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Abstract
The rare decays of a kaon into a pion and a charged lepton/antilepton pair proceed via a fla-

vor changing neutral current and therefore may only be induced beyond tree level in the Stan-

dard Model. This natural suppression makes these decays sensitive to the effects of potential new

physics. The CP -conserving K → π`+`− decay channels however are dominated by a single-photon

exchange; this involves a sizeable long-distance hadronic contribution which represents the current

major source of theoretical uncertainty. Here we outline our methodology for the computation of

the long-distance contributions to these rare decay amplitudes using lattice QCD and present the

numerical results of the first exploratory studies of these decays in which all but the disconnected

diagrams are evaluated. The domain wall fermion ensembles of the RBC and UKQCD Collabo-

rations are used, with a pion mass of Mπ ∼ 430 MeV and a kaon mass of MK ∼ 625 MeV. In

particular we determine the form factor, V (z), of the K+ → π+`+`− decay from the lattice at

small values of z = q2/M2
K , obtaining V (z) = 1.37(36), 0.68(39), 0.96(64) for the three values of

z = −0.5594(12), −1.0530(34), −1.4653(82) respectively.
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I. INTRODUCTION

The rare kaon decays K → π`+`− and K → πνν̄ are flavor changing neutral current

processes, which are naturally suppressed in the Standard Model as they first arise only

as second-order electroweak processes. This suppression makes them ideal probes for new

physics effects.

One significant difficulty in the theoretical understanding of second-order weak processes

is that there may be significant contributions when the two electroweak vertices are sepa-

rated by distances as large as 1/ΛQCD. These long-distance effects contain nonperturbative

contributions, hence a complete theoretical study of these processes can be achieved only by

utilizing nonperturbative methods such as lattice QCD. However K → πνν̄ decays are short-

distance dominated, as the absence of photon exchange diagrams suppresses the long-distance

contributions. These processes feature a quadratic (hard) GIM (Glashow-Iliopoulos-Maiani)

mechanism [1], such that the loop diagrams that mediate the decays depend quadratically on

the mass of the quark entering the loop. This plays a part in enhancing the short-distance

contribution involving heavy quarks. Furthermore for the direct CP -violating component of

the decay KL → π0νν̄, the amplitude is dependent upon the Cabibbo-Kobayashi-Maskawa

(CKM) matrix factor Im (λq) (where λq = V ∗sqVqd), which significantly suppresses the up and

charm contributions. As a result, this decay is entirely dominated by loops involving the top

quark.

The story for K → π`+`− processes is considerably different, as they may be mediated by

a single-photon exchange, whose amplitude is determined by nonperturbative, long-distance

physics. The CP -conserving processes KS → π0`+`− and K+ → π+`+`− are dominated

by the single-photon exchange amplitude, where the short-distance top quark contribution is

suppressed by the CKM factor Re (λt) and even a potentially large light-quark short-distance

contribution is cut off at the charm quark Compton wave length by a logarithmic GIM

cancellation. The Z-exchange and box-diagram amplitudes in these processes are suppressed

by a factor of 1/M2
Z , and are comparatively negligible. Although the short-distance top quark
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contribution is enhanced by a factor of m2
t (which compensates for the 1/M2

Z suppression),

the CKM factor Re (λt) nevertheless suppresses the top quark contribution. For the case of

KL → π0`+`− the long-distance contributions to the component that directly violates CP are

again suppressed by CKM matrix factors. There is also however a significant long-distance

contribution originating from indirect CP violation, and a CP -conserving contribution from

KL → π0γ∗γ∗ with γ∗γ∗ → `+`− rescattering.

Rare kaon decays have received much focus from experimentalists for many years. Tra-

ditionally the decay channels K → πνν̄ have been more of an interest owing to the short-

distance dominance, and hence theoretical control of the hadronic effects, described above.

The detection of such events has proven to be a significant experimental challenge. At present

there exist dedicated experiments at J-PARC (KOTO) [2] and CERN (NA62) [3] which pri-

marily aim to measure the KL → π0νν̄ and K+ → π+νν̄ branching ratios respectively to

within 10%. Although long-distance contributions are expected to account for a small per-

centage of the overall amplitude for K+ → π+νν̄ decays, a lattice QCD calculation may

play an important role in rigorously controlling the size of this theoretical uncertainty. The

prospects for such a lattice calculation have been discussed recently in [4].

On the other hand, branching ratios for K+ → π+`+`− processes are known to a

considerably higher degree of accuracy: Br (K± → π±e+e−) = 3.14(10) × 10−7 [5] and

Br (K± → π±µ+µ−) = 9.62(25)×10−8 [6]. It is likely that the NA62 experiment will also de-

termine these branching ratios to a higher precision. With higher statistics there is hope that

the experiment may be sensitive to lepton flavor universality violation in rare kaon decays [7].

KS → π0`+`− decays however are more challenging to measure, although their detection is

important for calculating the indirect CP -violating contribution to KL → π0`+`− decays via

the chain KL → K1 → π0`+`−, where K1 is the CP -even component of KL. The branching

ratios are currently only known with ∼ 50% errors: Br (KS → π0e+e−) =
(
5.8+2.9
−2.4

)
×10−9 [8]

and Br (KS → π0µ+µ−) =
(
2.9+1.5
−1.2

)
× 10−9 [9]. Given the difficulty of the experimental mea-

surement, there exists a good opportunity to extract this result instead from lattice QCD

simulations. In addition, such a lattice calculation will determine the phase of the indirect

CP -violating amplitude, which cannot be determined from an experimental measurement of

the KS → π0`+`− branching ratio.

On the lattice we aim to compute the dominant long-distance contribution to the matrix

4



element K → πγ∗ (i.e. the single-photon exchange channel). The plans for such a calculation

have been discussed in a recent paper [10], building on the work of [11]. Our primary focus

is the K+ → π+γ∗ → π+`+`− decay, although we will also comment briefly on the decay

with neutral hadrons. Previous theoretical work on this decay is mainly based on chiral

perturbation theory (ChPT) and has led to various parametrizations of the form factor for the

decay; the status of this work has been reviewed in [12]. Coefficients in these parametrizations

have been obtained from fits to experimental data [5, 6, 8, 9]. An early opportunity for lattice

QCD is to use our simulation data to test the reliability of this previous theoretical work.

The calculation we present in this paper is the first exploratory attempt at a nonperturba-

tive lattice QCD calculation of K → π`+`− amplitudes. The possibility of such a calculation

was first introduced in [11], where it was shown that lattice methods can in principle be used

to compute such decay amplitudes. These ideas were developed further in [10], where the

details of the analysis to extract K → π`+`− matrix elements using renormalized operators

were introduced, with full control of ultraviolet divergences. This necessitates the introduc-

tion of a charm quark in the calculation, such that logarithmic divergences cancel by the

GIM mechanism. Our objective is to demonstrate how the results of [10, 11] can be applied

in actual numerical simulations to extract the desired physical information. In this paper

we report on the results of our exploratory numerical simulations of the rare kaon decay

K+ → π+`+`− using the domain wall fermion (DWF) ensembles of the RBC and UKQCD

Collaborations [13].

The layout of this paper is as follows. In Sec. II we outline the lattice operators necessary

to study K → π`+`− decays, briefly summarizing the work of [11]. In Sec. III we follow

and build on [10] to give a detailed discussion of the analysis methods necessary to extract

the rare kaon decay amplitudes from the lattice results. In Sec. IV we give details of the

implementation of the lattice simulation we performed to obtain our numerical results. These

numerical results are discussed in Sec. V. In Sec. VI we briefly summarize existing theoretical

results for K+ → π+`+`− decays, before making use of our lattice results to outline how we

can test existing O (p4) ChPT and experimental results, once all systematic effects in our

calculation are controlled. Finally in Sec. VII we present our conclusions. We remark that all

dimensionful quantities appearing in this paper are expressed in lattice units unless otherwise

stated.
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II. OPERATORS AND CONTRACTIONS

The expression for the long-distance Minkowski amplitude we wish to compute is given

by

Aiµ
(
q2
)

=

∫
d4x

〈
πi (p) |T [Jµ (0)HW (x)] |Ki (k)

〉
, (1)

where q = k − p and i = +, 0. Using electromagnetic gauge invariance this nonlocal matrix

element can be written as

Aiµ
(
q2
)
≡ −i GF

V i (z)

(4π)2

(
q2 (k + p)µ −

(
M2

K −M2
π

)
qµ

)
, (2)

where nonperturbative QCD effects are contained in the form factor V i (z), z = q2/M2
K (note

we are using the notation of Ref. [12] for V i (z)).

The four-flavor effective weak Hamiltonian relevant to the transition s → d`+`− renor-

malized at a scale µ with MW � µ > mc is defined by [14]

HW =
GF√

2
V ∗usVud

(
2∑
j=1

Cj
(
Qu
j −Qc

j

)
+

8∑
j=3

CjQj +O
(
V ∗tsVtd
V ∗usVud

))
. (3)

In practice the operators Q3,...,8 may be neglected as the corresponding Wilson coefficients

C3,...,8 are much smaller than those of Q1 and Q2 [11, 14]. We will therefore consider only

these two operators defined as

Qq
1 =

(
s̄iγ

L
µdi
) (
q̄jγ

L,µqj
)
, Qq

2 =
(
s̄iγ

L
µdj
) (
q̄jγ

L,µqi
)
, (4)

where i, j are summed color indices and γLµ = γµ (1− γ5). For clarity, in later sections we

will refer to the operator

HW =
2∑
j=1

Cj
(
Qu
j −Qc

j

)
, (5)

and the prefactor GFV
∗
usVud/

√
2 will be inserted later. In the lattice computations we start by

determining the matrix elements of these bare lattice operators and then use nonperturbative

renormalization to obtain them in the RI-SMOM scheme. We subsequently use perturbation

theory to match with the Wilson coefficients for the MS scheme, which are known at next-to-

leading order [14]. The matching formulas for this step have been previously calculated and

presented in Ref. [15]. The procedure used for this calculation is identical to that used for
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the renormalization of the HW operator in the calculation of the KL −KS mass difference,

as discussed in Sec. VII of Ref. [16].

The electromagnetic current Jµ in Eq. (1) is the standard flavor-diagonal operator

Jµ =
1

3

(
2V u

µ − V d
µ − V s

µ + 2V c
µ

)
, (6)

where V q
µ is the conserved lattice vector current for the flavor q. For our choice of action we

use the Shamir domain wall conserved current [17].

A. Wick contractions

Inserting the weak Hamiltonian Eq. (5) and the electromagnetic current into Eq. (1),

we can perform all Wick contractions to produce the 20 diagrams that must be computed.

It is convenient to start by performing the Wick contractions for the insertion of only the

operator HW to obtain the four different classes of diagrams shown in Fig. 1. Within each

class there are then five possible diagrams, obtained by inserting the electromagnetic current

in all possible ways. First the current can be inserted on any of the quark propagators in

each class. There is also the possibility of the self-contraction of the current to produce a

disconnected diagram, which corresponds to a photon being emitted from a sea quark loop.

We illustrate the five insertions for the C class in Fig. 2. We remark that for the neutral

case KS → π0`+`− we can also contract the two quarks within the pion to produce two

disconnected diagram topologies shown in Fig. 3. A full list of diagrams can be found in

Ref. [10].

When the current is inserted in the loop of the S and E diagrams, there appear to

be quadratically divergent contributions as the operators Jµ and HW approach each other

[10, 11]. As we simulate with a conserved current we can rely on electromagnetic gauge

invariance to reduce the degree of divergence by two dimensions (owing to a transversality

factor of q2gµν − qµqν), leaving at most a logarithmic divergence. This remaining divergence

is canceled by introducing a charm quark (as displayed in Fig. 1) and exploiting the GIM

mechanism [1]. We remark that the inclusion of the charm is not merely for convenience: it is

necessary to perform the lattice calculation with four flavors to be confident in the accuracy of

the final result. The contribution of the charm quark to this decay can be roughly estimated

using the formulas of Ref. [18]. Such an estimate suggests that the new diagrams obtained
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FIG. 1. The four classes of diagrams obtained after performing the Wick contractions of the charged

pion and kaon interpolating operators with the HW operator.
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FIG. 2. The five possible current insertions for the C class of diagrams.

by introducing an electromagnetic current vertex into the charm and up loops in the S and

E graphs of Fig. 1 may give a relatively large effect. Such an effect is best determined by a

complete lattice calculation of such GIM-subtracted contributions, which necessarily contains

a valence charm quark.

d

u, ds

u, c u, d

K π
Jµ

d

u, d

u, c

s

u, d

K π
Jµ

FIG. 3. The additional two classes of diagrams obtained after performing the Wick contractions of

the neutral pion and kaon interpolating operators with the HW operator.
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III. DETERMINATION OF THE MATRIX ELEMENT

In this section we outline the analysis techniques necessary to extract rare kaon decay

amplitudes from the four-point (4pt) correlators measured in our lattice simulation. We

begin by discussing the extraction of Euclidean amplitudes in the continuum, followed by a

discussion of the additional considerations we must make in discrete spacetime.

A. Continuum Euclidean correlators

In order to measure the amplitude given by Eq. (1) on the lattice, we start by defining

the "unintegrated" 4pt correlator

Γ(4)
µ (tH , tJ ,k,p) =

∫
d3x

∫
d3y e−iq·x

〈
φπ (tπ,p)T [Jµ (tJ ,x)HW (tH ,y)]φ†K (tK ,k)

〉
, (7)

where the operator φP (t,p) is the annihilation operator for a pseudoscalar meson P with

momentum p at a time t. To obtain the decay amplitude we must consider the integrated

4pt correlator,

Iµ (Ta, Tb,k,p) = e−(Eπ(p)−EK(k))tJ

∫ tJ+Tb

tJ−Ta
dtH Γ̃(4)

µ (tH , tJ ,k,p) , (8)

in the limit Ta, Tb → ∞ [10]. We define Γ̃
(4)
µ as the "reduced" correlator after dividing out

the source/sink factors and normalizations which do not contribute to the final amplitude,

i.e.

Γ̃(4)
µ =

Γ
(4)
µ

ZπK
, ZπK =

ZπZ
†
KL

3

4Eπ (p)EK (k)
e−tπEπ(p)+tKEK(k), (9)

with Zπ =
〈
π (p) |φπ (p) |0

〉
, Z†K =

〈
0|φ†K (k) |K (k)

〉
, and EK (k) and Eπ (p) are the initial

state kaon and final state pion energies respectively. These parameters can be extracted from

fits of the relevant two-point (2pt) correlation functions. We account for the factor of L3 (i.e.

the spatial volume) as we integrate both x and y over all space. The exponential factor

outside the integral in Eq. (8) effectively translates the decay to tJ = 0 (as is allowed by

translational invariance); we will therefore omit further tJ dependence from our expressions.

The spectral decomposition of the unintegrated 4pt correlator for tK � tH and tH � tπ

9



can be written as:

Γ̃(4)
µ (tH ,k,p) =


∫∞

0
dE

ρ (E)

2E
〈π (p) |Jµ|E,k〉 〈E,k|HW |K (k)〉 e−(EK(k)−E)tH , tH < 0,∫∞

0
dE

ρS (E)

2E
〈π (p) |HW |E,p〉 〈E,p|Jµ|K (k)〉 e−(E−Eπ(p))tH , tH > 0,

(10)

where the functions ρ (E) and ρS (E) are the relevant spectral densities which select states

with strangeness S = 0 and S = 1 respectively. The integral over tH in Eq. (8) can thus be

computed analytically to obtain

Iµ (Ta, Tb,k,p) =−
∫ ∞

0

dE
ρ (E)

2E

〈π (p) |Jµ|E,k〉 〈E,k|HW |K (k)〉
EK (k)− E

(
1− e(EK(k)−E)Ta

)
+

∫ ∞
0

dE
ρS (E)

2E

〈π (p) |HW |E,p〉 〈E,p|Jµ|K (k)〉
E − Eπ (p)

(
1− e−(E−Eπ(p))Tb

)
.

(11)

The rare kaon decay amplitude we wish to calculate corresponds to the constant terms in the

above equation (i.e. those that do not depend on the exponentials in Ta and Tb) [10]. The

states |E,p〉 in the second line of Eq. (11) must have the flavor quantum numbers of a kaon,

i.e. S = 1, and thus all possible states will have E > Eπ (p); given a sufficiently large Tb

this half of the integral should converge to the appropriate value. However the states |E,k〉
in the first line have the quantum numbers of a pion. For physical pion and kaon masses

there are three permitted intermediate states with E < EK (k) (namely one, two and three

pion states), which will cause the integral to diverge with increasing Ta. These exponentially

growing contributions from these three types of intermediate states do not contribute to the

overall decay width and therefore must be removed in order to extract the relevant Minkowski

amplitude,

Aµ
(
q2
)

= −iGF√
2
V ∗usVud lim

Ta,Tb→∞
Ĩµ (Ta, Tb,k,p) , (12)

where Ĩµ indicates the integrated 4pt correlator after subtracting the exponentially growing

contributions [10].

B. Lattice implementation

In our lattice simulation we compute the correlator in Eq. (7) in a finite volume at a

finite lattice spacing; for the purposes of our analysis it is useful to translate these contin-
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uum, infinite-volume formulas into their discrete, finite-volume counterparts. To make the

difference between the two clear, we will not suppress factors of the lattice spacing for the

remainder of this section.

The spectral density ρ (E) in finite volume can be expressed as ρ (E) =
∑

n 2Enδ (E − En)

[and similarly for ρS (E)]; our phase space integral is hence reduced to a sum over a finite

number of states labeled by n. The spatial integrals in Eq. (7) are replaced by sums over

the spatial extent of the lattice. Similarly the integral in Eq. (8) can be replaced by a sum.

The replacement of integrals over tH by sums in our lattice calculation corresponds to the

replacement

∫ 0

−Ta
dtH → a

0∑
tH=−Ta

,

∫ Tb

0

dtH → a

Tb∑
tH=0

. (13)

The sum runs over increments of the lattice spacing, a. We remark that the point at tH =

tJ = 0 should not be double counted when the two halves of the integral are added together;

this is intrinsically related to how the time ordering operator is implemented on the lattice.

Because the operators HW and Jµ commute at tH = 0, a proper treatment is to average the

two choices of time ordering at this point. In the following analysis the point at tH = 0 is

thus weighted by a half; when the two sums are added together the correct result is obtained.

We now introduce the compact notation

∆a
n = EK (k)− En, ∆b

m = Em − Eπ (p) , (14)

where n and m label the finite volume states contained in the finite volume spectral densities

ρ (E) and ρS (E) respectively, and a and b label which time ordering of the 4pt function

the state appears for. The relevant sums corresponding to the integral of Eq. (7) can be

evaluated as a geometric series, i.e.

a
0∑

tH=−Ta

e−∆a
ntH = a

1 + ea∆a
n

(
1− 2e∆a

nTa

)
2
(
1− ea∆a

n

) , a

Tb∑
tH=0

e−∆b
mtH = a

1 + e−a∆b
m

(
1− 2e−∆b

mTb

)
2
(
1− e−a∆b

m

) .

(15)

To understand the impact of this analysis, it is instructive to expand the terms in Eq. (15)

that depend on Ta and Tb. Expanding in powers of the lattice spacing, the unphysical
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contributions take the form:

−a ea∆a
n

1− ea∆a
n
e∆a

nTa =

(
1 +

a∆a
n

2
+

(a∆a
n)2

12
+O

(
a3
)) e∆a

nTa

∆a
n

, (16)

−a e−a∆b
m

1− e−a∆b
m
e−∆b

mTb =

(
−1 +

a∆b
m

2
−
(
a∆b

m

)2

12
+O

(
a3
)) e−∆b

mTb

∆b
m

. (17)

This analysis demonstrates the expectation that the sum reproduces the continuum expec-

tation, up to discretization effects starting at O (a). Neglecting these effects would result in

an incomplete removal of the exponentially growing behavior, which could introduce a signif-

icant systematic effect into our analysis and thus should be avoided. We stress however that

the physical matrix element itself, i.e. the contribution of those terms in Eq. (11) without

the factors of e∆a
mTa or e∆b

mTb , is free of O (a) errors as is guaranteed by our prescription of

domain wall fermions.

We can thus write the final expression for our integrated lattice correlator,

Iµ (Ta, Tb,k,p) = a
∑
n

1

2En

MJ,n→π
µ (k,p)MK→n

H (k)

2
(
1− ea∆a

n

) [
1 + ea∆a

n

(
1− 2e∆a

nTa
)]

+

a
∑
m

1

2Em

Mπ→m
H (p)MJ,K→m

µ (k,p)

2
(
1− e−a∆b

m

) [
1 + e−a∆b

m

(
1− 2e−∆b

mTb
)]
, (18)

where we defineMJ,P1→P2
µ (k,p) = 〈P2,p|Jµ|P1,k〉 andMP1→P2

H (p) = 〈P2,p|HW |P1,p〉. To
extract the matrix element we must therefore remove the exponentially growing contributions

as they appear in the above equation. We remark that one can check explicitly using Eq.

(18) to show that the matrix element is free of O (a) terms. In this exploratory study we

perform the simulation with unphysically heavy pions and kaons satisfying EK (k) < 2Mπ,

such that the only intermediate state which will give an exponentially growing contribution

to the integral consists of a single-pion.

C. Single-pion intermediate state

Our exploratory simulations use a pion mass of ∼ 430 MeV and a kaon mass of ∼ 625 MeV;

hence only the single-pion exponentially growing contribution must be removed in our analy-

sis. We will now explain the two methods we use to remove these unphysical contributions and

present the corresponding numerical discussion in Secs. VB and VC. A detailed discussion
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of the treatment of the exponentially growing ππ and πππ intermediate state contributions

can be found in Ref. [10].

The first possibility of removing the single-pion exponential is to reconstruct its analytical

form from Eq. (18). The exponential contribution is therefore

Dπ
µ (Ta,k,p) = a

1

2Eπ (k)

MJ,π→π
µ (k,p)MK→π

H (k)

1− e−a∆a
π

e∆a
πTa . (19)

The necessary matrix elements and energies can be readily obtained from fits to 2pt and 3pt

correlators. We will refer to this method of subtraction as "method 1".

A second method ("method 2") of removing the exponentially growing contribution of the

single-pion state is to employ a shift of the weak Hamiltonian by the scalar density, s̄d [19].

We choose a constant cs such that

〈π (k) |H ′W |K (k)〉 = 〈π (k) |HW − css̄d|K (k)〉 = 0. (20)

If we replace HW by H ′W in Eq. (18), the contribution of the single-pion intermediate state

vanishes. We can show [10] that this shift leaves the total amplitude invariant using the

chiral Ward identity

i (ms −md) s̄d = ∂µV
µ
s̄d. (21)

The parameter cs is extracted from the ratio of 3pt correlation functions

cs (k) =
Γ

(3)
HW

(k)

Γ
(3)
s̄d (k)

, (22)

in the region tK � tO � tπ, where tO is the position at which the operator O = HW or s̄d

is inserted. Equivalently cs may be extracted from the ratio of similar 4pt functions in the

region tK � tH � tJ , where we may assume that the 4pt functions are dominated by the

exponentially growing contribution of the single-pion intermediate state.

IV. DETAILS OF THE SIMULATION

This exploratory study was performed using a 243 × 64 lattice with an inverse lattice

spacing of 1/a = 1.78 GeV, employing Shamir domain wall fermions [17] with Iwasaki gauge

action [20], a pion mass of ∼ 430 MeV and a kaon mass of ∼ 625 MeV [13, 21]. We use a

sample of 128 configurations, each separated by 20 molecular dynamics time units. In order
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to cancel divergences with the GIM mechanism we include a charm quark with a bare mass

of am = 0.2. Using the mass renormalization factor ZMS
m (2 GeV) = 1.498 for this lattice [13],

this corresponds to an unphysical charm quark of mass mMS
c (2GeV) = 533 MeV.

The renormalization of the HW operator is simplified considerably by our prescription

of domain wall fermions: the good chiral symmetry prevents the mixing of the operators

Q1 and Q2 (from Eq. (5)) with right-handed operators. The details of the nonperturbative

renormalization of this operator are given in Ref. [16], where the ensembles used to perform

the nonperturbative renormalization have the same lattice spacing and action, but a smaller

volume. The results are also valid for our lattice as the renormalization procedure depends

upon the UV behavior of the theory and thus is insensitive to finite volume effects.

We now move to a detailed explanation of the setup of our calculation. In the next

subsection we will introduce the schematic of the relevant 4pt correlator and give an overview

of the propagators we choose to use to perform each of the contractions involved in the

construction of the correlator. In Sec. IVB we will give a more technical discussion of the

implementation.

A. Setup of the calculation

We simulate a kaon with momentum k = 0 at a time tK = 0 decaying into a pion with

momentum p at tπ = 28. We have considered three separate final state pion momenta:

p = 2π
L

(1, 0, 0), p = 2π
L

(1, 1, 0) and p = 2π
L

(1, 1, 1), where L = 24 is the spatial extent of

our lattice. We will thus label each kinematical case by the momentum p. In all cases the

current is situated halfway between the kaon and pion at tJ = 14; this position is chosen

such that we can integrate over tH in a window around the current and be far enough away

from the positions of the pion/kaon interpolators to avoid the contamination of excited state

contributions. We use Coulomb gauge-fixed wall sources in our calculation to give good

overlap with the ground state pion and kaon, which allows us to keep the kaon-pion source-

sink separation as small as possible to achieve the best possible signal for the amplitude.

The computation of the full set of diagrams corresponding to the rare kaon decay can

be accomplished by computing 14 propagators. Four are required to connect the kaon/pion

sources to the HW insertion: one strange and one light for the kaon; two light propagators
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FIG. 4. Demonstration of how propagators are used to construct diagrams. The position of the

HW operator is indicated by the shaded square, and may be placed at any spacetime position. The

insertion of the current is denoted by a black square, fixed on an single time slice and summed over

space. The double line represents the part of the propagator computed using a sequential inversion;

the dotted line represents the loop propagator, computed using spin-color diluted random volume

sources [22].

with momenta 0 and p to produce a pion with momentum p 6= 0 (this also allows us to

make a pion with momentum 0). Two more propagators are needed for the loops in the S

and E and disconnected diagrams (one light, one charm), and one more for the strange loop

in disconnected diagrams. We use each of these seven propagators to calculate a sequential

propagator to achieve the current insertion to bring us up to 14. The types of propagators

used are shown schematically in Fig. 4. Furthermore, to construct all the 2pt and 3pt func-

tions required for our analysis procedure, we also compute one additional strange propagator

with momentum p such that we can produce a kaon with momentum p.

B. Details of the Implementation

To compute the loops in the S and E diagrams we require the propagator from each site

to that exact same site for each color and spin index, i.e. the diagonal entries of the inverse of

the Dirac operator. This is readily accomplished by making use of random spin-color diluted

volume sources [22–24]; the details of these sources are discussed in Appendix A 1. With

such a propagator the position of the HW operator can be inserted at any position on the
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lattice, thus enabling the integration of the position of HW over the whole lattice.

The insertions of the electromagnetic current can be achieved using sequential propagators,

with the current inserted at a time tJ . We only consider the element µ = 0 of the current to

save computational resources, which is enough to extract the form factor using Eq. (2). The

computation of sequential propagators is discussed in Appendix A 2. With the current fixed

at a single time the time ordering of the operators is straightforward to implement, which

simplifies our analysis procedure. Another advantage is that the current is automatically

summed over the entire spatial volume. For our lattice this spatial sum reduces the statistical

error by approximately a factor of 3. The primary disadvantage of this method is that we

must perform a new set of inversions if we wish to consider the current at another temporal

position, with a different initial (final) state momentum of the kaon (pion) or for a different

polarization.

In our present calculation we omit the disconnected diagrams where the electromagnetic

current is self-contracted (see Fig. 2). The primary reason for this is practical: we expect

the disconnected contribution to be very noisy and thus would require a significantly larger

statistical sample to be measured to obtain a signal comparable to the other diagrams (relative

to noise). However we also expect the disconnected contribution to be suppressed by a factor

of 1/Nc and by the approximate SU(3) flavor symmetry. In the continuum we would expect

the disconnected contribution to have ∼ 10% of the contribution of the connected part [25].

With our choice of masses the SU(3) suppression is stronger and so the disconnected diagrams

are expected to be further suppressed. Nevertheless, our simulation is set up such that the

disconnected contribution can be calculated separately to the connected contributions, and

can be added at a later stage without having to recalculate any propagators or the connected

diagrams that we have already.

For our simulation we choose to use Nη = 14 random noise sources on each configura-

tion to obtain a reasonable signal for the loop function of the S and E diagrams. While

increasing Nη would increase our precision further, we found Nη = 14 to be a reasonable

compromise when also taking into account available computational resources. In addition

to this we translate the computation of the 4pt correlator to Nt = 12 positions over the

time direction of our lattice on a single configuration. Each translation ultilizes the same

noise propagators generated for the loop diagrams; however we find the signal-to-noise ratio
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Description Source Type
Number of Inversions

Light Strange Charm

C and W propagators Gauge-fixed wall 3Nt Nt 0

S and E loops Random volume Nη 0 Nη

Current insertions Sequential (3 +Nη)Nt Nt NηNt

Analysis supplements Gauge-fixed wall 0 Nt 0

Total - Nη +Nt (6 +Nη) 3Nt Nη (Nt + 1)

Nη = 14, Nt = 12 - 254 36 182

TABLE I. Summary of propagators calculated in our simulation for a single choice of pion momentum

on a single configuration, and the corresponding number of inversions required. Nη is the number

of noise vectors used in the computation of the quark loops; Nt is the number of translations in the

time direction across a single configuration at which all the contractions are computed.

of the S and E diagrams increases by approximately a factor of 3 when we include these

additional translations. This is consistent with the increase in statistical precision expected

if the translations are statistically independent of each other.

We chose time positions for the operators in this decay such that there exists a large

enough window to fully integrate over tH on either side of the current. In such a setup, we

found that the closer the position of the current to the pion, the better the signal for the

decay. We therefore tested simulating with an additional time position for the current placed

closer to the pion such that we may integrate over the region [tJ − Ta, tJ ] with an improved

precision. We found that this second current insertion would increase the simulation cost by

∼ 50%, but reduce the statistical error by a factor of ∼ 25%. However the additional cost

of these inversions means that the decay can only be translated across eight time positions

in the same amount of CPU time as it costs to perform 12 translations with a single current

position. We found that the loss of precision from considering fewer translations ultimately

canceled the increase from the second current position.

On a single configuration we thus require 254 light propagator inversions, 36 strange

inversions and 182 charm inversions (including disconnected diagrams would require a further
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182 strange inversions). This is summarized in Table I. Because of this large number of light

propagators we made use of the HDCG algorithm [26] to accelerate the light-quark inversions.

The overhead of deflating the Dirac operator costs the equivalent of two to three conjugate

gradient (CG) inversions; however the cost of a light-quark inversion is subsequently reduced

by a factor of 4.

V. NUMERICAL RESULTS

Ultimately the aim of this calculation is to demonstrate that the matrix element of K →
πγ∗ decays can be determined with controlled systematic errors. In this section we will

discuss the numerical results of our simulation, and include a critical discussion of our two

primary analysis techniques. For demonstration purposes we will focus on the results for

our kinematics with a charged kaon at rest decaying into a charged pion with one unit of

momentum in one spatial direction.

While it is also possible to compute the neutral decay KS → π0`+`− using our lattice

data, with our current statistics we find that we do not obtain any worthwhile signal for this

correlator. The error is dominated by the additional, disconnected contractions shown in

Fig. 3. These contractions appear much noisier than the other diagrams, and their error is

many times larger than the signal from the remaining contractions. The difficulty to extract

a signal from our data can also be understood physically: we have only considered photons

with small momenta; the structure of the kaon/meson is thus not well enough resolved to

obtain a clear signal. When we simulate the decay into a pion with a higher momentum

the structure is better resolved, although the correlators with momentum are naturally more

noisy. This makes them difficult to analyze with the size of our present statistical sample.

For this reason we will focus exclusively on the charged channel, and will discuss the neutral

channel in later works.

A. Lattice correlators

In Fig. 5 we show the contributions of each of the diagrams to the 4pt correlator that

correspond to the charged rare kaon decay. A comparison of Fig. 5 (a) and (b) shows that

the dominant contribution to the decay comes from the Q2 operator, i.e. the W and S
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FIG. 5. The contributions of each of the diagrams to the rare kaon decay corresponding to the

weak operators (a) Q1 and (b) Q2, both before and after the GIM subtraction. Each diagram has

been constructed using the appropriate fractional quark charges (excluding the overall charge factor

e), and the correlators have been multiplied by the relevant renormalization constants and Wilson

coefficients for matching to the MS scheme (as described in detail in Ref. [16]). Time positions of

the kaon/pion interpolators and current insertion are indicated.

diagrams. Furthermore as the loop diagrams S and E are considerably noisier than W and

C, it follows that the S diagram will dominate the error on our final result. We remark

that each diagram in Fig. 5 has already been multiplied by the appropriate renormalization

constants to match to the MS scheme, as defined in Table V of Ref. [16]. For the scale

µ = 2.15 GeV, we thus multiply our bare lattice operators Q1 and Q2 by the coefficients

C lat
1 = −0.2216 and C lat

2 = 0.6439 respectively. For this analysis we neglect any systematic

errors on these Wilson coefficients, as they are not a primary concern of our exploratory

studies. However, a full discussion of systematic errors of the renormalization of the HW

operator has previously been given in the context of K → ππ decays; see e.g. Refs. [27, 28].

Additionally in Fig. 5 we show how the S and E diagrams are obtained by subtracting

the charm loop diagram from the up quark loop diagram, i.e. the GIM subtraction. Here

we expect the GIM subtraction to be more severe than in the physical case, as we are using

a lighter-than-physical charm quark and a heavier-than-physical light quark. With physical
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FIG. 6. (a) The 4pt rare kaon decay correlator measured in our simulation with k = (0, 0, 0)

and p = 2π
L (1, 0, 0). The ground state contribution has been constructed from fits to 2pt and 3pt

correlators. (b) The 4pt correlator after removing the ground state contribution (i.e. the single-pion

and single kaon intermediate states). Time positions of the kaon/pion interpolators and the current

insertion are indicated.

masses we should expect the S diagram to have a larger magnitude. In the final correlator

the S and W diagrams appear to add destructively; this may have a severe effect on the

final result if there is a large degree of cancellation between the contributions of the S and

W diagrams to the final matrix element. The combined rare kaon decay 4pt correlators that

we analyse are shown in Fig. 6. We show these correlators before and after the removal of

unphysical exponential terms that appear as a relic of the Euclidean formulation [10]. The

removal of these terms is discussed in the following section.

B. Removal of single-pion exponential: Method 1

The main difficulty of this analysis is the removal of the exponential term that grows

with increasing Ta; however in practice we find that it is necessary to also consider the term

that falls exponentially with Tb [as seen in the second line of Eq. (18)], as the integral does

not converge in the available time extent. This can be attributed to the fact that here the

kaon-pion mass difference is rather small; hence the exponent for the exponential decay is
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small. In practice therefore it is necessary also to remove the single kaon contribution that

decays with Tb in a manner similar to the exponentially growing term by reconstructing the

state from 2pt/3pt functions. Asymptotically the integrated 4pt correlator can be written in

the form:

Iµ (Ta, Tb,k,p) =Aµ (k,p) + c1
µ (k,p) e∆a

πTa

[
∆a
π

1− e−∆a
π

]
+ c2

µ (k,p) e−∆b
KTb

[
∆b
K

e∆b
K − 1

]
+ . . . , (23)

with ∆a
π = EK (k) − Eπ (k) and ∆b

K = EK (p) − Eπ (p). The terms in the square brackets,

which tend towards 1 in the continuum limit, account for the corrections necessary to treat

the single meson intermediate states (i.e. the ground state contributions) using a discrete

formulation. In terms of particle energies and matrix elements from 3pt functions we can

write

c1
µ (k,p) =

MJ,π
µ (k,p)MH (k)

2Eπ (k) ∆a
π

, c2
µ (k,p) = −M

J,K
µ (k,p)MH (p)

2EK (p) ∆b
K

, (24)

where MJ,P
µ (k,p) = 〈P,p|Jµ|P,k〉 and MH (k) = 〈K (k) |HW |π (k)〉. Our analysis thus

proceeds by removing the terms proportional to c1
µ and c2

µ from the 4pt correlator, and

fitting the remainder to a constant to obtain Aµ, which is the amplitude in Euclidean space,

up to a factor as seen in Eq. (12).

It is indeed possible to use Eq. (23) to fit the 4pt function directly to remove the ground

state contributions. Because the exponents can be obtained much more accurately from

2pt functions, we simply fit the parameters Aµ, c1
µ and c2

µ in the region where the ground

state contributions dominate. We find that we obtain consistent results when we use this

procedure.

The computed values for the coefficients c1
0 and c2

0 [obtained using both Eq. (24) and the

direct 4pt fit] are shown in Table II. We remark that the coefficient c2
0 becomes significantly

less well determined when we increase the momentum of the pion. The reason for this is that

the matrix elementMH (p) is difficult to determine precisely when we have p 6= 0. We can

thus avoid introducing an unnecessarily large statistical error either by fitting c2
0 directly from

the 4pt correlator or by making well-motivated approximations. The two approximations we

have considered are c2
0 = −c1

0, and MH (k) = MH (p). The first approximation holds

exactly when k = p; the second holds exactly in the SU(3) flavor symmetric limit, i.e.

21



when Mπ = MK . A short proof of each of these statements can be found in Appendix B.

A summary of the matrix elements obtained using each of these methods can be found in

Table III, and are displayed graphically in Fig. 7. We remark that the approximations of

c2
0 need not be exact: they are sufficient if the systematic error on the approximation is

significantly smaller than the statistical error on the final signal for the amplitude. Taking

correlated differences between the different analysis techniques reveals that the systematic

errors on these approximations are substantially less than the statistical errors on the matrix

elements.

In Fig. 8 (a) we display the Ta and in Fig. 8 (b) the Tb dependence of the integrated

4pt correlator having removed the ground state contributions. In Fig. 8(a) we see that after

the analytic removal of the single-pion intermediate state, no other exponentially growing

states are discernible beyond statistical errors. This suggests that contributions from excited

states are adequately suppressed. Fig. 8(b) demonstrates the slow exponential decay in Tb

which is caused by the small exponent EK(p) − Eπ(p). This appears to be a problem only

because our pion and kaon masses are unphysically close; in simulations closer to the physical

masses the exponent EK(p) − Eπ(p) will become larger; hence the residual Tb dependence

will decay more quickly. Consequently this subtraction may become unnecessary in future

studies, although in any case it can be removed as we have shown here.

C. Removal of single-pion exponential: Method 2

The first part of this analysis requires us to determine the parameter cs. In Fig. 9 we

show the determination of this parameter using Eq. (22) and either 3pt or 4pt functions. A

cleaner signal is obtained from the ratio of 3pt functions, although the ratio of 4pt functions

does also agree as expected for tK � tH � tJ (albeit with much larger errors).

The resulting integrated correlator after shifting by the 4pt correlator with HW replaced

by s̄d is shown in Fig. 10. We obtain the matrix element by fitting the correlator to a constant

in the region where both sides of the integral plateau. We note that the s̄d shift appears to

remove the decaying single kaon intermediate state contribution on the Tb side of the integral,

in addition to the single-pion exponential term. The reason for this appears to be that cs is

very weakly dependent on the momentum, which can be understood from the fact that it is
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FIG. 7. Plot of the amplitudes (in lattice units) obtained using each of the different analysis methods.
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FIG. 8. The integrated 4pt correlator, shown for (a)
∫ tJ+8
tJ−Ta Γ̃

(4)
0 dtH to demonstrate the Ta depen-

dence and (b)
∫ tJ+Tb
tJ−6 Γ̃

(4)
0 dtH to demonstrate the Tb dependence. The single-pion exponential growth

has been removed using method 1. The single kaon exponential decay has been removed using the

approximation MH (p) = MH (k). The position of the plateau corresponds to A0 = −0.0028(6)

obtained by a fit to the data over the indicated range.

23



Coefficient Description
Kinematic

p = 2π
L (1, 0, 0) p = 2π

L (1, 1, 0) p = 2π
L (1, 1, 1)

c1
0(k,p)

4pt fit 0.00523(45) 0.0056(13) 0.0050(33)

2pt/3pt 0.00538(18) 0.00549(20) 0.00611(32)

c2
0(k,p)

MH(p) =MH(k) -0.00487(18) -0.00494(22) -0.00532(48)

4pt fit -0.00464(62) -0.0046(22) 0.0012(56)

2pt/3pt -0.0050(17) -0.025(20) 0.06(12)

c1
0(k,p) + c2

0(k,p)

MH(p) =MH(k) 0.000516(44) 0.00055(12) 0.00079(38)

4pt fit 0.00075(61) 0.0009(22) 0.0073(56)

2pt/3pt 0.0004(17) -0.020(20) 0.06(12)

TABLE II. Parameters of Eq. (23) (in lattice units) obtained via analytic reconstruction using

2pt and 3pt fit results or fitting the integrated 4pt correlator directly. For c2
0 the result using the

approximationMH (p) =MH (k) is also shown.
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FIG. 9. Determination of the parameter cs from a fit to the ratio of 3pt HW and s̄d correlators. The

corresponding ratio of the 4pt correlator is also shown. The position of the plateau corresponds to

cs = 0.000240(8).
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Analysis Kinematic A0 AC,W0 AS,E0

method 1

(MH(p) =MH(k))

p = 2π
L (1, 0, 0) -0.00276(63) -0.00161(14) -0.00106(60)

p = 2π
L (1, 1, 0) -0.0028(18) -0.00251(40) -0.0003(17)

p = 2π
L (1, 1, 1) -0.0050(38) -0.0027(12) -0.0023(39)

method 1

(c2
0 = −c1

0)

p = 2π
L (1, 0, 0) -0.00264(62) -0.00133(12) -0.00122(60)

p = 2π
L (1, 1, 0) -0.0027(17) -0.00217(33) -0.0005(17)

p = 2π
L (1, 1, 1) -0.0047(38) -0.00196(84) -0.0028(39)

method 1

(4pt fit)

p = 2π
L (1, 0, 0) -0.00288(76) -0.00169(17) -0.00109(73)

p = 2π
L (1, 1, 0) -0.0030(23) -0.00298(52) -0.0000(22)

p = 2π
L (1, 1, 1) -0.0094(60) -0.0041(13) -0.0053(61)

method 2

p = 2π
L (1, 0, 0) -0.00271(64) -0.00151(16) -0.00110(58)

p = 2π
L (1, 1, 0) -0.0028(18) -0.00240(48) -0.0004(17)

p = 2π
L (1, 1, 1) -0.0053(39) -0.0034(12) -0.0019(38)

cs × s̄d

p = 2π
L (1, 0, 0) -0.000010(84) -0.00002(20) 0.00001(11)

p = 2π
L (1, 1, 0) -0.00002(21) -0.00005(49) 0.00003(28)

p = 2π
L (1, 1, 1) 0.00032(52) 0.0007(12) -0.00042(69)

TABLE III. Summary of matrix elements obtained using various analysis methods. All values are

given in lattice units. Results are shown for all classes of diagrams, and also separated into the

nonloop and loop contributions.

independent of momentum in the SU(3) symmetric limit (cf. Appendix B).

An important test of this method is to check that the s̄d 4pt correlator gives no contri-

bution to the final amplitude [10]. As a consistency check, we can apply the ’method 1’

integration techniques to this correlator in an attempt to verify that the matrix element con-

tribution is consistent with zero. Plots of the integral of this correlator are shown in Fig. 11,

and the results for each pion momentum are displayed in Fig. 12. We remark that the result

of these three analyzes are generally consistent with zero, as is the difference between the
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FIG. 10. The integrated 4pt correlator, shown for (a)
∫ tJ+8
tJ−Ta Γ̃

(4)
0 − csΓ̃

s̄d(4)
0 dtH to demonstrate the

Ta dependence and (b)
∫ tJ+Tb
tJ−6 Γ̃

(4)
0 − csΓ̃

s̄d(4)
0 dtH to demonstrate the Tb dependence. The single-pion

exponential growth has been removed using method 2. The position of the plateau corresponds to

A0 = −0.0027(6), obtained by a fit to the data over the indicated range.

matrix elements obtained using either methods 1 or 2.

D. Discussion

A summary of the results of our analysis of the 4pt functions for the three choices of pion

momenta studied is presented in Table III. A comparison of statistical errors shows that both

analysis methods 1 and 2 can be used to obtain the matrix element with similar statistical

precision. The two methods also show remarkable agreement, suggesting that systematic

effects are well controlled by our analysis. The two methods give the best agreement when

we use the approximationMH (k) =MH (p) in method 1 when constructing the coefficient

c2
0 of Eq. (23). This indicates that this approximation carries a smaller systematic error

than the approximation c1
0 = c2

0 for the choices of masses and pion momenta used in this

simulation.

Our cleanest results are obtained when we used method 2 to perform the analysis, which

does not use any approximations in the analysis process. Using these results we therefore
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FIG. 11. The integrated 4pt correlator with HW replaced by s̄d, shown for (a)
∫ tJ+8
tJ−TA csΓ̃

s̄d(4)
0 dtH

and (b)
∫ tJ+TB
tJ−6 csΓ̃

s̄d(4)
0 dtH . The single-pion exponential growth has been removed using method 1.

The single kaon exponential decay has been removed using the approximationMs̄d (p) =Ms̄d (k).

The position of the plateau corresponds to As̄d0 = −0.00001(8), obtained by a fit to the data over

the indicated range.
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FIG. 12. Plot of the amplitudes (in lattice units) obtained using each of the different analysis

methods for the Γ
(4)
s̄d correlator. The expected value of zero is marked explicitly.
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p 2π
L (1, 0, 0) 2π

L (1, 1, 0) 2π
L (1, 1, 1)

z −0.5594(12) −1.0530(34) −1.4653(82)

V (z) 1.37(36) 0.68(39) 0.96(64)

TABLE IV. The form factor of the K (0)→ π (p) γ∗ decay computed for the three pion momenta.

compute the form factor for the decay using Eq. (2). The results for the form factor are

presented in Table IV.

It is instructive to perform our analysis separately for the loop diagrams S and E, and

the nonloop diagrams W and C. While either combination of diagrams does not correspond

to entire operators Q1 and Q2, it is useful to be able to study the diagrams involving the

charm quark separately. The results are also shown in Table III. We remark that we should

find that Aµ = AC,Wµ + AS,Eµ ; it can be seen from the central values in Table III that this

generally holds well for all analysis methods. Small deviations from this relation represent

a possible source of systematic error in our analysis procedure, which are introduced by

using different choices of fit ranges for the individual diagrams rather than fitting the sum,

and thus can be attributed to small excited state contaminations. Such errors however are

significantly smaller than our statistical errors. An important observation to make is that

even though the contribution of the single-pion intermediate state evidently contributes with

opposite sign between the loop and nonloop diagrams (as seen in Fig. 5), the four classes of

diagrams all contribute constructively to the final matrix element. This is important from

the perspective of our unphysical GIM cancellation: if we were to simulate with a heavier

(thus more physical) charm quark we would expect the S and E diagrams to have a larger

contribution and hence give us a more negative result for the matrix element. However we

will leave a numerical test of the charm mass dependence until a future work, as this is not

the primary focus of our present study.

Importantly, when simulations are performed with lighter values for Mπ and MK , more

states may contribute exponentially growing contributions (from ππ and πππ intermediate

states). It is instructive therefore to understand exactly how best to remove the single-pion

state from simulations where it gives the only exponentially growing contribution. We have

demonstrated the analysis techniques to remove this state cleanly with minimal systematic
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FIG. 13. The one-loop contribution to the decays K → πγ∗ arising as ππ → γ∗ rescattering in

K → πππ decays.

errors; hence it now remains to extend our simulations to physical masses such that the

contributions of additional exponentially growing states can be investigated.

VI. FORM FACTOR

One opportunity of lattice QCD is to test the previous work on rare kaon decays performed

using effective theories such as SU(3) ChPT. One previous analysis of the form factor [29]

has led to a parametrization of the form

Vi (z) = ai + biz + V ππ
i (z) , (25)

where z = q2/M2
K , and V ππ

i (z) (i = +, 0) is introduced to account for ππ → γ∗ rescattering

in K → πππ decays arising through the diagram show in Fig. 13. The most straightforward

check is to test the relation Eq. (25) by determining the constants ai and bi from simu-

lation data. The contribution of the term V ππ
i (z) is significantly smaller that the linear

contribution for physical masses; for our initial calculation we can safely neglect this term.

Experimentally the coefficients a+ and b+ have been determined from K+ → π+`+`− spectra:

a+ = −0.578(16) and b+ = −0.779(66) from K+ → π+e+e− data [5] and a+ = −0.575(39)

and b+ = −0.813(145) from K+ → π+µ+µ− data [6].

The parametrization of Eq. (25) is expected to be a good approximation to the O (p6)

ChPT form factor. It is already well known that existing O (p4) ChPT predictions [30] for

the parameter b+ do not correctly predict experimental observations [29, 31]. Analysis of this
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FIG. 14. Dependence of the form factor for the decay K+ → π+`+`− upon z = q2/M2
K . Our lattice

data is fit to a linear ansatz to obtain a = 1.6(7) and b = 0.7(8).

decay in ChPT up to O (p4) gives the following predictions for the coefficients ai and bi [29],

a+ =
G8

GF

(
1

3
− w+

)
, a0 = −G8

GF

(
1

3
− w0

)
, (26)

b+ = −G8

GF

1

60
, b0 =

G8

GF

1

60
, (27)

where wi are defined in terms of SU(3) low energy constants (LECs) N r
14(µ), N r

15(µ) and Lr9
as

w+ =
64π2

3
(N r

14(µ)−N r
15(µ) + 3Lr9(µ)) +

1

3
ln

(
µ2

MKMπ

)
, (28)

w0 =
32π2

3
(N r

14(µ) +N r
15(µ)) +

1

3
ln

(
µ2

M2
K

)
(29)

for some renormalization scale µ. The coefficient b+ depends only on the LEC G8, which can

be determined using information from K → ππ decay amplitudes [32]. A comparison with

the experimental result thus demonstrates that large corrections must be expected at O (p6).

Models that go beyond O (p4) ChPT in an attempt to make predictions for b+ have been

proposed [31, 33], although such models depend heavily on vector meson masses and thus a

comparison with our lattice data is difficult.

In Fig. 14 we display the dependence of the form factor extracted from lattice data upon

z = q2/M2
K . Although our simulation takes place with highly unphysical masses of the
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pion and kaon, we are able to make some insights. Since we have only three data points

at quite large spacelike momenta, we will not be able to fully explore the ChPT anastz in

Eq. (25). Here we simply use a linear fit, which does provide a reasonable description of

our data with a χ2/d.o.f = 0.74. The parameters we obtain, alat+ = 1.6(7) and blat+ = 0.7(8),

are different from the parameters obtained from phenomenological fits to experimental data,

aexp+ = −0.578(16) and bexp+ = −0.779(66). However such a comparison must be taken with

care given the unphysical masses used in our simulation.

The most relevant and interesting comparison we make with experimental results at this

stage is to note that the sizes of the absolute errors on the parameters a+ and b+ obtained

via our lattice calculation are at least an order of magnitude larger than those obtained

from fits to experimental data. As an exploratory study our aim has been to evaluate the

feasibility of this calculation, which we have done successfully. In the future we foresee a

greater expenditure of computer time in order to produce significantly smaller errors in a

calculation closer to the physical point.

VII. CONCLUSIONS

In this paper we have demonstrated that it is possible to calculate the long-distance

contributions to K+ → π+`+`− amplitudes arising from the connected diagrams using lattice

QCD. The connected diagrams are expected to provide the dominant contribution. However

we expect that with a substantially increased statistical sample, the methods developed here

will also be able to determine the disconnected part. The extraction of these amplitudes is

made difficult by the presence of intermediate states that are lighter than the kaon, leading to

unphysical, exponentially growing contributions. We have employed two different methods for

removing these unphysical parts, which grow exponentially as the range for the integral over

the time separation between the electromagnetic current and the effective weak Hamiltonian is

increased. Both methods successfully remove this unwanted contribution and give consistent

results for the physical amplitude. The stage is now set for a calculation with lighter kaon and

pion masses, in particular chosen such that the ππ states will also contribute exponentially

growing terms. This will allow us to develop our analysis techniques further, in particular

those needed to handle the contribution of these additional exponentially growing terms, and
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to make comparisons to experimental results.

We emphasise that our analysis techniques are also applicable to the neutral decay KS →
π0`+`−. While we have been unable to resolve a signal for this amplitude in our present

calculation because of the additional disconnected contractions needed for this decay, we

expect that with a larger sample of configurations and additional variance reduction methods,

the matrix elements for this decay should be accessible with a precision similar to what was

obtained here for the K+ → π+`+`− amplitudes.

Although our calculation has been performed with unphysical values for the kaon and pion

masses, it is nevertheless interesting to make qualitative comparisons to the expectations

from chiral perturbation theory. As a schematic calculation, we have tested using O(p4)

ChPT formulas to extrapolate our results to physical pion and kaon masses to compare

with experimental data. For both the lattice and experimental results a ChPT-motivated fit

ansatz can be used to produce values of V+(0), which is known at O(p4). Our lattice result

[alat+ = 1.6(7)] cannot reasonably be compared to the experimental result [aexp+ = −0.578(16)]

at this stage, as our simulations use meson masses that are considerably heavier than their

physical values. As we begin to simulate with lighter pion and kaon masses, we will be able

to study the mass dependence of a+ and b+ and ultimately at the physical point we can make

direct comparisons with experiment. It is important to note that the size of the errors on the

results of our calculation are an order of magnitude greater than those obtained from fits to

experimental results. However, we expect that significant reductions in our statistical errors

will be possible by increasing the number of gauge samples that are studied, expanding the

number of calculations performed on each sample and employing further variance reduction

methods such as all-mode averaging [34, 35] and all-to-all propagators [36].

As mentioned above, we plan to extend this calculation to lighter and ultimately physical

up and down quark masses. However, a significant barrier which must be overcome in a

truly physical calculation is a proper treatment of the charm quark. Our 533 MeV choice

for the charm quark mass provides a conservative environment to explore computational

methods and determine statistical uncertainties. However, using the physical 1.3 GeV value

for mc poses substantial computational costs since we must use both a sufficiently small

lattice spacing to properly treat this large mass and a sufficiently large volume to properly

treat a physical pion mass. This difficulty associated with the large difference in the energy
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scales of charm and light quarks could be avoided if we choose to integrate out the charm

quark and work in the three-flavor theory. In this approach the GIM cancellation treated

nonperturbatively here would be dealt with using QCD perturbation theory, resulting in an

expanded set of four-quark effective operators including new gluonic and photonic penguin

operators whose coefficient would be determined in perturbation theory. This treatment

would be very similar to recent, three-flavor calculations of K → ππ decay [28, 37]. However,

the results of Inami and Lim [18] for the case where the electromagnetic vertex is inserted

in the GIM-subtracted quark loop in the S and E graphs of Fig. 1 suggest that such charm

quark contributions may be a substantial fraction of the K+ → π+`+`− decay amplitude. As

a result, we anticipate that a nonperturbative treatment of the charm quark may be necessary

as is the case for a similar charm quark contribution to the KL −KS mass difference. Thus,

a physical calculation of both the K+ → π+`+`− and Ks → π0`+`− decays should become

possible in the next three to four years when the next generation of computers becomes

available.
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APPENDIX

Appendix A: Calculation of Propagators

In this section we give detailed explanations of the computation of the propagators used

in our simulation, being specific where necessary to the case of domain wall fermions.
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1. Random volume source propagator

The propagator we use in our calculation to compute quark loops is S(x, x)α,αa,a , where the

roman index a denotes color indices and the greek index α denotes spin indices. It is defined

via

S(x, x)α,αa,a =D−1(x, x)α,αa,a

=
∑
y,β,b

D−1(x, y)α,βa,b δ(y − x)δα,βδa,b

=
∑
y,β,b

〈
D−1(x, y)α,βa,b η(y)η∗(x)δα,βδa,b

〉
η
, (A1)

where D is the Dirac operator and η(x) are vectors of random complex numbers that satisfy

the constraints [22]

|η(x)|2 = 1, 〈η(x)〉η = 0, 〈η(y)η∗(x)〉η = δ(y − x). (A2)

We have used the notation 〈· · · 〉η to indicate the stochastic average over a large number of

noise vectors to distinguish it from the usual gauge average. To satisfy Eq. (A1) we take

η(x) to be constant across all spin and color indices corresponding to a single site. We use

complex Z2 noise to generate the vectors η(x) [23, 38].

2. Sequential propagator

In this section we introduce the calculation of a sequential propagator for a Shamir domain

wall fermion [17, 39]. While the physical fermion fields exist in four-dimensional spacetime,

the conserved domain wall current we must consider exists in five-dimensional spacetime.

Let us first define the five-dimensional fermion fields, Φ (s, x), where s indexes the position

in the fifth dimension, s = 1, ..., Ls. We define the "physical," four-dimensional quark-fields,

ψ (x), as chiral projections of the five-dimensional fields Φ, i.e.

ψ (x) = PRΦ (x, Ls) + PLΦ (x, 1) , (A3)

where PR and PL are the right and left projection operators respectively.
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Before we discuss the sequential propagator we first introduce propagators from the surface

field ψ into the five-dimensional bulk and vice versa, i.e.

SSB (x, s; y) =
〈
Φ (x, s)ψ (y)

〉
, (A4)

SBS (x; y, s) =
〈
ψ (x) Φ (y, s)

〉
. (A5)

The five-dimensional conserved current for the domain wall action is made up of the following

components [17, 39]: for the first four dimensions we have

jµ (x, s) =
1

2

(
Φ (x, s) (1 + γµ)Uµ (x) Φ (x+ µ̂, s)− Φ (x+ µ̂, s) (1− γµ)U †µ (x) Φ (x, s)

)
(A6)

where Uµ (x) is the link variable in the direction µ, and µ̂ is the unit vector in the direction

µ. For completeness the fifth component is given by

j5 (x, s) = Φ (x, s)PRΦ (x, s+ 1)− Φ (x, s+ 1)PLΦ (x, s) , (A7)

although it is unnecessary for our calculation. The overall four-dimensional conserved current

is given by the expression

Jµ (x) =
∑
s

jµ (x, s) . (A8)

Putting this together, we must calculate

Σµ (x, x0; y, y0) =
∑
z,s

eip·zSBS(x0,x; tJ , z, s)Kµ (tJ , z, s)SSB(tJ , z, s; y0,y), (A9)

where Kµ is the kernel of the conserved current that follows from Eqs. (A6)-(A8). This

propagator is obtained from an additional inversion by solving∑
x

D (tJ , z, s;x0,x) Σµ (x0,x, ; y0,y) = eip·zKµ (tJ , z, s)SSB(tJ , z, s; y0,y), (A10)

for Σµ where D is the five-dimensional Dirac operator.

Lastly we comment on the γ5 Hermiticity properties of this propagator. In general we find

that for a sequential propagator with an operator insertion O, we have

ΣO (x, y) = γ5Σ†O† (x, y) γ5. (A11)

For the example of the vector current, we simply have

Σµ (x, y) = −γ5Σ†µ (x, y) γ5. (A12)
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Appendix B: Approximations

1. c2
0(k) = −c1

0(k)

In this section we provide a justification for the approximation c2
0 (k,p) = −c1

0 (k,p). The

basis of this approximation is the identification that the relation holds exactly when k = p.

To show this, we define c1
0(k) and c2

0(k) respectively as

c1
0 (k) =

MJ,π
0 (0)MH (k)

2Eπ (k) (EK (k)− Eπ (k))
, c2

0 (k) = − MJ,K
0 (0)MH (k)

2EK (k) (EK (k)− Eπ (k))
. (B1)

In general the current matrix element can be decomposed as

MJ,P
µ (k, p) = (k + p)µ F

P
(
(k − p)2

)
, (B2)

where F P is the electromagnetic form factor of the particle P . At the point k = p, we find

that

MJ,P
0 (k, k) = 2EP (k)Q, (B3)

where EP is the energy of the particle in question, and Q is its charge (in units of the

elementary charge). The factor of 2EP (k) is canceled by the normalization factor in both

c1
0(k) and c2

0(k). The remaining factor of

MH (k)

EK (k)− Eπ (k)
(B4)

is common to both c1
0(k) and c2

0(k); it is thus clear to see that c2
0(k) = −c1

0(k).

2. SU(3) symmetric limit

In this section we show that the quantity 〈π (p)|HW |K (p)〉 is independent of momentum

in the SU(3) symmetric limit. Let us consider the matrix element

MH (p) = 〈π (p)|HW |K (p)〉 (B5)

= 〈π (k)|B−1
π (k, p)HWBK (k, p) |K (k)〉 (B6)

where BP (k, p) is the boost into the frame where the particle P has momentum k from the

frame where it has momentum p. The Lorentz boost depends on the particle’s mass, and so
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in general the quantity

B−1
π (k, p)HWBK (k, p) (B7)

cannot be trivially decomposed. However when we take the limit MK →Mπ, we find that

B−1
π (k, p)HWBπ (k, p) = HW . (B8)

The equality holds because the operator HW is a Lorentz scalar. It holds therefore that in the

SU (3) symmetric limit, the matrix element 〈π (p)|HW |K (p)〉 is independent of momentum.

A similar argument is true also for 〈π (p)| s̄d |K (p)〉. As a result the ratio cs [Eq. (22)] is

also independent of momentum in this limit.
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