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By tracking the divergence of two initially close trajectories in phase space in an Eulerian approach to
forced turbulence, the relation between the maximal Lyapunov exponent λ and the Reynolds number Re is
measured using direct numerical simulations, performed on up to 20483 collocation points. The Lyapunov
exponent is found to solely depend on the Reynolds number with λ ∝ Re0.53 and that after a transient period
the divergence of trajectories grows at the same rate at all scales. Finally a linear divergence is seen that is
dependent on the energy forcing rate. Links are made with other chaotic systems.
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Turbulence displays chaotic dynamics [1] and ideas from
chaos theory find many different applications in turbulence
including the dispersion of pairs of particles [2–5], the
presence of Lagrangian coherent structures [6], turbulent
mixing [7], turbulent transitions [8], andpredictability [9–13].
Chaos has been seen and applied in systems as diverse as
quantum entanglement, where the classical dynamical prop-
erties are linked to the quantum counterparts [14,15], plan-
etary dynamics [16], and biological systems [17].
Using the Eulerian approach, we track the divergence

of fluid field trajectories, which initially differ by a small
perturbation. We do a model independent analysis, evolving
the Navier-Stokes equations for three dimensional homo-
geneous isotropic turbulence (HIT) using direct numerical
simulation (DNS). The Eulerian approach to the study of the
chaotic properties of turbulence has received only limited
numerical tests prior to this Letter. Amongst approximate
models, there have been eddy damped quasi-normal
Markovian (EDQNM) closure approximations [18] and
shell model studies [19–21]. Amongst exact DNS studies,
there have been some in two dimensions [22–24] and single
runs in three dimensions at comparatively small box sizes
[25,26], all more than a decade and a half ago. This Letter
tests the theory of Ruelle [27] relating the maximal
Lyapunov exponent λ and Re in DNS of HIT in a
Eulerian sense. The paper also examines the time history
of the divergence and finds a uniform exponential growth
rate across all scales at an intermediate time and shows a
linear growth for late time in three dimensional HIT. The
simulations are also the largest yet for measuring the
Eulerian aspects of chaos in HIT for DNS, performed on
up to 20483 collocation points and reaching an integral scale
Reynolds number of 6200. This allows a more accurate
measurement of the Re dependence of λ.
For a chaotic system, an initially small perturbation jδu0j

should grow according to jδuðtÞj≃ jδu0jeλt where t is time.

It is theoretically predicted that the Lyapunov exponent
should depend on the Reynolds number according to the
rule [27,28]

λ ∼
1

τ
∼

1

T0

Reα; α ¼ 1 − h
1þ h

: ð1Þ

The Holder exponent, h, is given by juðxþ rÞ−uðxÞj∼Vlh,
where V is the rms velocity, l the size of the eddy,
Re ¼ VL=ν the integral scale Reynolds number, L ¼
ð3π=4EÞ R ðEðkÞ=kÞdk the integral length scale, E the
energy, ν the viscosity, T0 ¼ L=V the large eddy turnover
time, τ ¼ ðν=ϵÞ1=2 the Kolmogorov time scale, and ϵ the
dissipation rate. In the Kolmogorov theory, h is predicted to
be 1=3 and so α is predicted to be 1=2 [27–29].
Some of the new results found in this Letter from the

Eulerian approach are inaccessible to the Lagrangian
approach, such as the linear growth rate of the divergence
at late times which has no direct Lagrangian counterpart.
The paper also highlights different results from the two
approaches. For instance, within the Lagrangian approach,
the relation λτ ≈ const has been found before in tracer
particles [5,30] and for infinitesimal volume deformation
[31]. Furthermore, these results suggest that λτ decreases
slightly with Reynolds number, and that due to intermit-
tency corrections this implies α < 0.5 [19,30]. As will be
shown, we find that in the Eulerian approach λτ increases
slightly with Reynolds number, which is consistent with
our result that α > 0.5. There is nothing which says the
Lyapunov exponent in the Eulerian and Lagrangian frames
should be the same. An example is ABC flow in which the
Lyapunov exponent in the Lagrangian frame is positive but
in the Eulerian frame is nonpositive [32]. The prediction
of Ruelle for turbulence does not distinguish between
Eulerian and Lagrangian frames [27].
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We perform DNS of forced HIT on the incompressible
Navier-Stokes equations using a fully de-aliased pseudo-
spectral code in a periodic cube of length 2π

∂tu ¼ −∇P − u · ∇uþ νΔuþ f ; ∇ · u ¼ 0; ð2Þ

where u is the velocity field, P the pressure, ν the viscosity,
and f the external forcing. The density was set to unity [33].
The primary forcing used was a negative damping scheme
which only forced the low wave numbers (large scales),
kf ¼ 2.5, according to the rule

f̂ ðk; tÞ ¼ ðϵ=2EfÞuðk; tÞ if 0 < jkj < kf;

0 otherwise;
ð3Þ

where Ef is the energy in the forcing band and uðk; tÞ is the
Fourier coefficient of field u. This well-tested forcing
function [34,35] allows the dissipation rate, ϵ, to be known
a priori. We set ϵ to 0.1 for all runs unless otherwise stated.
A full description of the code, including the forcing, can be
found in [36]. The Reynolds number quoted throughout
this Letter is the integral scale Reynolds number, Re,
which was changed by varying ν. The simulations were
well resolved, with kmaxη > 1 for all simulations, where
kmax is the largest wave number in the simulation and η the
Kolmogorov length. T0 and L vary between simulations.
Over resolved simulations, with kmaxη ≫ 1, were per-
formed to test if the box size had a statistically significant
effect on the results and this was not the case. All
simulations parameters are given in the Supplemental
Material [37].
To implement the perturbation, a copy of the evolved

field u1 was made and perturbed slightly to create field u2.
This perturbation was achieved by not calling the forcing
function at one particular time step. This meant that
the perturbation would be in the band of wave numbers
0 < jkj < kf and would depend nontrivially on the field
itself by Eq. (3). The difference field δu ¼ u1 − u2 was
then calculated. Fields u1 and u2 were then evolved
independently and the statistics of δu were tracked. The
same realization of the external forcing is used on both
fields. The key statistic measured was the energy spectrum
of the field, Eðk; tÞ, which in Fourier space is defined by

Eðk; tÞ ¼ 1

2

Z
jkj¼k

dkjûðk; tÞj2; ð4Þ

with total energy, EðtÞ ¼ R∞
0 dkEðk; tÞ. Analogously, we

define the energy of the difference spectrum, Edðk; tÞ as

Edðk; tÞ ¼
1

2

Z
jkj¼k

dkjû1ðk; tÞ − û2ðk; tÞj2; ð5Þ

which is useful in assessing the degree of divergence
of two fields at a particular scale. We then similarly

define EdðtÞ ¼
R
∞
0 dkEdðk; tÞ as the total energy in the

difference spectrum. By inspection we can see that
jδuðtÞj ¼ (2EdðtÞ)1=2.
After a statistically steady state of turbulence was

reached, perturbations were made for a range of
Reynolds numbers from Re ≈ 10 to Re ≈ 6200 at box
sizes from 643 to 20483. We found that the growth of
jδuj best fit an exponential expðλtÞ. We multiply λ by T0 to
nondimensionalize the simulation time. A plot of Re vs λT0

is shown in Fig. 1. From the data we find a good fit to the
functional form λT0 ¼ CReα with α ¼ 0.53� 0.03 and
constant C ¼ 0.066� 0.008, in reasonable agreement with
the theory value prediction [27]. Previous results from a
shell model analysis relying on a phenomenological multi-
fractal model to extract a fit gave α ¼ 0.459 [19], while
other Lagrangian results have suggested α < 0.5 [30]. We
cross-checked the Re dependence using an alternative DNS
implementation of HIT described in [39], which gave a
result within one standard error of ours (see Supplemental
Material [37]). In a Lagrangian study [30] a decrease in λτ
was associated with α < 0.5. As is shown in the inset
in Fig. 1 our data show an increase in λτ with Re,
which agrees with α > 0.5 found here. This shows at least
one difference between the Eulerian and Lagrangian
approaches, which may have some significant underlying
reason worth exploring in future work.
We find that an initial perturbation must adopt a

particular spectrum, described below for EdðkÞ, before
EdðkÞ grows uniformly at all scales and maintains this
profile during exponential growth. This particular spectrum
is shown in Fig. 2 for a run with Re ≈ 2500. The spectrum
of EdðkÞ has three main characteristics; at low k there is an
approximately k3 power law dependence, at intermediate k
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FIG. 1. The main plot shows Re against λT0 and the fit
0.066Re0.53 as a solid black line. Errors for the higher wave
numbers are comparable to the size of the points and are not
included for clarity. The lower wave numbers have larger error. A
line of Re0.5 fit to the data is shown in dashed red (gray). The inset
shows λτ against Re for the same data.
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EdðkÞ has a peak between the peaks of EðkÞk2 and EðkÞk3,
and for high k there is an exponential dependence on wave
number, which we approximate as EdðkÞ ∼ expð−SkÞ. Our
DNS show that this exponential slope becomes flatter with
increasing Re according to a power law; this dependence
is very strong and is shown in Fig. 3 which plots the
relationship between Re and the magnitude of the expo-
nential slope, S. Thus, as Re becomes large, EdðkÞ becomes
flat for wave numbers higher than the peak. The difference
spectrum at low k for an EDQNM approximation was
found to be k4 [18], while in a single run of DNS it was k2

with large error [26]. Similar difference spectra as ours at
all scales have been seen in atmospheric models [40].
To understand the origin of the peak in EdðkÞ, it is useful

to look at the theory of [27], where it is assumed that the
maximal Lyapunov exponent is inversely proportional to

the smallest characteristic eddy time, which is the
Kolmogorov time τ. Naively we might expect that
the peak of EdðkÞ to be kη, the wave number corresponding
to η, which is the Kolmogorov length scale with
η ¼ ðν3=ϵÞ0.25. This is not observed. Instead, we can define
a frequency for eddies at wave number k of fðkÞk where
fðkÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

EðkÞkp
[41]. This would make the divergence

dominated by the eddies of the size of the peak of EðkÞk3,
which is close to the observed peak of EdðkÞ.
It is also interesting to plot the growth of EdðkÞ=hEðkÞi

for selected wave numbers as is done in Fig. 4, for the run
with Re ≈ 2500 on box size 10243, with angled brackets
representing a steady state average. The perturbation was
performed at the forcing wave numbers, k < kf. There are
three stages of growth. The first stage is a transient stage
during which the characteristic EdðkÞ spectra is adopted.
For the low wave number perturbation, the large scales
remain close for at least one T0, waiting until the small
scale divergence has reached a certain size, as seen before
in one dimensional atmospheric models [42]. This is the
cause for the different behavior of k ¼ 1, 2 in Fig. 4
compared to the other wave numbers. In our simulations
EdðkÞ ∼ t2 for the small scales when the perturbation was
made at low wave number. If the perturbation is made at
high wave number, the large scales do not remain close and
there is an initial convergence of the fields, as seen in 2D
turbulence, suggesting a common behavior [23]. If the
perturbation is made at low wave number then there is no
initial convergence.
Note that, although the plot in Fig. 4 is of one particular

initial state and initial perturbation vector, we find that the
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FIG. 2. EdðkÞ in black at an intermediate time for a simulation
with Re ≈ 2500 on box size 10243; the main plot is logarithmic
and has a dashed red (gray) line showing k3, while the inset is
semilogarithmic with a dashed red (gray) line showing an
exponential slope.
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FIG. 3. jSj vs Re with fit 15.1 � Re−0.91, where high-k behavior
of EdðkÞ is approximated as expð−SkÞ.
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FIG. 4. The growth of EdðkÞ=hEðkÞi for selected wave numbers
with time for a simulation with Re ≈ 2500 and box size 10243.
The wave number increases upwards, the plotted wave numbers
are k ¼ 1, 2, 5, 20, 100, in turn these are represented by crosses,
empty squares, solid circles, solid squares, and empty circles. The
red (gray) line follows wave number k ¼ 20 and shows the t2

dependence for early times. The perturbation was performed at
low k, at all wave numbers between 0 and 2.5.
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presence of these three stages appears to be independent of
the form of the perturbation made and initial state. Only the
initial transient stage depends on the form of the perturba-
tion. Perturbations made at high wave number exhibited the
same form in the latter two stages as those made at low
wave number. This suggests it is a characteristic feature of
the difference field evolution.
The second stage is the exponential growth stage, where

it is notable that all scales grow at the same exponential rate
and this exponent is the same as the maximal Lyapunov
exponent. In test simulations, forcing was performed at
intermediate wave numbers so that wave numbers lower
than the inertial range could be simulated. These simu-
lations also showed the same exponential growth rate at
every scale, including those larger than the forcing scale.
This suggests it is not a feature of the well-known forward
cascade of energy in turbulence. This scale independent
growth has also been seen in quasigeostrophic turbulence
in a channel [43], atmospheric models [40,44], and other
systems of nonlinear equations [45,46]. We now also
measure it in a large turbulent simulation. In Fig. 4 this
stage is relatively short but can be extended arbitrarily by
having a smaller perturbation; these checks also showed
our perturbation could be considered infinitesimal.
The third stage is the late time saturation stage, the

details of which depend on the size of the inertial range. At
late times, the growth of EdðtÞ enters a linear stage before
saturation, which is entered as soon as dEdðtÞ=dt ≈ ϵ. This
implies that the threshold energy is Ed ≈ ϵ=2λ. If this
energy is greater than the saturation of the difference, then
the growth of the difference is exponential until it saturates.
Ed for runs at Re ≈ 130 and Re ≈ 800 are shown in the inset
of Fig. 5, where late time starts at t ≈ 20 for Re ≈ 130 and
t ≈ 7 for Re ≈ 800.

By varying the rate of dissipation we can see the
dependence of this linear growth rate on ϵ, which is the
energy input rate for a statistically steady state system. A
plot of ϵ against dEdðtÞ=dt for late times is shown in
Fig. 5. The values here are not normalized and we find
dEdðtÞ=dt ¼ 1.12ϵ. dEdðtÞ=dt is really a quantification of
the rate of separation of trajectories in phase space, which is
related to information creation, i.e. Kolmogorov-Sinai (KS)
entropy. If it is possible to interpret dEdðtÞ=dt as the KS
entropy, we can relate our results with corollary (2.2) of
[47] which shows that the upper bound of the KS entropy in
an isothermal fluid in equation (2.9) of [47] is related to the
dissipation.
The findings of linear growth in Ed at late time in a 2D

DNS of turbulence were justified on the basis that there is a
characteristic time scale for the eddies τðkÞ ∼ k−2=3 [24],
which is in agreement with the definition of our frequency
fðkÞk. However, in our data we find instead that
τðkÞ ∼ k−1=3. This linear growth at late times does not
have a clear Lagrangian counterpart. For high Re the
exponential growth phase may be very brief and so the
majority of the divergence will be dominated by the linear
growth, which only depends on the dissipation. In this way
the divergence of two velocity field trajectories may be
universal in the Kolmogorov sense at high Re.
We have found that, if one scale EdðkÞ diverges exponen-

tially, then all scales do so. This could indicate the presence
of a turbulent regime. If there is no turbulent regime, then
there are no scales which diverge exponentially in the
Eulerian framework. This is different to the Lagrangian
case. Instead of associating the inverse Lyapunov exponent
with Kolmogorov time τ, a slight reinterpretation of Ruelle’s
theory is to associate the characteristic timewith lT=V where
lT is the Taylor microscale, which only exists if an inertial
range exists (see Supplemental Material [37] for data). This
would also give α close to 0.5. This quantity uses the largest
velocity and smallest length scale exclusive to turbulence to
achieve the smallest time scale.
In summary, we have shown that the degree of chaos for

forced HIT appears to be uniquely dependent on the large
scale Reynolds number according to the law λT0 ∼ Re0.53.
Divergence does not occur at all scales until the velocity
field difference spectrum adopts a characteristic form. After
this spectrum is adopted, the normalized energy difference
spectrum EdðkÞ=hEðkÞi grows similarly for all wave
numbers at intermediate times. Because of the shape of
the spectrum, the smallest length scales will become
decorrelated long before the largest length scales, as has
been predicted before [9]. At the large scales, predictability
for a fixed tolerance should be possible for much longer
than at the smallest scales. The late time growth of EdðtÞ
was found to be linear and approximately equal to the
energy input rate.
This Letter has made thorough numerical demonstrations

of the links between chaos and turbulence in a Eulerian
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FIG. 5. The main plot shows ϵ against dEdðtÞ=dt at late times
before saturation, with error shown on measured slope and fit
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context, and so by extension relates turbulence to other
chaotic processes and might provide a different perspective
for their study. In chaos containing multiple length and time
scales, applying ideas from turbulence may be especially
fruitful because we have seen similar features here in
turbulence to those found in chaotic systems which are not
considered turbulent [40,45,46,48]. There are interesting
similarities between the linear growth behavior found in
this paper and others [47,49], which we will examine in the
future.
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