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Abstract

We perform a detailed, fully-correlated study of the chiral behavior of the pion mass
and decay constant, based on 2+1 flavor lattice QCD simulations. These calculations
are implemented using tree-level, O(a)-improved Wilson fermions, at four values of the
lattice spacing down to 0.054 fm and all the way down to below the physical value of
the pion mass. They allow a sharp comparison with the predictions of SU(2) chiral
perturbation theory (χPT) and a determination of some of its low energy constants. In
particular, we systematically explore the range of applicability of NLO SU(2) χPT in
two different expansions: the first in quark mass (x-expansion), and the second in pion
mass (ξ-expansion). We find that these expansions begin showing signs of failure around
Mπ = 300 MeV for the typical percent-level precision of our Nf = 2 + 1 lattice results.
We further determine the LO low energy constants (LECs), F = 88.0 ± 1.3 ± 0.3 and

BMS(2 GeV) = 2.58± 0.07± 0.02 GeV, and the related quark condensate, ΣMS(2 GeV) =
(271± 4± 1 MeV)3, as well as the NLO ones, ¯̀

3 = 2.5± 0.5± 0.4 and ¯̀
4 = 3.8± 0.4± 0.2,

with fully controlled uncertainties. Our results are summarized in Table 4. We also
explore the NNLO expansions and the values of NNLO LECs. In addition, we show that
the lattice results favor the presence of chiral logarithms. We further demonstrate how
the absence of lattice results with pion masses below 200 MeV can lead to misleading
results and conclusions. Our calculations allow a fully controlled, ab initio determination
of the pion decay constant with a total 1% error, which is in excellent agreement with
experiment.
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1 Introduction

The study of the strong interaction at low energy is hampered by the highly nonlinear nature
of quantum chromodynamics (QCD). Thus, large scale numerical simulations in lattice QCD
have become an essential tool for investigating, from first principles, the nonperturbative
dynamics of the theory in that domain. In order to account for all of the relevant physics
at the few percent level in low-energy observables, one must include the vacuum fluctuations
of the up, down and strange quarks. The heavier quarks contribute corrections in inverse
powers of the quark mass squared and of the number of colors, which can be neglected at
that level of precision. Moreover, for most QCD observables, isospin breaking effects, which
are proportional to powers of the small up-down mass difference, (md −mu), and of the fine
structure constant, α, can also be neglected. Thus, today’s state-of-the-art calculations are
performed with Nf ≥ 2 + 1 flavors of sea quarks, where the 2 stands for mass-degenerate u
and d quarks with mu = md = mud ≡ (mu + md)/2 and the 1 for a more massive s quark
with mass ms.
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One of the main challenges has been to mitigate the fast rising cost of these calculations
as the average mass of the simulated up and down quarks is lowered towards its very small
physical value, corresponding to a pion mass Mπ ' 135 MeV. Up until fairly recently, the
values of mud reached were too large to allow a controlled extrapolation of the results to
the physical mass point. However, in the last few years, a handful of groups have been able
to enter the small mass region, Mπ <∼ 200 MeV, with Nf ≥ 2 + 1 [1–8]. In particular, we
recently performed Nf = 2 + 1 simulations which reach down to Mπ ' 120 MeV (i.e. even
below the physical point) on lattices with sizes L up to 6 fm and lattice spacings down to
a ' 0.054 fm [4, 5]. This puts us in a very favorable position to probe the low-energy and
low-mass domain of QCD, known as the chiral regime.

In this paper we investigate SU(2) chiral perturbation theory (χPT), which is a systematic
expansion around the mu = md = 0 chiral limit, at fixed ms (and possibly mc, . . . ) [9,10]. In
the corresponding chiral effective Lagrangian there are two low-energy constants (LECs) at
leading O(p2):

F ≡ Fπ
mu,md→0

, B ≡ −〈0|ūu|0〉
F 2
π mu,md→0

, (1)

where Fπ is the pion, leptonic decay constant, and there are 7 more at next-to-leading O(p4),
denoted by `i(µ), i = 1, . . . , 7 [10]. By definition the LECs are independent of the u and d
quark masses, but do depend on the masses of the other four quarks. They also acquire a scale
dependence, after renormalization. It is conventional to define them at the renormalization
scale µ = M̂π+ = 134.8(3) MeV, where M̂π+ is the π+ meson mass, corrected for electromag-
netic effects [11]. Up to negligible corrections, it is also equal to M̄π, the pion mass in the
isospin limit (mu −md → 0 at fixed mud) [11], in which our Nf = 2 + 1 lattice calculations
are performed.

The observables which we consider here are M2
π and Fπ. Their expansions in powers

of the quark mass are known to next-to-next-to-leading order (NNLO) in the SU(2) chiral
effective theory. In the isospin limit, the explicit expressions may be written in the form1,
mu = md = mud [12]

M2
π = M2

1− 1

2
x ln

Λ2
3

M2
+

17

8
x2

(
ln

Λ2
M

M2

)2

+ x2kM +O(x3)

 , (2)

Fπ = F

1 + x ln
Λ2

4

M2
− 5

4
x2

(
ln

Λ2
F

M2

)2

+ x2kF +O(x3)

 .
The expansion parameter is given by

x =
M2

(4πF )2
, M2 = 2Bmud =

2mudΣ

F 2
. (3)

The O(p6) LECs, kM and kF , in Eq. (2) are also independent of the u and d quark masses.
The scales in the quadratic logarithms can be written in terms of O(p4) LECs through:

ln
Λ2
M

M2
=

1

51

(
60 ln

Λ2
12

M2
− 9 ln

Λ2
3

M2
+ 49

)
, (4)

ln
Λ2
F

M2
=

1

30

(
30 ln

Λ2
12

M2
+ 6 ln

Λ2
3

M2
− 6 ln

Λ2
4

M2
+ 23

)
,

1Here and in the following, we work in the normalization Fπ ≡ fπ/
√
2 = 92.2MeV.
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where we have defined ln Λ2
12 = (7 ln Λ2

1 + 8 ln Λ2
2)/15. The logarithmic scales Λn in Eqs. (2)–

(4) are related to the effective coupling constants ¯̀
3, ¯̀

4 of the chiral Lagrangian at running
scale M̂π+ through:

¯̀
n = ln

Λ2
n

M̂2
π+

, n = 1, ..., 7 &12 , (5)

where we have generalized the definition to also include Λ12 and ¯̀
12.

It is interesting to note that once we fix Λ3 and Λ4, which appear already at NLO in the
expansions of Fπ and Mπ, the new logarithmic scales ΛM and ΛF are linearly related. This
reduces from 8 to 7 the number of parameters in a combined fit of the dependence of M2

π and
Fπ on mud. In particular this means that with precise enough lattice results for the pair (M2

π ,
Fπ), at four or more values of mud, one can in principle determine the 7 independent LECs
which appear in the expansions of Eq. (2) as well as test the compatibility of the lattice results
with NNLO χPT. Such an NNLO analysis is still very demanding by today’s standards.

The situation is significantly more simple if the expressions of Eq. (2) are truncated at
NLO. Then, only 4 LECs appear, B and F at O(p2), and ¯̀

3 and ¯̀
4 at O(p4). This is the

expansion considered in previous Nf ≥ 2+1 work [2,6,7,13–20]. Of those, the only calculation
whose simulations reach all the way down to the physical up-down quark mass is [6]. In that
work, NNLO effects are also investigated.

Work on the x-expansion has also been performed using Nf = 2 lattice QCD simulations
in [21–29]. Such work has provided interesting information about SU(2) χPT. However,
because the effects of the omitted strange, sea quark in these calculations cannot be quantified
a priori, the conclusions which are drawn from such studies will differ qualitatively and
quantitatively from ours by an unknown amount. Thus, we do not consider them further here
and refer the interested reader to [11] and the original papers for further information.

As with any expansion, the chiral expressions can be reorganized in terms of any other
parameter which is related to x of Eq. (3), through a power series in x. In particular, one
can invert Eq. (2), and express M and F as an expansion in

ξ ≡ M2
π

(4πFπ)2
. (6)

The corresponding expressions read [11]

M2 = M2
π

1 +
1

2
ξ ln

Λ2
3

M2
π

− 5

8
ξ2

(
ln

Ω2
M

M2
π

)2

+ ξ2cM +O(ξ3)

 , (7)

F = Fπ

1− ξ ln
Λ2

4

M2
π

− 1

4
ξ2

(
ln

Ω2
F

M2
π

)2

+ ξ2cF +O(ξ3)

 .

This expansion has the advantage that its parameter ξ is given in terms of the physical mass
and decay constant of the particle which is actually contributing to the process. Thus, it
resums a number of higher-order contributions which are known to be present, and therefore
might exhibit better convergence. In Eq. (7), the scales of the quadratic logarithms are
determined by Λ1, . . . ,Λ4 [11]:

ln
Ω2
M

M2
π

=
1

15

(
60 ln

Λ2
12

M2
π

− 33 ln
Λ2

3

M2
π

− 12 ln
Λ2

4

M2
π

+ 52

)
, (8)

4



ln
Ω2
F

M2
π

=
1

3

(
−15 ln

Λ2
12

M2
π

+ 18 ln
Λ2

4

M2
π

− 29

2

)
.

Here we study SU(2) χPT in both the x and ξ-expansions. While most of the work
concerns the NLO expansions, we also investigate the NNLO expansions, in particular in
regards to its range of applicability.

The remainder of the paper is organized as follows. In Sec. 2 we detail the lattice ensembles
used in the present study and the various steps in required to determine the chiral observables
Mπ, Fπ and the quark masses from our correlation functions. We also discuss how we perform
the necessary renormalizations and how we account for the various sources of lattice systematic
errors in our analyses. In Sec. 3, we systematically explore the range of applicability, in pion or
light-quark mass, of the various SU(2) χPT expressions for M2

π/2mud and Fπ. In particular,
we assume that SU(2) χPT is valid around Mph

π , where here and below the superscript “ph”
stands for “physical” or from experiment, and explore how far up one can go in pion or light-
quark mass, while still maintaining an acceptable description of the lattice results. Then,
having established the range of applicability of SU(2) χPT for M2

π/2mud and Fπ, we devote
Sec. 4 to a determination of the corresponding LO, NLO and NNLO LEC’s, as well as of Fπ
and the quark condensate. In particular, we perform a complete systematic error analysis for
these quantities. Our main results are summarized in Table 4. In Sec. 5 we show that the
lattice results favor the presence of chiral logarithms. We also show how the absence of lattice
results with Mπ ≤ 200 MeV can lead to misleading results and conclusions. In the paper’s
final section, Sec. 6 we present our conclusions. We also provide an appendix in which we
discuss our implementation of the ξ-expansion and the ensuing constraints on the LECs.
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2 Determination of lattice quantities and associated system-
atic errors

In this section, we describe how we compute the values of Mπ, Fπ and mud required for the
χPT studies described below. We do so for a range of mud around and above its physical
value to explore the range of applicability of SU(2) χPT. We also do so for a large variety of
lattice parameters to be able to control all sources of systematic uncertainties.

As first proposed in [1], we determine the central values, statistical and systematic uncer-
tainties of our results from histograms obtained by combining the results form a variety of
different analyses. Indeed, for each step of the analysis, we consider a wide range of possible
procedures whose effects we propagate to the end of the calculation. Thus, our analyses form
a tree where each path corresponds to one of the many different possible ways in which to
compute a given observable.

The trunk of the tree corresponds to the primary observables. In the present study,
they are the hadron correlators. Thus, the first level of branching occurs in choosing the
time interval over which these correlators are fitted to obtain the bare masses and decays
constants in lattice units. The next level of branching is a result of the different ways which
we have to set the lattice spacing. Note that at each level, these same twigs are sprouted from
every branch. For quantities which require renormalization, an additional level of branching
arises, corresponding to the different ways which we have to compute the renormalization
constants. Note that the renormalization constants are themselves the result of a tree, as
described below.

At that stage in the analysis, we have obtained, in all possible ways, the renormalized
results in physical units for each simulation, which we will need to study SU(2) χPT. Note
that throughout our analysis we fully take into account statistical correlations as well as
correlations induced by quantities such as the lattice spacing or the renormalization constants,
which are shared by all ensembles at a given β.

In the remainder of the section, we detail the ingredients of the analysis briefly described
here, including the procedure used to determine the associated systematic uncertainties.

2.1 Simulation details

The study presented here is based on the forty-seven Nf = 2 + 1 ensembles that we produced
for determining the light quark masses [4, 5]. They were generated using a tree-level O(a2)-
improved Symanzik gauge action [30–33], together with tree-level clover-improved Wilson
fermions [34], coupled to links which have undergone two levels of HEX smearing [35–37].
Details of the action and simulations are given in [5]. Here we mention that we use the 26 large-
volume ensembles that were generated at 4 values of the lattice spacing spanning the range
0.054 fm <∼ a <∼ 0.093 fm. We found that the low momentum cutoff of the coarsest lattice in [5],
with a = 0.116 fm, does not allow a precise determination of the renormalization constant of
the axial current, ZA, required for the computation of Fπ. The uncertainty associated with
its determination, of order 1.5%, is sufficiently large that it negates any improvement the
inclusion of the results at that lattice spacing could bring to the final results. Thus, as in [38],
we have chosen not to incorporate the results of this simulation in our analysis.

The strange quark mass in these simulations is varied around the physical value to allow
for a precise interpolation to that value. For the 2 lattice spacings a ≈ 0.077, 0.093 fm,
simulations were performed all the way down to the physical value of mud and even below.
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For the remaining 2 lattice spacings (a ≈ 0.065, 0.054 fm), the pion masses reached are 180
and 220 MeV, respectively. Thus, our simulations allows us to replace the usual extrapolations
to physical mud by an interpolation, but also to systematically probe the SU(2) chiral regime.

The parameters of the simulations used in this work are summarized in Tables 1 and
2, together with illustrative results for the lattice spacing, renormalization constants and
observables that are discussed below.

2.2 Strategy for determining masses and decay constants

We determine aMπ and aFπ/ZA for each simulation point by performing a combined corre-
lated fit of the asymptotic time behavior of the two, zero-momentum correlators,

∑
~x〈AL0 (~x,

x0)PG†(0)〉 and
∑
~x〈PG(~x, x0)PG†(0)〉, to the appropriate asymptotic forms. Here A0 is the

time-component of the axial-vector current and P is the corresponding pseudoscalar density.
Both are appropriately tree-level O(a)-improved [34, 39]. These operators have the flavor
quantum numbers appropriate for annihilating a π+. The superscript L stands for “local”
(i.e. all quark fields are at the same spacetime point) and G for “Gaussian”. Indeed, to
reduce the relative weight of excited states in the correlation functions, Gaussian sources and
sinks are used (except for the axial current, of course), with a radius of about 0.32fm, which
was found to be a good choice [1]. The kaon masses, aMK , are obtained from a correlated fit
to the corresponding, two-point, pseudoscalar density correlators.

To study the x-expansion discussed above, we need to determine the quark masses mud

and ms for each simulation point. Here we follow the O(a)-improved ratio-difference method
put forward in [4, 5]. Thus, for each simulation point we determine the bare axial-Ward-
identity mass combinations 2mPCAC

ud (g0) = (mu+md)
PCAC(g0) and (ms+mud)

PCAC(g0) from
the relevant ratio of two-point functions, ∂0

∑
~x〈AL0 (~x, x0)PG†(0)〉 /

∑
~x〈PG(~x, x0)PG†(0)〉,

where ∂µ is the symmetric derivative. The operators are appropriately tree-level O(a)-
improved. From this we obtain the ratio of renormalized, improved quark masses, rimp ≡
mAWI
s (µ)/mAWI

ud (µ), through rimp = mPCAC
s (g0)/mPCAC

ud (g0)[1 + O(a)], where the O(a) im-
provement terms are given in [5] and µ is a renormalization scale. Because the numer-
ator and denominator in this ratio renormalize identically, all scale and scheme depen-
dence cancels. This ratio is then combined with the difference of renormalized, improved
vector-Ward-identity masses, (ms − mud)

VWI(µ) = dimp(g0)/(aZS(aµ, g0)), to obtain the
renormalized values mud(µ) and ms(µ) of the quark masses for a given simulation. Here
dimp(g0) = (ambare

s −ambare
ud )(g0)[1+O(a)], where the O(a) improvement terms are also given

in [5] and where ambare
ud,s(g0) are the bare lagrangian masses used at bare coupling g0. In the

definition of the mass difference, ZS(aµ, g0) is the renormalization constant of the non-singlet
scalar density in any chosen scheme at scale µ [4,5]. Here we will mainly use its renormaliza-
tion group invariant (RGI) value, which is regularization scheme and renormalization scale
independent.

2.3 Excited state contributions

A source of uncertainty, which often proves important, is the contamination by excited states
of the desired ground state in two-point correlators. As described above, this contamination is
reduced by working with extended sources and sinks. Moreover, we tested 1-state and 2-state
fits, and found complete agreement if the 1-state fits start at tmin'0.7 fm for the pseudoscalar
meson channels and from tmin'0.8 fm for the Ω. In lattice units this amounts to atmin ={8,
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9, 11, 13} for β={3.5, 3.61, 3.7, 3.8} (and ∼ 20% later for baryons). In order to estimate any
remaining excited state effects, we repeat our analysis with an even more conservative fit
range, starting at atmin={9, 11, 13, 15} for mesons and ∼ 20% later for baryons. The end of
the fit interval is always chosen to be atmax = 2.7×atmin or T/2 − 1 for lattices with a time
extent shorter than 5.4×atmin. In total, this yields 2 combined, time-fit intervals.

2.4 Lattice spacing

To set the lattice spacing, we follow [1] and use the Ω baryon mass. Thus, we perform a
combined interpolation to the physical mass point of our results for aMΩ at all four values of
β, with the following functional form:

aMΩ = aMph
Ω (β)

{
1 + cs

[(
aMss̄

aMΩ

)2

−
(
Mss̄

MΩ

)2

ph

]
(9)

+ cud

(aMπ

aMΩ

)2

−
(
M̂π+

MΩ

)2

ph

 ,

where (Mss̄)
2 = 2M2

K−M2
π . In (9), there is of course one parameter aMph

Ω per lattice spacing,
but we find that our fits do not require the parameters cs,ud to be β dependent. Moreover,
for the range of quark masses considered, we find that we do not need higher order terms in
the mass expansion. Thus, these fits have a total of 7 parameters.

To estimate the systematic uncertainties in our final results associated with the determi-
nation of the lattice spacing, we consider 2× 2 = 4 different procedures for its computation,
which we propagate throughout our analysis. In particular, we consider 2 different time-fitting
ranges for the extraction of aMΩ in each simulation (atmin ={10, 11, 13, 16} or atmin={11, 13,
16, 18} for β={3.5, 3.61, 3.7, 3.8}) to estimate the possible effects of excited state contributions
to the two-point functions and 2 pion cuts in the mass interpolation fits described above (380
or 480 MeV), to estimate the uncertainties associated with the interpolation of aMΩ to the
physical mass point. This gives us a total of 4 values of the lattice spacing for each β. While
each of these procedures enters individually in our determination of systematic uncertainties
for all quantities which depend on the lattice spacing, we give in Table 1 illustrative numbers,
whose central values are the fit-quality weighted averages of the results from the different pro-
cedures and whose statistical errors are the variance of these central values over 2000 bootstrap
samples. The systematic errors are obtained from the variance over the procedures.

2.5 Renormalization

To determine the renormalization constants we use the nonperturbative renormalization and
running techniques developed in [4, 5, 40], which are based on the RI/MOM methods à la
Rome-Southampton [41]. For ZS , we follow [5] and ZA is determined as in [38]. As described
in [5], the calculation of these constants is performed using 20 fully independent Nf = 3
simulations at the same four values of β as the Nf = 2 + 1 production runs.

In order to compute the systematic uncertainties associated with renormalization on our
final results, we consider 6 different procedures for the determination of ZS and 3 for ZA, as
described in detail [5] and [38], respectively. Here we simply outline the different procedures.

The renormalization of quark masses is performed in three steps [5]. We first compute ZS
in a MOM scheme at an intermediate scale µ′, which is low enough that discretization errors

8



β a [fm] 1/ZRGI
S ZA

3.5 0.0904(10)(2) 1.47(2)(3) 0.9468(5)(56)

3.61 0.0755(11)(3) 1.50(3)(2) 0.9632(4)(53)

3.7 0.0647(11)(3) 1.54(3)(3) 0.9707(3)(35)

3.8 0.0552(8)(1) 1.58(1)(1) 0.9756(1)(15)

Table 1: Illustrative results for the lattice spacing and the renormalization constants at our
four values of β. 1/ZRGI

S is required to convert bare quark masses to masses renormalized in
the Nf = 3 RGI scheme. To convert results to the MS scheme at scale 2 GeV, the numbers
in the third column of the table must be multiplied by 0.750 [5]. ZA is used to correctly
normalize Fπ. In the results above, the first error is statistical and the second is systematic.
The main text explains how these errors are obtained as well as why the results cannot be
used to reproduce the extensive analyses performed in this paper.

on the renormalization constant are under control. We then run the results nonperturbatively
in that scheme up to a fully perturbative scale µ = 4 GeV where they are converted nonper-
turbatively to the usual massless, Nf = 3, RI/MOM scheme. Values in other schemes are
then obtained using renormalization-group-improved perturbation theory at O(α3

s) [42], with
negligible uncertainty. These three steps lead to 6 procedures in the following way. In step
1 we consider three different MOM schemes to determine the uncertainties associated with
the choice of an intermediate scale µ′ and with the chiral extrapolation required to define the
RI/MOM scheme. These correspond to the scale and quark-mass pairs, µ′[GeV],mRGI

ref [MeV]
= {{2.1, 0}, {2.1, 70}, {1.3, 70}}. The additional factor of two comes from the two ways in
which we continuum extrapolate the nonperturbative running and matching factors, either
assuming that the O(αsa) or O(a2) terms dominate.

ZA is a finite renormalization and therefore does not have a scale or scheme dependence.
Nevertheless, we must find a window, at large values of the squared-momentum, p2 � ΛQCD,
of the quark three-point function used to determine ZA, in which this correlation function is
approximately constant. For such momenta the correlation function is dominated by perturba-
tion theory and allows for a reliable extraction of ZA. To estimate the uncertainties associated
with the choice of this window and with possible (ap)2 discretization corrections, we fit our
results for the relevant three-point function to the functional form ZA +A(amq) +B(ap)2 for
three different ranges in p2. Here, amq is the common, Nf = 3, bare PCAC mass. For all
four β these ranges begin either at p2 = 3.35, 4.37 or 5.52 GeV2. These values of p2 are large
enough that we are not sensitive to subleading OPE contributions proportional to inverse
powers of p2. The upper bounds of the fit ranges are chosen to be 1.5/a in all cases. This is
below π/(2a) which we found in [5] is a region in which discretization errors on the RI/MOM
correlation functions are subdominant.

We provide in Table 1 illustrative results for 1/ZRGI
S and ZA for the four values of the

lattice spacing used in our study. Their central values are the fit quality weighted averages of
the results from the different procedures and their statistical errors are the variance of these
central values over 2000 bootstrap samples. Their systematic uncertainties are obtained from
the variance over the different procedures.

The results for a, 1/ZS and ZA in Table 1 are only illustrative, because they cannot
be naively combined with the observables given Table 2 to perform a fully self-consistent
analysis such as the one presented below. Indeed in our analysis, the statistical and systematic
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uncertainties associated with these quantities are propagated in a fully-consistent manner to
our final results by including them in our resampling and systematic error loops. Such an
analysis requires having the full statistical and systematic error distributions of the quantities
in Tables 2 and 1, as well as their correlations.

2.6 Finite-volume corrections

Because our calculations are performed in large but finite boxes, our results for Fπ and Mπ

suffer from finite-volume corrections. These effects have been determined at one loop in SU(2)
χPT in [43]. In [44] they have been computed to three loops for Mπ and two loops for Fπ, up
to negligibly small exponential corrections. Since the expressions for the latter involve O(p4)
LECs at two loops, some of which we cannot self-consistently determine here, we prefer to
rely on the one-loop formulae, which can be written in terms of quantities which we calculate
directly. The difference is a correction on an already small correction.

In the ξ-expansion, the one-loop finite-volume corrections are given by [43]:

M2
π(L)

M2
π

− 1 =
1

2
ξ g̃1(MπL) +O

(
ξ2
)

(10)

Fπ(L)

Fπ
− 1 = −ξ g̃1(MπL) +O

(
ξ2
)

(11)

where ξ is defined in Eq. (6). Analogous results are obtained for the x-expansion. The shape
function g̃1(x) has a well behaved large-argument expansion in terms of Bessel functions of
the second kind, which themselves can be expanded asymptotically:

g̃1(x)
x→∞∼ 24K1(x)

x
+

24K2(
√

2x)√
2x

+ · · · (12)

Kν(x)
x→∞∼

(
π

2x

)1/2

exp(−x)

[
1 +

4ν2 − 1

8x
+ · · ·

]
. (13)

In a first instance, we include the corrections of Eq. (11) (and the corresponding ones in
the x-expansion), directly into the fit functions given in Eq. (15) (and in Eq. (14) for the x-
expansion). We find that the subtraction of finite-volume effects on Fπ significantly improves
the fit quality. The corrections on M2

π , which are four times as small and significantly smaller
than statistical errors, do not improve the χ2 of the fits nor do they change the results.

For our simulation parameters, the one-loop finite-volume effects on Fπ are typically 0.5%
and never exceed 1.1%. Thus, higher-order corrections are expected to be much smaller than
our statistical errors. To check this, we perform a second set of fits in which we multiply the
RHSs of each of the two equations in (11) (and the equivalent expressions in the x-expansion)
by a coefficient which is treated as an additional free parameter in these fits. Thus, each of
our ξ and x-expansion fits have two additional parameters. These parameters are 1 if the
NLO estimate of finite-volume corrections is exact.

In practice, for NLO fits in the important region Mπ ≤ 300 MeV, we find that the addition
of these parameters does not improve the quality of the fits. Moreover, the uncertainties on
the coefficients come out very large–between 80 and 90% depending on the quantity and the
expansion–and the coefficients themselves are consistent with 1 within at worst 1.2 standard
deviations. Finally, the results obtained for the LECs are consistent, within statistical errors,
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with those obtained using the analytic finite-volume expressions, and none of the conclusions
that we draw below are modified.

In light of these findings and of the expectation that higher-order, finite-volume corrections
are negligible compared to our statistical errors, we have decided to fix the finite-volume
corrections to their NLO values in our analysis, so as not to artificially increase our statistical
errors by adding two irrelevant parameters.

2.7 Illustrative bare results for the basic observables

To conclude this section, we tabulate our simulation points, together with the corresponding
values of ZS×amud, aMss̄ ≡ [2(aMK)2−M2

π ]1/2, aMπ and aFπ/ZA. They are given in Table 2.
ZS×amud is the bare, subtracted value of the average up-down quark mass given by the ratio-
difference method described in Sec. 2.2, before the final multiplicative renormalization. The
quantities in Table 2 are the basic observables needed to study the chiral behavior of M2

π

and Fπ. Their central values are the fit quality weighted averages of the results from the
two different time-fit ranges of the correlation functions and their statistical errors are the
variance of these central values over 2000 bootstrap samples. Their systematic uncertainties
are obtained from the variance over the two procedures.

These values are only meant as illustrative. In particular, they do not include a descrip-
tion of statistical and systematic error correlations, including those with the lattice spacing.
While this seriously limits the reliability of any conclusion drawn from them, we give them
nonetheless so that the interested readers may get their own sense of what sort of chiral be-
havior these results allow, after combining them with the values of the lattice spacing a and
the renormalization constants 1/ZS and ZA given in Table 1.
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β T × L3 ambare
ud ambare

s ZS(amud) aMss̄ aMπ aFπ/ZA
48× 243 -0.041 -0.006 0.01475(33) 0.3415(5)(2) 0.19188(50)(6) 0.05491(34)(0)
48× 243 -0.0437 -0.006 0.01188(27) 0.3396(5)(2) 0.17238(49)(3) 0.05263(34)(0)
64× 243 -0.041 -0.012 0.01428(33) 0.3175(95)(4) 0.18790(90)(30) 0.05384(84)(6)
64× 323 -0.0463 -0.012 0.00853(20) 0.3134(10)(7) 0.14440(70)(60) 0.05004(62)(6)

3.5 64× 323 -0.048 -0.0023 0.00726(17) 0.3496(75)(5) 0.13480(70)(20) 0.04982(59)(1)
64× 323 -0.049 -0.006 0.00579(15) 0.3339(10)(5) 0.12100(9)(3) 0.04837(84)(3)
64× 323 -0.049 -0.012 0.00560(14) 0.3103(69)(9) 0.11733(64)(3) 0.04800(68)(2)
64× 483 -0.0515 -0.012 0.00288(7) 0.3079(9)(1) 0.08410(60)(20) 0.04628(58)(3)
64× 643 -0.05294 -0.006 0.00149(5) 0.3281(9)(5) 0.06126(60)(9) 0.04440(75)(6)

48× 323 -0.028 0.0045 0.01008(23) 0.2955(6)(3) 0.14852(49)(2) 0.04408(34)(2)
48× 323 -0.03 0.0045 0.00808(18) 0.2929(7)(3) 0.13217(50)(9) 0.04262(39)(1)
48× 323 -0.03 -0.0042 0.00783(18) 0.2602(7)(2) 0.12943(59)(4) 0.04207(39)(1)

3.61 48× 483 -0.03121 0.0045 0.00678(15) 0.2926(6)(2) 0.12096(30)(3) 0.04234(25)(2)
48× 483 -0.033 0.0045 0.00490(12) 0.2909(9)(3) 0.10251(48)(7) 0.04005(37)(1)
48× 483 -0.0344 0.0045 0.00344(8) 0.2907(10)(4) 0.08610(6)(2) 0.03921(38)(6)
72× 643 -0.0365 -0.003 0.00096(3) 0.2592(10)(5) 0.04646(5)(3) 0.03583(62)(0)

64× 323 -0.0208 0.0 0.00821(19) 0.2276(13)(2) 0.12455(11)(1) 0.03660(57)(1)
64× 323 -0.0208 0.001 0.00831(19) 0.2328(10)(2) 0.12491(10)(1) 0.03607(56)(1)

3.7 64× 323 -0.0208 -0.005 0.00823(19) 0.2082(7)(1) 0.12489(64)(8) 0.03588(42)(0)
64× 483 -0.0254 0.0 0.00354(8) 0.2259(9)(3) 0.08168(55)(2) 0.03304(41)(2)
64× 483 -0.0254 -0.005 0.00348(8) 0.2043(6)(3) 0.08046(4)(2) 0.03270(51)(2)
64× 643 -0.027 0.0 0.00196(5) 0.2235(52)(5) 0.06029(30)(9) 0.03303(44)(3)

64× 323 -0.0148 0.0 0.00915(21) 0.1898(10)(3) 0.12052(12)(3) 0.03123(63)(1)
3.8 64× 483 -0.019 0.0 0.00422(9) 0.1873(13)(2) 0.08184(11)(0) 0.02814(49)(1)

64× 483 -0.019 0.003 0.00423(10) 0.2010(11)(1) 0.08261(14)(1) 0.02784(47)(3)
144× 643 -0.021 0.0 0.00221(5) 0.1879(80)(6) 0.05981(25)(1) 0.02688(59)(1)

Table 2: Parameters of the simulations used in this work and illustrative results for the
quantities ZS(amud), aMss̄, aMπ and aFπ/ZA. In these results, the first error is statistical
and the second is systematic, and they are obtained as described in the text. For ZS(amud),

the systematic error is 0 for the number of digits given and is not reported.
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3 Exploring the range of applicability of SU(2) χPT for M 2
π

and Fπ

In this section we explore the range of applicability of SU(2) χPT, in u-d and pion mass, for
the various expansions discussed in Sec. 1. We proceed in a systematic fashion. We begin by
assuming that χPT is valid around Mph

π , the experimental value of Mπ, where we have our
lightest points. We then study the p-values of the combined, fully-correlated fit of the different
chiral expansions to our results for Fπ and M2

π with mud ≤ mmax
ud or Mπ ≤ Mmax

π , as mmax
ud

or Mmax
π is increased. Because our procedure correctly accounts for all correlations in the

lattice observables, the p-value is a meaningful quantity whose value indicates the probability
that randomly chosen results consistent with the chiral forms would give a worse fit. Thus we
expect the p-value to drop as mmax

ud or Mmax
π is increased beyond the range of applicability

of a given SU(2) χPT expansion for Fπ and M2
π . It is important to note, however, that the

sharpness of the drop and the conclusions which can be drawn depend on the size of the error
bars on the quantities studied.

In order to carry this program out on our simulation results, there are two topics which
we must address. The first is the dependence of M2

π and Fπ on strange-quark mass. In our
Nf = 2 + 1 simulations, we vary ms in the vicinity of its real-world value to allow us to
tune it precisely to that value in our final results. To parametrize this mass dependence we
follow [45] for instance, and expand the LECs of SU(2) χPT in power series in the strange
quark mass, or an equivalent variable such as M2

ss̄ ≡ 2M2
K −M2

π , around the physical strange
quark point. Since these corrections are small, they are usually only visible in the LO terms
of the chiral expansion. For instance, terms of order x or ξ times (ms −mph

s )/MQCD, where
MQCD is a scale characteristic of QCD (e.g. the ρ-meson mass Mρ), are not detectable at our
level of precision. We will retain only those terms whose coefficients differ from zero by more
than one standard deviation in our fits.

The second point that must be addressed is that of discretization errors. At finite lattice
spacing, results for Mπ, Fπ and the renormalized quark masses suffer from discretization errors
which are proportional to powers of a, up to logarithms. Because the fermion action that we
use is tree-level O(a)-improved, the leading such errors are formally proportional to αs(a)a.
However, at our coarsest lattice spacing, terms proportional to a2 may be dominant. Thus,
we consider both possibilities in our analysis. We find that our fits work better if we consider
that discretization errors are associated with a given lattice quantity and consistently include
the required corrections every time that quantity appears. This is what is done in (14) for
mud, for instance. In fact, we performed an extensive study of these effects and found that
the only discretization corrections which our results are sensitive to are αsa or a2 corrections
in mud. Attempts to add discretization corrections to Mπ or Fπ always lead to coefficients
which were consistent with zero within less than one standard deviation. Thus, in the sequel,
we keep only discretization corrections on the light-quark mass.

3.1 NLO and NNLO chiral fit strategy

Combining the strange-quark-mass and lattice-spacing dependencies, discussed above, with
the SU(2) chiral expansions of Sec. 1 gives the desired NLO and NNLO parametrizations.
At NLO in the x-expansion, we obtain the following expressions for the lattice quantities
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(aMπ)2/2(amud), (aFπ), amud, (aMss̄)
2, a, ZA and ZS :

(aMπ)2

2(amud)
=

ap

ZpS
(1− γa1f(ap) + γs1(∆M2

ss̄)
p)(Bx−NLO

π )(mp
ud;B,F,

¯̀
3) ,

(aFπ) =
ap

ZpA
(1 + γs2(∆Mss̄)

2)F x−NLO
π (mp

ud;B,F, `4) , (14)

(amud) = apZps (1 + γa1f(ap))mp
ud , (aMss̄)

2 = (ap)2(M2
ss̄)

p ,

a = ap , ZA = ZpA , ZS = ZpS ,

where (aMss̄)
2 ≡ 2(aMK)2 − (aMπ)2, (∆M2

ss̄)
p ≡ (M2

ss̄)
p −Mph

ss̄ and f(a) = αs(a) a or a2,
depending on which discretization errors are chosen as leading. Bx−NLO

π (mp
ud;B,F,

¯̀
3) is B

times the NLO part of the expression in brackets on he RHS of the first equation in (2) and
F x−NLO
π (mp

ud;B,F, `4) are the NLO expressions of Eq. (2). The relevant chiral parameters
of the fit are the 2 LO LECs, B and F , and the 2 NLO LECs, ¯̀

3 and ¯̀
4. There are also

a discretization parameter, γa1 , and the strange-mass dependence parameters γs1 and γs2. An
extensive study of these two effects showed that the only relevant ones are those given by γa1 ,
γs1 and γs2.

In Eq. (14), variables with a superscript p are also parameters of the fit. These are
associated with the corresponding lattice quantities. As in our previous work, they are added
so that uncertainties and correlations in all lattice quantities, including those which appear
in nontrivial expressions involving the parameters, can consistently be accounted for in the
χ2. Since there is one such variable per new observable added, the total number of d.o.f. is
unchanged.

For each β we define the large lattice data vector yT (β) = (a, ZA, ZS , amud, (aMss̄)
2,

2(amud)/(aMπ)2, (aFπ), · · ·) where the quantities amud, (aMss̄)
2, 2(amud)/(aMπ)2, (aFπ) are

repeated for every simulation at that lattice spacing. We then use a bootstrap to compute
a correlation matrix Cij(β) for each β between different components i and j of the vector y.
Because simulations are independent, this matrix is essentially block diagonal per simulation,
in blocks corresponding to a set of quantities (amud)

2, · · · , (aFπ). There will be large corre-
lations within a given simulation block and smaller, respectively much smaller, ones between
these blocks and the lattice spacing, respectively the renormalization constants. We then
construct the fully correlated χ2 through χ2 =

∑
β X

T (β)C−1(β)X(β), where X(β) is the
vector constructed from the difference of y(β) and the expressions on the RHS sides of (14),
appropriately repeated for each simulation. This construction guarantees that the p-value
that we obtain for these fits accounts for all uncertainties and correlations.

In Fig. 1 we show a typical NLO, x-expansion fit ofM2
π and Fπ. Points withMπ >∼ 120 MeV

(i.e. mud >∼ 3.7 MeV) but less than Mmax
π = 300 MeV (i.e. mud ∼ 23.MeV) are included in

the combined, correlated fit. Agreement of the NLO expressions with the lattice results is
excellent in this range. However the corresponding curves start deviating significantly from
the lattice results for larger values of Mπ.

For the NLO ξ-expansion, we perform a very similar construction. Here, however, the lat-
tice data are (aMπ)2, (aMss̄)

2, 2(amud)/(aMπ)2, (aFπ), a, ZA and ZS , and the corresponding
NLO expressions are:

2(amud)

(aMπ)2
=

ZpS
ap

(1 + γa1f(ap) + γs1(∆M2
ss̄)

p)/Bξ−NLO
π ((M2

π)p;B,F, ¯̀
3) ,
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(aFπ) =
ap

ZpA
(1 + γs2(∆Mss̄)

2)F ξ−NLO
π ((M2

π)p;B,F, `4) , (15)

(16)

(aMπ)2 = (ap)2(M2
π)p , (aMss̄)

2 = (ap)2(M2
ss̄)

p ,

a = ap , ZA = ZpA , ZS = ZpS ,

where 1/Bξ−NLO
π ((M2

π)p;B,F, ¯̀
3) is 1/B times the NLO part of the expression in brackets on

the RHS of the first equation in (7). F ξ−NLO
π ((M2

π)p;B,F, `4) is the expression obtained by
solving exactly the NLO part of the second equation in (7) for Fπ, and keeping the physical
solution. This equation is quadratic in Fπ and the existence of a physical solution is not
guaranteed. The existence of such a solution imposes a constraint on the LO and NLO SU(2)
χPT parameters, which we take into account in our fits. We discuss these solutions and
constraints in more detail in Appendix A.

We show typical NLO ξ-expansion fits in Fig. 2. Again, only points with Mπ less than
Mmax
π = 300 MeV are included. The behavior found here is quite similar to the one found

above for the NLO x-expansion, with the fit curves agreeing well with the lattice results in
the fit range, but deviating more and more beyond that. However, the deviations beyond
Mmax
π = 300 MeV are slightly less pronounced than in the x-expansion. This is probably a

demonstration of the statement made in the Introduction, that the ξ-expansion resums some
higher-order physical contributions.

We now turn to NNLO fits. The procedure followed here is identical to the one de-
scribed above for NLO fits, except that the NLO expressions in Eqs. (14)–(15) are re-
placed by the appropriate NNLO expressions from Sec. 1. That is Bx−NLO

π (mp
ud;B,F,

¯̀
3),

F x−NLO
π (mp

ud;B,F,
¯̀
4), Bξ−NLO

π ((M2
π)p;B,F, ¯̀

3) and F ξ−NLO
π ((M2

π)p;B,F, ¯̀
4) are replaced

by Bx−NNLO
π (mp

ud;B,F,
¯̀
3, ¯̀

12, kM ), F x−NNLO
π (mp

ud;B,F,
¯̀
4, ¯̀

12, kF ), Bξ−NNLO
π ((M2

π)p;B,F,
¯̀
3, ¯̀

12, cM ) and F ξ−NNLO
π ((M2

π)p;B,F, ¯̀
4, ¯̀

12, cF ). Thus, in addition to the 4 χPT parameters
required in the NLO fits, the NNLO expressions contain 5 additional chiral parameters: ¯̀

12,
kM and kF for the x-expansion and ¯̀

12, cM and cF for the ξ-expansion.
F ξ−NNLO
π ((M2

π)p;B,F, ¯̀
4, ¯̀

12, cF ) is the expression obtained by solving exactly the quartic,
second equation in (7) for Fπ, and by keeping the physical solution. Again, the existence
of a physical solution imposes constraints on the LO, NLO and now NNLO SU(2) χPT
parameters. We take these constraint into account in our fits. In Appendix A we give the
physical solution and discuss the conditions for its existence in more detail.

Defining the χ2 as we do for the NLO fits, we perform fully correlated, NNLO x and
ξ-expansion fits to M2

π and Fπ, with Mmax
π between 400 and 550 MeV. A typical example of

such a fit is shown in Fig. 3 for the x-expansion, and in Fig. 4 for the ξ-expansion, both for
Mmax
π = 500 MeV. The p-values of these fits are excellent. The agreement with the lattice

results is also visibly very good and extends better beyond Mmax
π than in the NLO case. In

both the x and ξ-expansions, the NNLO serves to cancel the curvature of the NLO forms to
give a more linear behavior of the mass dependence of M2

π and Fπ.
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Figure 1: Typical NLO SU(2) χPT fit (curves) of our lattice results (points with error bars) for
Bπ = M2

π/(2mud) and Fπ as functions of mud, in the x-expansion. These are fully correlated
fits to the NLO expressions of (14), which also account for discretization and strange quark
mass corrections. Only points with Mπ ≤Mmax

π = 300 MeV (i.e. mud ∼ 23.MeV) are included
in the fits, i.e. those left of the dashed vertical line. The more massive points are shown for
illustration. The lattice results in the figure are corrected for discretization and strange mass
contributions, using the fit parameters obtained. Thus, they are continuum limit results at
the physical value of ms and their only residual dependence is on mud. Nevertheless, results
obtained at different lattice spacing are plotted with different symbols. The fact that they
lie on a same curve indicates that residual discretization errors are negligible. Note that the
corrections made to the more massive points may not be optimal as these points are not
included in the fit and, as we will see, the applicability of NLO χPT is questionable for these
points. Error bars on all points are statistical only. Also shown, but not included in the fits,
is the experimental value of Fπ [46]. Agreement with our results computed directly around
the physical pion mass point is remarkable.
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Figure 2: Typical NLO SU(2) χPT fit (curves) of our lattice results (points with error bars) for
1/Bπ and Fπ as functions ofM2

π , in the ξ-expansion. Only points withMπ ≤Mmax
π = 300 MeV

are included in the fits, i.e. those left of the dashed vertical line. The description is the same
as in Fig. 1, except that the functional forms used are those of (15).
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Figure 3: Typical NNLO SU(2) χPT fit (curves) of our lattice results (points with error bars)
for Bπ and Fπ as functions of mud, in the x-expansion. Only points with Mπ ≤ Mmax

π =
500 MeV (i.e. mmax

ud
<∼ 65.MeV) are included in the fits, i.e. those left of the dashed vertical

line. The description is the same as in Fig. 1, except that the functional forms used are those
of (14) with Bx−NLO

π and F x−NLOπ replaced by Bx−NNLO
π and F x−NNLOπ , respectively.
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Figure 4: Typical NNLO SU(2) χPT fit (curves) of our lattice results (points with error bars)
for 1/Bπ and Fπ as functions of M2

π , in the ξ-expansion. Only points with Mπ ≤ Mmax
π =

500 MeV are included in the fits, i.e. those left of the dashed vertical line. The description
is the same as in Fig. 1, except that the function forms used are those of (15) with Bξ−NLO

π

and F ξ−NLO
π replaced by Bξ−NNLO

π and F ξ−NNLO
π , respectively.
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3.2 Fit quality and LECs in terms of maximum pion mass for NLO χPT

We now turn to our systematic study of the range of applicability of SU(2) chiral perturbation
theory to the quark-mass dependence of M2

π and Fπ. We implement the fully correlated,
combined fits described above, including lattice results extending from our smallest pion
mass of around 120 MeV up to a maximal value, Mmax

π . We then study the p-value of these
fits as a function of Mmax

π . We consider NLO x and ξ-expansion fits in this section and
NNLO ones in the following. For the x-expansion fits, the cut is made at a value of mud

corresponding to Mmax
π such that the same lattice results are include as would be with a cut

at Mmax
π in the ξ-expansion fits.

For each value of Mmax
π and for each functional form tried, we compute the fit quality,

including a systematic error. Indeed, we want to make sure that the p-value which we quote is
not peculiar to a particular choice of analysis procedure. This is particularly important in fits,
such as those performed here, where the observables considered have significant correlations
and small changes can make large changes in the fit quality. The p-values are obtained
from the p-value-weighted distributions of results from 2 × 2 × 3 × 6 = 72 different analysis
procedures for a given Mmax

π . These procedures correspond to 2 time-fit intervals for the two-
point functions, 2 mass cuts in the scale setting, 3 ways of doing RI/MOM renormalization for
ZA and 6 for ZS , as described in Sec. 2. The central value of the fit quality for a given Mmax

π

is chosen as the mean of the corresponding distribution and its systematic error obtained
from this distribution’s variance.

The results for the the p-values of our NLO and NNLO, x and ξ-expansion fits are shown
together in Fig. 5. For the NLO fits we consider values of Mmax

π between 250 and 450 MeV.
Below 250 MeV the number of lattice points which we have starts becoming too small to
reliably constrain the NLO form. Above 450 MeV, these fits have tiny p-values.

As Fig. 5 shows, the NLO x and ξ-expansion fits work very well for Mmax
π ≤ 300 MeV.

There is a first drop in p-value for Mmax
π in the region of 350 to 400 MeV in which fit qualities

are in the 1 to 10% range. Between 400 and 450 MeV the fit quality drops enormously and
keeps on doing so beyond that point (not shown). We have checked that these changes are not
the artefact of a single stray point in these intervals. This discussion suggests that, for M2

π

and Fπ, the range of validity of SU(2) extends safely up to 300 MeV and may be stretched up
to around 400 MeV. Beyond that point it clearly breaks down. Of course, these conclusions
only hold within the statistical accuracy of our calculation, which is described in more detail
in Sec. 3.4.

It is worth noting that the break-down is less pronounced for the NLO ξ-expansion. This
may be ascribed in part to a difference in size in the relative uncertainties on M2

π and mud.
It also seems to corroborate the observation, made in Sec. 3.1, that the ξ-expansion range of
applicability may extend to slightly larger quark-mass values because it resums some higher-
order physical contributions.

In order to further verify the conclusions drawn up to now, we also monitor the values of
the fitted LECs, as a function of Mmax

π . We begin with the LO LECs B and F . Their values
as a function of Mmax

π are shown in Fig. 6 for the NLO x and ξ-expansions. These values
include full statistical and systematic errors, obtained with the same collection of analyses as
those used in determining the p-values. For each quantity, we weigh the result given in each
procedure by its p-value. This yields a distribution of results for each quantity. The central
value for each quantity is chosen to be the mean of the distributions. Its systematic uncer-
tainty is obtained by computing the variance with respect to the mean, over this distribution.
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Figure 5: Fit quality of the fully correlated SU(2) χPT fits to our lattice results for Bπ and
Fπ described in Sec. 3.1. The fits to our lattice results for these quantities include points
whose pion mass is in the range [120 MeV, Mmax

π ]. The p-values shown are those of NLO
and NNLO fits in the x and ξ-expansions. They are are plotted as a function of Mmax

π . For
Mmax
π ≤ 350 MeV, only the p-values of NLO fits are plotted as these ranges do not contain

enough data to constrain NNLO chiral expressions. For Mmax
π ∈ [400, 450] MeV, the p-values

of both NLO and NNLO fits are shown. For larger Mmax
π only NNLO results are shown,

as the p-values of NLO fits are negligibly small. The gray band corresponds to the p-value
interval of 10 to 50% and the red one to that of 50 to 100%. Error bars on each point are
the systematic uncertainties described in the text. For the sake of clarity, results are shifted
about the values of Mmax

π = 250, · · · MeV, at which they are obtained.

Finally, the statistical error is obtained by repeating the construction of the distributions for
the 2000 bootstrap samples, and considering the variance of these means around the central
value.

As the plots show, the LO LECs obtained from NLO fits jump for Mmax
π between 300

and 350 MeV, but appear to remain consistent within errors. However, because the values of
the LECs for two different pion mass cuts are obtained from data sets which have significant
overlap, they are correlated, which may give a false impression of agreement. In order to
eliminate the effect of these correlations in the comparison, we study the quantities ∆BRGI

and ∆F , which are the differences of the LECs at the given value of Mmax
π minus the ones

obtained for Mmax
π = 300 MeV. The latter is chosen because it is clearly within the range of

applicability of SU(2) χPT, at the level of accuracy considered here. We compute the statis-
tical and systematic errors directly on these differences, both within our bootstrap resampling
and systematic error analysis loops. The errors on these differences determine directly the
significance of the deviations of the values of the LECs obtained for a given Mmax

π with that
obtained for Mmax

π = 300 MeV. These differences are plotted in Fig. 6, in a panel below the
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corresponding LEC. By definition, ∆BRGI and ∆F are exactly zero at Mmax
π = 300 MeV.

The plots of these differences show that the seeming agreement deduced from a direct
comparison of the values of the LECs at two different pion mass cuts is misleading. While
one finds that the values of the LO LECs for Mmax

π = 250 and 300 MeV agree within one
standard deviation, this is no longer true for values of Mmax

π ≥ 350 MeV. Indeed, the values of
∆BRGI and ∆F are almost 2 standard deviations away from 0 and more for Mmax

π = 400 MeV.
Beyond that point, the values of the LECs obtained from NLO fits are not meaningful, because
the quality of the fits becomes so poor. The results on these differences sharpen the earlier
conclusion that NLO, SU(2) χPT starts breaking down above 300 MeV, for the precisions
reached here.

We perform a very similar analysis for the NLO LECs, ¯̀
3 and ¯̀

4, extracted from our
combined, correlated NLO fits. In particular, we define the differences ∆¯̀

3 and ∆¯̀
4 in

full analogy with ∆BRGI and ∆F . These LECs and their differences with respect to their
values for Mmax

π = 300 MeV are plotted as a function of Mmax
π in Fig. 7. The jump between

Mmax
π = 300 and 350 MeV observed in the p-values and in ∆BRGI and ∆F is still present in

∆¯̀
4, but less so in ∆¯̀

3. It is also interesting to note that for Mmax
π ≥ 350 MeV, the values of

¯̀
4 obtained from the x and ξ-expansion fits are no longer compatible, a clear sign that higher

order contributions are becoming relevant. Thus these NLO LEC results are compatible with
the conclusions drawn so far as to the range of applicability of NLO, SU(2) χPT.
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Figure 6: LO LECs as a function of Mmax
π obtained from the SU(2) χPT fits to our lattice

results for Bπ and Fπ in the pion-mass range [120 MeV, Mmax
π ], as described in Sec. 3.1.

Results are shown for NLO and NNLO fits in the x and ξ-expansions (see the caption of
Fig. 5 for additional details). In the top panel of each of the two figures, it is the LEC in
physical units which is shown. The horizontal gray band denotes our final result for the
corresponding LEC, given in Table 4, and obtained as described in Sec. 4. In the lower panel
of each figure it is the difference of the LEC obtained from a fit with Mπ ∈ [120 MeV, Mmax

π ] to
that obtained from the NLO fit in the range [120, 300] MeV, in the corresponding expansion.
As argued in the text, this reference domain is in the range of applicability of NLO χPT
at our level of accuracy. Error bars on each point are the statistical and the quadratically
combined statistical-plus-systematic uncertainties. For the sake of clarity, results are shifted
about the values of Mmax

π = 250, · · · MeV, at which they are obtained.
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3.3 Fit quality and LECs in terms of maximum pion mass for NNLO χPT

We now turn to the study of NNLO SU(2) χPT. The analysis we perform here parallels the
one discussed above for NLO χPT. In particular, we study the dependence of the p-value
and the LECs as a function of Mmax

π . Here there are 5 additional LECs that have to be
considered. These are ¯̀

12, kM and kF , in the case of the x-expansion, and ¯̀
12, cM and cF for

the ξ-expansion. The lowest value of Mmax
π that we consider is 400 MeV, because NLO fits

work reasonably well up to around that point and because we need more lever-arm and data
to fix the 3 additional parameters required at NNLO in each expansion.

The results for the fit quality as a function of Mmax
π are shown in Fig. 5, together with the

results from NLO fits. As these show, the introduction of NNLO terms brings the p-values
back up to acceptable values up to Mmax

π ' 500 MeV. Beyond that point the p-values of
NNLO fits also drop. These observations suggest that the NNLO, SU(2) chiral expansion of
M2
π and Fπ may extend up to 500 MeV, at least for the statistical precision reached in this

work and described in Sec. 3.4.
To check this statement, we turn to the study of the LECs as a function of Mmax

π . The
results for the LO LECs, BRGI and F , are show in Fig. 6 and those for the NLO LECs, ¯̀

3

and ¯̀
4, are given in Fig. 7, together with the results obtained from the NLO fits discussed in

the previous section.
The results for F and ¯̀

4 appear to confirm the conclusions drawn from the behavior of
the p-values, at least for the ξ-expansion. In that case, the addition of NNLO terms for
Mmax
π ≥ 400 MeV brings the values of F and ¯̀

4, associated with Fπ, back in line with those
obtained at NLO, with Mmax

π = 300 MeV. This suggests that the NNLO terms are just what
is needed to accommodate the tensions which appear in the NLO fits for Mmax

π >∼ 350 MeV.
However this picture is not fully borne out by the LECs associated with the quark-mass
dependence of M2

π . Indeed the jump in BRGI, observed in NLO fits in the region of pion-
mass cuts between 300 and 350 MeV, remains present for Mmax

π ∼ 400 to 450 MeV, despite
the addition of NNLO terms. Similar features are observed in the x-expansion, though the
addition of NNLO terms reduces the jump in F and ¯̀

4 less than it does in the ξ-expansion.
In view of this discussion, we conclude that the addition of NNLO terms appears to allow

a description of the mass dependence of Fπ up to a pion mass of around 500 MeV, which is
consistent with NLO fits in a smaller range of pion masses. This is more true for the expansion
in ξ than it is for the one in x. However, this apparent extension of the applicability range
does not carry over to the study of the chiral behavior of Bπ, suggesting that the NNLO
chiral expansion of this quantity begins to fail for Mmax

π in the region of 300 to 350 MeV,
for the accuracies reached here. Moreover, it is important to remember that Bπ and Fπ
share common LECs and lattice data, and are fitted together. Thus, there is limited sense in
suggesting that the range of applicability of χPT for these two quantities differs.

For completeness, in Fig. 8 we show results for the NNLO x-expansion LECs, kM and kF ,
as well as results for the NNLO ξ-expansion LECs, cM and cF , as functions of Mmax

π . At
NNLO these fits also allow the determination of the linear combination of the NLO LECs ¯̀

1

and ¯̀
2 given by ¯̀

12 that is defined after Eq. (4). This combination is also shown in Fig. 8 as a
function of Mmax

π . The uncertainties on all of these coefficients are large, since the precision
of our results is barely sufficient to determine these higher order contributions, at least for
Mmax
π ≤ 450 MeV. The coefficients kM and kF of the x-expansion show little dependence on

Mmax
π all he way up to 550 MeV. This is only the case up to 500 MeV for kM and kF of the

ξ-expansion. In both expansions, ¯̀
12 drop beyond Mmax

π = 500 MeV. However, it is worth
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noting that the x-expansion gives a value of ¯̀
12 which is consistent with the determination

of [12] discussed below in Sec. 4, for Mmax
π ≤ 500 MeV. The ξ-expansion yields values which

are larger.
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Figure 8: LECs which appear at NNLO in the SU(2) χPT expansions of Bπ and Fπ given
in Eqs. (2)–(7). The top figure shows the results obtained for kM and kF from NNLO fits in
the x-expansion to our lattice results with Mπ ∈ [120 MeV, Mmax

π ]. The results are plotted
as functions of Mmax

π . In the middle figure are plotted the NNLO LECs cM and cF , which
appear in the ξ-expansion. The NLO LEC combination ¯̀
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1 + 8¯̀
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the x and ξ-expansions of Bπ and Fπ at NNLO. The results that we obtain for this LEC in
each of the expansions are plotted in the bottom panel. The horizontal gray band denotes
our final result for ¯̀

12, obtained as described in Sec. 4. Error bars on each point are the
statistical and the quadratically combined statistical-plus-systematic uncertainties. For the
sake of clarity, results are shifted about the values of Mmax
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are obtained.
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Figure 9: Ratios of the NLO contributions to Bπ and Fπ with respect to the LO ones, as a
function of mud in the SU(2) chiral x-expansion (left panel) and of M2

π , in the ξ-expansion
(right panel). The values of the LECs used are those given in Table 3 for the respective
expansions.

3.4 Relative contributions of different orders in χPT and conclusions on
its range of applicability

As a final indication on the range of applicability of SU(2) χPT to Bπ and Fπ, we consider the
size of NLO and NNLO contributions relative to the LO ones, as functions of mud and M2

π .
We do so for two purposes. The first is to verify that the corrections obtained in the NLO
fits, which we perform for Mmax

π ≤ 400 MeV (i.e. (mRGI
ud )max ≤ 41.MeV), remain reasonable

over the mass range Mπ ∈ [120 MeV,Mmax
π ] (i.e. mRGI

ud ∈ [3.7 MeV, (mRGI
ud )max]). The second

reason for investigating the size of these corrections is to further assess the validity of our
NNLO fits which include points up to Mmax

π ' 500 MeV (i.e. (mRGI
ud )max ' 65 MeV).

In Fig. 9 we plot together the NLO corrections to Bπ and Fπ in the x-expansion with
those of 1/Bπ and Fπ in the ξ-expansion, for mRGI

ud ≤ 52.MeV, respectively Mπ ≤ 450 MeV.
As the plots show, the NLO corrections on Fπ remain less than about 10% for Mπ ≤ 200 MeV
(i.e. mRGI

ud ≤ 10.MeV), less than about 15% for Mπ ≤ 300 MeV (i.e. mRGI
ud ≤ 23.MeV)

and less than about 20% for Mπ ≤ 400 MeV (i.e. mRGI
ud ≤ 41.MeV). The NLO corrections

on Bπ are significantly smaller. They remain significantly less than 5% all the way up to
Mπ = 450 MeV (i.e. mRGI

ud ≤ 52.MeV). However they exhibit non-monotonic behavior, with
a turnover around Mπ ∼ 280 MeV (i.e. mRGI

ud ∼ 20.MeV). All of this is entirely consistent
with the picture, drawn earlier, that our results with errors on the order of a percent start
becoming sensitive to NNLO effects for Mπ ∼ 300 MeV and require their presence beyond
Mπ >∼ 400 MeV.

Now let us investigate the size of the NLO and NNLO corrections in our NNLO fits. For
this we consider the same typical NNLO fits that were shown in Fig. 3 for the x-expansion
and Fig. 4 for the ξ-expansion. We plot the relative size of the NLO and NNLO corrections
to Bπ and Fπ as a function of mRGI

ud in Fig. 10 for the x-expansion and in Fig. 11 as a
function of M2

π for the ξ-expansion. Although the p-values of our NNLO fits remain good
up to Mπ ∼ 500 MeV (i.e. mRGI

ud ∼ 65.MeV), at that value of Mπ the NNLO corrections to
Fπ are a significant fraction of the NLO corrections, raising doubts as to the legitimacy of
neglecting NNNLO terms in these fits. This is more than confirmed by the corrections to Bπ
for which the NNLO corrections are already a significant fraction of the NLO corrections for
Mπ ∼ 300 MeV or mRGI

ud ∼ 23.MeV. Moreover, these NLO and NNLO corrections have here
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Figure 10: Typical ratios of the NLO and NNLO contributions to Bπ (left panel) and Fπ (right
panel) with respect to the LO ones, as a function of mud in the SU(2) chiral x-expansion.
The values of the LECs used are those obtained from the fit shown in Fig. 3.
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Figure 11: Typical ratios of the NLO and NNLO contributions to 1/Bπ (left panel) and Fπ
(right panel) with respect to the LO ones, as a function of M2

π in the SU(2) chiral ξ-expansion.
The values of the LECs used are those obtained from the fit shown in Fig. 4.

opposite signs, implying cancellations which may be affected by the inclusion of higher-order
terms at larger pion-mass values.

It is worth noting that the expansion appears better behaved for Fπ than for Bπ, since the
hierarchy of corrections for the former remains acceptable up to Mπ ∼ 450 MeV or mRGI

ud ∼
52.MeV. The situation is quite different with the chiral expansion of Bπ. Unlike Fπ, Bπ has
very little mass dependence. Thus, the role of the NLO and NNLO analytic terms in the
expansion of Bπ is to cancel as much as possible the mass dependence brought by the non-
analytic terms. When this is done correctly in an NLO fit, adding an NNLO term destabilizes
the balance between analytic and non-analytic terms, therefore requiring a retuning of the
LECs.

Putting together all of the information discussed up until now, we draw the following
conclusions as to the range of applicability of SU(2) χPT for Nf = 2 + 1 QCD. Note that
conclusions may differ when considering applications to Nf = 2 QCD, since the latter is
missing the relatively light degrees of freedom associated with the strange quark. As indicated
in Table 2, our results for Fπ have statistical uncertainties typically in the range of 0.5% to
2.2%, with a median error over our simulations of 1.2% and a standard deviation of 0.5%.
Those for Bπ are in the range of 0.3% to 3.3%, with a median and a standard error 0.8% and
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0.7%. Similarly, the statistical uncertainties on mud and M2
π are in the ranges of 0.2% and

1.9% and of 0.4% and 3.2%, with medians and standard errors of (0.4%, 0.4%) and (0.9%,
0.7%), respectively. For such results, we find that NLO χPT begins showing signs of failure
for Mπ beyond 300 MeV and breaks down completely around 450 MeV for both expansions.
Adding NNLO terms allows one to describe consistently the mass dependence of Fπ in the ξ-
expansion, up to around 500 MeV, at the expense of NNLO corrections which are approaching
those of the NLO ones. This is only marginally true in the x-expansion, as F and ¯̀

4 begin
deviating from the values given by the NLO fits with Mmax

π ≤ 300 MeV in that expansion.
However in both expansions, the addition of NNLO terms in Bπ does not allow a description
of that quantity beyond 300-350 MeV that is consistent with the NLO description at the level
of around one standard deviation.
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x-expansion ξ-expansion

LO

BRGI [GeV] 1.93± 0.06± 0.02 1.93± 0.05± 0.02
F [MeV] 88.1± 1.3± 0.3 87.9± 1.4± 0.3

[ΣRGI]1/3 [MeV] 246.7± 3.5± 0.9 246.2± 3.6± 1.0

NLO
¯̀
3 2.38± 0.4± 0.3 2.7± 0.6± 0.4

¯̀
4 3.65± 0.32± 0.06 4.03± 0.43± 0.07

Other quantities

Fπ [MeV] 92.9± 0.9± 0.2 92.9± 0.9± 0.2
Fπ/F 1.054± 0.006± 0.002 1.058± 0.007± 0.002

Table 3: Results for LO and NLO LECs obtained from NLO, SU(2) χPT fits in the x and
ξ-expansion. We also give results for Fπ and its ratio to F . The relevant χPT expressions
are fitted to our lattice results for Bπ and Fπ with pion masses in the range [120, 300] MeV.
In these results, the first error is statistical and the second is the systematic error in each
expansion, computed as described in the text.

4 Results for LECs and other physical quantities

Having explored the range in which one can describe the mass-dependence of the quantities
Bπ and Fπ in SU(2) χPT, we are now in a position to determine the corresponding LECs. We
observe a small but significant change of behavior if we include points with pion masses above
300 MeV, which suggests that the NLO χPT expansion is beginning to break down beyond
that point. Moreover, the inclusion NNLO terms does not seem to allow one to extend the
range of applicability of χPT beyond that point, in particular for Bπ. Thus, we will consider
only NLO fits to determine the LO and NLO LECs, as well as quantities such as Fπ or the
condensate. Moreover, we will not include results with Mmax

π > 300 MeV.
We begin by considering separately the results for the LECs and other physical quantities

of interest in the x and ξ-expansion. They are given in Table 3. As described in Sec. 2,
we consider all sources of systematic error. In particular, we consider 2 initial fit times
in the two-point functions to account for possible excited state contributions ((8,9,11,13) /
(9,11,13,15)), 2 mass cuts for the scale setting (380 / 480 MeV), 3 ways of performing the
RI/MOM renormalization for ZA and 6 for ZS and different mass cuts in chiral fits (250 /
300 MeV). This implies a total of 2 × 2 × 3 × 6 × 2 = 144 procedures for determining each
quantity. We then weigh the result of each procedure by its p-value. This yields a distribution
of results for each quantity. The distributions for the LO and NLO LECs are shown in Fig. 12
and Fig. 13, respectively. The central value for each quantity is chosen to be the mean of
the distributions. Its systematic uncertainty is obtained by computing the variance. Finally,
the statistical error is determined by repeating the construction of distributions for 2000
bootstrap samples, and considering the variance of their means around the central value.

In our approach, it is possible to decompose the systematic uncertainty into its various
components. This is done by constructing systematic error distributions as above, but instead
of considering a single distribution per observable, one constructs a separate distribution for
each analysis variation associated with a given source of systematic uncertainty. For instance,
for each quantity we have two distributions to estimate the uncertainty associated with the
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Figure 12: Systematic error distributions for the LO LECs. These are obtained by varying
the analysis procedure, as described in the text. The total distribution is delineated by the
solid black line. It is the sum of the distributions corresponding to the analyses performed
in the x and ξ-expansion. These are shown as a red dotted line and a blue dashed line,
respectively. Where only the x or ξ-expansion distributions contribute, they partially hide
the line corresponding to the total distribution. In the plots, the central, vertical, dotted line
is the mean of the total distribution, i.e. our final central value. The central, vertical green
band denotes the systematic error, the larger pink one, the statistical error and the largest
gray one, the sum in quadrature of these two errors.

choice of pion mass range, one for Mmax
π = 250 MeV and another for 300 MeV. We then

compute the mean of each of these distributions. The error associated with this source of
systematic uncertainty is obtained from the variance of these means.

As Table 3 shows, the uncertainties on our results are dominated by statistical errors. This
means that the numerical values of the contributions of each source of systematic uncertainty
are not particularly relevant here. Nevertheless, for completeness, we provide a rough hierar-
chy of these contributions here. The dominant source for F , Σ and Fπ is the pion-mass cut,
followed by ZS . The pion-mass cut also dominates the systematic error in ¯̀

3, but is followed
by the one associated with the choice of expansion (x versus ξ). The latter dominates in ¯̀

4.
Let us now turn to a discussion of the results themselves. In both expansions, we determine

the LO LECs with total uncertainties in the range of 1.5 to 2.9%. The pion decay constant
is obtained even more precisely, with a total uncertainty of less than 1% and the uncertainty
on Fπ/F is as small as 0.7%. Of course the NLO LECs are obtained with significantly less
precision: ¯̀

4 has a total uncertainty of approximately 10% while for ¯̀
3 it is around 25%.

The agreement of the results obtained from the x and ξ-expansions is striking. This
is an additional confirmation that NLO SU(2) χPT correctly describes M2

π and Fπ up to
Mπ ' 300 MeV. Indeed, the two expansions differ by higher order terms. This difference
also explains why the agreement is better for LO LECs and Fπ than it is for NLO LECs:
the smaller, less constrained NLO contributions are more affected by changes made at higher
orders.

Because of the consistency of the results in the two expansions, we combine them in
the first column of Table 4 to obtain our final results. This combination is performed in
a way which is entirely consistent with our determination of systematic errors. The two
expansions (x / ξ) are treated as an additional alternative in our determination of LECs and
other quantities. Thus, our final results are obtained from a total of 144× 2 = 288 different
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Figure 13: Systematic error distributions for the NLO LECs. The different components of
the graphs have the same meaning as in Fig. 12.

analyses for each quantity. The corresponding systematic error distributions for the LECs
are shown in Figs. 12–13, together with our final results for these quantities. It should be
noted, however, that in performing fine comparisons between lattice studies, one may wish to
compare them separately in each expansion.

The LO LECs and Fπ do not change visibly compared to those obtained from the individ-
ual expansions. The systematic uncertainties on the NLO LECs increase slightly as a result
of the variation induced by the use of the two expansions. For comparison, we give in the
second column of Table 4 the averages for these quantities obtained by FLAG [11] and/or the
PDG [46].

We now turn to a comparison of our results with those of other collaborations who have
performed Nf ≥ 2 + 1 studies [2,6,7,13–20]. Note that amongst those, the only study which
includes simulations all the way down to the physical value of the pion mass is the staggered
fermion one in [6]. That study computes the LO quantities 2Bmph

ud and Fπ/F , and the NLO
LECs ¯̀

3 and ¯̀
4. Thus, in addition to the physical value of Mπ, it requires Fπ to determine

the LO LEC F and the renormalized quark mass, mph
ud, to determine the other LO LEC, B,

or alternatively the quark condensate. It takes the former from [46] and the latter from [4,5],
which make use of the same Wilson quark simulations as employed in the present paper, and is
thus not fully de-correlated from the results presented here. Moreover, the use of outside input
for Fπ and mph

ud forbids predicting these two quantities and thus making valuable crosschecks
of the calculation. It may also be noted that the smallest lattice spacing in that work is
0.1 fm.

We find agreement with [6] on the LO LECs F and B. MILC [17] obtains a condensate
which is more than one standard deviations larger than ours while RBC/UKQCD [7] find
a value which is more than two standard deviations smaller than ours. As for F , it is not
studied by RBC/UKQCD, but agreement with MILC [17] is excellent, while ETM [19], in an
Nf = 2+1+1 computation, find a value which is more than 1.5 combined standard deviations
smaller than ours. Regarding Fπ/F , which measures the chiral corrections to Fπ at Mph

π , our
result is in good agreement with that of Borsanyi et al. [6], NPLQCD [18] and MILC [17].
However, ETM’s Nf = 2 + 1 + 1 result [19] is almost 2.5 standard deviations way from ours.

It is interesting to note that the deviations from ETM’s [19] results gradually decrease
as we increase Mmax

π above 300 MeV. This is clearly visible in the right panel of Fig. 6
which shows that F decreases by more than one standard deviation when lattice results with
Mπ >∼ 350 MeV are included. Though we have not shown the Mmax

π dependence of Fπ/F , it
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Combined FLAG & PDG

LO

BRGI [GeV] 1.93± 0.06± 0.02

BMS(2 GeV) [GeV] 2.58± 0.07± 0.02
F [MeV] 88.0± 1.3± 0.3 86.4± 0.7 [11,46]

[ΣRGI]1/3 [MeV] 246.5± 3.5± 0.9 244± 16

[ΣMS(2 GeV)]1/3 [MeV] 271± 4± 1 269± 18 [11]

NLO
¯̀
3 2.5± 0.5± 0.4 3.2± 0.8 [11]

¯̀
4 3.8± 0.4± 0.2 4.4± 0.2 [12]

Other quantities

Fπ [MeV] 92.9± 0.9± 0.2 92.21± 0.02± 0.14 [46]
Fπ/F 1.055± 0.007± 0.002 1.073± 0.015 [12]

Table 4: Our final results for LO and NLO LECs, as well as for Fπ and its ratio to F .
They are obtained by combining the results leading to those given for the individual x and
ξ-expansion, as described in the text. In these results, the first error is statistical and the
second is systematic. The computation of these errors is described in the text. The conversion
of RGI numbers to those in the MS scheme at 2 GeV is performed using the results of [5].
For comparison, we give in the second column the estimates of the FLAG review [11] for the
LECs and Fπ/F , and of the PDG [46] for Fπ. Note that an update of the FLAG review is
planned, of which a preliminary version can be found at [47].

undergoes a very similar increase, instead of decrease. This suggests that the discrepancy that
we observe with ETM [19] on F and Fπ/F may be due to the fact that ETM’s lightest pion is
270 MeV and that they include points up to 510 MeV in their NLO fits. This observation is
further corroborated by the discussion in Sec. 5.2, where we investigate the effect of removing
lattice data at the low-Mπ end.

For completeness we note that B undergoes a more than one standard deviation increase
when lattice results with Mπ >∼ 350 MeV are included. The net effect is that Σ remains
essentially stable as Mmax

π is increased.
We now discuss NLO LECs. Our results for ¯̀

3 and ¯̀
4 are systematically smaller than

those obtained in other recent Nf ≥ 2 + 1 computations [2,6,7,13–20], the effect being more
pronounced in the x-expansion which is the one used in other studies. Though the discrepancy
is generally marginal, it is marked with the Nf = 2 + 1 + 1 ETM results [19]. Their results
for ¯̀

3 and ¯̀
4 are almost two combined standard deviations above ours. As Fig. 7 shows, these

larger values are compatible with those which we obtain including points with Mπ >∼ 350 MeV.
Thus, the possible explanation for the discrepancy with ETM’s LO LECs also applies for NLO
LECs. The only other results obtained with simulations down to the physical pion mass [6]
are also larger than ours, though the difference here is within a standard deviation.

We conclude this section with a discussion of NNLO LECs. The results presented here
should be taken with a grain of salt. The first reason is that we are only sensitive to them if
we include points with Mπ ≥ 400 MeV. While NNLO χPT for Fπ may be applicable for such
masses, this is not the case for Bπ. Moreover, the statistical uncertainties on these results
are very large. Nevertheless, because very little is known about these LECs, we believe that
the information brought by our analysis is useful. We obtain these estimates very much in
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the same way as we determine the LO and NLO LECs. The only difference is that instead
of considering Mmax

π = 250 and 300 MeV, we estimate systematic errors associated with the
neglect of higher-order terms using Mmax

π = 400, 450 and 500 MeV. Note that for these
ranges, the p-values of the NNLO fits are good, as shown in Fig. 5.

The results that we obtain are, for the x-expansion, kM = −2.4 ± 5.3 ± 2.8 and kF =
4.4 ± 4.3 ± 2.1, and cM = 37. ± 12. ± 13. and cF = 20. ± 15. ± 17. for the ξ-expansion. The
only other lattice study in which kM and kF are considered is [6]. As already noted this study
uses the physical value of Fπ as input. Moreover, the NNLO fits are constrained with a prior
on ¯̀

12, and in some cases on kM and kF . Considering only the fits in which kM and kF are
not constrained, they find kM ∼ 2 and kF ∼ 1.

As already mentioned, our NNLO fits are sensitive to the combination of NLO LECs,
¯̀
12 = (7¯̀

1 + 8¯̀
2)/15. We determine it in the same way as the NNLO LECs, finding ¯̀

12 =
3.0 ± 1.1 ± 0.9 and 5.5 ± 1.3 ± 0.9 in the x and ξ-expansion, respectively. The ξ-expansion
leads to a larger value of that LEC, the discrepancy probably indicating a sensitivity to the
treatment of higher-order terms. Since we have no reason to favor the result of one expansion
over that from the other, we include the results from both in our final estimate of ¯̀

12. In this
way, we find ¯̀

12 = 3.9 ± 1.1 ± 1.5. For comparison we can use the LECs ¯̀
1 and ¯̀

2 obtained
from the fitting of NLO expansions of ππ scattering amplitudes to experimental data [12].
Combining the results for ¯̀

1 and ¯̀
2 from [12], one obtains ¯̀

12 = 2.1 ± 0.3. It should be
noted that the results in [12] only include uncertainties coming from the phenomenological
input and not possibly-significant uncertainties coming from neglected higher-order terms in
the relevant chiral expansion. Though our determination from NNLO fits have much larger
errors, it is compatible with the value from ππ scattering.

We have also performed NNLO fits imposing a Gaussian constraint on ¯̀
12. Instead of

taking ¯̀
12 = 2.1±0.3 as done in [6], we more than triple the error and consider ¯̀

12 = 2.1±1.0.
The fits still have good p-values. However, even such a loose prior has a significant impact
on the LECs present at NNLO. Instead of the values given above, with this prior we find
kM = −0.1± 1.3± 0.9, kF = 3.0± 1.8± 0.4 and ¯̀

12 = 2.15± 0.05± 0.11 for the x-expansion,
and cM = 3.±4.±3., cF = 14.±9.±4. ¯̀

12 = 2.15±0.03±0.03 for the ξ-expansion. Perhaps more
surprisingly, this prior also affects the NLO LECs extracted from NNLO fits. Determining
these LECs from the three pion-mass intervals with Mmax

π = 400, 450 and 500 MeV leads to
(¯̀

3, ¯̀
4) = (2.8±0.4±0.3, 3.83±0.28±0.05) for the x-expansion and (¯̀

3, ¯̀
4) = (2.5±0.6±0.4,

3.3 ± 0.5 ± 0.2) in the ξ-expansion with the prior. This is to be compared with (¯̀
3, ¯̀

4) =
(3.9±1.3±1.2, 4.2±0.5±0.4) for the x-expansion and (¯̀

3, ¯̀
4) = (5.1±1.2±0.8, 4.1±0.5±0.3)

in the ξ-expansion obtained without prior. Not surprisingly, the difference observed in the
ξ-expansion also carries over to Fπ/F which is significantly lower with the constraint. More
generally, while the x-expansion results with and without prior are consistent within errors,
those in the ξ-expansion are not. This is due to the fact that, without a Gaussian constraint,
our NNLO, ξ-expansion fits favor a larger value of ¯̀

12. Needless to say that a more stringent
constraint on ¯̀

12 or forcing the NNLO LECs to vanish within a few units will have an even
larger impact. Thus, while we cannot exclude the use of priors based solely on the absolute
quality of the fits which include them, we take the differences that we observe when they are
added as a warning. The use of even loose priors may induce one to believe that data has
more resolution power than it actually has and may bias the results obtained.
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Figure 14: Comparison of the p-values obtained in fits of NLO SU(2) expansion, including
and omitting the chiral logarithms. These fully correlated fits to our lattice results for Bπ
and Fπ include points whose pion mass is in the range [120 MeV, Mmax

π ]. Results are shown
for the x and ξ-expansion. In the top panel the individual p-values are shown. Those of fits
including the logarithms are the same as the ones given in Fig. 5. In the lower panel it is the
difference of the p-value obtained omitting logarithms minus the χPT one, normalized by the
latter. Error bars on each point are the systematic uncertainties discussed in Sec. 3.2. For
the sake of clarity, results are shifted about the values of Mmax

π = 250, · · · MeV, at which they
are obtained.

5 On the presence of chiral logarithms and the possible misuse
of χPT

5.1 On the presence of NLO chiral logarithms

Having studied the range of applicability of the NLO expansions, we now explore the extent
to which chiral logarithms are required to describe our results. We do so by fitting, to our
results for Bπ and Fπ, the NLO expressions in Eq. (14) and Eq. (15), with the logarithms
omitted. As in our study of the range of applicability of SU(2) χPT, we include in these fully
correlated fits all points with mud ≤ mmax

ud or Mπ ≤ Mmax
π , and study the behavior of the

p-value as the cut is increased. We also monitor the value of Fπ at Mph
π .

In Fig. 14 we compare these p-values of NLO fits without logarithms to those of the NLO
χPT fits performed in Sec. 3, both in the x and ξ-expansion. The p-values obtained when
logarithms are omitted are consistently lower than for the χPT fits, though they remain
acceptable for Mmax

π ≤ 350 MeV. Beyond that point they become very bad. To determine
the significance of the preference for the presence of logarithms, we compute the difference of
the p-values obtained omitting the chiral logarithms to those including them, normalized by
the latter. These are shown in the lower panel of Fig. 14. As the figure shows, in the range
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Figure 15: Fπ as a function ofMmax
π , obtained from NLO fits with and without and logarithms,

in the x and ξ-expansion (upper panel). In the lower panel it is the difference (no log. minus
log.) of these highly correlated results that are shown. Error bars on each point are the
statistical and the quadratically combined statistical-plus-systematic uncertainties. For the
sake of clarity, results are shifted about the values of Mmax

π = 250, · · · MeV, at which they
are obtained.

of applicability of NLO χPT, i.e. Mmax
π ≤ 300 MeV, the presence of logarithms is favored by

about five to eight standard deviations in the p-value in both expansions.
Fig. 15 shows the Mmax

π dependence of the value of Fπ at physical Mπ, obtained in fits with
and without logarithms. Both fits give very similar results in the range of applicability of NLO
χPT, where Mmax

π ≤ 300 MeV. Thus, at our level of accuracy, a simple linear interpolation
would allow us to obtain Fπ. However, the bottom panel of Fig. 15 shows that this will no
longer be true when the total uncertainty on Fπ reaches a few tenths of an MeV.

To conclude this discussion, our lattice results clearly favor the presence of logarithms
in the range of applicability of NLO SU(2) χPT, though the values of Fπ obtained without
them are compatible with those obtained in χPT at the present level of accuracy.

5.2 On the possible misuse of χPT

In this section we examine the role of lattice results near the physical value of Mπ, for the
determination of LECs. For this purpose we fix the maximum value ofMπ toMmax

π = 450 MeV
and study the dependence of the p-value and of the LECs as a function of the lower bound,
Mmin
π , that we place on the lattice results included in the fit. We consider fully correlated

NLO, SU(2) χPT fits, both in the x and ξ-expansion. We compare the results obtained
to those given by NLO fits in our canonical range, Mπ ∈ [120, 300] MeV. We perform the
comparison by subtracting these canonical results for the LECs from the new ones, under
our systematic and bootstrap error loops. Thus we obtain fully controlled statistical and
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Figure 16: p-value as a function of Mmin
π . The p-values are obtained by performing fully

correlated NLO, SU(2) χPT fits to lattice results for Bπ and Fπ with pion masses in the range
[Mmin

π , 450 MeV]. Both the x and ξ-expansion are considered. The points with Mmin
π = 120,

· · · MeV are the same as those with Mmax
π = 450, · · · MeV in Fig. 5. The horizontal bands

have the same meaning as in Fig. 5. Error bars on each point are the systematic uncertainties
discussed in Sec. 3.2. For the sake of clarity, results are shifted about the values ofMmin

π = 120,
· · · MeV, at which they are obtained.

systematic errors on these differences.
In Fig. 16 we plot the p-value of these NLO fits as a function of Mmin

π with full system-
atic errors. We find acceptable values for Mmin

π ≥ 200 MeV, which may give the erroneous
impression that NLO, SU(2) χPT is applicable in the range Mπ ∈ [200, 450] MeV. However,
as we showed in Sec. 3.2, NLO χPT is not applicable up to 450 MeV.

To give an idea of how one might be misled in the determination of LECs and physical
quantities, in Fig. 17 we plot the LO LECs and Fπ as a function of Mmin

π for Mmin
π ∈ [150,

300] MeV, for both the x and ξ-expansion. As in Figs. 6–7, we also plot, in the lower panel,
the difference of these quantities with the corresponding results obtained in our canonical
range Mπ ∈ [120, 300] MeV. While B remains close to its physical value, F and Fπ drop
significantly below their correct values, by as much as 7%. The net result on the condensate,
Σ, is even larger since Σ = F 2B.

Fig. 18 displays the same study, but for NLO LECs. While the value of ¯̀
3 remains

compatible with its physical value, ¯̀
4 increases steadily as Mmin

π is increased, especially in
the ξ-expansion. These are the NLO expression of the observations made at LO. In particular,
the larger values of ¯̀

4, or equivalently of the scale Λ4, indicate that as lattice results at lower
Mπ are removed, the downward trend of the chiral logarithm in Fπ, as the chiral limit is
approached, is allowed to begin at larger values of Mπ. The end result is lower values of F
and Fπ for larger Mmin

π . These results fully corroborate the observations that we made, in
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Sec. 4, about the values of LECs obtained by groups whose simulations do not reach down to
small Mπ < 200 MeV.

To summarize, if NLO SU(2) χPT is applied to results for Bπ and Fπ up to Mmax
π =

450 MeV, one obtains a good description if one does not have results very close to the physical
point, i.e. with Mπ < 200 MeV. Thus, one may be led to believe that one is in the range
of applicability of NLO χPT. However, as we show, the description of Fπ, in particular, is
significantly different from that obtained around the physical point, with values of F and Fπ
which are too small and of ¯̀

4 which are too large. Said differently, results for Fπ close to the
physical point show less downward curvature than results at larger values of Mπ suggest.
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Figure 17: LO LECs as a function of Mmin
π (upper panel of each plot). The LECs are obtained

from the fits described in Fig. 16. The horizontal gray band denotes our final result for the
corresponding LEC, given in Table 4, and obtained as described in Sec. 4. In the lower panel
corresponding to each LEC, it is the difference of this LEC with the one obtained from fits
in our canonical range, Mπ ∈ [120, 300] MeV. Error bars on each point are the statistical and
the quadratically combined statistical-plus-systematic uncertainties. For the sake of clarity,
results are shifted about the values of Mmin

π = 150, · · · MeV, at which they are obtained.
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6 Conclusion

We have performed a detailed, fully-correlated study of the chiral behavior of the pion mass
and decay constant, based on 2+1 flavor lattice QCD simulations. These calculations are
implemented using tree-level, O(a)-improved Wilson fermions all the way down to Mπ '
120 MeV. This coverage of the low-mass region allows to probe deeply into the chiral regime.
Quark masses and decay constants undergo fully-controlled nonperturbative renormalization.
Moreover, our fine lattice spacings down to 0.054 fm and large volumes up to 6 fm enable
us to accurately perform the relevant continuum and infinite-volume extrapolations. We set
the scale of our calculations with the Ω baryon mass, which is independent of the quantities
of interest here. This allows us to make valuable tests of our calculation. The first is an ab
initio computation of Fπ, whose result agrees well with experiment [46] within our 1% error
bar. The second is a determination of mud that is fully compatible with the FLAG value [11].
In fact, it is nearly identical to the result of [4,5], which is not surprising as our treatment of
quark masses is carried over from that work.

We begin the study presented in this paper with a systematic investigation of the range
of applicability of SU(2) χPT. We consider two expansions. The first, which is that used in
previous Nf ≥ 2 + 1 studies [2, 6, 7, 13–20], is in quark mass (x-expansion). The second is in
squared pion mass (ξ-expansion) and has not, as far as we know, been investigated before.
The study of the later has led us to find constraints on the NLO LEC ¯̀

4 in terms of the LO
LEC F and bounds on the NNLO LEC cF in terms of the F and the NLO LECs ¯̀

4 and ¯̀
12

defined in and around Eq. (5). These bounds are derived and discussed in Appendix A.
To explore the range of applicability of SU(2) χPT we consider a number of criteria.

These include a study of the p-value of our combined, fully-correlated χPT fits, to M2
π and

Fπ, as a function of Mmax
π , where [120 MeV,Mmax

π ] is the range of the masses of the lattice
pions which we include in our fits. We also study the values of the LO, NLO and NNLO
LECs obtained in these fits, as a function of Mmax

π . We further investigate the relative size
of contributions of different orders in the χPT expansion for different pion masses. While
our study of NLO expansions is well controlled, we find that we do not really have enough
precision to make definite statements about NNLO.

Our systematic investigation leads to the following conclusions. We find that NLO χPT
for M2

π and Fπ begins showing signs of failure for Mπ beyond 300 MeV and breaks down
completely around 450 MeV for both expansions. Adding NNLO terms allows one to describe
consistently the mass dependence of Fπ in the ξ-expansion, up to around 500 MeV, at the
expense of NNLO corrections which are approaching those of the NLO ones. This is only
marginally true in the x-expansion, as F and ¯̀

4 begin deviating from the values given by
the NLO fits with Mmax

π ≤ 300 MeV in that expansion. However in both expansions, the
addition of NNLO terms in Bπ does not allow a description of that quantity beyond 300-
350 MeV that is consistent with the NLO description at the level of around one standard
deviation. This behavior is consistent with the fact that these are asymptotic expansions.
Since conclusions about applicability of SU(2) χPT depends not only on the range of pion
masses, but also on the precision of the results to which it is applied, it is important that the
latter be specified. This is discussed in detail in Sec. 3.4. Here we only remind the reader that
the typical precision of our lattice results is around 1%. Note also that conclusions may differ
when considering applications of SU(2) χPT to Nf = 2 QCD, since the latter is missing the
relatively light degrees of freedom associated with the strange quark.

Having established the range of applicability of SU(2) χPT, which is very similar for both
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expansions, we use lattice results in that range to determine the theories’ LECs. In particular,
we use our combined, fully-correlated NLO χPT fits to lattice results for M2

π and Fπ with
Mmax
π ≤ 300 MeV, to compute F , B, ¯̀

3 and ¯̀
4, as well as the quark condensate and Fπ,

with fully controlled uncertainties. Our final results are summarized in Table 4 and those for
the individual x and ξ-expansions in Table 3. A detailed comparison with the Nf ≥ 2 + 1
studies of [2, 6, 7, 13–20] is given in Sec. 4. Here we note that while our results for ¯̀

3 and
¯̀
4 are consistent with those obtained from lattice Nf ≥ 2 + 1 simulations with pion masses

below 200 MeV [6, 7, 17], they are systematically smaller, particularly those obtained in the
x-expansion, which is used by all other collaborations. It is also interesting to note that our
result for the quark condensate has an uncertainty which is almost 5 times smaller than the
latest FLAG compilation of [11].

We investigate the application of NNLO SU(2) χPT to our lattice results. There we find
that we have to include results with Mπ at least up to 400 MeV to have enough information to
stabilize these fits without imposing arbitrary priors. Unfortunately, our studies suggest that,
at such masses, we are already reaching beyond the range of applicability of NNLO SU(2)
χPT. Nevertheless, since little is known about NNLO LECs, we still attempt to determine
them, with results given at the end of Sec. 4. As noted there, these results should be taken
with a grain of salt and are only meant as indicative.

In Sec. 5 we explore the presence of NLO chiral logarithms in our lattice results. We show
that this presence is significantly favored in the region of applicability of NLO SU(2) χPT.
While the inclusion of logarithms does not make a significant difference on the value of Fπ
obtained at the present level of accuracy, we find that it will when the total uncertainty on
Fπ reaches a few tenths of an MeV.

In this same section, we examine the role of lattice results near the physical value of Mπ,
in particular for the determination of LECs. We find that one obtains perfectly good NLO
fits of lattice results for M2

π and Fπ in the range [Mmin
π , 450 MeV] with Mmin

π ≥ 200 MeV. This
might lead one to believe that NLO SU(2) χPT is applicable in this range. However, our
systematic study of the range of applicability of this theory already showed that the theory
failed for Mπ >∼ 450 MeV. Moreover, while the value of B and ¯̀

3 are not strongly affected by
considering higher pion mass ranges, this is not true of F , ¯̀

4, the pion decay constant and
the quark condensate.
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Appendix A Solution for Fπ in the ξ-expansion and ensuing
constraints

As mentioned in Sec. 3.1, the expressions for Fπ in the ξ-expansion are obtained by solving the
second equation in (7) for Fπ. At NLO this equation is quadratic and, at NNLO, it is quartic.
Therefore, it has either up to 2 or 4 solutions and there is no guarantee that any of them are
physical. In this section we investigate the conditions under which a physical solution exists.
At fixed order in χPT, we find that these conditions impose non-trivial constraints on the
LECs. Of course, if higher orders are allowed, these constraints eventually disappear.

The second equation in (7) can be rewritten as

f(r) ≡ r4 − r3 − Cr2 −D = 0 , (17)

with

C = X ln

(
Λ4

Mπ

)2

, D =
X2

4


[
ln

(
ΩF

Mπ

)2
]2

− 4cF

 , (18)

and

r =
Fπ
F
, X =

(
Mπ

4πF

)2

. (19)

At NLO, D = 0 and, since Fπ = 0 is not physical, Eq. (17) reduces to the quadratic
equation

r2 − r − C = 0 . (20)

This equation has real solutions iff C ≥ −1/4 or

¯̀
4 ≥ ln

(
Mπ

M̂π+

)2

−
(

2πF

Mπ

)2

. (21)

Since we want Fπ ≥ F/2, the physical solution is the larger of the two, i.e.

Fπ =
F

2

[
1 +
√

1 + 4C
]
. (22)

Note that Fπ is greater than F iff C > 0 or, equivalently for Mπ ≥ M̂π+ , ¯̀
4 is positive and

its contribution in (7) dominates over that of the chiral logarithm. Thus, the constraint in
Eq. (21) is weaker than requiring that Fπ > F . On the other hand, the validity of NLO χPT
would generically require that |C| � 1. From that perspective, the constraint of Eq. (21),
C ≥ −1/4 is a little more specific, since it tells us that a positive NLO correction in (7),
whose magnitude is more than 25%, is not allowed if one assumes that the NLO ξ-expansion
of Fπ is exact. Assuming that this is the case, as we do when we fit our lattice results to
this expression, Eq. (17) imposes a constraint on the NLO LEC, ¯̀

4, in terms of the LO LEC,
F , and of the pion mass at which the NLO ξ-expression is applied. Note that the RHS of
Eq. (21) is a monotonically increasing function of Mπ, indicating that the constraint on ¯̀

4

becomes more and more stringent as one tries to apply NLO ξ-expressions to more and more
massive pions. In particular, if we assume that the expansion must hold up to a value of
Mπ = Mmax

π , the lower bound on ¯̀
4 that must be enforced is the value of the RHS at Mmax

π .
We impose this lower bound dynamically in the NLO, ξ-expansion fits which are described in
Sec. 3.1.
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Figure 19: Illustration of the NLO and NNLO lower bounds on ¯̀
4 coming from the requirement

that there is a physical solution for Fπ assuming that the NLO or the NNLO ξ-expansion
expressions of (7) hold exactly. ¯̀

4 must lie above the given curve for each order in the
expansion. To plot these curves, we use our final result for F given in Table 4. The dashed
curves delimit the 1σ error band on each bound arising from the total uncertainty on F .

For illustration, in Fig. 19 we plot this bound and its uncertainty as a function of Mmax
π .

The curves correspond to our final result for F , given in Table 4. This bound is rather weak.
It requires that ¯̀

4 must be positive if one wants a physical solution above Mπ ∼ 400 MeV
at NLO in the ξ-expansion and larger than 4 only for Mmax

π >∼ 1.1 GeV. The latter indicates
that the NLO fit of our data that we perform for Mmax

π = 300 MeV cannot be extended up
to 1.1 GeV. While our study shows that there are many other important reasons for why
this is the case, it is still interesting that fixed-order ξ-expansions have a built-in maximum
pion-mass range.

At NNLO, Eq. (17) for Fπ is quartic and therefore has up to 4 solutions. Moreover, it
is easy to show that f(r) has 3 extrema, one of which is at r = 0. There are two other real
extrema iff

¯̀
4 ≥ ln

(
Mπ

M̂π+

)2

− 9

8

(
2πF

Mπ

)2

, (23)

which is slightly less constraining than Eq. (21). Thus, for any pion-mass range, the NNLO
ξ-expansion admits slightly smaller values of ¯̀

4 than does the NLO expansion. This is not
surprising as we know that bounds on the LECs must disappear in the limit of infinite order.
However, finding such a value would imply that the NLO expansion is only applicable in a
smaller mass range than the NNLO one. In turn, this would be a sign that χPT is having
trouble.

Now let us consider the possibility that r = 0 is the only real extremum, i.e. that
C < −9/32. Because of the signs of the terms in f(r), it must be a minimum. Since we
want a solution to Eq. (17) such that Fπ > F , we must have |D| > |C|. But for this to be
true, the NNLO term in the ξ-expansion must be larger than the NLO term. In that case the
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ξ-expansion has clearly broken down, which is not an option of interest here. Thus we assume
that (23) is satisfied, so that f(r) has 3 real extrema. It is then straightforward to convince
oneself that the absolute minimum of f(r) is at r+ = (3 +

√
9 + 32C)/8. Therefore, Eq. (17)

will have at least one real solution for Fπ iff f(r+) ≤ 0. This translates into a lower bound
on the NNLO LEC cF , in terms of the LO and NLO LECs, F , ¯̀

4 and ¯̀
12. This upper bound

is not necessarily a monotonic function of Mπ. Therefore, unlike the lower bound of Eq. (23)
on ¯̀

4, which need only be satisfied at Mmax
π for the ξ-expansion to hold, the minimum of the

bound on cF in the region Mπ ∈ [0,Mmax
π ] must be found and imposed as an upper bound

on cF . Thus,

cF ≤ min
Mπ∈[0,Mmax

π ]

1

4

[
ln

(
ΩF

M2
π

)2
]2

−
(

4πF

Mπ

)2

r2
+

[
r2

+ − r+ − C
] , (24)

with r+ given above. This bound is very sensitive to the values of the LECs, and is not very
enlightening when LO and NLO LECs, such as those given in Table 4 are used, assuming no
correlations between them. However, for a given fit, this bound may be quite constraining.
Thus, we impose this upper bound and the lower bound on ¯̀

4 given in Eq. (23) when fitting
lattice results to NNLO ξ-expansion expressions.

The fixed-order bounds on LECs discussed above are mainly of technical use here: they
are enforced to avoid that the fitting routine gets lost in exploring unphysical regions of
parameter space. However, for theories other than QCD which have SU(2) χPT as a low-
energy description, one could imagine being in a situation where these bounds suggest a
failure of the effective theory in a region of pion masses where it is not entirely clear what is
meant by the requirement that chiral corrections are “small”.

For completeness we also provide here the analytical expression for the physical Fπ solution
of the NNLO expression for F in Eq. (7). It is given by [48]:

Fπ = F

{
1

4
+ S +

1

2

√
−4S2 − 2p+

q

S

}
, (25)

with

p = −3

8
− C (26)

q =
1

8
+
C

2
, (27)

and

S =
1

2

√
−2

3
p+

1

3
(Q+

∆0

Q
) (28)

Q =

∆1 +
√

∆2
1 − 4∆3

0

2

 , (29)

where

∆0 = C2 − 12D (30)

∆1 = −2C3 − 27D − 72CD . (31)

46



References

[1] S. Durr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, et al., Ab initio determination
of light hadron masses, Science 322 (2008) 1224–1227. arXiv:0906.3599, doi:10.1126/
science.1163233.

[2] S. Aoki, et al., 2+1 Flavor Lattice QCD toward the Physical Point, Phys.Rev. D79 (2009)
034503. arXiv:0807.1661, doi:10.1103/PhysRevD.79.034503.

[3] S. Aoki, et al., Physical Point Simulation in 2+1 Flavor Lattice QCD, Phys.Rev. D81
(2010) 074503. arXiv:0911.2561, doi:10.1103/PhysRevD.81.074503.

[4] S. Durr, Z. Fodor, C. Hoelbling, S. Katz, S. Krieg, et al., Lattice QCD at the physical
point: light quark masses, Phys.Lett. B701 (2011) 265–268. arXiv:1011.2403, doi:

10.1016/j.physletb.2011.05.053.

[5] S. Durr, Z. Fodor, C. Hoelbling, S. Katz, S. Krieg, et al., Lattice QCD at the physical
point: simulation and analysis details, JHEP 1108 (2011) 148. arXiv:1011.2711, doi:
10.1007/JHEP08(2011)148.

[6] S. Borsanyi, S. Durr, Z. Fodor, S. Krieg, A. Schafer, et al., SU(2) chiral perturbation
theory low-energy constants from 2+1 flavor staggered lattice simulations, Phys.Rev.
D88 (2013) 014513. arXiv:1205.0788, doi:10.1103/PhysRevD.88.014513.

[7] R. Arthur, et al., Domain Wall QCD with Near-Physical Pions, Phys.Rev. D87 (2013)
094514. arXiv:1208.4412, doi:10.1103/PhysRevD.87.094514.

[8] A. Bazavov, et al., Lattice QCD ensembles with four flavors of highly improved staggered
quarks, Phys.Rev. D87 (2013) 054505. arXiv:1212.4768, doi:10.1103/PhysRevD.87.
054505.

[9] S. Weinberg, Phenomenological Lagrangians, Physica A96 (1979) 327.

[10] J. Gasser, H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158
(1984) 142. doi:10.1016/0003-4916(84)90242-2.

[11] G. Colangelo, S. Durr, A. Juttner, L. Lellouch, H. Leutwyler, et al., Review of lattice
results concerning low energy particle physics, Eur.Phys.J. C71 (2011) 1695. arXiv:

1011.4408, doi:10.1140/epjc/s10052-011-1695-1.

[12] G. Colangelo, J. Gasser, H. Leutwyler, pi pi scattering, Nucl.Phys. B603 (2001) 125–179.
arXiv:hep-ph/0103088, doi:10.1016/S0550-3213(01)00147-X.

[13] C. Allton, et al., Physical Results from 2+1 Flavor Domain Wall QCD and SU(2) Chiral
Perturbation Theory, Phys.Rev. D78 (2008) 114509. arXiv:0804.0473, doi:10.1103/
PhysRevD.78.114509.

[14] A. Bazavov, et al., MILC results for light pseudoscalars, PoS CD09 (2009) 007. arXiv:

0910.2966.

[15] Y. Aoki, et al., Continuum Limit Physics from 2+1 Flavor Domain Wall QCD, Phys.Rev.
D83 (2011) 074508. arXiv:1011.0892, doi:10.1103/PhysRevD.83.074508.

47

http://arxiv.org/abs/0906.3599
http://dx.doi.org/10.1126/science.1163233
http://dx.doi.org/10.1126/science.1163233
http://arxiv.org/abs/0807.1661
http://dx.doi.org/10.1103/PhysRevD.79.034503
http://arxiv.org/abs/0911.2561
http://dx.doi.org/10.1103/PhysRevD.81.074503
http://arxiv.org/abs/1011.2403
http://dx.doi.org/10.1016/j.physletb.2011.05.053
http://dx.doi.org/10.1016/j.physletb.2011.05.053
http://arxiv.org/abs/1011.2711
http://dx.doi.org/10.1007/JHEP08(2011)148
http://dx.doi.org/10.1007/JHEP08(2011)148
http://arxiv.org/abs/1205.0788
http://dx.doi.org/10.1103/PhysRevD.88.014513
http://arxiv.org/abs/1208.4412
http://dx.doi.org/10.1103/PhysRevD.87.094514
http://arxiv.org/abs/1212.4768
http://dx.doi.org/10.1103/PhysRevD.87.054505
http://dx.doi.org/10.1103/PhysRevD.87.054505
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://arxiv.org/abs/1011.4408
http://arxiv.org/abs/1011.4408
http://dx.doi.org/10.1140/epjc/s10052-011-1695-1
http://arxiv.org/abs/hep-ph/0103088
http://dx.doi.org/10.1016/S0550-3213(01)00147-X
http://arxiv.org/abs/0804.0473
http://dx.doi.org/10.1103/PhysRevD.78.114509
http://dx.doi.org/10.1103/PhysRevD.78.114509
http://arxiv.org/abs/0910.2966
http://arxiv.org/abs/0910.2966
http://arxiv.org/abs/1011.0892
http://dx.doi.org/10.1103/PhysRevD.83.074508


[16] A. Bazavov, et al., Results for light pseudoscalar mesons, PoS LATTICE2010 (2010) 074.
arXiv:1012.0868.

[17] A. Bazavov, C. Bernard, C. DeTar, X. Du, W. Freeman, et al., Staggered chiral pertur-
bation theory in the two-flavor case and SU(2) analysis of the MILC data, PoS LAT-
TICE2010 (2010) 083. arXiv:1011.1792.

[18] S. Beane, W. Detmold, P. Junnarkar, T. Luu, K. Orginos, et al., SU(2) Low-Energy
Constants from Mixed-Action Lattice QCD, Phys.Rev. D86 (2012) 094509. arXiv:1108.
1380, doi:10.1103/PhysRevD.86.094509.

[19] R. Baron, P. Boucaud, J. Carbonell, A. Deuzeman, V. Drach, et al., Light hadrons from
lattice QCD with light (u,d), strange and charm dynamical quarks, JHEP 1006 (2010)
111. arXiv:1004.5284, doi:10.1007/JHEP06(2010)111.

[20] R. Baron, et al., Light hadrons from Nf=2+1+1 dynamical twisted mass fermions, PoS
LATTICE2010 (2010) 123. arXiv:1101.0518.

[21] L. Del Debbio, L. Giusti, M. Luscher, R. Petronzio, N. Tantalo, QCD with light Wilson
quarks on fine lattices (I): First experiences and physics results, JHEP 0702 (2007) 056.
arXiv:hep-lat/0610059, doi:10.1088/1126-6708/2007/02/056.

[22] J. Noaki, et al., Convergence of the chiral expansion in two-flavor lattice QCD, Phys. Rev.
Lett. 101 (2008) 202004. arXiv:0806.0894, doi:10.1103/PhysRevLett.101.202004.

[23] R. Frezzotti, V. Lubicz, S. Simula, Electromagnetic form factor of the pion from twisted-
mass lattice QCD at Nf = 2, Phys. Rev. D79 (2009) 074506. arXiv:0812.4042, doi:
10.1103/PhysRevD.79.074506.

[24] S. Aoki, et al., Pion form factors from two-flavor lattice QCD with exact chiral symmetry,
Phys. Rev. D80 (2009) 034508. arXiv:0905.2465, doi:10.1103/PhysRevD.80.034508.

[25] R. Baron, et al., Light meson physics from maximally twisted mass lattice QCD, JHEP
08 (2010) 097. arXiv:0911.5061, doi:10.1007/JHEP08(2010)097.

[26] T.-W. Chiu, T.-H. Hsieh, Y.-Y. Mao, Pseudoscalar Meson in Two Flavors QCD with the
Optimal Domain-Wall Fermion, Phys.Lett. B717 (2012) 420–424. arXiv:1109.3675,
doi:10.1016/j.physletb.2012.09.067.

[27] F. Bernardoni, N. Garron, P. Hernandez, S. Necco, C. Pena, Light quark correlators in
a mixed-action setup, PoS LATTICE2011 (2011) 109. arXiv:1110.0922.

[28] R. Horsley, Y. Nakamura, A. Nobile, P. Rakow, G. Schierholz, et al., Nucleon axial charge
and pion decay constant from two-flavor lattice QCDarXiv:1302.2233.

[29] B. B. Brandt, A. Juttner, H. Wittig, The pion vector form factor from lattice QCD and
NNLO chiral perturbation theoryarXiv:1306.2916.

[30] P. Weisz, Continuum Limit Improved Lattice Action for Pure Yang-Mills Theory. 1.,
Nucl.Phys. B212 (1983) 1, erratum-ibid. B247 (1984) 544. doi:10.1016/0550-3213(83)
90595-3.

48

http://arxiv.org/abs/1012.0868
http://arxiv.org/abs/1011.1792
http://arxiv.org/abs/1108.1380
http://arxiv.org/abs/1108.1380
http://dx.doi.org/10.1103/PhysRevD.86.094509
http://arxiv.org/abs/1004.5284
http://dx.doi.org/10.1007/JHEP06(2010)111
http://arxiv.org/abs/1101.0518
http://arxiv.org/abs/hep-lat/0610059
http://dx.doi.org/10.1088/1126-6708/2007/02/056
http://arxiv.org/abs/0806.0894
http://dx.doi.org/10.1103/PhysRevLett.101.202004
http://arxiv.org/abs/0812.4042
http://dx.doi.org/10.1103/PhysRevD.79.074506
http://dx.doi.org/10.1103/PhysRevD.79.074506
http://arxiv.org/abs/0905.2465
http://dx.doi.org/10.1103/PhysRevD.80.034508
http://arxiv.org/abs/0911.5061
http://dx.doi.org/10.1007/JHEP08(2010)097
http://arxiv.org/abs/1109.3675
http://dx.doi.org/10.1016/j.physletb.2012.09.067
http://arxiv.org/abs/1110.0922
http://arxiv.org/abs/1302.2233
http://arxiv.org/abs/1306.2916
http://dx.doi.org/10.1016/0550-3213(83)90595-3
http://dx.doi.org/10.1016/0550-3213(83)90595-3


[31] P. Weisz, R. Wohlert, Continuum Limit Improved Lattice Action for Pure Yang-Mills
Theory. 2., Nucl.Phys. B236 (1984) 397. doi:10.1016/0550-3213(84)90543-1.

[32] M. Luscher, P. Weisz, On-Shell Improved Lattice Gauge Theories, Commun.Math.Phys.
97 (1985) 59. doi:10.1007/BF01206178.

[33] M. Luscher, P. Weisz, Computation of the Action for On-Shell Improved Lattice Gauge
Theories at Weak Coupling, Phys.Lett. B158 (1985) 250. doi:10.1016/0370-2693(85)
90966-9.

[34] B. Sheikholeslami, R. Wohlert, Improved Continuum Limit Lattice Action for QCD with
Wilson Fermions, Nucl.Phys. B259 (1985) 572. doi:10.1016/0550-3213(85)90002-1.

[35] A. Hasenfratz, F. Knechtli, Flavor symmetry and the static potential with hypercu-
bic blocking, Phys.Rev. D64 (2001) 034504. arXiv:hep-lat/0103029, doi:10.1103/

PhysRevD.64.034504.

[36] C. Morningstar, M. J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD,
Phys.Rev. D69 (2004) 054501. arXiv:hep-lat/0311018, doi:10.1103/PhysRevD.69.
054501.

[37] S. Capitani, S. Durr, C. Hoelbling, Rationale for UV-filtered clover fermions, JHEP 0611
(2006) 028. arXiv:hep-lat/0607006, doi:10.1088/1126-6708/2006/11/028.

[38] S. Durr, Z. Fodor, C. Hoelbling, S. Katz, S. Krieg, et al., Precision computation of the
kaon bag parameter, Phys.Lett. B705 (2011) 477–481. arXiv:1106.3230, doi:10.1016/
j.physletb.2011.10.043.

[39] G. Heatlie, G. Martinelli, C. Pittori, G. Rossi, C. T. Sachrajda, The improvement of
hadronic matrix elements in lattice QCD, Nucl.Phys. B352 (1991) 266–288. doi:10.

1016/0550-3213(91)90137-M.

[40] R. Arthur, P. Boyle, Step Scaling with off-shell renormalisation, Phys.Rev. D83 (2011)
114511. arXiv:1006.0422, doi:10.1103/PhysRevD.83.114511.

[41] G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa, A. Vladikas, A General method for
nonperturbative renormalization of lattice operators, Nucl.Phys. B445 (1995) 81–108.
arXiv:hep-lat/9411010, doi:10.1016/0550-3213(95)00126-D.

[42] K. Chetyrkin, A. Retey, Renormalization and running of quark mass and field in the
regularization invariant and MS-bar schemes at three loops and four loops, Nucl.Phys.
B583 (2000) 3–34. arXiv:hep-ph/9910332, doi:10.1016/S0550-3213(00)00331-X.

[43] J. Gasser, H. Leutwyler, Light Quarks at Low Temperatures, Phys.Lett. B184 (1987) 83.
doi:10.1016/0370-2693(87)90492-8.

[44] G. Colangelo, S. Durr, C. Haefeli, Finite volume effects for meson masses and decay
constants, Nucl.Phys. B721 (2005) 136–174. arXiv:hep-lat/0503014, doi:10.1016/j.
nuclphysb.2005.05.015.

[45] L. Lellouch, Kaon physics: A Lattice perspective, PoS LATTICE2008 (2009) 015. arXiv:
0902.4545.

49

http://dx.doi.org/10.1016/0550-3213(84)90543-1
http://dx.doi.org/10.1007/BF01206178
http://dx.doi.org/10.1016/0370-2693(85)90966-9
http://dx.doi.org/10.1016/0370-2693(85)90966-9
http://dx.doi.org/10.1016/0550-3213(85)90002-1
http://arxiv.org/abs/hep-lat/0103029
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://arxiv.org/abs/hep-lat/0311018
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://arxiv.org/abs/hep-lat/0607006
http://dx.doi.org/10.1088/1126-6708/2006/11/028
http://arxiv.org/abs/1106.3230
http://dx.doi.org/10.1016/j.physletb.2011.10.043
http://dx.doi.org/10.1016/j.physletb.2011.10.043
http://dx.doi.org/10.1016/0550-3213(91)90137-M
http://dx.doi.org/10.1016/0550-3213(91)90137-M
http://arxiv.org/abs/1006.0422
http://dx.doi.org/10.1103/PhysRevD.83.114511
http://arxiv.org/abs/hep-lat/9411010
http://dx.doi.org/10.1016/0550-3213(95)00126-D
http://arxiv.org/abs/hep-ph/9910332
http://dx.doi.org/10.1016/S0550-3213(00)00331-X
http://dx.doi.org/10.1016/0370-2693(87)90492-8
http://arxiv.org/abs/hep-lat/0503014
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.015
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.015
http://arxiv.org/abs/0902.4545
http://arxiv.org/abs/0902.4545


[46] J. Beringer, et al., Review of Particle Physics (RPP), Phys.Rev. D86 (2012) 010001.
doi:10.1103/PhysRevD.86.010001.

[47] G. Colangelo, et al., Review of lattice results concerning low energy particle physics,
[Online, 25 July 2013].
URL http://itpwiki.unibe.ch/flag/index.php/Review_of_lattice_results_

concerning_low_energy_particle_physics

[48] Wikipedia, Quartic function — Wikipedia, the free encyclopedia, [Online; accessed 24
July 2012, 12:39 UTC] (2012).
URL http://en.wikipedia.org/w/index.php?title=Quartic_function&oldid=

569041825

50

http://dx.doi.org/10.1103/PhysRevD.86.010001
http://itpwiki.unibe.ch/flag/index.php/Review_of_lattice_results_concerning_low_energy_particle_physics
http://itpwiki.unibe.ch/flag/index.php/Review_of_lattice_results_concerning_low_energy_particle_physics
http://itpwiki.unibe.ch/flag/index.php/Review_of_lattice_results_concerning_low_energy_particle_physics
http://en.wikipedia.org/w/index.php?title=Quartic_function&oldid=569041825
http://en.wikipedia.org/w/index.php?title=Quartic_function&oldid=569041825
http://en.wikipedia.org/w/index.php?title=Quartic_function&oldid=569041825

	1 Introduction
	2 Determination of lattice quantities and associated systematic errors
	2.1 Simulation details
	2.2 Strategy for determining masses and decay constants
	2.3 Excited state contributions
	2.4 Lattice spacing
	2.5 Renormalization
	2.6 Finite-volume corrections
	2.7 Illustrative bare results for the basic observables

	3 Exploring the range of applicability of SU(2) PT for M2 and F
	3.1 NLO and NNLO chiral fit strategy
	3.2 Fit quality and LECs in terms of maximum pion mass for NLO PT
	3.3 Fit quality and LECs in terms of maximum pion mass for NNLO PT
	3.4 Relative contributions of different orders in PT and conclusions on its range of applicability

	4 Results for LECs and other physical quantities
	5 On the presence of chiral logarithms and the possible misuse of PT
	5.1 On the presence of NLO chiral logarithms
	5.2 On the possible misuse of PT

	6 Conclusion
	Appendices
	Appendix A Solution for F in the -expansion and ensuing constraints

