, (16a)

∇ · u(2) = 0, (16b)

(1 − De ∂x)τ(2) = D(2) − De
[
u(1) · ∇τ(1) − (∇u(1))T

· τ(1) − τ(1) · ∇u(1)
]
. (16c)

We have left out the boundary conditions, which we will deal
with later. Note that in the second term of Eq. (10), the x-
average commutes with the y-substitution, as the substitute is
independent of x. Thus, we only have to solve the x-average of
Eq. (16) to find the second order swimming speed. Considering
the x-averages of the x-component of Eq. (16a) and the xy-
component of Eq. (16c), we have

β∂yy〈u
(2)〉 + (1 − β)∂y〈τ

(2)
xy 〉 = 0, (17a)
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〈τ(2)
xy 〉 = ∂y〈u

(2)〉 − De
[
〈u(1)∂xτ

(1)
xy 〉 + 〈v (1)∂yτ

(1)
xy 〉

− 〈D(1)
xy (τ(1)

xx + τ(1)
yy )〉 + 〈Ω(1)

xy (τ(1)
xx − τ

(1)
yy )〉

]
,

(17b)

where Ω = (∇uT
� ∇u)/2 is the vorticity tensor, and we have

ignored the x-averages of x-derivatives of x-periodic functions,
which must vanish. Since the first order fields are known,
Eq. (17) is simply an ordinary differential equation for 〈u(2)〉,
and the solution to which is given by

〈u(2)
± 〉 = E± + F±y +

(1 − β)De2

4(1 + De2)

×
[
G± cosh(2y) + H± sinh(2y)

]
, (18)

where

G± = (2 + 4A± + A2
± − B2

±) − 4B±(1 + A±)y + 2(A2
± + B2

±)y2,

H± = 2A±(B± + 2(1 + A±)y − 2B±y2).

Here, E± and F± are arbitrary constants.
Until now, the solutions in the domains above and below

the sheet were completely independent. Their coupling is now
ensured by applying appropriate boundary conditions, which
determine the constants E± and F±. Similar to the solution
developed by Katz for swimming of a Taylor sheet next to a
wall in a Newtonian fluid,6 we require that (i) the swimming
speeds we calculate from the upper and lower fluids match
and that (ii) the sheet is, on average, force-free to the sec-
ond order in the x-direction. The first order flow field, which
is the same as the first order Newtonian flow field, does not
apply a net-force to the sheet,6 while the second order flow
field contributes a force Σ(2) · n±

���y=0
, where n± = ±ey + O(ε)

is the inward-normal of the sheet in the upper/lower fluid.
To the second order, these boundary conditions are given
by

〈u(2)
± 〉

���y=±h±
= 0, (19a)

〈u(1)
+

���y=ys
〉ε + 〈u(2)

+ 〉
���y=0

ε2

= 〈u(1)
−

���y=ys
〉ε + 〈u(2)

− 〉
���y=0

ε2 + O(ε3), (19b)

−β∂y〈u
(2)
+ 〉

���y=0
+ (1 − β)〈τ(2)

xy,+〉
���y=0

= −β∂y〈u
(2)
− 〉

���y=0
+ (1 − β)〈τ(2)

xy,−〉
���y=0

, (19c)

which result in

E± =
(1 + βDe2)

(1 + De2)

h±(A∓ − A±)
(h+ + h−)

+
(1 − β)De2

(1 + De2)
(A2
± − B2

±),

(20a)

F± =
(1 + βDe2)

(1 + De2)

(A∓ − A±)
(h+ + h−)

+
(1 − β)De2

h±(1 + De2)

× (J± cosh2(h±) + K± sinh2(h±)), (20b)

where

J± = (1 − 2h±B±) + h2
±(A2

± − B2
±),

K± = (1 + 2A±)(1 − 2h±B±) + (1 − h2
±)(A2

± − B2
±).

Substituting the first and second order velocity fields into
Eq. (10), we finally arrive at

U =
ε2(1 + βDe2)

(h+ + h−)(1 + De2)

[
h−

(
A+ +

1
2

)
+ h+

(
A− +

1
2

) ]

=
ε2(1 + βDe2)

2(h+ + h−)(1 + De2)

[
h− *

,

sinh2(h+) + h2
+

sinh2(h+) − h2
+

+
-

+ h+ *
,

sinh2(h−) + h2
−

sinh2(h−) − h2
−

+
-

]
. (21)

In the limit of h+ → hk and h
�

→ ∞, we recover
Eq. (4) as mentioned earlier. The main implication of this result
is the observation that the effects of swimming next to a wall
and swimming in an Oldroyd-B fluid decouple at small wave
amplitudes. The mechanism of this decoupling is discussed
in Sec. IV, but first we develop a numerical method capable
of calculating the swimming speed for any value of the wave
amplitude.

III. LARGE-AMPLITUDE SWIMMING: NUMERICAL
METHOD

Here we develop a numerical method to solve Eq. (6)
subject to the boundary conditions of Eq. (7) for an arbitrary
wave, with any amplitude or shape. As in Sec. II, we in fact
solve the more general problem of the sheet in a channel, with
the walls above and below the sheet at a distance h+ and h

�

from the centreline, respectively. We perform the following
transformation to the starred variables:

x∗ = k(x − (c − U)t), y∗ = ky, h∗± = h±k,

U∗ =
U
c

, u∗ = 1 − U∗ +
u
c

, v∗ =
v

c
,

p∗ =
p
ηck

, τ∗ =
τ

ηpck
, Σ∗ =

Σ

ηck
,

that render the problem dimensionless. This transformation
is different from the small-amplitude transformation because
in this frame of reference the shape of the sheet is exactly
independent of time, as opposed to being independent of time
only in the limit of small wave amplitudes. Again, we drop the
*s in what follows.

To exploit the two-dimensional nature of the problem,
we introduce a stream-function ψ(x, y), which is defined via
its relationship to the flow field u: u = ∂yψ and v = �∂xψ.
This substitution satisfies Eq. (6b) for any choice of ψ. To re-
formulate Eq. (6) in terms of the stream-function, we take the
curl and divergence of Eq. (6a) to obtain the complete set of
governing equations given by

β∇4ψ − (1 − β)
[
∂xy(τyy − τxx) + �2τxy

]
= 0, (22a)

∇2p − (1 − β)
[
∂xxτxx + 2∂xyτxy + ∂yyτyy

]
= 0, (22b)

τxx − 2∂xyψ + De
[
(∂yψ∂x − ∂xψ∂y)τxx

− 2τxx∂xyψ − 2τxy∂yyψ
]
= 0, (22c)

τxy + �2ψ + De
[
(∂yψ∂x − ∂xψ∂y)τxy

+ τxx∂xxψ − τyy∂yyψ
]
= 0, (22d)
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τyy + 2∂xyψ + De
[
(∂yψ∂x − ∂xψ∂y)τyy

+ 2τxy∂xxψ + 2τyy∂xyψ
]
= 0, (22e)

where �2 = ∂xx � ∂yy, β = ηs/(ηs + ηp) is the viscosity ratio and
De = λck is the Deborah number of the fluid. There are five
differential equations, three of which are non-linear, with five
fields to solve for (ψ, p, τxx, τxy, τyy).

To solve Eq. (22) numerically, we developed a spectral
method adapted for our geometry, where the two-dimensional
stream-function, pressure, and polymeric stress fields are rep-
resented by Fourier-Chebyshev series.79 Since convergence
properties of the Fourier-Chebyshev basis are optimal in rect-
angular domains, we perform two independent coordinate
transformations, one for the fluid above the sheet and the other
for the fluid below, that project the corresponding domains
onto rectangular strips, periodic in one direction. These trans-
formations from the original coordinates (x, y) to the new ones
(η±, ξ±) are given by

η± = x, (23a)

ξ± = 1 − 2
±h± − y
±h± − f (x)

, (23b)

where “+” and “�” denote the regions above and below the
sheet, respectively. In each domain, ξ± = 1 corresponds to
the domain’s wall, while ξ± = �1 corresponds to the sheet,
i.e., the lower domain has been flipped. The two domains
can be treated equivalently and from now on we will drop
± unless it is necessary. The solutions in these domains only
couple to each other through the boundary conditions at the
sheet.

In each deformed domain (η, ξ) ∈ [0, 2π) × [�1, 1], the
hydrodynamic variables are represented by truncated Fourier-
Chebyshev series. For example, the pressure field, p, is given
by

p(η, ξ) =
N−1∑
n=0

M−1∑
m=0

p(nm)Fn(η)Tm(ξ), (24)

where Tm(ξ) = cos(m arccos(ξ)) is the mth Chebyshev
polynomial and

Fn(η) =




sin(
n + 1

2
η), n odd

cos(
n
2
η), n even,

is the nth Fourier mode. We choose the resolution (N, M) such
that the error on truncating the series in Eq. (24) is small; for
each set of physical parameters, this is assessed by increasing
the resolution (N, M) until the value of the swimming speed
of the sheet does not change by more than 0.5% between the
two highest resolutions. Typically, this precision is achieved by
N = 33 and M = 80.

The spatial derivatives ∂η and ∂ξ of the Fourier-
Chebyshev representations are calculated by multiplying
vectors containing spectral coefficients with the NM × NM
spectral derivative matrices.79–81 The spatial derivatives in the
original (x, y)-space are then trivially constructed with the help

of Eq. (23), giving for each domain,(
∂

∂x

)
±

=
∂

∂η±
+ (ξ± − 1)

f ′(η±)
±h± − f (η±)

∂

∂ξ±
, (25a)

(
∂

∂y

)
±

=
2

±h± − f (η±)
∂

∂ξ±
. (25b)

To calculate products of the fields represented in the
spectral space, we use the fast Fourier transform80 with the
following collocation points:

ηnc =
2πnc

Nc
, (26a)

ξmc = cos

(
πmc

Mc − 1

)
, (26b)

to evaluate the fields in the real space, calculate their product,
and transform the result back to the spectral space. Here, nc ∈

[0, Nc), mc ∈ [0, Mc), and the collocation resolution (Nc, Mc)
is selected to satisfy Nc > 1.5N and Mc > 1.5M in order to
avoid aliasing issues.79,80

Representing five governing equations in the truncated
Fourier-Chebyshev basis for each fluid domain yields a set of
10NM non-linear algebraic equations that need to be comple-
mented by the boundary conditions. By using Fourier modes,
we have implicitly imposed periodic boundary conditions in
the η-direction, which correctly reflects the symmetry of the
underlying problem. We still need, however, six boundary con-
ditions (four for ψ and two for p) along the lines ξ = ±1. These
boundary conditions are expanded in the Fourier basis (as they
are functions of η), generating 12N discretised boundary con-
ditions to substitute into the original set of 10NM discretised
governing equations.

The first boundary conditions to consider are the no-slip
boundary conditions at both the sheet and the wall, Eq. (7),
where the velocities of the material points of the sheet and the
walls are given by5

us(x) = −
Q√

1 + f ′(x)2
, (27a)

vs(x) = −
Qf ′(x)√
1 + f ′(x)2

, (27b)

uw = (U − 1)ex, (27c)

and

Q =
∫ 2π

0

√
1 + f ′(x)2 dx.

The four boundary conditions are, therefore,

∂yψ
���ξ=−1

= us, (28a)

−∂xψ |ξ=−1 = vs, (28b)

∂yψ
���ξ=1
= U − 1, (28c)

−∂xψ |ξ=1 = 0. (28d)

Note that the x-derivative of the n = 0 Fourier mode
vanishes and that the sheet’s swimming speed U, which is
unknown, appears in the n = 0 mode of Eq. (28); thus dif-
ferent sets of boundary conditions are required for the n = 0
and the n , 0 Fourier modes. We address this below. First, we
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consider the other two boundary conditions required for the
n , 0 case.

As already mentioned earlier, we do not directly solve the
force balance equation, Eq. (6a), but instead solve its deriva-
tives [specifically its curl and divergence, see Eq. (22)]. The
solutions to both problems may differ, at most, by curl-free and
divergence-free terms. To fix those terms, we explicitly ensure
that the force balance equation is satisfied at the boundaries.
Specifically, at both the sheet and the wall, we require that
n·∇·Σ = 0, where n is the normal to the surface. This yields
the final two boundary conditions for the n, 0 Fourier modes,[

f ′(η)∂xp − ∂yp + β(f ′(η)∂y − ∂x)∇2ψ

+ f ′(η)∂xτxx + (f ′(η)∂y + ∂x)τxy + ∂yτyy
]
ξ=−1 = 0,

(29a)[
∂yp + β∂x∇

2ψ − ∂xτxy − ∂yτyy
]
ξ=1 = 0, (29b)

where (0, �1)T is the normal to the wall and (−f ′(η), 1)T is the
normal to the surface of the sheet.

For the n = 0 mode, we replace Eqs. (28a), (28b), (28d),
and (29b) with alternative boundary conditions. First of all,
we note that ψ and p are defined up to a constant as only their
derivatives are physical, and we set those constants to some
arbitrary value. The other two boundary conditions ensure that
the average x-force being applied to each of the walls is zero.
And similarly to the small amplitude case, we have to couple
the two domains by requiring that the swimming speed of the
sheet as calculated by each domain is the same and that the
sheet is a force-free swimmer. Thus, we have

p|ξ=1 = 0, (30a)

ψ |ξ=1 = 0, (30b)[
β�2ψ − τxy

]
ξ=1 = 0, (30c)

[
f ′(η+)p+− 2βf ′(η+)∂xyψ+ − β�

2ψ+ − f ′(η+)τxx,+ + τxy,+
]
ξ+=−1

=
[
f ′(η−)p− − 2βf ′(η−)∂xyψ− − β�

2ψ− − f ′(η−)τxx,−

+ τxy,−
]
ξ−=−1, (30d)

∂yψ+
���ξ+=1

= ∂yψ−
���ξ−=1

, (30e)

where the absence of ± implies that the boundary condition
applies to both domains.

In the spirit of the Chebyshev-tau method,80 for each
Fourier mode, we replace the four highest Chebyshev modes of
the discretised equation (22a) and the two modes of Eq. (22b)
with the boundary conditions presented earlier. Combining
everything together leads to the set of 10NM non-linear dis-
cretised equations, with the structure outlined in Table I. With
the solution to this set of equations, the swimming speed of
the sheet is given by

U = ∂yψ
���ξ=1

+ 1. (31)

To actually solve this set of non-linear equations, we use
the Newton-Raphson method80 with an analytically calculated
Jacobian. In general, for De > 0, starting from an arbitrary ini-
tial guess does not lead to convergence of the Newton-Raphson
algorithm, and therefore, we employ a simple continuation

TABLE I. Outline of how the 10NM discretised equations are constructed
from the differential equations in Eq. (22) and the various boundary conditions
[Eqs. (28)–(30)].

n = 0 0 < n < N

0 ≤ m < M � 4 Equations (22a)–(22e) Equations (22a)–(22e)
m = M � 4 Equations (30d)(+) (30e)(–) Equation (28d)

Equations (22b)–(22e) Equations (22b)–(22e)
m = M � 3 Equation (30c) Equation (28c)

Equations (22b)–(22e) Equations (22b)–(22e)
m = M � 2 Equation (30b) Equation (28b)

Equation (30a) Equation (29b)
Equations (22c)–(22e) Equations (22c)–(22e)

m = M � 1 Equation (28a) Equation (28a)
Equation (29a) Equation (29a)

Equations (22c)–(22e) Equations (22c)–(22e)

strategy. For each set of parameters, we start from the Newto-
nian case, De = 0, which is linear and can always be solved,
and use its solution as the initial guess for a slightly higher
De. This process is continued until we either reach the target
value of De or the algorithm fails to converge, in which case
a smaller step ∆De is selected. In practice, ∆De required for
continuation becomes very small at sufficiently large De, lead-
ing to unreasonable computation times in which case we only
report the results up to that value of De.

We verify that our numerical method correctly reproduces
the small-amplitude prediction equation (4). In Fig. 2, we plot
the swimming speed for a sheet with bk = 0.01 as a function of
the Deborah number De for various distances to the wall and
viscosity ratios. As expected, for this amplitude, the numeri-
cally computed swimming speeds (symbols) agree well with
the analytical prediction of Eq. (4) (solid line), again demon-
strating that the effects of swimming next to a wall decouple

FIG. 2. The swimming speed U of a small-amplitude (bk = 0.01) Taylor sheet
swimming next to a wall as the function of the Deborah number De for various
values of the solvent viscosity ratio β and the distance from the wall h. The
swimming speeds are normalised by the swimming speed, UN , of the same
geometric situation in a Newtonian fluid of the same viscosity. The symbols
are the results of our numerical calculations, while the solid black lines are
the small amplitude predictions from Eq. (4).
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FIG. 3. The swimming speed U of a
finite-amplitude (bk = 0.5) Taylor sheet
swimming next to a wall as the function
of the Deborah number De for various
values of the solvent viscosity ratio β
and the distance from the wall h. The
swimming speeds are normalised by the
swimming speed, UN , of the same geo-
metric situation in a Newtonian fluid
of the same viscosity. The symbols are
the results of our numerical calculations,
while the solid black lines are the small
amplitude predictions from Eq. (4).

from the effects of swimming in a viscoelastic fluid at small
amplitudes.

The situation changes significantly for finite values of
the wave amplitude. In Fig. 3, we plot the swimming speed
for a sheet with bk = 0.5 as a function of the Deborah num-
ber De for various distances to the wall and viscosity ratios.
We observe that the numerical data now deviate significantly
from the small-amplitude prediction equation (4). Despite
this deviation, for most values of h and β, the swimming
speed follows the same trend as predicted by Eq. (4): starting
from its Newtonian value, it decreases monotonically with De
and reaches a plateau value at large Deborah numbers. How-
ever, for sufficiently small h (hk = 1.05, 1.1) at β = 0.5 and
β = 0.9, the swimming speed breaks this trend and exhibits
a non-monotonic dependence on De. This effect seems to be
the stronger for larger values of β, which corresponds to more
dilute solutions, reaching speeds faster than the Newtonian
case for β = 0.9. Also, there are indications that at lower val-
ues of β the swimming speed starts to increase with De at
sufficiently large values of the Deborah number. These results
are further discussed in Sec. IV.

IV. DISCUSSION

As we have demonstrated earlier, at small wave ampli-
tudes, the influence of the polymeric stress on the swimming
speed is the same for both swimming in the bulk and next to a
wall. In other words, the effects of the boundary and polymers
decouple and the swimming speed is given by the product of
the corresponding contributions, see Eq. (4). Let us discuss the
mechanism of this behavior.

We start by considering the kinematics of a Taylor sheet
swimming in the bulk of a Newtonian fluid. As noted by Tay-
lor5 and Lauga and Powers,1 at small wave amplitudes, every
point of the sheet is oscillating approximately up and down,
generating locally a vertical motion of the surrounding fluid.
Along one period of the sheet’s waveform, for every point
moving up, there is another point moving down with the same
speed. Since the fluid is incompressible, this sets an array
of counter-rotating vortices along the sheet, two vortices per
period, see Fig. 4. We will be referring to them as the “sheet
vortices.” As can be seen from Fig. 4, the presence of these
vortices implies a velocity component along the surface of the
sheet, which on average drags the sheet along the horizontal
direction.

When this configuration of sheet vortices is placed next
to a solid boundary, as shown in Fig. 4, it generates a non-zero
velocity at the boundary which obviously does not satisfy the
no-slip boundary condition at this boundary. This velocity is
canceled by the creation of an array of vortices localised at
the boundary with the same periodicity as the sheet vortices.
Along the boundary, the velocity of these “wall vortices” has
the same magnitude but opposing direction of the velocity of
the sheet vortices. And thus, the no-slip boundary condition is
satisfied for the total velocity field. In turn, the wall vortices
have a contribution along the surface of the sheet that effec-
tively increases the speed of the sheet vortices, which in turn
causes the sheet to speed up. Effectively, this implies that a
small-amplitude sheet swimming next to a wall can be viewed
as a free-swimming sheet with faster sheet vortices.

This argument is further corroborated by rearranging the
first order velocity field equation (14) in the following form,
with dimensional quantities:

u(1) =
c
2

((A + B)ky − A − 1) sin(k(x − ct)) exp(−ky)

+
c
2

((A − B)ky + A + 1) sin(k(x − ct)) exp(ky),

v (1) =
c
2

((A + B)ky + B − 1) cos(k(x − ct)) exp(−ky)

+
c
2

((B − A)ky − B − 1) cos(k(x − ct)) exp(ky),

where we have dropped ±, as the fluid domains are equivalent
and the distinction between them is unimportant. In the upper
domain, the terms proportional to exp(�ky) and exp(ky) cor-
respond to the sets of vortices which are localised at the sheet

FIG. 4. Gedankenexperiment demonstrating the sheet vortices (blue isolines)
generated by the small-amplitude vertical motion of the material points of the
sheet and the velocity field it generates at an imaginary surface, as the wave
travels to the right. Note that this velocity field does not satisfy the no-slip
boundary conditions. The surface velocity is canceled by the wall vortices
(green isolines), as discussed in the text.
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and at the wall, respectively. The centres of these vortices are
located along the lines ky = ωs and ky = ωw , where

ωs =
A + 1
A + B

=
2 sinh2(hk) − h2k2

hk + sinh(hk) cosh(hk) + sinh2(hk)
,

ωw =
A + 1
B − A

=
2 sinh2(hk) − h2k2

hk + sinh(hk) cosh(hk) − sinh2(hk)
.

For hk > 1, ωs � hk and ωw ≈ hk, thus justifying the sheet
and wall label of the arrays of vortices. Note that the vertical
location of the sheet vortices is moved from its bulk location,
ky = 0, to the line ky = ωs � hk.

Now we turn to the effect that the viscoelasticity of the
fluid has on the swimming speed. We have recently studied the
mechanism of the polymer-induced slowing down of a Taylor
sheet in the bulk82 that we briefly summarise here. As we have
seen in Sec. II, the first order velocity field is the same for
a Newtonian and Oldroyd-B fluids, and we start by consid-
ering its effect on the polymeric stresses. While this vortical
velocity field is locally a simple shear flow in most parts of
the domain, the regions in-between the vortices correspond
to locally extensional flows around stagnation points, simi-
lar to the ones observed in PIV (Particle Image Velocimetry)
measurements by Shen and Arratia.67 These extensional flows
generate large normal components of the polymer stresses,
τxx and τyy, that are advected downstream by the fluid flow
and, in turn, generate significant shear stresses in the fluid
that drive the sheet horizontally, in the direction of the wave
propagation.82 Since the Taylor sheet swims in the direction
opposite to the direction of its wave propagation, this results
in slowing down of the sheet compared to a Newtonian fluid.
See also Ref. 48 for a discussion of the interaction between
the multiple waves propagating in the opposite directions and
viscoelasticity.

Next to a boundary, the same mechanism applies at small
wave amplitudes since, as we have argued above, a Newtonian
sheet swimming next to a wall is equivalent to a free-swimming
sheet with faster sheet vortices and, hence, with a larger swim-
ming speed given by Eq. (2). This “effective” free-swimming
sheet would experience the same slowing down as discussed
earlier and would swim with the speed set by Eq. (3), where the
Newtonian swimming speed cb2k2/2 should be replaced with

Eq. (2), arriving finally at Eq. (4). This is the fundamental rea-
son behind the factorisation of the effects of viscoelasticity
and the boundary.

Now we turn to the case of finite-amplitude swimming.
As shown in Fig. 3, at bk = 0.5, the swimming speed devi-
ates significantly from the small amplitude prediction of
Eq. (4). Although, in the majority of cases the trend of
the velocity decreasing with the Deborah number persists,
the high-De value of the swimming speed U∞ is larger than the
asymptotic prediction of Eq. (4), U∞ > βUN , and increases as
the boundary is brought closer to the swimmer. Moreover, in
some cases, the swimming speed no longer decreases mono-
tonically and can even increase to swimming speeds greater
than the Newtonian value.

To understand this behavior, we analyze the spatial distri-
bution of the elastic stresses in the fluid. Additionally, we plot
the flow type parameter χ defined as χ = |D |− |Ω |

|D |+ |Ω | .
83 Based

on the invariants of the velocity gradient tensor, it is designed
to determine the velocity type at every point in space, inde-
pendent of its local orientation: χ = 1 corresponds to purely
extensional, χ = 0 corresponds to shear, and χ = �1 cor-
responds to purely rotation flows. Note that the flow type
parameter does not measure the magnitude of the flow, only
its topology.

First, we consider the case of a moderate viscosity ratio
and distance to the wall, β = 0.5 and h+k = 1.2. In Fig. 5,
we plot the shear stress τxy, the difference between normal
stresses τxx � τyy, and the flow type parameter for the New-
tonian case De = 0 and two values of the Deborah number,
De = 0.5 and 3.2, corresponding to the monotonic decrease
of the swimming speed from its Newtonian value. The plots
are superimposed with the isolines of the stream-function ψ
(black lines) and the local direction of the velocity field (black
arrows). Note that we plot the total velocity field but will
discuss it as consisting of the sheet and wall vortices, when
useful.

In line with the small-amplitude mechanism discussed
earlier, we observe formation of lines of strong extensional
flows that generates large normal stresses τxx � τyy, which
are advected by the local flow. The main difference between
this case and the small-amplitude one is the fact that the nor-
mal stresses generated in-between the wall vortices are now
advected by the vortices toward the sheet and also contribute
to the shear stress τxy that generates an additional average flow

FIG. 5. The polymeric stress, τ, sur-
rounding a sheet with amplitude bk = 0.5
near a wall at a distance h+k = 1.2 above
it in an Oldroyd-B fluid with β = 0.5
and De = 0.0 (left), De = 0.5 (middle),
and De = 3.2 (right). The wall below
the sheet is at h

�

k = 13.0 which is far
enough away to have no effect; how-
ever, the fluid domain is only shown
until ky = �5.0. The swimming speed
of the sheet in each situation is U = UN
= 0.362c (left), U = 0.959UN (middle),
U = 0.854UN (right).
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FIG. 6. The polymeric stress, τ,
surrounding a sheet with amplitude
bk = 0.01 near a wall at a distance
h+k = 0.11 above it in an Oldroyd-B
fluid with β = 0.5 and De = 0.0 (left),
De = 0.5 (middle), and De = 3.2 (right).
The wall below the sheet is at h

�

k = 13.0
which is far enough away to have no
effect; however, the fluid domain is only
shown until ky = �0.5. The swimming
speed of the sheet in each situation is
U = UN = 0.0242c (left), U = 0.905UN
(middle), U = 0.559UN (right).

FIG. 7. Comparison between the stress
distributions around a sheet with the
amplitude bk = 0.5 at a distance
h+k = 1.05 from the upper wall with
De = 2.7: β = 0.5 (left) and β = 0.9
(right). The wall below the sheet is at
h
�

k = 13.0 which is far enough away
to have no effect; however, the fluid
domain is only shown until ky = �5.0.
The swimming speed in each case is
U = 0.992UN (left) and U = 1.020UN
(right) with UN = 0.440c.

that, in turn, drags the sheet in the direction of the wave. At
small Deborah number, De = 0.5, the negative value (blue) of
the normal stresses τxx � τyy is rotated into extra positive (red)
τxy, which is responsible for the slow down of the sheet rela-
tive to swimming in a Newtonian fluid. This only happens in
the vortices in the troughs of the sheet, where the vortices are
not restricted too much by the presence of the wall. At a larger
Deborah number, De = 3.2, in addition to a region with extra
positive τxy, there is a region with extra negative τxy which
pushes the sheet in the direction of its swimming, in competi-
tion with the positive region. The growth of this region of neg-
ative polymeric shear stress is absent from the small amplitude
solution (shown in Fig. 6) and is responsible for the increased
swimming speed compared to the small amplitude prediction
equation (4).

Now we turn to the case of non-monotonic behavior of the
swimming speed with the Deborah number. In Fig. 7, we com-
pare the stress distributions for β = 0.5 and β = 0.9 for hk = 1.05
and De = 2.7. For β = 0.5, these values approximately corre-
spond to the local maximum of the swimming speed, although
its value is still smaller than the Newtonian one, while at these
parameters the case with β = 0.9 exhibits swimming speeds
larger than UN , see Fig. 3. First, we note that now both the
trough and crest vortices are equally close to the wall, some-
what in contrast to Fig. 5. This behavior is also observed in
the Newtonian case De = 0, not shown. However, in Fig. 7,
there are no significant differences between the stress distri-
butions for β = 0.5 and β = 0.9 cases besides the numerical
values of the stresses, and we conclude that whether the swim-
ming speed is larger or smaller than its Newtonian counterpart
is determined by a numerical competition between the wall

and sheet stresses that cannot be deduced from hand-waving
arguments.

In conclusion, we have provided a mechanistic explana-
tion for the small-wave-amplitude swimming speed of a Taylor
sheet derived by Elfring and Lauga76 and explain why the
effects of fluid’s viscoelasticity and the presence of a solid
boundary decouple. We also developed a numerical method
with spectral accuracy that allows us to study finite-amplitude
sheets of various waveforms close to and away from solid
walls. We observe that at finite amplitudes the swimming speed
is no longer a monotonic function of the Deborah number
and can even become larger than the corresponding Newto-
nian value. Interestingly, this effect seems to be the stronger,
the more dilute the viscoelastic solution is (large values of
β), although there are indications that at lower values of β
the swimming speed starts to increase with De at sufficiently
large values of the Deborah number. This result suggests that
even small amounts of polymer, either excreted or naturally
present in the solution, can aid propulsion next to solid bound-
aries, although the speed increase reported in this work is
minute. Our numerical data are not sufficient to determine
whether this increase would eventually lead to swimming
speeds larger than the Newtonian values for all values of β, at
what values of De this can be achieved, and how significant this
speed up might be. Further study is required to address these
questions.
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