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We present a QCD calculation of the u, d and s scalar quark contents of nucleons based on 47
lattice ensembles with Nf = 2 + 1 dynamical sea quarks, 5 lattice spacings down to 0.054 fm, lattice
sizes up to 6 fm and pion masses down to 120 MeV. Using the Feynman-Hellmann theorem, we
obtain fNud = 0.0405(40)(35) and fNs = 0.113(45)(40), which translates into σπN = 38(3)(3) MeV,
σsN = 105(41)(37) MeV and yN = 0.20(8)(8) for the sigma terms and the related ratio, where the
first errors are statistical and the second are systematic. Using isospin relations, we also compute
the individual up and down quark contents of the proton and neutron (results in the main text).

PACS numbers: 12.38.Gc,14.20.Dh

Introduction - The scalar quark contents of nucleons,
N , are important properties of these particles that are
conveniently parametrized by the dimensionless ratios 1

fNud = mud
〈N |ūu+ d̄d|N〉

2M2
N

≡ σπN
MN

,

fNq = mq
〈N |q̄q|N〉

2M2
N

≡ σqN
MN

,

(1)

where N can be either a proton, p, or a neutron, n, at
rest, the quark field q = u, d, or s andmud = (mu+md)/2
is the average u-d quark mass. Note that in the isospin
limit, mu = md, fnud = fpud and fns = fps and we
will generically call these quantities fNud and fNs , respec-
tively. Although they cannot directly be accessed in ex-
periment, they are scheme and scale-independent quan-
tities that allow to translate quark-level couplings into
effective, scalar couplings with a nucleon. They are re-
lated to a wide variety of observables such as pion and
kaon-nucleon scattering amplitudes, quark-mass ratios
or quark-mass contributions to nucleon masses. Their
knowledge is also very important for Dark Matter (DM)
searches, as they allow to convert DM-quark couplings
into spin-independent, DM-nucleon cross sections.

Early determinations of σπN [1–3] were obtained us-
ing π-N scattering data. They rely on a difficult ex-
trapolation of the amplitude to the unphysical Cheng-
Dashen point, where small SU(2) chiral perturbation
theory (χPT) corrections [4–9] can be applied to obtain

1 We use the relativistic normalization 〈N(~p ′)|N(~p)〉 =
2E~p (2π)3δ(3)(~p ′−~p). With unit normalization, the r.h.s. would
be multiplied by a factor 2MN .

σπN . The two results [2, 3] differ by nearly two standard
deviations and a factor of about 1.4, for reasons discussed
in [8, 9, 14]. σsN is then obtained from σπN using results
for ms/mud and SU(3) χPT [11–13]. Propagating the
two determinations of σπN leads to a factor of 3 differ-
ence in σsN at the 1.5 σ level, which gets squared in DM-
nucleon cross sections. This situation has prompted new
phenomenological and model studies (some using pub-
lished lattice results) [8, 14–20] as well as a number of
lattice calculations [21–32] (see Fig. 2). Recent critical
reviews of σπN can be found in [9, 10].

Here we report on an ab initio, lattice QCD calcula-
tion, via the Feynman-Hellmann (FH) theorem, of the
nucleon scalar quark contents, fNud and fNs , in the isospin

limit. We also compute the four quantities, f
p/n
u/d , to lead-

ing order in an expansion in δm = md −mu, assuming
mud ∼ δm, which is well satisfied in nature. All of our
results are accurate up to very small, subleading isospin-

breaking corrections. For f
p/n
u/d this represents a marked

improvement over the standard approach [33], which is
only accurate up to much larger SU(3)-flavor breaking
corrections.

Numerical setup - The dataset at the basis of this
study consists of 47 ensembles with tree-level-improved
Symanzik gauge action and Nf = 2 + 1 flavors of clover-
improved Wilson quarks, the latter featuring 2 levels of
HEX smearing [34]. The ensembles are made up of ap-
proximately 13000 configurations altogether and, on av-
erage, around 40 measurements for each correlator are
performed on each configuration. The ensembles are ob-
tained with 5 lattice spacings a (ranging from 0.054 fm to
0.116 fm), lattice sizes up to 6 fm and pion masses, Mπ,
down to 120 MeV. This setup allows for a consistent con-
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trol of systematic uncertainties when reaching the phys-

ical point (Φ), i.e. when interpolating to physical m
(Φ)
ud

and m
(Φ)
s and extrapolating to a→ 0 and V →∞.

Methodology - We use the FH theorem to compute the
quark contents via the derivative of the nucleon mass
with respect to the quark masses

fNud =
mud

MN

∂MN

∂mud

∣∣∣∣
Φ

, fNs =
ms

MN

∂MN

∂ms

∣∣∣∣
Φ

, (2)

thus avoiding a computation of the 3-point functions re-
quired for a direct calculation of the matrix elements.

To determine the individual u and d contents of the
proton and neutron, we start from the simple algebraic
identity (again, δm = md −mu)

fpu/d =

(
1

2
∓ δm

4mud

)
fpud

+

(
1

4
∓ mud

2δm

)
δm

2M2
p

〈p|d̄d− ūu|p〉 .
(3)

Note that the QCD Hamiltonian can be decomposed as

H = Hiso +Hδm , Hδm =
δm

2

∫
d3x (d̄d− ūu) , (4)

whereHiso denotes the full isospin symmetric component,
including the mud term. To leading order in δm, the shift
δMN to the mass of N = p or n, due to the perturbation
Hδm, is

δMN =
〈N |Hδm|N〉
〈N |N〉 =

δm

4MN
〈N |d̄d− ūu|N〉 . (5)

Moreover, in the isospin limit Mn = Mp and 〈n|d̄d −
ūu|n〉 = 〈p|ūu−d̄d|p〉, so that, up to higher-order isospin-
breaking corrections, the n-p mass difference is

∆QCDMN = 2δMp =
δm

2Mp
〈p|ūu− d̄d|p〉 . (6)

Using this relation, introducing the quark-mass ratio r =
mu/md and remembering that, in the isospin limit, fpud =
fNud, we obtain

fp/nu =

(
r

1 + r

)
fNud ±

1

2

(
r

1− r

)
∆QCDMN

MN
,

f
p/n
d =

(
1

1 + r

)
fNud ∓

1

2

(
1

1− r

)
∆QCDMN

MN
,

(7)

where the upper sign is for p and the lower one for n
and where MN = Mn = Mp is the nucleon mass in
the isospin limit. These equations hold up to very small
O(δm2,mudδm) corrections. Analogous expressions were
obtained independently in [35], using SU(2) χPT.

Extracting hadron and quark masses - Quark and
hadron masses are extracted as detailed in [34], with
the quark masses determined using the “ratio-difference
method”. In addition, to reliably eliminate excited state

effects in hadron correlators we have used a procedure
similar to that suggested in [36]. For each of our four
hadronic channels, we fit the corresponding correlator
C(t) to a single-state ansatz. We use the same minimal
start time for our fit interval, tmin, and the same max-
imum plateau length, ∆t, for all ensembles: tmin and
∆t are fixed in physical and lattice units respectively.
They are determined by requiring that the distribution
of fit qualities over our 47 ensembles be compatible with
a uniform distribution to better than 30%, as given by a
Kolmogorov-Smirnov (KS) test. An identical procedure
is followed to determine the axial Ward identity (AWI)
masses.
Computing physical observables - On each of our 47 en-

sembles, we extract Mπ, MK , MN and MΩ as well as the
light and strange quark masses, mud andms, as explained
in the last paragraph. We define M2

Kχ = M2
K −M2

π/2
and work in a massless scheme so the lattice spacings a
depend only on the coupling β. These lattice spacings,
together with all other quantities, are determined from a
global combined fit of the form

MnX
X = (1 + ga

X(a))
(
1 + gFV

X (Mπ, L)
)

(M
(Φ)
X )nX×(

1 + ca,udX (a)m̃ud + ca,sX (a)m̃s + h.o.t.
)
,

(8)

for MX = (aMX)/a(β), with X = N, Ω, π, Kχ, nX = 2
for X = π and 1 otherwise and where (aMX) is the
hadron mass in lattice units, as determined on a single
ensemble. The quark mass terms, renormalized in the
RGI scheme, are defined as

m̃q = mRGI
q −m(Φ)

q , mRGI
q =

(amq)

aZS
(
1 + ga

q (a)
) , (9)

with renormalization constants ZS from [34]. By h.o.t.
we denote higher-order terms in the mass Taylor expan-
sions, and ga

X(a) parametrizes the continuum extrapola-

tion of M
(Φ)
X , while gFV

X (Mπ, L) parametrizes its finite-
volume corrections, according to [40, 41]. The ca,qX (a),
q = ud, s, are equal to cqX(1 + ga,q

X (a)), where the ga,q
X (a)

parametrize the continuum extrapolation of the slope pa-
rameters cqX . We define the physical point via Mπ, MKχ

and MΩ. Thus, for those quantities, M
(Φ)
X are fixed to

134.8 MeV, 484.9 MeV [42] and 1672.45 MeV [43], respec-
tively. Moreover, the corresponding discretization terms,
ga
X(a), vanish by definition, leaving only ga

N (a).
Statistical and systematic uncertainties - To estimate

systematic errors, we follow the extended frequentist
method developed in [36, 44]. To account for remnant,
excited-state contributions in correlator and AWI mass
fits, in addition to the time range (tmin,∆t), obtained
through the KS test, we consider a more conservative
range with tmin increased by 0.1 fm, while keeping ∆t
fixed. Truncation errors in the mud Taylor expansion
are estimated by pruning the data with two cuts in pion
mass, at 320 MeV and 480 MeV. In addition, we consider
higher-order terms proportional to m̃2

ud (or also a χPT-

inspired [(mRGI
ud )3/2 − (m

(Φ)
ud )3/2] for MN ), m̃3

ud, m̃udm̃s
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FIG. 1. (Color online) Typical dependence of MN on mRGI
ud (left panel) and mRGI

s (right panel). The black open circle represents

our result for M
(Φ)
N in this particular fit, while the horizontal line corresponds to its experimental value. Dependencies of MN

on variables not shown in these plots have been eliminated using the function obtained in the fit.

and m̃2
udm̃s in (8). Systematic effects from terms of even

higher order, which our results are not accurate enough to
resolve, are estimated by replacing the Taylor expansions
that include higher-order terms with their inverse, in the
spirit of Padé approximants. Regarding cutoff effects,
our action formally has leading corrections of O(αsa),
which are often numerically suppressed by HEX smear-
ing, leaving a dominant O(a2) term [45]. We estimate
the uncertainty associated with the continuum extrapo-

lation of the leading M
(Φ)
N term in (8) by allowing ga

N (a)
to be proportional to either αsa or a2. Moreover, so as
not to over-fit the lattice results, we neglect corrections
whose coefficients are larger than 100% except for the

ones proportional to m̃2
ud (or [(mRGI

ud )3/2− (m
(Φ)
ud )3/2]) in

MN .
This procedure leads to 192 different analyses, each

one providing a result for the observables of interest.
Our final results are obtained by weighting these 192 val-
ues with Akaike’s Information Criterion (AIC), the AIC-
weighed mean and standard deviation corresponding to
the central value and systematic error of the given ob-
servable, respectively [36]. The statistical error is then
the bootstrap error of the AIC-weighted mean. The re-
sults were crosschecked by replacing the AIC weight with
either a uniform weight or a weight proportional to the
quality of each fit. In both cases we obtained consistent
values for all of our observables.

The results thus obtained account for uncertainties as-
sociated with the continuum extrapolation of the lead-

ing M
(Φ)
N term in (8), but not of the sub-leading fNud or

even smaller contribution, fNs . Indeed, the discretization
terms, ga,q

N (a), were set to zero in the above analyses.
To account for those uncertainties, we allow the terms
ga,q
N (a) to be proportional to αsa or a2. To stabilize

the corresponding fits, we fix M
(Φ)
N to its experimental

value. Even then, we find that within their statistical
errors, our results only support discretization corrections

in ca,udN (a). Including these, and performing the same
variation of 192 analyses as in the procedure described

above, we find that the central value of fNud increases by
0.0024 and fNs decreases by 0.038 compared to our stan-
dard analysis.2 We take this variation to be our estimate
of the uncertainty associated with the continuum extrap-
olation of the quark contents, add it in quadrature to the
systematic error obtained in our standard analysis and
propagate it throughout.
Results and discussion - The fit qualities in this study

are acceptable, with an average χ2/d.o.f. = 1.4. Since we
do not use the nucleon for scale setting, its physical value
constitutes a valuable crosscheck of our procedure. Of
course, here we only use the results of our standard anal-
ysis, in which this mass is a free parameter. We obtain
MN = 929(16)(7) MeV, which is in excellent agreement
with the isospin averaged physical value 938.9 MeV, as
obtained by averaging p and n masses from [43]. Typical
examples of the dependence of MN on mRGI

ud and mRGI
s

are shown in Fig. 1.
The final results for the isospin-symmetric, scalar

quark contents are

fNud = 0.0405(40)(35) , fNs = 0.113(45)(40) . (10)

Here the systematic error includes the continuum extrap-
olation uncertainty discussed in the preceding section. As
a further crosscheck, we have performed an additional,
full analysis where we replace, for each lattice spacing,
the renormalized quark masses in (8) by the ratio of the
lattice quark masses to their values at the physical mass

2 At first sight one may be surprised by the fact that adding dis-
cretization terms to fNud has a larger effect on fNs . However,
these terms are small corrections to the ud-mass dependence of
MN in the range of masses considered, but they are of similar
size to the s-mass dependence of MN and interfere with it. We
expect continuum extrapolation error on fNs to be much smaller
than the variation observed here and therefore consider this vari-
ation to be a conservative estimate of continuum extrapolation
uncertainties.
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FIG. 2. (Color online) Comparison of our results for fNud (left panel) and for fNs (right panel) with values from the literature.
Numbers are from [2] (GLS 91), [3] (Pavan 02), [14] (Alarcon et al 12), [15] (Shanahan et al 12), [16] (Alvarez et al 13), [20]
(Lutz et al 14), [19] (Ren et al 14), [8] (Hoferichter et al 15), [37] (JLQCD 08), [24] (Bali et al 11), [26] (BMWc 11), [25]
(QCDSF 11), [31] (Yang et al 15), [32] (ETM 16), [30] (χQCD 13), [17] (An et al 14), [18] (Alarcon et al 14), [22] (MILC 09),
[38] (JLQCD 10), [39] (Okhi et al 13), [29] (Junnarkar et al 13). For lattice based determinations “FH” denotes studies that
use the Feynman-Hellmann theorem while “ME” denotes direct computations of the matrix element.

point. In this analysis, the need for renormalization fac-
tors is obviated, because they cancel in the ratios. How-
ever, eight additional parameters are required: at each
of our five lattice spacings, two parameters are needed
to specify the values of the ud and s quark masses cor-
responding to the physical mass point, while only the

two parameters m
(Φ)
q , q = ud, s, of (8) are needed for

our standard analysis. Nevertheless, the results obtained
with this alternative approach are in excellent agreement
with the results from our main strategy.

It is straightforward to translate the results of Eq. (10)
into σ terms. We obtain σπN = 38(3)(3) MeV and
σsN = 105(41)(37) MeV. Another quantity of interest
in that context is the so-called strangeness content of
the nucleon, yN = 2〈N |s̄s|N〉/〈N |ūu + d̄d|N〉, that we
obtain with ms/mud determined self-consistently in our
calculation. Our result is yN = 0.20(8)(8).

Now, using (7), together with the result for fNud, the
strong isospin splitting of the nucleon mass, ∆QCDMN =
2.52(17)(24) MeV from [36], and the quark-mass ratio
r = 0.46(2)(2) from [42], we find

fpu = 0.0139(13)(12) , fpd = 0.0253(28)(24) ,

fnu = 0.0116(13)(11) , fnd = 0.0302(28)(25) .
(11)

Another interesting quantity is zN ≡ 〈p|ūu|p〉/〈p|d̄d|p〉 =
〈n|d̄d|n〉/〈n|ūu|n〉, where the last equality holds in the
isospin limit. We find it to be zN = 1.20(3)(3). This is
significantly smaller than the value of 2 that one would
obtain if the scalar densities ūu and d̄d were replaced by
the number density operators, ūγ0u and d̄γ0d.

We compare our results for fNud and fNs to phenomeno-
logical and lattice findings in Fig. 2. Our result for fNud
points to a rather low value, for instance compared to
the recent, precise, phenomenological determination of
[8]. Regarding fNs , our value is typically larger than
most other lattice results. Note that our error bars are
not smaller than those of all previous lattice based calcu-
lations. However, unlike previous calculations, ours are
performed directly at that physical mass point and do not
require uncertain extrapolations to physical mud, nor do
they make use of SU(3) χPT (e.g. in replacing ms by
M2
Kχ in the definition of fNs or in constraining the ms-

dependence of MN with the mud and ms dependence of
the baryon octet), whose systematic errors are difficult
to estimate. Given this full model-independence, our to-
tal 13% error on fNud is quite satisfactory. Unfortunately,
the overall uncertainty on fNs is still large, at 53%. The
reason for this lies in the small ms dependence of MN , as
shown in Fig. 1, which is a major drawback of the present
approach based on the FH theorem. To try to improve
on the precision, the whole analysis has also been carried

out by fixing M
(Φ)
N to its experimental value. However,

the impact on the central values and error bars is small
and therefore we do not retain this approach for our main
analysis. To our understanding, in the FH approach the
uncertainty on fNs can be narrowed only by reducing the
statistical error on the data and by increasing the lever
arm on ms.
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